WO2023005471A1 - 一种上行资源确定和配置方法及装置 - Google Patents

一种上行资源确定和配置方法及装置 Download PDF

Info

Publication number
WO2023005471A1
WO2023005471A1 PCT/CN2022/098687 CN2022098687W WO2023005471A1 WO 2023005471 A1 WO2023005471 A1 WO 2023005471A1 CN 2022098687 W CN2022098687 W CN 2022098687W WO 2023005471 A1 WO2023005471 A1 WO 2023005471A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
uplink
data
configurations
uplink resource
Prior art date
Application number
PCT/CN2022/098687
Other languages
English (en)
French (fr)
Inventor
毛颖超
常俊仁
酉春华
郭英昊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023005471A1 publication Critical patent/WO2023005471A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present application relates to the technical field of mobile communication, and in particular to a method and device for determining and configuring uplink resources.
  • small data transmission (SDT) of the user equipment (user equipment, UE) is supported. Specifically, it supports small data transmission (RA-SDT) based on random access (RA) and SDT transmission (CG-SDT) based on configured uplink authorization configuration (configured grant, CG) type 1 (type1) resources .
  • RRC radio resource control
  • the UE may obtain the configuration of multiple CG resources. For the UE that needs to transmit small data, these resources are available, so the UE will group the data that needs to be sent in these multiple resources. , however, the UE finally only transmits data on one of the resources, and grouping data on other resources other than this resource will increase the power consumption of the UE.
  • the present application provides a method and device for determining and configuring uplink resources, so as to reduce power consumption of UE during small data transmission.
  • the present application provides a method for determining an uplink resource, which can be executed by a terminal device.
  • a terminal device may be a UE or a component within a UE.
  • the method includes: the terminal device may receive configuration information of the first uplink resource, where the configuration information of the first uplink resource includes multiple uplink authorization configurations of the first uplink resource.
  • the terminal device may suspend one or more of the plurality of uplink grant configurations.
  • the terminal device can suspend multiple uplink authorization configurations indicated by the configuration information, so as to prevent the UE from being affected by the pending uplink authorization configurations during the small data transmission process.
  • the data packet is performed on the resource, which can reduce the power consumption of the UE.
  • the configuration information of the first uplink resource is carried in a release message, and the terminal device may suspend all uplink grant configurations in response to the release message.
  • the terminal device may further determine a first resource in the first uplink resources, and restore an uplink grant configuration corresponding to the first resource, where the first resource is used to transmit the first data.
  • the configuration information of the first uplink resource is carried in a release message, and the terminal device may determine a first resource among the first uplink resources, and the first resource is used to transmit the first data.
  • the terminal device may also suspend uplink authorization configurations other than the uplink authorization configuration corresponding to the first resource among the plurality of uplink authorization configurations.
  • the terminal device may also receive the feedback information of the first data, and suspend the uplink grant configuration corresponding to the first resource, and/or initialize the uplink grant configuration corresponding to the first resource.
  • the terminal device can suspend and/or initialize the uplink grant configuration corresponding to the first resource in response to the feedback information of the first data, so as to avoid configuration misalignment between the UE and the base station.
  • the first data includes newly transmitted data and/or retransmitted data.
  • the terminal device may also determine that the timing advance TA is invalid, and suspend the uplink grant configuration corresponding to the first resource.
  • the first resource can be suspended when the TA is invalid due to RSRP changes and other reasons, so as to improve the transmission quality, because if the first resource is still used for transmission when the TA is invalid, the transmission may be subject to strong interference, resulting in transmission quality bad.
  • the terminal device may determine that the TA is invalid when it is determined that the TA timer times out and/or it is determined that the variation of the TA exceeds a threshold.
  • resources in the first uplink resource correspond to the uplink grant configuration.
  • the terminal device may also initialize one or more of the multiple uplink grant configurations, so as to avoid misalignment of configurations between the UE and the base station.
  • both the UE and the network device can initialize the same uplink authorization configuration in multiple uplink authorization configurations, for example, both the UE and the network device initialize all the uplink authorization configurations indicated by the configuration information of the first uplink resource.
  • the uplink resource in the first uplink resource is associated with the synchronization signal and the physical broadcast channel block SSB, and the terminal device can also make the received signal strength of the SSB associated with the uplink resource in the first uplink resource less than or is equal to the received signal strength threshold, a random access message is sent. Therefore, when none of the CG resources meet the conditions, uplink resources can be reacquired through a random access process to improve transmission efficiency.
  • the random access message may carry data corresponding to the first radio bearer, so as to further improve transmission efficiency.
  • the RRC state of the terminal device is an RRC inactive state. If the terminal device is a component in the UE, the RRC state of the UE to which the terminal device belongs is the RRC inactive state, or in other words, the RRC state corresponding to the terminal device is the RRC inactive state.
  • the present application provides a method for configuring uplink resources, which can be executed by a network device.
  • a network device is, for example, a base station or components in the base station.
  • the method includes: the network device sends configuration information of the first uplink resource, where the configuration information of the first uplink resource includes multiple uplink authorization configurations of the first uplink resource.
  • the network device may also initialize one or more of the multiple uplink grant configurations, so as to avoid misalignment of configurations between the UE and the network device.
  • the network device may also send feedback information of the first data, the first data is carried in the first resource, the first uplink resource includes the first resource, and initializes the uplink corresponding to the first resource Authorization configuration.
  • an embodiment of the present application provides an uplink resource determining device, which can implement the method implemented by a terminal device in the above first aspect or any possible design thereof.
  • the apparatus comprises corresponding units or components for performing the method described above.
  • the units included in the device may be implemented by software and/or hardware.
  • the device may be, for example, a terminal device, or a chip, a chip system, a vehicle communication module, or a processor that can support the implementation of the above method in the terminal device.
  • the device may include modular components such as a transceiver module (or a communication module, a transceiver unit) and a processing module (or a processing unit), and these modules may implement the above-mentioned first aspect or any possible design thereof corresponding functions of the terminal device.
  • the transceiver module may be a sending module when performing the sending step
  • the transceiver module may be a receiving module when performing the receiving step
  • the transceiver module may be replaced by a transceiver
  • the sending module may be replaced by a transmitter
  • the receiving module may be replaced by the receiver.
  • the transceiver module may include an antenna and a radio frequency circuit, etc., and the processing module may be a processor, such as a baseband chip.
  • the transceiver module may be a radio frequency module, and the processing module may be a processor.
  • the transceiver module may be an input and output interface of the chip system, and the processing module may be a processor of the chip system, such as a central processing unit (CPU).
  • CPU central processing unit
  • the transceiver module may be used to perform the receiving and/or sending actions performed by the terminal device in the first aspect or any possible design thereof.
  • the processing module may be used to perform actions other than reception and transmission performed by the terminal device in the first aspect or any possible design thereof.
  • the transceiving module may receive configuration information of the first uplink resource, where the configuration information of the first uplink resource includes multiple uplink authorization configurations of the first uplink resource.
  • the processing module may suspend one or more of the multiple uplink authorization configurations.
  • the configuration information of the first uplink resource is carried in a release message, and the processing module may suspend all uplink grant configurations in response to the release message.
  • the processing module may further determine a first resource among the first uplink resources, and restore an uplink authorization configuration corresponding to the first resource.
  • the configuration information of the first uplink resource is carried in a release message, and the processing module may determine a first resource in the first uplink resource, and the first resource is used to transmit the first data.
  • the processing module may also suspend uplink authorization configurations other than the uplink authorization configuration corresponding to the first resource among the plurality of uplink authorization configurations.
  • the first resource is used to transmit the first data
  • the transceiver module can also receive the feedback information of the first data
  • the processing module can suspend the uplink grant configuration corresponding to the first resource, and/or initialize The uplink authorization configuration corresponding to the first resource.
  • the first data includes newly transmitted data and/or retransmitted data.
  • the processing module may also determine that the timing advance TA is invalid, and suspend the uplink grant configuration corresponding to the first resource.
  • the processing module may determine that the TA is invalid when it is determined that the TA timer times out and/or it is determined that the variation of the TA exceeds a threshold.
  • resources in the first uplink resource correspond to the uplink grant configuration.
  • the processing module may also initialize one or more of the multiple uplink authorization configurations.
  • the uplink resource in the first uplink resource is associated with the synchronization signal and the physical broadcast channel block SSB, and the transceiver module can also determine that the received signal strength of the SSB associated with the uplink resource in the first uplink resource is less than or is equal to the received signal strength threshold, a random access message is sent. Therefore, when none of the CG resources meet the conditions, uplink resources can be reacquired through a random access process to improve transmission efficiency.
  • the random access message may carry data corresponding to the first radio bearer, so as to further improve transmission efficiency.
  • the RRC state of the apparatus is an RRC inactive state. If the apparatus is a component in the UE, the RRC state of the UE to which the apparatus belongs is the RRC inactive state, or in other words, the RRC state corresponding to the apparatus is the RRC inactive state.
  • the device may include a processor and/or a transceiver.
  • the device may also include memory.
  • the embodiment of the present application provides an uplink resource configuration device, which can implement the method implemented by the network device in the above second aspect or any possible design thereof.
  • the apparatus comprises corresponding units or components for performing the method described above.
  • the units included in the device may be implemented by software and/or hardware.
  • the apparatus may be, for example, a network device, or a chip, a chip system, a vehicle communication module, or a processor that can support the implementation of the above method in the network device.
  • the device may include modular components such as a transceiver module (or called a communication module, a transceiver unit) and a processing module (or called a processing unit), and these modules may implement the above second aspect or any possible design thereof.
  • the transceiver module may be a sending module when performing the sending step
  • the transceiver module may be a receiving module when performing the receiving step
  • the transceiver module may be replaced by a transceiver
  • the sending module may be replaced by a transmitter
  • the receiving module Can be replaced by a receiver.
  • the transceiver module may include an antenna and a radio frequency circuit, etc., and the processing module may be a processor, such as a baseband chip.
  • the transceiver module may be a radio frequency module, and the processing module may be a processor.
  • the transceiver module may be an input and output interface of the chip system, and the processing module may be a processor of the chip system, such as a CPU.
  • the transceiver module may be used to perform the actions of receiving and/or sending performed by the network device in the second aspect or any possible design thereof.
  • the processing module may be used to perform actions other than receiving and sending performed by the network device in the second aspect or any possible design thereof.
  • the transceiver module may be configured to send configuration information of the first uplink resource, where the configuration information of the first uplink resource includes multiple uplink authorization configurations of the first uplink resource.
  • the processing module may be used to initialize one or more of the plurality of uplink authorization configurations.
  • the transceiver module may further send feedback information of first data, where the first data is carried in a first resource, and the first uplink resource includes the first resource.
  • the processing module may also initialize the uplink authorization configuration corresponding to the first resource.
  • the device may include a processor and/or a transceiver.
  • the device may also include memory.
  • a communication system includes the device described in the third aspect and the device described in the fourth aspect.
  • a computer-readable storage medium which is used for storing computer instructions or programs, and when the computer instructions or programs are run on a computer, the computer is made to perform the above-mentioned first to second aspects.
  • a computer program product which, when running on a computer, causes the computer to execute the method described in the first aspect to the second aspect or any possible design thereof.
  • a circuit is provided, the circuit is coupled to a memory, and the circuit is used to execute the method described in the first aspect to the second aspect or any possible implementation manner thereof.
  • the circuit may include a circuit on a chip, a chip or a system on a chip, and the like.
  • beneficial effects of the above second to eighth aspects and their possible designs can refer to the beneficial effects of the first aspect and their possible designs.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by the present application.
  • FIG. 2 is a schematic flow diagram of a CG configuration
  • FIG. 3 is a schematic flowchart of a method for determining and configuring uplink resources provided by the present application
  • Fig. 4 is a schematic structural diagram of a device provided by the present application.
  • FIG. 5 is a schematic structural diagram of a terminal device provided by the present application.
  • FIG. 6 is a schematic structural diagram of a network device provided by the present application.
  • Embodiments of the present application provide a method and device for determining and configuring uplink resources, so as to reduce power consumption of UE in small data transmission.
  • the method and the device described in this application are based on the same technical concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • At least one (species) refers to one (species) or multiple (species), and multiple (species) refers to two (species) or more than two (species).
  • Fig. 1 shows the architecture of a communication system to which the communication method provided by the embodiment of the present application is applicable, and the architecture of the communication system may include network devices and terminal devices.
  • the network device can be a device with a wireless transceiver function or a chip that can be arranged on the network device, and the network device can include but not limited to: a base station (generation node B, gNB), a radio network controller (radio network controller, RNC) ), Node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), Baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, Wi-Fi) system access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point , TRP or transmission point, TP), etc., can also be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU).
  • a base station
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (radio unit, RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link Functions of the radio link control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • a CU may be divided into network devices in the access network RAN, or a CU may be divided into network devices in the core network CN, which is not limited.
