WO2019141069A1 - 用于管理非授权频段的信道占用时长的方法和设备 - Google Patents

用于管理非授权频段的信道占用时长的方法和设备 Download PDF

Info

Publication number
WO2019141069A1
WO2019141069A1 PCT/CN2018/124991 CN2018124991W WO2019141069A1 WO 2019141069 A1 WO2019141069 A1 WO 2019141069A1 CN 2018124991 W CN2018124991 W CN 2018124991W WO 2019141069 A1 WO2019141069 A1 WO 2019141069A1
Authority
WO
WIPO (PCT)
Prior art keywords
duration
terminal
network device
channel occupation
time interval
Prior art date
Application number
PCT/CN2018/124991
Other languages
English (en)
French (fr)
Inventor
贾琼
朱俊
吴霁
陈光祯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810954297.3A external-priority patent/CN110062464B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18901056.4A priority Critical patent/EP3742835A4/en
Publication of WO2019141069A1 publication Critical patent/WO2019141069A1/zh
Priority to US16/930,473 priority patent/US11297648B2/en
Priority to US17/695,332 priority patent/US20220279576A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a management technique in an unlicensed frequency band scenario or a communication technology using a channel occupation duration.
  • LAA Licensed Assisted Access
  • R-13 Enhanced Authorized Spectrum Assisted Access
  • Release 14 Release-14, R-14
  • LBT Listen before talk
  • the application of the unlicensed band is still a business needs to enhance the technical means to the user experience.
  • the base station obtains the maximum channel occupancy time (MCOT)
  • MCOT maximum channel occupancy time
  • it does not provide how to use the terminal in the case that the uplink transmission does not use up the MCOT.
  • the embodiments of the present application provide a wireless communication method, a network device, and a terminal, which are applied to an unlicensed frequency band, wherein the channel occupancy time acquired by the terminal when the channel is listening idle is managed by the network device, and the channel occupation time can be effectively utilized. , solved the above problem.
  • the embodiment of the present application provides the following technical solutions:
  • the present application provides a network device-based wireless communication method, which can schedule one or more terminals for uplink transmission or interact with a terminal operating in an unlicensed transmission mode.
  • the method includes: the network device receives the uplink transmission of the first terminal in a duration of the channel occupation duration of the first terminal; after the uplink transmission of the first terminal ends, the network device is in the first terminal The downlink transmission is performed in the remaining portion of the channel occupation duration except for the partial duration for receiving the uplink transmission of the first terminal.
  • the network device receives the uplink transmission of the first terminal in a first duration of the channel occupation duration of the first terminal, and the channel occupation duration of the first terminal further includes a second duration, the second The duration is after the first duration; the network device performs downlink transmission in the second duration, where a sum of the first duration and the second duration is less than or equal to a channel occupation duration of the first terminal .
  • the uplink transmission of the terminal and the downlink transmission of the network device are performed in the channel occupation duration of the terminal (or the "maximum channel occupation duration"), and the uplink transmission of the terminal cannot occupy the channel occupation time. When it is exhausted, it can be shared to the network device for downlink transmission, so that the terminal channel occupation time can be effectively utilized.
  • the time interval may be due to, for example, downlink transmission data or signaling of the network device is not ready, or due to handover of uplink and downlink transmissions, etc. Caused.
  • the network device has at least one time interval in the downlink transmission. This is because the downlink transmission of the network device is discontinuous, for example, the downlink transmission data of the network device or the signaling is not ready.
  • the channel occupation duration of the first terminal includes the at least one time interval;
  • the channel occupation duration of the first terminal does not include the at least one time interval.
  • the above preset value may be 25 us.
  • the time interval When the time interval is relatively small, it has little influence on the transmission between the network device and the first terminal or the downlink transmission of the network device, and thus can be ignored. When the time interval is relatively large, it has a great influence on the transmission between the network device and the first terminal. Therefore, when necessary, the time interval is not counted into the channel occupation duration, that is, the time interval may be paused or The time is fixed after the end of the channel occupation time.
  • the network device performs channel sounding after the end of the first time period, and performs downlink transmission to the first terminal when the channel sounding result is idle. Therefore, channel interception is performed after the end of the first duration, which avoids collisions caused by changes in channel conditions, and causes downlink transmission to fail, thereby improving communication efficiency.
  • the network device in order to adapt to the requirement of the network device interacting with multiple terminals, for example, the network device interacts with the first terminal and the second terminal.
  • the downlink transmission is performed in the remaining portion other than the partial duration of the transmission.
  • the first terminal occupies a first bandwidth
  • the second terminal occupies a second bandwidth, where the first bandwidth is the same as or different from the second bandwidth.
  • the network device transmits downlink to the first terminal in the first bandwidth, and the network device transmits downlink to the second terminal in the second bandwidth.
  • the network device receives the uplink transmission of the second terminal in a third duration of the channel occupation duration of the second terminal, where the channel occupancy duration of the second terminal further includes a fourth duration.
  • the fourth duration is after the third duration; the network device performs downlink transmission in the fourth duration, wherein a sum of the third duration and the fourth duration is less than or equal to the second terminal
  • the channel takes up a long time.
  • the channel occupation duration of the first terminal and the channel occupation duration of the second terminal have a duration overlap portion, and the first bandwidth and the second bandwidth have a bandwidth overlap portion
  • the network device performs downlink transmission in the bandwidth overlapping portion after the start of the duration coincidence portion.
  • the network device performs downlink transmission to the at least one of the first terminal and the second terminal in the bandwidth overlapping portion.
  • the network device transmits downlink to the first terminal in the first bandwidth, and the network device transmits downlink to the second terminal in the second bandwidth.
  • the network device transmits downlink to the first bandwidth or the second bandwidth to any one of the following: a first terminal, a second terminal, or other than the first terminal and the second terminal. terminal.
  • the priority of the downlink transmission service performed by the network device in the second duration of the first terminal is not lower than the priority of the uplink transmission service performed by the first terminal in the first duration.
  • the priority of the downlink transmission service performed by the network device in the fourth duration of the second terminal is not lower than the priority of the uplink transmission service performed by the second terminal in the third duration.
  • the priority of the downlink transmission service performed by the network device in the coincidence portion of the duration of the first terminal and the second terminal is not lower than the highest priority in the uplink transmission service of the first terminal and the second terminal, One of the lowest priority or average priority.
  • the priority of the downlink transmission service performed by the network device in the overlapping portion of the duration of the multiple terminals is not lower than the highest priority, the lowest priority, or the average priority of the uplink transmission services of the multiple terminals.
  • the present application provides a terminal-based wireless communication method, which corresponds to the wireless communication method of the above first aspect.
  • the method includes: obtaining, by the terminal, a channel occupation duration and performing uplink transmission to the network device, where a part of the duration of the channel occupation time is used for uplink transmission of the terminal; after the uplink transmission ends, the terminal is used for uplink transmission within a channel occupation duration The downlink transmission from the network device is received in the remaining duration other than the partial duration.
  • the terminal obtains the channel occupation duration and performs uplink transmission to the network device, where the channel occupation duration includes at least a first duration and a second duration, and the second duration is after the first duration,
  • the first duration is used for uplink transmission of the first terminal;
  • the terminal receives downlink transmission from a network device in the second duration, where a sum of the first duration and the second duration is less than or equal to The channel occupancy time of the first terminal.
  • the channel occupation duration of the first terminal when the at least one time interval is less than or equal to a preset value, the channel occupation duration of the first terminal includes the at least one time interval; when the at least one time interval is greater than When the preset value is used, the channel occupation duration of the first terminal does not include the time interval.
  • the above preset value may be 25 us.
  • the present application further provides a method for wireless communication based on a network device and a plurality of terminals, including: receiving, by the network device, an uplink transmission of the first terminal at a first duration of a channel occupation duration of the first terminal, and Receiving the uplink transmission of the second terminal in a third duration of the channel occupation duration of the second terminal, where the channel occupation duration of the first terminal further includes a second duration, where the second duration is in the first duration
  • the channel duration of the second terminal further includes a fourth duration, the fourth duration is after the third duration, and the network device performs downlink transmission in the second duration, where the first duration is The sum of the second duration is less than or equal to the channel occupation duration of the first terminal, and the network device performs downlink transmission in the fourth duration, where the sum of the third duration and the fourth duration is less than or equal to The duration of the channel occupied by the second terminal.
  • the start time of the channel occupation duration of the first terminal and the start time of the channel occupation duration of the second terminal may be the same or different.
  • the first terminal occupies a first bandwidth
  • the second terminal occupies a second bandwidth, where the first bandwidth is the same as or different from the second bandwidth
  • the application provides a network device, which has the function of implementing the network device in the foregoing method embodiment.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device includes a processor and a transceiver coupled to the processor, wherein the processor is configured to control/pass the first time of the channel occupancy of the first terminal by the transceiver Receiving an uplink transmission of the first terminal, the channel occupation duration of the first terminal further includes a second duration, the second duration is after the first duration; the processor is configured to control/pass The transceiver performs downlink transmission on the second duration, where a sum of the first duration and the second duration is less than or equal to a channel occupation duration of the first terminal.
  • the application provides a terminal, which has the function of implementing the network device in the foregoing method embodiment.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal includes a processor and a transceiver coupled to the processor, wherein the processor is configured to obtain a channel occupancy duration and control/uplink transmission through the transceiver, wherein the channel occupancy
  • the duration includes at least a first duration and a second duration, the first duration being used for uplink transmission of the terminal; the processor controlling/receiving, by the transceiver, the network device from a start time of the second duration Downlink transmission, wherein a sum of the first duration and the second duration is less than or equal to a channel occupation duration of the terminal.
  • an embodiment of the present application provides a wireless communication device, which is applied to a network device, where the wireless communication device includes a processor, where the processor is configured to be coupled to a memory, read an instruction in the memory, and The instructions execute the method of the first aspect or the third aspect described above. It can be seen that the wireless communication device provided by the sixth aspect has a memory independent of the wireless communication device.
  • an embodiment of the present application provides a wireless communication device that is applied to a network device, the wireless communication device including at least one processor and a memory, the one memory being coupled to the at least one processor, The at least one processor is configured to perform the method of the first aspect or the third aspect described above. It can be seen that the wireless communication device provided by the seventh aspect has a memory integrated in the wireless communication device.
  • an embodiment of the present application provides a wireless communication apparatus, which is applied to a terminal, where the wireless communication apparatus includes a processor, the processor is configured to couple with a memory, read an instruction in the memory, and according to the The instructions perform the method described in the second aspect. It can be seen that the wireless communication device provided in the eighth aspect has a memory independent of the wireless communication device.
  • an embodiment of the present application provides a wireless communication device, which is applied to a terminal device, the wireless communication device includes at least one processor and a memory, and the one memory is coupled to the at least one processor, The at least one processor is operative to perform the method of the second aspect described above. It can be seen that the wireless communication device provided by the ninth aspect has a memory integrated in the wireless communication device.
  • an embodiment of the present application provides a computer readable storage medium comprising instructions that, when executed on a computer, cause the computer to perform the methods of the above first to third aspects.
  • an embodiment of the present application provides a computer program product that, when run on a computer, causes the computer to perform the methods of the first to third aspects.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for wireless communication applied to a network device according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an MCOT of a terminal in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a wireless communication method applied to a terminal according to another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a wireless communication method applied to a network device according to another embodiment of the present application.
  • FIG. 6 is a schematic diagram of MCOT when a network device performs LBT according to the embodiment shown in FIG. 5 of the present application;
  • FIG. 7 is a schematic diagram of an MCOT having a gap between a downlink transmission of a network device and an uplink transmission of a terminal in an embodiment of the present application;
  • FIG. 8 is a schematic diagram of an MCOT having a gap between a downlink transmission of a network device and an uplink transmission of a terminal in another embodiment of the present application;
  • FIG. 9 is a schematic diagram of an MCOT of two terminals in another embodiment of the present application.
  • FIG. 10 is a schematic diagram of an intersection of MCOTs of two terminals in still another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a union of MCOTs of two terminals in still another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a network device in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a terminal in an embodiment of the present application.
  • the present invention provides a maximum channel occupant time (MCOT) sharing mechanism, and the uplink MCOT sharing mechanism can be applied to a flexible bandwidth scenario.
  • MCOT maximum channel occupant time
  • the network architecture may be a network architecture of a wireless communication system, and the wireless communication system may work in an authorized frequency band or in an unlicensed frequency band. It can be understood that the use of unlicensed frequency bands can improve the system capacity of the wireless communication system, improve channel access efficiency, improve spectrum resource utilization, and ultimately improve system performance.
  • the wireless communication system may include a network device and a terminal, and the network device and the terminal are connected by a wireless communication technology. It should be noted that the number and the configuration of the terminal and the network device shown in FIG. 1 do not constitute a limitation on the embodiments of the present application.
  • a wireless communication system can include one or more network devices, and one network device can connect to one or more terminals. The network device can also be connected to a core network device, which is not shown in FIG.
  • the wireless communication system mentioned in the embodiments of the present application includes, but is not limited to, a narrow band-internet of things (NB-IoT), and a global system for mobile communications (GSM).
  • GSM global system for mobile communications
  • EDGE Enhanced data rate for GSM evolution
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access
  • TD-SCDMA Time division-synchronization code division multiple access
  • LTE long term evolution
  • future mobile communication system includes, but is not limited to, a narrow band-internet of things (NB-IoT), and a global system for mobile communications (GSM).
  • EDGE Enhanced data rate for GSM evolution
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access
  • TD-SCDMA Time division-synchronization code division multiple access
  • LTE long term evolution
  • future mobile communication system future mobile communication system.
  • the foregoing network device is a device deployed in a radio access network to provide a wireless communication function for the terminal.
  • the network device may include, but is not limited to, a base station (BS), a station (Station, STA, including an access point (AP) and a non-AP station STA), a network controller, and a transmission and reception point (transmission and reception point) , TRP), a mobile switching center or a wireless access point in wifi, etc.
  • the means for direct communication with the terminal over the wireless channel is typically a base station.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, or Radio Radio Units (RRUs).
  • RRUs Radio Radio Units
  • the wireless communication with the terminal may also be another network device having a wireless communication function, which is not limited in this application.
  • the names of devices with base station functions may be different in different systems, for example, in an LTE network, called an evolved NodeB (eNB or eNodeB), in the third generation (the In the 3rd generation, 3G) network, it is called Node B (Node B), etc.
  • eNB evolved NodeB
  • Node B Node B
  • 5G base station 5G base station
  • gNB 5G base station
  • the terminal which is also referred to as a terminal device, may include, for example, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), etc., and is a voice and/or A device that communicates with data, for example, a handheld device with wireless connectivity, an in-vehicle device, a wearable device, a computing device, or other processing device that is linked to a wireless modem.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • a device that communicates with data
  • a handheld device with wireless connectivity for example, a handheld device with wireless connectivity, an in-vehicle device, a wearable device, a computing device, or other processing device that is linked to a wireless modem.
  • some examples of terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality. (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in
  • the term "sender" is the party that initiates the transmission, or can be said to be the party that sends the signal.
  • the sender can be a network device or can be a terminal. That is, the above signal may be a downlink signal or may be an uplink signal. This signal includes data and/or signaling.
  • the sender that needs to send data or signaling usually needs to use or share the radio resources in a competitive manner.
  • This process may be referred to as a channel access procedure.
  • the way of competing may employ an LBT mechanism.
  • the network device or terminal listens to or senses a certain channel of the unlicensed band before transmitting the signal or data to determine whether the channel is idle or busy. If the channel is idle, the network device or terminal transmits; if the channel is busy, the network device or terminal does not transmit.
  • the sender may determine whether the corresponding channel is idle or busy according to the received power of a certain channel on the unlicensed band. This mechanism may be referred to as clear channel assessment (CCA). If the received power is less than a predetermined threshold, the channel is in an idle state, otherwise the channel is in a busy state.
  • CCA clear channel assessment
  • the foregoing LBT mechanism may include at least two types, the first type is an LBT mechanism based on random backoff, and the second type is an LBT mechanism that does not perform random backoff.
  • the first type is an LBT mechanism based on random backoff
  • the second type is an LBT mechanism that does not perform random backoff.
  • the first type of LBT (Type 1 LBT) is described first, and in some cases, this type may also be referred to as Type 4 (Cat 4) LBT.
  • N N-1
  • N N-1
  • the sender needs to be extra.
  • the listening channel is idle for a period of time
  • the channel occupation time is obtained.
  • the occupied time may also be referred to as a maximum channel occupying time (MCOT), and the sender is allowed to continue transmission during the channel occupation time.
  • the duration of the MCOT may be 2ms, 4ms, 6ms, or 10ms, etc., or other time units.
  • the sender obtains a transmission opportunity (TXOP), which may include a certain occupation time.
  • TXOP transmission opportunity
  • the channel can be authorized to other devices with which it communicates, that is, after the sender obtains the MCOT through the LBT, the MCOT can be shared with other devices with which it communicates.
  • Type 2 LBT a second type of LBT
  • this type may also be referred to as a Type 2 (Cat 2) LBT.
  • the sender listens to the state of a channel within a fixed period of time (for example, 25 microseconds (us)). When the channel is detected to be idle for the fixed period of time, the channel can be accessed. Transmission; when it is detected that the channel is busy during the fixed period of time, it waits for the next listening opportunity or gives up listening. Since there is no need to perform backoff, the Type 2 LBT can access the channel more quickly than the Type 1 LBT.
  • a fixed period of time for example, 25 microseconds (us)
  • a wireless communication method 100 in one embodiment of the present application, the method 100 being performed by a network device. It should be noted that the network device can interact with one terminal or interact with multiple terminals.
  • the wireless communication method 100 described above includes:
  • the network device receives the uplink transmission of the first terminal within a first channel occupation time of the first terminal.
  • the uplink transmission may be bearer data or signaling, including but not limited to a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH).
  • the uplink transmission may be a transmission of uplink signaling, such as a PUCCH, or a transmission of uplink data, such as a PUSCH, or a combination of uplink signaling and uplink data.
