WO2023212893A1 - 无线通信的方法及装置 - Google Patents

无线通信的方法及装置 Download PDF

Info

Publication number
WO2023212893A1
WO2023212893A1 PCT/CN2022/091096 CN2022091096W WO2023212893A1 WO 2023212893 A1 WO2023212893 A1 WO 2023212893A1 CN 2022091096 W CN2022091096 W CN 2022091096W WO 2023212893 A1 WO2023212893 A1 WO 2023212893A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
terminal device
information
resources
network device
Prior art date
Application number
PCT/CN2022/091096
Other languages
English (en)
French (fr)
Inventor
吕玲
赵铮
杨中志
Original Assignee
上海移远通信技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海移远通信技术股份有限公司 filed Critical 上海移远通信技术股份有限公司
Priority to EP22940496.7A priority Critical patent/EP4322686A4/en
Priority to PCT/CN2022/091096 priority patent/WO2023212893A1/zh
Priority to CN202280002816.0A priority patent/CN115316025A/zh
Priority to US18/475,082 priority patent/US11937232B2/en
Publication of WO2023212893A1 publication Critical patent/WO2023212893A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/115Grant-free or autonomous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0836Random access procedures, e.g. with 4-step access with 2-step access

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a wireless communication method and device.
  • the communication system allows terminal equipment to perform small data transmission (SDT) in the radio resource control (RRC) inactive (INACTIVE) state.
  • SDT small data transmission
  • RRC radio resource control
  • IACTIVE active
  • this application provides a wireless communication method and device.
  • Various aspects involved in the embodiments of this application are introduced below.
  • a wireless communication method including: a terminal device receiving first information sent by a network device, the first information being used to indicate a first timer, and the first timer being used to indicate using a first timer.
  • the duration for which the transmission resource performs SDT wherein the duration of the first timer is less than the duration of the second timer, and the second timer is used to indicate the duration for which the terminal device performs SDT.
  • a wireless communication method including: a network device sending first information to a terminal device, the first information being used to indicate a first timer, and the first timer being used to indicate using a first transmission The duration for the resource to perform SDT, wherein the duration of the first timer is less than the duration of the second timer, and the second timer is used to indicate the duration for the terminal device to perform SDT.
  • a terminal device including: a receiving unit configured to receive first information sent by a network device, the first information being used to indicate a first timer, and the first timer being used to indicate using a first timer.
  • the duration of SDT for a transmission resource wherein the duration of the first timer is less than the duration of the second timer, and the second timer is used to indicate the duration of SDT for the terminal device.
  • a network device including: a sending unit, configured to send first information to a terminal device, where the first information is used to indicate a first timer, and the first timer is used to indicate the use of a first timer.
  • the duration for which the transmission resource performs SDT wherein the duration of the first timer is less than the duration of the second timer, and the second timer is used to indicate the duration for which the terminal device performs SDT.
  • a terminal device including a processor, a memory, and a communication interface.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory so that the terminal device The method described in the first aspect is performed.
  • a sixth aspect provides a network device, including a processor, a memory, and a communication interface.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory so that the network device Perform the method described in the second aspect.
  • a device including a processor for calling a program from a memory to execute the method described in the first aspect.
  • a device including a processor for calling a program from a memory to execute the method described in the second aspect.
  • a chip including a processor for calling a program from a memory, so that a device equipped with the chip executes the method described in the first aspect.
  • a chip including a processor for calling a program from a memory, so that a device installed with the chip executes the method described in the second aspect.
  • a computer-readable storage medium is provided, with a program stored thereon, the program causing the computer to execute the method described in the first aspect.
  • a computer-readable storage medium is provided, with a program stored thereon, and the program causes the computer to execute the method described in the second aspect.
  • a computer program product including a program that causes a computer to execute the method described in the first aspect.
  • a fourteenth aspect provides a computer program product, including a program that causes a computer to execute the method described in the second aspect.
  • a computer program is provided, the computer program causing a computer to execute the method described in the first aspect.
  • a computer program is provided, the computer program causing a computer to execute the method described in the second aspect.
  • the terminal device by limiting the time period for the terminal device to use dedicated resources (such as the first transmission resource), the terminal device only uses the first transmission resource for SDT part of the time, and can use shared resources at other times, for example.
  • Performing SDT can ensure data transmission of terminal equipment to a certain extent and avoid resource waste.
  • FIG. 1 is an example system architecture diagram of a communication system applicable to embodiments of the present application.
  • Figure 2 is a schematic flow chart of the terminal device switching from the RRC_CONNECTED state to the RRC_INACTIVE state.
  • Figure 3 is a schematic flow chart of SDT based on a two-step random access process.
  • Figure 4 is a schematic flow chart of SDT based on a four-step random access process.
  • Figure 5 is a schematic flow chart of a wireless communication method provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart of a wireless communication method provided by another embodiment of the present application.
  • Figure 7 is a schematic flow chart of SDT performed by a terminal device provided by an embodiment of the present application.
  • Figure 8 is a schematic flow chart of SDT performed by a terminal device provided by another embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 applied in the embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120 .
  • the network device 110 may provide communication coverage for a specific geographical area and may communicate with terminal devices 120 located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminals.
  • the wireless communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the terminal equipment in the embodiment of this application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT) ), remote station, remote terminal, mobile device, user terminal, terminal, wireless communications equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and may be used to connect people, things, and machines, such as handheld devices and vehicle-mounted devices with wireless connection functions.
  • the terminal device in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, a virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the UE may be used to act as a base station.
  • a UE may act as a scheduling entity that provides sidelink signals between UEs in V2X or D2D, etc.
  • cell phones and cars use sidelink signals to communicate with each other.
  • Cell phones and smart home devices communicate between each other without having to relay communication signals through base stations.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network, RAN node (or device) that connects the terminal device to the wireless network.
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and a device that undertakes base station functions in device-to-device D2D, vehicle-to-everything (V2X), machine-to-machine (M2M) communications, and in 6G networks.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • the communication device involved in this application may be a network device or a terminal device.
  • the first communication device is a network device
  • the second communication device is a terminal device.
  • the first communication device is a terminal device
  • the second communication device is a network device.
  • the first communication device and the second communication device are both network devices, or both are terminal devices.
  • RRC radio resource control
  • the RRC_CONNECTED state can refer to the state that the terminal device is in after completing the random access process and before RRC release is performed. There is an RRC connection between terminal equipment and network equipment (such as access network equipment).
  • the terminal device can transmit data with the network device, such as downlink data transmission and/or uplink data transmission.
  • the terminal device may also transmit terminal device-specific data channels and/or control channels with the network device to transmit specific information or unicast information of the terminal device.
  • the RRC_IDLE state refers to the state of the terminal device when it is camped in the cell but does not perform random access.
  • the terminal device usually enters the RRC_IDLE state after powering on or after RRC is released.
  • the RRC_IDLE state there is no RRC connection between the terminal device and the network device (such as the resident network device), the network device does not store the context of the terminal device, and no connection for the terminal device is established between the network device and the core network. If the terminal device needs to enter the RRC_CONNECTED state from the RRC_IDLE state, it needs to initiate the RRC connection establishment process.
  • the RRC_INACTIVE state is a newly introduced state from the perspective of energy saving in order to reduce air interface signaling, quickly restore wireless connections and quickly restore data services.
  • the RRC_INACTIVE state is a state between the connected state and the idle state.
  • the terminal device has entered the RRC_CONNECTED state before and then released the RRC connection, radio bearer and radio resources with the network device, but the network device saves the context of the terminal device to quickly restore the RRC connection.
  • the connection established between the network equipment and the core network for the terminal equipment has not been released, that is to say, the user plane bearer and control plane bearer between the RAN and the CN are still maintained, that is, there is a CN-NR connection.
  • the terminal device can switch between the above three RRC states. For example, the terminal device can enter the RRC_INACTIVE state from the RRC_CONNECTED state to suspend its session when there is no data transmission for a period of time, and can enter the RRC_CONNECTED state from the RRC_INACTIVE state when there is a need for session transmission. In addition, the terminal device can also enter the RRC_IDLE state from the RRC_INACTIVE state or the RRC_CONNECTED state.
  • step S210 the gNB-CU determines that the terminal device enters the RRC_INACTIVE state.
  • gNB-CU may send an F1AP UE context release command to gNB-DU.
  • step S230 gNB-DU sends an RRC connection release message to the UE.
  • the UE can release the RRC connection with the gNB and enter the RRC_INACTIVE state.
  • step S240 gNB-DU sends an F1AP UE context release completion response to gNB-CU.
  • the terminal device can remain in the RRC_INACTIVE state to save power.
  • terminal devices in the RRC_INACTIVE state did not support data transmission, that is, they did not support the transmission of mobile origin (MO) data and mobile terminated (MT) data.
  • MO data means that the sending end of the data is the terminal device, and the message transmission direction is from the terminal device to the network device.
  • MO data can also be called uplink data.
  • MT data means that the sending end of the data is the network device, and the message transmission direction is from the network device to the terminal device.
  • MT data can also be called downlink data.
  • the terminal device When MO data or MT data arrives, the terminal device needs to restore the RRC connection and enter the RRC_CONNECTED state. In the RRC_CONNECTED state, the terminal device can transmit MO data or MT data. After the MO data or MT data transmission is completed, the terminal device releases the RRC connection and returns to the RRC_INACTIVE state.
  • the terminal device needs to switch from the RRC_INACTIVE state to the RRC_CONNECTED state, and then switch from the RRC_CONNECTED state to the RRC_INACTIVE state. Switching between different RRC states will cause the power consumption of the terminal device to increase. However, in some scenarios, the terminal device in the RRC_INACTIVE state needs to transmit some data with a small amount of data and low transmission frequency (which can be called small packet data). If the terminal device switches to the RRC_CONNECTED state and then transmits data, the signaling overhead required when the terminal device switches the RRC state will even be greater than the overhead required to transmit the data, resulting in unnecessary power consumption and signaling overhead.
  • the small data packets in the embodiment of the present application may be, for example, instant messaging messages, heartbeat packets, periodic data, etc.
  • the embodiment of this application does not specifically limit the source of the small data packet.
  • the small data packet may be data from the terminal device application (APP).
  • APP terminal device application
  • small data packets can be data from communication service APPs (such as WhatsApp, QQ, WeChat, etc.), heartbeat data packets from IM, email clients or other APPs, push notifications from various applications, etc.
  • small packets can come from data from non-end device applications.
  • small data packets can come from data from wearable devices (such as regular positioning information, etc.), sensor data (such as temperature information and pressure information sent by industrial wireless sensors regularly or in an event-triggered manner), smart meters and smart meter network transmission protocols.
  • wearable devices such as regular positioning information, etc.
  • sensor data such as temperature information and pressure information sent by industrial wireless sensors regularly or in an event-triggered manner
  • smart meters and smart meter network transmission protocols.
  • the SDT scheme in RRC_INACTIVE state is discussed in Rel-17.
  • the terminal device does not need to switch from the RRC_INACTIVE state to the RRC_CONNECTED state for small data transmission, but can perform small data transmission in the RRC_INACTIVE state.
  • the small data transmission in this embodiment of the present application may include uplink small data transmission and downlink small data transmission. The following will mainly describe uplink small data transmission.
  • the terminal device can perform SDT based on the resources configured by the network device.
  • the random access method can be a two-step random access process, or it can also be a four-step random access process.
  • the terminal device can perform SDT in message 1 (MSG1).
  • MSG1 of the two-step random access process can be used to carry data.
  • MSG3 of the four-step random access process can be used to carry data.
  • the resources used by the terminal device to perform SDT may be called RA-SDT resources.
  • Figure 3 shows a schematic flow chart of SDT in a two-step random access process.
  • the terminal device sends MSG1 to the network device.
  • the terminal device can send MSG1 on the random access channel (RACH) resource configured by the network device.
  • RACH random access channel
  • MSG1 can carry data to be transmitted (also called uplink data or MO data).
  • MO data uplink data
  • the resources used to transmit MSG1 can also be called RA-SDT resources.
  • the RA-SDT resource may be a RACH resource.
  • step S320 the network device sends MSG2 to the terminal device.
  • the MSG2 may include a response to the data to be transmitted.
  • Figure 4 shows a schematic flow chart of SDT in a four-step random access process.
  • step S410 the terminal device sends MSG1 to the network device.
  • MSG1 carries the random access preamble.
  • step S420 the network device sends MSG2 to the terminal device.
  • This MSG2 can also be called a random access response (RAR).
  • MSG2 may also include an uplink grant (UL grant), which is used to schedule the uplink resource indication of MSG3.
  • UL grant uplink grant
  • the terminal device may send MSG3 to the network device on the uplink authorization scheduled by the network device.
  • MSG3 carries the data to be transmitted. If MSG3 is used for SDT, the resources for transmitting MSG3 (that is, the uplink grant scheduled by the network device) can also be called RA-SDT resources.
  • step S440 the network device sends MSG4 to the terminal device.
  • the MSG4 may include a response to the data to be transmitted.
  • Configuration authorization can also be called upstream authorization-free.
  • Configuration authorization can mean that the network device activates an uplink authorization to the terminal device.
  • the terminal device can always use the resources specified by the activated uplink authorization (i.e., CG resources) for uplink transmission.
  • the terminal device can use CG resources to perform SDT.
  • CG resources used for SDT can also be called CG-SDT resources.
  • the network device may indicate the CG-SDT resources by sending CG-SDT resource configuration information (or CG-SDT resource configuration parameters) to the terminal device.
  • the CG-SDT resource configuration information may be carried in the RRC connection release message.
  • the CG-SDT resource configuration information is only applicable to the current RRC connection release message. That is to say, if the status of the terminal equipment changes, such as the terminal equipment performs cell switching or the terminal equipment performs RRC reconnection (such as switching from RRC_INACTIVE state to RRC_CONNECTED state), the CG-SDT resource configuration information will become invalid.
  • CG-SDT resource configuration information may include information related to SDT.