  • a network device supports communication with a terminal device.
  • the network device can communicate with the UE through a universal user to network (Uu) interface, such as configuring uplink resources of the UE through the Uu interface.
  • Uu universal user to network
  • the terminal equipment may also be called user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device , User Agent, or User Device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, smart wearable devices (smart glasses, smart watches, smart headphones, etc.), wireless terminals in smart homes, etc., can also be Chips or chip modules (or chip systems) that can be installed in the above devices.
  • the embodiments of the present application do not limit the application scenarios.
  • the terminal device supports communication with network equipment.
  • the network device can communicate with the network device through the Uu interface, such as receiving configuration information of uplink resources from the network device through the Uu interface, and/or sending uplink data to the network device through the Uu interface.
  • the communication system shown in Figure 1 may be, but not limited to, a fourth generation (4th generation, 4G) system, a fifth generation (5th generation, 5G) system, such as a new generation of wireless access technology (new radio access technology, NR), independent networking (standalone, SA), etc.
  • 4G fourth generation
  • 5th generation, 5G fifth generation
  • SA independent networking
  • the method in this embodiment of the present application is also applicable to various communication systems in the future, such as a sixth generation (6th generation, 6G) system or other communication networks.
  • the devices shown in FIG. 1 are only examples, and the communication system may also include other devices except network devices and terminal devices, which is not limited in this application.
  • the number of network devices and terminal devices is only an example, and there may be multiple network devices and terminal devices in the communication system, which is not limited in this application.
  • the network device is a base station and the terminal device is a UE as an example to introduce the method embodiments provided by the embodiments of the present application. It should not be understood that the embodiments of the present application can only be implemented by base stations and UEs.
  • the current 5G NR supports UE to transmit data in RRC inactive state (hereinafter referred to as inactive state) and RRC connected state (hereinafter referred to as connected state).
  • RRC inactive state hereinafter referred to as inactive state
  • RRC connected state hereinafter referred to as connected state
  • the process of small data transmission is shown in Figure 2, for example.
  • the inactive state is also called the RRC_INACTIVE state, which means that the UE remains in the communication management connected (CM-CONNECTED) state and can move within the area configured by the access network device without notifying the access network device In this state, the UE and the access network device store the UE context.
  • the connected state refers to the state of the UE that has established the RRC connection.
  • the RRC state may also include an RRC idle (idle) state (hereinafter referred to as the idle state), which refers to the RRC state in which the UE does not establish an RRC connection.
  • the UE in the inactive state or the connected state receives an RRC release (release) message from the base station that includes the suspension configuration.
  • the RRC release message may also include the UE's CG configuration for small data transmission in the inactive state, where the CG configuration includes time domain resource allocation information for uplink transmission, frequency domain resource allocation information, and physical layer configuration information , timer information, or cycle, etc.
  • the UE can determine the time-frequency resources for CG transmission. That is to say, it can be understood that the CG configuration corresponds to the uplink authorization resource and can be used for sending uplink messages or uplink data.
  • the CG configuration configured or pre-configured by a network device through an RRC release message or other message may be referred to as a configured CG configuration, which may be referred to as a CG configuration later on.
  • resources corresponding to a CG configuration may be referred to as CG resources.
  • the RRC release message may include configuration information of one or more CG resources, and the configuration information of the CG resources may be configuration information of CG type1 resources.
  • the configured uplink authorized resources can be determined through the configuration information of the CG resources, and each resource can be used for data transmission of the CG-SDT.
  • the UE After receiving the RRC release message, the UE is in an RRC inactive state.
  • the UE When the UE meets the small data transmission conditions and selects CG-based small data transmission based on the CG-SDT selection criteria, the UE initiates the CG-SDT procedure.
  • the UE meets the small data transmission conditions and must meet all the conditions in the following conditions:
  • the amount of data to be sent is less than the configured threshold.
  • the data to be sent may be data buffered by the UE.
  • the reference signal received power (reference signal received power, RSRP) is greater than the configured RSRP threshold.
  • All the data to be sent are mapped to the SDT radio bearer (radio bearer, RB), RB such as data radio bearer (data radio bearer, DRB) or signaling radio bearer (signaling radio bearer, DRB).
  • the RB may be referred to as an SDT RB in the future.
  • the radio bearer of the SDT may be configured or pre-configured or predefined by the network device.
  • the UE meets the small data transmission condition, and further includes: the CG resource or RA resource for the small data transmission is available.
  • Step 1 the UE sends the first uplink message on the configured grant, the uplink message is, for example, an RRC resume request (resume request) message and first uplink data.
  • the uplink message is, for example, an RRC resume request (resume request) message and first uplink data.
  • the UE can select a synchronization signal and a physical broadcast channel (physical broadcast channel) block (synchronization signal and PBCH block, SSB) according to the configured RSRP threshold.
  • a physical broadcast channel (physical broadcast channel) block synchronization signal and PBCH block, SSB
  • the UE selects an SSB whose SS-RSRP is higher than the threshold, and the UE selects the CG resource (or CG configuration) associated with the selected SSB for uplink data transmission.
  • the UE can perform The sending of the first uplink message and the first uplink data in step 1 above.
  • the UE may also send UE assistance information, such as buffer status report (buffer status report, BSR) and/or release assistance information (release assistance information, RAI).
  • UE assistance information such as buffer status report (buffer status report, BSR) and/or release assistance information (release assistance information, RAI).
  • the UE may also send UE auxiliary information in step 1, such as a buffer status report (buffer status report, BSR) and/or Release assistance information (release assistance information, RAI).
  • BSR buffer status report
  • RAI Release assistance information
  • Step 2 After sending the first uplink message, the UE monitors a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the base station After receiving the first uplink message sent by the UE, the base station sends feedback information corresponding to the first uplink message.
  • the feedback information may indicate the base station's confirmation of receiving the first uplink data, or may be a downlink message in response to the first uplink message , wherein the downlink message may be an RRC message and/or downlink data.
  • Step 3 if the UE also sends UE auxiliary information in step 1, the auxiliary information indicates to the base station that the UE has subsequent data to transmit, then the base station can send scheduling information to the UE, which is used to schedule authorized resources for subsequent transmission through dynamic scheduling .
  • the subsequent transmission may also be performed in a CG manner, that is, the uplink resource is still determined from the CG resource during the subsequent transmission.
  • the subsequent transmission includes uplink data other than the first uplink data after the uplink data is segmented.
  • the subsequent transmission includes, in the current SDT data transmission, if new data corresponding to the SDT RB arrives, the newly arrived data can also be a subsequent transmission, for example, the next RRC release after the UE receives step 0 Before the message, there is new SDT data to be transmitted, and these data are also considered as subsequent transmissions.
  • subsequent transmissions may include transmissions of retransmitted data.
  • the dynamic scheduling means that the base station schedules the uplink transmission grant of the UE through scheduling information such as downlink control information (DCI), and the grant can be called a dynamic scheduling grant (DG).
  • DCI downlink control information
  • DG dynamic scheduling grant
  • Step 4 if the base station schedules the subsequent transmission of the UE through dynamic scheduling in step 3, then the UE performs uplink transmission of subsequent data according to the scheduling information in step 3. In addition, if the base station does not perform dynamic scheduling, the UE may perform subsequent transmission based on the CG resource, that is, send the subsequent transmission at the next available opportunity in the CG resource.
  • Step 5 if the base station determines that the UE has no subsequent transmission, the base station may send an RRC release message to the UE to terminate the SDT process.
  • the base station may determine that there is no subsequent data transmission.
  • the UE can send multiple uplink and downlink data in one SDT process, and the UE does not need to switch to the connected state during this process.
  • the UE may choose to execute CG-SDT according to all CG resources when there is small data to be sent. Packetize the data to be sent. As mentioned above, UE will select SSB based on RSRP, and determine resources for uplink transmission based on the selected SSB, that is, determine resources for uplink transmission from CG resources, that is, determine resources for uplink transmission from multiple CG configurations CG configuration, and finally send the data to be sent according to the selected resources.
  • the UE may group unselected CG resources, because data will not be sent on unselected CG resources, in other words, for unselected CG resources The data grouped on these CG resources will not be sent in the end, and the process of grouping these CG resources will cause waste of UE power consumption.
  • the embodiment of the present application provides a resource determination and configuration method.
  • the method may include the steps shown in Figure 3:
  • the base station sends configuration information of the first uplink resource, where the configuration information of the first uplink resource includes multiple uplink authorization configurations of the first uplink resource.
  • the uplink authorization configuration refers to the configured authorization configuration, that is, the CG configuration.
  • the configuration information of the first uplink resource may also include only one uplink authorization configuration.
  • the first uplink resource is CG resource
  • the uplink authorization configuration is CG configuration.
  • the CG configuration may be CG type 1 or CG type 2. It should be understood that if the CG type is CG type 1, the corresponding CG resource is a type 1 resource, and if the CG type is CG type 2, the corresponding CG resource is a type 2 resource. That is to say, the uplink authorization configuration indicated by the configuration information of the first uplink resource in this application includes but not limited to the CG configuration whose CG type is CG type 1 and the CG configuration whose CG type is CG type 2.
  • the first uplink resource may include multiple uplink resources, and the uplink resources correspond to uplink authorization configurations.
  • one uplink resource corresponds to one uplink authorization configuration.
  • an uplink authorization configuration may be configuration information of a CG, and the configuration information indicates frequency domain, frequency domain, cycle and other configurations, and a CG resource may be determined according to an uplink authorization configuration, and a CG resource may correspond to the uplink authorization of the CG. Multiple opportunities for time-frequency resources.
  • resources in the first uplink resource may be associated with the SSB, and are used for the UE to determine data transmission resources from resources included in the first uplink resource according to the SSB.
  • the UE judges the relationship between the SS-RSRP measured by the UE and the RSRP threshold.
  • the UE can select an SSB whose SS-RSRP is greater than the threshold, and select a CG resource associated with the SSB. transfer resources.
  • the UE receives configuration information of the first uplink resource.
  • the base station may initialize one or more of the multiple uplink grant configurations.
  • the media access control (media access control, MAC) entity of the UE stores the uplink authorization provided by the upper layer of the MAC entity as the configured uplink authorization of the serving cell, and initializes or resets the Initially configured uplink grant configuration, which can avoid misalignment between UE and base station.
  • the above configuration information of the first uplink resource may be carried in an RRC release message, which means that the configuration information of the first uplink resource is included in the RRC release message.
  • RRC release message For the RRC release message, reference may be made to the description in step 0 shown in FIG. 2 .
  • S102 The UE suspends (suspend) one or more of multiple uplink authorization configurations.
  • suspending refers to setting the uplink authorization configuration to a state of not being used temporarily. It can further be understood that the UE maintains the configuration information of the uplink authorization configuration, but the configuration is in a deactivated state. In this application, the UE will not perform data grouping according to the resource corresponding to the pending uplink grant configuration.
  • the terminal device after receiving the configuration information of the first uplink resource, the terminal device suspends one or more uplink authorization configurations indicated by the configuration information, so as to prevent the UE from being affected by the suspended uplink authorization configuration during the small data transmission process. Packing data on corresponding resources can reduce UE power consumption.
  • the UE may also initialize one or more of the multiple uplink grant configurations.
  • the uplink authorization configuration suspended by the UE and the uplink authorization configuration initialized or re-initialized by the UE may be the same or different. Initialization can avoid misalignment between UE and base station.
  • the UE can suspend all uplink authorization configurations, and restore some of the uplink authorization configurations before performing uplink data transmission, so as to perform data transmission according to resources corresponding to the restored uplink authorization configurations.
  • restoring refers to setting the state of the suspended uplink authorization configuration to available.
  • the UE may suspend all uplink grant configurations in response to the RRC release message. It should be understood that all uplink authorization configurations may also be replaced with any (any) uplink authorization configurations. Afterwards, the UE may determine the first resource used for data transmission, and restore the uplink grant configuration corresponding to the first resource.
  • the first resource may be one of the first uplink resources, and the first resource may be used by the UE to send first data during the CG-SDT process.
  • the first resource may also be multiple resources in the first uplink resource, and the first resource may be used by the UE to send uplink data during the CG-SDT process.
  • Mode 2 before the UE needs to send uplink data, it can determine the first resource from the resources included in the first uplink resource, and suspend the uplink authorization configurations except the uplink authorization configuration corresponding to the first resource among the multiple uplink authorization configurations.
  • the UE may initialize all uplink authorization configurations included in the configuration information.
  • the UE can determine the first resource from the resources included in the first uplink resource, and suspend other uplink authorization configurations other than the uplink authorization configuration corresponding to the first resource, so as to avoid being suspended in these
  • the resources corresponding to the uplink authorization configuration are grouped to save power consumption.
  • the UE may also send the first data through the first resource.
  • the first resource in the above manner 1 and manner 2 may include one or more resources available for uplink transmission.
  • the first data transmitted by the first resource may be data corresponding to the first radio bearer, and the first radio bearer may be a radio bearer used for small data transmission, or in other words, the first data may be The data.
  • the first data may be newly transmitted or retransmitted data.
  • the new transmission refers to the initial transmission or the data transmitted for the first time
  • the retransmission refers to the data that has been sent before but is retransmitted because the transmission is not successful.
  • the first resource in the above manner 1 and manner 2 can also be used to send the RRC message and/or UE assistance information.
  • the RRC message is, for example, an RRC recovery request message
  • the UE assistance information is, for example, BSR and/or RAI.
