WO2024093986A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024093986A1
WO2024093986A1 PCT/CN2023/128321 CN2023128321W WO2024093986A1 WO 2024093986 A1 WO2024093986 A1 WO 2024093986A1 CN 2023128321 W CN2023128321 W CN 2023128321W WO 2024093986 A1 WO2024093986 A1 WO 2024093986A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet transmission
network device
downlink
downlink packet
data
Prior art date
Application number
PCT/CN2023/128321
Other languages
English (en)
French (fr)
Inventor
张梦晨
徐海博
阿鲁瓦利亚﹒贾格迪普﹒辛格
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093986A1 publication Critical patent/WO2024093986A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • the data packets that the user equipment (UE) in the radio resource control (RRC) non-connected state needs to transmit are usually very small, that is, the UE only needs to transmit small packets of data.
  • the UE needs to enter the RRC connected state before transmitting data.
  • the signaling overhead required for the UE to enter the RRC connected state from the RRC non-connected state may even be greater than the transmission overhead of the small packet data, resulting in unnecessary power consumption and signaling overhead. Therefore, a small packet transmission process is currently introduced to support the UE to directly transmit small packet data when it does not enter the RRC connected state.
  • the packet transmission process includes an uplink packet transmission process and a downlink packet transmission process.
  • the base station can page the UE, and the UE can initiate the downlink packet transmission process after receiving the paging to receive the downlink packet data.
  • some UEs may not have the conditions to receive downlink packet data. According to the current downlink packet transmission process, these UEs may fail to receive the downlink packet data.
  • the embodiments of the present application provide a communication method and apparatus for improving the success rate of a terminal device in receiving downlink packet data.
  • a first communication method which can be executed by a terminal device, or by other devices including terminal device functions, or by a chip system (or, chip) or other functional module, which can realize the functions of the terminal device, and the chip system or functional module is, for example, set in the terminal device.
  • the method includes: receiving a paging message from a network device, the paging message is used to page the terminal device to receive downlink packet data; when one or more of the following conditions are met, initiating an RRC connection recovery process for packet transmission: receiving the paging message carrying first indication information, the first indication information is used to indicate downlink packet transmission; receiving first configuration information from the network device, the first configuration information is used to indicate a first downlink packet transmission configuration; receiving a second downlink packet transmission configuration from the network device; or, there is no uplink data to be processed or sent, or, there is no uplink non-packet data to be processed or sent.
  • a terminal device may determine to initiate an RRC connection recovery process for packet transmission according to corresponding conditions, or it may be understood that the terminal device may determine whether to initiate an RRC connection recovery process for packet transmission according to corresponding conditions. For example, if one or more of the above conditions are met, an RRC connection recovery process for packet transmission may be initiated, and if one or more of the above conditions are not met, the terminal device may not initiate an RRC connection recovery process for packet transmission.
  • the probability of a terminal device that does not meet the conditions initiating an RRC connection recovery process for packet transmission can be reduced, and the power consumption of such terminal devices can be reduced.
  • the terminal device that determines that the RRC connection recovery process for packet transmission is initiated is a device that meets the initiation conditions, thereby improving the success rate of the terminal device receiving downlink packet data.
  • the terminal device initiating an RRC connection recovery process for packet transmission may include the terminal device initiating an RRC connection recovery process for downlink packet transmission.
  • initiating an RRC connection recovery procedure for small packet transmission includes: initiating an RRC connection recovery procedure for downlink small packet transmission.
  • the first configuration information is included in a system message.
  • the network device may send the first configuration information in a broadcast or unicast manner. If sent in a broadcast manner, the first configuration information may be included in a system message (such as SIB1, etc.), or may also be included in other broadcast messages. Sending the first configuration information in a broadcast manner may reduce transmission overhead.
  • the first configuration information and the SDT common configuration information are different information.
  • the information can be used by the terminal device to determine whether to initiate the RRC connection recovery process for uplink packet transmission. Making these two pieces of information different can enable the network device to support uplink packet transmission or downlink packet transmission separately without having to support both transmission processes at the same time, which can simplify the implementation of the network device.
  • the first configuration information includes information of a first timer, and/or a signal quality threshold corresponding to packet transmission, wherein the first timer is used to monitor the packet transmission process.
  • the signal quality threshold corresponding to packet transmission can be used by the terminal device to determine whether to initiate an RRC connection recovery process for packet transmission (e.g., downlink packet transmission).
  • the first timer and the timer t319a included in the SDT public configuration information may be the same timer, or may be different timers. If the two are different timers, the timing durations may be equal or unequal.
  • the signal quality threshold may be equal or unequal to the RSRP threshold included in the SDT public configuration information.
  • the first configuration information may indicate a configuration for downlink packet transmission, and/or a configuration for uplink packet transmission.
  • the first timer is used to monitor the downlink packet transmission process; the signal quality threshold corresponding to the packet transmission is the signal quality threshold corresponding to the downlink packet transmission.
  • the first configuration information can be used for downlink packet transmission, making the configuration information more targeted.
  • initiating an RRC connection recovery process for packet transmission includes: sending an RRC recovery request message to the network device and starting the first timer.
  • the method also includes: upon receiving an RRC response message from the network device, if the first timer is in a running state, stopping the first timer; or, if the first timer times out, entering an RRC idle state. If the terminal device obtains the configuration of the first timer (for example, the first configuration information includes information of the first timer), the terminal device can start the first timer when initiating the RRC connection recovery process for packet transmission to monitor the downlink packet transmission process.
  • the method further includes: receiving first downlink packet data from the network device.
  • the second downlink packet transmission configuration includes the configuration of a wireless bearer supporting downlink packet transmission, and/or the configuration of pre-configured resources supporting downlink packet transmission.
  • the second downlink packet transmission configuration may be sent by a network device through an RRC message or other unicast message, and is configured by the network device separately for the terminal device, and is a dedicated configuration for the terminal device.
  • the first downlink packet configuration may be sent by a network device through a broadcast message (such as a system message, etc.), and is a public configuration that can be used by multiple terminal devices (such as some or all terminal devices that can receive the broadcast message).
  • a second communication method which can be executed by a network device, or by other devices including network device functions, or by a chip system (or, chip) or other functional modules, which can realize the functions of the network device, and the chip system or functional module is, for example, set in the network device.
  • the network device is a core network device, such as AMF or UPF, etc.; or, the network device can also be an access network device, such as a base station, a transmission point (transmission point, TP), a transmission reception point (transmission reception point, TRP) or a reception point (reception point, RP), etc.
  • the concepts of base station, TP, TRP, RP, cell, etc. can be replaced with each other.
  • the method includes: sending first configuration information, the first configuration information is used to indicate a first downlink packet transmission configuration, the first configuration information is different from the SDT common configuration information, and the SDT common configuration is used for uplink packet transmission.
  • the first configuration information is included in a system message.
  • the first configuration information includes information of a first timer and/or a signal quality threshold corresponding to packet transmission, wherein the first timer is used to monitor the packet transmission process.
  • the first timer is used to monitor the downlink packet transmission process; the signal quality threshold corresponding to the packet transmission is the signal quality threshold corresponding to the downlink packet transmission.
  • the method further includes: sending a paging message, the paging message being used to page a terminal device to receive downlink packet data; receiving an RRC recovery request message from the terminal device; and sending first downlink packet data to the terminal device.
  • a communication device may be a terminal device as described in any one of the first to second aspects.
  • the communication device has the functions of the terminal device.
  • the communication device is, for example, a terminal device, or a larger device including a terminal device, or a functional module in a terminal device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also referred to as a processing unit).
  • the transceiver unit can realize the sending function and the receiving function. When the transceiver unit realizes the sending function, it can be called a sending unit (sometimes also called a sending module).
  • the transceiver unit When the transceiver unit realizes the receiving function, it can be called a receiving unit (sometimes also called a receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called a transceiver unit, and the functional module can realize the sending function and the receiving function; or the sending unit and the receiving unit can be different functional modules, and the transceiver unit is a general term for these functional modules.
  • the transceiver unit (or, the receiving unit) is used to receive a paging message from a network device, and the paging message is used to page the terminal device to receive downlink packet data;
  • the processing unit (or, the transceiver unit (for example, the sending unit)) is used to initiate an RRC connection recovery process for packet transmission when one or more of the following conditions are met: receiving the paging message carrying first indication information, and the first indication information is used to indicate downlink packet transmission; receiving first configuration information from the network device, and the first configuration information is used to indicate a first downlink packet transmission configuration; receiving a second downlink packet transmission configuration from the network device; or, there is no uplink data to be processed or to be sent, or, there is no uplink non-packet data to be processed or to be sent.
  • the communication device also includes a storage unit (sometimes also referred to as a storage module), and the processing unit is used to couple with the storage unit and execute the program or instructions in the storage unit, so that the communication device can perform the functions of the terminal device described in any one of the first to second aspects above.
  • a storage unit sometimes also referred to as a storage module
  • the communication device may be the network device described in any one of the first to second aspects above.
  • the communication device has the functions of the above network device.
  • the communication device is, for example, a network device, or a larger device including a network device, or a functional module in a network device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiver unit (sometimes also referred to as a transceiver module).
  • a processing unit sometimes also referred to as a processing module
  • a transceiver unit sometimes also referred to as a transceiver module
  • the transceiver unit (or, the sending unit) is used to send first configuration information, where the first configuration information is used to indicate a first downlink packet transmission configuration, and the first configuration information is different from the SDT common configuration information, and the SDT common configuration is used for uplink packet transmission.
  • the communication device also includes a storage unit (sometimes also referred to as a storage module), and the processing unit is used to couple with the storage unit and execute the program or instructions in the storage unit, so that the communication device can perform the functions of the network device described in any one of the first to second aspects above.
  • a storage unit sometimes also referred to as a storage module
  • a communication device which may be a terminal device, or a chip or chip system used in a terminal device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store a computer program, and the processor is coupled to the memory and the communication interface.
  • the processor reads the computer program or instruction, the communication device executes the method executed by the terminal device in the above aspects.
  • a communication device which may be a network device, or a chip or chip system used in a network device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store a computer program, and the processor is coupled to the memory and the communication interface.
  • the processor reads the computer program or instruction, the communication device executes the method executed by the network device in the above aspects.
  • a communication system comprising a terminal device and a network device, wherein the terminal device is used to execute the method executed by the terminal device as described in any one of the first aspect to the second aspect, and the network device is used to execute the method executed by the network device as described in any one of the first aspect to the second aspect.
  • the terminal device can be implemented by the communication device described in the third aspect or the fifth aspect; the network device can be implemented by the communication device described in the fourth aspect or the sixth aspect.