  • the CG-SDT resource configuration information may include one or more of the following information: one or more periodic time-frequency resources, modulation and coding scheme (MCS), transport block size (transport block size, TBS), multiple physical uplink shared channel (PUSCH) duplication, starting location, wireless network temporary identifier (cell radio network temporary identity, C-RNTI) (such as CG-SDT C-RNTI) , TA verification criteria, allowed CG-SDT resource hopping, whether the CG-SDT resource configuration is suitable for one or more opportunities (occasion), demodulation reference signal (demodulation reference signal, DMRS) configuration, power control parameters, physical downlink control channel (physical downlink control channel, PDCCH) search space, multiple repetitions of coverage enhancement (CE) and some other ancillary parameters are valid.
  • MCS modulation and coding scheme
  • TBS transport block size
  • PUSCH physical uplink shared channel
  • C-RNTI cell radio network temporary identity
  • the type of configuration authorization can be, for example, CG type (type) 1 or CG type 2.
  • the configuration parameters of CG type 1 can be configured by RRC through high-level signaling.
  • the high-level signaling may be IE ConfiguredGrantConfig, for example.
  • the parameters required for CG type 2 are also configured by IE ConfiguredGrantConfig, but the resources of CG type 2 need to be activated and deactivated by downlink control information (DCI) to indicate resource activation and deactivation. Only resources activated by DCI can be used.
  • DCI downlink control information
  • CG type 1 and CG type 2 can be distinguished according to the field rrc-ConfiguredUplinkGrant in IE ConfiguredGrantConfig. If the field rrc-ConfiguredUplinkGrant is configured, the type of configuration authorization is CG type 1. If the field rrc-ConfiguredUplinkGrant is not configured, the type of configuration authorization is CG type 2.
  • the network device can configure a time domain resource assignment (TDRA) table specific to the terminal device to the terminal device.
  • the TDRA table can be carried in the RRC connection release message.
  • the TDRA table can be used to schedule SDT resources or subsequent SDT resources or SDT retransmission resources.
  • the above SDT resources may be RA-SDT resources or CG-SDT resources.
  • the above resources may be PUSCH resources.
  • the setting of the association period candidate value set for SSB to CG PUSCH mapping can be similar to the definition of the association N candidate value set for SSB to RO mapping.
  • Parameter N can be configured through high-level parameters. If N ⁇ 1, then one SSB is mapped to 1/N consecutive valid CG PUSCHs. If N ⁇ 1, N consecutive SSBs are associated with one CG PUSCH. If N ⁇ 1, multiple terminal devices can share the same resource, that is, the same resource can be allocated to different terminal devices. If N ⁇ 1, the terminal device can obtain dedicated resources, and different terminal devices can obtain different resources.
  • the terminal device Before the terminal device performs SDT, it needs to first determine whether the terminal device meets the conditions for triggering SDT. Only when the conditions for triggering SDT are met, the terminal device can perform SDT. If the conditions for triggering SDT are met, the terminal device can initiate the SDT process. If the conditions for triggering SDT are not met, the terminal device can initiate an RRC recovery (resume) process. For example, the terminal device can switch from the RRC_INACTIVE state to the RRC_CONNECTED state to transmit data.
  • the conditions for triggering SDT may include one or more of the following conditions: the data to be transmitted comes from a wireless bearer that can trigger SDT; the amount of data to be transmitted is less than the preconfigured data amount threshold; the downlink reference signal receiving power (reference signal receiving power, RSRP) measurement result is greater than the preconfigured RSRP threshold; there are valid SDT resources.
  • RSRP reference signal receiving power
  • the conditions that trigger SDT are related to the radio bearer where the data to be transmitted is located.
  • Embodiments of the present application can determine whether the terminal device meets the conditions for triggering SDT based on whether the data to be transmitted comes from a wireless bearer that can trigger SDT. If the data to be transmitted comes from a radio bearer that can trigger SDT, the terminal device meets the conditions for triggering SDT. If the data to be transmitted does not come from a radio bearer that can trigger SDT, the terminal device does not meet the conditions for triggering SDT.
  • the radio bearer may be, for example, a signaling radio bearer (SRB) or a data radio bearer (DRB).
  • the conditions for triggering SDT are related to the amount of data to be transmitted. If the amount of data to be transmitted is small, for example, the data to be transmitted is small packet data, the terminal device meets the conditions for triggering SDT. If the amount of data to be transmitted is large, the terminal device does not meet the conditions for triggering SDT. Embodiments of the present application can also determine whether the terminal device meets the conditions for triggering SDT by comparing the data volume of the data to be transmitted with the data volume threshold. If the amount of data to be transmitted is less than the data amount threshold, the terminal device meets the conditions for triggering SDT. If the amount of data to be transmitted is greater than or equal to the data amount threshold, the terminal device does not meet the conditions for triggering SDT.
  • the data volume threshold can be preconfigured by the network device, or the data volume threshold can also be predefined in the protocol.
  • the condition for triggering SDT is related to the measurement result of downlink RSRP. If the measurement result of downlink RSRP is greater than the RSRP threshold, it means that the signal quality is good, and the terminal device meets the conditions for triggering SDT. If the measurement result of downlink RSRP is less than or equal to the RSRP threshold, it means that the signal quality is poor, and the terminal device does not meet the conditions for triggering SDT.
  • the RSRP threshold can be preconfigured on the network device or predefined in the protocol.
  • the condition for triggering SDT is related to whether there are valid SDT resources. If there are valid SDT resources, the terminal device meets the conditions for triggering SDT, and the terminal device can use the valid SDT resources for data transmission. If there are no valid SDT resources, the terminal device does not meet the conditions for triggering SDT, and the terminal device has no available SDT resources for data transmission.
  • the SDT resource may be the RA-SDT resource described above, and/or the CG-SDT resource.
  • the terminal device when determining whether there are valid SDT resources, can determine the RA-SDT resources and CG-SDT resources at the same time, or it can determine first Whether one of the SDT resources is valid, and then determine whether the other SDT resource is valid. For example, the terminal device can first determine whether there are valid RA-SDT resources, and then determine whether there are valid CG-SDT resources. For another example, the terminal device may first determine whether there are valid CG-SDT resources, and then determine whether there are valid RA-SDT resources. The following description takes an example in which the terminal device first determines whether there are valid CG-SDT resources and then determines whether there are valid RA-SDT resources.
  • whether the CG-SDT resource is valid is related to whether there is a valid timing advance (TA).
  • TA is related to the uplink synchronization of the terminal device. If TA is valid, it means that the terminal device is in the uplink synchronization state; if TA is invalid, it means that the terminal device is in the uplink out-of-synchronization state.
  • the embodiment of the present application can determine whether the CG-SDT resource is valid by judging whether there is a valid TA. If there is a valid TA, it can mean that the CG-SDT resource is valid. If a valid TA does not exist, it may indicate that the CG-SDT resource is invalid.
  • TA SDT's TA timer
  • the network device can configure the TA timer for the terminal device, and the TA timer can be used by the terminal device to determine the length of uplink synchronization. If the TA timer is running, that is, the TA timer has not expired, it means that there is a valid TA. If the TA timer is not running, that is, the TA timer times out, it means that there is no valid TA.
  • the TA timer may be started after the terminal device receives an RRC connection release (release) message or the terminal device enters the RRC_INACTIVE state.
  • the length of the TA timer can be configured by the network device to the terminal device. For example, after receiving the RRC connection release message sent by the network device, the terminal device can enter the RRC_INACTIVE state according to the indication information in the RRC connection release message.
  • the RRC connection release message can also include the configuration information of the SDT-TA timer. The terminal device can start the SDT TA timer based on the configuration information of the SDT-TA timer.
  • the terminal equipment When the terminal equipment performs SDT, there is currently no clear way to ensure the data transmission of the terminal equipment as much as possible and avoid resource waste. If the terminal device uses dedicated resources for SDT, although the data transmission of the terminal device can be guaranteed, it will lead to a waste of resources. Although resource sharing can improve resource utilization, for example, unused resources of one terminal device can be used by other terminal devices, resource sharing will cause resource conflicts, that is, two terminal devices may seize the same resource.
  • embodiments of the present application provide a method and device for wireless communication.
  • the terminal device By limiting the time period for the terminal device to use dedicated resources (such as the first transmission resource), the terminal device only uses the first transmission resource for SDT part of the time.
  • SDT can be performed using shared resources, which can ensure data transmission of the terminal device to a certain extent and avoid resource waste.
  • step S510 the network device sends the first information to the terminal device.
  • the first information is used to indicate the first timer.
  • the first timer is used to indicate the duration of using the first transmission resource to perform SDT.
  • the first transmission resource may be a dedicated resource of the terminal device.
  • the first transmission resource may be configured by the network device to the terminal device.
  • the first transmission resource may be a CG-SDT resource, for example, the first transmission resource may be a resource specified by CG type 1.
  • the first timer may be used to limit the time period for the terminal device to use the first transmission resource. In other words, the terminal device cannot always use the first transmission resource, but can only use the first transmission resource within the validity period of the first timer. If the first timer has not expired, the terminal device can use the first transmission resource. If the first timer times out, the terminal device cannot continue to use the first transmission resource. Of course, as long as the first timer does not expire, the terminal device can use the first transmission resource to perform multiple SDTs.
  • the first timer may be indicated by the network device to the terminal device.
  • the network device can directly indicate the first timer to the terminal device.
  • the network device can directly indicate the duration of the first timer to the terminal device.
  • the first timer may be determined based on other timers.
  • the first timer may be determined based on the TA timer.
  • the duration of the first timer may be equal to the duration of the TA timer, or the duration of the first timer may be obtained by adding or subtracting the preset duration based on the duration of the TA timer.
  • the first timer TA timer + duration 1.
  • the first timer TA timer-duration 2.
  • the network device may indicate the preset duration to the terminal device, and the terminal device may determine the first timer based on the preset duration and the TA timer.
  • the duration of the first timer is shorter than the duration of the second timer.
  • the second timer is the duration for the terminal device to perform SDT. Before performing SDT, the terminal device will determine whether it meets the conditions for SDT. If the terminal device meets the conditions for performing SDT, the terminal device can perform SDT. However, terminal equipment cannot always perform SDT.
  • the network device will configure a second timer for the terminal device to limit the time period during which the terminal device can perform SDT.
  • the second timer can be understood as the length of time that the terminal device performs SDT in one cycle. If the second timer times out, the terminal device will not be able to perform SDT. If another small data packet arrives at the terminal device later, the terminal device needs to determine again whether the conditions for SDT are met. If so, the terminal device can perform SDT within the time limit limited by the second timer according to the configuration of the network device.
  • the first information may be carried in RRC signaling.
  • the network device may configure the first timer for the terminal device through RRC signaling.
  • the first information may be carried in CG-SDT resource configuration information, and the network device may indicate the first timer to the terminal device by multiplexing the CG-SDT resource configuration information, thereby saving signaling overhead.
  • the first timer and the second timer can be carried in the same message.
  • both the first timer and the second timer can be carried in the CG-SDT resource configuration information.
  • the network device may simultaneously indicate the first timer and the second timer to the terminal device through the CG-SDT resource configuration information.
  • the embodiment of the present application does not specifically limit the starting time of the first timer and the second timer.
  • the starting moments of the first timer and the second timer may be the same or different.
  • the terminal device may start the first timer at the moment when the first information is received. If the first information is carried in the CG-SDT resource configuration information, the terminal device can start the first timer after receiving the CG-SDT resource configuration information.
  • the network device can also start the first timer after sending the CG-SDT resource configuration information to the terminal device.
  • the terminal device may start the first timer after receiving the RRC connection release message.
  • the terminal device may also start the first timer when entering the RRC_INACTIVE state.
  • the terminal device may start the first timer and the second timer at the same time after receiving the CG-SDT resource configuration information.
  • the terminal device can use the first transmission resource to perform SDT within the time period limited by the first timer.
  • the terminal device can use the shared resources to perform SDT.
  • Shared resources may also be referred to as allocable resources in network devices.
  • terminal devices can use shared resources by listening.
  • the network device can indicate the configuration information of the shared resource pool to the terminal device, and the terminal device can monitor the resources in the shared resource pool. If the terminal device detects that a certain resource is not occupied by other terminals, the terminal device can use the resource to perform SDT. If a terminal device detects that a resource is already occupied by another terminal device, the terminal device cannot use the resource for SDT.
  • the network device in order to reduce resource collisions, can also dynamically allocate resources to the terminal device through scheduling. For example, as shown in Figure 5, in step S520, the terminal device may send a first request to the network device, where the first request is used to request a second transmission resource. In step S530, after receiving the first request, the network device may send second information to the terminal device, and the second information may be used to indicate the second transmission resource.
  • the first request may also be used to indicate the size of the second transmission resource.
  • the terminal device may indicate the size of the required transmission resources to the network device.
  • the first request may be used to indicate the size of the second transmission resource.
  • the network device may allocate transmission resources corresponding to the size of the second transmission resources to the terminal device.
  • the first request may be used to indicate the size of data to be transmitted (or referred to as the amount of data to be transmitted).
  • the terminal device can also report the size of the data to be transmitted to the network device.
  • the network device may determine the size of the second transmission resource required by the terminal device based on the size of the data to be transmitted, thereby allocating transmission resources matching the size of the data to be transmitted to the terminal device.
  • the allocable resources in the network device may not meet the transmission requirements of all terminal devices.
  • the sum of the transmission resources required by the terminal devices is greater than the allocable resources.
  • the size of the allocable resources in the network device is M
  • there are K terminal devices requesting transmission resources from the network device at the same time and the total number of transmission resources requested by the K terminal devices is N. If N is greater than M, the allocable resources cannot meet the transmission needs of K terminal devices at the same time. Therefore, not all terminal devices can obtain the transmission resources allocated by the network device.
  • the network device can determine which terminal devices are allocated transmission resources and which terminal devices are not allocated transmission resources based on a certain allocation policy.
  • the second information includes one or more of the following information: the size of the allocable resources in the network device; the transmission resources requested by other terminal devices that are less than or equal to the second transmission resource size; the transmission resources requested by other terminal devices A resource greater than or equal to the size of the second transmission resource.
  • resource A among the transmission resources requested by other terminal devices, the resources that are smaller than or equal to the second transmission resource size are called resource A, and among the transmission resources requested by other terminal devices, the resources that are larger than or equal to the second transmission resource size are called Resource B.
