WO2016177162A1 - 一种资源分配方法和装置 - Google Patents

一种资源分配方法和装置 Download PDF

Info

Publication number
WO2016177162A1
WO2016177162A1 PCT/CN2016/077020 CN2016077020W WO2016177162A1 WO 2016177162 A1 WO2016177162 A1 WO 2016177162A1 CN 2016077020 W CN2016077020 W CN 2016077020W WO 2016177162 A1 WO2016177162 A1 WO 2016177162A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
low latency
message
resource
base station
Prior art date
Application number
PCT/CN2016/077020
Other languages
English (en)
French (fr)
Inventor
沙秀斌
邹伟
戴谦
戴博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177162A1 publication Critical patent/WO2016177162A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to, but is not limited to, the field of wireless communication technologies, and in particular, to a resource allocation method and apparatus.
  • GPRS General Packet Radio Service
  • the radio access network usually adopts a wireless transmission strategy of the ultra-low-latency service.
  • the transmission time interval (TTI) is less than 1 millisecond (that is, the short TTI).
  • the wireless frame performs ultra-low latency data transmission, and the above method is an important means for shortening the wireless transmission delay.
  • LTE Long Term Evolution
  • UE User Equipment
  • RRC Radio Resource Control
  • the Evolved Node B (abbreviated as: eNB) does not need to allocate uplink resources to the UE; when the UE transmits data from no data to when there is data transmission, it can send an uplink scheduling request (Scheduling Request, SR for short).
  • the message requests the uplink resource from the eNB; since the ultra-low latency service and the legacy service in the wireless network coexist, the conventional SR message can only indicate that there is a data transmission request, and cannot indicate the requirement of the data to be transmitted for delay, and therefore, How the RRC connected UE requests services with different delay requirements becomes an urgent problem to be solved.
  • An embodiment of the present invention provides a resource allocation method and apparatus, to solve the problem that a conventional SR message cannot indicate ultra-low latency service requirement information when a UE in an RRC connected state requests data transmission.
  • an embodiment of the present invention provides a resource allocation method, including:
  • SR uplink scheduling request
  • UE user equipment
  • the base station allocates an uplink ultra-low latency resource to the UE according to the ultra-low latency service indication information in the SR message.
  • the ultra-low latency service indication information includes an ultra-low latency data pending indication, where the ultra-low latency data pending indication is used to indicate whether the UE currently has data waiting for ultra-low latency service waiting for transmission;
  • the base station allocates an uplink ultra-low latency resource to the UE according to the ultra-low latency service indication information, including:
  • the base station allocates an uplink ultra-low latency resource to the UE.
  • the ultra low latency service indication information includes an ultra low latency indication value
  • the base station allocates an uplink ultra-low latency resource to the UE according to the ultra-low latency service indication information, including:
  • TTI transmission time interval
  • the base station determines that the base station is the same as the TTI capability supported by the UE, allocates an uplink ultra-low latency resource corresponding to the length TTI according to the ultra-low delay indication value;
  • the ultra-low time is preferentially allocated according to the TTI capability intersection of the base station and the UE and the ultra-low delay indication value.
  • the extended indication value corresponds to the uplink ultra-low latency resource of the length TTI.
  • the ultra low latency service indication information further includes an ultra low latency data pending indication; the base station according to the super The low-latency service indication information allocates uplink ultra-low latency resources to the UE, including:
  • the base station allocates an uplink ultra-low latency resource corresponding to the length TTI according to the ultra-low latency indication value.
  • the ultra low latency indication value includes an ultra low latency level and/or an ultra low latency service a cached data volume level, where the ultra-low latency level is used to indicate an end-to-end delay requirement level of the ultra-low latency service of the UE or a scheduling delay of the ultra-low latency service of the UE a required level, the cached data volume level of the ultra-low latency service indicates a total amount of ultra-low latency service data to be transmitted in a buffer area of the UE or a highest priority to be transmitted in a buffer area of the UE The amount of data for low latency services.
  • the base station receives an uplink scheduling request sent by a user equipment (UE) Before the SR) message, the method further includes:
  • the base station sends a radio resource control (RRC) connection setup message to the UE, where the RRC connection setup message is configured with a resource for the UE to send the SR message and an SR period corresponding to the resource, where the RRC
  • the connection setup message is used to indicate that the UE sends the SR message according to the configured resource according to the SR period corresponding to the resource, where the SR period corresponding to the resource is configured as an SR short period with a length less than 1 ms.
  • the RRC connection setup message is further configured with a multi-carrier service, or a single-carrier service, or the single-carrier service and a physical uplink control channel (PUCCH) format indication;
  • a multi-carrier service or a single-carrier service, or the single-carrier service and a physical uplink control channel (PUCCH) format indication;
  • PUCCH physical uplink control channel
  • the SR message is carried by the UE according to the TTI capability supported by the base station and the UE, and the corresponding extended PUCCH format selected by the content configured in the RRC connection setup message, where the selected extension is selected.
  • the PUCCH format includes an SR message indication value of not less than 2 bits.
  • any one of the first to third possible implementations of the first aspect before the receiving, by the base station, the uplink scheduling request (SR) message sent by the user equipment (UE), the method further includes:
  • the eNB sends an RRC connection setup message to the UE, where the RRC connection setup message is configured with a plurality of PUCCHs, where the RRC connection setup message is used to indicate that the UE selects according to the resource type indicated by the SR message.
  • the PUCCH sends the SR message, where the first PUCCH is used to send an SR message indicating an uplink ultra-low latency resource, and the second PUCCH is used to send an SR message indicating an uplink non-ultra-low latency resource.
  • an embodiment of the present invention provides a resource allocation method, including:
  • the user equipment sends an uplink scheduling request (SR) message to the base station, where the SR message includes ultra-low latency service indication information, where the SR message is used to indicate that the base station is based on the ultra low time in the SR message.
  • the extended service indication information allocates an uplink ultra-low latency resource to the UE;
  • the UE receives an uplink ultra-low latency resource allocated by the base station.
  • the ultra-low latency service indication information includes an ultra-low latency data pending indication, where the ultra-low latency data pending indication is used to indicate whether the UE currently has data waiting for ultra-low latency service waiting for transmission;
  • the SR message is used to indicate that the base station allocates an uplink ultra-low latency resource to the UE when the ultra-low latency data pending indication is an ultra-low latency service.
  • the ultra low latency service indication information includes an ultra low latency indication value
  • the SR message is used to indicate that the base station allocates an uplink ultra-low corresponding length TTI according to the ultra-low delay indication value when determining that the base station and the UE support the same transmission time interval (TTI) capability.
  • Delay resource or,
  • the SR message is used to indicate, according to the determining, that the base station and the UE support different TTI capabilities, according to the TTI capability intersection of the base station and the UE, and the ultra low delay indication value,
  • the uplink ultra-low latency resource corresponding to the length TTI is preferentially allocated.
  • the ultra low latency service indication information further includes an ultra low latency data pending indication; the SR message is used to indicate The base station, when the ultra low latency data is to be transmitted as indicating an ultra low latency service, according to the The ultra-low delay indication value allocates an uplink ultra-low latency resource corresponding to the length TTI.
  • the ultra low latency indication value includes an ultra low latency level and/or an ultra low latency service a cached data volume level, where the ultra-low latency level is used to indicate an end-to-end delay requirement level of the ultra-low latency service of the UE or a scheduling delay of the ultra-low latency service of the UE a required level, the cached data volume level of the ultra-low latency service indicates a total amount of ultra-low latency service data to be transmitted in a buffer area of the UE or a highest priority to be transmitted in a buffer area of the UE The amount of data for low latency services.
  • the user equipment (UE) sends an uplink scheduling request to the base station (SR) Before the message, the method further includes:
  • Radio resource control RRC
  • the RRC connection setup message is configured with a resource for the UE to send the SR message and an SR period corresponding to the resource
  • the user equipment UE sends an uplink scheduling request SR message to the base station, including:
  • the UE sends the SR message according to the resource configured in the RRC connection setup message according to the SR period corresponding to the resource, where the SR period corresponding to the resource is configured as an SR short period with a length less than 1 ms.
  • the RRC connection setup message is further configured with a multi-carrier service, or a single-carrier service, or the single-carrier service and a physical uplink control channel (PUCCH) format indication;
  • a multi-carrier service or a single-carrier service, or the single-carrier service and a physical uplink control channel (PUCCH) format indication;
  • PUCCH physical uplink control channel
  • the method further includes:
  • the UE carries the SR message according to the TTI capability supported by the base station and the UE, and the extended PUCCH format corresponding to the content configured in the RRC connection setup message, where the selected extended PUCCH format is used.
  • the SR message indication value of not less than 2 bits is included.
  • any one of the first to third possible implementations of the second aspect before the user equipment (UE) sends an uplink scheduling request (SR) message to the base station, the method further includes:
  • the UE receives an RRC connection setup message sent by the base station, where multiple RRC connection setup messages are configured with multiple PUCCHs;
  • the user equipment UE sends an uplink scheduling request SR message to the base station, including:
  • the UE sends the SR message according to the resource type indicated by the SR message, where the first PUCCH is used to send an SR message indicating an uplink ultra-low latency resource, and the second PUCCH is used to send an indication.
  • SR message for uplink non-ultra-low latency resources.
  • an embodiment of the present invention provides a resource allocation method, including:
  • the base station sends a radio resource control (RRC) connection setup message to the user equipment UE, where the RRC connection setup message is configured with a correspondence between a physical uplink control channel (PUCCH) and a delay requirement indication value, where the RRC connection setup message is Instructing the UE to select a corresponding PUCCH according to the determined delay requirement indication value;
  • RRC radio resource control
  • the base station allocates an uplink resource of the corresponding length TTI to the UE according to the selected PUCCH, where the uplink resource includes the uplink ultra-low latency resource and the uplink non-ultra-low latency resource.
  • an embodiment of the present invention provides a resource allocation method, including:
  • a user equipment receives a radio resource control (RRC) connection setup message sent by the base station, where the RRC connection setup message is configured with a correspondence between a physical uplink control channel (PUCCH) and a delay requirement indication value;
  • RRC radio resource control
  • the UE selects a corresponding PUCCH according to the determined delay requirement indication value
  • the UE sends an SR message to the base station by using the selected PUCCH, where the SR message is used to indicate that the base station allocates an uplink resource of a corresponding length TTI to the UE according to the selected PUCCH, where the uplink resource
  • the uplink ultra low latency resource and the uplink non-ultra low latency resource are included.
  • an embodiment of the present invention provides a resource allocation apparatus, where the resource allocation apparatus includes:
  • the receiving module is configured to: receive an uplink scheduling request (SR) message sent by the user equipment (UE), where the SR message includes ultra-low latency service indication information;
  • SR uplink scheduling request
  • the allocation module is configured to allocate an uplink ultra-low latency resource to the UE according to the ultra-low latency service indication information in the SR message received by the receiving module.
  • the ultra-low latency service indication information includes an ultra-low latency data pending indication, where the ultra-low latency data pending indication is used to indicate whether the UE currently has data waiting for ultra-low latency service waiting for transmission;
  • the allocating module allocates an uplink ultra-low latency resource to the UE according to the ultra-low latency service indication information in the following manner:
  • the allocation module allocates an uplink ultra-low latency resource to the UE when the ultra-low latency data is to be transmitted to indicate an ultra-low latency service.
  • the ultra low latency service indication information includes an ultra low latency indication value
  • the distribution module includes:
  • a determining unit configured to: determine whether the base station and the UE support a transmission time interval (TTI) capability;
  • the allocation unit is configured to: when the determining unit determines that the base station is the same as the TTI capability supported by the UE, allocate an uplink ultra-low latency resource corresponding to the length TTI according to the ultra-low delay indication value;
  • the allocation unit is further configured to: when the determining unit determines that the base station is different from the TTI capability supported by the UE, according to the TTI capability intersection of the base station and the UE, and the ultra low delay indication value
  • the uplink ultra-low latency resource corresponding to the length TTI is preferentially allocated.
  • the ultra-low latency service indication information further includes an ultra-low latency data pending indication; Allocating an uplink ultra-low latency resource to the UE according to the ultra-low latency service indication information:
  • the allocation module allocates an uplink ultra-low latency resource corresponding to the length TTI according to the ultra-low latency indication value when the ultra-low latency data is to be transmitted as the ultra-low latency service.
  • the ultra low latency indication value includes an ultra low latency level and/or an ultra low latency service a cached data volume level, where the ultra-low latency level is used to indicate an end-to-end delay requirement level of the ultra-low latency service of the UE or a scheduling delay of the ultra-low latency service of the UE a required level, the cached data volume level of the ultra-low latency service indicates a total amount of ultra-low latency service data to be transmitted in a buffer area of the UE or a highest priority to be transmitted in a buffer area of the UE The amount of data for low latency services.
  • the resource allocation apparatus further includes: a sending module, configured to: Before receiving the SR message sent by the UE, the receiving module sends a radio resource control (RRC) connection setup message to the UE, where the RRC connection setup message is configured to be used by the UE to send the SR a resource of the message and an SR period corresponding to the resource, where the RRC connection setup message is used to indicate that the UE sends the SR message according to the configured resource according to the SR period corresponding to the resource, and the SR period corresponding to the resource Configured as a short SR period of less than 1ms in length.
  • RRC radio resource control
  • the RRC connection setup message is further configured with a multi-carrier service, or a single carrier service, or the single carrier service and the physical An uplink control channel (PUCCH) format indication;
  • the SR message is a corresponding extended PUCCH selected by the UE according to the TTI capability supported by the base station and the UE, and content configured in the RRC connection setup message
  • the format is carried by, wherein the selected extended PUCCH format includes an SR message indication value of not less than 2 bits.
  • the resource allocation apparatus further includes: a sending module, configured to: Before receiving the SR message sent by the UE, the receiving module sends an RRC connection setup message to the UE, where the RRC connection setup message is configured with multiple PUCCHs, and the RRC connection setup message is used to indicate The UE sends the SR message according to the resource type indicated by the SR message, where the first PUCCH is used to send the SR message.
  • the SR message indicating the uplink ultra-low latency resource is sent, and the second PUCCH is used to send the SR message indicating that the uplink is not the ultra-low latency resource.
  • an embodiment of the present invention provides a resource allocation apparatus, which is disposed in a user equipment (UE), where the resource allocation apparatus includes:
  • a sending module configured to: send an uplink scheduling request (SR) message to the base station, where the SR message includes ultra-low latency service indication information, where the SR message is used to indicate that the base station is configured according to the SR message
  • the ultra-low latency service indication information allocates an uplink ultra-low latency resource to the UE
  • the receiving module is configured to: receive an uplink ultra-low latency resource allocated by the base station.
  • the ultra-low latency service indication information includes an ultra-low latency data pending indication, where the ultra-low latency data pending indication is used to indicate whether the UE currently has data waiting for ultra-low latency service waiting for transmission;
  • the SR message is used to indicate that the base station allocates an uplink ultra-low latency resource to the UE when the ultra-low latency data pending indication is an ultra-low latency service.
  • the ultra low latency service indication information includes an ultra low latency indication value
  • the SR message is used to indicate that the base station allocates an uplink ultra-low corresponding length TTI according to the ultra-low delay indication value when determining that the base station and the UE support the same transmission time interval (TTI) capability.
  • Delay resource or,
  • the SR message is used to indicate, according to the determining, that the base station and the UE support different TTI capabilities, according to the TTI capability intersection of the base station and the UE, and the ultra low delay indication value,
  • the uplink ultra-low latency resource corresponding to the length TTI is preferentially allocated.
  • the ultra low latency service indication information further includes an ultra low latency data pending indication
  • the SR message is used to indicate that the base station allocates an uplink ultra-low latency resource of a corresponding length TTI according to the ultra-low latency indication value when the ultra-low latency data to be transmitted is indicated as an ultra-low latency service.
  • the ultra-low latency indication value includes a cached data volume level of an ultra-low latency level and/or an ultra-low latency service, where the ultra-low latency level is used to indicate an ultra low time of the UE.
  • a demand level of the end-to-end delay of the service or a demand level of the scheduling delay of the ultra-low latency service of the UE where the cached data volume level of the ultra-low latency service indicates that the UE is in the buffer area
  • the receiving module is further configured to: in the sending module Before receiving the SR message, the base station receives a radio resource control (RRC) connection setup message sent by the base station, where the RRC connection setup message is configured with a resource and a location for the UE to send the SR message.
  • RRC radio resource control
  • the sending module sends the SR message to the base station by: sending, according to the resource configured in the RRC connection setup message, the SR message according to the SR period corresponding to the resource, where the SR corresponding to the resource
  • the period is configured as an SR short period of less than 1 ms in length.
  • the RRC connection setup message is further configured with multi-carrier service, or single-carrier service, or the single-carrier service and physical Uplink Control Channel (PUCCH) format indication;
  • PUCCH physical Uplink Control Channel
  • the resource allocation apparatus further includes: a selecting module, configured to: after the receiving module receives the RRC sent by the base station, and before the sending module sends the SR message to the base station, according to the base station
  • the SR message is carried by the extended PUCCH format corresponding to the TTI capability supported by the UE and the content selected in the RRC connection setup message, where the selected extended PUCCH format includes not less than 2 bits.
  • the SR message indicates the value.