  • a computer-readable storage medium is provided, wherein the computer-readable storage medium is used to store computer programs or instructions, and when the computer-readable storage medium is executed, the methods executed by the terminal device or network device in the above aspects are implemented.
  • a computer program product comprising instructions, which, when executed on a computer, enables the methods described in the above aspects to be implemented.
  • a chip system comprising a processor and an interface, wherein the processor is used to call and execute instructions from the interface so that the chip system implements the above-mentioned methods.
  • FIG1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG2 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a device provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another device provided in an embodiment of the present application.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/” generally indicates that the previous and next associated objects are in an “or” relationship.
  • A/B means: A or B.
  • “At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, priority or importance of multiple objects.
  • the first radio resource control (RRC) request message and the second RRC request message can be the same message or different messages, and this name does not indicate the difference in content, size, application scenario, sender/receiver, priority or importance of the two messages.
  • the numbering of the steps in the various embodiments introduced in the present application is only to distinguish different steps, and is not used to limit the order between the steps. For example, S201 may occur before S202, or may occur after S202, or may occur at the same time as S202.
  • the terminal device is a device with wireless transceiver function, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above device (for example, a communication module, a modem, or a chip system, etc.).
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), vehicle to everything (vehicle to everything, V2X), machine-to-machine/machine-type communication (machine-to-machine/machine-type communications, M2M/MTC), Internet of Things (Internet of Things, IoT), virtual reality (virtual reality, VR), augmented reality (augmented reality, AR), industrial control (industrial control), self-driving, remote medical, smart grid (smart grid), smart furniture, smart office, smart wear, smart transportation, smart city (smart city), drones, robots and other scenarios of terminal devices.
  • the terminal device may sometimes be referred to as UE, terminal, access station, UE station, remote station, wireless communication device, or user equipment, etc.
  • the terminal device is described by taking UE as an example in the embodiments of the present application
  • the network equipment in the embodiments of the present application includes access network equipment, and/or core network equipment.
  • the access network equipment is a device with wireless transceiver function, which is used to communicate with the terminal device.
  • the access network equipment includes but is not limited to base stations (base transceiver station (BTS), Node B, eNodeB/eNB, or gNodeB/gNB), transmission reception points (TRP), base stations of subsequent evolution of the third generation partnership project (3GPP), access nodes in wireless fidelity (Wi-Fi) systems, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, etc.
  • the base station can include one or more co-station or non-co-station transmission and receiving points.
  • the access network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the access network device may also be a server, etc.
  • the network device in the vehicle to everything (V2X) technology may be a road side unit (RSU).
  • the base station can communicate with a terminal device, or it can communicate with the terminal device through a relay station.
  • the terminal device can communicate with multiple base stations in different access technologies.
  • the core network device is used to implement functions such as mobility management, data processing, session management, policy and billing.
  • functions such as mobility management, data processing, session management, policy and billing.
  • the names of the devices that implement the core network functions in systems with different access technologies may be different, and the embodiments of the present application do not limit this.
  • the core network equipment includes: access and mobility management function (AMF), session management function (SMF), policy control function (PCF) or user plane function (UPF), etc.
  • AMF access and mobility management function
  • SMF session management function
  • PCF policy control function
  • UPF user plane function
  • the communication device for implementing the network device function may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system, which may be installed in the network device.
  • a device capable of supporting the network device to implement the function such as a chip system, which may be installed in the network device.
  • the technical solution provided by the embodiment of the present application is described by taking the device for realizing the function of the network device as an example.
  • RRC state of UE There are three RRC states for UE, namely RRC_idle state, RRC_inactive state and RRC_connected state. If the UE has established an RRC connection, the UE is in the RRC connected state or the RRC inactive state. If the UE has not established an RRC connection, the UE is in the RRC idle state. Among them, the RRC inactive state is introduced for the UE in the fifth generation mobile communication technology (the 5th generation, 5G) NR. This RRC state is mainly aimed at the situation that "UE with infrequent data transmission is usually kept in the RRC inactive state by the network". When the UE is in different RRC states, different operations are performed.
  • Figure 1 is a schematic diagram of the transition of three RRC states.
  • the UE When the UE is in the RRC idle state, if the UE needs to perform data transmission, the UE can initiate the RRC connection establishment process to enter the RRC connected state. If a UE in the RRC connected state does not need to transmit data, the base station may release the UE, so that the UE enters the RRC idle state or the RRC inactive state. If the base station sends a release message with a suspend indication, such as an RRC release message with a suspend indication, the UE will enter the RRC inactive state; and if the base station sends a release message, such as an RRC Release message, the UE will enter the RRC idle state. In addition, the UE in the RRC inactive state can also return to the RRC connected state through the RRC connection resume process, or the base station can release the UE in the RRC inactive state to the RRC idle state.
  • a suspend indication such as an RRC release message with a suspend indication
  • the UE in the RRC non-connected state does not support data transmission, that is, the UE needs to enter the RRC connected state before data transmission.
  • the data packets that the UE in the RRC non-connected state needs to transmit are usually very small, that is, the UE only needs to transmit small packets of data (small data), such as smartphone-related services, such as instant messages, heartbeat packets or push messages of some applications (APP), or non-smartphone-related services, such as periodic data of wearable devices (such as heartbeat packets), or periodic readings sent by industrial wireless sensor networks (such as smart meter readings).
  • small data small data
  • smartphone-related services such as instant messages, heartbeat packets or push messages of some applications (APP), or non-smartphone-related services, such as periodic data of wearable devices (such as heartbeat packets), or periodic readings sent by industrial wireless sensor networks (such as smart meter readings).
  • APP heartbeat packets
  • non-smartphone-related services such as periodic data of wearable devices
  • the signaling overhead required for the UE to enter the RRC connected state from the RRC non-connected state may even be greater than the transmission overhead of small data, resulting in unnecessary power consumption and signaling overhead. Therefore, small packet transmission processes have been introduced, such as early data transmission (EDT) of the long term evolution (LTE) system or small data transmission (SDT) of the new radio (NR) system, both of which support UE to directly transmit small packet data without entering the RRC connected state.
  • EDT early data transmission
  • LTE long term evolution
  • SDT small data transmission
  • NR new radio
  • MT-SDT is actually a downlink packet transmission scheme.
  • MT-SDT means that when the base station or other network equipment has downlink packet data to send to the UE, the UE does not need to enter the RRC connection state and directly receives the downlink data in the RRC inactive state.
  • the base station can page the UE, and after receiving the paging, the UE can initiate the RRC connection recovery process to receive the downlink packet data.
  • some UEs may not have the conditions to receive downlink packet data. According to the current downlink packet transmission process, these UEs may fail to receive the downlink packet data.
  • the UE may determine to initiate an RRC connection recovery process for packet transmission according to corresponding conditions, or it may be understood that the UE may determine whether to initiate an RRC connection recovery process for packet transmission according to corresponding conditions. For example, if one or more of the above conditions are met, an RRC connection recovery process for packet transmission may be initiated, and if one or more of the above conditions are not met, the UE may not initiate an RRC connection recovery process for packet transmission.
  • the probability of a UE that does not meet the conditions initiating an RRC connection recovery process for packet transmission can be reduced, and the power consumption of such UE can be reduced.
  • the UE that initiates the RRC connection recovery process for packet transmission is a device that meets the initiation conditions, thereby improving the success rate of the UE receiving downlink packet data.
  • the UE initiating an RRC connection recovery process for packet transmission may include that the UE initiates an RRC connection recovery process for downlink packet transmission.
  • the technical solution provided in the embodiments of the present application can be applied to the 4th generation (4G) mobile communication technology system, such as the LTE system, or can be applied to the 5G system, such as the NR system, or can also be applied to the next generation mobile communication system or other similar communication systems, without specific limitation.
  • the technical solution provided in the embodiments of the present application can be applied to device-to-device (D2D) scenarios, such as the NR-D2D scenarios, etc., or can be applied to vehicle-to-everything (V2X) scenarios, such as the NR-V2X scenarios, etc.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • it can be applied to the Internet of Vehicles, such as V2X, vehicle-to-vehicle (V2V), etc., or can be used in the fields of intelligent driving, assisted driving, or intelligent networked vehicles.
  • Figure 1 is a communication network architecture applicable to the embodiment of the present application.
  • the UE resides in the access network device, and the UE may be in an RRC non-connected state.
  • the access network device and the UE please refer to the previous text.
  • the RRC non-connected state includes, for example, an RRC inactive state or an RRC idle state.
  • the steps indicated by dashed lines in the accompanying drawings corresponding to the embodiments of the present application are all optional steps.
  • the embodiment of the present application provides a communication method, please refer to Figure 2, which is a flow chart of the method.
  • the method can be applied to the network architecture shown in Figure 1, for example, the UE involved in the method can be the UE in Figure 1, and the network device involved in the method can be the access network device in Figure 1, or the core network device to which the access network device in Figure 1 is connected, such as UPF or AMF.
  • the downlink data can reach the core network device.
  • the downlink data can first reach the core network device (such as UPF), and the core network device can send the downlink data to the access network device, and then the downlink data reaches the access network device.
  • the core network device such as UPF
  • the network device determines that the downlink data can be sent through a downlink packet transmission process.
  • the downlink packet transmission process is, for example, an MT-SDT process, or may be other processes for downlink packet transmission.
  • the network device may determine whether the downlink data can be sent through the downlink packet transmission process according to the first condition.
  • the first condition includes a threshold condition and/or a load condition of the network device.
  • the first condition may also include other conditions, which are not specifically limited.
  • the first condition includes a threshold condition.
  • the network device can determine whether the data volume of the downlink data is less than or equal to the first threshold. If the data volume of the downlink data is less than or equal to the first threshold, it indicates that the data volume of the downlink data is small, so the downlink data can be sent through the downlink packet transmission process. If the data volume of the downlink data is greater than the first threshold, it indicates that the data volume of the downlink data is large and is not suitable for being sent through the downlink packet transmission process. Therefore, it can be determined that the downlink data cannot be sent through the downlink packet transmission process. For downlink data that cannot be sent through the downlink packet transmission process, the network device can trigger the UE to enter the RRC connection state to receive the downlink data.
  • the first threshold can be set by the network device, for example, the network device itself implements the setting, or is predefined by the protocol, etc.
  • the first condition includes a load condition of the network device.
  • the network device can determine the load condition of the network device, and the load of the network device includes, for example, the number of UEs served by the network device. If the load of the network device is greater than or equal to the first threshold, indicating that the load of the network device is heavy and may not be able to support more UEs to enter the RRC connection state under the network device, the network device can determine that the downlink data can be sent through the downlink packet transmission process.
  • the network device can determine that the downlink data cannot be sent through the downlink packet transmission process, for example, the network device can trigger the UE to enter the RRC connection state to receive the downlink data.