  • the network device can allocate the second transmission resource to the terminal device, that is, the terminal device can obtain the second transmission resource. if the cumulative sum of resource A and the second transmission resource is greater than the size of the allocable resources, the network device cannot allocate the second transmission resource to the terminal device, that is, the terminal device cannot obtain the second transmission resource.
  • the network device can allocate the second transmission resource to the terminal device, that is, the terminal device can obtain the second transmission resource. If the sum of the accumulated sum of resource B and the second transmission resource is greater than the size of the allocable resources, the network device cannot allocate the second transmission resource to the terminal device, that is, the terminal device cannot obtain the second transmission resource.
  • the network device can sort the transmission resources requested by multiple terminal devices, such as from large to small or from small to large.
  • the network device can allocate transmission resources to the terminal device in sorted order.
  • the allocation strategy that allocates transmission resources in order from large to small will be called the first allocation strategy
  • the allocation strategy that allocates transmission resources in order from small to large will be called the second allocation strategy.
  • the network device can first allocate resources to the terminal device that requires the largest transmission resources, and then allocate resources to the terminal device that requires the second largest transmission resources, and so on, until the remaining resources are not enough for the terminal. up to the transmission resources required by the device.
  • the transmission resource applied for by each terminal device is S i .
  • the network device can sequentially schedule transmission resources for the corresponding terminal devices according to the above arrangement order.
  • the network device allocates transmission resources to the terminal device in the order of UE 0 , UE 1 ..., UE k-1 . If the allocable resource M is greater than or equal to S 0 , the network device may allocate the transmission resource S 0 to UE 0 . After transmission resources are allocated to UE 0 , the allocable resources become MS 0 . If MS 0 is greater than or equal to S 1 , the network device may allocate transmission resource S 1 to UE 1 . After transmission resources are allocated to UE 1 , the allocable resources become MS 0 -S 1 . And so on, until the remaining allocable resources cannot meet the transmission resource requirements of the next terminal device. For example, if MS 0 -S 1 is less than S 2 , that is, the remaining allocable resources cannot meet the transmission requirements of UE 2 , the network device may not allocate transmission resources to UE 2 .
  • the network device may determine whether the remaining transmission resources can meet the transmission resource requirements of other terminal devices. For example, if the remaining transmission resources cannot meet the transmission requirements of the first terminal, the network device may determine whether the remaining transmission resources meet the transmission requirements of the second terminal. The transmission resources required by the second terminal are smaller than the transmission resources of the first terminal.
  • the network device can skip UE 2 and continue to determine whether the remaining transmission resources can meet the transmission requirements of UE 3 . If the remaining transmission resources can meet the transmission requirements of UE 3 , that is, MS 0 -S 1 is greater than or equal to S 2 , the network device can allocate transmission resource S 3 to UE 3 . If the remaining transmission resources cannot meet the transmission requirements of UE 3 , that is, MS 0 -S 1 is less than S 2 , the network device can skip UE 3 and continue to determine whether the remaining transmission resources can meet the transmission requirements of UE 4 . And so on, until the remaining transmission resources cannot meet the transmission needs of any terminal device.
  • the network device may also determine the second terminal based on the order of required transmission resources from small to large. For example, still taking the above K terminal devices as an example, if the remaining transmission resources cannot meet the transmission requirements of UE 2 , the network device can determine whether the remaining transmission resources can meet the transmission requirements of UE k-1 . If the remaining transmission resources can meet the transmission requirements of UE k-1 , that is, MS 0 -S 1 is greater than or equal to Sk -1 , the network device can allocate transmission resources to UE k-1 . After the transmission resources are allocated to UE k-1 , the remaining allocable transmission resources become MS 0 -S 1 -S k-1 .
  • the network device can continue to determine whether the remaining allocable resources can meet the transmission requirements of Sk -2 , and so on. If the remaining transmission resources cannot meet the transmission requirements of UE k-1 , that is, MS 0 -S 1 is less than Sk -1 , the network device does not allocate transmission resources to UE k-1 . Since the remaining transmission resources cannot meet the transmission requirements of UE k-1 , and the transmission requirements of UE k-1 are the smallest, the remaining transmission resources will not be able to meet the transmission requirements of all remaining terminal devices. Therefore, the network device does not need to continue to determine whether It can meet the transmission needs of other terminals, thereby saving the judgment resources of network equipment.
  • the network device can first allocate resources to the terminal device with the smallest required transmission resources, and then allocate resources to the terminal device with the second smallest required transmission resources, and so on, until the remaining resources are not enough for the terminal device. up to the required transmission resources.
  • the transmission resources applied for by each terminal device are S i ′.
  • the network device can sequentially schedule transmission resources for the corresponding terminal devices according to the above arrangement order.
  • the network device allocates transmission resources to the terminal device in the order of UE 0 ', UE 1 '..., UE k-1 '. If the allocable resource M is greater than or equal to S0', the network device may allocate the transmission resource S0 ' to the UE 0 '. After transmission resources are allocated to UE 0 ', the allocable resources become MS 0 '. If MS 0 ' is greater than or equal to S 1 ', the network device may allocate transmission resource S 1 ' to UE 1 '. After transmission resources are allocated to UE 1 ', the allocable resources become MS 0 '-S 1 '. And so on, until the remaining allocable resources cannot meet the transmission resource requirements of the next terminal device.
  • the network device may not allocate transmission resources to UE 2 ′ . Since the transmission resources required by the terminal equipment after UE 2 ' are larger than those required by UE 2 ', if the remaining transmission resources cannot meet the transmission requirements of UE 2 ', they cannot also meet the transmission requirements of the terminal equipment after UE 2 '. Therefore, the network device does not need to determine whether the remaining transmission resources can meet the transmission needs of other terminal devices.
  • the network device can compare the above multiple allocation strategies to select the optimal allocation strategy, such as selecting the allocation strategy with the highest resource utilization, or selecting the allocation strategy with the largest number of allocable terminal devices.
  • the network device may compare the allocation results of the first allocation strategy and the second allocation strategy, and select the allocation strategy with the highest resource utilization rate from the first allocation strategy and the second allocation strategy.
  • Resource utilization can refer to the ratio of resources allocated by network equipment to terminal devices and allocable resources.
  • the network device may record the allocation results of the first allocation policy and the second allocation policy. For example, the network device may set an allocation coefficient for each terminal device to indicate that the transmission resource is successfully allocated or cannot be allocated. For example, an allocation coefficient of 1 can indicate successful allocation, and an allocation coefficient of 0 can indicate failure to allocate.
  • the resources finally allocated by the network device can be the cumulative sum of the allocation coefficients of each terminal multiplied by the transmission resources required by them.
  • the network device can select the allocation strategy that ultimately allocates the most resources as the final allocation strategy, and complete resource allocation according to the final allocation strategy. For example, if the resources allocated according to the first allocation policy are greater than the resources allocated according to the second allocation policy, the network device may allocate resources to the terminal device according to the first allocation policy.
  • step S602 the UE in the RRC_INACTIVE state starts timer T1 and timer T2.
  • timer T1 here may be the first timer described above, and the timer T2 may be the second timer described above.
  • step S604 the UE determines whether the timer T1 times out.
  • step S606 if the timer T1 has not expired, the UE can determine whether there is a small data packet that needs to be sent.
  • step S608 if the UE has small data packets to send, the UE can use dedicated PUSCH resources to send the small data packets.
  • step S610 if the UE does not need to send small data packets, the UE can reserve dedicated PUSCH resources.
  • step S612 if the timer T1 times out, the UE may release the dedicated PUSCH resources.
  • step S614 if the timer T1 times out, the UE determines whether the timer T2 times out.
  • step S616 if the timer T2 times out, the UE cannot send small data packets.
  • step S618 if the timer T2 has not expired, the UE determines whether there is a small data packet that needs to be sent.
  • step S620 if the UE has small data packets to send, the UE can send the small data packets based on resources scheduled by the network device.
  • the UE can use dedicated PUSCH resources to send small data packets.
  • the process of the UE using dedicated PUSCH resources to send small data packets can be shown in Figure 7.
  • the UE in the RRC_CONNECTED state may receive the RRC connection release message sent by the network device.
  • the RRC connection release message may include CG-SDT resource configuration information.
  • step S720 after receiving the RRC connection release message, the UE can release the RRC connection with the network device, thereby entering the RRC_INACTIVE state. In addition, the UE can obtain the timer T1 according to the CG-SDT resource configuration information.
  • step S730 within the validity period of timer T1, the UE uses dedicated PUSCH resources to send small data packets.
  • the UE may send small data packets based on resources scheduled by the network device.
  • the process of the UE sending small data packets based on resources scheduled by the network device can be shown in Figure 8.
  • the UE in the RRC_CONNECTED state may receive the RRC connection release message sent by the network device.
  • the RRC connection release message may include CG-SDT resource configuration information.
  • step S820 after receiving the RRC connection release message, the UE can release the RRC connection with the network device, thereby entering the RRC_INACTIVE state. In addition, the UE can obtain the timer T1 and timer T2 according to the CG-SDT resource configuration information.
  • step S830 the UE sends a scheduling request to the network device to request PUSCH resources.
  • step S840 the network device determines whether to allocate PUSCH resources to the UE according to a certain scheduling policy.
  • step S850 if the network device determines to allocate PUSCH resources to the UE, the network device may send a grant to the UE to indicate the PUSCH resources.
  • the UE may send the small data packet on the PUSCH resource indicated by the grant.
  • the UE may also send common control channel (CCCH) information on PUSCH resources.
  • CCCH information can be used to establish an RRC connection or SRB, or the CCCH can be used in the RRC reestablishment process.
  • the CCCH can be used for the UE to switch from the RRC_INACTIVE state to the RRC_CONNECTED state.
  • Figure 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device shown in Figure 9 can be any terminal device described above.
  • the terminal device 900 includes a receiving unit 910.
  • the receiving unit 910 may be configured to receive the first information sent by the network device, the first information is used to indicate a first timer, the first timer is used to indicate the duration of using the first transmission resource to perform SDT, wherein, the The duration of the first timer is shorter than the duration of the second timer, and the second timer is used to indicate the duration of SDT performed by the terminal device.
  • the terminal device 900 further includes: a sending unit 920, configured to send a first request to the network device when the first timer times out and the second timer does not time out. , the first request is used to request a second transmission resource; the receiving unit is used to: receive second information sent by the network device, where the second information is used to indicate the second transmission resource.
  • a sending unit 920 configured to send a first request to the network device when the first timer times out and the second timer does not time out.
  • the first request is used to request a second transmission resource
  • the receiving unit is used to: receive second information sent by the network device, where the second information is used to indicate the second transmission resource.
  • the first request is used to indicate the size of the second transmission resource, and whether the terminal device can obtain the second transmission resource is determined based on second information, and the second information includes the following information One or more of: the size of the allocable resources in the network device; the transmission resources requested by other terminal devices that are less than or equal to the second transmission resource size; the transmission resources requested by other terminal devices that are greater than or equal to the size of the second transmission resource; A resource equal to the size of the second transmission resource.
  • the first transmission resource is a dedicated resource of the terminal device.
  • the duration of the first timer is determined based on a TA timer.
  • the first information is carried in CG-SDT resource configuration information.
  • FIG 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device shown in Figure 10 can be any of the network devices described above.
  • the network device 1000 includes a sending unit 1010.
  • the sending unit 1010 may be configured to send first information to the terminal device, where the first information is used to indicate a first timer, and the first timer is used to indicate a duration of using the first transmission resource for SDT, wherein the first timer is used to indicate the duration of SDT using the first transmission resource.
  • the duration of a timer is shorter than the duration of a second timer, and the second timer is used to indicate the duration of SDT performed by the terminal device.
  • the network device 1000 further includes: a receiving unit 1020, configured to receive the first timer sent by the terminal device when the first timer times out and the second timer does not time out. request, the first request is used to request a second transmission resource; the sending unit is used to send second information to the terminal device, the second information is used to indicate the second transmission resource.
  • a receiving unit 1020 configured to receive the first timer sent by the terminal device when the first timer times out and the second timer does not time out. request, the first request is used to request a second transmission resource; the sending unit is used to send second information to the terminal device, the second information is used to indicate the second transmission resource.
  • the first request is used to indicate the size of the second transmission resource, and whether the terminal device can obtain the second transmission resource is determined based on second information, and the second information includes the following information One or more of: the size of the allocable resources in the network device; the transmission resources requested by other terminal devices that are less than or equal to the second transmission resource size; the transmission resources requested by other terminal devices that are greater than or equal to the size of the second transmission resource; A resource equal to the size of the second transmission resource.
  • the first transmission resource is a dedicated resource of the terminal device.
  • the duration of the first timer is determined based on a TA timer.
  • the first information is carried in CG-SDT resource configuration information.
  • Figure 11 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the dashed line in Figure 11 indicates that the unit or module is optional.
  • the device 1100 can be used to implement the method described in the above method embodiment.
  • Device 1100 may be a chip, terminal device or network device.
  • Apparatus 1100 may include one or more processors 1110.
  • the processor 1110 can support the device 1100 to implement the method described in the foregoing method embodiments.
  • the processor 1110 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 1100 may also include one or more memories 1120.
  • the memory 1120 stores a program, which can be executed by the processor 1110, so that the processor 1110 executes the method described in the foregoing method embodiment.
  • the memory 1120 may be independent of the processor 1110 or integrated in the processor 1110 .
  • Device 1100 may also include a transceiver 1130.
  • Processor 1110 may communicate with other devices or chips through transceiver 1130.
  • the processor 1110 can transmit and receive data with other devices or chips through the transceiver 1130 .
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or network device provided by the embodiments of the present application, and the computer program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种无线通信的方法及装置。所述方法包括:终端设备接收网络设备发送的第一信息,所述第一信息用于指示第一定时器,所述第一定时器用于指示使用第一传输资源进行SDT的时长,其中,所述第一定时器的时长小于第二定时器的时长,所述第二定时器用于指示所述终端设备进行SDT的时长。