  • the receiving module is further configured to: in the sending module Receiving, by the base station, the RRC connection setup message sent by the base station, where the RRC connection setup message is configured with multiple PUCCHs;
  • the sending module sends the SR message to the base station by: selecting a corresponding PUCCH to send the SR message according to the resource type indicated by the SR message, where the first PUCCH is used to send an indication that the uplink is ultra low. SR message of the delay resource, the second PUCCH is used for sending Send an SR message indicating that the uplink is not an ultra-low latency resource.
  • the embodiment of the present invention provides a resource allocation apparatus, where the resource allocation apparatus includes:
  • a sending module configured to: send a radio resource control (RRC) connection setup message to the user equipment (UE), where the physical uplink control channel (PUCCH) and the delay requirement indication value are configured in the RRC connection setup message Corresponding relationship, the RRC connection setup message is used to indicate that the UE selects a corresponding PUCCH according to the determined delay requirement indication value;
  • RRC radio resource control
  • a receiving module configured to: receive an SR message sent by the UE by using the selected PUCCH;
  • an allocation module configured to: allocate an uplink resource of a corresponding length TTI to the UE according to the selected PUCCH, where the uplink resource includes the uplink ultra-low latency resource and an uplink non-ultra-low latency resource.
  • an embodiment of the present invention provides a resource allocation apparatus, which is disposed in a user equipment (UE), where the resource allocation apparatus includes:
  • the receiving module is configured to: receive a radio resource control (RRC) connection setup message sent by the base station, where the RRC connection setup message is configured with a correspondence between a physical uplink control channel (PUCCH) and a delay requirement indication value;
  • RRC radio resource control
  • Selecting a module configured to: select a corresponding PUCCH according to the determined delay requirement indication value
  • a sending module configured to: send an SR message to the base station by using a PUCCH selected by the selecting module, where the SR message is used to indicate that the base station allocates a corresponding length TTI to the UE according to the selected PUCCH
  • the uplink resource includes the uplink ultra-low latency resource and the uplink non-ultra-low latency resource.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, and when the computer executable instructions are executed, implementing a resource allocation method on a base station side.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which implement a resource allocation method on a user equipment side when the computer executable instructions are executed.
  • the base station receives the SR message including the ultra-low delay service indication information sent by the UE, and allocates the uplink ultra-low to the UE according to the ultra-low delay service indication information in the SR message.
  • Delay resource the method provided in this embodiment implements the UE without After waiting for the base station to allocate uplink resources to the base station, the low-latency service indication is fed back to the base station, that is, in the process of allocating the uplink ultra-low delay resource, the number of interaction between the base station and the UE is reduced, and the base station is allocated uplink.
  • the efficiency of the ultra-low latency resource solves the problem that the conventional SR message cannot indicate the ultra-low latency service requirement information when the UE in the RRC connected state requests data transmission.
  • FIG. 1 is a flowchart of a resource allocation method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another resource allocation method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of still another resource allocation method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of still another resource allocation method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of still another resource allocation method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of signaling interaction of a resource allocation method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a resource allocation apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another resource allocation apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another resource allocation apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of still another resource allocation apparatus according to an embodiment of the present invention.
  • the eNB since the eNB does not know when the UE needs to send uplink data, that is, it does not know when the UE will send an SR message, the eNB needs to configure the SR period for the UE before the UE sends the SR message, and has already allocated the SR period. Whether the SR message is reported is detected on the SR period.
  • the relevant parameters of the current SR period are shown in Table 1.
  • the minimum SR period is 1 millisecond (ms) duration.
  • the shortest duration of the SR period configured by the eNB in the related art is 1 ms.
  • the UE needs to send the SR message in the configured SR period, and the duration of the TTI in the related art is usually 1 ms. .
  • the SR message sent by the UE in the SR period is usually only 1 bit, indicating whether there is data to be sent later.
  • the eNB can allocate uplink resources to the UE according to the SR message. After the UE acquires the uplink resource, the UE sends the uplink resource.
  • the specific requirements of the service request for example, the requirement to send the ultra-low-latency service indication, the eNB does not know whether the service requested by the UE needs to use ultra-low latency service for transmission during service scheduling, that is, conventional
  • the SR message can only indicate that there is a data transmission request, and cannot indicate the delay of the data to be transmitted. Therefore, how the UE in the RRC connected state requests the service with different delay requirements becomes an urgent problem to be solved.
  • the base station in the following embodiments may be, for example, an eNB in an LTE network, and in various embodiments of the present application.
  • the eNB may configure the SR index and the corresponding SR period in the foregoing Table 1 for the UE, and both the UE and the eNB in the embodiments of the present application need to establish an RRC connection.
  • the following specific embodiments may be combined with each other, and the same or similar concepts or processes may not be described in some embodiments.
  • FIG. 1 is a flowchart of a resource allocation method according to an embodiment of the present invention.
  • the resource allocation method provided in this embodiment is applicable to a situation in which an uplink resource is allocated to a UE, and the method may be implemented by a resource allocation device, where the resource allocation device is implemented by combining hardware and software, and the device may be integrated in a processor of the base station. Medium for use by the processor.
  • the method of this embodiment may include the following steps:
  • Step S110 The base station receives an SR message sent by the UE, where the SR message includes ultra-low latency service indication information.
  • the UE usually needs to send an SR message in the SR period
  • the SR period in this embodiment is a process in which the UE establishes an RRC connection with the base station, and the base station is configured for the UE, that is, the embodiment is before step S110.
  • the method of this embodiment further includes: in step S100, the base station sends an RRC connection setup message to the UE, where the RRC connection setup message is configured with a resource for the UE to send the SR message and an SR period corresponding to the resource, where the RRC connection setup message is used. And instructing the UE to send an SR message according to the configured resource according to the SR period corresponding to the resource, where the SR period corresponding to the resource is configured as an SR short period with a length less than 1 ms.
  • the base station in the present embodiment is not limited to the related resources in Table 1 when configuring resources for the UE, and may configure a dedicated SR short period for the ultra-low latency service, and the configuration contents of the SR short period are as follows: Table 2 shows.
  • the configured resource is usually the configuration index I SR value of the SR .
  • the judgment may be performed.
  • the I SR value is less than or equal to 157, it is considered that the regular SR period is configured, and the SR message is sent according to the regular SR period policy; if the I SR value is equal to 158, the SR short period dedicated to the ultra-low delay service is considered to be configured due to The SR short period dedicated to the ultra-low latency service is smaller than the length of one subframe, so the subframe offset does not need to be configured, and the UE can send the SR message in any SR short period dedicated to the ultra low latency service.
  • the resource configured by the base station for the UE is an ISR value equal to 158.
  • the UE supporting the ultra-low latency service receives the RRC connection setup message, and when the ultra-low latency service triggers the SR resource request.
  • the SR message carrying the ultra-low latency service indication information is sent at the latest SR short cycle transmission opportunity.
  • Step S120 The base station allocates an uplink ultra-low latency resource to the UE according to the ultra-low latency service indication information in the SR message.
  • the SR message is different from the conventional SR message.
  • the SR message in this embodiment carries the ultra-low latency service indication information, and the ultra-low latency service indication information, when the UE requests the ultra-low latency service.
  • the ultra-low latency data pending indication, the ultra-low latency level, and the cached data volume level of the ultra-low latency service may be included, and the base station may according to the specific form of the ultra-low latency service indication information.
  • the content is allocated to the UE by using the ultra-low-latency service indication when the UE waits for the base station to allocate the uplink resource, and the data feedback is performed on the allocated uplink resource.
  • the SR message received by the base station carries the ultra-low delay service indication information, and allocates the ultra-low delay to the UE according to the ultra-low delay service indication information when the uplink resource is allocated.
  • the uplink resource of the service enables the UE to obtain the uplink ultra-low latency resource in time, thereby improving the timeliness of the data transmission of the service.
  • the TTI duration of the conventional uplink resource is 1 ms
  • the TTI duration of the uplink ultra-low latency resource is usually less than 1 ms, for example, 1 symbol, or 0.5 ms.
  • the method provided in this embodiment has another possible situation.
  • the base station in the embodiment determines that the ultra-low delay is not included in the SR message.
  • the service indication information allocates uplink non-ultra-low latency resources to the UE according to the SR message.
  • the situation is similar to the conventional manner.
  • the ultra-low latency service indication information is not included in the SR message, the information indicating the uplink delay service type is not carried.
  • the base station directly allocates the uplink non-ultra-low delay resource.
  • the uplink non-ultra-low latency resource is usually an uplink resource with a TTI duration equal to 1 ms.
  • the base station receives the SR message including the ultra-low latency service indication information sent by the UE, and according to the ultra-low delay service indication information in the SR message.
  • the uplink low-latency delay resource is allocated to the UE.
  • the method provided in this embodiment does not need to wait for the base station to allocate uplink resources to the base station, and then feeds back the ultra-low delay service indication to the base station, that is, allocates the uplink ultra-low delay resource at the base station.
  • the process the number of interactions between the base station and the UE is reduced, and the efficiency of the base station to allocate the uplink ultra-low delay resource is correspondingly improved, and the conventional SR message cannot be indicated to be ultra-low when the UE in the RRC connected state requests the data transmission.
  • the problem of delaying business demand information is reduced, and the efficiency of the base station to allocate the uplink ultra-low delay resource is correspondingly improved, and the conventional SR message cannot be indicated to be ultra-low when the UE in the RRC connected state requests the data transmission.
  • the SR period configured by the base station for the UE may be configured as an SR short period with a duration of less than 1 ms, so that the UE sends the SR message in a shorter time interval. If the current time is not the sending time in the SR period, the SR message can be sent after waiting for a shorter time, which improves the timeliness of sending the SR message, that is, improves the efficiency of acquiring the uplink ultra-low delay resource.
  • the ultra-low latency service indication information in the embodiment shown in FIG. 1 includes, for example, an ultra-low latency data pending indication, where the ultra-low latency data pending indication is used to indicate whether the UE currently has an ultra-low latency.
  • the data of the service is awaiting transmission; correspondingly, the step S120 in FIG. 1 may be replaced by: when the ultra-low delay data is to be transmitted as the ultra-low delay service, the base station allocates the uplink ultra-low delay resource to the UE.
  • the UE may set the ultra-low latency data pending indication to TRUE; if the UE's cache has an untransmitted ultra-low latency For the service data, the UE may also set the ultra low delay data pending indication to TRUE; in other cases, the UE sets the ultra low delay data pending indication to False; the ultra low delay data pending indication is in the SR message.
  • the data format in the data format may be 1 bit. Alternatively, TRUE is represented as 1, and False is represented as 0, or may be represented by other data formats.
  • the base station when the base station detects that the ultra-low delay data pending indication is TRUE in the SR message, it may determine whether to allocate short TTI resources to the UE according to the air interface resource condition, and schedule which short format TTI resources are in the length format.
  • FIG. 2 is a flowchart of another resource allocation method according to an embodiment of the present invention.
  • the ultra low latency service indication information in this embodiment specifically includes If the value is low, the step S120 may include: Step S121: The base station determines whether the base station and the TTI capability supported by the UE are the same. If yes, step S122 is performed; if no, step S123 is performed.
  • the base station receives the capability information of the UE in the RRC connection request message sent by the UE, and the base station may also carry the capability information of the base station when sending the RRC connection setup message to the UE, that is, Both the base station and the UE that have established the RRC connection, Clearly know the TTI capability of itself and the other party, and the TTI capability is the main factor to be considered when allocating uplink ultra-low latency resources to the base station.
  • the specific distribution method is:
  • Step S122 when the base station determines that the base station and the TTI capability supported by the UE are the same, the uplink ultra-low delay resource corresponding to the length TTI is allocated according to the ultra-low delay indication value;
  • Step S123 when the base station determines that the base station and the TTI capability supported by the UE are different, according to the TTI capability intersection and the ultra-low delay indication value of the base station and the UE, preferentially allocate the ultra-low delay indication value corresponding to the length of the TTI. Delay resources.
  • both the base station and the UE support TTIs of three durations, specifically: 1 symbol, 0.5 ms, and 1 ms.
  • the ultra-low latency indication value in the SR message received by the base station can be represented by three values, as shown in Table 3 below.
  • the ultra-low delay indication value in this embodiment may indicate that the maximum duration of the TTI is 1 ms currently used. Duration of TTI.
  • Table 3 is only one possible correspondence between the ultra-low delay indication value and the allocated resource type of the base station, and the present application does not limit the number of ultra-low delay indication values and their corresponding TTI durations.
  • step S121 if it is determined in step S121 that the TTI capability supported by the base station and the UE is the same, the specific manner of allocating the uplink ultra-low latency resource is:
  • the UE allocates an uplink ultra-low latency resource of 1 symbol duration TTI;
  • the UE allocates an uplink ultra-low delay resource of 0.5 millisecond duration TTI;
  • the UE When the ultra-low latency indication value in the SR message is 3, the UE is allocated an uplink ultra-low latency resource of 1 millisecond duration TTI.
  • step S121 if it is determined in step S121 that the TTI capability supported by the base station and the UE is different, the specific manner for allocating the uplink ultra-low latency resource is:
  • the uplink ultra-low latency resource with the TTI duration closest to 1 symbol is preferentially allocated in the TTI capability intersection of the base station and the UE;
  • the priority order of the uplink ultra-low latency resource in the TTI capability intersection of the base station and the UE is: 0.5 milliseconds > 1 symbol > 1 millisecond;
  • the uplink ultra-low latency resource with the TTI duration closest to 1 millisecond is preferentially allocated in the TTI capability intersection of the base station and the UE.
  • the ultra-low latency indication value in this embodiment may be a cached data volume level of an ultra-low latency level or an ultra-low latency service; wherein the ultra-low latency level is used to indicate that the UE's ultra-low latency service peer end
  • the demand level of the end delay or the demand level of the ultra-low delay service of the UE for the scheduling delay, and the buffered data level of the ultra low delay service indicates the total amount of the ultra low delay service data to be transmitted in the buffer area of the UE.
  • the data volume of the highest priority ultra-low latency service to be transmitted in the buffer area of the UE may be a cached data volume level of an ultra-low latency level or an ultra-low latency service; wherein the ultra-low latency level is used to indicate that the UE's ultra-low latency service peer end
  • the demand level of the end delay or the demand level of the ultra-low delay service of the UE for the scheduling delay, and the buffered data level of the ultra low delay service indicates the total amount
  • the end-to-end delay can refer to the end-to-end delay of the air interface, that is, the time taken for the data to arrive from the buffer of the transmitting end until it is correctly transmitted to the receiving end; It can refer to the end-to-end delay of the core network, that is, the delay of data transmission between the UE and the Packet Data Network Gateway (PGW).
  • PGW Packet Data Network Gateway
  • the scheduling delay refers to the data sent from the arrival. The end buffer is until the delay of scheduling is sent at the transmitting end.
  • the ultra-low delay level can be classified into different granular levels according to the delay requirement. For example, suppose the end-to-end delay refers to the end-to-end delay of the air interface, and the delay requirement is from 0.1 ms to It can be divided into two levels: less than 0.2ms for level 1, greater than 0.2 and less than 0.5ms for level 2; the division is not limited to the above description, and the delay can be divided into finer levels. Generally, the stricter the delay requirement, the UE's ultra-low latency service data requirements are transmitted faster.
  • the data format of the ultra-low latency level in the SR message can be various.
  • the ultra-low delay level may be used to indicate the ultra-low delay level.
  • the base station in this embodiment detects the ultra-low time in the SR message.
  • the scheduling priorities of different UEs may be determined according to the level, and the short TTI resources of the length format are scheduled for different UEs. Generally, the more strict the delay requirement is, the more the UE obtains. A high scheduling priority. If the base station supports multiple short TTI formats, the UE can schedule shorter resources in the TTI format for the UE with stricter delay requirements.
  • the cache data level of the ultra-low latency service may be Indicates the total amount of ultra-low latency service data to be transmitted in the buffer area of the UE, or the data volume of the highest priority ultra-low latency service to be transmitted in the buffer area of the UE, and the highest priority ultra-low latency service Refers to the business with the most demanding delays.
  • the amount of data cached by the ultra-low-latency service can be divided into different levels according to the amount of data. For example, the level can be divided according to the granularity of 500 bits, or the level can be divided according to 1000 bits or other granularity.
  • the data format of the cached data volume of the ultra-low latency service may be multiple in the SR message. For example, when four levels are divided, 2 bits may be used to indicate the data volume level; other formats may also be used.
  • the base station detects the buffered data volume level of the ultra-low latency service in the SR message, it determines, according to the level, how many short TTI format resources are scheduled for the UE, for example, assuming the base station detects The base station can schedule a 0.5TTI*1 physical resource block (Physical Resource Block, PRB for the UE).
  • PRB Physical Resource Block
  • the base station can schedule 0.5TTI*1 physical resource block (PRB) for the UE. Resources, the amount of buffered data is less than 1000 bits, then the base station can schedule 0.5TTI*2PRB resources for the UE.
  • the cached data volume level of the ultra-low latency level and the ultra-low latency service may be used in combination, for example, when the UE simultaneously transmits the ultra low delay level and the ultra low latency service in the SR message.