  • the network device may further determine whether the data volume of the downlink data is less than or equal to the first threshold. If the data volume of the downlink data is less than or equal to the first threshold, the network device may determine that the downlink data can be sent through the downlink packet transmission process. If the data volume of the downlink data is greater than the first threshold, the network device may determine that the downlink data cannot be sent through the downlink packet transmission process. For example, the network device may trigger the UE to enter the RRC connected state to receive the downlink data, or, because the load of the network device is already heavy, the network device may also give up sending the downlink data.
  • the downlink data that can be transmitted through the downlink packet transmission process is also referred to as downlink packet data in the embodiment of the present application.
  • the network device determines that the downlink data can be sent through the downlink packet transmission process, which may be that the last serving gNB determines that the downlink data can be sent through the downlink packet transmission process.
  • the network device determines that the downlink data can be sent through the downlink packet transmission process, which may be that the receiving gNB determines that the downlink data can be sent through the downlink packet transmission process.
  • the last serving gNB may also be referred to as a new station, a new base station, etc.
  • the receiving gNB may also be referred to as an old station, an old base station, an anchor base station, etc.
  • the last serving gNB determines whether the data can be sent through the downlink packet transmission process based on the data volume of the downlink data received from the core network device in S201.
  • the receiving gNB determines that the downlink data can be sent through the downlink packet transmission process
  • the receiving gNB can determine whether the data can be sent through the downlink packet transmission process based on the data volume of the downlink data sent by the last serving gNB to the receiving gNB.
  • the process also includes the data volume information of the downlink data sent by the last serving gNB to the receiving gNB.
  • the network device sends a paging message.
  • the UE receives the paging message from the network device.
  • the paging message may be a core network (CN) paging message or a radio access network (RAN) paging message.
  • CN core network
  • RAN radio access network
  • the paging message can be used to page one or more UEs, with the purpose of enabling the one or more UEs to receive packet data, or enabling the one or more UEs to receive downlink packet data.
  • the paging message carries first indication information, which is used to indicate packet data to be sent, or downlink packet data to be sent, or packet transmission, or downlink packet transmission.
  • the UE receiving the paging message can determine that there is downlink packet data based on the first indication information.
  • the first indication information is, for example, an MT-SDT indication, or it may be other indication information.
  • S204 UE initiates an RRC connection recovery process for packet transmission.
  • the UE may also determine Whether to initiate an RRC connection recovery process for small packet transmission, S204 is an example of the UE determining to initiate an RRC connection recovery process for small packet transmission.
  • the small packet transmission is, for example, a downlink small packet transmission, so S204 can also be understood as the UE initiating an RRC connection recovery process for downlink small packet transmission, which is used as an example in the following text.
  • the UE may determine to initiate an RRC connection recovery process for downlink packet transmission based on the second condition.
  • the second condition may include one or more of the following: receiving a paging message carrying the first indication information, receiving the first configuration information (or receiving the first configuration information from the network device), receiving the second downlink packet transmission configuration (or receiving the second downlink packet transmission configuration from the network device), the current signal quality of the UE is greater than or equal to the signal quality threshold corresponding to the downlink packet transmission, or there is no uplink data to be processed or sent or there is no uplink non-packet data to be processed or sent.
  • these items may not be considered to be included in one condition (the second condition), but rather several items that exist independently.
  • the second downlink packet transmission configuration in the embodiment of the present application may include a downlink packet transmission configuration (which can be understood as a configuration for downlink packet transmission), and/or include an uplink packet transmission configuration (which can be understood as a configuration for uplink packet transmission, such as sdt-Config during uplink packet transmission). Therefore, the second downlink packet transmission configuration may also be referred to as the second packet transmission configuration.
  • the network device can configure a radio bearer (RB) that can transmit small packet data for the UE, which may include a data radio bearer (DRB) and/or a signaling radio bearer (SRB). Only the data on these RBs can be transmitted through the small packet transmission process.
  • RBs can be called small packet RBs or SDT RBs, and RBs other than these RBs can be called non-small packet RBs or non-SDT RBs.
  • the uplink data on the non-SDT RB can be considered as uplink non-small packet data.
  • the downlink data on the non-SDT RB can be considered as downlink non-small packet data.
  • the UE can determine whether the data volume of the uplink data on the SDT RB to be sent is less than or equal to the second threshold. If the data volume of the uplink data is less than or equal to the second threshold, it indicates that the data volume of the uplink data is small, so the uplink data can be sent through the uplink packet transmission process. At this time, the uplink data can be sent as uplink packet data. If the data volume of the uplink data is greater than the second threshold, it indicates that the data volume of the uplink data is large and is not suitable for being sent through the uplink packet transmission process.
  • uplink non-packet data may include uplink data on non-SDT RBs, and/or, uplink data with a data volume greater than the second threshold.
  • the UE may not initiate the RRC connection recovery process for downlink packet transmission.
  • the UE may initiate an RRC connection recovery process for requesting to enter the RRC connection state, and enter the RRC connection state through a normal random access process, so that uplink data can be sent in the RRC connection state, and downlink packet data (at this time, it can also be called downlink data) can be received in the RRC connection state.
  • the uplink data may include uplink non-packet data.
  • the UE may initiate an RRC connection recovery process for SDT, and uplink data can be sent in the RRC inactive state, and downlink packet data can be received in the RRC inactive state.
  • the uplink data may include uplink packet data, and the RRC connection recovery process for SDT may be an RRC connection recovery process for uplink SDT. If the UE has no uplink data being processed or to be sent at this time, the UE can initiate the RRC connection recovery process for downlink packet transmission.
  • uplink non-packet data can be understood as uplink data that cannot be transmitted through the uplink packet transmission process.
  • the UE can send uplink non-packet data in the RRC connected state.
  • the last item of the second condition is "no uplink non-small packet data to be processed or sent"
  • the UE may initiate an RRC connection recovery process for requesting to enter the RRC connection state, and enter the RRC connection state through a normal random access process, so that uplink non-small packet data can be sent in the RRC connection state, and downlink small packet data (at this time, it can also be called downlink data) can be received in the RRC connection state. If the UE has no uplink non-small packet data being processed or to be sent at this time, but the UE has uplink small packet data being processed or to be sent, the UE can initiate the RRC connection recovery process for downlink small packet transmission.
  • the UE can also initiate the RRC connection recovery process for downlink small packet transmission. It can be considered that if the last item above is "no uplink non-small packet data to be processed or sent", the situation including downlink small packet data and/or uplink small packet data is classified as a downlink small packet transmission process, or in the case of downlink small packet data and/or uplink small packet data, the UE can initiate an RRC connection recovery process for downlink small packet transmission.
  • the UE may initiate an RRC connection recovery procedure for downlink packet transmission:
  • the UE receives a paging message carrying the first indication information, receives the first configuration information from the network device, receives the second downlink packet transmission configuration from the network device, has no uplink data to be processed or sent, or has no uplink non-packet data to be processed or sent, or the current signal quality of the UE is greater than or equal to the signal quality threshold corresponding to the downlink packet transmission. If one or more of these items are not met, the UE may not initiate the RRC connection recovery process for downlink packet transmission.
  • the UE may not initiate the RRC connection recovery process for downlink packet transmission: the paging message carrying the first indication information is not received, the first configuration information from the network device is not received, the second downlink packet transmission configuration from the network device is not received, there is uplink data to be processed or sent, or there is uplink non-packet data to be processed or sent, or the current signal quality of the UE is less than the signal quality threshold corresponding to the downlink packet transmission. If one or more of the above conditions are not met, the UE may initiate the RRC connection recovery process for downlink packet transmission.
  • the second downlink packet transmission configuration is, for example, a configuration corresponding to downlink packet transmission.
  • the second downlink packet transmission configuration may be the same as or different from the configuration corresponding to uplink packet transmission.
  • the second downlink packet transmission configuration is an MT-SDT configuration (mt-sdt-Config)
  • the SDT configuration may include a configuration of a radio bearer (RB) supporting downlink packet transmission, and/or a configuration of pre-configured resources supporting downlink packet transmission, etc.
  • RB radio bearer
  • pre-configured resources are, for example, pre-configured grant (CG)-SDT resources.
  • the second downlink packet transmission configuration may be configured by a network device.
  • the network device sends an RRC message to the UE, and the RRC message may include second configuration information, and the second configuration information may indicate the second downlink packet transmission configuration.
  • the RRC message may be sent before S204, for example, the RRC message is an RRC release message, which may be used to release a UE in an RRC connected state to an RRC non-connected state, or may be used to release a UE in an RRC non-activated state back to an RRC non-activated state, or the RRC message may be other messages, such as other RRC messages or media access control (MAC) control elements (CE), etc.
  • MAC media access control
  • the second downlink packet transmission configuration is an SDT configuration (sdt-Config), for example, a configuration for reusing uplink packet transmission, the SDT configuration including an RB configuration supporting packet transmission, and/or a configuration of pre-configured resources for packet transmission, etc., and may also include other configurations, which are not specifically limited.
  • the pre-configured resources are, for example, CG-SDT resources. It can be understood that the second downlink packet transmission configuration is configured separately for the UE by the network device, and is a dedicated configuration for the UE.
  • the configuration of the RB supporting downlink packet transmission may indicate the RB supporting downlink packet transmission, that is, according to the configuration, it can be determined which RBs support downlink packet transmission, and for the data on the RBs that do not support downlink packet transmission, the UE does not need to initiate the downlink packet transmission process.
  • the packet transmission process may include an uplink packet transmission process and a downlink packet transmission process, there may be RBs that support uplink packet transmission, and there may also be RBs that support downlink packet transmission.
  • the RBs that support uplink packet transmission may or may not have an intersection with the RBs that support downlink packet transmission.
  • the two parts of RBs may be exactly the same, or they may be partially the same.
  • the RBs that support uplink packet transmission and the RBs that support downlink packet transmission are not distinguished, that is, the RBs that support SDT support both uplink and downlink packet transmission.
  • the configuration of CG-SDT resources supporting downlink packet transmission may indicate CG-SDT resources that can be used for the downlink packet transmission process.
  • CG-SDT resources are, for example, pre-configured for a network device and can be used for the UE to send information to the network device in the packet transmission process, such as sending uplink packet data or other information.
  • the UE also needs to send information to the network device. For example, when the UE initiates the RRC recovery process, it needs to send an RRC connection recovery request message to the network device, so the UE can also use the CG-SDT resources.
  • the packet transmission process may include an uplink packet transmission process and a downlink packet transmission process
  • there may be CG-SDT resources for uplink packet transmission and there may also be CG-SDT resources supporting downlink packet transmission.