  • the duration of the uplink transmission by the first terminal is referred to herein as the “first duration”, that is, the network device receives the uplink transmission of the first terminal at the first duration of the first channel occupation duration of the first terminal.
  • the network device can learn information such as the channel occupation duration and the uplink transmission duration of the first terminal. Specifically, the network device is responsible for maintaining related parameters such as channel resource competition and uplink transmission of the first terminal, such as how the first terminal operating in the unlicensed frequency band competes for channel resources, and the duration of uplink transmission after accessing the channel.
  • the network device schedules the terminal according to the foregoing parameters.
  • the LBT is taken as an example for description.
  • the network device maintains the LBT related parameters of the first terminal, for example, one or more of the LBT type, the channel access priority, the contention window size, and the random backoff number; the network device further maintains the first terminal.
  • the relevant parameters of the uplink transmission of the device for example, when the uplink transmission starts, and the length of time required for the uplink transmission. Since the uplink transmission is based on the scheduling of the network device, the network device can learn the MCOT occupancy of the first terminal, for example, when the first terminal performs uplink transmission, and how long data is sent is scheduled by the network device. It can be seen that the network device can know the start and end time of the uplink transmission of the first terminal, and can also know the remaining time of the corresponding MCOT except the uplink transmission.
  • the first terminal adopts a UL transmission without dynamic grant/scheduling mode, where the unlicensed transmission may refer to: performing uplink data transmission of the first terminal without dynamic scheduling of the network device.
  • the method the dynamic scheduling may refer to a scheduling manner in which the network device indicates the transmission resource by signaling for each uplink transmission of the first terminal, similar to the manner of the previous embodiment.
  • the first terminal may send information such as the channel occupation duration and the uplink transmission duration obtained by the first terminal to the network device when the uplink transmission is performed, so that the network device knows when the downlink transmission can be started.
  • the network device can configure the transmitted resources and/or parameters for the unlicensed transmission in two resource configuration manners. Mode 1: configure resources and/or parameters through high-level signaling.
  • high-level signaling can be used for radio resource control. , RRC) signaling; mode 2, configuring resources and/or parameters through high layer signaling and physical layer signaling, for example, physical layer signaling may be L1 signaling (L1 signaling), and in mode 2, receiving After high-level signaling, physical layer signaling needs to be received before the configuration in high-layer signaling and physical layer signaling can be applied to the unlicensed transmission.
  • RRC radio resource control
  • mode 2 configuring resources and/or parameters through high layer signaling and physical layer signaling
  • physical layer signaling may be L1 signaling (L1 signaling), and in mode 2, receiving After high-level signaling, physical layer signaling needs to be received before the configuration in high-layer signaling and physical layer signaling can be applied to the unlicensed transmission.
  • the network device determines whether the uplink transmission ends. When it is determined that the uplink transmission ends, the network device performs 103; when it is determined that the uplink transmission is not ended, the network device performs 101.
  • the 102 is not a step that must be performed. In other embodiments, the network device can directly perform 103 after 101 because the network device knows the end time of the uplink transmission of the first terminal.
  • the network device performs downlink transmission in a remaining part of the channel occupation duration of the first terminal except for a part of the duration for uplink transmission.
  • the network device After the network device ends the uplink transmission of the first terminal, if the first channel occupation time remains, the network device starts downlink transmission in the remaining portion.
  • the network device may directly transmit without performing LBT before starting downlink transmission; or, the network device may perform LBT before starting downlink transmission, and start downlink transmission when the LBT result is idle.
  • the downlink transmission may include, but is not limited to, a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH), and the like.
  • the downlink transmission may be a transmission of downlink control signaling, such as a PDCCH, or a transmission of downlink data, such as a PDSCH, or a combination of downlink control signaling and downlink data.
  • the duration of the downlink transmission performed by the network device in the remaining duration of the first channel occupation duration is defined as “second duration”, that is, the network device performs downlink transmission in the second duration, and the second duration is in the After the first time.
  • the network device may use up the resources of the remaining MCOTs, and may not use up the resources of the remaining MCOTs. That is, in different embodiments, the sum of the first duration and the second duration may be less than or equal to the channel occupation duration of the first terminal, that is, the duration of the uplink transmission performed by the first terminal for the channel occupancy duration of the first terminal. And the sum of the durations of the downlink transmission of the network device does not require that the channel occupation time be completely exhausted.
  • the time unit of the network device scheduling the first terminal may be a slot, a mini slot, a subframe, a frame, or a transmission time interval (TTI).
  • TTI transmission time interval
  • the network device schedules the first terminal to perform Type 1 LBT as an example.
  • the time slot in which the scheduled time unit is 1 ms is taken as an example, and the first terminal successfully acquires the channel successfully.
  • the channel occupation time MCOT, the duration of the MCOT is 4 ms, corresponding to 4 time slots. It can be understood that in other embodiments, the length of the time slot can be dynamically adjusted, and the present application does not limit the length of the time slot.
  • t 0 represents the start time of the MCOT
  • t 1 represents the end time of the uplink transmission of the terminal device
  • t 0 + T CO represents the end time of the MCOT.
  • the network device When the network device receives the uplink transmission of the first terminal at time t 0 , it means that the first terminal successfully preempts the channel and obtains the corresponding MCOT. Since the LBT is scheduled by the network device by the first terminal, the network device can know the duration of the MCOT and the uplink transmission obtained by the first terminal. As shown in the figure, the MCOT occupies 4 slots n ⁇ n+3, and the uplink transmission duration of the first terminal is 3 slots n ⁇ n+2, and the remaining part of the MCOT except the uplink transmission is 1 slot. n+3.
  • the network device receives the uplink transmission from the terminal in a partial duration (ie, t 0 ⁇ t 1 ) within the first channel occupation duration of the first terminal, and the remaining duration of the first channel occupation duration (ie, t 1 ⁇ t 0 +T CO ) Performs downlink transmission to the first terminal. That is, the first duration is 3 slots and the second duration is 1 slot.
  • FIG. 4 illustrates a wireless communication method 200 in another embodiment of the present application, which is performed by a terminal.
  • the wireless communication method 200 described above includes:
  • the terminal obtains the channel occupation duration and performs uplink transmission to the network device, where the uplink transmission of the terminal only occupies a part of the duration of the channel occupation time;
  • the terminal is scheduled by the network device. Therefore, the network device can learn the information such as the channel occupation duration and the uplink transmission duration of the terminal. Therefore, the terminal does not need to report related information to the network device.
  • the network device can learn the information such as the channel occupation duration and the uplink transmission duration of the terminal. Therefore, the terminal does not need to report related information to the network device.
  • the terminal employs an unlicensed transmission.
  • the terminal maintains related parameters such as channel resource competition and uplink transmission.
  • the LBT is taken as an example for description, and the terminal maintains one or more of parameters such as an LBT type, a channel access priority, a contention window, and a random backoff number.
  • the terminal performs LBT before uplink transmission, and when the LBT succeeds, obtains the corresponding MCOT. At this time, the terminal needs to report the usage of the MCOT to the network device at the same time as the uplink transmission.
  • the terminal may send one or more of the following parameters to the network device in the uplink transmission: the MCOT duration, the uplink transmission duration, the remaining available MCOT duration, and the like.
  • the duration parameter may be reported based on time granularity, such as a frame, a subframe, a time slot, or a minislot; or the remaining portion of the MCOT available for downlink transmission may be reported based on absolute time, for example, in milliseconds ( Ms) or microseconds (us).
  • Ms milliseconds
  • us microseconds
  • the foregoing parameters may be carried in the uplink control signaling of the PUCCH or carried in the uplink data of the PUSCH.
  • the foregoing parameters may be carried in a new field of the PUCCH (for example, the field may be named as the remaining MCOT).
  • the transmission is performed, or the above parameters may be multiplexed with existing fields of the PUCCH (for example, channel state information (CSI)) for transmission.
  • CSI channel state information
  • the terminal optionally, in a flexible bandwidth scenario, since the bandwidth corresponding to the terminal is dynamic, the terminal also needs to notify the network device of the bandwidth of the terminal device in the uplink transmission. Therefore, the network device may select to perform downlink transmission in the remaining MCOT according to the MCOT usage reported by the first terminal.
  • the terminal determines whether the uplink transmission ends. When the uplink transmission ends, the terminal performs 203; when the uplink transmission does not end, the terminal executes 201.
  • the 202 is not a step that must be performed. In other embodiments, since the terminal knows the end time of the uplink transmission, the 203 can be directly executed after 202.
  • the terminal receives the downlink transmission from the network device in a remaining duration other than a part of the duration for the uplink transmission in the channel occupation duration.
  • the network device may utilize other terminals dynamically scheduled by the resource.
  • the network device is configured (for example, configured by sending the trigger A).
  • the terminal needs to perform uplink transmission, and the scheduling resource is indicated accordingly.
  • signaling for example, trigger B
  • the network device can send the trigger B in the second time period. If the MCOT still has the remaining time, the corresponding terminal can use the type 2 LBT fast access channel for uplink transmission.
  • the terminal corresponding to the trigger B directly accesses the channel without performing the LBT.
  • the network device when the first terminal completes the uplink transmission, the network device starts downlink transmission, that is, the uplink transmission (that is, the first duration) of the first terminal and the downlink transmission of the network device (that is, the second duration) There is no gap between them, or it can be said that the interval between the uplink transmission of the first terminal and the downlink transmission of the network device is small enough to be negligible.
  • the uplink transmission of the terminal is completed, and the downlink transmission of the network device is not ready, so that after the uplink transmission of the terminal is completed, the network device cannot immediately perform downlink transmission.
  • T g1 there may be an interval between the uplink transmission of the first terminal and the downlink transmission of the network device (represented by “T g1 " for convenience of description).
  • the idle state of the channel may change, for example, it is preempted by other devices and enters a busy state.
  • the network device performs downlink transmission in the remaining part of the MCOT of the terminal, it may be preempted due to The devices on the channel collide, causing the downlink transmission to fail.
  • 102 may further include:
  • the network device performs channel sensing. Specifically, the network device can perform channel sensing on a channel corresponding to the terminal.
  • the network device can start channel listening at the end of the uplink transmission. Since the channel interception falls within the MCOT of the terminal at this time, the network device can access the channel in a faster manner. For example, using Type 2LBT, the network device needs to listen to the state of the channel within a period of time (for example, 25 us).
  • the network device determines whether channel listening is idle.
  • the network device performs 103.
  • the network device stops listening or waits for the next listening opportunity.
  • the next listening opportunity may perform channel sensing at the beginning of the next time unit (eg, a time slot), ie, in the next time slot of the current time slot.
  • the start LBT of the network device after the uplink transmission of the first terminal ends for example, the LBT may be started from t 1 , or the LBT may be started at a certain time after waiting for a period of time after t 1 .
  • t 1 starts LBT further explanation
  • T LBT represents the length LBT, and when it is determined that the channel is idle, the network equipment at time t 1 + T LBT downlink transmission starts.
  • T LBT 25us
  • a first terminal of the uplink transmission end time t 1 is the time slot n + 2 the end of the last symbol.
  • the network device may configure the first terminal to leave the last one or more symbols of the last time slot of the uplink transmission, for example, the network device configures the last symbol of the first terminal in the time slot n+2. If it is vacant, at this time, the uplink transmission time t 1 of the first terminal is the end time of the second last symbol of the time slot n+2. Thus, the network device can start the LBT at the end of the second to last symbol of slot n+2.
  • the network device may further configure a timing advance (TA) for the uplink transmission of the first terminal, so that the uplink transmission of the first terminal is advanced.
  • TA timing advance
  • the network device may configure the TA of the first terminal to be one symbol.
  • the uplink transmission time t 1 of the first terminal is the end time of the second last symbol of the time slot n+2.
  • the network device can start the LBT at the end of the second to last symbol of slot n+2.
  • the network device performs the LBT before starting the downlink transmission, which can avoid the downlink transmission caused by the change of the idle state of the channel due to the interval between the uplink transmission of the terminal and the downlink transmission of the network device. failure.
  • the network device may be performed before the end of LBT uplink transmission terminal, i.e., the network device can begin before t 1 at time LBT. For example, if the last one or more symbols of the uplink transmission of the terminal are idle, it can be used for the LBT. Thus, when the network device needs to prepare the downlink transmission, it can be transmitted when the LBT is completed.
  • the length is small if the downlink transmission and uplink transmission of the terminal network device interval T g1, this time channel is less likely to seize other devices.
  • the network device may not perform LBT before starting downlink transmission.
  • the network device can set a predetermined duration T mix .
  • the network device performs multiple downlink transmissions, and there is a time interval between the multiple downlink transmissions (represented by "T g2 " for convenience of description), that is, the downlink transmission of the network device is discontinuous.
  • T g2 time interval between the multiple downlink transmissions
  • the network device may refer to the predetermined duration T mix set by the foregoing network device, when the time interval T g2 between the two downlink transmissions is less than (or equal to) the predetermined duration T mix
  • the network device may not perform LBT before the next transmission; when the time interval T g2 between the two downlink transmissions is greater than (or equal to) the predetermined duration T mix , the network device performs LBT before the next transmission.
  • the foregoing time intervals T g1 and T g2 may be at least one of them, and may be included in the MCOT or may not be included in the MCOT.
  • the channel occupation duration of the first terminal includes the at least one time interval, that is, the time interval is counted in the MCOT;
  • the at least one time interval T g1 or the at least one time interval T g2 is greater than (or equal to) the preset value
  • the channel occupation duration of the first terminal does not include the time interval, that is, the time interval is not counted Enter MCOT.
  • the above preset value may be 25 us.
  • the T CO T MCOT;
  • the T CO T MCOT + T g .
  • T g T g2
  • T G1 T g1 +T g2 .
  • the at least one time interval T g1 and T g2 described above may also be considered separately for accounting for MCOT.
  • the time interval T g1 is considered: when at least one time interval T g1 between the downlink transmission of the network device and the uplink transmission of the terminal is greater than a preset value, at least one time interval T g1 is not counted in the MCOT, regardless of the network device Whether the downlink transmission has a time interval or when at least one time interval T g2 is greater than (or equal to) a preset value is counted in the MCOT.
  • time interval T g2 is considered: when the downlink transmission has a time interval or the at least one time interval T g2 is greater than (or equal to) the preset value, at least one time interval T g2 is not counted in the MCOT, regardless of the network. At least one time interval T g1 between the downlink transmission of the device and the uplink transmission of the terminal is greater than (or equal to) a preset value, and is counted in the MCOT.
  • the preset value may be 25 us.
  • the time interval is greater than 25 us, the time interval is not counted in the MCOT.
  • the time interval is counted in the MCOT; or, when the time interval is greater than or equal to 25 us.
  • the time interval is not counted in the MCOT.
  • the time interval is less than 25us, the time interval is counted in the MCOT.
  • the time interval is counted in the MCOT.
  • the time interval is greater than 25us, the time interval is counted in the MCOT.
  • the time interval When the time interval is less than or equal to 25us, the time interval is not counted. Enter MCOT; or, when the time interval is greater than or equal to 25us, the time interval is counted in MCOT; when the time interval is less than 25us, the time interval is not counted in MCOT.
  • T g1 When T g1 is greater than 25 us, T g1 is not counted in MCOT. When T g1 is less than or equal to 25 us, T g1 is counted as MCOT as an example, which will be exemplarily described below with reference to the accompanying drawings.
  • T g1 1ms>25us
  • T g1 is not counted in the MCOT
  • T CO T MCOT +T g1 , which is equivalent to the time-consuming portion occupied by the time interval, and the actual available duration is equal to MCOT. duration.
  • the above describes the scenario of one terminal, and multiple terminals exist in the system.
  • the bandwidth occupied by the multiple terminals may be different in a flexible bandwidth scenario.
  • a description will be given by taking two terminals having different bandwidths (hereinafter referred to as "terminal 1" and "terminal 2") as an example.
  • the bandwidth occupied by the two terminals may be the same, which is not limited in this application.
  • a terminal 1 having a bandwidth of 20 MHz and a terminal 2 having a bandwidth of 40 MHz are taken as an example.
  • the bandwidth of the terminal 1 is represented by "first bandwidth”
  • the bandwidth of the terminal 2 is represented by "second bandwidth”.
  • the terminal 1 determines that the channel is idle through the LBT on the bandwidth of 20 MHz, and accesses the channel at t 0 and obtains the first channel occupation time MCOT1 (t 0 ⁇ t 0 + T CO1 ), and the duration of MCOT1 is 6 ms.
  • network device at least a long t 1 ⁇ t 0 + T CO1 start downlink transmission while in the second MCOT1.
  • the terminal 2 determines that the channel is idle through the LBT on the bandwidth of 40 MHz, and accesses the channel at t 0 and obtains the second channel occupation time MCOT2 (t 0 ⁇ t 0 + T CO2 ), and the duration of the MCOT 2 is 4 ms.
  • the terminal 2 completes the uplink transmission at t 2 , that is, the terminal 2 performs uplink transmission at the third time period t 0 ⁇ t 2 , and the network device can start downlink transmission in the fourth time period t 2 ⁇ t 0 + T CO 2 in the MCOT 2 .
  • the network device can start downlink transmission for multiple durations.
  • the network device may start downlink transmission separately for the multiple durations to be respectively sent to the terminals corresponding to the respective durations, and the downlink transmission start times may be the same or different for different terminals.
  • the network device may select at least one start downlink transmission from multiple MCOTs (or may also be from multiple durations) according to a preset rule, and the selected MCOT (or duration) may be used for Downlink transmission to the terminal corresponding to the terminal may also be used for downlink transmission to other terminals scheduled by the network device.
  • the preset rule may be: selecting the longest or shortest MCOT (or duration); or the preset rule may be: selecting an average of at least one terminal access bandwidth and going to a terminal within the selected MCOT Perform downlink transmission.
  • the network device can maintain multiple MCOT durations.
  • the base station can set a timer for each terminal, and the length of the timer is the length of the MCOT or the uplink transmission, that is, the base station needs to maintain multiple timers.
  • the network device may also maintain the multiple MCOTs by other methods.
  • the network device may perform downlink transmission for the multiple terminals, and select one MCOT for the multiple terminals and/or other terminals scheduled by the network device except the multiple terminals to perform downlink transmission, Therefore, the MCOT resources of the terminal can be utilized more effectively.
  • the network device transmits downlink to the terminal 1 in the first bandwidth, and the network device transmits the downlink to the terminal 2 in the second bandwidth.
  • the network device transmits downlink to the following one of the first bandwidth or the second bandwidth: terminal 1, terminal 2, or terminal other than terminal 1 or terminal 2.
  • intersection of transmission resources of each terminal there may be an intersection of transmission resources of each terminal.
  • the intersection of the transmission resources can be understood as the intersection of the MCOT duration and the bandwidth of the multiple terminals, and the network device can start downlink transmission within the intersection.
  • the network device may send a downlink signal to the multiple terminals within the intersection, or the network device may be outside the multiple terminals and The other terminal scheduled by the network device sends a downlink signal; or, the network device may send a downlink signal to the multiple terminals and other terminals other than the multiple terminals and scheduled by the network device within the intersection.
  • the above intersection may be referred to as an "intersection portion" hereinafter.
  • the channel occupancy duration of the terminal 1 and the channel occupation duration of the terminal 2 have a duration coincidence portion
  • the first bandwidth of the terminal 1 and the second bandwidth of the terminal 2 have a bandwidth overlap portion
  • the intersection portion includes a duration coincidence portion and a bandwidth overlap portion.
  • the network device can perform downlink transmission in the bandwidth overlap portion after the duration coincidence portion starts.