  • the UE can select the SSB according to the RSRP, and restore the first resource corresponding to the selected SSB.
  • the process for the UE to select the SSB can refer to the process shown in Figure 2, the process for the UE to select the SSB.
  • Applications are not limited.
  • the UE may select the SSB from at least one SSB whose RSRP is not less than the RSRP threshold, and use resources associated with the SSB for data transmission.
  • the UE may initiate a random access procedure.
  • the uplink data can be transmitted through the uplink authorization obtained through the random access process.
  • the UE sends a random access request to the base station, that is, it can be understood that the UE initiates a random access procedure.
  • the random access request may carry data to be sent by the UE.
  • the UE can segment the data,
  • the first segmented data packet may be carried in the random access request.
  • the random access request may be message 3 (Msg3) in the 4-step random access process.
  • the UE suspends the previously determined first resource.
  • the reason why the TA is invalid may be that the UE determines that the TA timer has expired.
  • the TA timer is used to determine that the current TA is valid.
  • the TA timer is a configured value. If the UE does not receive the TA from the network before the TA timer expires command, the TA timer will run until it times out. Among them, the TA command is used to update the TA and restart the timer.
  • the UE updates the TA after receiving the TA command; if the UE receives the TA command before the TA timer expires, the UE restarts the TA timer.
  • the reason why the TA is invalid may be that the UE determines that the change (or change amount, change range) of the TA exceeds a threshold, where the change of the TA corresponds to the change of the RSRP of the serving cell.
  • threshold 1 which may be the RSRP increase threshold (for example, rsrp-IncreaseThresh)
  • the serving cell The decrease of the RSRP of the cell does not exceed (or reach) the threshold 2, which may be the RSRP decrease threshold (for example, rsrp-DecreaseThresh), then it is not that the change of the TA does not exceed the threshold.
  • the UE determines that the TA is invalid, it initiates a random access procedure to the UE and obtains the TA again. After regaining the TA, the UE can still use the previous CG configuration for small data transmission.
  • the base station may also indicate to the UE that the first resource can only be used for new transmission or can be used for both new transmission and retransmission through pre-configuration, protocol definition, or UE implementation decision.
  • the UE may send the first data through the first resource, and receive the feedback information of the base station for the first data.
  • the UE may suspend and/or reconfigure the uplink grant configuration corresponding to the first resource in response to the feedback information, and the feedback information may be used to determine whether the base station successfully receives the first data.
  • the base station may receive the first data from the UE through the first resource, and initialize uplink grant information corresponding to the first resource after sending the feedback information of the first data.
  • the UE may be required to re-determine resources for data transmission through the above method 1 or method 2, wherein the re-determined resources may be the first resources or other resources other than the first resources.
  • the base station may dynamically schedule resources for subsequent transmission or transmission of newly transmitted data, and the manner of dynamic scheduling by the base station may refer to step 3 shown in FIG. 2 , for example.
  • the subsequent transmission here includes but is not limited to the transmission of retransmission data of the first data.
  • the UE may send auxiliary information to the base station to indicate the existence of the subsequent transmission, otherwise, if the base station does not receive the auxiliary information, determine that there is no subsequent transmission for the UE.
  • the first resource can be used for both new transmission and retransmission, after sending the first data, if the UE needs to send subsequent transmission or retransmission data of the first data, the UE can still use the first resource for data transmission Send without reselecting resources.
  • the base station can send an RRC release message containing the suspension configuration to the UE, and the UE can suspend and/or initialize all (or any) uplinks according to the RRC release message Authorization configuration.
  • the RRC release message may also reconfigure the CG configuration for the next SDT transmission, see the reconfigured CG configuration in the table. At this time, the UE may remain in the RRC inactive state.
  • the base station can send an RRC release message that does not include the pending configuration to the UE, and the UE can release to the RRC idle state after receiving the RRC release message.
  • the embodiment of the present application also provides a device for determining or configuring uplink resources (hereinafter referred to as a communication device), which is used to realize the above-mentioned configuration by a terminal device (or UE) and/or a network device (or base station) functions.
  • a communication device for determining or configuring uplink resources
  • the device may include any structure shown in Fig. 4 to Fig. 6 .
  • the device for determining uplink resources may also be referred to as a device for determining uplink resources, and may be a UE or a component in the UE.
  • the device for configuring uplink resources may also be referred to as an uplink resource configuration device, and may be a network device or a component in the network device.
  • a communication device may include a transceiver module 420 and a processing module 410 , and the transceiver module 420 and the processing module 410 are coupled to each other.
  • the communication apparatus may be used to execute the steps performed by any one or more of the source sending device (or source base station), receiving device (or UE) or target sending device (or target base station) shown in FIG. 3 above.
  • the transceiver module 420 can be used to support the communication device to communicate, and the transceiver module 420 can also be called a communication unit, a communication interface, a transceiver module or a transceiver unit.
  • the transceiver module 420 may have a wireless communication function, for example, be able to communicate with the UE through wireless communication, and may have a wired communication function, for supporting the communication device to communicate through a wired communication interface.
  • the processing module 410 may be configured to support the communication device to execute the steps performed by any one or more of the source sending device, the receiving device, or the target sending device shown in the above method embodiments, and some steps not shown in the above embodiments Steps, the execution steps include but are not limited to: generating information and messages sent by the transceiver module 420, and/or performing demodulation and decoding processing on signals received by the transceiver module 420, and the like.
  • the transceiver module 420 may be used to perform the receiving and/or sending actions performed by the terminal device in the above method embodiments.
  • the processing module 410 may be configured to perform actions other than receiving and sending performed by the terminal device in the above method embodiments.
  • the transceiving module 420 may perform actions such as receiving configuration information of the first uplink resource, receiving feedback information of the first data, or sending a random access message.
  • the processing module 410 may be configured to perform: suspending one or more of the uplink authorization configurations, suspending all uplink authorization configurations in response to the release message, restoring the uplink authorization configuration corresponding to the first resource, and determining the first resource , suspending the uplink authorization configuration corresponding to the first resource, or suspending the uplink authorization configuration other than the uplink authorization configuration corresponding to the first resource among the multiple uplink authorization configurations.
  • the transceiver module 420 can be used to perform the actions of receiving and/or sending performed by the network device in the above method embodiments.
  • the processing module 410 may be configured to perform actions other than the receiving and sending performed by the network device in the foregoing method embodiments.
  • the transceiving module 420 may be configured to perform actions such as sending configuration information of the first uplink resource, or sending feedback information of the first data, and the like.
  • the processing module 410 may be configured to perform actions such as initialization of one or more of multiple uplink authorization configurations, or initialization of an uplink authorization configuration corresponding to the first resource.
  • Fig. 5 shows a schematic structural diagram of another communication device, which is used to perform the actions performed by the terminal device provided in the embodiment of the present application.
  • a communication device may include a processor and a memory.
  • the processor is mainly used to process communication protocols and communication data, control communication devices, execute software programs, process data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the communication device above may also include an antenna and a radio frequency circuit for communicating via wireless communication.
  • the terminal device may send data to a receiving device through the antenna and the radio frequency circuit, or receive data through the antenna and the radio frequency circuit.
  • the processor of the communication device can also perform baseband processing on the data to be sent, and output the baseband signal to the radio frequency circuit. form to send out.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and Do something with that data.
  • the antenna and/or radio frequency circuit having a transceiver function may be regarded as a transceiver unit of the communication device.
  • the transceiver unit may also include a communication interface and the like.
  • the transceiver unit may be a functional unit capable of transmitting and receiving functions; or, the transceiver unit may also include two functional units, namely a receiving unit capable of receiving and a transmitting unit capable of transmitting.
  • a processor having processing functions may also be considered as a processing unit of a communication device.
  • the communication device may include a transceiver unit 510 and a processing unit 520 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • a processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device in the transceiver unit 510 for realizing the receiving function may be regarded as a receiving unit
  • the device in the transceiver unit 510 for realizing the sending function may be regarded as a sending unit, that is, the transceiver unit 510 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the transceiver unit 510 may correspond to the transceiver module 420 , or in other words, the transceiver module 420 may be implemented by the transceiver unit 510 .
  • the transceiver unit 510 is used to perform the sending operation and the receiving operation of the terminal device in the embodiments shown in this application, and/or to support other processes of the technologies described herein.
  • the processing unit 520 may correspond to the processing module 410 , or in other words, the processing module 410 may be realized by the processing unit 520 .
  • the processing unit 520 is used to perform other operations of the terminal device in the embodiment shown in this application except the transceiving operation, for example, to perform all operations performed by the terminal device in the embodiment shown in this application except receiving and sending , and/or other processes used to support the techniques described herein.
  • the actions of the terminal device performed by the processing module 410 in the above examples may be performed by the processing unit 520 shown in FIG. 5 , so details are not repeated here.
  • the above actions of the terminal device performed by the transceiving module 420 may be performed by the transceiving unit 510 shown in FIG. 5 .
  • FIG. 5 For ease of illustration, only one memory and processor are shown in FIG. 5 .
  • processors there may be one or more processors and one or more memories.
  • a memory may also be called a storage medium or a storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • FIG. 6 shows a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device can be adapted to the architecture shown in FIG. 1 , so as to implement the actions performed by the network device in the above method embodiments.
  • the network device includes: a baseband device 601 , a radio frequency device 602 , and an antenna 603 .
  • the radio frequency device 602 receives the information sent by the terminal device through the antenna 603, and sends the information sent by the terminal device to the baseband device 601 for processing.
  • the baseband device 601 processes the information of the terminal device and sends it to the radio frequency device 602
  • the radio frequency device 602 processes the information of the terminal device and sends it to the terminal device through the antenna 603 .
  • the baseband device 601 includes one or more processing units 6011 , a storage unit 6012 and an interface 6013 .
  • the processing unit 6011 is configured to support the network device to execute the functions of the network device in the foregoing method embodiments.
  • the storage unit 6012 is used to store software programs and/or data.
  • the interface 6013 is used to exchange information with the radio frequency device 602, and the interface includes an interface circuit for input and output of information.
  • the processing unit is an integrated circuit, such as one or more ASICs, or, one or more digital signal processors (digital signal processor, DSP), or, one or more field programmable logic gates Array (field programmable gate array, FPGA), or a combination of these types of integrated circuits.
  • the storage unit 6012 and the processing unit 6011 may be located in the same circuit, that is, an on-chip storage element. Alternatively, the storage unit 6012 and the processing unit 6011 may also be located on different circuits, that is, an off-chip storage element.
  • the storage unit 6012 may be one memory, or a general term for multiple memories or storage elements.
  • the network device shown in FIG. 6 may implement some or all of the steps in the foregoing method embodiments in the form of one or more processing unit schedulers. For example, corresponding functions of the network device in the embodiment shown in FIG. 3 are implemented.
  • the one or more processing units may support wireless access technologies of the same standard, or may support wireless access technologies of different standards.
  • the processing unit 6011 or the baseband device 601 can be used to execute the actions of the network device executed by the processing module 410 shown in FIG. 4
  • the radio frequency device 603 can be used to execute the actions of the network device executed by the transceiver module 420 shown in FIG.
  • the computer software product is stored in a storage medium, and includes several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present application.
  • the aforementioned computer-readable storage medium may be any available medium that can be accessed by a computer.
  • computer-readable media can include random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), or can be used to carry or store instructions or data structures desired program code in the form of any other medium that can be accessed by a computer.
  • random access memory random access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • the embodiment of the present application also provides a communication system.
  • the communication system may include the terminal device (or UE) and network equipment (or base station) involved in the above embodiments.
  • the communication system may include the structure shown in FIG. 1 .
  • the communication device can be used to implement the steps implemented by the terminal device (or UE) and/or network equipment (or base station) in the communication method shown in FIG. 3 .
  • the embodiment of the present application also provides a computer-readable storage medium, which is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the embodiment provided by the above-mentioned method embodiment and the terminal device (or UE) and/or network equipment (or base station) related procedures.
  • the embodiment of the present application also provides a computer program product, the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the embodiment provided in the above method embodiment with the terminal device (or UE) and/or Or a process related to a network device (or base station).
  • the embodiment of the present application also provides a chip or a chip system (or circuit), the chip may include a processor, and the processor may be used to call the program or instruction in the memory, execute the embodiment provided by the above method embodiment and the terminal device (or UE) and/or network equipment (or base station) related procedures.
  • the system-on-a-chip may include the chip, and other components such as a memory or a transceiver.
  • processor in the embodiments of the present application can be a CPU, and can also be other general-purpose processors, DSP, application specific integrated circuit (ASIC), FPGA or other programmable logic devices, transistor logic device, hardware component, or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the first terminal and/or in the second terminal.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; and it may also be a semiconductor medium, such as a solid state disk.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种上行资源确定和配置方法及装置。根据该上行资源确定方法,终端设备可接收第一上行资源的配置信息,该第一上行资源的配置信息包括该第一上行资源的多个上行授权配置。终端设备可挂起该多个上行授权配置中的一个或多个。在本申请的一种可能的实施例中,终端设备在小数据传输过程中,可以通过此方法减少在挂起的上行授权配置所对应的资源上进行数据组包,从而降低不必要的组包而带来的终端设备功耗。