  • the CG-SDT resources supporting uplink packet transmission may or may not have an intersection with the CG-SDT resources supporting downlink packet transmission. If the two parts of CG-SDT resources have an intersection, the two parts of CG-SDT resources may be exactly the same, or may be partially the same.
  • the second downlink packet transmission configuration may be configured by the network device.
  • the network device may send a second indication information, and the second indication information indicates that the UE can use the CG-SDT resource to initiate MT-SDT.
  • the second downlink packet transmission configuration includes the second indication information.
  • the second indication information is configured for each UE, or the second indication information corresponds to each set of CG-SDT resources, that is, the second indication information indicates whether the UE can use the CG-SDT resource to initiate MT-SDT.
  • the first configuration information may indicate the first downlink packet transmission configuration.
  • the first configuration information includes information of the first timer and/or includes a signal quality threshold corresponding to the packet transmission, or may also include other configuration information.
  • the first timer may be used to monitor a packet transmission process, such as a downlink packet transmission process. For example, the UE may start the first timer when initiating an RRC connection recovery process for packet transmission, and may stop the first timer when receiving an RRC response message (corresponding to the response message of the RRC connection recovery) from a network device. If the first timer times out, the UE may enter an RRC idle state.
  • a packet transmission process such as a downlink packet transmission process. For example, the UE may start the first timer when initiating an RRC connection recovery process for packet transmission, and may stop the first timer when receiving an RRC response message (corresponding to the response message of the RRC connection recovery) from a network device. If the first timer times out, the UE may enter an RRC idle state.
  • the signal quality threshold corresponding to the packet transmission included in the first configuration information is, for example, a signal quality threshold corresponding to the downlink packet transmission.
  • the signal quality threshold can reuse the RSRP threshold in the uplink packet transmission process, for example, The SDT RSRP threshold included in the SDT public configuration information is the same; or, the signal quality threshold may be different from the RSRP threshold in the uplink packet transmission process.
  • the parameters corresponding to the signal quality threshold corresponding to the downlink packet transmission may include one or more of the reference signal receiving power (RSRP), the reference signal receiving quality (RSRQ), or the signal to interference plus noise ratio (SINR).
  • the threshold is the RSRP threshold; for another example, if the parameter corresponding to the signal quality threshold corresponding to the downlink packet transmission is RSRQ, then the threshold is the RSRQ threshold. For example, if the current signal quality of the UE is greater than or equal to the signal quality threshold corresponding to the downlink packet transmission, it indicates that the current signal quality of the UE is good, and the UE can be supported to receive downlink packet data without entering the RRC connection state. Therefore, in this case, the UE can initiate an RRC connection recovery process for downlink packet transmission.
  • the first configuration information can be configured by the network device, and the method may further include S205, the network device sends the first configuration information to the UE, and accordingly, the UE receives the first configuration information from the network device.
  • S205 occurs before S204.
  • the first configuration information can be sent by broadcasting, for example, the network device sends the first configuration information via a broadcast message, and the broadcast message is, for example, a system message, such as system resource block 1 (system resource block, SIB1), or other system messages.
  • SIB1 system resource block 1
  • the first downlink packet transmission configuration is not configured by the network device alone for the UE, but a common configuration that can be used by multiple UEs.
  • the network device may not send the first configuration information, and the UE does not need to receive the first configuration information.
  • the UE may not refer to the first configuration information when determining whether to initiate the RRC connection recovery process for downlink packet transmission.
  • the first configuration information may not be configured by the network device, but the UE may obtain the first configuration information in other ways, such as the first configuration information may be predefined by the protocol, etc., and the UE may still refer to the first configuration information when determining whether to initiate the RRC connection recovery process for downlink packet transmission.
  • the first configuration information may be dedicated to the downlink packet transmission process without involving the uplink packet transmission process, which is introduced below.
  • the uplink packet transmission process is initiated by the UE, so the UE can determine whether to initiate the uplink packet transmission process. For example, the UE can determine whether to initiate the RRC connection recovery process for uplink packet transmission. If it is determined that the RRC connection recovery process for uplink packet transmission can be initiated, the UE can initiate the RRC connection recovery process for uplink packet transmission. The UE can determine whether to initiate the RRC connection recovery process for uplink packet transmission based on the third condition, and the third condition may include at least one of the following: condition 1, condition 2, condition 3, condition 4, or condition 5.
  • Condition 1 is that the upper layer of the UE requests to restore the RRC connection.
  • the upper layer is a non-access stratum (NAS).
  • NAS non-access stratum
  • Condition 2 is that the system message SIB1 received by the UE from the base station includes SDT common configuration (sdt-ConfigCommon) information.
  • Condition 3 is that the UE is configured with SDT configuration, for example, the SDT configuration includes RB configuration, CG-SDT resource configuration, etc.
  • Condition 4 is that all uplink data to be processed or sent are mapped to the RB configured for SDT.
  • Condition 5 is that the lower layer of the UE indicates that the conditions for initiating SDT are met, and the lower layer is, for example, the MAC layer.
  • the conditions for initiating SDT include, for example, that the size of the uplink data packet is less than or equal to the small packet data volume threshold, the current RSRP of the UE is greater than or equal to the RSRP threshold corresponding to the small packet data, and there are available CG-SDT resources or random access (RA)-SDT resources for sending uplink small packet data.
  • the UE can determine whether the current base station or the current cell supports uplink packet transmission. For example, if SIB1 includes SDT public configuration, the UE determines that the current base station or the current cell supports uplink packet transmission, and if SIB1 does not include SDT public configuration, the UE determines that the current base station or the current cell does not support uplink packet transmission.
  • the SDT public configuration information in condition 2 may include at least one of the following: SDT RSRP threshold (sdt-RSRP-Threshold), SDT logical channel scheduling request delay timer (sdt-LogicalChannelSR-DelayTimer, SDT data volume threshold (sdt-DataVolumeThreshold), or, SDT failure detection timer (t319a).
  • SDT RSRP threshold sdt-RSRP-Threshold
  • SDT logical channel scheduling request delay timer sdt-LogicalChannelSR-DelayTimer
  • SDT data volume threshold sdt-DataVolumeThreshold
  • SDT failure detection timer t319a
  • the SDT public configuration information can be used by the UE to determine whether to initiate the RRC connection recovery process for the uplink packet transmission.
  • the UE can also determine whether to initiate the RRC connection recovery process for the downlink packet transmission based on the corresponding configuration information (e.g., the first configuration information).
  • the SDT public configuration information of the uplink packet transmission process is reused, that is, the first configuration information and the SDT public configuration information are the same information, or the content of the first configuration information can be included in the SDT public configuration information
  • the SDT public configuration information in addition to the first configuration information, will at least additionally include the SDT data volume threshold corresponding only to the uplink packet transmission process, because the SDT data volume threshold is a mandatory item in the SDT public configuration information.
  • the downlink packet transmission process may not require the SDT data volume threshold.
  • the network device should support the uplink packet transmission process. That is, if the SDT public configuration information of the uplink packet transmission process is reused, the network equipment must support both uplink packet transmission and downlink packet transmission, and cannot support only uplink packet transmission or only downlink packet transmission, which places high requirements on the network equipment.
  • the network device can broadcast SDT public configuration information for the UE to determine whether to initiate RRC connection recovery for downlink packet transmission. That is, the SDT public configuration information at this time is not used to determine whether to initiate the RRC connection recovery process for uplink packet transmission, or does not indicate that the current network device or current cell supports uplink packet transmission.
  • SIB1 includes the SDT public configuration information
  • the UE can be determined that the current network device or current cell supports the uplink packet transmission process, and the UE can continue to execute other judgment conditions.
  • condition 5 it may find that there are currently no RA-SDT resources or CG-SDT resources available for uplink packet transmission. Only then can the UE determine that the conditions for initiating the RRC connection recovery process for uplink packet transmission are not met. But in fact, the UE should have determined that the conditions for initiating the RRC connection recovery process for uplink packet transmission are not met when judging condition 2. It can be seen that if the downlink packet transmission process reuses the SDT public configuration information corresponding to the uplink packet transmission process, it may cause the UE to perform too many redundant judgment steps, reducing the efficiency of the UE and increasing the power consumption of the UE.
  • the embodiment of the present application sets additional first configuration information for the downlink packet transmission process, and the first configuration information can be dedicated to the downlink packet transmission process, and does not involve the uplink packet transmission process.
  • the first configuration information and the SDT common configuration information can be different information, for example, the first configuration information and the SDT common configuration information can be included in different messages, or although the two are included in the same message (such as SIB1), the two can be included in different information elements (IE).
  • the UE to initiate uplink packet transmission can determine whether the conditions for initiating the RRC connection recovery process for uplink packet transmission are met according to the SDT common configuration information, and the UE to initiate downlink packet transmission can determine whether the conditions for initiating the RRC connection recovery process for downlink packet transmission are met according to the first configuration information.
  • the two judgment processes will not affect each other, making the UE's judgment result more accurate and improving the UE's judgment efficiency.
  • the network device can also support uplink packet transmission or downlink packet transmission separately, that is, the support of the network device for different packet transmissions is decoupled, reducing the capability requirements for the network device.
  • the UE wants to initiate an RRC connection recovery process for downlink packet transmission.
  • An optional way is that the UE can send an RRC request message to the network device.
  • the RRC request message is an RRC connection recovery request message, or an RRC resume request (RRC resume request) message.
  • RRC resume request RRC resume request
  • the UE can start the first timer if the UE obtains the first configuration information, and the first configuration information includes information of the first timer, then when the UE finishes sending the RRC recovery request message, or after the UE sends the RRC recovery request message, the UE can start the first timer.
  • the UE may send the RRC recovery request message through RA-SDT resources or CG-SDT resources, or the UE may also send the RRC recovery request message through a normal random access process, and the random access resources corresponding to the random access process are not the random access resources configured by the base station for small packet transmission.
  • the UE can send the RRC recovery request message through the third message (Msg3) or message A (MsgA) of RA-SDT.
  • Msg3 third message
  • MsgA message A
  • the UE can send a random access preamble (preamble) of RA-SDT to the network device, which can be understood as corresponding to RA-SDT.
  • the network device can schedule resources for sending Msg3 for the UE.
  • the network device sends a random access response (RAR) message to the UE, and the RAR message can schedule resources for sending Msg3 for the UE.
  • RAR random access response
  • the UE can use the resources scheduled by the RAR message to send the RRC recovery request message to the network device. Among them, if the UE has uplink packet data to be sent, the UE can also use the resources scheduled by the RAR message to send the uplink packet data. Alternatively, when the UE receives the paging message in S203, the UE sends the RRC recovery request message through the third message (Msg3) or message A (MsgA) of RA-SDT only when there is uplink small packet data to be transmitted.