  • the time t 1 at which the terminal 1 ends the uplink transmission is after the time t 2 at which the terminal 2 ends the uplink transmission, and the end time t 0 + T CO1 of the MCOT 1 of the terminal 1 is at the end of the MCOT 2 of the terminal 2.
  • time t 0 + T CO2 After time t 0 + T CO2 .
  • the bandwidth of the terminal 1 and the terminal 2 is 20 MHz, and the duration of the MCOT of the terminal 1 and the terminal 2 is t 1 to t 0 + T CO2 .
  • the network device can simultaneously initiate downlink transmission to the terminal 1 and the terminal 2 in the intersection part, so that the downlink signal can be simultaneously sent to the multiple terminals through the downlink transmission, and the application of the intersection part can improve the communication efficiency.
  • the network device may send any one or more terminals other than the terminal 1 and the terminal 2 scheduled by the network device to the intersection. Initiate a downlink transmission. Therefore, the MCOT acquired by the multiple terminals can be effectively and flexibly utilized to improve communication efficiency.
  • the network device in an embodiment where there is an intersection portion, can maintain a timer for the intersection portion, saving resources.
  • the network device when there are multiple MCOTs, there may be a union of transmission resources of each terminal.
  • the union of the transmission resources can be understood as a merged portion of the MCOT duration and bandwidth of a plurality of terminals, and the network device can start downlink transmission within the concatenation.
  • the network device may send a downlink signal to the multiple terminals in the union according to the object that the network device sends the downlink transmission; or the network device may be outside the multiple terminals in the union.
  • Other terminals that are scheduled by the network device send downlink signals; or, the network device may send downlink signals to the multiple terminals and other terminals other than the multiple terminals and scheduled by the network device in the union.
  • the above-described union may be referred to as a "coupling portion" hereinafter.
  • the union portion includes a portion having a bandwidth of 40 MHz, a duration of t 1 to t 0 + T CO2 , and a portion having a bandwidth of 20 MHz and a duration of t 0 + T CO2 ⁇ t 0 + T CO1 .
  • the bandwidth occupied by the terminal 1 is 20 MHz less than the bandwidth of the aggregate portion, but when the transmission of the terminal 1 can support 40 MHz, the network device It is still possible to initiate downlink transmission to terminal 1 at 40 MHz, so the application of the aggregation part expands the range of downlink transmission and provides more flexible use.
  • the network device can simultaneously initiate downlink transmission to the terminal 1 and the terminal 2 in the aggregation part, so that the downlink signal can be simultaneously sent to the multiple terminals through the downlink transmission, and the application of the combined part can improve the communication efficiency.
  • the network device may initiate downlink transmissions in the union portion to any one or more terminals other than terminal 1 and terminal 2 scheduled by it. Therefore, the MCOT acquired by the multiple terminals can be effectively and flexibly utilized to improve communication efficiency.
  • the network device may be in a common bandwidth, and after multiple terminals complete the uplink transmission, the LBT does not directly access the public bandwidth for downlink transmission.
  • the processing may be performed by referring to the embodiment of the foregoing one terminal. It will be appreciated that the network device needs to be LBT, the presence of other T g gap between uplink and downlink transmissions, instructions for a terminal for a 3 to 8 can be referred to FIG, not described herein again.
  • the priority of the downlink transmission service performed by the network device in the second duration of the first terminal is related to the priority of the uplink transmission service performed by the first terminal in the first duration.
  • the priority of the downlink transmission service performed by the network device in the fourth duration of the second terminal is related to the priority of the uplink transmission service performed by the second terminal in the third duration.
  • the network device when the plurality of terminals have the coincidence portion of the duration, performs the priority of the downlink transmission service and the highest priority and the lowest priority of the uplink transmission service of the multiple terminals in the overlapping portion of the duration of the multiple terminals.
  • One of the levels or average priority Taking the first terminal and the second terminal as an example, the priority of the downlink transmission service performed by the network device in the coincidence portion of the duration of the first terminal and the second terminal is not lower than the highest priority in the uplink transmission service of the first terminal and the second terminal.
  • the above-mentioned “related” means that the priority of the downlink transmission service of the network equipment is not lower than, equal to or equal to the priority of the uplink transmission service of one terminal, or the priority of the downlink transmission service of the network equipment is not lower than or higher than Or equal to one of the highest priority, the lowest priority, or the average priority among the priorities of the plurality of terminal uplink transmission services.
  • the downlink service priority corresponding to the downlink transmission is related to the priority of the uplink transmission service performed by one or more terminals that obtain the MCOT, and it should be noted that one or The priority of the uplink transmission service performed by the multiple terminals refers to that the terminal accesses the channel according to the priority when performing uplink transmission.
  • the priority of the allowed downlink transmission service needs to refer to the service priority of one or more terminals in the MCOT obtained by the terminal, for example, the remaining channel occupation duration of a certain terminal is allowed to be not lower than the terminal in the MCOT.
  • the downlink transmission of the priority of the completed uplink transmission service is performed.
  • the priority of the downlink transmission service of the network device in the remaining channel occupation time of the terminal is lower than the priority of the uplink transmission service completed by the terminal, Then the downlink transmission of the network device is not allowed.
  • the priority of the uplink transmission service may refer to the channel in the Channel Access Priority Class for UL in Table 15.2.1-1 in section 15.2.1 of TS36.213. Channel Access Priority Class (p), but this application does not limit this.
  • the network device when targeting one terminal, there is one MCOT corresponding to one terminal. After the uplink transmission of the first terminal ends, if the first channel occupation time remains, the network device starts downlink transmission in the remaining part of the first channel occupation duration.
  • the priority of the downlink transmission service performed by the network device is not lower than the priority of the uplink transmission service that the first terminal has completed in its MCOT (ie, the priority of the downlink transmission service of the network device ⁇ the first terminal has been completed).
  • the priority of the uplink transmission service, or the priority of the downlink transmission service of the network device is not higher than the priority of the uplink transmission service that the first terminal has completed in the MCOT (ie, the priority of the downlink transmission service of the network device ⁇ the first
  • the priority of the uplink transmission service that has been completed by the terminal, or the priority of the downlink transmission service of the network device is equal to the priority of the uplink transmission service that the first terminal has completed in the MCOT (ie, the priority of the downlink transmission service of the network device)
  • Level priority of the uplink transmission service that the first terminal has completed).
  • the lengths of the plurality of MCOTs may be the same or different.
  • the two terminals: the first terminal and the second terminal are taken as an example for description, and the network device may be respectively at the first terminal and/or the second terminal after the uplink transmission of the first terminal and/or the second terminal ends. Downlink transmission is performed during the channel occupation time.
  • the priority of the downlink transmission service of the network device is not lower than the priority of the uplink transmission service that the first terminal has completed in the MCOT (ie, the network device The priority of the downlink transmission service is ⁇ the priority of the uplink transmission service that the first terminal has completed, or the priority of the downlink transmission service that the network device transmits at the remaining channel occupation time of the first terminal is not higher than the priority of the first terminal in the The priority of the uplink transmission service that has been completed in the MCOT (that is, the priority of the downlink transmission service of the network device ⁇ the priority of the uplink transmission service that the first terminal has completed), or the remaining channel occupation time of the network device at the first terminal
  • the priority of the downlink transmission service of the network device is not lower than the priority of the uplink transmission service that the second terminal has completed in the MCOT (ie, the network device
  • the priority of the downlink transmission service is ⁇ the priority of the uplink transmission service that the second terminal has completed, or the service priority of the downlink transmission in which the network device transmits the remaining channel occupation time of the second terminal is not higher than the second terminal in the
  • the priority of the uplink transmission service that has been completed in the MCOT that is, the priority of the downlink transmission of the network device is less than the priority of the uplink transmission service that the second terminal has completed), or the network device transmits the remaining channel occupation time of the second terminal.
  • the lengths of the plurality of MCOTs may be the same or different.
  • the network device selects the remaining channel occupation time of one or more terminals for downlink transmission, and the priority of the downlink transmission service of the network device and the priority of the uplink transmission service performed by the one or more terminals selected by the network device in the corresponding MCOT Level related.
  • the priority of the downlink transmission service of the network device is not lower than the priority of the uplink transmission service that the selected one or more terminals have completed (ie, the priority of the downlink transmission service of the network device is ⁇ the selected one or more terminals)
  • the priority of the uplink transmission service that has been completed, or the priority of the downlink transmission service of the network device is not higher than the priority of the uplink transmission service that has been completed by the selected one or more terminals (ie, the downlink transmission service of the network device)
  • the lengths of the plurality of MCOTs may be the same or different.
  • the network device may perform downlink transmission in the intersection of the remaining channel occupation times of the multiple terminals, and the priority of the downlink transmission service of the network device is not lower than the priority of the uplink transmission service that the multiple terminals have completed in the respective MCOTs.
  • the lowest priority or the highest priority or the average priority ie, the priority of the downlink transmission service of the network device ⁇ the lowest priority or the highest priority or the average priority of the priorities of the uplink transmission services that the multiple terminals have completed), Or the priority of the downlink transmission service of the network device is not higher than the lowest priority or the highest priority or the average priority of the priorities of the uplink transmission services that the multiple terminals have completed in the respective MCOTs (ie, the downlink transmission of the network device)
  • the priority of the service is ⁇ the lowest priority or the highest priority or the average priority among the priorities of the uplink transmission services that have been completed by the plurality of terminals, or the priority of the downlink transmission service of the network device is equal to the multiple MCOTs in the respective MCOTs.
  • the lengths of the plurality of MCOTs may be the same or different.
  • the network device may perform downlink transmission in the union of the remaining channel occupation times of the multiple terminals, and the priority of the downlink transmission service of the network device is not lower than the priority of the uplink transmission service that the multiple terminals have completed in the respective MCOTs.
  • the lowest priority or the highest priority or the average priority ie, the priority of the downlink transmission service of the network device ⁇ the lowest priority or the highest priority or the average priority of the priorities of the uplink transmission services that the multiple terminals have completed
  • the priority of the downlink transmission service of the network device is not higher than the lowest priority or the highest priority or the average priority of the priorities of the uplink transmission services that the multiple terminals have completed in the respective MCOTs (ie, the downlink of the network device)
  • the priority of the transmission service is ⁇ the lowest priority or the highest priority or the average priority among the priorities of the uplink transmission services that the multiple terminals have completed, or the priority of the downlink transmission service of the network device is equal to the multiple terminals in the respective
  • the network device is exemplarily explained.
  • the structure of the network device includes a processor and a transceiver.
  • a communication unit may be included in the structure of the network device for supporting communication between the network device and other network side devices, such as communication with a core network node.
  • a memory device can also be included in the structure of the network device, wherein the memory is coupled to the processor for storing program instructions and data necessary for the network device.
  • the network device may be a base station or other network side device having a base station function.
  • the network device includes a transceiver 1101, a processor 1102, a memory 1103, and a communication unit 1104.
  • the transceiver 1101, the processor 1102, the memory 1103, and the communication unit 1104 are connected by a bus.
  • data to be transmitted eg, PDSCH
  • signaling eg, PDCCH
  • the transceiver 1101 adjusts the signal received from the antenna and provides input samples.
  • the service data and the signaling message are processed, for example, data to be transmitted, SC-FDMA symbol generation, and the like. These units are processed according to the radio access technologies employed by the radio access network (e.g., access technologies for LTE, 5G, and other evolved systems).
  • the transceiver 1101 is integrated by a transmitter and a receiver. In other embodiments, the transmitter and receiver may also be independent of each other.
  • the processor 1102 is further configured to perform control management on the network device to perform processing performed by the network device in the foregoing method embodiments, for example, to control network devices for downlink transmission and/or perform other processes of the techniques described herein.
  • the processor 1102 is configured to support a network device to perform the processing of the network device involved in FIGS. 2 through 11.
  • the processor 1102 also needs to control the network device for channel sensing for data or signaling transmission.
  • the processor 1102 performs channel sensing through signals received by the transceiver 1101 from the transceiver or antenna, and the control signals are transmitted via the antenna to preempt the channel.
  • the processor 1102 can include one or more processors, for example, including one or more central processing units (CPUs).
  • the processor 1102 can be integrated in the chip, or can be the chip itself. .
  • the memory 1103 is used to store related instructions and data, as well as program codes and data of the network device.
  • the memory 603 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), and an erasable programmable read only memory (Erasable Programmable Read). Only Memory, EPROM), or Compact Disc Read-Only Memory (CD-ROM).
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable Read Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the memory 1103 is independent of the processor 1102. In other embodiments, the memory 1103 can also be integrated into the processor 1102.
  • the processor 1102 is configured to control, by the transceiver 1101, the uplink transmission of the first terminal by using a first duration of the channel occupation duration of the first terminal, where the channel occupation duration of the first terminal further includes a second duration, where the second duration is After the first duration, the processor 1102 is further configured to control the transceiver 1101 to perform downlink transmission for a second duration, where a sum of the first duration and the second duration is less than or equal to a channel occupation duration of the first terminal.
  • the processor 1102 is further configured to: control, by the transceiver 1101, the uplink transmission of the second terminal by using a third duration of the channel occupation duration of the second terminal, where the channel occupancy duration of the second terminal further includes The fourth duration is the fourth duration, and the fourth duration is after the third duration.
  • the processor 1102 is configured to control the transceiver 1101 to perform downlink transmission in the fourth duration, where the sum of the third duration and the fourth duration is less than or equal to the channel occupancy of the second terminal.
  • the first bandwidth occupies the first bandwidth
  • the second terminal occupies the second bandwidth.
  • the first bandwidth and the second bandwidth may be the same or different.
  • Figure 12 only shows a simplified design of the network device.
  • the network device can include any number of transmitters, receivers, processors, memories, etc., and all network devices that can implement the present application are within the scope of the present application.
  • the structure of the terminal includes a processor (or controller), a transceiver, and a modem processor.
  • the structure of the terminal may further include a memory coupled to the processor for storing necessary program instructions and data of the terminal.
  • FIG. 13 shows a simplified schematic diagram of one possible design structure of the terminal involved in the above method embodiment.
  • the terminal includes a transceiver 1201, a processor 1202, a memory 1203 and a modem 1204, a transceiver 1201, a processor 1202, a memory 1203 and a modem 1204 connected by a bus.
  • the transceiver 1201 conditions (e.g., analog conversion, filtering, amplifying, upconverting, etc.) output samples and generates an uplink signal that is transmitted via an antenna to the network device in the above embodiments.
  • the antenna receives the downlink signal from the network device in the above embodiment.
  • Transceiver 1201 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 12041 receives traffic data and signaling messages to be transmitted on the uplink and processes (eg, formats, codes, and interleaves) the traffic data and signaling messages. .
  • Modulator 12042 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides the output samples described above.
  • Demodulator 12043 processes (e.g., demodulates) the above input samples and provides symbol estimates.
  • the decoder 12044 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the terminal.
  • Encoder 12041, modulator 12042, demodulator 12043, and decoder 12044 may be implemented by a composite modem processor 1204. These units are processed according to the radio access technologies employed by the radio access network (e.g., access technologies for LTE, 5G, and other evolved systems).
  • transceiver 1201 is integrated by a transmitter and receiver, and in other embodiments, the transmitter and receiver may also be independent of one another.
  • the processor 1202 performs control management on the terminal, and is used to perform processing performed by the terminal in the foregoing method embodiment. For example, other processes for controlling the terminal for uplink transmission and/or the techniques described herein.
  • the processor 1202 is configured to support the terminal to perform the processing procedure involving the terminal in FIGS. 2 to 11.
  • the transceiver 1201 is configured to control/receive a downlink transmitted signal through an antenna.
  • processor 1202 may include one or more processors, including, for example, one or more CPUs, which may be integrated into the chip or may be the chip itself.
  • the memory 1203 is used to store related instructions and data, as well as program codes and data of the terminal.
  • the memory 1203 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), and an erasable programmable read only memory (Erasable Programmable Read). Only Memory (EPROM), non-transitory computer readable storage medium or Compact Disc Read-Only Memory (CD-ROM).
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable Read Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the memory 1203 is independent of the processor 1202. In other embodiments, the memory 1203 can also be integrated into the processor 1202.
  • the processor 1202 is configured to obtain a channel occupation duration and control/transmit uplink transmission through the transceiver 1201, where the channel occupation duration includes at least a first duration and a second duration, where the first duration is used for uplink transmission of the terminal;
  • the 1201 is configured to control/pass the downlink transmission from the network device by the transceiver 1202, where the sum of the first duration and the second duration is less than or equal to the channel occupation duration.
  • Figure 13 only shows a simplified design of the network device.
  • the network device can include any number of transmitters, receivers, processors, memories, etc., and all network devices that can implement the present application are within the scope of the present application.
  • the present application further provides a wireless communication device applied to a network device, the wireless communication device comprising a processor, the processor is configured to couple with the memory, and read an instruction in the memory according to the instruction.
  • the wireless communication device applied to the network device can be understood as a chip or chip device, and its memory is independent of the chip.
  • the present application further provides another wireless communication device for use in a network device, the wireless communication device comprising at least one processor and a memory, and a memory coupled to the at least one processor, at least A processor is used to perform the operations of the network devices involved in the various embodiments described above.
  • the wireless communication device applied to the network device can be understood as a chip or a chip device, and the memory thereof is integrated into the chip.
  • an embodiment of the present application further provides a wireless communication device applied to a terminal, the wireless communication device includes a processor, the processor is configured to be coupled to the memory, read an instruction in the memory, and according to the The instructions perform the operations of the terminals involved in the various embodiments described above.
  • the wireless communication device applied to the terminal can be understood as a chip or chip device, and its memory is independent of the chip.
  • an embodiment of the present application provides a wireless communication device applied to a terminal, the wireless communication device including at least one processor and a memory coupled to the at least one processor, at least A processor is used to perform the operations related to the terminals in the various embodiments described above.
  • the wireless communication device applied to the terminal can be understood as a chip or a chip device, and the memory thereof is integrated into the chip.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种无线通信方法,包括:网络设备在第一终端的信道占用时长的第一时长接收所述第一终端的上行传输,所述第一终端的信道占用时长还包括第二时长,所述第二时长在所述第一时长之后;所述网络设备在所述第二时长内进行下行传输,其中所述第一时长与所述第二时长之和小于或者等于所述第一终端的信道占用时长。本申请还同时公开了与该无线通信方法对应的网络设备和终端。通过应用上述方法及设备,可以针对应用于非授权频段下的终端竞争到的资源进行合理地利用,以提高非授权频段工作的效率。