Description

一种上行资源确定和配置方法及装置
相关申请的交叉引用
本申请要求在2021年07月30日提交中国专利局、申请号为202110873845.1、申请名称为“一种上行资源确定和配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种上行资源确定和配置方法及装置。
背景技术
目前在无线资源控制(radio resource control,RRC)非激活(inactive)态下,支持用户设备(user equipment,UE)的小数据传输(small data transmission,SDT)。具体的,支持基于随机接入(random access,RA)的小数据传输(RA-SDT)和基于配置的上行授权配置(configured grant,CG)类型1(type1)资源的SDT传输(CG-SDT)。
针对CG-SDT,UE可能获得多个CG资源的配置,对于需要进行小数据传输的UE来说,这些资源都是可用的,因此UE会在该多个资源分别对需要发送的数据进行组包,然而UE最终只在其中一个资源进行数据的发送,在该资源以外的其他资源进行组包会导致UE的功耗增加。
发明内容
本申请提供一种上行资源确定和配置方法及装置,用以降低小数据传输过程中UE的功耗。
第一方面,本申请提供一种上行资源确定方法,该方法可由终端装置执行。终端装置可以是UE或UE中的组件。
该方法包括:终端装置可接收第一上行资源的配置信息,该第一上行资源的配置信息包括该第一上行资源的多个上行授权配置。终端装置可挂起该多个上行授权配置中的一个或多个。
基于该方法,终端装置可在收到第一上行资源的配置信息后,挂起该配置信息指示的多个上行授权配置,以避免UE在小数据传输过程中在挂起的上行授权配置所对应的资源上进行数据组包,能够降低UE功耗。
在一种可能的设计中,第一上行资源的配置信息承载于释放消息,则终端装置可响应于该释放消息,挂起所有的上行授权配置。
在一种可能的设计中,终端装置还可确定第一上行资源中的第一资源,并恢复该第一资源对应的上行授权配置,该第一资源用于传输第一数据。
在一种可能的设计中,该第一上行资源的配置信息承载于释放消息,终端装置可确定该第一上行资源中的第一资源,该第一资源用于传输第一数据。终端装置还可挂起该多个上行授权配置中,该第一资源对应的上行授权配置以外的上行授权配置。
在一种可能的设计中,终端装置还可接收第一数据的反馈信息,并挂起第一资源对应的上行授权配置,和/或,初始化第一资源对应的上行授权配置。采用该设计,终端装置可在进行第一数据的发送后,响应于第一数据的反馈信息挂起和/或初始化第一资源对应的上行授权配置,避免UE与基站之间配置的不对齐。
在一种可能的设计中,第一数据包括新传数据和/或重传数据。
在一种可能的设计中,终端装置还可确定定时提前TA无效,并挂起该第一资源对应的上行授权配置。采用该设计,可在由于RSRP变化等原因导致TA无效时挂起第一资源,以提高传输质量,因为TA无效时如果仍然采用第一资源进行传输可能导致传输受到较强的干扰,造成传输质量不佳。
在一种可能的设计中,终端装置可在确定TA定时器计时超时和/或确定TA的变化量超出阈值的情况下,确定TA无效。
在一种可能的设计中,该第一上行资源中的资源与该上行授权配置对应。
在一种可能的设计中,终端装置还可初始化该多个上行授权配置中的一个或多个,避免UE与基站之间配置的不对齐。其中,UE和网络设备均可初始化多个上行授权配置中的相同的上行授权配置,例如,UE和网络设备均初始化该第一上行资源的配置信息指示的全部上行授权配置。
在一种可能的设计中,该第一上行资源中的上行资源与同步信号和物理广播信道块SSB关联,终端装置还可在该第一上行资源中的上行资源关联的SSB的接收信号强度小于或等于接收信号强度阈值的情况下,发送随机接入消息。因此,在CG资源均不满足条件时,可通过随机接入过程重新获取上行资源,提高传输效率。
在一种可能的设计中,随机接入消息中可携带第一无线承载对应的数据,以进一步提高传输效率。
在一种可能的设计中,如果终端装置是UE,则终端装置的RRC状态为RRC非激活态。如果终端装置是UE中的组件,则终端装置所属UE的RRC状态为RRC非激活态,或者说,终端装置对应的RRC状态为RRC非激活态。
第二方面,本申请提供一种上行资源配置方法,该方法可由网络设备执行。网络设备例如是基站或基站中的组件等。
该方法包括:网络设备发送第一上行资源的配置信息,该第一上行资源的配置信息包括该第一上行资源的多个上行授权配置。网络设备还可初始化该多个上行授权配置中的一个或多个,以避免UE与网络设备配置的不对齐。
在一种可能的设计中,网络设备还可发送第一数据的反馈信息,该第一数据承载于第一资源,该第一上行资源包括该第一资源,并初始化该第一资源对应的上行授权配置。
第三方面,本申请实施例提供一种上行资源确定装置,可以实现上述第一方面或其任一可能的设计中由终端装置实现的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为终端装置、或者为可支持终端装置中实现上述方法的芯片、芯片系统、车载通信模组、或处理器等。
示例性的,该装置可包括收发模块(或称通信模块、收发单元)和处理模块(或称处理单元)等等模块化组件,这些模块可以执行上述第一方面或其任一可能的设计中终端装置的相应功能。当装置是UE时,收发模块在执行发送步骤时可以是发送模块,收发模块 在执行接收步骤时可以是接收模块,而收发模块可以由收发器代替,发送模块可以由发送器代替,接收模块可以由接收器代替。收发模块可以包括天线和射频电路等,处理模块可以是处理器,例如基带芯片等。当装置是具有上述终端装置功能的部件(如UE中的部件)时,收发模块可以是射频模块,处理模块可以是处理器。当装置是芯片系统时,收发模块可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器,例如:中央处理模块(central processing unit,CPU)。
收发模块可用于执行第一方面或其任一可能的设计中由终端装置执行的接收和/或发送的动作。处理模块可用于执行第一方面或其任一可能的设计中由终端装置执行的接收和发送以外的动作。
具体来说,收发模块可接收第一上行资源的配置信息,该第一上行资源的配置信息包括该第一上行资源的多个上行授权配置。处理模块可挂起该多个上行授权配置中的一个或多个。
在一种可能的设计中,第一上行资源的配置信息承载于释放消息,则处理模块可响应于该释放消息,挂起所有的上行授权配置。
在一种可能的设计中,处理模块还可确定第一上行资源中的第一资源,并恢复该第一资源对应的上行授权配置。
在一种可能的设计中,该第一上行资源的配置信息承载于释放消息,处理模块可确定该第一上行资源中的第一资源,该第一资源用于传输第一数据。处理模块还可挂起该多个上行授权配置中,该第一资源对应的上行授权配置以外的上行授权配置。
在一种可能的设计中,该第一资源用于传输第一数据,收发模块还可接收第一数据的反馈信息,处理模块可挂起第一资源对应的上行授权配置,和/或,初始化第一资源对应的上行授权配置。
在一种可能的设计中,第一数据包括新传数据和/或重传数据。
在一种可能的设计中,处理模块还可确定定时提前TA无效,并挂起该第一资源对应的上行授权配置。
在一种可能的设计中,处理模块可在确定TA定时器计时超时和/或确定TA的变化量超出阈值的情况下,确定TA无效。
在一种可能的设计中,该第一上行资源中的资源与该上行授权配置对应。
在一种可能的设计中,处理模块还可初始化该多个上行授权配置中的一个或多个。
在一种可能的设计中,该第一上行资源中的上行资源与同步信号和物理广播信道块SSB关联,收发模块还可在该第一上行资源中的上行资源关联的SSB的接收信号强度小于或等于接收信号强度阈值的情况下,发送随机接入消息。因此,在CG资源均不满足条件时,可通过随机接入过程重新获取上行资源,提高传输效率。
在一种可能的设计中,随机接入消息中可携带第一无线承载对应的数据,以进一步提高传输效率。
在一种可能的设计中,如果该装置是UE,则该装置的RRC状态为RRC非激活态。如果该装置是UE中的组件,则该装置所属UE的RRC状态为RRC非激活态,或者说,该装置对应的RRC状态为RRC非激活态。
可选的,该装置可包括处理器和/或收发器。该装置还可包括存储器。
第四方面,本申请实施例提供一种上行资源配置装置,可以实现上述第二方面或其任一可能的设计中由网络设备实现的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为网络设备、或者为可支持网络设备中实现上述方法的芯片、芯片系统、车载通信模组、或处理器等。
示例性的,该装置可包括收发模块(或称通信模块、收发单元)和处理模块(或称处理单元)等等模块化组件,这些模块可以执行上述第二方面或其任一可能的设计中网络设备的相应功能。当该装置是UE时,收发模块在执行发送步骤时可以是发送模块,收发模块在执行接收步骤时可以是接收模块,而收发模块可以由收发器代替,发送模块可以由发送器代替,接收模块可以由接收器代替。收发模块可以包括天线和射频电路等,处理模块可以是处理器,例如基带芯片等。当该装置是具有上述网络设备功能的部件(如UE中的部件)时,收发模块可以是射频模块,处理模块可以是处理器。当该装置是芯片系统时,收发模块可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器,例如:CPU。
收发模块可用于执行第二方面或其任一可能的设计中由网络设备执行的接收和/或发送的动作。处理模块可用于执行第二方面或其任一可能的设计中由网络设备执行的接收和发送以外的动作。
具体来说,收发模块可用于发送第一上行资源的配置信息,该第一上行资源的配置信息包括该第一上行资源的多个上行授权配置。处理模块可用于初始化该多个上行授权配置中的一个或多个。
在一种可能的设计中,收发模块还可发送第一数据的反馈信息,该第一数据承载于第一资源,该第一上行资源包括该第一资源。处理模块还可初始化该第一资源对应的上行授权配置。
可选的,该装置可包括处理器和/或收发器。该装置还可包括存储器。
第五方面,提供一种通信系统,该通信系统包括第三方面所示的装置以及第四方面所示的装置。
第六方面,提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机指令或程序,当该计算机指令或程序在计算机上运行时,使得该计算机执行上述第一方面至第二方面或其任意一种可能的实施方式中所述的方法。
第七方面,提供一种计算机程序产品,当其在计算机上运行时,使得该计算机执行上述第一方面至第二方面或其任意一种可能的设计中所述的方法。
第八方面,提供一种电路,该电路与存储器耦合,该电路被用于执行上述第一方面至第二方面或其任意一种可能的实施方式中所述的方法。该电路可包括芯片电路、芯片或芯片系统等。
以上第二方面至第八方面及其可能的设计的有益效果可参照第一方面及其可能的设计中的有益效果。
附图说明
图1为本申请提供的一种无线通信系统的架构示意图;
图2为一种CG配置的流程示意图;
图3为本申请提供的一种上行资源确定和配置方法的流程示意图;
图4为本申请提供的一种装置的结构示意图;
图5为本申请提供的一种终端设备的结构示意图;
图6为本申请提供的一种网络设备的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种上行资源确定和配置方法及装置,用以降低UE在小数据传输中的功耗。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请中的描述中,“至少一个(种)”是指一个(种)或者多个(种),多个(种)是指两个(种)或者两个(种)以上。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的通信方法及装置进行详细说明。
图1示出了本申请实施例提供的通信方法可适用的通信系统的架构,所述通信系统的架构中可以包括网络设备和终端设备。
所述网络设备可以为具有无线收发功能的设备或可设置于该网络设备的芯片,该网络设备可以包括但不限于:基站(generation node B,gNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,Wi-Fi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,对此不作限定。
本申请中,网络设备支持与终端装置进行通信。具体的,网络设备可通过通用用户与网络(universal user to network,Uu)接口与UE进行通信,如通过Uu接口配置UE的上行资源。
所述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电 脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智能穿戴设备(智能眼镜、智能手表、智能耳机等)、智慧家庭(smart home)中的无线终端等等,也可以是能够设置于以上设备的芯片或芯片模组(或芯片系统)等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