  • Msg3 third message
  • MsgA message A
  • the UE when the UE receives the paging message in S203, regardless of whether the UE has uplink packet data that needs to be sent, the UE can send the RRC recovery request message through the CG-SDT resource when the CG-SDT condition is met. Among them, if the UE has uplink packet data that needs to be sent, the UE can send the uplink packet data through the CG-SDT resource at the same time. Alternatively, when the UE receives the paging message in S203, the UE will send the RRC recovery request message through the CG-SDT only when there is uplink packet data to be transmitted and when the CG-SDT condition is met.
  • the CG-SDT resource is a CG-SDT resource specially configured by the base station for downlink packet transmission, or the CG-SDT resource is a CG-SDT resource used in uplink packet transmission.
  • the UE may send the RRC recovery request message through a normal random access process. For example, the UE may send a normal preamble to the network device, which may be understood as not corresponding to the uplink packet transmission process. After receiving the preamble, the network device may schedule the UE to use the uplink packet transmission process. Resources for sending Msg3, for example, the network device sends a RAR message to the UE, and the RAR message can schedule resources for the UE to send Msg3. The UE can use the resources scheduled by the RAR message to send the RRC recovery request message to the network device.
  • the RRC recovery request message may also carry a cause value (cause), and the cause value may indicate that the reason for the RRC recovery currently initiated by the UE is downlink packet data.
  • the network device will generally schedule more resources for the UE in order to ensure the transmission of the uplink packet data of the UE. For example, the resources scheduled by the network device for the UE will be more than the resources scheduled according to the ordinary preamble. Therefore, if the UE does not have uplink packet data to send, the UE uses ordinary preamble, which can reduce the resources scheduled by the network device to save resource overhead.
  • the method further includes S206, the network device sends the first downlink packet data to the UE.
  • the UE receives the first downlink packet data from the network device.
  • the network device can send the downlink packet data to be sent to the UE.
  • the network device can send the first downlink packet data to the UE in a dynamic scheduling manner.
  • the network device can send downlink control information (DCI) to the UE to schedule downlink resources.
  • DCI downlink control information
  • the network device can send the first downlink packet data to the UE through the downlink resources.
  • the first downlink packet data may be sent once, or it may go through multiple sending processes. If the first downlink packet data is sent after multiple sending processes, before each sending process, the network device can schedule the downlink resources used for this sending for the UE.
  • the network device may also send the first downlink packet data to the UE in a semi-persistent scheduling manner.
  • the network device may send a high-level signaling to the UE, and the high-level signaling may be used to schedule periodic downlink resources, and the UE may receive the downlink packet data on the periodic downlink resources scheduled by the high-level signaling.
  • the high-level signaling may be, for example, an RRC message or a MAC CE.
  • the method further includes S207, the network device sends an RRC response message to the UE.
  • the UE receives the RRC response message from the network device.
  • the RRC response message is, for example, an RRC release message.
  • the network device can send an RRC response message to the UE to end the current downlink packet transmission process.
  • the UE can stop receiving downlink packet data, for example, the UE can continue to remain in the current RRC non-connected state.
  • the UE may enter the RRC idle state.
  • the UE may stop the first timer.
  • the timeout of the first timer can be understood as that when the first timer times out, the UE has not received the RRC response message from the network device.
  • the first timer can be used to monitor the downlink packet transmission process.
  • the first timer may be timer t319a, or it may be a timer newly defined in an embodiment of the present application. If the first timer is a timer newly defined in an embodiment of the present application, the timing duration of the first timer may be the same as or different from the timing duration of timer t319a.
  • the UE may determine to initiate an RRC connection recovery process for downlink packet transmission according to corresponding conditions, or it may be understood that the UE may determine whether to initiate an RRC connection recovery process for downlink packet transmission according to corresponding conditions. For example, if one or more items proposed in the embodiment of the present application are met, the RRC connection recovery process for downlink packet transmission may be initiated, and if one or more items are not met, the UE may not initiate an RRC connection recovery process for downlink packet transmission.
  • the probability of UEs that do not meet the conditions initiating an RRC connection recovery process for downlink packet transmission can be reduced, and the power consumption of such UEs can be reduced.
  • the UE that initiates the RRC connection recovery process for downlink packet transmission is a device that meets the initiation conditions, thereby improving the success rate of the UE receiving downlink packet data.
  • the UE that initiates uplink packet transmission and the UE that initiates downlink packet transmission can determine whether the corresponding packet transmission can be initiated according to different conditions, which reduces the judgment steps that the UE needs to perform, simplifies the implementation complexity of the UE, and saves the power consumption of the UE.
  • the embodiment of the present application introduces the first configuration information for the downlink packet transmission process, so that the network device can support uplink packet transmission or downlink packet transmission separately without having to support uplink packet transmission and downlink packet transmission at the same time, thereby reducing the capability requirements for the network device.
  • FIG3 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device 300 may be the UE or the circuit system of the UE described in the embodiment shown in FIG2 , and is used to implement the method corresponding to the UE in the above method embodiment.
  • the communication device 300 may be the circuit system of the network device described in the embodiment shown in FIG2 , and is used to implement the method corresponding to the network device in the above method embodiment.
  • a circuit system is a chip system.
  • the communication device 300 includes at least one processor 301.
  • the processor 301 can be used for internal processing of the device to implement certain control processing functions.
  • the processor 301 includes instructions.
  • the processor 301 can store data.
  • different processors can be independent devices, can be located in different physical locations, and can be located on different integrated circuits.
  • different processors can be Integrated into one or more processors, for example, on one or more integrated circuits.
  • the communication device 300 includes one or more memories 303 for storing instructions.
  • data may also be stored in the memory 303.
  • the processor and memory may be provided separately or integrated together.
  • the communication device 300 includes a communication line 302 and at least one communication interface 304. Since the memory 303, the communication line 302 and the communication interface 304 are all optional, they are all indicated by dotted lines in FIG. 3 .
  • the communication device 300 may further include a transceiver and/or an antenna.
  • the transceiver may be used to send information to other devices or receive information from other devices.
  • the transceiver may be referred to as a transceiver, a transceiver circuit, an input/output interface, etc., and is used to implement the transceiver function of the communication device 300 through an antenna.
  • the transceiver includes a transmitter and a receiver.
  • the transmitter may be used to generate a radio frequency signal from a baseband signal
  • the receiver may be used to convert the radio frequency signal into a baseband signal.
  • Processor 301 may include a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the communication link 302 may include a pathway for transmitting information between the above-mentioned components.
  • the communication interface 304 uses any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), wired access networks, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • wired access networks etc.
  • the memory 303 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 303 may exist independently and be connected to the processor 301 through the communication line 302. Alternatively, the memory 303 may also be integrated with the processor 301.
  • the memory 303 is used to store computer-executable instructions for executing the solution of the present application, and the execution is controlled by the processor 301.
  • the processor 301 is used to execute the computer-executable instructions stored in the memory 303, thereby realizing the communication method provided in the above embodiment of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application code, which is not specifically limited in the embodiments of the present application.
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3 .
  • the communication device 300 may include multiple processors, such as the processor 301 and the processor 305 in FIG3. Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (such as computer program instructions).
  • the chip When the device shown in FIG3 is a chip, such as a chip of a UE or a chip of a network device, the chip includes a processor 301 (may also include a processor 305), a communication line 302, a memory 303 and a communication interface 304.
  • the communication interface 304 may be an input interface, a pin or a circuit, etc.
  • the memory 303 may be a register, a cache, etc.
  • the processor 301 and the processor 305 may be a general-purpose CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the program of the communication method of any of the above embodiments.
  • the embodiment of the present application may divide the functional modules of the device according to the above method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated module may be implemented in the form of hardware or in the form of software functional modules.
  • FIG4 shows a schematic diagram of a device, and the device 400 may be the UE or network device involved in the above-mentioned various method embodiments, or a chip in the UE or a chip in the network device.
  • the device 400 includes a sending unit 401, a processing unit 402 and a receiving unit 403.
  • the device 400 can be used to implement the steps performed by the UE or network equipment in the method of the embodiment of the present application.
  • the relevant features can be referred to the various embodiments above and will not be repeated here.
  • the functions/implementation processes of the sending unit 401, the receiving unit 403, and the processing unit 402 in FIG. 4 may be implemented as shown in FIG. 3
  • the processor 301 in FIG. 4 calls the computer execution instructions stored in the memory 303 to implement.
  • the function/implementation process of the processing unit 402 in FIG. 4 can be implemented by the processor 301 in FIG. 3 calling the computer execution instructions stored in the memory 303
  • the function/implementation process of the sending unit 401 and the receiving unit 403 in FIG. 4 can be implemented by the communication interface 304 in FIG. 3.
  • the functions/implementation processes of the sending unit 401 and the receiving unit 403 can also be implemented through pins or circuits.
  • the present application also provides a computer-readable storage medium, which stores a computer program or instruction.
  • a computer program or instruction When the computer program or instruction is run, the method performed by the UE or network device in the aforementioned method embodiment is implemented.
  • the functions described in the above embodiments can be implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application can be essentially or in other words, the part that contributes or the part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • Storage media include: various media that can store program codes, such as USB flash drives, mobile hard drives, ROM, RAM, magnetic disks, or optical disks.
  • the present application also provides a computer program product, which includes: a computer program code, when the computer program code is run on a computer, the computer executes the method executed by the UE or the network device in any of the aforementioned method embodiments.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is used to execute the method executed by the UE or network device involved in any of the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state drive (SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of the present application can be implemented or operated by a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above.
  • the general-purpose processor can be a microprocessor, and optionally, the general-purpose processor can also be any conventional processor, controller, microcontroller or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (EPROM), EEPROM, register, hard disk, removable disk, CD-ROM or any other form of storage medium in the art.