Description

用于管理非授权频段的信道占用时长的方法和设备 技术领域
本申请涉及通信技术领域,尤其涉及非授权频段场景下的管理或利用信道占用时长的通讯技术。
背景技术
无线通信技术的飞速发展,导致频谱资源日益紧缺,促进了对于非授权频段的探索。3GPP分别在版本13(Release-13,R-13)和版本14(Release-14,R-14)中引入了授权频谱辅助接入(License Assisted Access,LAA)和增强的授权频谱辅助接入(enhanced LAA,eLAA)技术,通过授权频谱的辅助来最大可能的利用非授权频谱资源。
在非授权频段上部署的通信系统通常采用竞争的方式来使用或者共享无线资源,为了保证公平性,在非授权频段上进行传输的设备通常需要遵守先听后说(listen before talk,LBT)规则,即在发送信号之前需要先进行侦听信道,在信道空闲且获得信道占用时间时开始传输。
在第五代(5 th generation,5G)新空口(New Radio,NR)系统中,非授权频段的应用仍然是一个满足业务需求、提升用户体验的技术手段。在现有技术中,当基站获得最大信道占用时长(maximum channel occupancy time,MCOT)后可以共享给终端进行上行传输,然而,并未提供在上行传输未用尽MCOT的情况下,如何对终端的剩余MCOT进行有效利用的机制。
发明内容
本申请实施例提供了应用于非授权频段中的无线通信方法、网络设备及终端,其中,通过网络设备对终端在信道侦听空闲时获取的信道占用时间进行管理,能够有效地利用信道占用时间,解决了上述问题。
为达到上述目的,本申请实施例提供了如下技术方案:
第一方面,本申请提供了一种基于网络设备的无线通信方法,其可以调度一个或多个终端进行上行传输,或者与工作于免授权传输方式下的终端交互。其中,该方法包括:网络设备在第一终端的信道占用时长中的部分时长(duration)接收第一终端的上行传输;在第一终端的上行传输结束后,网络设备在所述第一终端的信道占用时长中除用于接收第一终端的上行传输的部分时长以外的剩余部分中进行下行传输。
在一个可能的设计中,网络设备在第一终端的信道占用时长的第一时长接收所述第一终端的上行传输,所述第一终端的信道占用时长还包括第二时长,所述第二时长在所述第一时长之后;所述网络设备在所述第二时长内进行下行传输,其中所述第一时长与所述第二时长之和小于或者等于所述第一终端的信道占用时长。
在非授权频段的应用场景下,通过在终端的信道占用时长(或称为“最大信道占用时长”)内进行终端的上行传输和网络设备的下行传输,在终端的上行传输不能将信道占用时长用尽时,可以共享给网络设备进行下行传输,从而可以有效地利用终端信道占用时间。
在一种可能的设计中,所述第一时长和所述第二时长之间具有至少一个时间间隔。这是由于终端的上行传输和网络设备的下行传输之间可能会存在时间间隔,时间间隔可能是由于例如网络设备的下行传输数据或者信令未准备好,或者是由于上下行传输的切换等原因导致的。
在另一种可能的设计中,所述网络设备的下行传输中具有至少一个时间间隔。这是由于网络设备的下行传输是非连续的导致的,例如网络设备的下行传输数据或者信令未准备好等原因。
在上述两种存在至少一个时间间隔的可能的设计中,当所述至少一个时间间隔小于或等于一预设值时,所述第一终端的信道占用时长包括所述至少一个时间间隔;当所述至少一个时间间隔大于所述预设值时,所述第一终端的信道占用时长不包括所述至少一个时间间隔。示例性地,上述预设值可以为25us。
当时间间隔相对较小时,其对网络设备与第一终端之间的传输或者网络设备的下行传输影响较小,因此可以忽略不计。当时间间隔相对较大时,其对网络设备与第一终端之间的传输影响较大,因此在必要的时候,不将时间间隔计入信道占用时长,即,可以在时间间隔处暂停计时或者在信道占用时长结束后进行补时。
在一种可能的设计中,网络设备在第一时长结束后进行信道侦听,当信道侦听结果为空闲时再向第一终端进行下行传输。从而,在第一时长结束后进行信道侦听,可以避免由于信道状况发生变化而导致的冲突,而使得下行传输失败,可以提高通讯的效率。
在一种可能的设计中,为了适应网络设备与多个终端交互的需求,例如,网络设备与第一终端和第二终端交互。网络设备在第二终端的信道占用时长接收所述第二终端的上行传输;在第二终端的上行传输结束后,网络设备在第二终端的信道占用时长中除用于接收第二终端的上行传输的部分时长以外的剩余部分中进行下行传输。其中,所述第一终端占用第一带宽,所述第二终端占用第二带宽,所述第一带宽与所述第二带宽相同或者不同。
所述网络设备在所述第一带宽下行传输给所述第一终端,所述网络设备在所述第二带宽下行传输给所述第二终端。
在一种可能的设计中,所述网络设备在第二终端的信道占用时长的第三时长接收所述第二终端的上行传输,其中所述第二终端的信道占用时长还包括第四时长,所述第四时长在所述第三时长之后;所述网络设备在所述第四时长内进行下行传输,其中所述第三时长与所述第四时长之和小于或者等于所述第二终端的信道占用时长。
在一种可能的设计中,所述第一终端的信道占用时长和所述第二终端的信道占用时长具有时长重合部分,所述第一带宽和所述第二带宽具有带宽重合部分,所述网络设备在所述时长重合部分开始后在所述带宽重合部分进行下行传输。示例性地,网络设备在所述带宽重合部分向所述第一终端和所述第二终端中的至少一个终端进行下行传输。
在一种可能的设计中,网络设备在所述第一带宽下行传输给所述第一终端,网络设备在所述第二带宽下行传输给所述第二终端。在另一种可能的设计中,网络设备在所述第一带宽或所述第二带宽下行传输给以下任意一种:第一终端、第二终端、或者第一终端和第二终端以外的其它终端。
在一种可能的设计中,网络设备在第一终端的第二时长进行下行传输业务的优先级不低于第一终端在第一时长进行上行传输业务的优先级。
在一种可能的设计中,网络设备在第二终端的第四时长进行下行传输业务的优先级不低于第二终端在第三时长进行上行传输业务的优先级。
在一种可能的设计中,网络设备在第一终端和第二终端的时长重合部分进行下行传输业务的优先级不低于所述第一终端和第二终端上行传输业务中的最高优先级、最低优先级或者平均优先级之一。
在一种可能的设计中,网络设备在多个终端的时长重合部分进行下行传输业务的优先级不低于所述多个终端上行传输业务中的最高优先级、最低优先级或者平均优先级之一。
第二方面,本申请提供了一种基于终端的无线通信方法,该方法对应于上述第一方面的无线通信方法。该方法包括:终端获得信道占用时长并向网络设备进行上行传输,其中所述信道占用时长的部分时长用于终端的上行传输;在上行传输结束后,终端在信道占用时长内用于上行传输的部分时长以外的剩余时长中接收来自网络设备的下行传输。
在一种可能的设计中,终端获得信道占用时长并向网络设备进行上行传输,其中所述信道占用时长至少包括第一时长和第二时长,所述第二时长在所述第一时长之后,所述第一时长用于所述第一终端的上行传输;所述终端在所述第二时长接收来自网络设备的下行传输,其中所述第一时长与所述第二时长之和小于或者等于所述第一终端的信道占用时长。
在一种可能的设计中,所述第一时长和所述第二时长之间具有至少一个时间间隔。
在一种可能的设计中,当所述至少一个时间间隔小于或等于一预设值时,所述第一终端的信道占用时长包括所述至少一个时间间隔;当所述至少一个时间间隔大于所述预设值时,所述第一终端的信道占用时长不包括所述时间间隔。示例性地,上述预设值可以为25us。
第三方面,本申请还提供了一种基于网络设备与多个终端的无线通信方法,包括:网络设备在第一终端的信道占用时长的第一时长接收所述第一终端的上行传输,以及在第二终端的信道占用时长的第三时长接收所述第二终端的上行传输,其中,所述第一终端的信道占用时长还包括第二时长,所述第二时长在所述第一时长之后,所述第二终端的信道占用时长还包括第四时长,所述第四时长在所述第三时长之后;网络设备在所述第二时长内进行下行传输,所述第一时长与所述第二时长之和小于或者等于所述第一终端的信道占用时长,网络设备在所述第四时长内进行下行传输,其中所述第三时长与所述第四时长之和小于或者等于所述第二终端的信道占用时长。所述第一终端的信道占用时长的起始时刻和所述第二终端的信道占用时长的起始时刻可以相同,也可以不同。所述第一终端占用第一带宽,所述第二终端占用第二带宽,所述第一带宽与第二带宽相同或不同
第四方面,本申请提供了一种网络设备,该网络设备具有实现上述方法实施例中网络设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,网络设备包括处理器和与所述处理器连接的收发器,其中所述处理器,用于控制/通过所述收发器在第一终端的信道占用时长的第一时长接收所述第一终端的上行传输,所述第一终端的信道占用时长还包括第二时长,所述第二时长在所述第一时长之后;所述处理器,用于控制/通过所述收发器在所述第二时长进行下行传输,其中所述第一时长与所述第二时长之和小于或者等于所述第一终端的信道占用时长。
第五方面,本申请提供了一种终端,该终端具有实现上述方法实施例中网络设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括 一个或多个与上述功能相对应的模块。
在一种可能的设计中,终端包括处理器和与所述处理器连接的收发器,其中所述处理器用于获得信道占用时长并控制/通过所述收发器进行上行传输,其中所述信道占用时长至少包括第一时长和第二时长,所述第一时长用于所述终端的上行传输;所述处理器控制/通过所述收发器在所述第二时长的起始时刻接收来自网络设备的下行传输,其中所述第一时长与所述第二时长之和小于或者等于所述终端的信道占用时长。
第六方面,本申请的实施例提供一种无线通信装置,其应用于网络设备中,所述无线通信装置包括处理器,所述处理器用于与存储器耦合,读取存储器中的指令并根据所述指令执行上述第一方面或者第三方面所述的方法。可见,第六方面所提供的无线通信装置,其存储器独立于无线通信装置以外。
第七方面,本申请的实施例提供一种无线通信装置,其应用于网络设备中,所述无线通信装置包括至少一个处理器和一个存储器,所述一个存储器与所述至少一个处理器耦合,所述至少一个处理器用于执行上述第一方面或者第三方面所述的方法。可见,第七方面所提供的无线通信装置,其存储器集成于无线通信装置中。
第八方面,本申请的实施例提供一种无线通信装置,其应用于终端中,所述无线通信装置包括处理器,所述处理器用于与存储器耦合,读取存储器中的指令并根据所述指令执行上第二方面所述的方法。可见,第八方面所提供的无线通信装置,其存储器独立于无线通信装置以外。
第九方面,本申请的实施例提供一种无线通信装置,其应用于终端设备中,所述无线通信装置包括至少一个处理器和一个存储器,所述一个存储器与所述至少一个处理器耦合,所述至少一个处理器用于执行上述第二方面所述的方法。可见,第九方面所提供的无线通信装置,其存储器集成于无线通信装置中。
第十方面,本申请的实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行以上第一方面至第三方面所述的方法。
第十一方面,本申请的实施例提供一种计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面至第三方面所述的方法。
需要说明的是,第二方面至第十一方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例的应用场景示意图;
图2为本申请一个实施例中应用于网络设备的无线通信方法的流程示意图;
图3为本申请一个实施例中一个终端的MCOT的示意图;
图4为本申请另一个实施例中应用于终端的无线通信方法的流程示意图;
图5为本申请另一个实施例中应用于网络设备的无线通信方法的流程示意图;
图6为本申请图5所示实施例中网络设备进行LBT时的MCOT的示意图;
图7为本申请一个实施例中网络设备的下行传输与一个终端的上行传输之间存在间隔的MCOT示意图;
图8为本申请另一个实施例中网络设备的下行传输与一个终端的上行传输之间存在间 隔的MCOT示意图;
图9为本申请另一个实施例中两个终端的MCOT的示意图;
图10为本申请又一个实施例中两个终端的MCOT的交集的示意图;
图11为本申请又一个实施例中两个终端的MCOT的并集的示意图;
图12为本申请一个实施例中的网络设备的简化结构示意图;
图13为本申请一个实施例中的终端的简化结构示意图。
具体实施方式
本申请给出了一种上行最大信道占用时间(Maximum Channel Occupancy Time,MCOT)共享机制,且该上行MCOT共享机制可以适用灵活带宽场景。下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。
请参见图1,其为应用本申请实施例的网络架构的简化示意图,该网络架构可以是无线通信系统的网络架构,无线通信系统可以工作在授权频段,也可以工作在非授权频段。可以理解的是,非授权频段的使用可以提高无线通信系统的系统容量,提高信道接入效率,提高频谱资源利用率,并最终提升系统性能。
如图1所示,无线通信系统可以包括网络设备和终端,网络设备与终端之间通过无线通信技术连接。需要说明的是,图1所示的终端和网络设备的数量和形态并不构成对本申请实施例的限定。在不同的实施例中,一个无线通信系统可以包括一个或者多个网络设备,一个网络设备可以连接一个或多个终端。网络设备还可以连接到核心网设备,核心网设备未在图1中示出。
需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)、第五代移动通信系统以及未来移动通信系统。
本申请实施例中,上述网络设备是一种部署在无线接入网中,为终端提供无线通信功能的装置。网络设备可以包括但不限于基站(Base Station,BS)、站点(Station,STA,包括接入点(Access Point,AP)和非AP站点STA)、网络控制器、传输接收点(transmission and reception point,TRP)、移动交换中心或者wifi中的无线接入点等,示例性地,通过无线信道与终端进行直接通信的装置通常是基站。所述基站可以包括各种形式的宏基站、微基站、中继站、接入点或射频拉远单元(Remote Radio Unit,RRU)等。当然,与终端进行无线通信的也可以是其他具有无线通信功能的网络设备,本申请对此不做唯一限定。需要说明的是,在不同系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在第三代(the 3rd Generation,3G)网络中,称为节点B(Node B)等,在5G网络中,称为5G基站(NR NodeB,gNB)。