Description

无线通信的方法及装置 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种无线通信的方法及装置。
背景技术
为了节省终端设备的信令开销,通信系统中允许终端设备在无线资源控制非激活(radio resource control,RRC)非激活(INACTIVE)态下进行小数据传输(small data transmission,SDT)。但是,终端设备在进行SDT时,如何尽可能地保证终端设备的数据传输以及避免资源浪费,目前还没有明确的方式。
发明内容
针对上述问题,本申请提供一种无线通信的方法及装置。下面对本申请实施例涉及的各个方面进行介绍。
第一方面,提供了一种无线通信的方法,包括:终端设备接收网络设备发送的第一信息,所述第一信息用于指示第一定时器,所述第一定时器用于指示使用第一传输资源进行SDT的时长,其中,所述第一定时器的时长小于第二定时器的时长,所述第二定时器用于指示所述终端设备进行SDT的时长。
第二方面,提供了一种无线通信的方法,包括:网络设备向终端设备发送第一信息,所述第一信息用于指示第一定时器,所述第一定时器用于指示使用第一传输资源进行SDT的时长,其中,所述第一定时器的时长小于第二定时器的时长,所述第二定时器用于指示所述终端设备进行SDT的时长。
第三方面,提供了一种终端设备,包括:接收单元,用于接收网络设备发送的第一信息,所述第一信息用于指示第一定时器,所述第一定时器用于指示使用第一传输资源进行SDT的时长,其中,所述第一定时器的时长小于第二定时器的时长,所述第二定时器用于指示所述终端设备进行SDT的时长。
第四方面,提供了一种网络设备,包括:发送单元,用于向终端设备发送第一信息,所述第一信息用于指示第一定时器,所述第一定时器用于指示使用第一传输资源进行SDT的时长,其中,所述第一定时器的时长小于第二定时器的时长,所述第二定时器用于指示所述终端设备进行SDT的时长。
第五方面,提供一种终端设备,包括处理器、存储器、通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述终端设备执行第一方面所述的方法。
第六方面,提供一种网络设备,包括处理器、存储器、通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述网络设备执行第二方面所述的方法。
第七方面,提供一种装置,包括处理器,用于从存储器中调用程序,以执行第一方面所述的方法。
第八方面,提供一种装置,包括处理器,用于从存储器中调用程序,以执行第二方面所述的方法。
第九方面,提供一种芯片,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行第一方面所述的方法。
第十方面,提供一种芯片,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行第二方面所述的方法。
第十一方面,提供一种计算机可读存储介质,其上存储有程序,所述程序使得计算机 执行第一方面所述的方法。
第十二方面,提供一种计算机可读存储介质,其上存储有程序,所述程序使得计算机执行第二方面所述的方法。
第十三方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行第一方面所述的方法。
第十四方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行第二方面所述的方法。
第十五方面,提供一种计算机程序,所述计算机程序使得计算机执行第一方面所述的方法。
第十六方面,提供一种计算机程序,所述计算机程序使得计算机执行第二方面所述的方法。
本申请实施例中,通过限定终端设备使用专用资源(如第一传输资源)的时长,使得终端设备仅在部分时间上使用第一传输资源进行SDT,而在其他时间例如可以使用共享资源的方式进行SDT,从而在一定程度上既能够保证终端设备的数据传输,又可以避免资源浪费。
附图说明
图1是可应用于本申请实施例的通信系统的系统架构示例图。
图2是终端设备从RRC_CONNECTED态切换到RRC_INACTIVE态的流程示意图。
图3是基于两步随机接入过程进行SDT的示意性流程图。
图4是基于四步随机接入过程进行SDT的示意性流程图。
图5是本申请一实施例提供的无线通信方法的示意性流程图。
图6是本申请另一实施例提供的无线通信方法的示意性流程图。
图7是本申请一实施例提供的终端设备进行SDT的示意性流程图。
图8是本申请另一实施例提供的终端设备进行SDT的示意性流程图。
图9是本申请一实施例提供的终端设备的结构示意图。
图10是本申请一实施例提供的网络设备的结构示意图。
图11是本申请一实施例提供的通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和两个终端,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、 用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile Terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,UE可以用于充当基站。例如,UE可以充当调度实体,其在V2X或D2D等中的UE之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access piont,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中涉及到的通信设备,可以为网络设备,或者也可以为终端设备。例如,第一通信设备为网络设备,第二通信设备为终端设备。又如,第一通信设备为终端设备,第二通信设备为网络设备。又如,第一通信设备和第二通信设备均为网络设备,或者均为终端设备。
还应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
目前,协议中定义了终端设备的三种无线资源控制(radio resource control,RRC)状态:RRC连接(RRC_CONNECTED)态、RRC空闲(RRC_IDLE)态和RRC非激活 (RRC_INACTIVE)态。
RRC_CONNECTED态可以指终端设备完成随机接入过程之后,未进行RRC释放时所处的状态。终端设备和网络设备(例如接入网络设备)之间存在RRC连接。在RRC_CONNECTED态下,终端设备可以和网络设备进行数据传输,如进行下行数据传输和/或上行数据传输。或者,终端设备也可以和网络设备进行终端设备特定的数据信道和/或控制信道的传输,以传输该终端设备的特定信息或单播信息。
RRC_IDLE态是指终端设备在小区中驻留,但是未进行随机接入时终端设备所处的状态。终端设备通常在开机之后,或者在RRC释放之后进入RRC_IDLE态。在RRC_IDLE态下,终端设备和网络设备(例如驻留网络设备)之间没有RRC连接,网络设备没有存储终端设备的上下文,网络设备与核心网之间没有建立针对该终端设备的连接。如果终端设备需要从RRC_IDLE态进入RRC_CONNECTED态,则需要发起RRC连接建立过程。
RRC_INACTIVE态是为了降低空口信令、快速恢复无线连接和快速恢复数据业务,从节能的角度新引入的状态。RRC_INACTIVE态是处于连接态和空闲态之间的一个状态。终端设备之前已经进入了RRC_CONNECTED态,然后释放了与网络设备的RRC连接、无线承载和无线资源,但是网络设备保存了该终端设备的上下文,以便快速恢复RRC连接。另外,网络设备与核心网建立的针对该终端设备的连接没有被释放,也就是说,RAN与CN之间的用户面承载和控制面承载仍被维护,即存在CN-NR的连接。
终端设备可以在上述三种RRC状态之间进行切换。例如,终端设备可以在持续一段时间内没有数据传输的情况下,从RRC_CONNECTED态进入RRC_INACTIVE态来暂停其会话,并且可以在有会话传输需求时,从RRC_INACTIVE态进入RRC_CONNECTED态。另外,终端设备也可以从RRC_INACTIVE态或RRC_CONNECTED态进入RRC_IDLE态。
下面结合图2,对RRC_CONNECTED态切换到RRC_INACTIVE态的过程进行介绍。
如图2所示,在步骤S210、gNB-CU确定终端设备进入RRC_INACTIVE态。
在步骤S220、gNB-CU可以向gNB-DU发送F1AP UE上下文释放命令。
在步骤S230、gNB-DU向UE发送RRC连接释放消息。接收到RRC连接释放消息后,UE可以释放与gNB之间的RRC连接,进入RRC_INACTIVE态。
在步骤S240、gNB-DU向gNB-CU发送F1AP UE上下文释放完成响应。
对于数据传输不频繁的终端设备,终端设备可以保持在RRC_INACTIVE态,以节省电量。在第16版本(release 16,Rel-16)之前,处于RRC_INACTIVE态的终端设备不支持数据传输,即不支持移动发起(mobile original,MO)数据和移动终止(mobile terminated,MT)数据的传输。MO数据指数据的发送端为终端设备,消息的传递方向是终端设备到网络设备。MO数据也可以称为上行数据。MT数据指数据的发送端为网络设备,消息的传递方向是网络设备到终端设备。MT数据也可以称为下行数据。
当MO数据或MT数据到达时,终端设备需要恢复RRC连接,从而进入RRC_CONNECTED态。在RRC_CONNECTED态,终端设备可以进行MO数据或MT数据的传输。待MO数据或MT数据传输完成后,终端设备再释放RRC连接,回到RRC_INACTIVE态。
在上述过程中,终端设备需要从RRC_INACTIVE态切换到RRC_CONNECTED态,然后再从RRC_CONNECTED态切换到RRC_INACTIVE态。不同RRC状态之间的切换会导致终端设备功耗增加。但在一些场景下,处于RRC_INACTIVE态的终端设备需要传输一些数据量小且传输频率低的数据(可称为小包数据)。如果终端设备切换到RRC_CONNECTED态再进行数据传输,终端设备进行RRC状态切换时所需要的信令开销甚至会大于传输这些数据所需要的开销,从而导致不必要的功耗和信令开销。
本申请实施例中的小数据包例如可以为即时通讯消息、心跳包、周期性数据等。本申请实施例对小数据包的来源不做具体限定。作为一个示例,小数据包可以是来自终端设备 应用程序(application,APP)的数据。例如,小数据包可以是来自通讯服务APP(如whatsapp、QQ、微信等)的数据、来自IM、电子邮件客户端或其他APP的心跳数据包、来自各种应用程序的推送通知等。作为另一个示例,小数据包可以来自非终端设备应用程序的数据。例如,小数据包可以来自可穿戴设备的数据(如定期定位信息等)、传感器数据(如工业无线传感器定期或以事件触发方式发送的温度信息、压力信息)、智能仪表和智能仪表网络发送协议中(如3GPP TS 22.891)规定的定期仪表读数等。
为了降低终端设备的功耗,Rel-17中讨论了RRC_INACTIVE态下进行SDT方案。在该方案中,终端设备不需要从RRC_INACTIVE态切换至RRC_CONNECTED态进行小数据传输,而是在RRC_INACTIVE态下即可进行小数据传输。本申请实施例的小数据传输可以包括上行小数据传输和下行小数据传输。下文将主要针对上行小数据传输进行描述。
在RRC_INACTIVE态下,终端设备可以根据网络设备配置的资源进行SDT。终端设备进行SDT的方式有两种。一种是基于随机接入过程的SDT,另一种是基于配置授权(configured grant,CG)的SDT。下面分别对这两种情况进行介绍。
基于随机接入过程的SDT可以指,终端设备可以在随机接入的过程中进行SDT。随机接入的方式可以为两步随机接入过程,或者,也可以为四步随机接入过程。对于两步随机接入过程,终端设备可以在消息1(message 1,MSG1)中进行SDT。也就是说,两步随机接入过程的MSG1可用于承载数据。对于四步随机接入过程,终端设备可以在MSG3中进行SDT。也就是说,四步随机接入过程的MSG3可用于承载数据。
在随机接入过程中,终端设备进行SDT的资源可以称为RA-SDT资源。
下面结合图3和图4,分别对两步随机接入过程和四步随机接入过程进行描述。
图3示出的是在两步随机接入过程中进行SDT的示意性流程图。
在步骤S310、终端设备向网络设备发送MSG1。终端设备可以在网络设备配置的随机接入信道(random access channel,RACH)资源上发送MSG1。MSG1中可以携带待传输数据(或称为上行数据或MO数据)。如果利用MSG1进行SDT,则传输MSG1的资源也可以称为RA-SDT资源。例如,RA-SDT资源可以为RACH资源。
在步骤S320、网络设备向终端设备发送MSG2。该MSG2中可以包括针对待传输数据的响应。
图4示出的是在四步随机接入过程中进行SDT的示意性流程图。
在步骤S410、终端设备向网络设备发送MSG1。MSG1中携带随机接入前导码。
在步骤S420、网络设备向终端设备发送MSG2。该MSG2也可以称为随机接入响应(random access response,RAR)。MSG2中还可以包括上行授权(UL grant),用于调度MSG3的上行资源指示。