  • the storage medium can be connected to the processor so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium can also be arranged in different components in the terminal device.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置。终端设备接收来自网络设备的寻呼消息,该寻呼消息用于寻呼终端设备以接收下行小包数据。当满足如下一项或多项时,终端设备发起用于小包传输的RRC连接恢复流程:接收到携带第一指示信息的寻呼消息,第一指示信息用于指示下行小包传输;接收到来自网络设备的第一配置信息,第一配置信息用于指示第一下行小包传输配置;接收到来自网络设备的第二下行小包传输配置;或,没有待处理或待发送的上行数据,或者,没有待处理或待发送的上行非小包数据。本申请实施例为终端设备添加了下行小包传输的判断过程,通过该过程可减少不具备条件的终端设备发起用于小包传输的RRC连接恢复流程的概率,减小终端设备的功耗。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年11月03日提交中国国家知识产权局、申请号为202211369927.3、申请名称为“一种下行小包的配置方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年11月21日提交中国国家知识产权局、申请号为202211455033.6、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在某些场景下,处于无线资源控制(radio resource control,RRC)非连接态的用户设备(user equipment,UE)所需要传输的数据包通常很小,即,UE需要传输的只是小包数据(small data)。而目前规定,UE需要进入RRC连接(connected)态后才能传输数据,那么在UE只需传输小包数据的情况下,UE从RRC非连接态进入RRC连接态所需要的信令开销甚至可能大于小包数据的传输开销,导致了不必要的功耗和信令开销。因此,目前引入了小包传输流程,以支持UE在不进入RRC连接态时直接进行小包数据的传输。
小包传输流程包括上行小包传输流程和下行小包传输流程。其中在下行小包传输流程中,基站可以寻呼UE,UE接收寻呼后即可发起下行小包传输流程,以接收下行小包数据。但有些UE可能并不具备接收下行小包数据的条件,按照目前的下行小包传输流程,这些UE对下行小包数据的接收可能失败。
发明内容
本申请实施例提供一种通信方法及装置,用于提高终端设备接收下行小包数据的成功率。
第一方面,提供第一种通信方法,该方法可由终端设备执行,或由包括终端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该方法包括:接收来自网络设备的寻呼消息,所述寻呼消息用于寻呼所述终端设备以接收下行小包数据;当满足如下一项或多项时,发起用于小包传输的RRC连接恢复流程:接收到携带第一指示信息的所述寻呼消息,所述第一指示信息用于指示下行小包传输;接收到来自所述网络设备的第一配置信息,所述第一配置信息用于指示第一下行小包传输配置;接收到来自所述网络设备的第二下行小包传输配置;或,没有待处理或待发送的上行数据,或者,没有待处理或待发送的上行非小包数据。
本申请实施例中,终端设备如果接收了用于指示下行小包数据的寻呼消息,则终端设备可以根据相应的条件确定发起用于小包传输的RRC连接恢复流程,或者理解为,终端设备可以根据相应的条件确定是否发起用于小包传输的RRC连接恢复流程。例如,如果满足如上的一项或多项,则可以发起用于小包传输的RRC连接恢复流程,而如果不满足如上一项或多项,终端设备可以不发起用于小包传输的RRC连接恢复流程。通过该判断过程,可以减少不具备条件的终端设备发起用于小包传输的RRC连接恢复流程的概率,减小此类终端设备的功耗。而且尽量使得确定发起用于小包传输的RRC连接恢复流程的终端设备是具备发起条件的设备,从而能够提高终端设备接收下行小包数据的成功率。可选的,终端设备发起用于小包传输的RRC连接恢复流程可以包括,终端设备发起用于下行小包传输的RRC连接恢复流程。
在一种可选的实施方式中,发起用于小包传输的RRC连接恢复流程,包括:发起用于下行小包传输的RRC连接恢复流程。
在一种可选的实施方式中,所述第一配置信息包括在系统消息中。网络设备可以通过广播或单播方式发送第一配置信息。如果通过广播方式发送,则第一配置信息可以包括在系统消息(例如SIB1等)中,或者也可以包括在其他广播消息中。通过广播方式发送第一配置信息,可以减小发送开销。
在一种可选的实施方式中,所述第一配置信息与SDT公共配置信息为不同的信息。SDT公共配置 信息可用于终端设备确定是否发起用于上行小包传输的RRC连接恢复过程。令这两个信息为不同的信息,可以使得网络设备能够实现对于上行小包传输或下行小包传输的单独支持,而不必同时支持这两种传输流程,能够简化网络设备的实现。
在一种可选的实施方式中,所述第一配置信息包括第一定时器的信息,和/或小包传输对应的信号质量门限,其中,所述第一定时器用于监控小包传输过程。小包传输对应的信号质量门限可用于终端设备确定是否发起用于小包传输(例如下行小包传输)的RRC连接恢复流程。可选的,该第一定时器与SDT公共配置信息所包括的定时器t319a可以是同一定时器,或者也可以是不同的定时器,如果二者是不同的定时器,则定时时长可以相等或不相等。该信号质量门限与SDT公共配置信息所包括的RSRP门限可以相等或不相等。第一配置信息可以指示用于下行小包传输的配置,和/或用于上行小包传输的配置。
在一种可选的实施方式中,所述第一定时器用于监控下行小包传输过程;所述小包传输对应的信号质量门限为下行小包传输对应的信号质量门限。第一配置信息可以用于下行小包传输,使得配置信息更有针对性。
在一种可选的实施方式中,发起用于小包传输的RRC连接恢复流程,包括:向所述网络设备发送RRC恢复请求消息,并启动所述第一定时器。所述方法还包括:在接收到来自所述网络设备的RRC响应消息时,如果所述第一定时器处于运行状态,则停止所述第一定时器;或者,如果所述第一定时器超时,进入RRC空闲态。如果终端设备获得了第一定时器的配置(例如第一配置信息包括第一定时器的信息),则终端设备在发起用于小包传输的RRC连接恢复流程时可以启动第一定时器,以监控下行小包传输流程。
在一种可选的实施方式中,在发起用于小包传输的RRC连接恢复流程之后,所述方法还包括:接收来自所述网络设备的第一下行小包数据。
在一种可选的实施方式中,所述第二下行小包传输配置包括支持下行小包传输的无线承载的配置,和/或支持下行小包传输的预配置资源的配置。例如,第二下行小包传输配置可以是网络设备通过RRC消息或其他单播消息发送的,是网络设备为终端设备单独配置的,是该终端设备的专用配置。而第一下行小包配置可以是网络设备通过广播消息(例如系统消息等)发送的,是公共配置,可以被多个终端设备(例如能够接收该广播消息的部分或全部终端设备)使用。
第二方面,提供第二种通信方法,该方法可由网络设备执行,或由包括网络设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现网络设备的功能,该芯片系统或功能模块例如设置在网络设备中。可选的,该网络设备为核心网设备,例如AMF或UPF等;或者,该网络设备也可以是接入网设备,例如基站、传输点(transmission point,TP)、传输接收点(transmission reception point,TRP)或接收点(reception point,RP)等。本申请实施例中,基站、TP、TRP、RP、小区(cell)等概念,彼此之间可以互相替换。该方法包括:发送第一配置信息,所述第一配置信息用于指示第一下行小包传输配置,所述第一配置信息与SDT公共配置信息为不同的信息,所述SDT公共配置用于上行小包传输。
在一种可选的实施方式中,所述第一配置信息包括在系统消息中。
在一种可选的实施方式中,所述第一配置信息包括第一定时器的信息,和/或小包传输对应的信号质量门限,其中,所述第一定时器用于监控小包传输过程。
在一种可选的实施方式中,所述第一定时器用于监控下行小包传输过程;所述小包传输对应的信号质量门限为下行小包传输对应的信号质量门限。
在一种可选的实施方式中,所述方法还包括:发送寻呼消息,所述寻呼消息用于寻呼终端设备以接收下行小包数据;接收来自所述终端设备的RRC恢复请求消息;向所述终端设备发送第一下行小包数据。
关于第二方面或第二方面的各种可选的实施方式所带来的技术效果,可参考对于第一方面或第一方面的相应实施方式的技术效果的介绍。
第三方面,提供一种通信装置。所述通信装置可以为上述第一方面至第二方面中的任一方面所述的终端设备。所述通信装置具备上述终端设备的功能。所述通信装置例如为终端设备,或为包括终端设备的较大设备,或为终端设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称 为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
在一种可选的实施方式中,所述收发单元(或,所述接收单元),用于接收来自网络设备的寻呼消息,所述寻呼消息用于寻呼所述终端设备以接收下行小包数据;所述处理单元(或,所述收发单元(例如所述发送单元)),用于当满足如下一项或多项时,发起用于小包传输的RRC连接恢复流程:接收到携带第一指示信息的所述寻呼消息,所述第一指示信息用于指示下行小包传输;接收到来自所述网络设备的第一配置信息,所述第一配置信息用于指示第一下行小包传输配置;接收到来自所述网络设备的第二下行小包传输配置;或,没有待处理或待发送的上行数据,或者,没有待处理或待发送的上行非小包数据。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第二方面中的任一方面所述的终端设备的功能。
第四方面,提供另一种通信装置。所述通信装置可以为上述第一方面至第二方面中的任一方面所述的网络设备。所述通信装置具备上述网络设备的功能。所述通信装置例如为网络设备,或为包括网络设备的较大设备,或为网络设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。关于收发单元的实现方式可参考第三方面的介绍。
在一种可选的实施方式中,所述收发单元(或,所述发送单元),用于发送第一配置信息,所述第一配置信息用于指示第一下行小包传输配置,所述第一配置信息与SDT公共配置信息为不同的信息,所述SDT公共配置用于上行小包传输。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第二方面中的任一方面所述的网络设备的功能。
第五方面,提供一种通信装置,该通信装置可以为终端设备,或者为用于终端设备中的芯片或芯片系统。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述各方面中由终端设备所执行的方法。
第六方面,提供一种通信装置,该通信装置可以为网络设备,或者为用于网络设备中的芯片或芯片系统。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述各方面中由网络设备所执行的方法。
第七方面,提供一种通信系统,包括终端设备以及第网络设备,其中,终端设备用于执行如第一方面至第二方面中任一方面所述的由终端设备执行的方法,网络设备用于执行如第一方面至第二方面中任一方面所述的由网络设备执行的方法。例如,终端设备可以通过第三方面或第五方面所述的通信装置实现;网络设备可以通过第四方面或第六方面所述的通信装置实现。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中终端设备或网络设备所执行的方法被实现。