  • the base station and the UE support short TTIs of multiple formats (for example, short TTI of 1 Orthogonal Frequency Division Multiplexing (OFDM) symbol and 0.5 ms short TTI format), if there are two types of UEs If the level of the ultra-low latency service has data to be transmitted, the UE can report the ultra-low latency level of 1 bit, and the cache data level of the ultra-low latency service of the total amount of ultra-low latency service data of the two levels.
  • the base station may allocate a sufficient amount of short TTI resources of 1 OFDM symbol to the UE according to the principle of ensuring the highest priority ultra-low latency service.
  • FIG. 3 is a flowchart of still another resource allocation method according to an embodiment of the present invention.
  • the ultra low latency service indication information in the embodiment includes the ultra low latency data pending indication and the same according to the foregoing embodiment shown in FIG. 1 .
  • the step S120 in FIG. 1 may include: in step S121, when the ultra-low delay data is to be transmitted as the ultra-low latency service, the base station allocates the corresponding length TTI according to the ultra-low delay indication value.
  • step S122 when the ultra-low latency data pending indication is not the ultra-low latency service, the base station allocates the uplink non-ultra-low latency resource.
  • Step S121 and step S122 in this embodiment are alternatively performed.
  • the base station allocates the uplink ultra-low delay resource corresponding to the length TTI according to the ultra-low delay indication value, and the foregoing FIG. 2
  • the allocation mode is the same in the embodiment, and the ultra-low delay indication value has the same function as the ultra-low delay indication value in the foregoing embodiment, and the base station can perform a specific allocation operation according to the TTI capability supported by the base station and the UE. Therefore, it will not be repeated here.
  • the base station and the UE support TTIs of three durations, specifically: 1 symbol, 0.5 ms, and 1 ms as an example.
  • the ultra-low latency data pending indication may be an ultra-low latency service and a non-ultra-low latency service, and the ultra-low latency data to be transmitted is indicated as an ultra-low latency service.
  • the delay indication value can be represented by three values, as shown in Table 4 below.
  • Ultra low latency service with ultra low latency indication value of 2 TTI 0.5ms
  • Ultra low latency service with ultra low latency indication of 3 TTI 1ms
  • Non-low latency service TTI 1ms
  • the ultra-low delay indication value in this embodiment may indicate the TTI.
  • the maximum duration is the TTI of the current 1ms duration, which can be compared with non-ultra-low time.
  • the duration of the extended service TTI is the same.
  • Table 4 is only a possible correspondence between the combination of the ultra-low latency data pending indication and the ultra-low delay indication value and the resource allocation type of the base station, and the present application does not limit the ultra low delay. Indicates the number of values and their corresponding TTI duration.
  • the ultra-low latency indication value in this embodiment may also be a cached data volume level of the ultra-low latency level and/or the ultra-low latency service.
  • the ultra-low latency indication value when the ultra-low latency indication value is different content, the specific manner in which the base station allocates the short TTI is the same as that in the foregoing embodiment, and therefore no further details are provided herein.
  • the RRC connection setup message sent by the base station to the UE may also be configured with multi-carrier service, or single-carrier service, or single-carrier service and physical uplink control channel ( Physical Uplink Control Channe, abbreviated as: PUCCH) format indication;
  • PUCCH Physical Uplink Control Channe, abbreviated as: PUCCH
  • the SR message is carried by the UE according to the TTI capability supported by the base station and the UE, and the corresponding extended PUCCH format selected by the content configured in the RRC connection setup message.
  • the selected extended PUCCH format includes an SR message indication value of not less than 2 bits.
  • the SR message of the single carrier service is fed back by Format 1 or Format 1a of the PUCCH; the SR message of the dual carrier service is fed back by the Format 1b or Format 3 of the PUCCH; three carriers or more
  • the SR message of the service is fed back by the Format 3 of the PUCCH.
  • the Format 3 of the PUCCH can carry up to 48 valid bits, and the bit situation currently used by the Format 3 of the PUCCH carrying the SR message is: Frequency Division Duplex (Frequency Division) Dual, referred to as: FDD) mode, Format 3 supports up to 11 bits, of which 10 bits are used to transmit Hybrid Automatic Repeat request-ACKnowledgment (HARQ-ACK), 1 bit.
  • FDD Frequency Division Duplex
  • Format 3 supports up to 11 bits, of which 10 bits are used to transmit Hybrid Automatic Repeat request-ACKnowledgment (HARQ-ACK), 1 bit.
  • Format 3 supports up to 21 bits in Time Division Dual (TDD) mode, where 20 bits are used for transmitting HARQ-ACK and 1 bit is used for positive and negative SR indication, 1 In the positive and negative SR indication of the bit, 1 indicates that there is data to be transmitted later, and 0 indicates that no data needs to be transmitted subsequently. Therefore, for an application scenario that does not need to report the ultra-low latency service indication information, the SR message is reported by using the definition of the associated PUCCH format.
  • TDD Time Division Dual
  • the ultra-low latency indication value is represented by three indication values, and is extended by the format of the PUCCH.
  • Carrying an SR message carrying the ultra-low latency service indication information for example, by using PUCCH
  • Format 1b supports up to 3 bits, where 1 bit is used to transmit HARQ-ACK, 2 bits are used to transmit SR message, 0 is negative SR, value is non-zero means positive SR, and the value is ultra low delay indication value .
  • Format 3 supports up to 12 bits in FDD mode, where 10 bits are used to transmit HARQ-ACK, 2 bits are used to transmit SR messages, 0 is negative SR, values other than 0 are positive SR, and the value is ultra low Delay indicator value.
  • Format 3 supports up to 22 bits in TDD mode, where 20 bits are used to transmit HARQ-ACK, 2 bits are used to transmit SR messages, 0 is negative SR, values other than 0 are positive SR, and the value is ultra low Delay indicator value.
  • the two-bit transmission of the SR message in Format 1b and Format 3 of the extended PUCCH is based on the three possible TTI durations of the ultra-low latency service indication information in Tables 3 and 4 above, if the present invention In the case where there are many ultra-low latency indication values in the embodiment, it is necessary to carry the SR message by extending more bits of the Format 3, for example, using 3 bits for transmitting the SR message. Based on the foregoing extension to the PUCCH format, the specific manner in which the UE sends the SR message may be:
  • the UE selects the extended PUCCH format according to the configuration in the RRC connection setup message.
  • the format 1b or Format3 may be used to carry the SR message.
  • the RRC connection setup message indicates that the SR message is reported by using the Format 1b
  • the Format 1b is used to carry the SR message.
  • the Format 3 is used to carry the SR message; if the multi-carrier service is configured, the The Format 3 carries the SR message, and carries the SR message according to the Format 3 in the FDD mode or the TDD mode.
  • the base station sends an RRC connection setup message to the UE, and may also be configured with multiple PUCCHs.
  • the RRC connection setup message is further used to indicate that the UE is configured according to the SR.
  • the resource type indicated by the message selects the corresponding PUCCH to send the SR message.
  • the first PUCCH and the second PUCCH are configured in the RRC connection setup message, and the first PUCCH is used to send the SR message indicating the uplink ultra-low latency resource.
  • the uplink non-low-latency delay resource in the embodiment is also an uplink resource whose TTI duration is equal to 1 ms.
  • the manner in which the base station allocates the uplink ultra-low delay resource is the same as that in the foregoing embodiments, and is also based on the ultra-low delay service indication in the SR message.
  • the information is allocated. If the UE sends the SR message by using the second PUCCH, the manner in which the base station allocates the uplink resource in the related art is the same.
  • FIG. 4 is a flowchart of still another resource allocation method according to an embodiment of the present invention.
  • the resource allocation method provided in this embodiment is applicable to a situation in which a UE acquires an uplink resource, and the method may be implemented by a resource allocation device, where the resource allocation device is implemented by combining hardware and software, and the device may be integrated in a processor of the UE. For use by the processor.
  • the method in this embodiment may include the following steps:
  • step S210 the UE sends an uplink scheduling request (SR) message to the base station, where the SR message includes the ultra-low latency service indication information, where the SR message is used to indicate that the base station allocates the UE according to the ultra-low latency service indication information in the SR message.
  • SR uplink scheduling request
  • the UE in this embodiment also needs to send an SR message in the SR period, and the SR period is also in the process of establishing an RRC connection between the UE and the base station, and the base station is configured for the UE, that is, before the step S210 in this embodiment, the embodiment is
  • the method further includes: in step S200, the UE receives an RRC connection setup message sent by the base station, where the RRC connection setup message is configured with a resource for the UE to send the SR message and an SR period corresponding to the resource; correspondingly, the UE sends the SR message to the base station.
  • the specific mode is: the UE sends the foregoing SR message according to the resource configured in the RRC connection setup message according to the SR period corresponding to the resource, where the SR period corresponding to the resource is configured as an SR short period with a length less than 1 ms.
  • the base station is The SR period configured by the UE can also be referred to the foregoing Table 2.
  • the UE when the UE receives the ISR value of the SR from the base station, the UE can determine whether the ISR value is less than or equal to 157.
  • the SR period is sent according to the regular SR period policy; if the I SR value is equal to 158, it is considered that the SR short period dedicated to the ultra low delay service is configured.
  • the manner in which the base station allocates the uplink resource according to the SR message sent by the UE is the same as that in the foregoing embodiments.
  • the ISR value of the SR message is equal to 158 as an example.
  • the base station allocates the uplink ultra-low latency resource to the UE according to the ultra-low-latency service indication information in the SR message.
  • the SR message in this case is different from the regular SR message.
  • the SR message in this embodiment requests the ultra-low delay in the UE.
  • the service carries the ultra-low latency service indication information, which may include, for example, an ultra-low latency data pending indication, an ultra-low latency level, and a cached data volume level of the ultra-low latency service.
  • the base station may allocate uplink ultra-low latency resources to the UE according to the specific form and content of the ultra-low latency service indication information.
  • the TTI duration of the conventional uplink resource is 1 ms
  • the TTI duration of the uplink ultra-low latency resource is usually less than 1 ms, for example, 1 symbol, or 0.5 ms.
  • the method provided in this embodiment has another possible situation.
  • the base station in the embodiment determines that the SR message does not include the ultra-low delay service indication information.
  • the uplink non-ultra-low latency resource may be allocated to the UE according to the SR message.
  • the situation is similar to the conventional method.
  • the ultra-low latency service indication information is not included in the SR message, the information indicating the uplink delay service type is not carried.
  • the base station directly allocates the uplink non-ultra-low delay resource, and the uplink is directly allocated.
  • the non-ultra-low latency resource is usually an uplink resource with a TTI duration equal to 1 ms.
  • Step S220 The UE receives the uplink ultra-low latency resource allocated by the base station.
  • the base station allocates the uplink ultra-low latency resource allocated by the UE to the UE according to the ultra-low latency service indication information in the SR message, so that the UE can receive the uplink low-latency delay resource, that is, the UE can receive the uplink.
  • Ultra low latency resources
  • the UE sends the ultra low latency service indication information SR message to the base station, and the base station is instructed to allocate the uplink ultra low delay resource to the UE according to the ultra low delay service indication information in the SR message. Therefore, the UE can receive the uplink low-latency delay resource allocated by the base station.
  • the method provided in this embodiment does not need to wait for the base station to allocate uplink resources to the base station, and then feeds back the ultra-low delay service indication to the base station, that is, at the base station.
  • the number of interactions between the base station and the UE is reduced, and the efficiency of the base station to allocate the uplink ultra-low delay resource is correspondingly improved, and the UE in the RRC connected state is used to request data transmission.
  • the SR message cannot indicate the problem of ultra low latency service demand information.
  • the SR period configured by the base station for the UE may be configured as an SR short period with a duration of less than 1 ms, so that the UE sends the SR message at a shorter interval. If the current time is not the sending time in the SR period, the SR message can be sent after waiting for a shorter time, which improves the timeliness of sending the SR message, that is, improves the efficiency of acquiring the uplink ultra-low delay resource.
  • the ultra-low latency service indication information in the embodiment shown in FIG. 4 includes, for example, an ultra-low latency data pending indication, where the ultra-low latency data pending indication is used to indicate whether the UE currently has an ultra-low latency.
  • the data of the service is awaiting transmission; correspondingly, the SR message in the step S210 is used to indicate that the base station allocates the uplink ultra-low delay resource to the UE when the ultra-low delay data pending indication is an ultra-low delay service.
  • the ultra-low latency service indication information in this embodiment includes an ultra-low latency indication value
  • the SR message in this embodiment is used to indicate that the base station is determining.
  • the uplink ultra-low latency resource of the corresponding length TTI is allocated according to the ultra-low delay indication value; or the SR message in this embodiment is used to indicate that the base station is determining the base station.
  • the uplink ultra-low latency resource corresponding to the length TTI of the ultra-low delay indication value is preferentially allocated according to the TTI capability intersection and the ultra-low delay indication value of the base station and the UE.
  • the ultra-low delay indication value in the SR message sent by the UE may be represented by three values, such as As shown in the foregoing Table 3, the specific manner in which the base station allocates the uplink ultra-low latency resource according to the ultra-low latency indication value and the TTI capability supported by the base station and the UE is similar to the embodiment shown in FIG. 2, and therefore is not described herein again.
  • the ultra-low latency indication value in this embodiment may also be a cached data volume level of an ultra-low latency level or an ultra-low latency service; wherein the ultra-low latency level is used to indicate the ultra-low level of the UE.
  • the demand level of the end-to-end delay of the delay service or the demand level of the ultra-low delay service of the UE to the scheduling delay, and the buffered data level of the ultra-low delay service indicates the ultra-low time to be transmitted in the buffer area of the UE
  • the ultra-low latency service indication information in this embodiment may further include an ultra-low latency data pending indication, and the SR message in this embodiment is used to indicate that the base station is in the ultra-low latency data.
  • the uplink ultra-low latency resource corresponding to the length TTI is allocated according to the ultra-low delay indication value when the indication is to be the ultra-low delay service; or the SR message in this embodiment is used to indicate that the base station is in the ultra-low delay data to be sent.
  • the indication is non-ultra-low latency service
  • the uplink non-ultra-low latency resource is allocated.
  • the SR message may include one or more of the cached data volume levels of the ultra low latency data pending indication, the ultra low latency level, or the ultra low latency service, and the foregoing
  • FIG. 5 is a flowchart of a method for allocating resources according to an embodiment of the present invention.
  • the RRC connection setup message received by the UE may be configured with multi-carrier services. Or a single carrier service, or a single carrier service and a PUCCH format indication; in a specific implementation, after the step S200, before the step S210, the method of the embodiment further includes: Step S201, the UE according to the TTI capability supported by the base station and the UE And the extended PUCCH format corresponding to the content selection configured in the RRC connection setup message to carry the SR message, where the selected extended PUCCH format includes an SR message indication value of not less than 2 bits.
  • the present embodiment can also carry the SR message by extending the Format 1b and the Format 3 of the PUCCH.
  • the specific manner of extending the Format 1b and the Format 3 is the same as that of the foregoing embodiment, and therefore will not be further described herein.
  • the UE selects the mode of the extended PUCCH format, that is, the step S201 includes: Step S202, the UE determines that the RRC connection setup message is configured.
  • the carrier service is also a single-carrier service. If it is a multi-carrier service, step S203 is performed. If it is a single-carrier service, step S204 is performed.
  • Step S203 The UE uses the Format 3 of the extended PUCCH to carry the SR message; since the maximum number of bits supported by the Format 3 is different in the FDD mode and the TDD mode, the specific manner of extending the Format 3 is also selected according to a specific mode.
  • step S204 the UE determines whether the PUCCH format indication is configured in the RRC connection setup message. If not, step S203 is performed, and if yes, step S205 is performed.
  • step S205 the UE uses the Format 1b of the extended PUCCH to carry the SR message when the PUCCH format indicates that the SR message is reported to be used by the Format 1b.
  • the Format 3 of the extended PUCCH is used.
  • the SR message is carried; the bit usage of Format 1b and Format 3 of the extended PUCCH is the same as that of the above embodiment.
  • the format 1b and the format 3 of the extended PUCCH are transmitted by using the 2-bit transmission of the SR message, which are based on the three possible TTI durations of the ultra-low delay service indication information in Tables 3 and 4 above. If the value of the ultra-low latency service indication is large in the embodiment of the present invention, it is necessary to carry the SR message by extending more bits of the Format 3, for example, using 3 bits for transmitting the SR message.
  • the RRC connection setup message received by the UE may be configured with multiple PUCCHs.
  • Step S210 may be replaced by: the UE indicates according to the SR message.
  • the PUCCH of the resource type is selected to send an SR message, where the first PUCCH is used to send an SR message indicating an uplink ultra-low latency resource, and the second PUCCH is used to send an SR message indicating that the uplink is not an ultra-low latency resource;
  • the uplink non-ultra-low latency resource in the embodiment is also an uplink resource with a TTI duration equal to 1 ms.
  • the manner in which the base station allocates the uplink ultra-low delay resource is the same as that in the foregoing embodiments, and is also based on the ultra-low delay service indication in the SR message.
  • the information is allocated. If the UE sends the SR message by using the second PUCCH, the manner in which the base station allocates the uplink resource in the related art is the same.
  • the UE in the foregoing embodiment of the present invention carries the ultra-low delay service indication information in the SR message when the SR message is sent, so that the base station receives the In the case of the SR message, the UE may be allocated an uplink ultra-low latency resource according to the ultra-low latency service indication information.
  • the UE may be specifically indicated by other means.
  • the ultra-low latency service requirement as shown in FIG. 6, is a signaling interaction flowchart of a resource allocation method according to an embodiment of the present invention. The method in this embodiment includes the following steps:
  • step S310 the eNB sends an RRC connection setup message to the UE, where the RRC connection setup message is configured with a correspondence between the PUCCH and the delay requirement indication value, where the RRC connection setup message is used to instruct the UE to select a corresponding value according to the determined delay requirement indication value.
  • PUCCH Physical Uplink Control Channel
  • the base station configures different PUCCH resources for the SR messages of different duration TTIs in the RRC setup message.
  • the PUCCH1 is configured for the SR message with the delay requirement indication value of 1, and the delay requirement indication value is
  • the SR message of 2 configures PUCCH2, and configures PUCCH3 for the SR message whose delay requirement indication value is 3.
  • Step S320 the UE selects a corresponding PUCCH according to the determined delay requirement indication value.