本申请中,终端装置支持与网络设备进行通信。具体的,网络设备可通过Uu接口与网络设备进行通信,如通过Uu接口接收来自于网络设备的上行资源的配置信息,和/或,通过Uu接口向网络设备发送上行数据。
需要说明的是,图1所示的通信系统可以但不限于为第四代(4th generation,4G)系统、第五代(5th generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),独立组网(standalone,SA)等。可选的,本申请实施例的方法还适用于未来的各种通信系统,例如第六代(6th generation,6G)系统或者其他通信网络等。
需要说明的是,图1中示出的设备仅仅为示例,通信系统中还可以包含除网络设备和终端设备以外的其他设备,本申请对此不作限定。网络设备和终端设备的个数也仅仅为示例,通信系统中的网络设备和终端设备也可以为多个,本申请对此不作限定。
下面以网络设备是基站且终端装置是UE为例,对本申请实施例提供的方法实施例进行介绍,不应理解为本申请实施例只能以基站和UE实施。
目前的5G NR支持UE在RRC非激活态(以下简称为非激活态)和RRC连接态(以下简称为连接态)下进行数据的传输。小数据传输的过程例如图2所示。本申请中,非激活态也叫RRC_INACTIVE态,是UE保持在连接管理建立(communication management connected,CM-CONNECTED)状态且可以在由接入网设备配置的区域内移动而不需要通知接入网设备的状态,在该状态下UE和接入网设备存储着UE上下文。连接态是指已经建立RRC连接的UE所处的状态。此外,RRC状态还可包括RRC空闲(idle)态(以下简称为空闲态),是指UE未建立RRC连接的情况下所处的RRC状态。
在如图2所示的步骤0中,处于非激活态或连接态的UE,接收来自于基站的包含挂起配置的RRC释放(release)消息,UE收到该RRC释放消息后,UE进入或保持在非激活态。该RRC释放消息中还可包括UE在非激活态下用于小数据传输的CG配置,其中,CG配置中包含用于上行传输的时域资源分配信息,频域资源分配信息,物理层配置信息,定时器信息,或周期等。基于CG配置,UE可以确定CG传输的时频资源。也即理解为,CG配置是对应于上行授权资源的,可用于上行消息或上行数据的发送。本申请中,对于网络设备通过RRC释放消息等消息配置或预配置的CG配置,可称为配置的CG配置,后续可简称为CG配置,相应地,CG配置对应的资源可称为CG资源。
其中,RRC释放消息中,可包括一个或多个CG资源的配置信息,该CG资源的配置信息可以是CG type1资源的配置信息。通过CG资源的配置信息,可以确定配置的上行授权资源,其中的每个资源都可用于CG-SDT的数据传输。
在接收到该RRC释放消息后,UE处于RRC非激活态。
当UE满足小数据传输条件并基于CG-SDT选择的标准选择了基于CG的小数据传输 时,UE发起CG-SDT过程。
其中,UE满足小数据传输条件,要满足以下条件中的全部条件:
1)待发送的数据的数据量小于配置的阈值。其中,待发送的数据可以是UE缓存的数据。
2)参考信号接收功率(reference signal received power,RSRP)大于配置的RSRP阈值。
3)所有待发送的数据都映射到SDT的无线承载(radio bearer,RB)上,RB例如数据无线承载(data radio bearer,DRB)或信令无线承载(signaling radio bearer,DRB)。后续可将该RB称为SDT RB。其中,SDT的无线承载可以是网络设备配置或预配置或预定义的。
可选的,UE满足小数据传输条件,还包括:小数据传输的CG资源或者RA资源可用。
步骤1,UE在配置的授权上发送第一个上行消息,该上行消息例如是RRC恢复请求(resume request)消息和第一上行数据。
在SDT过程中,UE可根据配置的RSRP阈值进行同步信号和物理广播信道(physical broadcast channel)块(synchronization signal and PBCH block,SSB)的选择。对于CG-SDT,UE选择SS-RSRP高于阈值的SSB,并且UE会选择与该选择的SSB关联的CG资源(或CG配置),用于上行数据传输,例如,UE可根据该CG资源执行上述步骤1中第一上行消息和第一上行数据的发送。
可选的,步骤1中UE还可发送UE辅助信息,UE辅助信息例如缓冲区状态报告(buffer status report,BSR)和/或释放辅助信息(release assistance information,RAI)。
可选的,如果UE有除了第一个上行数据之外的其他数据要发送,步骤1中UE还可发送UE辅助信息,UE辅助信息例如缓冲区状态报告(buffer status report,BSR)和/或释放辅助信息(release assistance information,RAI)。
步骤2,UE发送第一上行消息后,监听物理下行控制信道(physical downlink control channel,PDCCH)。
基站接收到UE发送的第一上行消息后,发送第一上行消息对应的反馈信息,该反馈信息可以是指示基站对于第一上行数据的接收确认,也可以是响应于第一上行消息的下行消息,其中该下行消息可以是RRC消息和/或下行数据。
步骤3,如果在步骤1中UE还发送UE辅助信息,该辅助信息向基站指示UE有后续数据要传输,则基站可以向UE发送调度信息,用于通过动态调度的方式调度后续传输的授权资源。或者,后续传输也可以通过CG的方式进行传输,即后续传输时仍然从CG资源中确定上行资源。
本申请中,后续传输包括,对上行数据进行分段后,除第一上行数据以外的上行数据。或者,后续传输包括,当前的SDT的数据传输中,有SDT RB对应的新的数据到达,则新到达的数据也可为是后续传输,例如,在UE接收到步骤0之后的下一个RRC释放消息之前,有新的SDT数据需要传输,这些数据也认为是后续传输。或者,后续传输可包括重传数据的传输。
这里的动态调度是指,基站通过下行控制信息(download control information,DCI)等调度信息,调度UE的上行传输授权,该授权可称为动态调度授权(dynamic grant,DG)。
步骤4,如果基站在步骤3中通过动态调度的方式调度了UE的后续传输,则UE根据 步骤3的调度信息进行后续数据的上行传输。此外,如果基站没有进行的动态调度,则UE可基于CG资源进行后续传输,即在CG资源中的下一个可用时机上发送后续传输。
步骤5,如果基站确定UE没有后续传输,则基站可向UE发送RRC释放消息,终止SDT过程。可选的,如果UE未上报辅助信息,或者说,如果基站未接收到UE发送的辅助信息,或者UE上报的辅助信息指示UE没有后续数据传输,则基站可确定没有后续传输。
另外需要注意的是,目前的SDT过程中UE可在一个SDT过程中发多个上行和下行数据,这个过程中UE不需要转换到连接态。
基于图2的小数据传输过程中,如果基站配置了多个用于SDT的CG配置,UE可能会在有待发送的小数据存在的情况下,在选择了执行CG-SDT后,根据全部CG资源对待发送的数据进行组包。如前所述,UE会基于RSRP选择SSB,并基于选择的SSB确定用于上行传输的资源,即从CG资源中确定进行上行传输的资源,也即从多个CG配置中确定用于上行传输的CG配置,最后根据选择的资源进行待发送数据的发送。然而,在选择出用于上行传输的CG资源之前,UE可能针对未选择的CG资源进行组包,由于未选择的CG资源上不会进行数据的发送,换句话说,针对未选择的CG资源上进行组包的数据最终不会被发送,在这些CG资源上进行组包的过程会造成UE功耗的浪费。
为了降低UE在SDT过程中不必要组包带来的功耗,本申请实施例提供一种资源确定和配置方法。该方法可包括图3所示步骤:
S101:基站发送第一上行资源的配置信息,第一上行资源的配置信息包括第一上行资源的多个上行授权配置。本申请中,上行授权配置是指配置的授权配置,即CG配置。
在一种可能的实现方式中,第一上行资源的配置信息还可以只包括一个上行授权配置。其中,第一上行资源如CG资源,上行授权配置如CG配置,可选的,CG配置可以是CG类型1或CG类型2。应理解,如果CG类型是CG类型1,则相应的CG资源为类型1资源,如果CG类型是CG类型2,则相应的CG资源为类型2资源。也就是说,本申请在第一上行资源的配置信息所指示的上行授权配置包括但不限于CG类型是CG类型1的CG配置和CG类型是CG类型2的CG配置。
S101中,第一上行资源可包括多个上行资源,上行资源与上行授权配置之间对应。例如,一个上行资源对应于一个上行授权配置。其中,一个上行授权配置可以是一个CG的配置信息,该配置信息所指示频域,频域,周期等配置,根据一个上行授权配置可以确定一个CG资源,一个CG资源可以对应CG的上行授权的时频资源的多个时机。
可选的,第一上行资源中的资源可与SSB关联,用于UE根据SSB从第一上行资源包括的资源中确定数据的传输资源。具体的,UE基于配置的RSRP阈值,判断UE测量的SS-RSRP与RSRP阈值的关系,UE可选择SS-RSRP大于阈值的SSB,并选择与该SSB关联的CG资源,该CG资源即数据的传输资源。
相应地,UE接收第一上行资源的配置信息。
可选的,该基站在发送第一上行资源的配置信息后,可初始化该多个上行授权配置中的一个或多个。其中,当上层为服务小区配置了CG配置时,UE的媒体接入控制(media access control,MAC)实体将MAC实体的上层提供的上行授权存储为服务小区的配置的上行授权,并初始化或重新初始化配置的上行授权配置,这能够避免UE和基站之间的不对齐。
以上第一上行资源的配置信息可承载于RRC释放消息中,所述承载于是指第一上行资源的配置信息包含在RRC释放消息中。该RRC释放消息可参照图2所示步骤0中的说明。
S102:UE挂起(suspend)多个上行授权配置中的一个或多个。
其中,挂起是指将上行授权配置设置为暂时不使用的状态。进一步可以理解为,UE保持该上行授权配置的配置信息,但该配置是去激活状态。本申请中,UE不会根据挂起的上行授权配置所对应的资源进行数据组包。
根据以上方法,终端装置在收到第一上行资源的配置信息后,挂起该配置信息指示的一个或多个上行授权配置,以避免UE在小数据传输过程中在挂起的上行授权配置所对应的资源上进行数据组包,能够降低UE功耗。
此外,除了挂起多个上行授权配置中的一个或多个,UE还可初始化多个上行授权配置中的一个或多个。其中,UE挂起的上行授权配置和UE初始化或重新初始化的上行授权配置可以相同或不同。初始化能够避免UE和基站之间的不对齐。
下面对S102中UE挂起多个上行授权配置中的一个或多个的方式进行说明。
方式1,UE可以挂起全部上行授权配置,并在进行上行数据传输之前恢复其中的部分上行授权配置,用于根据恢复的上行授权配置对应的资源进行数据传输。本申请中,恢复是指,将被挂起的上行授权配置的状态设置为可用。
具体的,如果上行授权配置携带在RRC释放消息中,则UE可响应于该RRC释放消息,挂起所有的上行授权配置。应理解,所有的上行授权配置还可以替换为任何(any)上行授权配置。之后UE可确定用于数据传输的第一资源,并恢复该第一资源对应的上行授权配置。该第一资源可以是第一上行资源中的一个资源,第一资源可用于UE在CG-SDT过程中发送第一数据。可选的,第一资源也可以是第一上行资源中的多个资源,第一资源可用于UE在CG-SDT过程中发送上行数据。
方式2,UE可以在需要发送上行数据之前,从第一上行资源包括的资源中确定第一资源,并挂起多个上行授权配置中除第一资源对应的上行授权配置以外的上行授权配置。
具体的,UE在接收到第一上行资源的配置信息后,可初始化该配置信息包括的全部上行授权配置。在需要进行小数据传输时,UE可从第一上行资源包括的资源中确定第一资源,并挂起该第一资源对应的上行授权配置以外的其他上行授权配置,从而避免在这些被挂起的上行授权配置所对应的资源进行组包,以节省功耗。UE还可通过第一资源发送第一数据。
应理解,以上方式1和方式2中的第一资源可包括一个或多个可用于进行上行传输的资源。其中,第一资源所传输的第一数据可以是第一无线承载对应的数据,该第一无线承载可以是小数据传输所使用的无线承载,或者说,该第一数据可以是小数据传输中的数据。该第一数据可以是新传或重传数据。其中,新传是指初次传输或第一次传输的数据,重传是指之前发送过,但由于未发送成功而重新传输的数据。
可选的,以上方式1和方式2中的第一资源还可用于发送RRC消息和/或UE辅助信息。RRC消息例如RRC恢复请求消息,UE辅助信息例如是BSR和/或RAI。