第九方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第十方面,提供一种芯片系统,包括处理器和接口,所述处理器用于从所述接口调用并运行指令,以使所述芯片系统实现上述各方面的方法。
附图说明
图1为本申请实施例的一种应用场景示意图;
图2为本申请实施例提供的一种通信方法的流程图;
图3为本申请实施例提供的一种装置的示意图;
图4为本申请实施例提供的又一种装置的示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一无线资源控制(radio resource control,RRC)请求消息和第二RRC请求消息,可以是同一个消息,也可以是不同的消息,且,这种名称也并不是表示这两个消息的内容、大小、应用场景、发送端/接收端、优先级或者重要程度等的不同。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,S201可以发生在S202之前,或者可能发生在S202之后,或者也可能与S202同时发生。
以下,对本申请实施例中的部分用语或概念进行解释说明,以便于本领域技术人员理解。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为UE、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例中将终端设备以UE为例进行说明。
本申请实施例中的网络设备,例如包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于基站(基站收发信站点(base transceiver station,BTS),Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,Wi-Fi)系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持同一种接入技术的网络,也可以支持不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。所述接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。所述接入网设备还可以是服务器等。例如,车到一切(vehicle to everything,V2X)技术中的网络设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以基站为例进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以5G系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy control function,PCF)或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案 中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
UE的RRC状态。当前UE共存在三种RRC状态,分别为RRC_空闲(idle)态,RRC_非激活(inactive)态以及RRC_连接态。如果UE已经建立了RRC连接,则UE处于RRC连接态或RRC非激活态,如果UE未建立RRC连接,则UE处于RRC空闲态。其中,RRC非激活态是在第五代移动通信技术(the 5th generation,5G)NR中为UE引入的,该RRC状态主要针对的情况为“具有不频繁(infrequent)数据传输的UE通常由网络保持在RRC非激活状态”。当UE处于不同的RRC状态时,会执行不同的操作。示例性地,图1为三种RRC状态的转换示意图。当UE处于RRC空闲态时,如果UE需要进行数据传输,则UE可以发起RRC连接建立过程,以进入RRC连接态。处于RRC连接态的UE如果无需进行数据传输,基站可将该UE释放,使得该UE进入RRC空闲态或RRC非激活态,其中,如果基站发送的是带有暂停指示的释放(release)消息,例如带有挂起指示的RRC释放(RRC release with suspend indication)消息,则该UE会进入RRC非激活态;而如果基站发送的是释放消息,例如RRC Release消息,则该UE会进入RRC空闲态。另外,处于RRC非激活态的UE还可以通过RRC连接恢复(resume)过程回到RRC连接态,或者,基站可以将处于RRC非激活态的UE释放到RRC空闲态。
基于上述不同的RRC状态可知,处于RRC非连接态的UE是不支持数据传输的,即,UE需要进入RRC连接态后才能进行数据传输。但是在某些场景下,处于RRC非连接态的UE所需要传输的数据包通常很小,即,UE需要传输的只是小包数据(small data),例如智能手机的相关业务,例如一些应用(APP)的即时消息、心跳包或推送消息,或非智能手机的相关业务,例如可穿戴设备的周期性数据(例如心跳包),或工业无线传感器网络所发送的周期性读数(例如智能电表的读数)等。在这种情况下,UE从RRC非连接态进入RRC连接态所需要的信令开销甚至可能大于small data的传输开销,导致了不必要的功耗和信令开销。因此,目前引入了小包传输流程,例如长期演进(long term evolution,LTE)系统的数据早传(early data transmission,EDT)或新无线(new radio,NR)系统的小包数据传输(small data transmission,SDT),均支持UE在不进入RRC连接态时直接进行小包数据的传输。
在第三代合作伙伴计划(3rd generation partnership project,3GPP)的NR SDT研究中,将标准化RRC非激活态的移动终结(mobile terminated,MT)-SDT方案,MT-SDT实际上是下行小包传输方案。MT-SDT指的是基站或者其他网络设备有下行小包数据需要发送给UE时,UE无需进入RRC连接态,直接在RRC非激活态接收下行数据。在MT-SDT流程中,基站可以寻呼UE,UE接收寻呼后即可发起RRC连接恢复过程,以接收下行小包数据。但有些UE可能并不具备接收下行小包数据的条件,按照目前的下行小包传输流程,这些UE对下行小包数据的接收可能失败。
鉴于此,提供本申请实施例的技术方案。本申请实施例中,UE如果接收了用于指示下行小包数据的寻呼消息,则UE可以根据相应的条件确定发起用于小包传输的RRC连接恢复流程,或者理解为,UE可以根据相应的条件确定是否发起用于小包传输的RRC连接恢复流程。例如,如果满足如上的一项或多项,则可以发起用于小包传输的RRC连接恢复流程,而如果不满足如上一项或多项,UE可以不发起用于小包传输的RRC连接恢复流程。通过该判断过程,可以减少不具备条件的UE发起用于小包传输的RRC连接恢复流程的概率,减小此类UE的功耗。而且尽量使得确定发起用于小包传输的RRC连接恢复流程的UE是具备发起条件的设备,从而能够提高UE接收下行小包数据的成功率。可选的,UE发起用于小包传输的RRC连接恢复流程可以包括,UE发起用于下行小包传输的RRC连接恢复流程。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)系统中,例如LTE系统,或可以应用于5G系统中,例如NR系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。另外本申请实施例提供的技术方案可以应用于设备到设备(device-to-device,D2D)场景,例如NR-D2D场景等,或者可以应用于车到一切(vehicle to everything,V2X)场景,例如NR-V2X场景等。例如可应用于车联网,例如V2X、车与车(vehicle-to-vehicle,V2V)等,或可用于智能驾驶、辅助驾驶、或智能网联车等领域。
示例性地,图1为本申请实施例适用的一种通信网络架构。图1中,UE驻留在接入网设备,此时UE可以处于RRC非连接态。关于对接入网设备和UE的更多介绍可参考前文。
为了更好地介绍本申请实施例,下面结合附图介绍本申请实施例所提供的方法。在本申请实施例中,RRC非连接态例如包括RRC非激活态或RRC空闲态。后文中如无特殊说明,则本申请实施例对应的附图中,虚线表示的步骤均为可选的步骤。
本申请实施例提供一种通信方法,请参见图2,为该方法的流程图。该方法可应用于图1所示的网络架构,例如该方法所涉及的UE可以是图1中的UE,该方法所涉及的网络设备可以是图1中的接入网设备,或者是图1中的接入网设备所接入的核心网设备,例如UPF或AMF等。
S201、下行数据到达网络设备。
如果该网络设备为核心网设备,则下行数据可以到达该核心网设备。或者,如果该网络设备为接入网设备,则下行数据可以先到达核心网设备(例如UPF),核心网设备可将该下行数据发送给接入网设备,则该下行数据到达接入网设备。
S202、网络设备确定该下行数据能够通过下行小包传输流程发送。本申请实施例中,该下行小包传输流程例如为MT-SDT流程,或者也可是其他用于下行小包传输的流程。
网络设备可以根据第一条件确定该下行数据是否能够通过下行小包传输流程发送。例如,第一条件包括门限条件,和/或包括网络设备的负载条件。或者,第一条件还可以包括其他条件,具体不做限制。
例如第一条件包括门限条件。网络设备可以确定该下行数据的数据量是否小于或等于第一门限,如果该下行数据的数据量小于或等于第一门限,表明该下行数据的数据量较小,因此该下行数据能够通过下行小包传输流程发送。而如果该下行数据的数据量大于第一门限,表明该下行数据的数据量较大,不适宜通过下行小包传输流程发送,因此可以确定该下行数据不能通过下行小包传输流程发送。对于不能通过下行小包传输流程发送的下行数据,网络设备可以触发UE进入RRC连接态,以接收该下行数据。第一门限可由网络设备设置,例如网络设备自身实现设置,或者通过协议预定义等。
又例如,第一条件包括网络设备的负载条件。网络设备可以确定该网络设备的负载情况,该网络设备的负载例如包括该网络设备所服务的UE的数量。如果该网络设备的负载大于或等于第一阈值,表明该网络设备的负载较重,可能无法支持更多UE在该网络设备下进入RRC连接态,则该网络设备可以确定该下行数据能够通过下行小包传输流程发送。而如果该网络设备的负载小于第一阈值,表明该网络设备的负载较轻,则该网络设备可以确定该下行数据不能通过下行小包传输流程发送,例如该网络设备可以触发UE进入RRC连接态以接收该下行数据。
或者,如果该网络设备的负载小于第一阈值,该网络设备可以进一步确定该下行数据的数据量是否小于或等于第一门限。如果该下行数据的数据量小于或等于第一门限,该网络设备可以确定该下行数据能够通过下行小包传输流程发送。而如果该下行数据的数据量大于第一门限,该网络设备可以确定该下行数据不能通过下行小包传输流程发送。例如该网络设备可以触发UE进入RRC连接态以接收该下行数据,或者,因为该网络设备的负载已经较重,该网络设备也可以放弃发送该下行数据。
其中,对于能够通过下行小包传输流程传输的下行数据,本申请实施例也将其称为下行小包数据。
其中,网络设备确定该下行数据能够通过下行小包传输流程发送可以为,上一个服务基站(last serving gNB)确定该下行数据能够通过下行小包传输流程发送。或者,网络设备确定该下行数据能够通过下行小包传输流程发送还可以为,接收基站(receiving gNB)确定该下行数据能够通过下行小包传输流程发送。其中,上一个服务基站还可以称为新站,新基站等,接收基站还可以称为老站,老基站,锚点基站等。
当last serving gNB确定该下行数据能够通过下行小包传输流程发送时,last serving gNB可以基于S201中从核心网设备接收的下行数据的数据量,确定是否能够通过下行小包传输流程发送该数据。当receiving gNB确定该下行数据能够通过下行小包传输流程发送时,receiving gNB可以基于last serving gNB向receiving gNB发送的下行数据的数据量,确定是否能够通过下行小包传输流程发送该数据,例如S202之前,还包括last serving gNB向receiving gNB发送该下行数据的数据量信息。