  • the UE when the UE sends the SR message, the UE may select the corresponding PUCCH according to the determined delay requirement indication value, and the TTI durations corresponding to the different delay requirement indication values are different, and the delay requirement indication value determined by the UE is Determine the duration of the requested TTI resource.
  • Step S330 the UE sends an SR message to the base station by using the selected PUCCH.
  • the SR message can be sent through PUCCH1, PUCCH2, or PUCCH3, and the SR message can be sent once, and can only be carried by one PUCCH, that is, the three steps S330 in FIG. 6 are alternatively selected.
  • Step S340 The base station allocates an uplink resource of the corresponding length TTI to the UE according to the selected PUCCH, where the uplink resource includes an uplink ultra-low latency resource and an uplink non-ultra-low latency resource.
  • the base station may determine the TTI duration of the resource requested by the SR message according to the correspondence between the PUCCH and the different delay requirement indication values, for example, the ultra-low latency service of various TTI durations. It can also be a regular delay business.
  • FIG. 7 is a schematic structural diagram of a resource allocation apparatus according to an embodiment of the present invention.
  • the resource allocation apparatus provided in this embodiment is applicable to the case of allocating uplink resources to the UE.
  • the resource allocation apparatus is implemented by combining hardware and software.
  • the apparatus may be integrated in a processor of the base station for use by the processor.
  • the resource allocation apparatus of this embodiment includes: a receiving module 11, an allocating module 12, and a transmitting module 13.
  • the receiving module 11 is configured to: receive an uplink scheduling request (SR) message sent by the UE, where the SR message includes ultra-low latency service indication information.
  • SR uplink scheduling request
  • the UE usually needs to send an SR message in the SR period
  • the SR period in this embodiment is a process in which the UE establishes an RRC connection with the base station, and the base station is configured for the UE, that is, the sending module in this embodiment. 13.
  • the method is configured to: before the receiving module 11 receives the SR message sent by the UE, send a radio resource control (RRC) connection setup message to the UE, where the RRC connection setup message is configured with resources and resources corresponding to the UE sending the SR message.
  • RRC radio resource control
  • the RRC connection setup message is used to instruct the UE to send an SR message according to the configured resource according to the SR period corresponding to the resource, and the SR period corresponding to the resource is configured as an SR short period with a length less than 1 ms.
  • the resource configured by the base station for the UE in this embodiment may also be the SR short period shown in the foregoing Table 2.
  • the UE determines the duration of the SR period according to the resource, and The manner of sending the SR message in the determined SR period is the same as that in the foregoing embodiment, and therefore no further details are provided herein.
  • the allocating module 12 is configured to: according to the ultra low latency in the SR message received by the receiving module 11 The service indication information allocates an uplink ultra-low latency resource to the UE.
  • the SR message is different from the conventional SR message that does not include the ultra-low latency service indication information.
  • the SR message in this embodiment carries the ultra-low latency service indication when the UE requests the ultra-low latency service.
  • the information that the ultra-low latency service indication information may include, for example, one or more of an ultra low latency data pending indication, an ultra low latency level, and a cached data volume level of the ultra low latency service, the allocation module 12 may The uplink ultra-low latency resource is allocated to the UE according to the specific form and content of the ultra-low latency service indication information.
  • the method provided in this embodiment may still have another possible situation, that is, the SR message received by the receiving module 11 in this embodiment may not carry the ultra-low delay service indication information, that is, the conventional SR message.
  • the allocation module 12 in this embodiment is further configured to: after the receiving module 11 receives the SR message sent by the UE, after determining that the SR message received by the receiving module 11 does not include the ultra low delay service indication information, The uplink non-ultra-low latency resource is allocated to the UE according to the SR message.
  • the resource allocation apparatus provided by the embodiment of the present invention is configured to perform the resource allocation method provided by the embodiment shown in FIG. 1 and has a corresponding function module, and the implementation principle and the technical effect thereof are similar, and details are not described herein again.
  • the ultra-low latency service indication information in the embodiment shown in FIG. 7 includes, for example, an ultra-low latency data pending indication, where the ultra-low latency data pending indication is used to indicate whether the UE currently has an ultra-low latency.
  • the data of the service is awaiting transmission.
  • the allocating module allocates an uplink ultra-low delay resource to the UE according to the ultra-low delay service indication information in the following manner: the allocation module in the ultra-low delay data pending indication is super When the service is low-latency, the uplink ultra-low latency resource is allocated to the UE.
  • FIG. 8 is a schematic structural diagram of another resource allocation apparatus according to an embodiment of the present disclosure.
  • the ultra low latency service indication information in this embodiment specifically includes
  • the allocation module 12 in this embodiment includes: a determining unit 14 and an allocating unit 15, and the determining unit 14 is configured to: determine whether the TTI capability supported by the base station and the UE is the same; correspondingly, the allocating unit 15
  • the determining unit 14 determines that the base station and the TTI capability supported by the UE are the same
  • the uplink ultra-low latency resource corresponding to the length TTI is allocated according to the ultra-low delay indication value; in another possible implementation manner,
  • the allocating unit 15 is further configured to: according to the TTI capability of the base station and the UE, when the determining unit 14 determines that the base station and the TTI capability supported by the UE are different
  • the force intersection and the ultra-low delay indication value are preferentially allocated with the ultra-low delay indicator value corresponding to the uplink ultra-low delay
  • the ultra-low latency indication value in this embodiment may also be a cached data volume level of the ultra-low latency level and/or the ultra-low latency service; wherein the ultra-low latency level is used to indicate the UE.
  • the demand level of the end-to-end delay of the ultra-low-latency service or the demand level of the scheduling delay of the ultra-low-latency service of the UE, and the cached data level of the ultra-low-latency service indicates the super-transmission to be transmitted in the buffer area of the UE.
  • the resource allocation apparatus provided by the embodiment of the present invention is configured to perform the resource allocation method provided by the embodiment shown in FIG. 2, and has a corresponding function module, and the implementation principle and the technical effect thereof are similar, and details are not described herein again.
  • the ultra-low latency service indication information in this embodiment may further include an ultra-low latency data pending indication.
  • the allocation module 12 allocates an uplink ultra-low to the UE in the following manner.
  • the delay resource the allocation module 12 allocates the uplink ultra-low latency resource of the corresponding length TTI according to the ultra-low delay indication value when the ultra-low latency data is to be transmitted as the ultra-low latency service;
  • the extended data pending indication is a non-ultra-low latency service
  • the uplink non-ultra-low latency resource is allocated.
  • the resource allocation apparatus provided by the embodiment of the present invention is used to perform the resource allocation method provided by the embodiment shown in FIG. 3, and has a corresponding function module, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the SR message may include one or more of the cached data volume levels of the ultra low latency data pending indication, the ultra low latency level, or the ultra low latency service, and the foregoing
  • the format of the content, and the specific manner in which the base station allocates the uplink ultra-low-latency resource according to the different content of the ultra-low-latency service indication information, has been specifically described in the foregoing embodiment, and therefore will not be further described herein.
  • the RRC connection setup message sent by the base station to the UE may be configured with a multi-carrier service, or a single-carrier service, or a single-carrier service and a PUCCH format indication.
  • the SR message in the UE is carried by the UE according to the TTI capability supported by the base station and the UE, and the corresponding extended PUCCH format selected by the content configured in the RRC connection setup message, where the selected extended PUCCH format includes not less than 2 bits.
  • SR message Indicates the value.
  • the sending module 13 sends an RRC connection setup message to the UE, and may also be configured with multiple PUCCHs.
  • the RRC connection setup message is further used to indicate the UE. Selecting a corresponding PUCCH to send an SR message according to the resource type indicated by the SR message; for example, the first PUCCH and the second PUCCH are configured in the RRC connection setup message, where the first PUCCH is used to send the uplink low-latency delay resource
  • the SR message is used by the second PUCCH to send an SR message indicating that the uplink non-low-latency delay resource is the uplink resource whose TTI duration is equal to 1 ms.
  • the resource allocation apparatus shown in FIG. 7 may be used, and optionally, the sending module 13 is configured to: send an RRC connection setup message to the UE, where the RRC The connection establishment message is configured with a correspondence between a PUCCH and a delay requirement indication value, where the RRC connection setup message is used to instruct the UE to select a corresponding PUCCH according to the determined delay requirement indication value.
  • the receiving module 11 is configured to: receive an SR message sent by the UE through the selected PUCCH.
  • the allocating module 12 is configured to: allocate an uplink resource with a corresponding length TTI to the UE according to the selected PUCCH, where the uplink resource includes an uplink ultra-low latency resource and an uplink non-ultra-low latency resource.
  • the resource allocation apparatus provided by the embodiment of the present invention is configured to perform the operations performed by the base station in the resource allocation method provided by the embodiment shown in FIG. 6, and has a corresponding function module, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of still another resource allocation apparatus according to an embodiment of the present invention.
  • the resource allocation apparatus provided in this embodiment is applicable to the case where the UE acquires an uplink resource, and the resource allocation apparatus is implemented by a combination of hardware and software, and the apparatus may be integrated in a processor of the UE for use by the processor.
  • the resource allocation apparatus of this embodiment includes: a sending module 21 and a receiving module 22.
  • the sending module 21 is configured to: send an uplink scheduling request (SR) message to the base station, where The SR message includes the ultra-low latency service indication information, where the SR message is used to indicate that the base station allocates the uplink ultra-low latency resource to the UE according to the ultra-low latency service indication information.
  • SR uplink scheduling request
  • the UE in this embodiment also needs to send an SR message in the SR period, and the SR period is also in the process of establishing an RRC connection between the UE and the base station, and the base station is configured for the UE, that is, the receiving module 22 in this embodiment is also set to Before the sending module 21 sends the SR message to the base station, the RRC connection setup message sent by the base station is configured, where the RRC connection setup message is configured with the SR period corresponding to the resource and the resource used by the UE to send the SR message; accordingly, the implementation In the example, the sending module 21 sends an SR message to the base station by sending the SR message according to the resource configured in the RRC connection setup message according to the SR period corresponding to the resource, where the SR period corresponding to the resource is configured as an SR short period with a length less than 1 ms.
  • the resource configured by the base station for the UE in this embodiment may also be the SR short period shown in the foregoing Table 2. After the UE receives the configured resource from the base station, the UE determines the duration of the SR period according to the resource, and determines the SR period. The manner of sending the SR message in the period is the same as that in the foregoing embodiment, and therefore no further details are provided herein.
  • the manner in which the base station allocates the uplink resource according to the SR message sent by the UE is the same as that in the foregoing embodiments.
  • the base station may The uplink information of the ultra-low latency is allocated to the UE according to the information of the ultra-low-latency service indication.
  • the SR message in this embodiment carries the ultra-low delay service indication information when the UE requests the ultra-low delay service.
  • the extended service indication information may include, for example, an ultra-low latency indication value, or one or more of a cached data volume level including an ultra-low latency data pending indication, an ultra-low latency level, and an ultra-low latency service, the base station
  • the uplink ultra-low latency resource may be allocated to the UE according to the specific form and content of the ultra-low latency service indication information.
  • the method provided in this embodiment may still have another possible situation, that is, after the SR message received by the base station in this embodiment may not include the ultra-low delay service indication information, The base station may allocate uplink non-ultra-low latency resources to the UE according to the SR message.
  • the receiving module 22 is configured to: receive an uplink ultra-low latency resource allocated by the base station.
  • the resource allocation apparatus provided by the embodiment of the present invention is used to perform the resource allocation method provided by the embodiment shown in FIG. 4, and has a corresponding function module, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the ultra low latency service indication information in the embodiment shown in FIG. 9 includes, for example, an ultra low latency.
  • the data to be transmitted indicates that the ultra-low latency data pending indication is used to indicate whether the UE currently has data waiting for transmission of the ultra-low latency service; accordingly, the SR message sent by the sending module 21 is used to indicate that the base station is in an ultra-low delay.
  • the data pending indication is an ultra-low latency service
  • the uplink ultra-low latency resource is allocated to the UE.
  • the ultra-low latency service indication information in this embodiment includes an ultra-low delay indication value
  • the SR message in this embodiment is used to indicate that the base station is determining.
  • the uplink ultra-low latency resource corresponding to the length TTI is allocated according to the ultra-low delay indication value; or the SR message in this embodiment is used to indicate the base station and the UE in the base station and the UE.
  • the uplink ultra-low latency resource corresponding to the length TTI is preferentially allocated according to the TTI capability intersection and the ultra-low delay indication value of the base station and the UE.
  • the TTI of the three durations supported by the base station and the UE in the embodiment shown in FIG. 2 is taken as an example, that is, the ultra-low delay indication value in the SR message sent by the UE may be represented by three values, such as As shown in the foregoing Table 3, the specific manner in which the base station allocates the uplink ultra-low latency resource according to the ultra-low latency indication value and the TTI capability supported by the base station and the UE is similar to the embodiment shown in FIG. 2, and therefore is not described herein again.
  • the ultra-low latency indication value in this embodiment may also be a cached data volume level of an ultra-low latency level or an ultra-low latency service; wherein the ultra-low latency level is used to indicate the ultra-low level of the UE.
  • the demand level of the end-to-end delay of the delay service or the demand level of the ultra-low delay service of the UE to the scheduling delay, and the buffered data level of the ultra-low delay service indicates the ultra-low time to be transmitted in the buffer area of the UE
  • the ultra-low latency service indication information in this embodiment may further include an ultra-low latency data pending indication, and the SR message in this embodiment is used to indicate that the base station is in the ultra-low latency data.
  • the uplink ultra-low latency resource corresponding to the length TTI is allocated according to the ultra-low delay indication value when the indication is to be the ultra-low delay service; or the SR message in this embodiment is used to indicate that the base station is in the ultra-low delay data to be sent.
  • the indication is non-ultra-low latency service
  • the uplink non-ultra-low latency resource is allocated.
  • the SR message may include one or more of the cached data volume levels of the ultra low latency data pending indication, the ultra low latency level, or the ultra low latency service, and the foregoing
  • the RRC connection setup message received by the receiving module 22 may be configured.
  • the carrier service, or the single carrier service, or the single carrier service and the PUCCH format indication; correspondingly, the resource allocation apparatus provided in this embodiment further includes: a selecting module 23, configured to: receive, by the receiving module 22, an RRC connection setup message sent by the base station After the sending module 21 sends the SR message to the base station, the SR message is carried according to the TTI capability supported by the base station and the UE, and the extended PUCCH format corresponding to the content configured in the RRC connection setup message, where the selected extension is carried.
  • the PUCCH format includes an SR message indication value of not less than 2 bits. It should be noted that, the specific manner of extending the PUCCH format in the embodiment, and the manner in which the UE selects the extended PUCCH format according to the multi-carrier service configured in the RRC connection setup message, or the single carrier service, or the single carrier service and the indication information, The embodiments are the same and therefore will not be described again.
  • the RRC connection setup message received by the receiving module 22 may be configured with multiple PUCCHs.
  • the sending module 21 in this embodiment may The base station sends an SR message: selecting a corresponding PUCCH to send an SR message according to the resource type indicated by the SR message, where the first PUCCH is used to send an SR message indicating an uplink ultra-low latency resource, and the second PUCCH is used to send the indication as an uplink.
  • the SR message of the non-low-latency resource; the uplink non-low-latency resource in this embodiment is also an uplink resource with a TTI duration equal to 1 ms.
  • the resource allocation apparatus shown in FIG. 10 may be used, and optionally, the receiving module 22 is configured to: receive an RRC connection setup message sent by the base station, where RRC The correspondence between the physical uplink control channel (PUCCH) and the delay requirement indication value is configured in the connection setup message.
  • RRC The correspondence between the physical uplink control channel (PUCCH) and the delay requirement indication value is configured in the connection setup message.
  • the selecting module 23 is configured to: select a corresponding PUCCH according to the determined delay requirement indication value.
  • the sending module 21 is configured to: send an SR message to the base station by using the PUCCH selected by the selecting module 23, where the SR message is used to indicate that the base station allocates an uplink resource of the corresponding length TTI to the UE according to the selected PUCCH, and the uplink resource includes the uplink ultra-low Delay resources and uplink non-ultra-low latency resources.
  • the resource allocation apparatus provided by the embodiment of the present invention is used to execute the resources provided by the embodiment shown in FIG.
  • the operations performed by the UE in the allocation method have corresponding functional modules, and the implementation principles and technical effects thereof are similar, and are not described herein again.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, and when the computer executable instructions are executed, implementing a resource allocation method on a base station side.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which implement a resource allocation method on a user equipment side when the computer executable instructions are executed.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • This application is not limited to any specific combination of hardware and software.
  • the embodiment of the present invention provides a resource allocation method and apparatus.
  • a base station allocates an uplink ultra-low latency resource
  • the number of interactions between the base station and the UE is reduced, and the efficiency of the uplink low-latency delay resource allocated by the base station is correspondingly improved.
  • the problem that the conventional SR message cannot indicate the ultra-low latency service requirement information when the UE in the RRC connected state requests the data transmission is solved.