终端,又称之为终端设备,可以包括例如用户设备(user equipment,UE)、移动台(mobile  station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通信的设备,例如,具有无线连接功能的手持式设备、车载设备、可穿戴设备、计算设备或链接到无线调制解调器的其他处理设备。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
本申请中,名词“网络”和“系统”可能会交替使用,名词“用户”和“终端”可能会交替使用,但本领域的技术人员可以理解其含义。另外,本文中的部分英文简称是以LTE系统为例对本申请实施例进行的描述,其可能随着网络的演进发生变化,具体演进可以参考相应标准中的描述。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选的还包括没有列出的步骤或单元,或可选的还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请中,名词“发送方”为发起传输的一方,或者可以说是发送信号的一方,在不同的实施例中,发送方可以为网络设备,或者可以为终端。即,上述信号可以为下行信号,或者可以为上行信号。该信号包括数据和/或信令。
在非授权频段中,需要发送数据或者信令的发送方通常需要采用竞争的方式来使用或者共享无线资源,该流程可以被称为信道接入流程(channel access procedure)。在一些实施例中,该竞争的方式可以采用LBT机制。具体而言,网络设备或者终端在发送信号或者数据之前侦听(listen to)或者感测(sense)非授权频段的某一信道,以确定该信道是空闲或者忙碌。如果信道空闲,则网络设备或者终端进行传输;如果信道忙碌,则网络设备或者终端不进行传输。在一些示例中,发送方可以根据非授权频段上的某一信道的接收功率的大小来判断对应的信道是空闲或者忙碌,该机制可以被称为空闲信道评估(clear channel assessment,CCA)。如果接收功率小于预定的门限值,则信道处于空闲状态,否则信道处于忙碌状态。
在不同的实施例中,上述LBT机制可以至少包括两种类型,第一种类型为基于随机退避的LBT机制,第二种类型为不做随机退避的LBT机制。以下,分别针对两种类型的LBT机制进行更为详细的说明。
先对第一种类型的LBT(Type 1 LBT)进行说明,在一些情况下,该类型也可以被称为类型4(Cat 4)LBT。发送方侦听某一信道在一个时间段内的状态,当侦听到信道在一个时间段内的信道为空闲时,在接入前选择随机退避数开始进行退避。示例性地,该退避过 程以退避时隙T_sl作为粒度,(例如,T_sl=9us,本申请对该退避时隙的大小不做限定)。发送方选择随机退避数N后,若N=0,则结束随机退避过程接入信道。若N>0,则令N=N-1,并在一个退避时隙T_sl内侦听信道,若信道空闲则重复该过程直至N=0为止,否则若信道被占用,则发送方需要在额外一个时间段内侦听信道为空闲后,继续该退避过程,直至N=0为止,然后接入信道。当退避结束后再接入信道,并获得信道占用时间,该占用时间也可以被称为最大信道占用时间(maximum channel occupy time,MCOT),发送方允许在该信道占用时间内持续进行传输。在不同的实施例中,该MCOT的时长可以为2ms、4ms、6ms或者10ms等,或者其它的时间单位。需要说明的是,在WIFI系统中,发送方获取的是传输机会(transmit opportunity,TXOP),其中可以包含一定的占用时长。在一些实施例中,当发送方成功获得相应的信道占用时间以后,可以将信道授权给与其通信的其它设备,即发送方通过LBT获得MCOT后,可以将MCOT共享给与其通信的其它设备使用。
接着,对第二种类型的LBT(Type 2 LBT)进行说明,在一些情况下,该类型也可以被称为类型2(Cat 2)LBT。发送方侦听某一信道在一个固定的时间段内(例如25微秒(us))内的状态,当侦听到信道在该固定的时间段内的信道为空闲,即可接入信道进行传输;当侦听到信道在该固定的时间段内的信道为忙碌时,则等待下一次侦听机会或者放弃侦听。由于不需要进行退避,因此相对于Type 1 LBT而言,Type 2 LBT可以更快速地接入信道。
请参照图2,其示出了本申请一个实施例中的无线通信方法100,该方法100由网络设备执行。需要说明的是,网络设备可以与一个终端进行交互,也可以与多个终端进行交互。上述无线通信方法100包括:
101,网络设备在第一终端的第一信道占用时长内接收第一终端的上行传输。
该上行传输可以是承载数据或者信令,包括但不限于物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)。换句话说,该上行传输,既可以是上行信令的传输,如PUCCH;也可以是上行数据的传输,如PUSCH;或者,还可以是上行信令和上行数据的组合。为了便于表示,在这里将第一终端进行上行传输的时长称为“第一时长”,即网络设备在第一终端的第一信道占用时长的第一时长接收第一终端的上行传输。
在一个实施例中,网络设备可以自行获知第一终端的信道占用时长及上行传输时长等信息。具体而言,网络设备负责维护第一终端进行信道资源竞争、上行传输等相关参数,如工作于非授权频段的第一终端如何进行信道资源的竞争,在接入信道以后进行上行传输的时长等,网络设备根据前述参数调度终端。在本实施例中,以LBT为例进行说明。网络设备维护第一终端的LBT的相关参数,例如所采用的LBT类型、信道接入优先级、竞争窗口的大小、随机退避数等参数中的一种或者多种;网络设备还维护第一终端设备的上行传输的相关参数,例如在何时开始进行上行传输,上行传输所需要的时长。由于上行传输是基于网络设备的调度,因此网络设备可以获知第一终端的MCOT占用情况,例如,第一终端在何时进行上行传输,以及发送多长的数据均是由网络设备调度的。可见,网络设备可以获知第一终端上行传输的起止时间,也可以得知对应MCOT中除上行传输以外的剩余时间。
在另一个实施例中,第一终端采用免授权传输(UL transmission without dynamic grant/scheduling)方式,其中,免授权传输可以指:不需要网络设备动态调度即可实现第一 终端的上行数据传输的方法,所述动态调度可以是指网络设备为第一终端的每次上行传输通过信令来指示传输资源的一种调度方式,类似于前一实施例的方式。此时,第一终端可以在进行上行传输时向网络设备发送其获得的信道占用时长及上行传输时长等信息,以使网络设备知晓何时可以开始下行传输。网络设备可以通过两种资源配置方式为免授权传输配置传输的资源和/或参数,方式一:通过高层信令配置资源和/或参数,例如,高层信令可以为无线资源控制(radio resource control,RRC)信令;方式二,通过高层信令和物理层信令来配置资源和/或参数,例如,物理层信令可以为L1层信令(L1signaling),在方式二中,在收到高层信令后还需要收到物理层信令,才能将高层信令和物理层信令中的配置应用于免授权传输。更为具体的实施方式,请参照下文中关于图4所示201部分终端进行免授权传输实施例中的描述。
102,网络设备确定上行传输是否结束。当确定上行传输结束时,网络设备执行103;当确定上行传输未结束时,网络设备执行101。其中,102并非必须执行的步骤,在其他的实施例中,由于网络设备知悉第一终端上行传输的结束时刻,因此可以在101后直接执行103。
103,网络设备在第一终端的信道占用时长内除用于上行传输的部分时长以外的剩余部分进行下行传输。
网络设备在第一终端的上行传输结束之后,在第一信道占用时长还有剩余的情况下,网络设备在该剩余部分开始下行传输。在不同的实施方式中,网络设备在开始下行传输前可以不进行LBT而直接传输;或者,网络设备在开始下行传输前可以进行LBT,并在LBT结果为空闲时开始下行传输。该下行传输可以承载包括但不限于物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)等。换句话说,该下行传输,既可以是下行控制信令的传输,如PDCCH;也可以是下行数据的传输,如PDSCH;或者,还可以是下行控制信令和下行数据的组合。为了便于表示,将网络设备在第一信道占用时长的剩余时长中进行下行传输的时长定义为“第二时长”,即网络设备在第二时长内进行下行传输,所述第二时长在所述第一时长之后。
可以理解的是,根据网络设备所需要传输的资源的大小,网络设备可能会用尽剩余的MCOT的资源,也有可能不会用尽剩余的MCOT的资源,对此本申请不作限制。即,在不同的实施例中,第一时长与第二时长之和可以小于或者等于第一终端的信道占用时长,即对于第一终端的信道占用时长而言,第一终端进行上行传输的时长以及网络设备进行下行传输的时长之和并不要求完全用尽信道占用时长。
网络设备调度第一终端的时间单元可以为时隙(slot)、微时隙(mini slot)、子帧(subframe)、帧(frame)或者传输时间单元(transmission time interval,TTI)等。请参照图3,以网络设备调度第一终端进行Type 1 LBT为例,在本实施例中,以调度的时间单元是时长为1ms的时隙为例,第一终端抢占信道成功会获得第一信道占用时长MCOT,MCOT的时长为4ms,对应4个时隙。可以理解的是,在其他的实施方式中,时隙的长度可以动态调整,本申请并不限定时隙的长度。为了便于描述,以t 0表示MCOT的起始时刻,以t 1表示终端设备上行传输的结束时刻,以t 0+T CO表示MCOT的结束时刻。
当网络设备在时刻t 0接收到第一终端的上行传输时,意味着第一终端成功抢占到信道且获得了相应的MCOT。由于第一终端如何进行LBT是由网络设备调度的,因此,网络设 备可以获知第一终端所获得的MCOT及上行传输所占用的时长。如图所示,MCOT占据4个时隙n~n+3,第一终端的上行传输的时长为3个时隙n~n+2,MCOT中除上行传输以外的剩余部分为1个时隙n+3。在该实施例中,网络设备在第一终端的第一信道占用时长内的部分时长(即t 0~t 1)接收来自终端的上行传输,在第一信道占用时长的剩余时长(即t 1~~t 0+T CO)向第一终端进行下行传输。即,第一时长为3个时隙,第二时长为1个时隙。
请参照图4,其示出了本申请另一个实施例中的无线通信方法200,该方法200由终端执行。上述无线通信方法200包括:
201,终端获得信道占用时长并向网络设备进行上行传输,其中终端的上行传输仅占用了信道占用时长的部分时长;
在一个可能的实施例中,终端由网络设备调度,因此网络设备可以自行获知终端的信道占用时长及上行传输时长等信息,因此,终端无需向网络设备上报相关信息。更为具体的实施方式,请参照上文中关于图2所示101部分终端由网络设备进行动态调度实施例中的描述。
另一个可能的实施例中,终端采用免授权传输。此时,终端维护信道资源竞争、上行传输等相关参数。在本实施例中,以LBT为例进行说明,终端维护例如LBT类型、信道接入优先级、竞争窗口、随机退避数等参数中的一种或多种。终端在上行传输前进行LBT,当LBT成功后,获得相应的MCOT。此时,终端需要在上行传输的同时,将MCOT的使用情况上报给网络设备。更为详细地,终端可以将以下参数中的一种或者多种携带在上行传输中通知给网络设备:MCOT时长、上行传输时长、剩余可用的MCOT时长等。示例性地,上述时长参数可以基于时间粒度来上报,例如帧、子帧、时隙或者微时隙等;或者,MCOT中剩余可用于下行传输的部分可以基于绝对时间来上报,例如以毫秒(ms)或者微秒(us)为单位。示例性地,上述参数可以承载在如PUCCH的上行控制信令中或者携带在PUSCH的上行数据中进行传输,具体地,上述参数可以承载在PUCCH的新增字段(例如该字段可以命名为remaining MCOT)中进行传输,或者上述参数可以复用PUCCH的现有字段(例如信道状态信息(channel state information,CSI))进行传输。另外,可选地,在灵活带宽的场景下,由于终端对应的带宽是动态的,终端还需要在上行传输中向网络设备通知终端设备的带宽。从而,网络设备根据第一终端上报的MCOT使用情况,可以选择在剩余MCOT内进行下行传输。
202,终端判断上行传输是否结束。当上行传输结束时,终端执行203;当上行传输未结束时,终端执行201。其中,202并非必须执行的步骤,在其他的实施例中,由于终端知悉其上行传输的结束时刻,因此可以在202后直接执行203。
203,终端在信道占用时长内用于上行传输的部分时长以外的剩余时长中接收来自网络设备的下行传输。
在一种可能的实施方式中,针对采用免授权传输方式的终端所获得的MCOT而言,网络设备可以利用该资源动态调度的其它终端。网络设备已配置(例如:通过发送trigger A的方式配置)终端需要进行上行传输,并相应地指示了调度资源,但仍然需要信令(例如:trigger B)触发终端于trigger A所指示的资源进行上行传输。则,网络设备可以在第二时长内发送trigger B,若此时MCOT仍然有剩余,则对应的终端可以采用type 2 LBT快速接入信道进行上行传输。在其它的实施方式中,若网络设备发送trigger B的时刻与终端进行上 行传输的起始时刻之间的时间间隔小于某个阈值时,trigger B对应的终端直接接入信道而无需进行LBT。
在图3所示的实施例中,在第一终端完成上行传输时,网络设备开始进行下行传输,即第一终端的上行传输(即第一时长)与网络设备的下行传输(即第二时长)之间不存在间隔,或者可以说第一终端的上行传输与网络设备的下行传输之间的间隔小到可以忽略不计。然而,在其它的实施例中,由于调度的原因,存在终端的上行传输完成了,网络设备的下行传输未准备好的情形,从而导致终端的上行传输完成后,网络设备不能立即进行下行传输,也就是说,第一终端的上行传输与网络设备的下行传输之间可能会存在间隔(为便于描述,以“T g1”表示)。在两者的间隔T g1内,信道的空闲状态可能会发生变化,例如被其它设备抢占而进入忙碌状态,此时若网络设备在终端的MCOT剩余部分进行下行传输时,可能会由于与已抢占到信道的设备发生冲突,从而导致下行传输失败。
请参照图5,为了解决下行传输失败的问题,在本申请的另一个可能的实施例中,在图2所示的无线通信方法200中,102后还可以包括:
104,网络设备进行信道侦听。具体而言,网络设备可以在终端对应的信道上进行信道侦听。
在本实施例中,网络设备可以在上行传输的结束时刻开始信道侦听。由于此时信道侦听落入在终端的MCOT内,网络设备可以采用更快速地方式接入信道,例如,采用Type 2LBT,网络设备需要侦听信道在一个时间段内(例如25us)的状态。
105,判断信道侦听是否空闲,当侦听到信道为空闲时,网络设备执行103;当侦听到信道为忙碌时,网络设备停止侦听或者等待下一次侦听机会。示例性地,该下一次侦听机会可以在下一个时间单元(例如:时隙)的起始时刻,即在当前时隙的下一时隙进行信道侦听。