以上方式1和方式2中,UE可根据RSRP选择SSB,并恢复选择的SSB所对应的第一资源,其中,UE选择SSB的过程可参照图2所示流程中,UE选择SSB的过程,本申请不予限定。例如,UE可从RSRP不小于RSRP阈值的至少一个SSB中,选择该SSB, 将该SSB关联的资源用于数据传输。
此外,如果UE确定第一资源关联的全部SSB的RSRP均小于RSRP阈值,则UE可发起随机接入过程。可选的,可以通过随机接入过程获得的上行授权进行上行数据的传输。例如,UE在确定第一资源关联的全部SSB的RSRP均小于RSRP阈值的情况下,向基站发送随机接入请求,即可以理解为,UE发起随机接入过程。可选的,该随机接入请求中可携带UE需发送的数据。如果UE有待发送的小数据,且该数据的大小大于随机接入中消息2(即随机接入响应(random access response,RAR))中分配的授权的大小,则UE可以将数据进行分段,在随机接入请求中可携带分段后的第一个数据包。示例性的,该随机接入请求可以是4步随机接入过程中的消息3(Msg3)。
以上方式1和方式2中,在UE确定第一资源以后,如果RSRP发生变化,导致UE的定时提前(timing advance,TA)无效,则UE挂起此前确定的第一资源。其中,TA无效的原因可能是UE确定TA定时器超时,其中,TA定时器用于确定当前TA有效,TA定时器是配置的一个值,如果在TA定时器超时之前,UE没有收到网络的TA命令,则TA定时器会一直运行,直到超时。其中,TA命令用于TA更新及重启定时器,即理解为,UE收到TA命令,则更新TA;如果UE在TA定时器超时之前,收到TA命令,UE重启TA定时器。或者,TA无效的原因可能是UE确定TA的变化(或变化量、变化幅度)超出阈值,其中,TA的变化对应于服务小区的RSRP变化。其中,自上次TA验证以来,服务小区RSRP的增加幅度未超过(或达到)阈值1,该阈值1可以是RSRP增加幅度阈值(例如,rsrp-IncreaseThresh),并且自上次TA验证以来,服务小区RSRP的减少幅度未超过(或达到)阈值2,该阈值2可以是RSRP减少幅度阈值(例如,rsrp-DecreaseThresh),则不是TA的变化未超出阈值。
在一种可能的实现方式中,如果UE确定TA无效,则向发起随机接入过程,并重新获得TA。在重新获得TA之后,UE仍可采用此前的CG配置进行小数据传输。
本申请中,还可以由基站向UE指示或者通过预配置方式或由协议定义或由UE实现决定,限定第一资源只能用于新传或是即可用于新传也可用于重传。
其中,UE可以在通过第一资源发送第一数据,并接收到基站针对第一数据的反馈信息。
如果第一资源只能用于新传,则UE可响应于该反馈信息挂起和/或重配置第一资源对应的上行授权配置,该反馈信息可用于确定基站是否成功接收该第一数据。可选的,本申请中,基站可通过第一资源接收来自于UE的第一数据,并在发送第一数据的反馈信息后,初始化第一资源对应的上行授权信息。
如果需要发送后续传输,则可以要UE通过以上方式1或方式2,重新确定用于传输数据的资源,其中,重新确定的资源可以是第一资源,也可以是第一资源以外的其他资源。或者,可由基站动态调度用于后续传输或新传数据的传输的资源,基站动态调度的方式例如可参照图2所示步骤3所示。这里的后续传输包括但不限于传输第一数据的重传数据。其中,如果需要发送后续传输,UE可向基站发送辅助信息,以指示存在后续传输,否则,如果基站未接收到辅助信息,则确定UE不存在后续传输。
如果第一资源即可用于新传也可用于重传,则在发送第一数据后,如果UE还需要发送后续传输或第一数据的重传数据,则UE仍可通过第一资源进行数据的发送,不需要重 新选择资源。
可选的,如果基站决定将UE释放到非激活态,则基站可向UE发送包含挂起配置的RRC释放消息,UE可根据该RRC释放消息,挂起和/或初始化全部(或任何)上行授权配置。可选的,该RRC释放消息也可以重新配置下一个SDT传输的CG配置,如表看重新配置的CG配置。此时UE可保持在RRC非激活态。
另外,如果基站决定将UE释放到空闲态,则基站可向UE发送不包含挂起配置的RRC释放消息,UE接收到该RRC释放消息后,可释放到RRC空闲态。
基于相同的发明构思,本申请实施例还提供一种用于上行资源的确定或配置的装置(以下简称为通信装置),用于实现以上由终端装置(或UE)和/或网络设备(或基站)实现的功能。该装置可包括图4至图6中任一所示结构。
应理解,该用于上行资源的确定的装置也可称为上行资源确定装置,可以是UE或者UE中的组件。该用于上行资源的配置的装置也可称为上行资源配置装置,可以是网络设备或者网络设备中的组件。
如图4所示,本申请实施例提供的一种通信装置可以包括收发模块420以及处理模块410,以上收发模块420以及处理模块410之间相互耦合。该通信装置可用于执行以上图3中所示的由源发送设备(或源基站)、接收设备(或UE)或目标发送设备(或目标基站)中的任意一个或多个所执行的步骤。具体的,该收发模块420可用于支持通信装置进行通信,收发模块420也可被称为通信单元、通信接口、收发模块或收发单元。收发模块420可具备无线通信功能,例如能够通过无线通信方式与UE进行通信,以及可具备有线通信功能,用于支持通信装置通过有线通信接口进行通信。处理模块410可用于支持该通信装置执行上述方法实施例中所示的由源发送设备、接收设备或目标发送设备中的任意一个或多个所执行的步骤,和上述实施例未示出的一些步骤,执行步骤包括但不限于:生成由收发模块420发送的信息、消息,和/或,对收发模块420接收的信号进行解调解码处理等等。
在通过图4所示结构实现本申请实施例提供的终端装置时,收发模块420可用于执行上述方法实施例中由终端装置执行的接收和/或发送的动作。处理模块410可用于执行上述方法实施例中由终端装置执行的接收和发送以外的动作。例如,收发模块420可执行:第一上行资源的配置信息的接收,第一数据的反馈信息的接收,或随机接入消息的发送等动作。例如,处理模块410可用于执行:上行授权配置中的一个或多个的挂起,响应于释放消息挂起所有的上行授权配置,第一资源对应的上行授权配置的恢复,第一资源的确定,第一资源对应的上行授权配置的挂起,或多个上行授权配置中的第一资源对应的上行授权配置以外的上行授权配置的挂起等动作。
在通过图4所示结构实现本申请实施例提供的网络设备时,收发模块420可用于执行上述方法实施例中由网络设备执行的接收和/或发送的动作。处理模块410可用于执行上述方法实施例中由网络设备执行的接收和发送以外的动作。例如,收发模块420可用于执行:第一上行资源的配置信息的发送,或第一数据的反馈信息的发送等动作。处理模块410可用于执行多个上行授权配置中的一个或多个的初始化,或第一资源对应的上行授权配置的初始化等动作。
图5示出了另一种通信装置的结构示意图,用于执行本申请实施例提供的由终端装置 执行的动作。如图5所示,通信装置可包括处理器和存储器。处理器主要用于对通信协议以及通信数据进行处理,以及对通信装置进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。
以上通信装置还可包括天线和射频电路,用于通过无线通信方式进行通信,例如,终端装置可通过天线和射频电路向接收设备发送数据,或通过天线和射频电路接收数据。当需要发送数据(或信息、信号)时,通信装置的处理器还可对待发送的数据进行基带处理,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据(或信息、信号)发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
在本申请实施例中,可以将具有收发功能的天线和/或射频电路视为通信装置的收发单元。收发单元还可包括通信接口等。收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元。还可将具有处理功能的处理器视为通信装置的处理单元。如图5所示,通信装置可包括收发单元510和处理单元520。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元510中用于实现接收功能的器件视为接收单元,将收发单元510中用于实现发送功能的器件视为发送单元,即收发单元510包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元510可与收发模块420对应,或者说,收发模块420可由收发单元510实现。收发单元510用于执行本申请所示实施例中的终端装置的发送操作和接收操作,和/或用于支持本文所描述的技术的其它过程。处理单元520可与处理模块410对应,或者说,处理模块410可由处理单元520实现。处理单元520用于执行本申请所示实施例中终端装置的除了收发操作之外的其他操作,例如用于执行本申请所示实施例中由终端装置所执行的除接收和发送以外的全部操作,和/或用于支持本文所描述的技术的其它过程。
也就是说,以上示例中由处理模块410执行的终端装置动作可由图5所示的处理单元520执行,不再赘述。同理,以上由收发模块420执行的终端装置的动作可由图5所示的收发单元510执行。
为便于说明,图5中仅示出了一个存储器和处理器。在实际的通信装置中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
图6给出了本申请实施例提供的一种网络设备的结构示意图。如图6所示,网络设备可适用于图1所示的架构中,以实现以上方法实施例中由网络设备执行的动作。该网络设备包括:基带装置601,射频装置602、天线603。在上行方向上,射频装置602通过天线603接收终端设备发送的信息,将终端设备发送的信息发送给基带装置601进行处理。在下行方向上,基带装置601对终端设备的信息进行处理,并发送给射频装置602,射频装置602对终端设备的信息进行处理后经过天线603发送给终端设备。
基带装置601包括一个或多个处理单元6011,存储单元6012和接口6013。其中处理单元6011用于支持网络设备执行上述方法实施例中网络设备的功能。存储单元6012用于存储软件程序和/或数据。接口6013用于与射频装置602交互信息,该接口包括接口电路,用于信息的输入和输出。在一种实现中,所述处理单元为集成电路,例如一个或多个ASIC,或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程逻辑门阵列(field programmable gate array,FPGA),或者这些类集成电路的组合。存储单元6012与处理单元6011可以位于同一个电路中,即片内存储元件。或者存储单元6012也可以与处理单元6011处于不同电路上,即片外存储元件。所述存储单元6012可以是一个存储器,也可以是多个存储器或存储元件的统称。
图6所示的网络设备可以通过一个或多个处理单元调度程序的形式实现上述方法实施例中的部分或全部步骤。例如实现图3所示的实施例中的网络设备的相应的功能。所述一个或多个处理单元可以支持同一种制式的无线接入技术,也可以支持不同种制式的无线接入制式。
举例来说,处理单元6011或基带装置601可用于执行由图4所示处理模块410执行的网络设备的动作,射频装置603可用于执行由图4所示收发模块420执行的网络设备的动作,具体可参见前述说明,这里不再具体展开。
在本申请所提供的几个实施例以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。
本申请实施例还提供一种通信系统。该通信系统可以包括上述实施例所涉及的终端装置(或UE)和网络设备(或基站)。可选的,该通信系统可包括图1所示结构。该通信装置可用于实现图3所示的通信方法中由终端装置(或UE)和/或网络设备(或基站)实现的步骤。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,计算机可以实现上述方法实施例提供的实施例中与终端装置(或UE)和/或网络设备(或基站)相关的流程。
本申请实施例还提供一种计算机程序产品,计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,计算机可以实现上述方法实施例提供的实施例中与终端装置(或UE)和/或网络设备(或基站)相关的流程。
本申请实施例还提供一种芯片或芯片系统(或电路),该芯片可包括处理器,该处理器可用于调用存储器中的程序或指令,执行上述方法实施例提供的实施例中与终端装置 (或UE)和/或网络设备(或基站)相关的流程。该芯片系统可包括该芯片,还可存储器或收发器等其他组件。
可以理解的是,本申请的实施例中的处理器可以是CPU,还可以是其它通用处理器、DSP、专用集成电路(application specific integrated circuit,ASIC)、FPGA或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于第一终端装置和/或第二终端装置中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (36)