Abstract

一种资源分配方法,包括:基站接收用户设备UE发送的上行调度请求SR消息,该SR消息中包括超低时延业务指示信息;基站根据SR消息中的超低时延业务指示信息为UE分配上行超低时延资源。上述方法解决了处于RRC连接态的UE在请求数据传输时,常规的SR消息无法指示超低时延业务需求信息的问题。

Description

一种资源分配方法和装置 技术领域
本申请涉及但不限于无线通信技术领域,尤指一种资源分配方法和装置。
背景技术
通用无线分组业务(General Packet Radio Service,简称为:GPRS)的传输时延一直是无线网络运营商关注的一个重要的业务指标。随着移动互联网应用的迅速发展,远程控制、车联网、虚拟现实等物联网以及相关业务对移动网络中的GPRS传输时延提出了更高的要求,即GPRS的超低时延业务成为了第五代移动通信技术(the 5th-Generation mobile communication technology,简称为5G)中的重要性能指标。
对于5G中的超低时延业务,无线接入网通常采用超低时延业务的无线传输策略,其中,采用传输时间间隔(Transmission Time Interval,简称为:TTI)长度小于1毫秒(即短TTI)的无线帧进行超低时延数据传输,上述方式是缩短无线传输时延的重要手段。在目前的长期演进(Long Term Evolution,简称为:LTE)网络中,处于无线资源控制(Radio Resource Control,简称为:RRC)连接态的用户设备(User Equipment,简称为:UE)没有上行数据要传输,演进型基站(Evolved Node B,简称为:eNB)不需要为该UE分配上行资源;当UE从没数据传输到有数据传输时,可以通过发送上行调度请求(Scheduling Request,简称为:SR)消息向eNB请求上行资源;由于无线网中超低时延业务和传统业务是共存的,常规的SR消息仅能表示有数据传输请求,无法表示需要传输的数据对时延的需求,因此,处于RRC连接态的UE如何请求不同时延需求的业务成为目前亟需解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求 的保护范围。
本发明实施例提供了一种资源分配方法和装置,以解决处于RRC连接态的UE在请求数据传输时,常规的SR消息无法指示超低时延业务需求信息的问题。
第一方面,本发明实施例提供一种资源分配方法,包括:
基站接收用户设备(UE)发送的上行调度请求(SR)消息,所述SR消息中包括超低时延业务指示信息;
所述基站根据所述SR消息中的超低时延业务指示信息为所述UE分配上行超低时延资源。
在第一方面的第一种可能的实现方式中,
所述超低时延业务指示信息包括超低时延数据待传指示,所述超低时延数据待传指示用于指示所述UE当前是否有超低时延业务的数据等待传输;
所述基站根据所述超低时延业务指示信息为所述UE分配上行超低时延资源,包括:
当所述超低时延数据待传指示为超低时延业务时,所述基站为所述UE分配上行超低时延资源。
在第一方面的第二种可能的实现方式中,
所述超低时延业务指示信息包括超低时延指示值;
所述基站根据所述超低时延业务指示信息为所述UE分配上行超低时延资源,包括:
所述基站判断所述基站与所述UE所支持的传输时间间隔(TTI)能力是否相同;
当所述基站判断出所述基站与所述UE所支持的TTI能力相同时,根据所述超低时延指示值分配对应长度TTI的上行超低时延资源;
当所述基站判断出所述基站与所述UE所支持的TTI能力不同时,根据所述基站与所述UE的TTI能力交集和所述超低时延指示值,优先分配所述超低时延指示值对应长度TTI的上行超低时延资源。
根据第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述超低时延业务指示信息还包括超低时延数据待传指示;所述基站根据所述超低时延业务指示信息为所述UE分配上行超低时延资源,包括:
当所述超低时延数据待传指示为超低时延业务时,所述基站根据所述超低时延指示值分配对应长度TTI的上行超低时延资源。
根据第一方面的第二种或第三种可能的实现方式,在第四种可能的实现方式中,所述超低时延指示值包括超低时延级别和/或超低时延业务的缓存数据量级别;其中,所述超低时延级别用于指示所述UE的超低时延业务对端到端时延的需求等级或所述UE的超低时延业务对调度时延的需求等级,所述超低时延业务的缓存数据量级别指示所述UE的缓存区内待传输的超低时延业务数据的总量或者所述UE的缓存区内待传输的最高优先级超低时延业务的数据量。
根据第一方面、第一方面的第一种到第三种可能的实现方式中任意一种,在第五种可能的实现方式中,所述基站接收用户设备(UE)发送的上行调度请求(SR)消息之前,所述方法还包括:
所述基站向所述UE发送无线资源控制(RRC)连接建立消息,所述RRC连接建立消息中配置有用于所述UE发送所述SR消息的资源和所述资源对应的SR周期,所述RRC连接建立消息用于指示所述UE根据所配置的资源按照所述资源对应的SR周期发送所述SR消息,其中,所述资源对应的SR周期配置为长度小于1ms的SR短周期。
根据第一方面的第五种可能的实现方式,在第六种可能的实现方式中,
所述RRC连接建立消息中还配置有多载波业务,或单载波业务,或所述单载波业务和物理上行链路控制信道(PUCCH)格式指示;
所述SR消息为所述UE根据所述基站和所述UE所支持的TTI能力,以及所述RRC连接建立消息中所配置的内容选择的对应扩展PUCCH格式所承载的,其中,所选择的扩展PUCCH格式中包括不小于2比特的SR消息指示值。
根据第一方面、第一方面的第一种到第三种可能的实现方式中任意一 种,在第七种可能的实现方式中,所述基站接收用户设备(UE)发送的上行调度请求(SR)消息之前,所述方法还包括:
所述基站向所述UE发送RRC连接建立消息,所述RRC连接建立消息中配置有多种PUCCH,所述RRC连接建立消息用于指示所述UE根据所述SR消息所指示的资源类型选择对应的PUCCH发送所述SR消息,其中,第一PUCCH用于发送指示为上行超低时延资源的SR消息,第二PUCCH用于发送指示为上行非超低时延资源的SR消息。
第二方面,本发明实施例提供一种资源分配方法,包括:
用户设备(UE)向基站发送上行调度请求(SR)消息,所述SR消息中包括超低时延业务指示信息,所述SR消息用于指示所述基站根据所述SR消息中的超低时延业务指示信息为所述UE分配上行超低时延资源;
所述UE接收所述基站分配的上行超低时延资源。
在第二方面的第一种可能的实现方式中,
所述超低时延业务指示信息包括超低时延数据待传指示,所述超低时延数据待传指示用于指示所述UE当前是否有超低时延业务的数据等待传输;
所述SR消息用于指示所述基站在所述超低时延数据待传指示为超低时延业务时,为所述UE分配上行超低时延资源。
在第二方面的第二种可能的实现方式中,
所述超低时延业务指示信息包括超低时延指示值;
所述SR消息用于指示所述基站在确定出所述基站与所述UE所支持的传输时间间隔(TTI)能力相同时,根据所述超低时延指示值分配对应长度TTI的上行超低时延资源;或者,
所述SR消息用于指示所述基站在确定出所述基站与所述UE所支持的TTI能力不同时,根据所述基站与所述UE的TTI能力交集和所述超低时延指示值,优先分配所述超低时延指示值对应长度TTI的上行超低时延资源。
根据第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述超低时延业务指示信息还包括超低时延数据待传指示;所述SR消息用于指示所述基站在所述超低时延数据待传指示为超低时延业务时,根据所述 超低时延指示值分配对应长度TTI的上行超低时延资源。
根据第二方面的第二种或第三种可能的实现方式,在第四种可能的实现方式中,所述超低时延指示值包括超低时延级别和/或超低时延业务的缓存数据量级别;其中,所述超低时延级别用于指示所述UE的超低时延业务对端到端时延的需求等级或所述UE的超低时延业务对调度时延的需求等级,所述超低时延业务的缓存数据量级别指示所述UE的缓存区内待传输的超低时延业务数据的总量或者所述UE的缓存区内待传输的最高优先级超低时延业务的数据量。
根据第二方面、第二方面的第一种到第三种可能的实现方式中任意一种,在第五种可能的实现方式中,所述用户设备(UE)向基站发送上行调度请求(SR)消息之前,所述方法还包括:
所述UE接收所述基站发送的无线资源控制(RRC)连接建立消息,所述RRC连接建立消息中配置有用于所述UE发送所述SR消息的资源和所述资源对应的SR周期;
所述用户设备UE向基站发送上行调度请求SR消息,包括:
所述UE根据所述RRC连接建立消息中配置的资源按照所述资源对应的SR周期发送所述SR消息,其中,所述资源对应的SR周期配置为长度小于1ms的SR短周期。
根据第二方面的第五种可能的实现方式,在第六种可能的实现方式中,
所述RRC连接建立消息中还配置有多载波业务,或单载波业务,或所述单载波业务和物理上行链路控制信道(PUCCH)格式指示;
所述UE接收所述基站发送的所述RRC之后,且向所述基站发送所述SR消息之前,所述方法还包括:
所述UE根据所述基站和所述UE所支持的TTI能力,以及所述RRC连接建立消息中所配置的内容选择对应的扩展PUCCH格式来承载所述SR消息,其中,所选择的扩展PUCCH格式中包括不小于2比特的SR消息指示值。
根据第二方面、第二方面的第一种到第三种可能的实现方式中任意一 种,在第七种可能的实现方式中,所述用户设备(UE)向基站发送上行调度请求(SR)消息之前,所述方法还包括:
所述UE接收所述基站发送的RRC连接建立消息,所述RRC连接建立消息中配置有多种PUCCH;
所述用户设备UE向基站发送上行调度请求SR消息,包括:
所述UE根据所述SR消息所指示的资源类型选择对应的PUCCH发送所述SR消息,其中,第一PUCCH用于发送指示为上行超低时延资源的SR消息,第二PUCCH用于发送指示为上行非超低时延资源的SR消息。
第三方面,本发明实施例提供一种资源分配方法,包括:
基站向用户设备UE发送无线资源控制(RRC)连接建立消息,所述RRC连接建立消息中配置有物理上行链路控制信道(PUCCH)与时延需求指示值的对应关系,所述RRC连接建立消息用于指示所述UE根据确定的时延需求指示值选择对应的PUCCH;
所述基站接收所述UE通过所选择的PUCCH发送的SR消息;
所述基站根据所述选择的PUCCH为所述UE分配对应长度TTI的上行资源,其中,所述上行资源包括所述上行超低时延资源和上行非超低时延资源。
第四方面,本发明实施例提供一种资源分配方法,包括:
用户设备(UE)接收基站发送的无线资源控制(RRC)连接建立消息,所述RRC连接建立消息中配置有物理上行链路控制信道(PUCCH)与时延需求指示值的对应关系;
所述UE根据确定的时延需求指示值选择对应的PUCCH;
所述UE通过所选择的PUCCH向所述基站发送SR消息,所述SR消息用于指示所述基站根据所述选择的PUCCH为所述UE分配对应长度TTI的上行资源,其中,所述上行资源包括所述上行超低时延资源和上行非超低时延资源。
第五方面,本发明实施例提供一种资源分配装置,设置于基站中,所述资源分配装置包括:
接收模块,设置为:接收用户设备(UE)发送的上行调度请求(SR)消息,其中,所述SR消息中包括超低时延业务指示信息;
分配模块,设置为:根据所述接收模块接收的SR消息中的超低时延业务指示信息为所述UE分配上行超低时延资源。
在第五方面的第一种可能的实现方式中,
所述超低时延业务指示信息包括超低时延数据待传指示,所述超低时延数据待传指示用于指示所述UE当前是否有超低时延业务的数据等待传输;
所述分配模块通过以下方式根据所述超低时延业务指示信息为所述UE分配上行超低时延资源:
所述分配模块在所述超低时延数据待传指示为超低时延业务时,为所述UE分配上行超低时延资源。
在第五方面的第二种可能的实现方式中,
所述超低时延业务指示信息包括超低时延指示值;
所述分配模块包括:
判断单元,设置为:判断所述基站与所述UE所支持的传输时间间隔(TTI)能力是否相同;
分配单元,设置为:在所述判断单元判断出所述基站与所述UE所支持的TTI能力相同时,根据所述超低时延指示值分配对应长度TTI的上行超低时延资源;
分配单元,还设置为:在所述判断单元判断出所述基站与所述UE所支持的TTI能力不同时,根据所述基站与所述UE的TTI能力交集和所述超低时延指示值,优先分配所述超低时延指示值对应长度TTI的上行超低时延资源。
根据第五方面的第二种可能的实现方式,在第三种可能的实现方式中,所述超低时延业务指示信息还包括超低时延数据待传指示;所述分配模块通过以下方式根据所述超低时延业务指示信息为所述UE分配上行超低时延资源:
所述分配模块在所述超低时延数据待传指示为超低时延业务时,根据所述超低时延指示值分配对应长度TTI的上行超低时延资源。
根据第五方面的第二种或第三种可能的实现方式,在第四种可能的实现方式中,所述超低时延指示值包括超低时延级别和/或超低时延业务的缓存数据量级别;其中,所述超低时延级别用于指示所述UE的超低时延业务对端到端时延的需求等级或所述UE的超低时延业务对调度时延的需求等级,所述超低时延业务的缓存数据量级别指示所述UE的缓存区内待传输的超低时延业务数据的总量或者所述UE的缓存区内待传输的最高优先级超低时延业务的数据量。
根据第五方面、第五方面的第一种到第三种可能的实现方式中任意一种,在第五种可能的实现方式中,所述资源分配装置还包括:发送模块,设置为:在所述接收模块接收所述UE发送的所述SR消息之前,向所述UE发送无线资源控制(RRC)连接建立消息,其中,所述RRC连接建立消息中配置有用于所述UE发送所述SR消息的资源和所述资源对应的SR周期,所述RRC连接建立消息用于指示所述UE根据所配置的资源按照所述资源对应的SR周期发送所述SR消息,所述资源对应的SR周期配置为长度小于1ms的SR短周期。
根据第五方面的第五种可能的实现方式,在第六种可能的实现方式中,所述RRC连接建立消息中还配置有多载波业务,或单载波业务,或所述单载波业务和物理上行链路控制信道(PUCCH)格式指示;所述SR消息为所述UE根据所述基站和所述UE所支持的TTI能力,以及所述RRC连接建立消息中所配置的内容选择的对应扩展PUCCH格式所承载的,其中,所选择的扩展PUCCH格式中包括不小于2比特的SR消息指示值。
根据第五方面、第五方面的第一种到第三种可能的实现方式中任意一种,在第七种可能的实现方式中,所述资源分配装置还包括:发送模块,设置为:在所述接收模块接收所述UE发送的所述SR消息之前,向所述UE发送RRC连接建立消息,其中,所述RRC连接建立消息中配置有多种PUCCH,所述RRC连接建立消息用于指示所述UE根据所述SR消息所指示的资源类型选择对应的PUCCH发送所述SR消息,其中,第一PUCCH用于 发送指示为上行超低时延资源的SR消息,第二PUCCH用于发送指示为上行非超低时延资源的SR消息。
第六方面,本发明实施例提供一种资源分配装置,设置于用户设备(UE)中,所述资源分配装置包括:
发送模块,设置为:向基站发送上行调度请求(SR)消息,其中,所述SR消息中包括超低时延业务指示信息,所述SR消息用于指示所述基站根据所述SR消息中的超低时延业务指示信息为所述UE分配上行超低时延资源;
接收模块,设置为:接收所述基站分配的上行超低时延资源。
在第六方面的第一种可能的实现方式中,
所述超低时延业务指示信息包括超低时延数据待传指示,所述超低时延数据待传指示用于指示所述UE当前是否有超低时延业务的数据等待传输;
所述SR消息用于指示所述基站在所述超低时延数据待传指示为超低时延业务时,为所述UE分配上行超低时延资源。
在第六方面的第二种可能的实现方式中,
所述超低时延业务指示信息包括超低时延指示值;
所述SR消息用于指示所述基站在确定出所述基站与所述UE所支持的传输时间间隔(TTI)能力相同时,根据所述超低时延指示值分配对应长度TTI的上行超低时延资源;或者,
所述SR消息用于指示所述基站在确定出所述基站与所述UE所支持的TTI能力不同时,根据所述基站与所述UE的TTI能力交集和所述超低时延指示值,优先分配所述超低时延指示值对应长度TTI的上行超低时延资源。
根据第六方面的第二种可能的实现方式,在第三种可能的实现方式中,
所述超低时延业务指示信息还包括超低时延数据待传指示;
所述SR消息用于指示所述基站在所述超低时延数据待传指示为超低时延业务时,根据所述超低时延指示值分配对应长度TTI的上行超低时延资源。
根据第六方面的第二种或第三种可能的实现方式,在第四种可能的实现 方式中,所述超低时延指示值包括超低时延级别和/或超低时延业务的缓存数据量级别;其中,所述超低时延级别用于指示所述UE的超低时延业务对端到端时延的需求等级或所述UE的超低时延业务对调度时延的需求等级,所述超低时延业务的缓存数据量级别指示所述UE的缓存区内待传输的超低时延业务数据的总量或者所述UE的缓存区内待传输的最高优先级超低时延业务的数据量。
根据第六方面、第六方面的第一种到第三种可能的实现方式中任意一种,在第五种可能的实现方式中,所述接收模块,还设置为:在所述发送模块向所述基站发送所述SR消息之前,接收所述基站发送的无线资源控制(RRC)连接建立消息,其中,所述RRC连接建立消息中配置有用于所述UE发送所述SR消息的资源和所述资源对应的SR周期;
所述发送模块通过以下方式向所述基站发送所述SR消息:根据所述RRC连接建立消息中配置的资源按照所述资源对应的SR周期发送所述SR消息,其中,所述资源对应的SR周期配置为长度小于1ms的SR短周期。
根据第六方面的第五种可能的实现方式,在第六种可能的实现方式中,所述RRC连接建立消息中还配置有多载波业务,或单载波业务,或所述单载波业务和物理上行链路控制信道(PUCCH)格式指示;
所述资源分配装置还包括:选择模块,设置为:在所述接收模块接收所述基站发送的所述RRC之后,且所述发送模块向所述基站发送所述SR消息之前,根据所述基站和所述UE所支持的TTI能力,以及所述RRC连接建立消息中所配置的内容选择对应的扩展PUCCH格式来承载所述SR消息,其中,所选择的扩展PUCCH格式中包括不小于2比特的SR消息指示值。
根据第六方面、第六方面的第一种到第三种可能的实现方式中任意一种,在第七种可能的实现方式中,所述接收模块,还设置为:在所述发送模块向所述基站发送所述SR消息之前,接收所述基站发送的RRC连接建立消息,其中,所述RRC连接建立消息中配置有多种PUCCH;
所述发送模块通过以下方式向所述基站发送所述SR消息:根据所述SR消息所指示的资源类型选择对应的PUCCH发送所述SR消息,其中,第一PUCCH用于发送指示为上行超低时延资源的SR消息,第二PUCCH用于发 送指示为上行非超低时延资源的SR消息。
第七方面,本发明实施例提供一种资源分配装置,设置于基站中,所述资源分配装置包括:
发送模块,设置为:向用户设备(UE)发送无线资源控制(RRC)连接建立消息,其中,所述RRC连接建立消息中配置有物理上行链路控制信道(PUCCH)与时延需求指示值的对应关系,所述RRC连接建立消息用于指示所述UE根据确定的时延需求指示值选择对应的PUCCH;
接收模块,设置为:接收所述UE通过所选择的PUCCH发送的SR消息;
分配模块,设置为:根据所述选择的PUCCH为所述UE分配对应长度TTI的上行资源,其中,所述上行资源包括所述上行超低时延资源和上行非超低时延资源。
第八方面,本发明实施例提供一种资源分配装置,设置于用户设备(UE)中,所述资源分配装置包括:
接收模块,设置为:接收基站发送的无线资源控制(RRC)连接建立消息,其中,所述RRC连接建立消息中配置有物理上行链路控制信道(PUCCH)与时延需求指示值的对应关系;
选择模块,设置为:根据确定的时延需求指示值选择对应的PUCCH;
发送模块,设置为:通过所述选择模块所选择的PUCCH向所述基站发送SR消息,其中,所述SR消息用于指示所述基站根据所述选择的PUCCH为所述UE分配对应长度TTI的上行资源,所述上行资源包括所述上行超低时延资源和上行非超低时延资源。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现基站侧的资源分配方法。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现用户设备侧的资源分配方法。
本发明实施例提供的资源分配方法和装置,基站通过接收UE发送的包括超低时延业务指示信息的SR消息,并且根据该SR消息中的超低时延业务指示信息为UE分配上行超低时延资源;本实施例提供的方法实现了UE无需 在等待基站为其分配上行资源后再向基站反馈超低时延业务指示,即在基站分配上行超低时延资源的过程中,减少了基站和UE交互的次数,相应地提高了基站分配上行超低时延资源的效率,解决了处于RRC连接态的UE在请求数据传输时,常规的SR消息无法指示超低时延业务需求信息的问题。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本发明实施例提供的一种资源分配方法的流程图;
图2为本发明实施例提供的另一种资源分配方法的流程图;
图3为本发明实施例提供的又一种资源分配方法的流程图;
图4为本发明实施例提供的再一种资源分配方法的流程图;
图5为本发明实施例提供的还一种资源分配方法的流程图;
图6为本发明实施例提供的一种资源分配方法的信令交互流程图;
图7为本发明实施例提供的一种资源分配装置的结构示意图;
图8为本发明实施例提供的另一种资源分配装置的结构示意图;
图9为本发明实施例提供的又一种资源分配装置的结构示意图;
图10为本发明实施例提供的再一种资源分配装置的结构示意图。
本发明的实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在目前的LTE网络中,由于eNB不知道UE什么时候需要发送上行数据,即不知道UE什么时候会发送SR消息,所以在UE发送SR消息之前,eNB需要给UE配置SR周期,并在已经分配的SR周期上检测是否有SR消息上报。目前的SR周期的相关参数如表1所示,SR周期最小是1毫秒(ms)时长。
表1
Figure PCTCN2016077020-appb-000001