网络设备在第一终端的上行传输结束后的开始LBT,例如可以从t 1开始LBT,或者可以在t 1之后等待一段时间后的某个时刻开始LBT。请参照图6,以t 1开始LBT进一步地说明,采用“T LBT”表示LBT的时长,当确定信道为空闲时,网络设备在时刻t 1+T LBT开始进行下行传输。例如:当T LBT=25us时,网络设备在t 1开始LBT,持续侦听25us,以确定在该25us内信道的状态。若所侦听的信道到接下来的25us信道为空闲时,即可以在时刻t 1+25us开始下行传输。可见,在图6所示的实施例中,T g1=T LBT=25us。
本领域普通技术人员可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在图6所示的实施例中,第一终端的上行传输结束时刻t 1为时隙n+2最后一个符号的结束时刻。在另一个实施例中,网络设备可以配置第一终端在上行传输的最后一个时隙的最后一个或多个符号为空置,例如,网络设备配置第一终端在时隙n+2的最后一个符号为空置,此时,第一终端的上行传输时刻t 1为时隙n+2倒数第二个符号的结束时刻。从而,网络设备可以在时隙n+2倒数第二个符号的结束时刻开始LBT。
在又一个实施例中,网络设备还可以为第一终端的上行传输配置时间偏移量(timing advance,TA),使得第一终端的上行传输提前。例如,网络设备可以配置第一终端的TA为1个符号,此时,第一终端的上行传输时刻t 1为时隙n+2倒数第二个符号的结束时刻。从而, 网络设备可以在时隙n+2倒数第二个符号的结束时刻开始LBT。
可见,在终端的上行传输结束以后,网络设备在开始下行传输前进行LBT,可以避免由于终端的上行传输与网络设备的下行传输之间存在一定间隔,信道的空闲状态发生变化而导致的下行传输失败。
在另一个实施例中,网络设备也可以在终端的上行传输结束前进行LBT,即网络设备可以在时刻t 1之前开始LBT。例如,终端的上行传输的最后一个或多个符号(symbol)是空闲的,则可以用于LBT。从而,当网络设备需要下行传输的内容准备好时,可以在LBT完成时进行传输。
在一些场景中,如果终端的上行传输与网络设备的下行传输的间隔T g1时长较小时,此时信道被其它设备抢占的几率较小。为了保证通讯效率,即使此时存在间隔T g1,网络设备在开始下行传输前也可以不进行LBT。在一些实施例中,网络设备可以设定预定时长T mix。当终端的上行传输与网络设备的下行传输之间虽然存在时间间隔,但时间间隔小于或者等于预定时长T mix时,网络设备可以不进行LBT直接开始下行传输。示例性的,该预定时长T mix可以为16us。如图7所示的实施例中,终端的上行传输与网络设备的下行传输之间的间隔T g1=16us=T mix,网络设备可以在时刻t 1+16us开始下行传输,而无需进行LBT。
在另一些实施例中,网络设备进行多个下行传输,且该多个下行传输之间存在时间间隔(为便于描述,以“T g2”表示),即网络设备的下行传输是非连续的。网络设备在该多个下行传输之前是否需要进行LBT,可以参考前述网络设备所设定的预定时长T mix,当两个下行传输之间的时间间隔T g2小于(或者等于)预定时长T mix时,网络设备后一下行传输前可以不进行LBT;当两个下行传输之间的时间间隔T g2大于(或者等于)预定时长T mix时,网络设备在后一下行传输前进行LBT。
需要说明的是,对于某一终端的MCOT而言,上述时间间隔T g1和T g2可以分别为至少一个,且可以计入MCOT内,也可以不计入MCOT内。当至少一个时间间隔T g1或至少一个时间间隔T g2小于(或等于)一预设值时,所述第一终端的信道占用时长包括所述至少一个时间间隔,即上述时间间隔计入MCOT;当所述至少一个时间间隔T g1或至少一个时间间隔T g2大于(或等于)所述预设值时,所述第一终端的信道占用时长不包括所述时间间隔,即上述时间间隔不计入MCOT。示例性地,上述预设值可以为25us。
为了更清楚地示例性描述,以下采用T g来表示时间间隔之和,当间隔T g计入MCOT时,则T CO=T MCOT;当间隔不计入MCOT时,则T CO=T MCOT+T g。当网络设备的下行传输与终端的上行传输之间不存在时间间隔T g1时,T g=T g2;当网络设备的下行传输是连续的,即不存在多个下行传输时,T g=T g1;当网络设备的下行传输与终端的上行传输之间存在时间间隔T g1且网络设备存在时间间隔时,T g=T g1+T g2
在不同的实施例中,上述至少一个时间间隔T g1和T g2还可以单独地考虑是否计入MCOT。例如,仅考虑时间间隔T g1:当网络设备的下行传输与终端的上行传输之间的至少一个时间间隔T g1大于预设值时,至少一个时间间隔T g1不计入MCOT,而不管网络设备的下行传输是否存在时间间隔或者所存在的至少一个时间间隔T g2大于(或等于)预设值时,均计入MCOT。又例如,仅考虑时间间隔T g2:当下行传输存在时间间隔或者所存在的至少一个时间间隔T g2大于(或等于)预设值时,至少一个时间间隔T g2不计入MCOT,而不管网络设备的下行传输与终端的上行传输之间的至少一个时间间隔T g1大于(或者等于)预设 值,均计入MCOT。
在不同的实施例中,还可以为时间间隔(T g1或者T g2均可)设定不同的规则时,以确定该间隔计入或者不计入MCOT。示例性地,以预设值可以为25us,当时间间隔大于25us时,时间间隔不计入MCOT,当时间间隔小于或者等于25us时,时间间隔计入MCOT;或者,当时间间隔大于或者等于25us时,时间间隔不计入MCOT;当时间间隔小于25us时,时间间隔计入MCOT;或者,当时间间隔大于25us时,时间间隔计入MCOT,当时间间隔小于或者等于25us时,时间间隔不计入MCOT;或者,当时间间隔大于或者等于25us时,时间间隔计入MCOT;当时间间隔小于25us时,时间间隔不计入MCOT。
以当T g1大于25us时,T g1不计入MCOT,当T g1小于或者等于25us时,T g1计入MCOT为例,以下结合附图进行示例性地说明。采用“T MCOT”表示终端获得的MCOT时长,请参照图3,T g1=0≤25us,T g1计入MCOT,T CO=T MCOT;请参照图7,T g1=16us,T g1计入MCOT T CO=T MCOT,由于时间间隔的存在,此时实际可用时长会小于MCOT的时长。请参照图8,T g1=1ms>25us,T g1不计入MCOT内,T CO=T MCOT+T g1,相当于对于时间间隔占用的部分进行了补时,此时实际可用时长等于MCOT的时长。
以上,针对一个终端的场景进行描述,系统中会存在多个终端。且若在灵活带宽的场景下,该多个终端所占用的带宽可能会存在不同。以下,将以两个带宽不同的终端(以下,采用“终端1”和“终端2”表示)为例,进行相关说明。在其它的实施例中,两个终端所占用的带宽也可以相同,对此本申请并不作限制。
请参照图9,以带宽为20MHz的终端1和带宽为40MHz的终端2为例,以下,以“第一带宽”表示终端1的带宽,以“第二带宽”表示终端2的带宽。终端1在20MHz的带宽上通过LBT确定信道为空闲,并在t 0接入信道且获得第一信道占用时长MCOT1(t 0~t 0+T CO1),MCOT1的时长为6ms。终端1在t 1完成上行传输,即终端1在第一时长t 0~t 1进行上行传输,网络设备至少可以在MCOT1内第二时长t 1~t 0+T CO1开始下行传输。终端2在40MHz的带宽上通过LBT确定信道为空闲,并在t 0接入信道且获得第二信道占用时长MCOT2(t 0~t 0+T CO2),MCOT2的时长为4ms。终端2在t 2完成上行传输,即终端2在第三时长t 0~t 2进行上行传输,网络设备可以在MCOT2内第四时长t 2~t 0+T CO2开始下行传输。
可见,当有多个终端接入信道进行上行传输时,网络设备可以在多个时长开始下行传输。在一些实施例中,网络设备可以在该多个时长分别开始下行传输,以分别发送给各个时长对应的终端,针对不同终端的下行传输开始时间可以相同,也可以不同。在其它可能的实施例中,网络设备可以根据预设规则从多个MCOT(或者,也可以为从多个时长)选择至少一个开始下行传输,所选择的某一MCOT(或者时长)可以用于向其所对应的终端进行下行传输,也可以用于向网络设备所调度的其它终端进行下行传输。例如,该预设规则可以为:选择最长或者最短的MCOT(或者时长);或者,该预设规则可以为:选择至少一个终端接入带宽的平均值,并在选定的MCOT内向一个终端进行下行传输。
示例性地,针对多个终端而言,网络设备可以维护多个MCOT时长。更为详细地,基站可以针对每个终端设定定时器,该定时器的长度是MCOT或者上行传输的长度,即,基站需要维护多个定时器。当然,在其它的实施方式中,网络设备还可以采用其它方法维护上述多个MCOT。
针对多个终端的MCOT,网络设备可以分别针对该多个终端进行下行传输,从中选择 一个MCOT为该多个终端和/或除该多个终端以外的其它由网络设备调度的终端进行下行传输,从而可以更为有效地利用终端的MCOT资源。
示例性地,在一种可能的设计中,网络设备在第一带宽下行传输给终端1,网络设备在第二带宽下行传输给终端2。在另一种可能的设计中,网络设备在第一带宽或第二带宽下行传输给以下任意一种:终端1、终端2、或者终端1或终端2以外的其它终端。
请参照图10,当存在多个MCOT时,各个终端的传输资源会存在交集。该传输资源的交集可以理解为多个终端的MCOT时长和带宽的交集,网络设备可以在该交集内开始下行传输。在不同的实施例中,取决于网络设备发送下行传输的对象,网络设备可以在该交集内向该多个终端发送下行信号;或者,网络设备可以在该交集内向该多个终端以外的且由该网络设备调度的其它终端发送下行信号;或者,网络设备可以在该交集内向该多个终端和该多个终端以外的且由该网络设备调度的其它终端发送下行信号。为了便于描述,在下文中上述交集可以被称为“交集部分”。其中,终端1的信道占用时长和终端2的信道占用时长具有时长重合部分,终端1的第一带宽和终端2的第二带宽具有带宽重合部分,上述交集部分包括时长重合部分和带宽重合部分,网络设备可以在时长重合部分开始后在带宽重合部分进行下行传输。
继续以终端1和终端2为例,终端1结束上行传输的时刻t 1在终端2结束上行传输的时刻t 2之后,终端1的MCOT1的结束时刻t 0+T CO1在终端2的MCOT2的结束时刻t 0+T CO2之后。终端1与终端2带宽交集为20MHz,终端1与终端2的MCOT的时长交集为t 1~t 0+T CO2。网络设备可以在交集部分同时向终端1以及终端2发起下行传输,从而,通过下行传输可以同时向多个终端发送下行信号,交集部分的应用可以提升通讯的效率。
在其它的实施例中,若网络设备并不需要向获取MCOT的多个终端进行下行传输时,网络设备可以在交集部分向由其调度的除终端1和终端2以外的任意一个或多个终端发起下行传输。从而,多个终端所获取到的MCOT可以有效且灵活地利用,提升通讯效率。另外一个方面,在存在交集部分的实施例中,网络设备可以针对交集部分维护一个定时器,节约资源。
请参照图11,当存在多个MCOT时,各个终端的传输资源会存在并集。该传输资源的并集可以理解为多个终端的MCOT时长和带宽的合并部分,网络设备可以在该并集内开始下行传输。
在不同的实施例中,取决于网络设备发送下行传输的对象,网络设备可以在该并集内向该多个终端发送下行信号;或者,网络设备可以在该并集内向该多个终端以外的且有该网络设备调度的其它终端发送下行信号;或者,网络设备可以在该并集内向该多个终端和该多个终端以外的且由该网络设备调度的其它终端发送下行信号。为了便于描述,在下文中上述并集可以被称为“并集部分”。
继续以终端1和终端2为例,并集部分包括带宽为40MHz、时长为t 1~t 0+T CO2的部分以及带宽为20MHz、时长为t 0+T CO2~t 0+T CO1的部分。需要说明的是,在带宽为40MHz、时长为t 1~t 0+T CO2的部分,其中终端1所占用的带宽20MHz小于并集部分带宽,但在终端1的传输可以支持40MHz时,网络设备可以在40MHz向终端1发起下行传输仍然是可以实施的,因此并集部分的应用拓展了下行传输的范围,提供了更为灵活的使用。
在本实施方式中,网络设备可以在并集部分同时向终端1以及终端2发起下行传输, 从而,通过下行传输可以同时向多个终端发送下行信号,并集部分的应用可以提升通讯的效率。
在其它的实施例中,网络设备可以在并集部分向由其调度的除终端1和终端2以外的任意一个或多个终端发起下行传输。从而,多个终端所获取到的MCOT可以有效且灵活地利用,提升通讯效率。
需要说明的是,在不同的实施例中,网络设备可以在公共带宽内,多个终端完成上行传输后不进行LBT直接接入公共带宽内进行下行传输。或者,当上行传输与下行传输之间存在间隔时,可以参照前述一个终端的实施例进行处理。可以理解的是,网络设备需要进行LBT、上下行传输之间存在间隔T g等情况,可以参照图3~图8针对一个终端所进行的说明,在此不再赘述。
在一些实施例中,网络设备在第一终端的第二时长进行下行传输业务的优先级与第一终端在第一时长进行上行传输业务的优先级有关。网络设备在第二终端的第四时长进行下行传输业务的优先级与第二终端在第三时长进行上行传输业务的优先级有关。
在另一些实施例中,当多个终端具备时长重合部分时,网络设备在该多个终端的时长重合部分进行下行传输业务的优先级与多个终端的上行传输业务的最高优先级、最低优先级或者平均优先级之一有关。以第一终端和第二终端为例,网络设备在第一终端和第二终端的时长重合部分进行下行传输业务的优先级不低于第一终端和第二终端上行传输业务中的最高优先级、最低优先级或者平均优先级之一。
上述“有关”是指网络设备的下行传输业务的优先级不低于、不高于或者等于一个终端上行传输业务的优先级,或者网络设备的下行传输业务的优先级不低于、不高于或者等于多个终端上行传输业务的优先级中的最高优先级、最低优先级或者平均优先级之一。
在一些实施例中,网络设备在进行下行传输时,该下行传输对应的下行业务优先级与获得MCOT的一个或多个终端所完成的上行传输业务的优先级有关,需要说明的是,一个或多个终端所完成的上行传输业务的优先级是指该终端在进行上行传输时按照该优先级接入信道。所允许的下行传输业务的优先级需要参考一个或多个终端在其获得的MCOT中所完成的业务优先级,例如:在某一终端的剩余信道占用时长中允许不低于该终端在MCOT中所完成的上行传输业务的优先级的下行传输进行,换句话说,若网络设备在该终端的剩余信道占用时长的下行传输业务的优先级低于该终端已完成的上行传输业务的优先级,则网络设备的下行传输不被允许。示例性地,该上行传输业务的优先级可以参照TS36.213中15.2.1节中表(Table)15.2.1-1中的上行信道接入优先级(Channel Access Priority Class for UL)中的信道接入优先级(Channel Access Priority Class(p)),但本申请对此不做限制。
示例性地,在一些实施例中,下行传输对应的下行业务优先级参数的值越小代表优先级越高,即下行传输业务的优先级p=1(p1)时≤上行传输业务的优先级p=2(p2)时。在另一些实施例中,下行传输对应的下行业务优先级参数的值越小代表优先级越低,即下行传输业务的优先级p=1时≥上行传输业务的优先级p=2时。