  1. 一种上行资源确定方法,其特征在于,包括:
    接收第一上行资源的配置信息,所述第一上行资源的配置信息包括所述第一上行资源的多个上行授权配置;
    挂起所述多个上行授权配置中的一个或多个。
  2. 如权利要求1所述的方法,其特征在于,所述第一上行资源的配置信息承载于释放消息,所述挂起所述多个上行授权配置中的一个或多个,包括:
    响应于所述释放消息,挂起所有的所述上行授权配置。
  3. 如权利要求1或2所述的方法,其特征在于,还包括:
    确定所述第一上行资源中的第一资源,所述第一资源用于传输第一数据;
    恢复所述第一资源对应的上行授权配置。
  4. 如权利要求1所述的方法,其特征在于,所述第一上行资源的配置信息承载于释放消息,所述挂起所述多个上行授权配置中的一个或多个,包括:
    确定所述第一上行资源中的第一资源,所述第一资源用于传输第一数据;
    挂起所述多个上行授权配置中,所述第一资源对应的上行授权配置以外的上行授权配置。
  5. 如权利要求3或4所述的方法,其特征在于,还包括:
    接收所述第一数据的反馈信息;
    挂起所述第一资源对应的上行授权配置,和/或,初始化所述第一资源对应的上行授权配置。
  6. 如权利要求3-5中任一所述的方法,其特征在于,第一数据包括新传数据和/或重传数据。
  7. 如权利要求3或5-6中任一所述的方法,其特征在于,还包括:
    确定定时提前TA无效;
    挂起所述第一资源对应的上行授权配置。
  8. 如权利要求7所述的方法,其特征在于,所述确定TA无效,包括:
    确定TA定时器计时超时;或者,
    确定TA的变化量超出阈值。
  9. 如权利要求1-8中任一所述的方法,其特征在于,所述第一上行资源中的资源与所述上行授权配置对应。
  10. 如权利要求1-9中任一所述的方法,其特征在于,还包括:
    初始化所述多个上行授权配置中的一个或多个。
  11. 如权利要求1或2所述的方法,其特征在于,所述第一上行资源中的上行资源与同步信号和物理广播信道块SSB关联,所述方法还包括:
    在所述第一上行资源中的上行资源关联的SSB的接收信号强度小于或等于接收信号强度阈值的情况下,发送随机接入消息。
  12. 如权利要求11所述的方法,其特征在于,所述随机接入消息中携带第一无线承载对应的数据。
  13. 如权利要求1-12中任一所述的方法,其特征在于,所述方法应用于终端装置,所 述终端装置的无线资源控制RRC状态为RRC非激活态。
  14. 一种上行资源配置方法,其特征在于,包括:
    发送第一上行资源的配置信息,所述第一上行资源的配置信息包括所述第一上行资源的多个上行授权配置;
    初始化所述多个上行授权配置中的一个或多个。
  15. 如权利要求14所述的方法,其特征在于,还包括:
    发送第一数据的反馈信息,所述第一数据承载于第一资源,所述第一上行资源包括所述第一资源;
    初始化所述第一资源对应的上行授权配置。
  16. 一种上行资源确定装置,其特征在于,包括收发模块和处理模块:
    所述收发模块,用于接收第一上行资源的配置信息,所述第一上行资源的配置信息包括所述第一上行资源的多个上行授权配置;
    所述处理模块,用于挂起所述多个上行授权配置中的一个或多个。
  17. 如权利要求16所述的装置,其特征在于,所述第一上行资源的配置信息承载于释放消息,
    所述处理模块具体用于:
    响应于所述释放消息,挂起所有的所述上行授权配置。
  18. 如权利要求16或17所述的装置,其特征在于,还包括:
    确定所述第一上行资源中的第一资源,所述第一资源用于传输第一数据;
    恢复所述第一资源对应的上行授权配置。
  19. 如权利要求16所述的装置,其特征在于,所述第一上行资源的配置信息承载于释放消息,所述处理模块具体用于:
    确定所述第一上行资源中的第一资源,所述第一资源用于传输第一数据;
    挂起所述多个上行授权配置中,所述第一资源对应的上行授权配置以外的上行授权配置。
  20. 如权利要求18或19所述的装置,其特征在于,所述收发模块还用于:
    接收所述第一数据的反馈信息;
    所述处理模块还用于:
    挂起所述第一资源对应的上行授权配置,和/或,初始化所述第一资源对应的上行授权配置。
  21. 如权利要求18-20中任一所述的装置,其特征在于,第一数据包括新传数据和/或重传数据。
  22. 如权利要求18或20-21中任一所述的装置,其特征在于,所述处理模块还用于:
    确定定时提前TA无效;
    挂起所述第一资源对应的上行授权配置。
  23. 如权利要求22所述的装置,其特征在于,所述处理模块具体用于:
    确定TA定时器计时超时;或者,
    确定TA的变化量超出阈值。
  24. 如权利要求16-23中任一所述的装置,其特征在于,所述第一上行资源中的资源与所述上行授权配置对应。
  25. 如权利要求16-24中任一所述的装置,其特征在于,所述处理模块还用于:
    初始化所述多个上行授权配置中的一个或多个。
  26. 如权利要求16或17所述的装置,其特征在于,所述第一上行资源中的上行资源与同步信号和物理广播信道块SSB关联,所述收发模块还用于:
    在所述第一上行资源中的上行资源关联的SSB的接收信号强度小于或等于接收信号强度阈值的情况下,发送随机接入消息。
  27. 如权利要求26所述的装置,其特征在于,所述随机接入消息中携带第一无线承载对应的数据。
  28. 如权利要求16-27中任一所述的装置,其特征在于,所述装置为终端装置,所述装置的RRC状态为RRC非激活态。
  29. 一种上行资源配置装置,其特征在于,包括收发模块和处理模块:
    所述收发模块,用于发送第一上行资源的配置信息,所述第一上行资源的配置信息包括所述第一上行资源的多个上行授权配置;
    所述处理模块,用于初始化所述多个上行授权配置中的一个或多个。
  30. 如权利要求29所述的装置,其特征在于,所述收发模块还用于:
    发送第一数据的反馈信息,所述第一数据承载于第一资源,所述第一上行资源包括所述第一资源;
    所述处理模块还用于:
    初始化所述第一资源对应的上行授权配置。
  31. 一种通信装置,其特征在于,包括存储器以及处理器:
    所述存储器用于存储一个或多个计算机程序,当所述一个或多个计算机程序被运行时,使得如权利要求1~13中任一项所述的方法被执行。
  32. 一种通信装置,其特征在于,包括存储器以及处理器:
    所述存储器用于存储一个或多个计算机程序,当所述一个或多个计算机程序被运行时,使得如权利要求14或15所述的方法被执行。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-13中任意一项所述的方法,或者使得所述计算机执行如权利要求14-15中任意一项所述的方法。
  34. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行如权利要求1-13中任意一项所述的方法,或者使得所述计算机执行如权利要求14-15中任意一项所述的方法。
  35. 一种通信系统,其特征在于,包括如权利要求31所述的通信装置,以及包括如权利要求32所述的通信装置。
  36. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以执行如权利要求1-13中任一所述的方法,或者执行如权利要求14-15中任一所述的方法。
PCT/CN2022/098687 2021-07-30 2022-06-14 一种上行资源确定和配置方法及装置 WO2023005471A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110873845.1 2021-07-30
CN202110873845.1A CN115701184A (zh) 2021-07-30 2021-07-30 一种上行资源确定和配置方法及装置