从上述表1可以看出,相关技术中eNB配置的SR周期的最短时长为1ms,UE在需要发送数据时,需要在配置的SR周期内发送SR消息,并且相关技术中TTI的时长通常为1ms。UE在SR周期内发送的SR消息通常只有1个比特,表示后续是否有数据需要发送,eNB根据该SR消息可以为UE分配上行资源,在UE获取该上行资源后,在分配的上行资源上发送业务请求的具体要求,例如要求发送超低时延业务指示,采用上述技术方案,由于eNB在业务调度时并不知道UE请求的业务是否需要采用超低时延业务进行传输,也就是说,常规的SR消息仅能表示有数据传输请求,无法表示需要传输的数据对时延的需求,因此,处于RRC连接态的UE如何请求不同时延需求的业务成为目前亟需解决的问题。
下面通过具体的实施例对本申请的技术方案进行详细说明,本申请以下各实施例中的基站例如可以为LTE网络中的eNB,并且本申请各实施例中的 eNB可以为UE配置上述表1中任一项SR索引和对应的SR周期,本申请各实施例中的UE和eNB均需要建立RRC连接。本申请提供以下几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本发明实施例提供的一种资源分配方法的流程图。本实施例提供的资源分配方法适用于为UE分配上行资源的情况,该方法可以由资源分配装置执行,该资源分配装置通过硬件和软件结合的方式来实现,该装置可以集成在基站的处理器中,供处理器调用使用。如图1所示,本实施例的方法可以包括以下步骤:
步骤S110,基站接收UE发送的SR消息,该SR消息中包括超低时延业务指示信息。
在本实施例中,UE通常需要在SR周期内发送SR消息,并且本实施例中的SR周期是UE和基站建立RRC连接的过程中,基站为UE配置的,即本实施例在步骤S110之前,本实施例的方法还包括:步骤S100,基站向UE发送RRC连接建立消息,该RRC连接建立消息中配置有用于UE发送SR消息的资源和该资源对应的SR周期,该RRC连接建立消息用于指示UE根据所配置的资源按照该资源对应的SR周期发送SR消息,其中,资源对应的SR周期配置为长度小于1ms的SR短周期。
需要说明的是,本实施中的基站在为UE配置资源时,不局限于上述表1中的相关资源,可以为超低时延业务配置专用的SR短周期,该SR短周期的配置内容如下表2所示。
表2
Figure PCTCN2016077020-appb-000002
如表1和表2所示,配置的资源通常为SR的配置索引ISR值,本实施例在具体实现中,当UE从基站接收到配置的资源,即ISR值后可以进行判断,如果ISR值小于或等于157时,则认为配置了常规的SR周期,按常规SR周 期策略发送SR消息;如果ISR值等于158,则认为配置了超低时延业务专用的SR短周期,由于超低时延业务专用的SR短周期小于一个子帧的长度,所以子帧偏置无需配置,UE可以在任何的超低时延业务专用的SR短周期内发送SR消息。本实施例以基站为UE配置的资源为ISR值等于158为例予以示出,支持超低时延业务的UE在收到RRC连接建立消息后,当超低时延业务触发SR资源请求时,在最近的SR短周期发送时机上发送携带超低时延业务指示信息的SR消息。
步骤S120,基站根据SR消息中的超低时延业务指示信息为UE分配上行超低时延资源。
在本实施例中,SR消息不同于常规的SR消息,本实施例中的SR消息在UE请求超低时延业务时,携带有超低时延业务指示信息,该超低时延业务指示信息例如可以包括超低时延数据待传指示、超低时延级别和超低时延业务的缓存数据量级别中的一项或多项,基站可以根据超低时延业务指示信息的具体形式和内容为UE分配上行超低时延资源;显然地,相比于常规方式中UE等待基站为其分配上行资源后,在分配的上行资源上进行数据反馈时携带超低时延业务指示的方式来说,本实施例提供的方法,基站接收到的SR消息中携带有超低时延业务指示信息,在其分配上行资源时根据该超低时延业务指示信息为UE分配专用于超低时延业务的上行资源,使得UE可以及时地获取到上行超低时延资源,提高了该业务数据传输的时效性。需要说明的是,常规上行资源中TTI时长为1ms,上行超低时延资源中TTI时长通常要小于1ms,例如可以为1符号,或0.5ms等。
本实施例提供的方法在实际应用中,还存在另一种可能的情况,即本实施例中的基站接收到UE发送的SR消息后,确定出该SR消息中不包括所述超低时延业务指示信息,则根据SR消息为UE分配上行非超低时延资源。该情况类似于常规方式,当SR消息中不包括所述超低时延业务指示信息时,未携带任何指示上行时延业务类型的信息,此时,基站直接分配上行非超低时延资源,该上行非超低时延资源通常为TTI时长等于1ms的上行资源。
本实施例所提供的资源分配方法,基站通过接收UE发送的包括超低时延业务指示信息的SR消息,并且根据该SR消息中的超低时延业务指示信息 为UE分配上行超低时延资源;本实施例提供的方法实现了UE无需在等待基站为其分配上行资源后再向基站反馈超低时延业务指示,即在基站分配上行超低时延资源的过程中,减少了基站和UE交互的次数,相应地提高了基站分配上行超低时延资源的效率,解决了处于RRC连接态的UE在请求数据传输时,常规的SR消息无法指示超低时延业务需求信息的问题。
可选地,本实施例在基站与UE建立RRC连接的过程中,基站为UE配置的SR周期可以被配置为时长小于1ms的SR短周期,实现了UE在更短的时间间隔上发送SR消息,若当期时刻不是SR周期中的发送时刻,则等待更短的时间就可发送SR消息,提高了发送SR消息的时效性,即提高了获取上行超低时延资源的效率。
可选地,图1所示实施例中的超低时延业务指示信息例如包括超低时延数据待传指示,该超低时延数据待传指示用于指示UE当前是否有超低时延业务的数据等待传输;相应地,图1中的步骤S120可以替换为:当超低时延数据待传指示为超低时延业务时,基站为UE分配上行超低时延资源。
举例来说,若有新的超低时延业务的数据到达UE的缓存时,UE可以将超低时延数据待传指示设置为TRUE;若UE的缓存内有未传输完的超低时延业务数据,UE也可以将超低时延数据待传指示设置为TRUE;在其他情况下,UE将超低时延数据待传指示设置为False;上述超低时延数据待传指示在SR消息中的数据格式可以为1比特(bit),可选地,TRUE表示为1,False表示为0,或者也可以用其他数据格式来表示。在具体实现中,当基站在SR消息中检测到超低时延数据待传指示为TRUE时,可以根据空口资源情况判断是否给UE调度短TTI资源,以及调度哪种长度格式的短TTI资源。
可选地,图2为本发明实施例提供的另一种资源分配方法的流程图,在上述图1所示实施例的基础上,本实施例中的超低时延业务指示信息具体包括超低时延指示值,则步骤S120可以包括:步骤S121,基站判断该基站与UE所支持的TTI能力是否相同,若是,则执行步骤S122;若否,则执行步骤S123。在本实施例的具体实现中,基站接收到UE发送的RRC连接请求消息中可以携带有UE的能力信息,同时基站在向UE发送RRC连接建立消息时,也可以携带有基站的能力信息,即已建立RRC连接的基站和UE双方, 明确的知道自身和对方的TTI能力,该TTI能力为基站分配上行超低时延资源时需要考虑的主要因素。
具体的分配方式为:
步骤S122,当基站判断出该基站与UE所支持的TTI能力相同时,根据超低时延指示值分配对应长度TTI的上行超低时延资源;
步骤S123,当基站判断出该基站与UE所支持的TTI能力不同时,根据基站与UE的TTI能力交集和超低时延指示值,优先分配超低时延指示值对应长度TTI的上行超低时延资源。
举例来说,假设基站和UE都支持三种时长的TTI,具体为:1符号、0.5ms和1ms。基站接收到的SR消息中的超低时延指示值可以通过三个值来表示,如下表3所示。
表3
超低时延指示值 基站分配的资源类型
1 TTI=1符号
2 TTI=0.5ms
3 TTI=1ms
通常地,超低时延指示值越小,对时延的要求越高,即TTI的值越小;另外,本实施例中超低时延指示值可以指示TTI的最大时长为目前通常使用的1ms时长的TTI。上述表3仅为本实施例给出的超低时延指示值与基站分配资源类型的一种可能的对应关系,本申请并不限制超低时延指示值的数量和其对应的TTI时长。
如上所述,若步骤S121中判断出基站与UE所支持的TTI能力相同时,分配上行超低时延资源的具体方式为:
当SR消息中的超低时延指示值为1时,给UE分配1符号时长TTI的上行超低时延资源;
当SR消息中的超低时延指示值为2时,给UE分配0.5毫秒时长TTI的上行超低时延资源;
当SR消息中的超低时延指示值为3时,给UE分配1毫秒时长TTI的上行超低时延资源。
在本实施例的另一种可能的实现方式中,若步骤S121中判断出基站与UE所支持的TTI能力不同时,分配上行超低时延资源的具体方式为:
当SR消息中的超低时延指示值为1时,在基站和UE的TTI能力交集中优先分配TTI时长最接近1符号的上行超低时延资源;
当SR消息中的超低时延指示值为2时,在基站和UE的TTI能力交集中分配上行超低时延资源的优先顺序为:0.5毫秒>1符号>1毫秒;
当SR消息中的超低时延指示值为3时,在基站和UE的TTI能力交集中优先分配TTI时长最接近1毫秒的上行超低时延资源。
本实施例中的超低时延指示值可以为超低时延级别或者超低时延业务的缓存数据量级别;其中,超低时延级别用于指示UE的超低时延业务对端到端时延的需求等级或UE的超低时延业务对调度时延的需求等级,超低时延业务的缓存数据量级别指示UE的缓存区内待传输的超低时延业务数据的总量或者UE的缓存区内待传输的最高优先级超低时延业务的数据量。
一方面,对于超低时延级别的定义进行解释,上述端到端时延可以指空口的端到端时延,即数据从到达发射端缓存直到被正确传输至接收端所消耗的时间;也可以指核心网的端到端时延,即数据在UE和核心网分组数据网关(Packet Data Network Gateway,简称为:PGW)之间正确传输的延时;上述调度时延是指数据从到达发送端缓存直到获得调度在发送端发送为止的时延。
在具体实现中,超低时延级别可根据时延要求的高低来划分为不同粒度的级别,例如:假设端到端时延指空口的端到端时延,并且时延要求从0.1ms至0.5ms不等,可将其划分成2个级别:小于0.2ms为级别1,大于0.2且小于0.5ms为级别2;划分的方式不限于上述描述,也可以将时延划分成更细的级别;通常地,对时延要求越严格,说明UE的超低时延业务数据要求更快被传输。
需要说明的是,超低时延级别在SR消息中的数据格式可以是多种的, 例如当划分了4个级别时,可以采用2bit来表示超低时延级别,也可以采用其他格式来表示超低时延级别;另外,本实施例中的基站在SR消息中检测到超低时延级别时,可以根据级别的不同,来决定不同UE之间的调度优先级,同时决定为不同UE调度哪种长度格式的短TTI资源;通常来说,对时延要求越严的UE获得越高的调度优先级,如果基站支持多种短TTI格式,那么对时延要求越严的UE,基站可为其调度越短的TTI格式的资源。
另一方面,对于超低时延业务的缓存数据量级别的定义进行解释,当UE缓存内有超过1种的超低时延业务数据待传输时,超低时延业务的缓存数据量级别可以指示UE的缓存区内待传输的超低时延业务数据的总量,或者指示UE的缓存区内待传输的最高优先级超低时延业务的数据量,该最高优先级超低时延业务指的是对时延要求最严的业务。在具体实现中,超低时延业务缓存数据量可以根据数据量的高低划分成不同粒度的级别,例如:可以按照500bit为粒度来划分级别,也可以按照1000bit或者其他粒度来划分级别。
需要说明的是,超低时延业务的缓存数据量级别在SR消息中的数据格式可以是多种,例如当划分了4个级别时,可以采用2bit来表示数据量级别;也可以采用其他格式来表示数据量级别;另外,当基站在SR消息中检测到超低时延业务的缓存数据量级别时,根据级别的不同,来决定为UE调度多少短TTI格式的资源,例如:假设基站检测到超低时延业务的缓存数据量级别为500bit以内,且基站支持的短TTI格式为0.5ms,那么基站可为UE调度0.5TTI*1物理资源块(Physical Resource Block,简称为:PRB)的资源,缓存数据量为1000bit以内,那么基站可为UE调度0.5TTI*2PRB的资源。
还需要说明的是,上述超低时延级别和超低时延业务的缓存数据量级别可以结合使用,举例来说,当UE在SR消息内同时传输超低时延级别和超低时延业务的缓存数据量级别,且基站和UE均支持多种格式的短TTI(例如1正交频分复用(OFDM)符号的短TTI和0.5ms短TTI两种格式)时,若UE有2种级别的超低时延业务有数据待传输,则UE可报告1bit的超低时延级别,以及2种级别的超低时延业务数据总量的超低时延业务的缓存数据量级 别,相应地,基站可以根据上述信息,按照保证最高优先级超低时延业务的原则,为UE分配足量的1OFDM符号的短TTI资源。
图3为本发明实施例提供的又一种资源分配方法的流程图。在本发明实施例的另一种可能的实现方式中,同样在上述图1所示实施例的基础上,本实施例中的超低时延业务指示信息包括超低时延数据待传指示和超低时延指示值,则图1中的步骤S120可以包括:步骤S121,当超低时延数据待传指示为超低时延业务时,基站根据超低时延指示值分配对应长度TTI的上行超低时延资源;步骤S122,当超低时延数据待传指示为非超低时延业务时,基站分配上行非超低时延资源。本实施例中的步骤S121和步骤S122为择一执行的。
需要说明的是,本实施例中的超低时延数据待传指示为超低时延业务时,基站根据超低时延指示值分配对应长度TTI的上行超低时延资源与上述图2所示实施例中的分配方式相同,该超低时延指示值与上述实施例中的超低时延指示值的作用相同,基站可以根据该基站与UE所支持的TTI能力执行具体的分配操作,故在此不再赘述。
举例来说,同样以基站和UE都支持三种时长的TTI,具体为:1符号、0.5ms和1ms为例予以说明。基站接收到的SR消息中,超低时延数据待传指示可以为超低时延业务和非超低时延业务,在超低时延数据待传指示为超低时延业务时,超低时延指示值可以通过三个值来表示,如下表4所示。
表4
超低时延数据待传指示和超低时延指示值 基站分配的资源类型
超低时延业务,超低时延指示值为1 TTI=1符号
超低时延业务,超低时延指示值为2 TTI=0.5ms
超低时延业务,超低时延指示值为3 TTI=1ms
非超低时延业务 TTI=1ms
需要说明的是,本实施例中的超低时延指示值越小,表示需要传输的数据量越小,越适合在短TTI上承载;另外,本实施例中超低时延指示值可以指示TTI的最大时长为目前通常使用的1ms时长的TTI,即可以与非超低时 延业务的TTI的时长相同。上述表4仅为本实施例给出的超低时延数据待传指示和超低时延指示值的组合与基站分配资源类型的一种可能的对应关系,本申请并不限制超低时延指示值的数量和其对应的TTI时长。并且,本实施例中的超低时延指示值同样可以为超低时延级别和/或超低时延业务的缓存数据量级别,本实施例在超低时延指示值为不同的内容时,基站分配短TTI的具体方式与上述实施例相同,故在此不再赘述。
可选地,在本申请上述各实施例的基础上,基站向UE发送的RRC连接建立消息中还可以配置有多载波业务,或单载波业务,或单载波业务和物理上行链路控制信道(Physical Uplink Control Channe,简称为:PUCCH)格式指示;在具体实现中,SR消息为UE根据基站和UE所支持的TTI能力,以及RRC连接建立消息中所配置的内容选择的对应扩展PUCCH格式所承载的,其中,所选择的扩展PUCCH格式中包括不小于2比特的SR消息指示值。
需要说明的是,在相关的LTE协议中:单载波业务的SR消息用PUCCH的Format 1或Format 1a来反馈;双载波业务的SR消息用PUCCH的Format 1b或Format 3来反馈;三载波或以上业务的SR消息用PUCCH的Format 3来反馈;其中,PUCCH的Format 3最多可以携带48个有效比特,而携带SR消息的PUCCH的Format 3目前使用到的比特情况为:频分双工(Frequency Division Dual,简称为:FDD)模式下Format 3最多支持11比特,其中,10比特用于传输混合自动重传请求-肯定确认指示(Hybrid Automatic Repeat request-ACKnowledgment,简称为:HARQ-ACK),1比特用于正负SR指示;时分双工(Time Division Dual,简称为:TDD)模式下Format 3最多支持21比特,其中,20比特用于传输HARQ-ACK,1比特用于正负SR指示,1比特的正负SR指示中,1表示后续有数据需要传输,0表示后续没有数据需要传输。因此,对于不需要上报超低时延业务指示信息的应用场景,采用相关的PUCCH的Format的定义来上报SR消息。
本实施例以上述图2和图3所示实施例的情况予以示出,如上述表3和表4所示,超低时延指示值通过三个指示值来表示,通过PUCCH的格式扩展来承载携带超低时延业务指示信息的SR消息,例如通过对PUCCH的 Format 1b和Format 3的扩展来承载SR消息。
首先说明PUCCH的Format 1b和Format 3的扩展方式:
Format 1b最多支持3比特,其中,1比特用于传输HARQ-ACK,2比特用于传输SR消息,值为0表示负SR,值为非0表示正SR,且值为超低时延指示值。
FDD模式下Format 3最多支持12比特,其中,10比特用于传输HARQ-ACK,2比特用于传输SR消息,值为0表示负SR,值为非0表示正SR,且值为超低时延指示值。
TDD模式下Format 3最多支持22比特,其中,20比特用于传输HARQ-ACK,2比特用于传输SR消息,值为0表示负SR,值为非0表示正SR,且值为超低时延指示值。
需要说明的是,上述扩展PUCCH的Format 1b和Format 3中用2比特传输SR消息,是基于上述表3和表4中的超低时延业务指示信息的3种可能的TTI时长,若本发明实施例中超低时延指示值较多的情况下,需要通过扩展Format 3的更多比特来承载SR消息,例如采用3比特用于传输SR消息。基于上述对PUCCH格式的扩展,UE发送SR消息的具体方式可以为:
在基站和UE所支持的超低时延业务的TTI能力相同时,UE根据RRC连接建立消息中的配置选择扩展PUCCH格式,若配置了单载波业务,则可以采用Format 1b或Format3来承载SR消息,此时,若RRC连接建立消息中指示使用Format 1b上报SR消息,则采用Format 1b来承载SR消息,若未指示,则采用Format 3来承载SR消息;若配置了多载波业务,则可以采用Format 3来承载SR消息,并且具体根据上述FDD模式或TDD模式下的Format 3承载SR消息。
可选地,在本申请上述各实施例的基础上,基站向UE发送RRC连接建立消息中,还可以配置有多种PUCCH,在这种情况中,RRC连接建立消息还用于指示UE根据SR消息所指示的资源类型选择对应的PUCCH发送SR消息;举例来说,RRC连接建立消息中配置了第一PUCCH和第二PUCCH,第一PUCCH用于发送指示为上行超低时延资源的SR消息,第二PUCCH用 于发送指示为上行非超低时延资源的SR消息;本实施例中的上行非超低时延资源同样为TTI时长等于1ms的上行资源。
需要说明的是,本实施例中的UE采用第一PUCCH发送SR消息时,基站分配上行超低时延资源的方式与上述各实施例相同,同样是根据SR消息中的超低时延业务指示信息进行分配;若UE采用第二PUCCH发送SR消息时,则与相关技术中基站分配上行资源的方式相同。
图4为本发明实施例提供的再一种资源分配方法的流程图。本实施例提供的资源分配方法适用于UE获取上行资源的情况,该方法可以由资源分配装置执行,该资源分配装置通过硬件和软件结合的方式来实现,该装置可以集成在UE的处理器中,供处理器调用使用。如图4所示,本实施例的方法可以包括以下步骤:
步骤S210,UE向基站发送上行调度请求(SR)消息,该SR消息中包括超低时延业务指示信息,该SR消息用于指示基站根据SR消息中的超低时延业务指示信息为UE分配上行超低时延资源。
本实施例中的UE同样需要在SR周期内发送SR消息,并且SR周期同样是UE和基站建立RRC连接的过程中,基站为UE配置的,即本实施例在步骤S210之前,本实施例的方法还包括:步骤S200,UE接收基站发送的RRC连接建立消息,该RRC连接建立消息中配置有用于UE发送SR消息的资源和该资源对应的SR周期;相应地,UE向基站发送SR消息的具体方式为:UE根据RRC连接建立消息中配置的资源按照该资源对应的SR周期发送上述SR消息,其中,资源对应的SR周期配置为长度小于1ms的SR短周期;本实施例中,基站为UE配置的SR周期同样可以参照上述表2所示,在具体实现中,当UE从基站接收到SR的ISR值后可以进行判断,如果ISR值小于或等于157时,则认为配置了常规的SR周期,按常规SR周期策略发送SR消息;如果ISR值等于158,则认为配置了超低时延业务专用的SR短周期。
需要说明的是,本实施例中基站根据UE发送的SR消息分配上行资源的方式与上述各实施例相同,可选地,本实施例同样以SR消息的ISR值等于158为例予以说明,基站根据SR消息中的超低时延业务指示信息为UE分配上行超低时延资源,该情况中的SR消息不同于常规的SR消息,本实施例中 的SR消息在UE请求超低时延业务时,携带有超低时延业务指示信息,该超低时延业务指示信息例如可以包括超低时延数据待传指示、超低时延级别和超低时延业务的缓存数据量级别中的一项或多项,基站可以根据超低时延业务指示信息的具体形式和内容为UE分配上行超低时延资源。需要说明的是,常规上行资源中TTI时长为1ms,上行超低时延资源中TTI时长通常要小于1ms,例如可以为1符号,或0.5ms等。
本实施例提供的方法在实际应用中,还存在另一种可能的情况,即本实施例中的基站接收到UE发送的SR消息后,确定出SR消息中不包括超低时延业务指示信息,则可以根据该SR消息为UE分配上行非超低时延资源。该情况类似于常规方式,当SR消息中不包括超低时延业务指示信息时,未携带任何指示上行时延业务类型的信息,此时,基站直接分配上行非超低时延资源,该上行非超低时延资源通常为TTI时长等于1ms的上行资源。
步骤S220,UE接收基站分配的上行超低时延资源。
本实施例中,基站根据SR消息中的超低时延业务指示信息为UE分配的上行超低时延资源,从而向UE发送该分配的上行超低时延资源,即UE可以接收到该上行超低时延资源。