在步骤S430、终端设备可以在网络设备调度的上行授权上向网络设备发送MSG3。其中,MSG3中携带待传输数据。如果利用MSG3进行SDT,则传输MSG3的资源(即网络设备调度的上行授权)也可以称为RA-SDT资源。
在步骤S440、网络设备向终端设备发送MSG4。该MSG4中可以包括针对待传输数据的响应。
配置授权也可以称为上行免授权。配置授权可以指网络设备通过激活一次上行授权给终端设备,在没有接收到去激活指示的情况下,终端设备可以一直使用激活的上行授权所指定的资源(即CG资源)进行上行传输。在本申请实施例中,终端设备可以使用CG资源进行SDT。用于进行SDT的CG资源也可以称为CG-SDT资源。
网络设备可以通过向终端设备发送CG-SDT资源配置信息(或CG-SDT资源配置参数),以指示CG-SDT资源。该CG-SDT资源配置信息可以承载于RRC连接释放消息中。在一些实施例中,CG-SDT资源配置信息仅对当前的RRC连接释放消息适用。也就是说,如果终端设备的状态进行了变更,如终端设备进行了小区切换或者终端设备进行了RRC重连接(如从RRC_INACTIVE态切换至RRC_CONNECTED态),则CG-SDT资源配置 信息将会失效。
CG-SDT资源配置信息可以包括进行SDT的相关信息。例如,CG-SDT资源配置信息中可以包括以下信息中的一种或多种:一个或多个周期性时频资源、调制和编码方案(modulation and coding scheme,MCS)、传输块大小(transport block size,TBS)、多个物理上行共享信道(physical uplink shared channel,PUSCH)重复、起始位置、无线网络临时标识符(cell radio network temporary identity,C-RNTI)(例如CG-SDT C-RNTI)、TA验证准则、允许的CG-SDT资源跳跃、CG-SDT资源配置是否对一个或多个机会(occasion)、解调参考信号(demodulation reference signal,DMRS)配置、功率控制参数、物理下行控制信道(physical downlink control channel,PDCCH)搜索空间、覆盖增强(coverage enhancement,CE)的多次重复有效以及其他一些附属参数。
配置授权的类型例如可以为CG类型(type)1或CG type 2。CG type 1的配置参数可以由RRC通过高层信令进行配置。该高层信令例如可以为IE ConfiguredGrantConfig。CG type 2需要的参数也是由IE ConfiguredGrantConfig进行配置,但是CG type 2的资源需要由下行控制信息(downlink control information,DCI)指示资源的激活和去激活,只有经过DCI激活的资源才能被使用。
CG type 1和CG type 2可以根据IE ConfiguredGrantConfig中的字段rrc-ConfiguredUplinkGrant进行区别。如果配置了字段rrc-ConfiguredUplinkGrant,则配置授权的类型为CG type 1,如果未配置字段rrc-ConfiguredUplinkGrant,则配置授权的类型为CG type 2。
网络设备可以向终端设备配置特定于终端设备的时域资源分配(time domain resource assignment,TDRA)表。TDRA表可以承载于RRC连接释放消息中。该TDRA表可用于调度SDT资源或后续的SDT资源或SDT的重传资源。上述SDT资源可以为RA-SDT资源,也可以为CG-SDT资源。上述资源可以为PUSCH资源。
以CG-SDT资源为例,SSB到CG PUSCH映射的关联期候选值集的设置可以类似于SSB到RO映射的关联N候选值集的定义。通过高层参数可以配置参数N。如果N<1,则一个SSB映射到1/N个连续有效的CG PUSCH。如果N≥1,则N个连续的SSB关联一个CG PUSCH。如果N<1,则多个终端设备可以共享同一个资源,即相同的资源可以分配给不同的终端设备。如果N≥1,则终端设备可以获得专用资源,不同的终端设备可以获得不同的资源。
终端设备在进行SDT之前,需要先判断终端设备是否满足触发SDT的条件。只有满足触发SDT的条件,终端设备才可以进行SDT。如果满足触发SDT的条件,则终端设备可以发起SDT流程。如果不满足触发SDT的条件,则终端设备可以发起RRC恢复(resume)流程。例如,终端设备可以从RRC_INACTIVE态切换到RRC_CONNECTED态,从而进行数据的传输。
触发SDT的条件可以包括以下条件中的一种或多种:待传输数据来自可以触发SDT的无线承载;待传输数据的数据量小于预配置的数据量门限;下行参考信号接收功率(reference signal receiving power,RSRP)的测量结果大于预配置的RSRP门限;存在有效的SDT资源。下面对上述条件分别进行介绍。
在一些实施例中,触发SDT的条件与待传输数据所在的无线承载有关。本申请实施例可以根据待传输数据是否来自可以触发SDT的无线承载,确定终端设备是否满足触发SDT的条件。如果待传输数据来自可以触发SDT的无线承载,则终端设备满足触发SDT的条件。如果待传输数据不是来自可以触发SDT的无线承载,则终端设备不满足触发SDT的条件。该无线承载例如可为信令无线承载(signaling radio bearer,SRB)或数据无线承载(data radio bearer,DRB)。
在另一些实施例中,触发SDT的条件与待传输数据的数据量有关。如果待传输数据的数据量较小,如待传输数据为小包数据,则终端设备满足触发SDT的条件。如果待传 输数据的数据量较大,则终端设备不满足在触发SDT的条件。本申请实施例还可以通过将待传输数据的数据量与数据量门限进行比较,以确定终端设备是否满足触发SDT的条件。如果待传输数据的数据量小于数据量门限,则终端设备满足触发SDT的条件。如果待传输数据的数据量大于或等于数据量门限,则终端设备不满足触发SDT的条件。数据量门限可以是网络设备预配置的,或者数据量门限也可以是协议中预定义的。
在另一些实施例中,触发SDT的条件与下行RSRP的测量结果有关。如果下行RSRP的测量结果大于RSRP门限,则表示信号质量较好,则终端设备满足触发SDT的条件。如果下行RSRP的测量结果小于或等于RSRP门限,则表示信号质量较差,则终端设备不满足触发SDT的条件。RSRP门限可以是网络设备预配置的,或者也可以是协议中预定义的。
在另一些实施例中,触发SDT的条件与是否存在有效的SDT资源有关。如果存在有效的SDT资源,则终端设备满足触发SDT的条件,终端设备可以使用有效的SDT资源进行数据传输。如果不存在有效的SDT资源,则终端设备不满足触发SDT的条件,终端设备没有可用的SDT资源进行数据传输。SDT资源可以为上文描述的RA-SDT资源,和/或,CG-SDT资源。
如果终端设备同时被配置了RA-SDT资源和CG-SDT资源,则终端设备在判断是否存在有效的SDT资源时,可以对RA-SDT资源和CG-SDT资源同时进行判断,或者也可以先判断其中一种SDT资源是否有效,然后再判断另一种SDT资源是否有效。例如,终端设备可以先判断是否存在有效的RA-SDT资源,然后再判断是否存在有效的CG-SDT资源。又例如,终端设备也可以先判断是否存在有效的CG-SDT资源,然后再判断是否存在有效的RA-SDT资源。下文以终端设备先判断是否存在有效的CG-SDT资源,然后再判断是否存在有效的RA-SDT资源为例,进行描述。
在一些实施例中,CG-SDT资源是否有效与是否存在有效的时间提前量(timing advance,TA)有关。TA与终端设备的上行同步有关,如果TA有效,则表示终端设备处于上行同步状态;如果TA无效,则表示终端设备处于上行失步状态。本申请实施例可以通过判断是否存在有效的TA,确定CG-SDT资源是否有效。如果存在有效的TA,则可以表示CG-SDT资源有效。如果不存在有效的TA,则可以表示CG-SDT资源无效。
TA是否有效与SDT的TA定时器(TA timer,TAT)是否处于运行状态。网络设备可以为终端设备配置TA定时器,TA定时器可用于终端设备判断处于上行同步的时长。如果TA定时器处于运行状态,即TA定时器未超时,则表示存在有效的TA。如果TA定时器没有处于运行状态,即TA定时器超时,则表示不存在有效的TA。
TA定时器可以是在终端设备接收到RRC连接释放(release)消息或终端设备进入RRC_INACTIVE态后启动的。TA定时器的时长可以是网络设备配置给终端设备的。例如,终端设备接收到网络设备发送的RRC连接释放消息后,可以根据RRC连接释放消息中的指示信息进入RRC_INACTIVE态。RRC连接释放消息中还可以包括SDT-TA定时器的配置信息,终端设备可以基于SDT-TA定时器的配置信息,启动SDT TA定时器。
终端设备在进行SDT时,如何尽可能地保证终端设备的数据传输以及避免资源浪费,目前还没有明确的方式。如果终端设备使用专用资源进行SDT,虽然能够保证终端设备的数据传输,但是会导致资源浪费。资源共享的方式虽然可以提高资源利用率,如一个终端设备未使用的资源可以被其他终端设备使用,但是资源共享的方式会存在资源冲突,即会存在两个终端设备抢占同一个资源的情况。
基于此,本申请实施例提供一种无线通信的方法及装置,通过限定终端设备使用专用资源(如第一传输资源)的时长,使得终端设备仅在部分时间上使用第一传输资源进行SDT,而在其他时间例如可以使用共享资源的方式进行SDT,从而在一定程度上既能够保证终端设备的数据传输,又可以避免资源浪费。
下面结合图5,对本申请实施例中的无线通信方法进行介绍。
参见图5,在步骤S510、网络设备向终端设备发送第一信息。该第一信息用于指示第一定时器。该第一定时器用于指示使用第一传输资源进行SDT的时长。
该第一传输资源可以为终端设备的专用资源。该第一传输资源可以是网络设备配置给终端设备的。例如,该第一传输资源可以是CG-SDT资源,如该第一传输资源可以是CG type 1所指定的资源。
第一定时器可用于限定终端设备使用第一传输资源的时长。换句话说,终端设备并不是可以一直使用第一传输资源,而是只能在第一定时器的有效期内使用第一传输资源。如果第一定时器未超时,则终端设备可以使用第一传输资源。如果第一定时器超时,则终端设备不能继续使用第一传输资源。当然,只要第一定时器未超时,则终端设备可以使用第一传输资源进行多次SDT。
第一定时器可以是网络设备指示给终端设备的。网络设备可以向终端设备直接指示第一定时器,如网络设备可以直接将第一定时器的时长指示给终端设备。在另一些实施例中,第一定时器可以基于其他定时器确定。例如,第一定时器可以基于TA定时器确定。第一定时器的时长可以等于TA定时器的时长,或者,第一定时器的时长可以在TA定时器的时长的基础上,增加或减去预设时长得到。例如,第一定时器=TA定时器+时长1。又例如,第一定时器=TA定时器-时长2。在该情况下,网络设备可以向终端设备指示预设时长,终端设备可以基于预设时长和TA定时器,确定第一定时器。
第一定时器的时长小于第二定时器的时长。第二定时器为终端设备进行SDT的时长。终端设备在进行SDT之前,会判断自己是否满足进行SDT的条件。如果终端设备满足进行SDT的条件,则终端设备可以进行SDT。但是,终端设备不是可以一直进行SDT。网络设备会为终端设备配置第二定时器,以限定终端设备可以进行SDT的时长。第二定时器可以理解为终端设备在一个周期内进行SDT的时长。如果第二定时器超时,则终端设备将不能进行SDT。如果之后终端设备又有小数据包到达,则终端设备需要再次判断是否满足进行SDT的条件,如果满足,则终端设备可以根据网络设备的配置在第二定时器限定的时长内进行SDT。
第一信息可以承载于RRC信令中,换句话说,网络设备可以通过RRC信令为终端设备配置第一定时器。在一些实施例中,第一信息可以承载在CG-SDT资源配置信息中,网络设备可以通过复用CG-SDT资源配置信息,向终端设备指示第一定时器,从而可以节省信令开销。
第一定时器和第二定时器可以承载在相同的消息中。例如,第一定时器和第二定时器都可以承载在CG-SDT资源配置信息中。网络设备可以通过CG-SDT资源配置信息向终端设备同时指示第一定时器和第二定时器。
本申请实施例对第一定时器和第二定时器的启动时刻不做具体限定。第一定时器和第二定时器的启动时刻可以相同,也可以不同。例如,终端设备可以在接收到第一信息的时刻,启动第一定时器。如果第一信息承载在CG-SDT资源配置信息中,则终端设备可以在接收到CG-SDT资源配置信息后,启动第一定时器。类似地,网络设备也可以在向终端设备发送CG-SDT资源配置信息后,启动第一定时器。在一些实施例中,终端设备可以在接收到RRC连接释放消息后,启动第一定时器。在另一些实施例中,终端设备也可以在进入RRC_INACTIVE态时启动第一定时器。在一些实施例中,终端设备可以在接收到CG-SDT资源配置信息后,同时启动第一定时器和第二定时器。