一种可能的实施例中,当针对一个终端时,对应该一个终端有一个MCOT。网络设备在第一终端的上行传输结束之后,在第一信道占用时长还有剩余的情况下,则网络设备在该第一信道占用时长的剩余部分开始下行传输。示例性地,网络设备进行下行传输业务的优先级不低于第一终端在其MCOT中已经完成的上行传输业务的优先级(即网络设备的下 行传输业务的优先级≥第一终端已经完成的上行传输业务的优先级),或者网络设备进行下行传输业务的优先级不高于第一终端在其MCOT中已经完成的上行传输业务的优先级(即网络设备的下行传输业务的优先级≤第一终端已经完成的上行传输业务的优先级),或者网络设备进行下行传输业务的优先级等于第一终端在其MCOT中已经完成的上行传输业务的优先级(即网络设备的下行传输业务的优先级=第一终端已经完成的上行传输业务的优先级)。
另一种可能的实施例中,当针对多个终端时,对应该多个终端可以有多个MCOT。示例性地,该多个MCOT的长度可以相同也可以不同。这里以两个终端:第一终端和第二终端为例进行说明,网络设备可以在第一终端和/或第二终端的上行传输结束后,分别在第一终端和/或第二终端的剩余信道占用时间内进行下行传输。网络设备在第一终端对应的剩余信道占用时间进行下行传输时,网络设备的下行传输业务的优先级不低于第一终端在其MCOT中已经完成的上行传输业务的优先级(即网络设备的下行传输业务的优先级≥第一终端已经完成的上行传输业务的优先级),或者网络设备在第一终端的剩余信道占用时间进行传输的下行传输业务的优先级不高于第一终端在其MCOT中已经完成的上行传输业务的优先级(即网络设备的下行传输业务的优先级≤第一终端已经完成的上行传输业务的优先级),或者网络设备在第一终端的剩余信道占用时间进行传输的下行传输业务的优先级等于第一终端在其MCOT中已经完成的上行传输业务的优先级(即网络设备的下行传输业务的优先级=第一终端已经完成的上行传输业务的优先级)。网络设备在第二终端对应的剩余信道占用时间进行下行传输时,网络设备的下行传输业务的优先级不低于第二终端在其MCOT中已经完成的上行传输业务的优先级(即网络设备的下行传输业务的优先级≥第二终端已经完成的上行传输业务的优先级),或者网络设备在第二终端的剩余信道占用时间进行传输的下行传输的业务优先级不高于第二终端在其MCOT中已经完成的上行传输业务的优先级(即网络设备的下行传输的优先级≤第二终端已经完成的上行传输业务的优先级),或者网络设备在第二终端的剩余信道占用时间进行传输的下行传输业务的优先级等于第二终端在其MCOT中已经完成的上行传输业务的优先级(即网络设备的下行传输的优先级=第二终端已经完成的上行传输业务的优先级)。
另一种可能的实施例中,当针对多个终端时,存在多个MCOT。示例性地,该多个MCOT的长度可以相同也可以不同。网络设备选择一个或多个终端的剩余信道占用时间进行下行传输,网络设备的下行传输的业务的优先级与网络设备选择的一个或多个终端在对应的MCOT中所完成的上行传输业务的优先级有关。网络设备的下行传输的业务的优先级不低于所选择的一个或多个终端已经完成的上行传输业务的优先级(即网络设备的下行传输业务的优先级≥所选择的一个或多个终端已经完成的上行传输业务的优先级),或者网络设备的下行传输业务的优先级不高于所选择的一个或多个终端已经完成的上行传输业务的优先级(即网络设备的下行传输业务的优先级≤所选择的一个或多个终端已经完成的上行传输业务的优先级),或者网络设备的下行传输业务的优先级等于所选择的一个或多个终端已经完成的上行传输业务的优先级(即网络设备的下行传输业务的优先级=所选择的一个或多个终端已经完成的上行传输业务的优先级)。
另一种可能的实施例中,当针对多个终端时,此时存在多个MCOT。示例性地,该多个MCOT的长度可以相同也可以不同。网络设备可以在多个终端的剩余信道占用时间的交 集内进行下行传输,网络设备的下行传输业务的优先级不低于多个终端在各自的MCOT中已经完成的上行传输业务的优先级中的最低优先级或者最高优先级或者平均优先级(即网络设备的下行传输业务的优先级≥多个终端已经完成的上行传输业务的优先级中的最低优先级或者最高优先级或者平均优先级),或者网络设备的下行传输业务的优先级不高于多个终端在各自的MCOT中已经完成的上行传输业务的优先级中的最低优先级或者最高优先级或者平均优先级(即网络设备的下行传输业务的优先级≤多个终端已经完成的上行传输业务的优先级中的最低优先级或者最高优先级或者平均优先级),或者网络设备的下行传输业务的优先级等于多个终端在各自的MCOT中已经完成的上行传输业务的优先级中的最低优先级或者最高优先级或者平均优先级(即网络设备的下行传输的业务优先级=多个终端已经完成的上行传输业务的优先级中的最低优先级或者最高优先级或者平均优先级)。
另一种可能的实施例中,当针对多个终端时,此时存在多个MCOT。示例性地,该多个MCOT的长度可以相同也可以不同。网络设备可以在多个终端的剩余信道占用时间的并集内进行下行传输,网络设备的下行传输业务的优先级不低于多个终端在各自的MCOT中已经完成的上行传输业务的优先级中的最低优先级或者最高优先级或者平均优先级(即网络设备的下行传输业务的优先级≥多个终端已经完成的上行传输业务的优先级中的最低优先级或者最高优先级或者平均优先级),或者网络设备的下行传输业务的优先级不高于多个终端在各自的MCOT中已经完成的上行传输业务的优先级中的最低优先级或者最高优先级或者平均优先级(即网络设备的下行传输业务的优先级≤多个终端已经完成的上行传输业务的优先级中的最低优先级或者最高优先级或者平均优先级),或者网络设备的下行传输业务的优先级等于多个终端在各自的MCOT中已经完成的上行传输业务的优先级中的最低优先级或者最高优先级或者平均优先级(即网络设备的下行传输业务的优先级=多个终端已经完成的上行传输业务的优先级中的最低优先级或者最高优先级或者平均优先级)。
上面示例性地阐述了本申请中无线通信方法的多个实施例,下面将继续示例性地阐述本申请中网络设备及终端等的实施例。
先对网络设备进行示例性地说明,在一个具体的示例中,网络设备的结构中包括处理器和收发器。在一个可能的示例中,网络设备的结构中还可以包括通信单元,该通信单元用于支持网络设备与其他网络侧设备的通信,例如与核心网节点之间的通信。在另一个可能的示例中,网络设备的结构中还可以包括存储器,其中所述存储器与处理器耦合,用于保存网络设备必要的程序指令和数据。
请参照图12,其示出了上述方法实施例中所涉及的网络设备的一种可能的结构示意图,上述网络设备可以是基站或者其他具备基站功能的网络侧设备。在图12所示的结构中,网络设备包括收发器1101、处理器1102、存储器1103和通信单元1104,收发器1101、处理器1102、存储器1103和通信单元1104通过总线连接。
在下行链路上,待发送的数据(例如,PDSCH)或者信令(例如,PDCCH)经过收发器1101调节输出采样并生成下行链路信号,该下行链路信号经由天线发射给上述实施例中的终端。在上行链路上,天线接收上述实施例中终端发射的上行链路信号,收发器1101调节从天线接收的信号并提供输入采样。在处理器1102中,对业务数据和信令消息进行处理,例如对待发送的数据进行调制、SC-FDMA符号生成等。这些单元根据无线接入网采用的无线接入技术(例如,LTE、5G及其他演进系统的接入技术)来进行处理。在图6-11所示的 实施例中,收发器1101由发射器和接收器集成。在其他的实施例中,发射器和接收器也可以相互独立。
处理器1102还用于对网络设备进行控制管理,以执行上述方法实施例中由网络设备进行的处理,例如,用于控制网络设备进行下行传输和/或进行本申请所描述的技术的其他过程。作为示例,处理器1102用于支持网络设备执行图2至图11所涉及网络设备的处理过程。应用于非授权场景下,处理器1102还需要控制网络设备进行信道侦听,以进行数据或者信令的传输。示例性地,处理器1102通过收发器1101从收发装置或者天线接收到的信号来进行信道侦听,并控制信号经由天线发射以抢占信道。在不同的实施例中,处理器1102可以包括一个或多个处理器,例如包括一个或多个中央处理器(Central Processing Unit,CPU),处理器1102可以集成于芯片中,或者可以为芯片本身。
存储器1103用于存储相关指令及数据,以及网络设备的程序代码和数据。在不同的实施例中,存储器603包括但不限于是随机存储记忆体(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)。在本实施例中,存储器1103独立于处理器1102。在其它的实施例中,存储器1103还可以集成于处理器1102中。
示例性地,处理器1102用于控制收发器1101在第一终端的信道占用时长的第一时长接收第一终端的上行传输,第一终端的信道占用时长还包括第二时长,第二时长在第一时长之后;处理器1102还用于控制收发器1101在第二时长进行下行传输,其中第一时长与第二时长之和小于或者等于第一终端的信道占用时长。
在另一种可能的实施例中,处理器1102还用于控制收发器1101在第二终端的信道占用时长的第三时长接收第二终端的上行传输,其中第二终端的信道占用时长还包括第四时长,第四时长在第三时长之后;处理器1102用于控制收发器1101在第四时长内进行下行传输,其中第三时长与第四时长之和小于或者等于第二终端的信道占用时长;其中第一终端占用第一带宽,第二终端占用第二带宽,第一带宽与第二带宽可以相同或不同。
可以理解的是,图12仅仅示出了网络设备的简化设计。在不同的实施例中,网络设备可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
接下来,对终端进行示例性地说明,在一个具体的实施例中,终端的结构包括处理器(或称:控制器)、收发器、和调制解调处理器。在一个可能的示例中,终端的结构中还可以包括存储器,该存储器与处理器耦合,用于保存终端必要的程序指令和数据。
请参照图13,其示出了上述方法实施例中所涉及的终端的一种可能的设计结构的简化示意图。终端包括收发器1201,处理器1202,存储器1203和调制解调器1204,收发器1201,处理器1202,存储器1203和调制解调器1204通过总线连接。
收发器1201调节(例如,模拟转换、滤波、放大和上变频等)输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中的网络设备。在下行链路中,天线接收上述实施例中来自网络设备的下行链路信号。收发器1201调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。示例性地,在调制处理器1204中,编码器12041接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令 消息进行处理(例如,格式化、编码和交织)。调制器12042进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供上述输出采样。解调器12043处理(例如,解调)上述输入采样并提供符号估计。解码器12044处理(例如,解交织和解码)该符号估计并提供发送给终端的已解码的数据和信令消息。编码器12041、调制器12042、解调器12043和解码器12044可以由合成的调制解调处理器1204来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE、5G及其他演进系统的接入技术)来进行处理。在图13所示的实施例中,收发器1201由发射器和接收器集成,在其它的实施例中,发射器和接收器也可以相互独立。
处理器1202对终端进行控制管理,用于执行上述方法实施例中由终端进行的处理。例如,用于控制终端进行上行传输和/或本申请所描述的技术的其他过程。作为示例,处理器1202用于支持终端执行图2至图11中涉及终端的处理过程。例如,收发器1201用于控制/通过天线接收下行传输的信号。在不同的实施例中,处理器1202可以包括一个或多个处理器,例如包括一个或多个CPU,处理器1202可以集成于芯片中,或者可以为芯片本身。
存储器1203用于存储相关指令及数据,以及终端的程序代码和数据。在不同的实施例中,存储器1203包括但不限于是随机存储记忆体(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、非瞬时性计算机可读存储介质(non-transitory computer readable storage medium)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)。在本实施例中,存储器1203独立于处理器1202。在其它的实施例中,存储器1203还可以集成于处理器1202中。
示例性地,处理器1202用于获得信道占用时长并控制/通过收发器1201进行上行传输,其中信道占用时长至少包括第一时长和第二时长,第一时长用于终端的上行传输;处理器1201用于控制/通过收发器1202在第二时长接收来自网络设备的下行传输,其中第一时长与第二时长之和小于或者等于信道占用时长。
可以理解的是,图13仅仅示出了网络设备的简化设计。在不同的实施例中,网络设备可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
在一种可能的实施例中,本申请还提出一种应用于网络设备中无线通信装置,无线通信装置包括处理器,处理器用于与存储器耦合,以及读取存储器中的指令并根据所述指令执行上述各个实施例中涉及网络设备的操作。在本实施例中,该应用于网络设备的无线通信装置可以理解为一种芯片或者说芯片装置,且其存储器是独立于芯片以外的。
在另一种可能的实施例中,本申请还提供另一种应用于网络设备中的无线通信装置,该无线通信装置包括至少一个处理器和一个存储器,一个存储器与至少一个处理器耦合,至少一个处理器用于执行上述各个实施例中涉及网络设备的操作。在本实施例中,该应用于网络设备的无线通信装置可以理解为一种芯片或者说芯片装置,其存储器是集成于芯片以内的。
在一种可能的实施例中,本申请的实施例还提供一种应用于终端的无线通信装置,该无线通信装置包括处理器,处理器用于与存储器耦合,读取存储器中的指令并根据所述指令执行上述各个实施例中涉及终端的操作。在本实施例中,该应用于终端的无线通信装置 可以理解为一种芯片或者说芯片装置,且其存储器是独立于芯片以外的。
在另一种可能的实施例中,本申请的实施例提供一种应用于终端的无线通信装置,该无线通信装置包括至少一个处理器和一个存储器,该一个存储器与至少一个处理器耦合,至少一个处理器用于执行上述各个实施例中涉及终端的操作。在本实施例中,该应用于终端的无线通信装置可以理解为一种芯片或者说芯片装置,其存储器是集成于芯片以内的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。