本实施例所提供的资源分配方法,UE通过向基站发送包括超低时延业务指示信息SR消息,指示基站根据SR消息中的超低时延业务指示信息为UE分配上行超低时延资源,从而UE可以接收到基站为其分配的上行超低时延资源;本实施例提供的方法实现了UE无需在等待基站为其分配上行资源后再向基站反馈超低时延业务指示,即在基站分配上行超低时延资源的过程中,减少了基站和UE交互的次数,相应地提高了基站分配上行超低时延资源的效率,解决了处于RRC连接态的UE在请求数据传输时,常规的SR消息无法指示超低时延业务需求信息的问题。
可选地,本实施例在基站与UE建立RRC连接的过程中,基站为UE配置的SR周期可以被配置为时长小于1ms的SR短周期,实现了UE在更短的间隔上发送SR消息,若当期时刻不是SR周期中的发送时刻,则等待更短的时间就可发送SR消息,提高了发送SR消息的时效性,即提高了获取上行超低时延资源的效率。
可选地,图4所示实施例中的超低时延业务指示信息例如包括超低时延数据待传指示,该超低时延数据待传指示用于指示UE当前是否有超低时延业务的数据等待传输;相应地,步骤S210中的SR消息用于指示基站在超低时延数据待传指示为超低时延业务时,为UE分配上行超低时延资源。
可选地,在上述图4所示实施例的基础上,本实施例中的超低时延业务指示信息包括超低时延指示值,则本实施例中的SR消息用于指示基站在确定出该基站与UE所支持的TTI能力相同时,根据超低时延指示值分配对应长度TTI的上行超低时延资源;或者,本实施例中的SR消息用于指示基站在确定出该基站与UE所支持的TTI能力不同时,根据基站与UE的TTI能力交集和超低时延指示值,优先分配超低时延指示值对应长度TTI的上行超低时延资源。本实施例以上述图2所示实施例中基站和UE支持的三种时长的TTI为例予以说明,即UE发送的SR消息中的超低时延指示值可以通过三个值来表示,如上述表3所示,并且基站根据超低时延指示值和基站与UE所支持的TTI能力分配上行超低时延资源的具体方式与图2所示实施例类似,故在此不再赘述。需要说明的是,本实施例中的超低时延指示值同样可以为超低时延级别或者超低时延业务的缓存数据量级别;其中,超低时延级别用于指示UE的超低时延业务对端到端时延的需求等级或UE的超低时延业务对调度时延的需求等级,超低时延业务的缓存数据量级别指示UE的缓存区内待传输的超低时延业务数据的总量或者UE的缓存区内待传输的最高优先级超低时延业务的数据量。
在上述实施例的基础上,本实施例中的超低时延业务指示信息还可以包括超低时延数据待传指示,则本实施例中的SR消息用于指示基站在超低时延数据待传指示为超低时延业务时,根据超低时延指示值分配对应长度TTI的上行超低时延资源;或者,本实施例中的SR消息用于指示基站在超低时延数据待传指示为非超低时延业务时,分配上行非超低时延资源。
需要说明的是,本实施例中SR消息可以包括上述超低时延数据待传指示、超低时延级别或者超低时延业务的缓存数据量级别的一项或多项,并且上述各项内容的格式,以及基站根据超低时延业务指示信息的不同内容分配上行超低时延资源的具体方式,上述实施例中已经具体说明,故在此不再赘 述。
可选地,图5为本发明实施例提供的还一种资源分配方法的流程图,在本发明上述各实施例的基础上,UE接收到的RRC连接建立消息中还可以配置有多载波业务,或单载波业务,或单载波业务和PUCCH格式指示;在具体实现中,在步骤S200之后,步骤S210之前,本实施例的方法还包括:步骤S201,UE根据基站和UE所支持的TTI能力,以及RRC连接建立消息中所配置的内容选择对应的扩展PUCCH格式来承载SR消息,其中,所选择的扩展PUCCH格式中包括不小于2比特的SR消息指示值。本实施例同样可以通过扩展PUCCH的Format 1b和Format 3来承载SR消息,扩展Format 1b和Format 3的具体方式与上述实施例相同,故在此不再赘述。
在具体实现中,基站和UE所支持的超低时延业务的TTI能力相同的情况下,UE选择扩展PUCCH格式的方式,即步骤S201包括:步骤S202,UE判断RRC连接建立消息中配置了多载波业务还是单载波业务,若为多载波业务,则执行步骤S203,若为单载波业务,则执行步骤S204。
步骤S203,UE采用扩展PUCCH的Format 3来承载SR消息;由于在FDD模式和TDD模式下,根据Format 3所支持的最大比特数不同,扩展Format 3的具体方式也根据具体的模式选择。
步骤S204,UE判断RRC连接建立消息中是否配置了PUCCH格式指示,若否,则执行步骤S203,若是,则执行步骤S205。
步骤S205,UE在PUCCH格式指示为指示使用Format 1b上报SR消息时,采用扩展PUCCH的Format 1b来承载SR消息,在PUCCH格式指示为指示使用Format 3上报SR消息时,采用扩展PUCCH的Format 3来承载SR消息;该扩展PUCCH的Format 1b和Format 3的比特使用情况与上述实施例相同。
需要说明的是,本实施例中扩展PUCCH的Format 1b和Format 3中用2比特传输SR消息,是基于上述表3和表4中的超低时延业务指示信息的3种可能的TTI时长,若本发明实施例中超低时延业务指示值较多的情况下,需要通过扩展Format 3的更多比特来承载SR消息,例如采用3比特用于传输SR消息。
可选地,在本发明上述各实施例的基础上,在步骤S200中,UE接收到的RRC连接建立消息中可以配置有多种PUCCH;则步骤S210可以替换为:UE根据SR消息所指示的资源类型选择对应的PUCCH发送SR消息,其中,第一PUCCH用于发送指示为上行超低时延资源的SR消息,第二PUCCH用于发送指示为上行非超低时延资源的SR消息;本实施例中的上行非超低时延资源同样为TTI时长等于1ms的上行资源。
需要说明的是,本实施例中的UE采用第一PUCCH发送SR消息时,基站分配上行超低时延资源的方式与上述各实施例相同,同样是根据SR消息中的超低时延业务指示信息进行分配;若UE采用第二PUCCH发送SR消息时,则与相关技术中基站分配上行资源的方式相同。
还需要说明的是,本发明上述实施例中的UE在发送SR消息时,在具有超低时延业务需求时均在该SR消息中携带有超低时延业务指示信息,以便基站在接收到该SR消息时,可以直接根据该超低时延业务指示信息为所述UE分配上行超低时延资源;在本发明实施例的另一种可能的实现方式中,可以通过其他方式指示UE具体的超低时延业务需求,如图6所示,为本发明实施例提供的一种资源分配方法的信令交互流程图,本实施例的方法包括以下步骤:
步骤S310,基站向UE发送RRC连接建立消息,该RRC连接建立消息中配置有PUCCH与时延需求指示值的对应关系,该RRC连接建立消息用于指示UE根据确定的时延需求指示值选择对应的PUCCH。
在本实施例中,基站在RRC建立消息中针对不同时长TTI的SR消息配置不同的PUCCH资源,举例来说,对于时延需求指示值为1的SR消息配置PUCCH1,对于时延需求指示值为2的SR消息配置PUCCH2,对于时延需求指示值为3的SR消息配置PUCCH3。
步骤S320,UE根据确定的时延需求指示值选择对应的PUCCH。
在本实施例中,UE发送SR消息时可以根据已确定时延需求指示值选择对应的PUCCH来发送,不同的时延需求指示值对应的TTI时长不同,UE确定的时延需求指示值即是确定所请求的TTI资源的时长。
步骤S330,UE通过所选择的PUCCH向基站发送SR消息。
举例来说,可以通过PUCCH1、PUCCH2或PUCCH3来发送SR消息,发送一次SR消息,只能通过一种PUCCH来承载,即图6中的三个步骤S330为择一选择的。
步骤S340,基站根据选择的PUCCH为UE分配对应长度TTI的上行资源,其中,上行资源包括上行超低时延资源和上行非超低时延资源。
在本实施例中,基站接收到SR消息后,可以根据PUCCH与不同时延需求指示值的对应关系来判断SR消息所请求资源的TTI时长,例如可以为各种TTI时长的超低时延业务,也可以为常规时延业务。
图7为本发明实施例提供的一种资源分配装置的结构示意图。本实施例提供的资源分配装置适用于为UE分配上行资源的情况,该资源分配装置通过硬件和软件结合的方式来实现,该装置可以集成在基站的处理器中,供处理器调用使用。如图7所示,本实施例的资源分配装置包括:接收模块11、分配模块12和发送模块13。
其中,接收模块11,设置为:接收UE发送的上行调度请求(SR)消息,其中,该SR消息中包括超低时延业务指示信息。
在本实施例中,UE通常需要在SR周期内发送SR消息,并且本实施例中的SR周期是UE和基站建立RRC连接的过程中,基站为UE配置的,即本实施例中的发送模块13,设置为:在接收模块11接收UE发送的SR消息之前,向UE发送无线资源控制(RRC)连接建立消息,其中,该RRC连接建立消息中配置有用于UE发送SR消息的资源和资源对应的SR周期,该RRC连接建立消息用于指示UE根据所配置的资源按照资源对应的SR周期发送SR消息,资源对应的SR周期配置为长度小于1ms的SR短周期。
需要说明的是,本实施例中基站为UE配置的资源,同样可以为上述表2中所示的SR短周期,当UE从基站接收到配置的资源后,根据资源判断SR周期的时长,并在确定出的SR周期内发送SR消息的方式与上述实施例相同,故在此不再赘述。
分配模块12,设置为:根据接收模块11接收的SR消息中的超低时延业 务指示信息为UE分配上行超低时延资源。
在本实施例中,SR消息不同于常规的不包括超低时延业务指示信息的SR消息,本实施例中的SR消息在UE请求超低时延业务时,携带有超低时延业务指示信息,该超低时延业务指示信息例如可以包括超低时延数据待传指示、超低时延级别和超低时延业务的缓存数据量级别中的一项或多项,分配模块12可以根据超低时延业务指示信息的具体形式和内容为UE分配上行超低时延资源。
本实施例提供的方法在实际应用中,还存在另一种可能的情况,即本实施例中接收模块11接收到的SR消息中可能没有携带超低时延业务指示信息,即常规的SR消息,则本实施例中的分配模块12,还设置为:在接收模块11接收UE发送的SR消息之后,在确定出接收模块11接收的SR消息中不包括所述超低时延业务指示信息后,根据SR消息为UE分配上行非超低时延资源。
本发明实施例提供的资源分配装置用于执行图1所示实施例提供的资源分配方法,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
可选地,图7所示实施例中的超低时延业务指示信息例如包括超低时延数据待传指示,该超低时延数据待传指示用于指示UE当前是否有超低时延业务的数据等待传输;相应地,上述实施例中,分配模块通过以下方式根据超低时延业务指示信息为UE分配上行超低时延资源:分配模块在超低时延数据待传指示为超低时延业务时,为UE分配上行超低时延资源。
可选地,图8为本发明实施例提供的另一种资源分配装置的结构示意图,在上述图7所示实施例的基础上,本实施例中的超低时延业务指示信息具体包括超低时延指示值,则本实施例中的分配模块12包括:判断单元14和分配单元15,判断单元14,设置为:判断基站与UE所支持的TTI能力是否相同;相应地,分配单元15,设置为:在判断单元14判断出基站与UE所支持的TTI能力相同时,根据超低时延指示值分配对应长度TTI的上行超低时延资源;在另一种可能的实现方式中,分配单元15,还设置为:在判断单元14判断出基站与UE所支持的TTI能力不同时,根据基站与UE的TTI能 力交集和超低时延指示值,优先分配超低时延指示值对应长度TTI的上行超低时延资源。需要说明的是,本实施例中的超低时延指示值同样可以为超低时延级别和/或超低时延业务的缓存数据量级别;其中,超低时延级别用于指示UE的超低时延业务对端到端时延的需求等级或UE的超低时延业务对调度时延的需求等级,超低时延业务的缓存数据量级别指示UE的缓存区内待传输的超低时延业务数据的总量或者UE的缓存区内待传输的最高优先级超低时延业务的数据量。
本发明实施例提供的资源分配装置用于执行图2所示实施例提供的资源分配方法,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
在上述实施例的基础上,本实施例中的超低时延业务指示信息还可以包括超低时延数据待传指示,则本实施例中,分配模块12通过以下方式为UE分配上行超低时延资源:分配模块12在超低时延数据待传指示为超低时延业务时,根据超低时延指示值分配对应长度TTI的上行超低时延资源;分配模块12在超低时延数据待传指示为非超低时延业务时,分配上行非超低时延资源。
本发明实施例提供的资源分配装置用于执行图3所示实施例提供的资源分配方法,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
需要说明的是,本实施例中SR消息可以包括上述超低时延数据待传指示、超低时延级别或者超低时延业务的缓存数据量级别的一项或多项,并且上述各项内容的格式,以及基站根据超低时延业务指示信息的不同内容分配上行超低时延资源的具体方式,上述实施例中已经具体说明,故在此不再赘述。
可选地,在本发明上述各实施例的基础上,基站向UE发送的RRC连接建立消息中还可以配置有多载波业务,或单载波业务,或单载波业务和PUCCH格式指示;本实施例中的SR消息为UE根据基站和UE所支持的TTI能力,以及RRC连接建立消息中所配置的内容选择的对应扩展PUCCH格式所承载的,其中,所选择的扩展PUCCH格式中包括不小于2比特的SR消息 指示值。需要说明的是,本实施例中扩展PUCCH格式的具体方式,以及UE根据RRC连接建立消息中配置的多载波业务,或单载波业务,或单载波业务和指示信息选择扩展PUCCH格式的方式与上述实施例相同,故在此不再赘述。
可选地,在本发明上述各实施例的基础上,发送模块13向UE发送RRC连接建立消息中,还可以配置有多种PUCCH,在这种情况中,RRC连接建立消息还用于指示UE根据SR消息所指示的资源类型选择对应的PUCCH发送SR消息;举例来说,RRC连接建立消息中配置了第一PUCCH和第二PUCCH,第一PUCCH用于发送指示为上行超低时延资源的SR消息,第二PUCCH用于发送指示为上行非超低时延资源的SR消息;本实施例中的上行非超低时延资源同样为TTI时长等于1ms的上行资源。
在本发明实施例的又一种可能的实现方式中,可以采用上述图7所示资源分配装置执行,可选地,发送模块13,设置为:向UE发送RRC连接建立消息,其中,该RRC连接建立消息中配置有PUCCH与时延需求指示值的对应关系,该RRC连接建立消息用于指示UE根据确定的时延需求指示值选择对应的PUCCH。
接收模块11,设置为:接收UE通过所选择的PUCCH发送的SR消息。
分配模块12,设置为:根据选择的PUCCH为UE分配对应长度TTI的上行资源,其中,上行资源包括上行超低时延资源和上行非超低时延资源。
本发明实施例提供的资源分配装置用于执行图6所示实施例提供的资源分配方法中基站执行的操作,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
图9为本发明实施例提供的又一种资源分配装置的结构示意图。本实施例提供的资源分配装置适用于UE获取上行资源的情况,该资源分配装置通过硬件和软件结合的方式来实现,该装置可以集成在UE的处理器中,供处理器调用使用。如图9所示,本实施例的资源分配装置包括:发送模块21和接收模块22。
其中,发送模块21,设置为:向基站发送上行调度请求(SR)消息,其 中,该SR消息中包括超低时延业务指示信息,该SR消息用于指示基站根据超低时延业务指示信息为UE分配上行超低时延资源。
本实施例中的UE同样需要在SR周期内发送SR消息,并且SR周期同样是UE和基站建立RRC连接的过程中,基站为UE配置的,即本实施例中的接收模块22,还设置为:在发送模块21向基站发送SR消息之前,接收基站发送的RRC连接建立消息,其中,该RRC连接建立消息中配置有用于UE发送SR消息的资源和资源对应的SR周期;相应地,本实施例中发送模块21通过以下方式向基站发送SR消息:根据RRC连接建立消息中配置的资源按照资源对应的SR周期发送SR消息,其中,资源对应的SR周期配置为长度小于1ms的SR短周期。本实施例中基站为UE配置的资源,同样可以为上述表2中所示的SR短周期,当UE从基站接收到配置的资源后,根据资源判断SR周期的时长,并在确定出的SR周期内发送SR消息的方式与上述实施例相同,故在此不再赘述。
需要说明的是,本实施例中基站根据UE发送的SR消息分配上行资源的方式与上述各实施例相同,可选地,基站在接收到包括超低时延业务指示信息的SR消息中后,根据该超低时延业务指示信息为UE分配上行超低时延资源,本实施例中的SR消息在UE请求超低时延业务时,携带有超低时延业务指示信息,该超低时延业务指示信息例如可以包括超低时延指示值,或者包括超低时延数据待传指示、超低时延级别和超低时延业务的缓存数据量级别中的一项或多项,基站可以根据超低时延业务指示信息的具体形式和内容为UE分配上行超低时延资源。
本实施例提供的方法在实际应用中,还存在另一种可能的情况,即本实施例中的基站接收到的SR消息中可能并不包括所述超低时延业务指示信息后,此时,基站可以根据该SR消息为UE分配上行非超低时延资源。
接收模块22,设置为:接收基站分配的上行超低时延资源。
本发明实施例提供的资源分配装置用于执行图4所示实施例提供的资源分配方法,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
可选地,图9所示实施例中的超低时延业务指示信息例如包括超低时延 数据待传指示,该超低时延数据待传指示用于指示UE当前是否有超低时延业务的数据等待传输;相应地,发送模块21发送的SR消息用于指示基站在超低时延数据待传指示为超低时延业务时,为UE分配上行超低时延资源。
可选地,在上述图9所示实施例的基础上,本实施例中的超低时延业务指示信息包括超低时延指示值,则本实施例中的SR消息用于指示基站在确定出该基站与UE所支持的TTI能力相同时,根据超低时延指示值分配对应长度TTI的上行超低时延资源;或者,本实施例中的SR消息用于指示基站在该基站与UE所支持的TTI能力不同时,根据基站与UE的TTI能力交集和超低时延指示值,优先分配超低时延指示值对应长度TTI的上行超低时延资源。本实施例以上述图2所示实施例中基站和UE支持的三种时长的TTI为例予以说明,即UE发送的SR消息中的超低时延指示值可以通过三个值来表示,如上述表3所示,并且基站根据超低时延指示值和基站与UE所支持的TTI能力分配上行超低时延资源的具体方式与图2所示实施例类似,故在此不再赘述。
需要说明的是,本实施例中的超低时延指示值同样可以为超低时延级别或者超低时延业务的缓存数据量级别;其中,超低时延级别用于指示UE的超低时延业务对端到端时延的需求等级或UE的超低时延业务对调度时延的需求等级,超低时延业务的缓存数据量级别指示UE的缓存区内待传输的超低时延业务数据的总量或者UE的缓存区内待传输的最高优先级超低时延业务的数据量。
在上述实施例的基础上,本实施例中的超低时延业务指示信息还可以包括超低时延数据待传指示,则本实施例中的SR消息用于指示基站在超低时延数据待传指示为超低时延业务时,根据超低时延指示值分配对应长度TTI的上行超低时延资源;或者,本实施例中的SR消息用于指示基站在超低时延数据待传指示为非超低时延业务时,分配上行非超低时延资源。
需要说明的是,本实施例中SR消息可以包括上述超低时延数据待传指示、超低时延级别或者超低时延业务的缓存数据量级别的一项或多项,并且上述各项内容的格式,以及基站根据超低时延业务指示信息的不同内容分配上行超低时延资源的具体方式,上述实施例中已经具体说明,故在此不再赘 述。
可选地,图10为本发明实施例提供的再一种资源分配装置的结构示意图,在本发明上述各实施例的基础上,接收模块22接收到的RRC连接建立消息中还可以配置有多载波业务,或单载波业务,或单载波业务和PUCCH格式指示;相应地,本实施例提供的资源分配装置还包括:选择模块23,设置为:在接收模块22接收基站发送的RRC连接建立消息之后,且发送模块21向基站发送SR消息之前,根据基站和UE所支持的TTI能力,以及RRC连接建立消息中所配置的内容选择对应的扩展PUCCH格式来承载SR消息,其中,所选择的扩展PUCCH格式中包括不小于2比特的SR消息指示值。需要说明的是,本实施例中扩展PUCCH格式的具体方式,以及UE根据RRC连接建立消息中配置的多载波业务,或单载波业务,或单载波业务和指示信息选择扩展PUCCH格式的方式与上述实施例相同,故在此不再赘述。
可选地,在本发明上述各实施例的基础上,接收模块22接收到的RRC连接建立消息中,还可以配置有多种PUCCH,相应地,本实施例中的发送模块21通过以下方式向基站发送SR消息:根据SR消息所指示的资源类型选择对应的PUCCH发送SR消息,其中,第一PUCCH用于发送指示为上行超低时延资源的SR消息,第二PUCCH用于发送指示为上行非超低时延资源的SR消息;本实施例中的上行非超低时延资源同样为TTI时长等于1ms的上行资源。
在本发明实施例的又一种可能的实现方式中,可以采用上述图10所示资源分配装置执行,可选地,接收模块22,设置为:接收基站发送的RRC连接建立消息,其中,RRC连接建立消息中配置有物理上行链路控制信道(PUCCH)与时延需求指示值的对应关系。
选择模块23,设置为:根据确定的时延需求指示值选择对应的PUCCH。
发送模块21,设置为:通过选择模块23所选择的PUCCH向基站发送SR消息,其中,该SR消息用于指示基站根据选择的PUCCH为UE分配对应长度TTI的上行资源,上行资源包括上行超低时延资源和上行非超低时延资源。
本发明实施例提供的资源分配装置用于执行图6所示实施例提供的资源 分配方法中UE执行的操作,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现基站侧的资源分配方法。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现用户设备侧的资源分配方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软件的结合。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本发明实施例提供一种资源分配方法和装置,在基站分配上行超低时延资源的过程中,减少了基站和UE交互的次数,相应地提高了基站分配上行超低时延资源的效率,解决了处于RRC连接态的UE在请求数据传输时,常规的SR消息无法指示超低时延业务需求信息的问题。