本申请实施例中,终端设备可以在第一定时器限定的时长内,使用第一传输资源进行SDT。为了提高资源利用率,在第一定时器超时之后,终端设备可以使用共享资源进行SDT。共享资源也可以称为网络设备中的可分配资源。例如,终端设备可以通过监听的方式使用共享资源。网络设备可以将共享资源池的配置信息指示给终端设备,终端设备可以对共享资源池中的资源进行监听。如果终端设备监听到某个资源没有被其他终端占用,则该终端设备可以使用该资源进行SDT。如果终端设备监听到某个资源已经被其他终端设备占用, 则该终端设备不能使用该资源进行SDT。
在一些实施例中,为了减少资源碰撞,网络设备也可以通过调度的方式来为终端设备动态分配资源。例如,如图5所示,在步骤S520、终端设备可以向网络设备发送第一请求,该第一请求用于请求第二传输资源。在步骤S530、在接收到第一请求后,网络设备可以向终端设备发送第二信息,该第二信息可用于指示第二传输资源。
第一请求还可用于指示第二传输资源的大小。终端设备在发送第一请求时,可以向网络设备指示所需要的传输资源的大小。例如,第一请求可用于指示第二传输资源的大小。接收到第一请求后,网络设备可以为终端设备分配与第二传输资源的大小对应的传输资源。又例如,第一请求可用于指示待传输数据的大小(或称为待传输的数据量)。终端设备也可以向网络设备上报待传输数据的大小。网络设备可以基于待传输数据的大小,确定终端设备所需要的第二传输资源大小,从而为终端设备分配与待传输数据的大小相匹配的传输资源。
在一些实施例中,网络设备中的可分配资源可能不能满足所有终端设备的传输需求,换句话说,终端设备所需要的传输资源的总和大于可分配资源。举例说明,网络设备中可分配资源的大小为M,有K个终端设备同时向网络设备请求传输资源,而该K个终端设备请求的传输资源总和为N。如果N大于M,则可分配资源不能同时满足K个终端设备的传输需求。因此,并不是所有的终端设备都能获得网络设备分配的传输资源。在该情况下,网络设备可以基于一定的分配策略来确定为哪些终端设备分配传输资源,不为哪些终端设备分配传输资源。
为了提高资源利用率,终端设备是否能够分配到传输资源可以基于第二信息确定,或者说,网络设备可以基于第二信息,确定能够分配到传输资源的终端设备。第二信息包括以下信息中的一种或多种:网络设备中可分配资源的大小;其他终端设备请求的传输资源中小于或等于第二传输资源大小的资源;其他终端设备请求的传输资源中大于或等于第二传输资源大小的资源。
为了方便描述,下文将其他终端设备请求的传输资源中小于或等于第二传输资源大小的资源称为资源A,将其他终端设备请求的传输资源中大于或等于第二传输资源大小的资源称为资源B。
在一些实施例中,如果资源A的累加和与第二传输资源之和小于或等于可分配资源的大小,则网络设备可以为终端设备分配第二传输资源,即终端设备可以获得第二传输资源。如果资源A的累加和与第二传输资源之和大于可分配资源的大小,则网络设备无法为终端设备分配第二传输资源,即终端设备不能获得第二传输资源。
在另一些实施例中,如果资源B的累加和与第二传输资源之和小于或等于可分配资源的大小,则网络设备可以为终端设备分配第二传输资源,即终端设备可以获得第二传输资源。如果资源B的累加和与第二传输资源之和大于可分配资源的大小,则网络设备无法为终端设备分配第二传输资源,即终端设备不能获得第二传输资源。
网络设备可以对多个终端设备请求的传输资源进行排序,如按照从大到小或从小到大的顺序进行排序。网络设备可以按照排序顺序为终端设备分配传输资源。下文将按照从大到小的顺序分配传输资源的分配策略称为第一分配策略,将按照从小到大的顺序分配传输资源的分配策略称为第二分配策略。
以从大到小为例,网络设备可以先为所需传输资源最大的终端设备分配资源,然后再为所需传输资源第二大的终端设备分配资源,以此类推,直到剩余的资源不够终端设备所需要的传输资源为止。
举例说明,如果网络设备中可分配的资源为M,K个终端设备同时申请传输资源,每个终端设备(UE i)申请的传输资源为S i。网络设备可以对K个传输资源按照从大到小的顺序进行排序,如S 0≥S 1≥…≥S k-1,i=0,1…,k-1。网络设备可以按照上述排列顺序,依次为对应的终端设备调度传输资源。
网络设备按照UE 0、UE 1…、UE k-1的顺序为终端设备分配传输资源。如果可分配资源M大于或等于S 0,则网络设备可以为UE 0分配传输资源S 0。在为UE 0分配传输资源后,可分配资源变为M-S 0。如果M-S 0大于或等于S 1,则网络设备可以为UE 1分配传输资源S 1。在为UE 1分配传输资源后,可分配资源变为M-S 0-S 1。以此类推,直到剩余的可分配资源不能满足下一个终端设备的传输资源需求。例如,如果M-S 0-S 1小于S 2,即剩余的可分配资源不能满足UE 2的传输需求,则网络设备可以不为UE 2分配传输资源。
在一些实施例中,如果剩余的可分配资源不能满足下一个终端设备的传输需求,网络设备可以判断剩余的传输资源是否能够满足其他终端设备的传输资源需求。例如,如果剩余的传输资源不能满足第一终端的传输需求,则网络设备可以判断剩余的传输资源是否满足第二终端的传输需求,第二终端所需的传输资源小于第一终端的传输资源。
举例说明,仍以上述K个终端设备为例,如果剩余的传输资源不能满足UE 2的传输需求,则网络设备可以跳过UE 2,继续判断剩余的传输资源是否能够满足UE 3的传输需求,如果剩余的传输资源能够满足UE 3的传输需求,即M-S 0-S 1大于或等于S 2,则网络设备可以为UE 3分配传输资源S 3。如果剩余的传输资源不能满足UE 3的传输需求,即M-S 0-S 1小于S 2,则网络设备可以跳过UE 3,继续判断剩余的传输资源是否能够满足UE 4的传输需求。以此类推,直到剩余的传输资源不能满足任意一个终端设备的传输需求为止。
在一些实施例中,在确定第二终端时,网络设备也可以基于所需传输资源从小到大的顺序确定第二终端。举例说明,仍以上述K个终端设备为例,如果剩余的传输资源不能满足UE 2的传输需求,则网络设备可以判断剩余的传输资源是否能够满足UE k-1的传输需求。如果剩余的传输资源能够满足UE k-1的传输需求,即M-S 0-S 1大于或等于S k-1,则网络设备可以为UE k-1分配传输资源。在为UE k-1分配传输资源后,剩余的可分配传输资源变为M-S 0-S 1-S k-1。网络设备可以继续判断剩余的可分配资源是否能够满足S k-2的传输需求,以此类推。如果剩余的传输资源不能满足UE k-1的传输需求,即M-S 0-S 1小于S k-1,则网络设备不为UE k-1分配传输资源。由于剩余的传输资源不能满足UE k-1的传输需求,且UE k-1的传输需求最小,则剩余的传输资源将不能满足剩余所有终端设备的传输需求,因此,网络设备也无需继续判断是否能够满足其他终端的传输需求,从而能够节省网络设备的判断资源。
以从小到大为例,网络设备可以先为所需传输资源最小的终端设备分配资源,然后再为所需传输资源第二小的终端设备分配资源,以此类推,直到剩余的资源不够终端设备所需要的传输资源为止。
举例说明,如果网络设备中可分配的资源为M,K个终端设备同时申请传输资源,每个终端设备(UE i’)申请的传输资源为S i’。网络设备可以对K个传输资源按照从小到大的顺序进行排序,如S 0’≤S 1’≤…≤S k-1’,i=0,1…,k-1。网络设备可以按照上述排列顺序,依次为对应的终端设备调度传输资源。
网络设备按照UE 0’、UE 1’…、UE k-1’的顺序为终端设备分配传输资源。如果可分配资源M大于或等于S0’,则网络设备可以为UE 0’分配传输资源S 0’。在为UE 0’分配传输资源后,可分配资源变为M-S 0’。如果M-S 0’大于或等于S 1’,则网络设备可以为UE 1’分配传输资源S 1’。在为UE 1’分配传输资源后,可分配资源变为M-S 0’-S 1’。以此类推,直到剩余的可分配资源不能满足下一个终端设备的传输资源需求。例如,如果M-S 0’-S 1’小于S 2’,即剩余的可分配资源不能满足UE 2’的传输需求,则网络设备可以不为UE 2’分配传输资源。由于UE 2’之后的终端设备所需的传输资源比UE 2’所需的传输资源大,因此,如果剩余的传输资源不能满足UE 2’的传输需求,则也不能满足UE 2’之后的终端设备的传输需求,因此,网络设备可无需判断剩余的传输资源是否能够满足其他终端设备的传输需求。
在一些实施例中,网络设备可以对上述多种分配策略进行比较,以选择最优的分配策略,如选择资源利用率最高的分配策略,或者选择可分配的终端设备数目最多的分配策略。
例如,网络设备可以将第一分配策略和第二分配策略的分配结果进行比较,从第一分配策略和第二分配策略中选择资源利用率最高的分配策略。资源利用率可以指网络设备为 终端设备分配的资源与可分配资源的比值。
网络设备可以记录第一分配策略和第二分配策略的分配结果,例如,网络设备可以为每个终端设备设置一个分配系数,以指示传输资源成功分配或无法分配。例如,分配系数为1可以表示成功分配,分配系数为0表示无法分配。网络设备最终分配的资源可以为各个终端的分配系数乘以其所需传输资源的累计之和。网络设备可以选择最终分配的资源最多的分配策略作为最终的分配策略,并按照最终的分配策略完成资源的分配。例如,如果按照第一分配策略分配的资源大于按照第二分配策略分配的资源,则网络设备可以按照第一分配策略为终端设备分配资源。
下面结合图6-图8,对本申请实施例的无线通信方法进行详细介绍。
参见图6,在步骤S602、处于RRC_INACTIVE态的UE开启定时器T1和定时器T2。需要说明的是,这里的定时器T1可以为上文描述的第一定时器,定时器T2可以为上文描述的第二定时器。
在步骤S604、UE判断定时器T1是否超时。
在步骤S606、如果定时器T1未超时,则UE可以确定是否有小数据包需要发送。
在步骤S608、如果UE有小数据包需要发送,则UE可以使用专用PUSCH资源发送小数据包。
在步骤S610、如果UE没有小数据包需要发送,则UE可以保留专用PUSCH资源。
在步骤S612、如果定时器T1超时,则UE可以释放专用PUSCH资源。
在步骤S614、如果定时器T1超时,则UE判断定时器T2是否超时。
在步骤S616、如果定时器T2超时,则UE不能发送小数据包。
在步骤S618、如果定时器T2未超时,则UE确定是否有小数据包需要发送。
在步骤S620、如果UE有小数据包需要发送,则UE可以基于网络设备调度的资源发送小数据包。
在定时器T1未超时的情况下,UE可以使用专用PUSCH资源发送小数据包。UE使用专用PUSCH资源发送小数据包的流程可以如图7所示。
参见图7,在步骤S710、处于RRC_CONNECTED态的UE可以接收网络设备发送的RRC连接释放消息。该RRC连接释放消息中可以包括CG-SDT资源配置信息。
在步骤S720、UE接收到RRC连接释放消息后,可以释放与网络设备之间的RRC连接,从而进入RRC_INACTIVE态。另外,UE可以根据CG-SDT资源配置信息,获得定时器T1。
在步骤S730、在定时器T1的有效期内,UE使用专用PUSCH资源发送小数据包。
在定时器T1超时但定时器T2还未超时的情况下,UE可以基于网络设备调度的资源发送小数据包。UE基于网络设备调度的资源发送小数据包的流程可以如图8所示。
参见图8,在步骤S810、处于RRC_CONNECTED态的UE可以接收网络设备发送的RRC连接释放消息。该RRC连接释放消息中可以包括CG-SDT资源配置信息。
在步骤S820、UE接收到RRC连接释放消息后,可以释放与网络设备之间的RRC连接,从而进入RRC_INACTIVE态。另外,UE可以根据CG-SDT资源配置信息,获得定时器T1和定时器T2。
在步骤S830、UE向网络设备发送调度请求,以请求PUSCH资源。
在步骤S840、网络设备根据一定的调度策略,确定是否为UE分配PUSCH资源。
在步骤S850、如果网络设备确定为UE分配PUSCH资源,则网络设备可以向UE发送grant,以指示PUSCH资源。
在步骤S860、UE接收到grant后,可以在grant指示的PUSCH资源上发送小数据包。在一些实施例中,UE还可以在PUSCH资源上发送公共控制信道(common control channel,CCCH)信息。该CCCH信息可用于建立RRC连接或SRB,或者,该CCCH可用于RRC重建过程。例如,该CCCH可用于UE从RRC_INACTIVE态切换到RRC_CONNECTED 态。
上文结合图1至图8,详细描述了本申请的方法实施例,下面结合图9至图11,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图9是本申请一个实施例提供的终端设备的示意性结构图。图9所示的终端设备可以为上文描述的任意一种终端设备。所述终端设备900包括接收单元910。
接收单元910,可用于接收网络设备发送的第一信息,所述第一信息用于指示第一定时器,所述第一定时器用于指示使用第一传输资源进行SDT的时长,其中,所述第一定时器的时长小于第二定时器的时长,所述第二定时器用于指示所述终端设备进行SDT的时长。
在一些实施例中,所述终端设备900还包括:发送单元920,用于在所述第一定时器超时且所述第二定时器未超时的情况下,向所述网络设备发送第一请求,所述第一请求用于请求第二传输资源;所述接收单元用于:接收所述网络设备发送的第二信息,所述第二信息用于指示第二传输资源。
在一些实施例中,所述第一请求用于指示所述第二传输资源的大小,所述终端设备是否能够获得所述第二传输资源基于第二信息确定,所述第二信息包括以下信息中的一种或多种:所述网络设备中可分配资源的大小;其他终端设备请求的传输资源中小于或等于所述第二传输资源大小的资源;其他终端设备请求的传输资源中大于或等于所述第二传输资源大小的资源。