Publications (1)

Publication Number Publication Date
WO2023005471A1 true WO2023005471A1 (zh) 2023-02-02

Family

ID=85086262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098687 WO2023005471A1 (zh) 2021-07-30 2022-06-14 一种上行资源确定和配置方法及装置

Country Status (2)

Country Link
CN (1) CN115701184A (zh)
WO (1) WO2023005471A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111246590A (zh) * 2020-01-10 2020-06-05 北京紫光展锐通信技术有限公司 数据传输方法及相关产品
CN111328151A (zh) * 2020-02-26 2020-06-23 展讯通信(上海)有限公司 数据传输方法与设备
WO2021136474A1 (en) * 2019-12-31 2021-07-08 FG Innovation Company Limited Method of small data transmission and related device
US20210307055A1 (en) * 2020-03-24 2021-09-30 FG Innovation Company Limited Method and user equipment for configured grant configuration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021136474A1 (en) * 2019-12-31 2021-07-08 FG Innovation Company Limited Method of small data transmission and related device
CN111246590A (zh) * 2020-01-10 2020-06-05 北京紫光展锐通信技术有限公司 数据传输方法及相关产品
CN111328151A (zh) * 2020-02-26 2020-06-23 展讯通信(上海)有限公司 数据传输方法与设备
US20210307055A1 (en) * 2020-03-24 2021-09-30 FG Innovation Company Limited Method and user equipment for configured grant configuration

Also Published As

Publication number Publication date
CN115701184A (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
CN110876183B (zh) Rrc连接释放方法、相关设备及系统
WO2019137342A1 (zh) 上行资源的使用方法及装置
US11147048B2 (en) Method for resource scheduling and related devices
WO2018196520A1 (zh) 一种波束管理方法及终端设备、网络设备
WO2020030051A1 (zh) 一种资源配置方法及装置
WO2019158011A1 (zh) 一种功率控制方法及装置
US10057937B2 (en) Communications via multiple access points
RU2759800C2 (ru) Устройство связи, способ связи и программа
US20200008250A1 (en) Wireless Connection Establishment Method And Apparatus
WO2021027551A1 (zh) 一种通信方法及装置
WO2021088006A1 (zh) 通信方法和通信装置
WO2019141069A1 (zh) 用于管理非授权频段的信道占用时长的方法和设备
WO2023005471A1 (zh) 一种上行资源确定和配置方法及装置
WO2021062837A1 (zh) 通信方法及装置
WO2020134437A1 (en) Methods, radio nodes and computer readable media for enhanced grant skipping
WO2023019437A1 (zh) 通信方法及通信装置
WO2024119479A1 (zh) 通信方法、终端设备以及通信设备
WO2023102896A1 (zh) 通信方法及通信装置
WO2023225936A1 (zh) 无线通信的方法及装置
WO2023197299A1 (zh) 无线通信的方法及装置
US11937232B2 (en) Method and device for wireless communication
WO2023197292A1 (zh) 无线通信的方法及装置
WO2023205959A1 (zh) 通信方法及通信装置
WO2024138295A1 (zh) 用于传输数据的方法、终端设备以及网络设备
WO2023082067A1 (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22848079

Country of ref document: EP

Kind code of ref document: A1