Claims (36)

  1. 一种资源分配方法,包括:
    基站接收用户设备UE发送的上行调度请求SR消息,所述SR消息中包括超低时延业务指示信息;
    所述基站根据所述SR消息中的超低时延业务指示信息为所述UE分配上行超低时延资源。
  2. 根据权利要求1所述的资源分配方法,其中,
    所述超低时延业务指示信息包括超低时延数据待传指示,所述超低时延数据待传指示用于指示所述UE当前是否有超低时延业务的数据等待传输;
    所述基站根据所述超低时延业务指示信息为所述UE分配上行超低时延资源,包括:
    当所述超低时延数据待传指示为超低时延业务时,所述基站为所述UE分配上行超低时延资源。
  3. 根据权利要求1所述的资源分配方法,其中,
    所述超低时延业务指示信息包括超低时延指示值;
    所述基站根据所述超低时延业务指示信息为所述UE分配上行超低时延资源,包括:
    所述基站判断所述基站与所述UE所支持的传输时间间隔TTI能力是否相同;
    当所述基站判断出所述基站与所述UE所支持的TTI能力相同时,根据所述超低时延指示值分配对应长度TTI的上行超低时延资源;
    当所述基站判断出所述基站与所述UE所支持的TTI能力不同时,根据所述基站与所述UE的TTI能力交集和所述超低时延指示值,优先分配所述超低时延指示值对应长度TTI的上行超低时延资源。
  4. 根据权利要求3所述的资源分配方法,其中,
    所述超低时延业务指示信息还包括超低时延数据待传指示;
    所述基站根据所述超低时延业务指示信息为所述UE分配上行超低时延资源,包括:
    当所述超低时延数据待传指示为超低时延业务时,所述基站根据所述超低时延指示值分配对应长度TTI的上行超低时延资源。
  5. 根据权利要求3或4所述的资源分配方法,其中,所述超低时延指示值包括超低时延级别和/或超低时延业务的缓存数据量级别;所述超低时延级别用于指示所述UE的超低时延业务对端到端时延的需求等级或所述UE的超低时延业务对调度时延的需求等级,所述超低时延业务的缓存数据量级别指示所述UE的缓存区内待传输的超低时延业务数据的总量或者所述UE的缓存区内待传输的最高优先级超低时延业务的数据量。
  6. 根据权利要求1~4中任一项所述的资源分配方法,所述基站接收用户设备UE发送的上行调度请求SR消息之前,所述方法还包括:
    所述基站向所述UE发送无线资源控制RRC连接建立消息,其中,所述RRC连接建立消息中配置有用于所述UE发送所述SR消息的资源和所述资源对应的SR周期,所述RRC连接建立消息用于指示所述UE根据所配置的资源按照所述资源对应的SR周期发送所述SR消息,所述资源对应的SR周期配置为长度小于1ms的SR短周期。
  7. 根据权利要求6所述的资源分配方法,其中,
    所述RRC连接建立消息中还配置有多载波业务,或单载波业务,或所述单载波业务和物理上行链路控制信道PUCCH格式指示;
    所述SR消息为所述UE根据所述基站和所述UE所支持的TTI能力,以及所述RRC连接建立消息中所配置的内容选择的对应扩展PUCCH格式所承载的,其中,所选择的扩展PUCCH格式中包括不小于2比特的SR消息指示值。
  8. 根据权利要求1~4中任一项所述的资源分配方法,所述基站接收用户设备UE发送的上行调度请求SR消息之前,所述方法还包括:
    所述基站向所述UE发送无线资源控制RRC连接建立消息,其中,所述RRC连接建立消息中配置有多种物理上行链路控制信道PUCCH,所述RRC 连接建立消息用于指示所述UE根据所述SR消息所指示的资源类型选择对应的PUCCH发送所述SR消息,其中,第一PUCCH用于发送指示为上行超低时延资源的SR消息,第二PUCCH用于发送指示为上行非超低时延资源的SR消息。
  9. 一种资源分配方法,包括:
    用户设备UE向基站发送上行调度请求SR消息,所述SR消息中包括超低时延业务指示信息,所述SR消息用于指示所述基站根据所述SR消息中的超低时延业务指示信息为所述UE分配上行超低时延资源;
    所述UE接收所述基站分配的上行超低时延资源。
  10. 根据权利要求9所述的资源分配方法,其中,
    所述超低时延业务指示信息包括超低时延数据待传指示,所述超低时延数据待传指示用于指示所述UE当前是否有超低时延业务的数据等待传输;
    所述SR消息用于指示所述基站在所述超低时延数据待传指示为超低时延业务时,为所述UE分配上行超低时延资源。
  11. 根据权利要求9所述的资源分配方法,其中,
    所述超低时延业务指示信息包括超低时延指示值;
    所述SR消息用于指示所述基站在确定出所述基站与所述UE所支持的传输时间间隔TTI能力相同时,根据所述超低时延指示值分配对应长度TTI的上行超低时延资源;或者,
    所述SR消息用于指示所述基站在确定出所述基站与所述UE所支持的TTI能力不同时,根据所述基站与所述UE的TTI能力交集和所述超低时延指示值,优先分配所述超低时延指示值对应长度TTI的上行超低时延资源。
  12. 根据权利要求11所述的资源分配方法,其中,
    所述超低时延业务指示信息还包括超低时延数据待传指示;
    所述SR消息用于指示所述基站在所述超低时延数据待传指示为超低时延业务时,根据所述超低时延指示值分配对应长度TTI的上行超低时延资源。
  13. 根据权利要求11或12所述的资源分配方法,其中,所述超低时延 指示值包括超低时延级别和/或超低时延业务的缓存数据量级别;所述超低时延级别用于指示所述UE的超低时延业务对端到端时延的需求等级或所述UE的超低时延业务对调度时延的需求等级,所述超低时延业务的缓存数据量级别指示所述UE的缓存区内待传输的超低时延业务数据的总量或者所述UE的缓存区内待传输的最高优先级超低时延业务的数据量。
  14. 根据权利要求9~12中任一项所述的资源分配方法,所述用户设备UE向基站发送上行调度请求SR消息之前,所述方法还包括:
    所述UE接收所述基站发送的无线资源控制RRC连接建立消息,所述RRC连接建立消息中配置有用于所述UE发送所述SR消息的资源和所述资源对应的SR周期;
    其中,所述用户设备UE向基站发送上行调度请求SR消息,包括:
    所述UE根据所述RRC连接建立消息中配置的资源按照所述资源对应的SR周期发送所述SR消息,其中,所述资源对应的SR周期配置为长度小于1ms的SR短周期。
  15. 根据权利要求14所述的资源分配方法,其中,所述RRC连接建立消息中还配置有多载波业务,或单载波业务,或所述单载波业务和物理上行链路控制信道PUCCH格式指示;
    所述UE接收所述基站发送的所述RRC之后,且向所述基站发送所述SR消息之前,所述方法还包括:
    所述UE根据所述基站和所述UE所支持的TTI能力,以及所述RRC连接建立消息中所配置的内容选择对应的扩展PUCCH格式来承载所述SR消息,其中,所选择的扩展PUCCH格式中包括不小于2比特的SR消息指示值。
  16. 根据权利要求9~12中任一项所述的资源分配方法,所述用户设备UE向基站发送上行调度请求SR消息之前,所述方法还包括:
    所述UE接收所述基站发送的无线资源控制RRC连接建立消息,所述RRC连接建立消息中配置有多种物理上行链路控制信道PUCCH;
    其中,所述用户设备UE向基站发送上行调度请求SR消息,包括:
    所述UE根据所述SR消息所指示的资源类型选择对应的PUCCH发送所 述SR消息,其中,第一PUCCH用于发送指示为上行超低时延资源的SR消息,第二PUCCH用于发送指示为上行非超低时延资源的SR消息。
  17. 一种资源分配方法,包括:
    基站向用户设备UE发送无线资源控制RRC连接建立消息,所述RRC连接建立消息中配置有物理上行链路控制信道PUCCH与时延需求指示值的对应关系,所述RRC连接建立消息用于指示所述UE根据确定的时延需求指示值选择对应的PUCCH;
    所述基站接收所述UE通过所选择的PUCCH发送的上行调度请求SR消息;
    所述基站根据所述选择的PUCCH为所述UE分配对应长度传输时间间隔TTI的上行资源,其中,所述上行资源包括所述上行超低时延资源和上行非超低时延资源。
  18. 一种资源分配方法,包括:
    用户设备UE接收基站发送的无线资源控制RRC连接建立消息,所述RRC连接建立消息中配置有物理上行链路控制信道PUCCH与时延需求指示值的对应关系;
    所述UE根据确定的时延需求指示值选择对应的PUCCH;
    所述UE通过所选择的PUCCH向所述基站发送上行调度请求SR消息,所述SR消息用于指示所述基站根据所述选择的PUCCH为所述UE分配对应长度传输时间间隔TTI的上行资源,其中,所述上行资源包括所述上行超低时延资源和上行非超低时延资源。
  19. 一种资源分配装置,设置于基站中,所述资源分配装置包括:
    接收模块,设置为:接收用户设备UE发送的上行调度请求SR消息,其中,所述SR消息中包括超低时延业务指示信息;
    分配模块,设置为:根据所述接收模块接收的SR消息中的超低时延业务指示信息为所述UE分配上行超低时延资源。
  20. 根据权利要求19所述的资源分配装置,其中,
    所述超低时延业务指示信息包括超低时延数据待传指示,所述超低时延数据待传指示用于指示所述UE当前是否有超低时延业务的数据等待传输;
    所述分配模块通过以下方式根据所述超低时延业务指示信息为所述UE分配上行超低时延资源:
    所述分配模块在所述超低时延数据待传指示为超低时延业务时,为所述UE分配上行超低时延资源。
  21. 根据权利要求19所述的资源分配装置,其中,
    所述超低时延业务指示信息包括超低时延指示值;
    所述分配模块包括:
    判断单元,设置为:判断所述基站与所述UE所支持的传输时间间隔TTI能力是否相同;
    分配单元,设置为:在所述判断单元判断出所述基站与所述UE所支持的TTI能力相同时,根据所述超低时延指示值分配对应长度TTI的上行超低时延资源;
    分配单元,还设置为:在所述判断单元判断出所述基站与所述UE所支持的TTI能力不同时,根据所述基站与所述UE的TTI能力交集和所述超低时延指示值,优先分配所述超低时延指示值对应长度TTI的上行超低时延资源。
  22. 根据权利要求21所述的资源分配装置,其中,
    所述超低时延业务指示信息还包括超低时延数据待传指示;
    所述分配模块通过以下方式根据所述超低时延业务指示信息为所述UE分配上行超低时延资源:
    所述分配模块在所述超低时延数据待传指示为超低时延业务时,根据所述超低时延指示值分配对应长度TTI的上行超低时延资源。
  23. 根据权利要求21或22所述的资源分配装置,其中,所述超低时延指示值包括超低时延级别和/或超低时延业务的缓存数据量级别;所述超低时延级别用于指示所述UE的超低时延业务对端到端时延的需求等级或所述UE 的超低时延业务对调度时延的需求等级,所述超低时延业务的缓存数据量级别指示所述UE的缓存区内待传输的超低时延业务数据的总量或者所述UE的缓存区内待传输的最高优先级超低时延业务的数据量。
  24. 根据权利要求19~22中任一项所述的资源分配装置,所述资源分配装置还包括:发送模块,设置为:在所述接收模块接收所述UE发送的所述SR消息之前,向所述UE发送无线资源控制RRC连接建立消息,其中,所述RRC连接建立消息中配置有用于所述UE发送所述SR消息的资源和所述资源对应的SR周期,所述RRC连接建立消息用于指示所述UE根据所配置的资源按照所述资源对应的SR周期发送所述SR消息,所述资源对应的SR周期配置为长度小于1ms的SR短周期。
  25. 根据权利要求24所述的资源分配装置,其中,
    所述RRC连接建立消息中还配置有多载波业务,或单载波业务,或所述单载波业务和物理上行链路控制信道PUCCH格式指示;
    所述SR消息为所述UE根据所述基站和所述UE所支持的TTI能力,以及所述RRC连接建立消息中所配置的内容选择的对应扩展PUCCH格式所承载的,其中,所选择的扩展PUCCH格式中包括不小于2比特的SR消息指示值。
  26. 根据权利要求19~22中任一项所述的资源分配装置,所述资源分配装置还包括:发送模块,设置为:在所述接收模块接收所述UE发送的所述SR消息之前,向所述UE发送无线资源控制RRC连接建立消息,其中,所述RRC连接建立消息中配置有多种物理上行链路控制信道PUCCH,所述RRC连接建立消息用于指示所述UE根据所述SR消息所指示的资源类型选择对应的PUCCH发送所述SR消息,其中,第一PUCCH用于发送指示为上行超低时延资源的SR消息,第二PUCCH用于发送指示为上行非超低时延资源的SR消息。
  27. 一种资源分配装置,设置于用户设备UE中,所述资源分配装置包括:
    发送模块,设置为:向基站发送上行调度请求SR消息,其中,所述SR 消息中包括超低时延业务指示信息,所述SR消息用于指示所述基站根据所述SR消息中的超低时延业务指示信息为所述UE分配上行超低时延资源;
    接收模块,设置为:接收所述基站分配的上行超低时延资源。
  28. 根据权利要求27所述的资源分配装置,其中,
    所述超低时延业务指示信息包括超低时延数据待传指示,所述超低时延数据待传指示用于指示所述UE当前是否有超低时延业务的数据等待传输;
    所述SR消息用于指示所述基站在所述超低时延数据待传指示为超低时延业务时,为所述UE分配上行超低时延资源。
  29. 根据权利要求27所述的资源分配装置,其中,
    所述超低时延业务指示信息包括超低时延指示值;
    所述SR消息用于指示所述基站在确定出所述基站与所述UE所支持的传输时间间隔TTI能力相同时,根据所述超低时延指示值分配对应长度TTI的上行超低时延资源;或者,
    所述SR消息用于指示所述基站在确定出所述基站与所述UE所支持的TTI能力不同时,根据所述基站与所述UE的TTI能力交集和所述超低时延指示值,优先分配所述超低时延指示值对应长度TTI的上行超低时延资源。
  30. 根据权利要求29所述的资源分配装置,其中,
    所述超低时延业务指示信息还包括超低时延数据待传指示;
    所述SR消息用于指示所述基站在所述超低时延数据待传指示为超低时延业务时,根据所述超低时延指示值分配对应长度TTI的上行超低时延资源。
  31. 根据权利要求29或30所述的资源分配装置,其中,
    所述超低时延指示值包括超低时延级别和/或超低时延业务的缓存数据量级别;所述超低时延级别用于指示所述UE的超低时延业务对端到端时延的需求等级或所述UE的超低时延业务对调度时延的需求等级,所述超低时延业务的缓存数据量级别指示所述UE的缓存区内待传输的超低时延业务数据的总量或者所述UE的缓存区内待传输的最高优先级超低时延业务的数据量。
  32. 根据权利要求27~30中任一项所述的资源分配装置,其中,
    所述接收模块,还设置为:在所述发送模块向所述基站发送所述SR消息之前,接收所述基站发送的无线资源控制RRC连接建立消息,其中,所述RRC连接建立消息中配置有用于所述UE发送所述SR消息的资源和所述资源对应的SR周期;
    所述发送模块通过以下方式向所述基站发送所述SR消息:根据所述RRC连接建立消息中配置的资源按照所述资源对应的SR周期发送所述SR消息,其中,所述资源对应的SR周期配置为长度小于1ms的SR短周期。
  33. 根据权利要求32所述的资源分配装置,其中,所述RRC连接建立消息中还配置有多载波业务,或单载波业务,或所述单载波业务和物理上行链路控制信道PUCCH格式指示;
    所述资源分配装置还包括:选择模块,设置为:在所述接收模块接收所述基站发送的所述RRC之后,且所述发送模块向所述基站发送所述SR消息之前,根据所述基站和所述UE所支持的TTI能力,以及所述RRC连接建立消息中所配置的内容选择对应的扩展PUCCH格式来承载所述SR消息,其中,所选择的扩展PUCCH格式中包括不小于2比特的SR消息指示值。
  34. 根据权利要求27~30中任一项所述的资源分配装置,其中,
    所述接收模块,还设置为:在所述发送模块向所述基站发送所述SR消息之前,接收所述基站发送的无线资源控制RRC连接建立消息,其中,所述RRC连接建立消息中配置有多种物理上行链路控制信道PUCCH;
    所述发送模块通过以下方式向所述基站发送所述SR消息:根据所述SR消息所指示的资源类型选择对应的PUCCH发送所述SR消息,其中,第一PUCCH用于发送指示为上行超低时延资源的SR消息,第二PUCCH用于发送指示为上行非超低时延资源的SR消息。
  35. 一种资源分配装置,设置于基站中,所述资源分配装置包括:
    发送模块,设置为:向用户设备UE发送无线资源控制RRC连接建立消息,其中,所述RRC连接建立消息中配置有物理上行链路控制信道PUCCH与时延需求指示值的对应关系,所述RRC连接建立消息用于指示所述UE根 据确定的时延需求指示值选择对应的PUCCH;
    接收模块,设置为:接收所述UE通过所选择的PUCCH发送的上行调度请求SR消息;
    分配模块,设置为:根据所述选择的PUCCH为所述UE分配对应长度TTI的上行资源,其中,所述上行资源包括所述上行超低时延资源和上行非超低时延资源。
  36. 一种资源分配装置,设置于用户设备UE中,所述资源分配装置包括:
    接收模块,设置为:接收基站发送的无线资源控制RRC连接建立消息,其中,所述RRC连接建立消息中配置有物理上行链路控制信道PUCCH与时延需求指示值的对应关系;
    选择模块,设置为:根据确定的时延需求指示值选择对应的PUCCH;
    发送模块,设置为:通过所述选择模块所选择的PUCCH向所述基站发送上行调度请求SR消息,其中,所述SR消息用于指示所述基站根据所述选择的PUCCH为所述UE分配对应长度传输时间间隔TTI的上行资源,所述上行资源包括所述上行超低时延资源和上行非超低时延资源。
PCT/CN2016/077020 2015-09-18 2016-03-22 一种资源分配方法和装置 WO2016177162A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510601276.XA CN106550457B (zh) 2015-09-18 2015-09-18 一种资源分配方法和装置
CN201510601276.X 2015-09-18

Publications (1)

Publication Number Publication Date
WO2016177162A1 true WO2016177162A1 (zh) 2016-11-10

Family

ID=57217445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077020 WO2016177162A1 (zh) 2015-09-18 2016-03-22 一种资源分配方法和装置

Country Status (2)

Country Link
CN (1) CN106550457B (zh)
WO (1) WO2016177162A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126872A1 (zh) * 2017-01-05 2018-07-12 华为技术有限公司 请求资源的方法和装置
CN108347787A (zh) * 2017-01-25 2018-07-31 电信科学技术研究院 一种调度请求sr传输方法及相关设备
CN109644344A (zh) * 2017-02-08 2019-04-16 Oppo广东移动通信有限公司 业务的传输方法、终端和网络设备
CN109788571A (zh) * 2017-11-14 2019-05-21 大唐移动通信设备有限公司 一种数据处理方法和装置
WO2021031014A1 (zh) * 2019-08-16 2021-02-25 Oppo广东移动通信有限公司 用于传输数据的方法、终端设备和网络设备
CN112825591A (zh) * 2019-11-20 2021-05-21 中国电信股份有限公司 时域资源调度方法、终端、基站、通信网络以及存储介质
CN113490284A (zh) * 2021-07-15 2021-10-08 北京小米移动软件有限公司 调度请求方法及装置、电子设备、存储介质
RU2776779C2 (ru) * 2018-03-23 2022-07-26 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ осуществления радиосвязи, пользовательское оборудование и сетевое устройство
EP4080980A1 (en) * 2017-01-05 2022-10-26 Motorola Mobility LLC Scheduling request indication
US11895642B2 (en) 2018-03-23 2024-02-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method for sidelink resource scheduling, user equipment, and network device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195707A1 (zh) * 2017-04-24 2018-11-01 北京小米移动软件有限公司 下行harq反馈方法及装置、终端和基站
CN109156025B (zh) * 2017-04-27 2022-02-15 北京小米移动软件有限公司 上行资源获取方法、装置及计算机可读存储介质
CN108811142B (zh) * 2017-05-04 2021-02-12 华为技术有限公司 资源分配方法、相关装置及系统
CN111030797B (zh) 2017-05-04 2021-03-02 Oppo广东移动通信有限公司 调度请求传输控制方法及相关产品
CN108811152B (zh) * 2017-05-05 2024-01-02 华为技术有限公司 资源申请方法及设备
CN109152033B (zh) * 2017-06-16 2021-07-09 华为技术有限公司 发送信息以及确定信息的方法和装置
CN109391412B (zh) * 2017-08-10 2022-02-25 西安华为技术有限公司 一种上行控制信息传输方法及装置
WO2019047169A1 (zh) * 2017-09-08 2019-03-14 富士通株式会社 数据传输方法及其装置、通信系统
US11109353B2 (en) 2017-09-15 2021-08-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, terminal device, and network device
CN110035541B (zh) * 2018-01-11 2021-05-28 展讯通信(上海)有限公司 调度请求的发送和处理方法及装置、存储介质、终端、基站
CN110312285B (zh) 2018-03-27 2023-02-07 华为技术有限公司 一种通信方法及相关设备
CN110557839A (zh) * 2018-05-30 2019-12-10 中国移动通信有限公司研究院 调度请求的处理方法、配置方法、终端及网络侧设备
CN109041132B (zh) * 2018-09-26 2021-09-14 电子科技大学 基于空口切片的超低时延上行业务流资源预留和分配方法
CN114828080A (zh) 2018-12-20 2022-07-29 华为技术有限公司 通信方法、装置、终端、网络设备及存储介质
CN113747553B (zh) * 2021-07-30 2022-09-09 荣耀终端有限公司 一种上行传输资源调度方法、基站、用户设备及通信系统
CN115884269A (zh) * 2021-09-27 2023-03-31 中兴通讯股份有限公司 资源单元的分配方法、装置、存储介质及电子装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022866A1 (en) * 2007-08-14 2009-02-19 Lg Electronics Inc. Method of transmitting scheduling request signal
US20120039278A1 (en) * 2010-08-12 2012-02-16 Lg Electronics Inc. Apparatus and method of transmitting scheduling request in wireless communication system
WO2013154475A1 (en) * 2012-04-12 2013-10-17 Telefonaktiebolaget L M Ericsson (Publ) A user equipment, a radio base station and respective method therein for managing uplink resources within a coverage area of the radio base station

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9667392B2 (en) * 2011-06-14 2017-05-30 Nokia Solutions And Networks Oy Apparatus and method for allocating the reference symbols in order to reduce the latency of the LTE system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022866A1 (en) * 2007-08-14 2009-02-19 Lg Electronics Inc. Method of transmitting scheduling request signal
US20120039278A1 (en) * 2010-08-12 2012-02-16 Lg Electronics Inc. Apparatus and method of transmitting scheduling request in wireless communication system
WO2013154475A1 (en) * 2012-04-12 2013-10-17 Telefonaktiebolaget L M Ericsson (Publ) A user equipment, a radio base station and respective method therein for managing uplink resources within a coverage area of the radio base station
US20150078231A1 (en) * 2012-04-12 2015-03-19 Telefonaktiebolaget L M Ericsson (Publ) User equipment, a radio base station and respective method therein for managing uplink resources within a coverage area of the radio base station

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282286A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 请求资源的方法和装置
WO2018126872A1 (zh) * 2017-01-05 2018-07-12 华为技术有限公司 请求资源的方法和装置
EP4080980A1 (en) * 2017-01-05 2022-10-26 Motorola Mobility LLC Scheduling request indication
CN108347787A (zh) * 2017-01-25 2018-07-31 电信科学技术研究院 一种调度请求sr传输方法及相关设备
CN108347787B (zh) * 2017-01-25 2019-07-05 电信科学技术研究院 一种调度请求sr传输方法及相关设备
US11229039B2 (en) 2017-01-25 2022-01-18 Datang Mobile Communications Equipment Co., Ltd. Scheduling request transmission method and related device
CN109644344A (zh) * 2017-02-08 2019-04-16 Oppo广东移动通信有限公司 业务的传输方法、终端和网络设备
CN109788571A (zh) * 2017-11-14 2019-05-21 大唐移动通信设备有限公司 一种数据处理方法和装置
CN109788571B (zh) * 2017-11-14 2021-04-23 大唐移动通信设备有限公司 一种数据处理方法和装置
RU2776779C2 (ru) * 2018-03-23 2022-07-26 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ осуществления радиосвязи, пользовательское оборудование и сетевое устройство
US11895642B2 (en) 2018-03-23 2024-02-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method for sidelink resource scheduling, user equipment, and network device
WO2021031014A1 (zh) * 2019-08-16 2021-02-25 Oppo广东移动通信有限公司 用于传输数据的方法、终端设备和网络设备
CN112825591B (zh) * 2019-11-20 2023-04-07 中国电信股份有限公司 时域资源调度方法、终端、基站、通信网络以及存储介质
CN112825591A (zh) * 2019-11-20 2021-05-21 中国电信股份有限公司 时域资源调度方法、终端、基站、通信网络以及存储介质
CN113490284A (zh) * 2021-07-15 2021-10-08 北京小米移动软件有限公司 调度请求方法及装置、电子设备、存储介质

Also Published As

Publication number Publication date
CN106550457B (zh) 2019-06-07
CN106550457A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2016177162A1 (zh) 一种资源分配方法和装置
EP3549376B1 (en) Transmission with multiple numerologies in new radio system
KR102336206B1 (ko) 데이터 전송 방법, 단말기, 네트워크측 기기 및 컴퓨터 판독 가능 저장 매체
JP6096926B2 (ja) 無線電機通信ネットワークにおける無線機器間のd2d通信におけるharq送信を可能にして実行するための、ネットワークノード、無線機器、およびそれらにおける方法
WO2017118229A1 (zh) 一种资源调度方法、装置及系统
CN110225547B (zh) 一种调度请求发送、接收方法、终端及网络侧设备
KR101110186B1 (ko) 반-지속 스케줄링의 harq 프로세스를 핸들링하는 방법 및 장치
US8619617B2 (en) Data transmission method, system and device in multi-carrier system
US20140241302A1 (en) Selection between random access and dedicated scheduling request resources
WO2012122924A1 (zh) 一种上行数据的调度方法、系统及装置
WO2018133669A1 (zh) 一种资源调度方法以及无线接入网设备和终端设备
EP3949611B1 (en) Method and apparatus for handling overlapping pusch durations
WO2018228500A1 (zh) 一种调度信息传输方法及装置
EP3598818A1 (en) Data transmission method, terminal device, and network device
JP6948404B2 (ja) システムパラメータセット構成方法および装置、並びに記憶媒体
WO2018121522A1 (zh) 数据传输方法及用户设备、无线接入设备
WO2013155705A1 (en) Resource allocation in different tdd configurations with cross carrier scheduling
WO2016019580A1 (zh) 缓存状态报告上报方法和装置
WO2017193282A1 (zh) 上行信息传输方法、基站与用户设备
CN110463119B (zh) 用于增强调度信息指示的扩展调度请求(sr)
WO2013023550A1 (zh) 应答信息的发送、接收方法和设备
WO2016149864A1 (zh) 一种csi上报、接收方法及装置
US20210298040A1 (en) Method and device for determining and configuring scheduling request resource, and storage medium
WO2013166670A1 (zh) 上行信道资源配置方法和设备
WO2017070824A1 (zh) 缩短时延的上行数据传输方法、装置以及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789156

Country of ref document: EP

Kind code of ref document: A1