在一些实施例中,所述第一传输资源为所述终端设备的专用资源。
在一些实施例中,所述第一定时器的时长基于TA定时器确定。
在一些实施例中,所述第一信息承载在CG-SDT资源配置信息中。
图10是本申请一个实施例提供的网络设备的示意性结构图。图10所示的网络设备可以为上文描述的任意一种网络设备。所述网络设备1000包括发送单元1010。
发送单元1010,可用于向终端设备发送第一信息,所述第一信息用于指示第一定时器,所述第一定时器用于指示使用第一传输资源进行SDT的时长,其中,所述第一定时器的时长小于第二定时器的时长,所述第二定时器用于指示所述终端设备进行SDT的时长。
在一些实施例中,所述网络设备1000还包括:接收单元1020,用于在所述第一定时器超时且所述第二定时器未超时的情况下,接收所述终端设备发送的第一请求,所述第一请求用于请求第二传输资源;所述发送单元,用于向所述终端设备发送第二信息,所述第二信息用于指示第二传输资源。
在一些实施例中,所述第一请求用于指示所述第二传输资源的大小,所述终端设备是否能够获得所述第二传输资源基于第二信息确定,所述第二信息包括以下信息中的一种或多种:所述网络设备中可分配资源的大小;其他终端设备请求的传输资源中小于或等于所述第二传输资源大小的资源;其他终端设备请求的传输资源中大于或等于所述第二传输资源大小的资源。
在一些实施例中,所述第一传输资源为所述终端设备的专用资源。
在一些实施例中,所述第一定时器的时长基于TA定时器确定。
在一些实施例中,所述第一信息承载在CG-SDT资源配置信息中。
图11是本申请实施例的装置的示意性结构图。图11中的虚线表示该单元或模块为可选的。该装置1100可用于实现上述方法实施例中描述的方法。装置1100可以是芯片、终端设备或网络设备。
装置1100可以包括一个或多个处理器1110。该处理器1110可支持装置1100实现前文方法实施例所描述的方法。该处理器1110可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是 其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置1100还可以包括一个或多个存储器1120。存储器1120上存储有程序,该程序可以被处理器1110执行,使得处理器1110执行前文方法实施例所描述的方法。存储器1120可以独立于处理器1110也可以集成在处理器1110中。
装置1100还可以包括收发器1130。处理器1110可以通过收发器1130与其他设备或芯片进行通信。例如,处理器1110可以通过收发器1130与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另 一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一信息,所述第一信息用于指示第一定时器,所述第一定时器用于指示使用第一传输资源进行小数据传输SDT的时长,
    其中,所述第一定时器的时长小于第二定时器的时长,所述第二定时器用于指示所述终端设备进行SDT的时长。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一定时器超时且所述第二定时器未超时的情况下,所述终端设备向所述网络设备发送第一请求,所述第一请求用于请求第二传输资源;
    所述终端设备接收所述网络设备发送的第二信息,所述第二信息用于指示第二传输资源。
  3. 根据权利要求2所述的方法,其特征在于,所述第一请求用于指示所述第二传输资源的大小,所述终端设备是否能够获得所述第二传输资源基于第二信息确定,
    所述第二信息包括以下信息中的一种或多种:
    所述网络设备中可分配资源的大小;
    其他终端设备请求的传输资源中小于或等于所述第二传输资源大小的资源;
    其他终端设备请求的传输资源中大于或等于所述第二传输资源大小的资源。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一传输资源为所述终端设备的专用资源。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述第一定时器的时长基于时间提前量TA定时器确定。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第一信息承载在配置授权CG-SDT资源配置信息中。
  7. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送第一信息,所述第一信息用于指示第一定时器,所述第一定时器用于指示使用第一传输资源进行小数据传输SDT的时长,
    其中,所述第一定时器的时长小于第二定时器的时长,所述第二定时器用于指示所述终端设备进行SDT的时长。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    在所述第一定时器超时且所述第二定时器未超时的情况下,所述网络设备接收所述终端设备发送的第一请求,所述第一请求用于请求第二传输资源;
    所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示第二传输资源。
  9. 根据权利要求8所述的方法,其特征在于,所述第一请求用于指示所述第二传输资源的大小,所述终端设备是否能够获得所述第二传输资源基于第二信息确定,
    所述第二信息包括以下信息中的一种或多种:
    所述网络设备中可分配资源的大小;
    其他终端设备请求的传输资源中小于或等于所述第二传输资源大小的资源;
    其他终端设备请求的传输资源中大于或等于所述第二传输资源大小的资源。
  10. 根据权利要求7-9中任一项所述的方法,其特征在于,所述第一传输资源为所述终端设备的专用资源。
  11. 根据权利要求7-10中任一项所述的方法,其特征在于,所述第一定时器的时长基于时间提前量TA定时器确定。
  12. 根据权利要求7-11中任一项所述的方法,其特征在于,所述第一信息承载在配置授权CG-SDT资源配置信息中。
  13. 一种终端设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的第一信息,所述第一信息用于指示第一定时器,所述第一定时器用于指示使用第一传输资源进行小数据传输SDT的时长,
    其中,所述第一定时器的时长小于第二定时器的时长,所述第二定时器用于指示所述终端设备进行SDT的时长。
  14. 根据权利要求13所述的终端设备,其特征在于,所述终端设备还包括:
    发送单元,用于在所述第一定时器超时且所述第二定时器未超时的情况下,向所述网络设备发送第一请求,所述第一请求用于请求第二传输资源;
    所述接收单元用于:接收所述网络设备发送的第二信息,所述第二信息用于指示第二传输资源。
  15. 根据权利要求14所述的终端设备,其特征在于,所述第一请求用于指示所述第二传输资源的大小,所述终端设备是否能够获得所述第二传输资源基于第二信息确定,
    所述第二信息包括以下信息中的一种或多种:
    所述网络设备中可分配资源的大小;
    其他终端设备请求的传输资源中小于或等于所述第二传输资源大小的资源;
    其他终端设备请求的传输资源中大于或等于所述第二传输资源大小的资源。
  16. 根据权利要求13-15中任一项所述的终端设备,其特征在于,所述第一传输资源为所述终端设备的专用资源。
  17. 根据权利要求13-16中任一项所述的终端设备,其特征在于,所述第一定时器的时长基于时间提前量TA定时器确定。
  18. 根据权利要求13-17中任一项所述的终端设备,其特征在于,所述第一信息承载在配置授权CG-SDT资源配置信息中。
  19. 一种无线通信的网络设备,其特征在于,包括:
    发送单元,用于向终端设备发送第一信息,所述第一信息用于指示第一定时器,所述第一定时器用于指示使用第一传输资源进行小数据传输SDT的时长,
    其中,所述第一定时器的时长小于第二定时器的时长,所述第二定时器用于指示所述终端设备进行SDT的时长。
  20. 根据权利要求19所述的网络设备,其特征在于,所述网络设备还包括:
    接收单元,用于在所述第一定时器超时且所述第二定时器未超时的情况下,接收所述终端设备发送的第一请求,所述第一请求用于请求第二传输资源;
    所述发送单元,用于向所述终端设备发送第二信息,所述第二信息用于指示第二传输资源。
  21. 根据权利要求20所述的网络设备,其特征在于,所述第一请求用于指示所述第二传输资源的大小,所述终端设备是否能够获得所述第二传输资源基于第二信息确定,
    所述第二信息包括以下信息中的一种或多种:
    所述网络设备中可分配资源的大小;
    其他终端设备请求的传输资源中小于或等于所述第二传输资源大小的资源;
    其他终端设备请求的传输资源中大于或等于所述第二传输资源大小的资源。
  22. 根据权利要求19-21中任一项所述的网络设备,其特征在于,所述第一传输资源为所述终端设备的专用资源。
  23. 根据权利要求19-22中任一项所述的网络设备,其特征在于,所述第一定时器的时长基于时间提前量TA定时器确定。
  24. 根据权利要求19-23中任一项所述的网络设备,其特征在于,所述第一信息承载在配置授权CG-SDT资源配置信息中。
  25. 一种终端设备,其特征在于,包括存储器、处理器和通信接口,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,使得所述终端设备执行如权利要求1-6中任一项所述的方法。
  26. 一种网络设备,其特征在于,包括存储器、处理器和通信接口,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,使得所述网络设备执行如权利要求7-12中任一项所述的方法。
  27. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求1-6中任一项所述的方法。
  28. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求7-12中任一项所述的方法。
  29. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-6中任一项所述的方法。
  30. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求7-12中任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-6中任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求7-12中任一项所述的方法。
  33. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-6中任一项所述的方法。
  34. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求7-12中任一项所述的方法。
  35. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-6中任一项所述的方法。
  36. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求7-12中任一项所述的方法。
PCT/CN2022/091096 2022-05-06 2022-05-06 无线通信的方法及装置 WO2023212893A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22940496.7A EP4322686A4 (en) 2022-05-06 2022-05-06 METHODS AND DEVICES FOR WIRELESS COMMUNICATION
PCT/CN2022/091096 WO2023212893A1 (zh) 2022-05-06 2022-05-06 无线通信的方法及装置
CN202280002816.0A CN115316025A (zh) 2022-05-06 2022-05-06 无线通信的方法及装置
US18/475,082 US11937232B2 (en) 2022-05-06 2023-09-26 Method and device for wireless communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/091096 WO2023212893A1 (zh) 2022-05-06 2022-05-06 无线通信的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/475,082 Continuation US11937232B2 (en) 2022-05-06 2023-09-26 Method and device for wireless communication