Claims (30)

  1. 一种无线通信方法,其特征在于,包括:
    网络设备在第一终端的信道占用时长的第一时长接收所述第一终端的上行传输,所述第一终端的信道占用时长还包括第二时长,所述第二时长在所述第一时长之后;
    所述网络设备在所述第二时长内进行下行传输,其中所述第一时长与所述第二时长之和小于或者等于所述第一终端的信道占用时长。
  2. 如权利要求1所述的无线通信方法,其特征在于,所述第一时长和所述第二时长之间具有至少一个时间间隔。
  3. 如权利要求2所述的无线通信方法,其特征在于,当所述至少一个时间间隔小于或等于一预设值时,所述第一终端的信道占用时长包括所述至少一个时间间隔;当所述至少一个时间间隔大于所述预设值时,所述第一终端的信道占用时长不包括所述至少一个时间间隔。
  4. 如权利要求3所述的无线通信方法,其特征在于,所述预设值为25us.
  5. 如权利要求1所述的无线通信方法,其特征在于,所述网络设备的下行传输中具有至少一个时间间隔,所述时间间隔包括在所述第二时长内。
  6. 如权利要求1所述的无线通信方法,其特征在于,所述网络设备在所述第一时长结束后进行信道侦听,当信道侦听结果为空闲时向所述第一终端进行下行传输。
  7. 如权利要求1所述的无线通信方法,其特征在于,
    所述网络设备在第二终端的信道占用时长的第三时长接收所述第二终端的上行传输,其中所述第二终端的信道占用时长还包括第四时长,所述第四时长在所述第三时长之后;
    所述网络设备在所述第四时长内进行下行传输,其中所述第三时长与所述第四时长之和小于或者等于所述第二终端的信道占用时长;
    其中所述第一终端占用第一带宽,所述第二终端占用第二带宽,所述第一带宽与第二带宽相同或不同。
  8. 如权利要求7所述的无线通信方法,其特征在于,所述第一终端的信道占用时长和所述第二终端的信道占用时长具有时长重合部分,所述第一带宽和所述第二带宽具有带宽重合部分,所述网络设备在所述时长重合部分开始后在所述带宽重合部分进行下行传输。
  9. 如权利要求7所述的无线通信方法,其特征在于,
    所述网络设备在所述第一带宽下行传输给所述第一终端;
    所述网络设备在所述第二带宽下行传输给所述第二终端。
  10. 如权利要求8所述的无线通信方法,其特征在于,所述网络设备在所述带宽重合部分向所述第一终端和所述第二终端中的至少一个终端进行下行传输。
  11. 一种无线通信方法,其特征在于,包括:
    终端获得信道占用时长并向网络设备进行上行传输,其中所述信道占用时长至少包括第一时长和第二时长,所述第二时长在所述第一时长之后,所述第一时长用于所述终端的上行传输;
    所述终端在所述第二时长接收来自网络设备的下行传输,其中所述第一时长与所述第二时长之和小于或者等于所述信道占用时长。
  12. 如权利要求11所述的方法,其特征在于,所述第一时长和所述第二时长之间具有至少一个时间间隔。
  13. 如权利要求12所述的无线通信方法,其特征在于,当所述至少一个时间间隔小于或等于一预设值时,所述终端的信道占用时长包括所述至少一个时间间隔;当所述至少一个时间间隔大于所述预设值时,所述终端的信道占用时长不包括所述时间间隔。
  14. 如权利要求13所述的无线通信方法,其特征在于,所述预设值为25us。
  15. 一种网络设备,包括处理器和与所述处理器连接的收发器,其特征在于,
    所述处理器,用于控制所述收发器在第一终端的信道占用时长的第一时长接收所述第一终端的上行传输,所述第一终端的信道占用时长还包括第二时长,所述第二时长在所述第一时长之后;
    所述处理器,用于控制所述收发器在所述第二时长进行下行传输,其中所述第一时长与所述第二时长之和小于或者等于所述第一终端的信道占用时长。
  16. 如权利要求15所述的网络设备,其特征在于,所述第一时长和所述第二时长之间具有至少一个时间间隔。
  17. 如权利要求16所述的网络设备,其特征在于,当所述至少一个时间间隔小于或等于一预设值时,所述第一终端的信道占用时长包括所述至少一个时间间隔;当所述至少一个时间间隔大于所述预设值时,所述第一终端的信道占用时长不包括所述时间间隔。
  18. 如权利要求17所述的网络设备,其特征在于,所述预设值为25us。
  19. 如权利要求15所述的网络设备,其特征在于,所述网络设备的下行传输中具有至少一个时间间隔,所述时间间隔包括在所述第二时长内。
  20. 如权利要求15所述的网络设备,其特征在于,所述处理器在所述第一时长结束后通过所述收发器进行信道侦听,当信道侦听结果为空闲时控制所述收发器向所述第一终端进行下行传输。
  21. 如权利要求15所述的网络设备,其特征在于,
    所述处理器用于控制所述收发器在第二终端的信道占用时长的第三时长接收所述第二终端的上行传输,其中所述第二终端的信道占用时长还包括第四时长,所述第四时长在所述第三时长之后;
    所述处理器用于控制所述收发器在所述第四时长内进行下行传输,其中所述第三时长与所述第四时长之和小于或者等于所述第二终端的信道占用时长;
    其中所述第一终端占用第一带宽,所述第二终端占用第二带宽,所述第一带宽与第二带宽相同或不同。
  22. 如权利要求21所述的网络设备,其特征在于,所述第一终端的信道占用时长和所述第二终端的信道占用时长具有时长重合部分,所述第一带宽和所述第二带宽具有带宽重合部分,所述处理器用于控制所述收发器在所述时长重合部分开始后在所述带宽重合部分进行下行传输。
  23. 如权利要求21所述的网络设备,其特征在于,所述处理器用于控制所述收发器在所述第一带宽下行传输给所述第一终端,所述处理器用于控制所述收发器在所述第二带宽下行传输给所述第二终端。
  24. 如权利要求22所述的无线通信方法,其特征在于,所述处理器用于控制所述收发器在所述带宽重合部分向所述第一终端和所述第二终端中的至少一个终端进行下行传输。
  25. 一种终端,其特征在于,包括处理器和与所述处理器连接的收发器,其特征在于,
    所述处理器用于获得信道占用时长并控制所述收发器进行上行传输,其中所述信道占用时长至少包括第一时长和第二时长,所述第一时长用于所述终端的上行传输;
    所述处理器用于控制所述收发器在所述第二时长接收来自网络设备的下行传输,其中所述第一时长与所述第二时长之和小于或者等于所述信道占用时长。
  26. 如权利要求25所述的终端,其特征在于,所述第一时长和所述第二时长之间具有至少一个时间间隔。
  27. 如权利要求26所述的终端,其特征在于,当所述至少一个时间间隔小于或等于一预设值时,所述终端的信道占用时长包括所述至少一个时间间隔;当所述至少一个时间间隔大于所述预设值时,所述终端的信道占用时长不包括所述至少一个时间间隔。
  28. 如权利要求27所述的终端,其特征在于,所述预设值为25us。
  29. 一种无线通信装置,其应用于网络设备中,其特征在于,所述无线通信装置包括至少一个处理器和一个存储器,所述一个存储器与所述至少一个处理器耦合,所述至少一个处理器用于执行如权利要求1-10中任意一项所述的方法。
  30. 一种无线通信装置,其应用于终端中,其特征在于,所述无线通信装置包括至少一个处理器和一个存储器,所述一个存储器与所述至少一个处理器耦合,所述至少一个处理器用于执行如权利要求11-14中任意一项所述的方法。
PCT/CN2018/124991 2018-01-19 2018-12-28 用于管理非授权频段的信道占用时长的方法和设备 WO2019141069A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18901056.4A EP3742835A4 (en) 2018-01-19 2018-12-28 METHOD AND DEVICE FOR ADMINISTERING THE CHANNEL USAGE DURATION OF AN UNLICENSED FREQUENCY BAND
US16/930,473 US11297648B2 (en) 2018-01-19 2020-07-16 Method and device for managing channel occupancy duration of unlicensed frequency band
US17/695,332 US20220279576A1 (en) 2018-01-19 2022-03-15 Method and device for managing channel occupancy duration of unlicensed frequency band

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810054292 2018-01-19
CN201810054292.5 2018-01-19
CN201810954297.3A CN110062464B (zh) 2018-01-19 2018-08-21 用于管理非授权频段的信道占用时长的方法和设备
CN201810954297.3 2018-08-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/930,473 Continuation US11297648B2 (en) 2018-01-19 2020-07-16 Method and device for managing channel occupancy duration of unlicensed frequency band

Publications (1)

Publication Number Publication Date
WO2019141069A1 true WO2019141069A1 (zh) 2019-07-25

Family

ID=67301682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124991 WO2019141069A1 (zh) 2018-01-19 2018-12-28 用于管理非授权频段的信道占用时长的方法和设备

Country Status (3)

Country Link
US (2) US11297648B2 (zh)
CN (1) CN116506087A (zh)
WO (1) WO2019141069A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114391299A (zh) * 2020-08-21 2022-04-22 北京小米移动软件有限公司 共享指示方法和装置、共享确定方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114271010A (zh) * 2019-11-08 2022-04-01 Oppo广东移动通信有限公司 非授权频谱上的数据传输方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578573A (zh) * 2015-05-28 2016-05-11 宇龙计算机通信科技(深圳)有限公司 一种非授权频段信道占用时间的配置方法及装置
WO2016120436A1 (en) * 2015-01-30 2016-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing listen-before-talk and related ues and network nodes
CN106851839A (zh) * 2017-03-14 2017-06-13 北京佰才邦技术有限公司 帧结构确定方法和基站
CN106922032A (zh) * 2017-02-27 2017-07-04 北京佰才邦技术有限公司 数据时域传输方法及控制方法、终端、基站和基带芯片
CN108366431A (zh) * 2017-01-26 2018-08-03 北京佰才邦技术有限公司 一种信道资源共享处理方法、移动通信终端和网络侧设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530536B1 (ko) * 2008-03-03 2015-06-22 삼성전자주식회사 광대역 무선통신 시스템에서 레인징 신호를 이용한 채널 품질 측정 장치 및 방법
US20130237216A1 (en) * 2012-03-08 2013-09-12 Nokia Corporation Scanning responses in wireless network
CN106413118B (zh) * 2015-07-31 2020-01-17 电信科学技术研究院 一种数据传输方法和装置
US10257764B2 (en) * 2016-02-15 2019-04-09 Samsung Electronics Co., Ltd. Method and apparatus for channel access in wireless communication system
CN107295696B (zh) * 2016-04-01 2023-05-30 中兴通讯股份有限公司 信道接入方法、装置、ue及基站
WO2017201654A1 (zh) * 2016-05-23 2017-11-30 华为技术有限公司 传输数据的方法、网络设备和终端设备
US11153866B2 (en) * 2017-05-05 2021-10-19 Qualcomm Incorporated Shortened transmission time interval configuration based on user equipment capabilities
TWI641243B (zh) * 2017-10-02 2018-11-11 明泰科技股份有限公司 多天線網路系統及其基地台、伺服器及信號處理方法
US11159266B2 (en) * 2018-04-24 2021-10-26 Apple Inc. Adaptive channel access
KR102082705B1 (ko) * 2018-04-27 2020-02-28 엘지전자 주식회사 참조 신호를 송수신하는 방법 및 이를 위한 장치
EP3704819A1 (en) * 2018-09-21 2020-09-09 Ofinno, LLC Channel access for unlicensed carriers in a radio system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120436A1 (en) * 2015-01-30 2016-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing listen-before-talk and related ues and network nodes
CN105578573A (zh) * 2015-05-28 2016-05-11 宇龙计算机通信科技(深圳)有限公司 一种非授权频段信道占用时间的配置方法及装置
CN108366431A (zh) * 2017-01-26 2018-08-03 北京佰才邦技术有限公司 一种信道资源共享处理方法、移动通信终端和网络侧设备
CN106922032A (zh) * 2017-02-27 2017-07-04 北京佰才邦技术有限公司 数据时域传输方法及控制方法、终端、基站和基带芯片
CN106851839A (zh) * 2017-03-14 2017-06-13 北京佰才邦技术有限公司 帧结构确定方法和基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114391299A (zh) * 2020-08-21 2022-04-22 北京小米移动软件有限公司 共享指示方法和装置、共享确定方法和装置
CN114391299B (zh) * 2020-08-21 2024-02-13 北京小米移动软件有限公司 共享指示方法和装置、共享确定方法和装置

Also Published As

Publication number Publication date
US20220279576A1 (en) 2022-09-01
CN116506087A (zh) 2023-07-28
US20200351942A1 (en) 2020-11-05
US11297648B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
EP3952355A1 (en) Communication method and device
WO2020169071A1 (zh) 随机接入的方法和装置
US11197320B2 (en) Uplink transmission resource scheduling method and device, and uplink transmission method and device
US20210068154A1 (en) Channel sensing method, related device, and system
CN110062464B (zh) 用于管理非授权频段的信道占用时长的方法和设备
US11317295B2 (en) Communications method and apparatus
US11324020B2 (en) Data scheduling and transmission for different logical channels
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
WO2019085707A1 (zh) 一种上行信号传输方法、终端、网络设备及系统
KR102386383B1 (ko) 무선 통신 시스템에서 데이터를 전송하는 방법 및 장치
WO2020063630A1 (zh) 一种指示信息的传输方法和装置
WO2016179820A1 (zh) 检测免许可频谱信道的信号的方法、用户设备和基站
CN112261730B (zh) 通信的方法和通信装置
WO2024036671A1 (zh) 侧行通信的方法及装置
JP2018525953A (ja) データ伝送方法及び装置
US20220279576A1 (en) Method and device for managing channel occupancy duration of unlicensed frequency band
JP7199551B2 (ja) リソース予約方法および関連デバイス
WO2021087886A1 (zh) 定时器设置方法及相关设备
WO2023222072A1 (zh) 信道接入方法和相关装置
WO2023005471A1 (zh) 一种上行资源确定和配置方法及装置
WO2023197299A1 (zh) 无线通信的方法及装置
WO2023197292A1 (zh) 无线通信的方法及装置
WO2021088046A1 (zh) 数据处理方法及相关设备
WO2019214577A1 (zh) 信号传输方法、装置
CN116897587A (zh) 信道检测方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018901056

Country of ref document: EP

Effective date: 20200819