Publications (1)

Publication Number Publication Date
WO2023212893A1 true WO2023212893A1 (zh) 2023-11-09

Family

ID=83867876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091096 WO2023212893A1 (zh) 2022-05-06 2022-05-06 无线通信的方法及装置

Country Status (4)

Country Link
US (1) US11937232B2 (zh)
EP (1) EP4322686A4 (zh)
CN (1) CN115316025A (zh)
WO (1) WO2023212893A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792782A (zh) * 2016-09-30 2019-05-21 高通股份有限公司 用于请求发送和允许发送通信的多个定时器
CN111181693A (zh) * 2018-11-09 2020-05-19 华为技术有限公司 发送数据的方法、发送数据的装置、以及终端设备
CN113574952A (zh) * 2019-08-27 2021-10-29 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
US20210410180A1 (en) * 2020-06-24 2021-12-30 FG Innovation Company Limited User equipment and method for small data transmission
CN113973377A (zh) * 2020-07-23 2022-01-25 维沃移动通信有限公司 业务传输资源的更新方法、终端及网络侧设备
WO2022086410A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Controlling an indication of user data in a buffer of a ue for small data transmission

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4079093A4 (en) * 2019-12-31 2024-01-24 Fg innovation co ltd METHOD FOR SMALL DATA TRANSMISSION AND ASSOCIATED APPARATUS
KR20230008727A (ko) * 2020-04-08 2023-01-16 아이디에이씨 홀딩스, 인크. 스몰 데이터의 업링크 송신을 위한 방법들, 장치 및 시스템들
CN116250359A (zh) * 2020-09-30 2023-06-09 Oppo广东移动通信有限公司 数据传输方法和终端设备
US20230217499A1 (en) * 2021-12-31 2023-07-06 Ofinno, Llc Resource Management for Data Transmission in Inactive State
KR20230120544A (ko) * 2022-02-09 2023-08-17 엘지전자 주식회사 무선 통신 시스템에서 사용자 단말이 cg-sdt을 수행하기 위한 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792782A (zh) * 2016-09-30 2019-05-21 高通股份有限公司 用于请求发送和允许发送通信的多个定时器
CN111181693A (zh) * 2018-11-09 2020-05-19 华为技术有限公司 发送数据的方法、发送数据的装置、以及终端设备
CN113574952A (zh) * 2019-08-27 2021-10-29 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
US20210410180A1 (en) * 2020-06-24 2021-12-30 FG Innovation Company Limited User equipment and method for small data transmission
CN113973377A (zh) * 2020-07-23 2022-01-25 维沃移动通信有限公司 业务传输资源的更新方法、终端及网络侧设备
WO2022086410A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Controlling an indication of user data in a buffer of a ue for small data transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TS 22.891
See also references of EP4322686A4

Also Published As

Publication number Publication date
EP4322686A1 (en) 2024-02-14
US11937232B2 (en) 2024-03-19
EP4322686A4 (en) 2024-05-22
US20240015731A1 (en) 2024-01-11
CN115316025A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
TWI678123B (zh) 具有頻寬部分切換的隨機接取技術
WO2018019001A1 (zh) 一种终端状态转换方法及装置
TW201507424A (zh) 雙連結中分配無線網路暫時識別的方法
WO2022152003A1 (zh) 非激活态下数据传输方法及装置
WO2021179895A1 (zh) 一种通信方法及装置
WO2021165076A1 (en) Transmission of small data in inactive state from user equipment (ue) to base station (bs)
WO2016091285A1 (en) Access management of a communication device in a cellular network
WO2019028792A1 (zh) 一种配置资源的方法及设备
WO2023212893A1 (zh) 无线通信的方法及装置
WO2018149280A1 (zh) 数据接收方法及装置
WO2021218682A1 (zh) 通信方法、装置及系统
WO2021062837A1 (zh) 通信方法及装置
WO2020221279A1 (zh) 随机接入方法和装置
WO2023225936A1 (zh) 无线通信的方法及装置
WO2021022423A1 (zh) 一种传输数据的方法和装置
WO2023231005A1 (zh) 无线通信的方法及装置
WO2023019437A1 (zh) 通信方法及通信装置
WO2024098212A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024093986A1 (zh) 一种通信方法及装置
WO2023205959A1 (zh) 通信方法及通信装置
WO2022082578A1 (en) Small data transmission
WO2024011523A1 (zh) 激活或去激活上行定位参考信号的方法、装置
WO2024032800A1 (zh) 数据传输方法、装置、设备、存储介质及程序产品
WO2023151482A1 (zh) 通信方法及装置
WO2023005471A1 (zh) 一种上行资源确定和配置方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022940496

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022940496

Country of ref document: EP

Effective date: 20231107

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940496

Country of ref document: EP

Kind code of ref document: A1