S203、网络设备发送寻呼(paging)消息。相应的,UE接收来自网络设备的寻呼消息。例如至少一个UE能够接收该寻呼消息,图2是以其中一个UE为例。其中,该寻呼消息可以是核心网(core network,CN)寻呼消息或无线接入网(radio access network,RAN)寻呼消息。
该寻呼消息可用于寻呼一个或多个UE,目的是使得这一个或多个UE接收小包数据,或者是使得这一个或多个UE接收下行小包数据。例如,该寻呼消息携带了第一指示信息,用于指示有待发送的小包数据,或指示有待发送的下行小包数据,或指示小包传输,或指示下行小包传输。接收该寻呼消息的UE根据第一指示信息就能确定有下行小包数据。第一指示信息例如为MT-SDT指示,或者也可以是其他指示信息。
S204、UE发起用于小包传输的RRC连接恢复流程。可选的,在S204之前还可以包括,UE确定 是否发起用于小包传输的RRC连接恢复流程,S204是以UE确定发起用于小包传输的RRC连接恢复流程为例。可选的,该小包传输例如为下行小包传输,因此,S204也可以理解为,UE发起用于下行小包传输的RRC连接恢复流程,后文以此为例。
可选的,UE可以根据第二条件确定发起用于下行小包传输的RRC连接恢复流程。第二条件可包括如下一项或多项:接收到携带第一指示信息的寻呼消息,接收到第一配置信息(或者,接收到来自网络设备的第一配置信息),接收到第二下行小包传输配置(或者,接收到来自网络设备的第二下行小包传输配置),UE当前的信号质量大于或等于下行小包传输对应的信号质量门限,或,没有待处理或待发送的上行数据或没有待处理或待发送的上行非小包数据。或者,这些项也可以不视为包括在一个条件(第二条件)中,而是独立存在的几项。可选的,本申请实施例中的第二下行小包传输配置,可以包括下行小包传输配置(可理解为,用于下行小包传输的配置),和/或包括上行小包传输配置(可理解为,用于上行小包传输的配置,例如上行小包传输过程中的sdt-Config)。因此,第二下行小包传输配置也可以称为第二小包传输配置。
网络设备可以为UE配置可以传输小包数据的无线承载(radio bearer,RB),可包括数据无线承载(data radio bearer,DRB)和/或信令无线承载(signaling radio bearer,SRB),仅这些RB上的数据才可以通过小包传输过程传输。这些RB可以称为小包RB或SDT RB,除了这些RB之外的RB可以称为非小包RB,或者非SDT RB。当非SDT RB上有数据到达时,UE不可以发起小包传输过程。因此,非SDT RB上的上行数据可以认为是上行非小包数据。也就是说,非SDT RB上的下行数据可以认为是下行非小包数据。另外在上行过程中,UE可以确定待发送的SDT RB上的上行数据的数据量是否小于或等于第二门限,如果该上行数据的数据量小于或等于第二门限,表明该上行数据的数据量较小,因此该上行数据能够通过上行小包传输流程发送,此时该上行数据可以作为上行小包数据发送。而如果该上行数据的数据量大于第二门限,表明该上行数据的数据量较大,不适宜通过上行小包传输流程发送,此时该上行数据就认为是上行非小包数据。综上,上行非小包数据可以包括非SDT RB上的上行数据,和/或,包括数据量大于第二门限的上行数据。
其中,如果第二条件的最后一项为“没有待处理或待发送的上行数据”,表明UE在没有上行数据处理或传输需求时才会发起用于下行小包传输的RRC连接恢复流程;如果此时UE有上行数据正在处理或待发送,则UE可以不发起用于下行小包传输的RRC连接恢复流程,例如UE可以发起用于请求进入RRC连接态的RRC连接恢复过程,通过正常的随机接入过程进入RRC连接态,从而在RRC连接态下可以发送上行数据,也可以在RRC连接态下接收下行小包数据(此时还可称为下行数据)。其中,该上行数据可以包括上行非小包数据。又例如,UE可以发起用于SDT的RRC连接恢复流程,在RRC非激活态下可以发送上行数据,也可以在RRC非激活态下接收下行小包数据。其中,该上行数据可以包括上行小包数据,用于SDT的RRC连接恢复流程可以为用于上行SDT的RRC连接恢复流程。如果此时UE没有上行数据正在处理或待发送,则UE可以发起用于下行小包传输的RRC连接恢复流程。可以认为,如果如上的最后一项为“没有待处理或待发送的上行数据”,则是将仅包括下行小包数据的情况归类为下行小包传输流程,或者是在仅包括下行小包数据的情况下UE再发起用于下行小包传输的RRC连接恢复流程。其中,上行非小包数据可理解为不能通过上行小包传输流程传输的上行数据,例如UE可以在RRC连接态下发送上行非小包数据。
或者,如果第二条件的最后一项为“没有待处理或待发送的上行非小包数据”,表明UE在没有上行非小包数据处理或传输需求时才会发起用于下行小包传输的RRC连接恢复流程;如果此时UE有上行非小包数据正在处理或待发送,则UE可以不发起用于下行小包传输的RRC连接恢复流程,例如UE可以发起用于请求进入RRC连接态的RRC连接恢复过程,通过正常的随机接入过程进入RRC连接态,从而在RRC连接态下可以发送上行非小包数据,也可以在RRC连接态下接收下行小包数据(此时还可称为下行数据)。如果此时UE没有上行非小包数据正在处理或待发送,但是UE有上行小包数据正在处理或待发送,则UE可以发起用于下行小包传输的RRC连接恢复流程。如果此时UE没有上行非小包数据正在处理或待发送,同时UE没有上行小包数据正在处理或待发送,则UE也可以发起用于下行小包传输的RRC连接恢复流程。可以认为,如果如上的最后一项为“没有待处理或待发送的上行非小包数据”,则是将包括下行小包数据和/或上行小包数据的情况归类为下行小包传输流程,或者是在包括下行小包数据和/或上行小包数据的情况下UE可以发起用于下行小包传输的RRC连接恢复流程。
例如,如果满足如下一项或多项,则UE可以发起用于下行小包传输的RRC连接恢复流程:接收 到携带第一指示信息的寻呼消息,接收到来自网络设备的第一配置信息,接收到来自网络设备的第二下行小包传输配置,没有待处理或待发送的上行数据或没有待处理或待发送的上行非小包数据,或,UE当前的信号质量大于或等于下行小包传输对应的信号质量门限。而如果不满足这一项或多项,UE可以不发起用于下行小包传输的RRC连接恢复流程。
或者,如果满足如下一项或多项,则UE可以不发起用于下行小包传输的RRC连接恢复流程:未接收到携带第一指示信息的寻呼消息,未接收到来自网络设备的第一配置信息,未接收到来自网络设备的第二下行小包传输配置,有待处理或待发送的上行数据或有待处理或待发送的上行非小包数据,或,UE当前的信号质量小于下行小包传输对应的信号质量门限。而如果不满足如上这一项或多项,UE可以发起用于下行小包传输的RRC连接恢复流程。
第二下行小包传输配置例如为对应于下行小包传输的配置。第二下行小包传输配置与对应于上行小包传输的配置可以相同或不同。例如第二下行小包传输配置为MT-SDT配置(mt-sdt-Config),该SDT配置可以包括支持下行小包传输的无线承载(radio bearer,RB)的配置,和/或包括支持下行小包传输的预配置资源的配置等,除此之外还可以包括其他配置,具体不做限制。该预配置资源,例如为预配置授权(configured grant,CG)-SDT资源。可选的,第二下行小包传输配置可由网络设备配置。例如,网络设备向UE发送RRC消息,该RRC消息可包括第二配置信息,第二配置信息可以指示第二下行小包传输配置。该RRC消息可以在S204之前发送,例如该RRC消息为RRC释放(release)消息,可用于将处于RRC连接态的UE释放到RRC非连接态,还可以用于将处于RRC非激活态的UE释放回RRC非激活态,或者,该RRC消息也可以是其他消息,例如其他RRC消息或媒体接入控制(media access control,MAC)控制元素(control element,CE)等。或者,第二下行小包传输配置为SDT配置(sdt-Config),例如,重用上行小包传输的配置,该SDT配置包括支持小包传输的RB配置,和/或小包传输的预配置资源的配置等,除此之外还可以包括其他配置,具体不做限制。该预配置资源,例如为CG-SDT资源。可理解为,第二下行小包传输配置是网络设备为该UE单独配置的,是该UE的专用(dedicated)配置。
其中,支持下行小包传输的RB的配置,可指示支持下行小包传输的RB,即,根据该配置可以确定哪些RB支持下行小包传输,对于不支持下行小包传输的RB上的数据,UE可以不必发起下行小包传输流程。因小包传输流程可包括上行小包传输流程和下行小包传输流程,因此可能有支持上行小包传输的RB,也可能有支持下行小包传输的RB。支持上行小包传输的RB与支持下行小包传输的RB可能有交集,也可能没有交集。如果这两部分RB有交集,则这两部分RB可以完全相同,或者也可以部分相同。或者,不区分支持上行小包传输的RB与支持下行小包传输的RB,即支持SDT的RB,既支持上行小包传输也支持下行小包传输。
支持下行小包传输的CG-SDT资源的配置,可指示能够用于下行小包传输流程的CG-SDT资源。CG-SDT资源例如为网络设备预先配置,可用于小包传输流程中UE向网络设备发送信息,例如发送上行小包数据或其他信息。在下行小包传输流程中,UE也要向网络设备发送信息,例如UE在发起RRC恢复流程时要向网络设备发送RRC连接恢复请求消息等,因此UE也可以利用CG-SDT资源。其中,因小包传输流程可包括上行小包传输流程和下行小包传输流程,因此可以有用于上行小包传输的CG-SDT资源,也可以有支持下行小包传输的CG-SDT资源。支持上行小包传输的CG-SDT资源与支持下行小包传输的CG-SDT资源可能有交集,也可能没有交集。如果这两部分CG-SDT资源有交集,则这两部分CG-SDT资源可以完全相同,或者也可以部分相同。可选的,第二下行小包传输配置可由网络设备配置。例如,网络设备可以发送第二指示信息,第二指示信息指示UE可以使用CG-SDT资源发起MT-SDT。例如,第二下行小包传输配置包括第二指示信息。例如,该第二指示信息是针对每个UE配置的,或者该第二指示信息与每套CG-SDT资源对应,即第二指示信息指示UE是否可以使用该CG-SDT资源发起MT-SDT。
第一配置信息可指示第一下行小包传输配置。例如,第一配置信息包括第一定时器的信息,和/或包括小包传输对应的信号质量门限,或者还可以包括其他的配置信息。
第一定时器可用于监控小包传输流程,例如监控下行小包传输流程。例如,UE可以在发起用于小包传输的RRC连接恢复流程时启动第一定时器,在接收到来自网络设备的RRC响应消息(对应于该RRC连接恢复的响应消息)时可以停止第一定时器。若第一定时器超时,则UE可以进入RRC空闲态。
可选的,第一配置信息所包括的小包传输对应的信号质量门限,例如为下行小包传输对应的信号质量门限。可选的,该信号质量门限可以重用上行小包传输流程中的RSRP门限,例如与后文将要介绍的 SDT公共配置信息所包括的SDT RSRP门限相同;或者,该信号质量门限与上行小包传输流程中的RSRP门限也可以不相同。下行小包传输对应的信号质量门限所对应的参数可包括参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)或信号与干扰加噪声比(rignal to interference plus noise ratio,SINR)中的一种或多种。例如,下行小包传输对应的信号质量门限对应的参数为RSRP,则该门限为RSRP门限;又例如,下行小包传输对应的信号质量门限对应的参数为RSRQ,则该门限为RSRQ门限。举例来说,如果UE当前的信号质量大于或等于下行小包传输对应的信号质量门限,表明UE当前的信号质量较好,可以支持UE在不进入RRC连接态的情况下接收下行小包数据,因此在这种情况下UE可以发起用于下行小包传输的RRC连接恢复流程。
可选的,第一配置信息可由网络设备配置,则该方法还可以包括S205,网络设备向UE发送第一配置信息,相应的,UE接收来自网络设备的第一配置信息。例如S205发生在S204之前。第一配置信息可以通过广播方式发送,例如网络设备通过广播消息发送第一配置信息,该广播消息例如为系统消息,例如系统资源块1(system resource block,SIB1),或者也可以是其他系统消息。可理解为,第一下行小包传输配置不是网络设备为该UE单独配置的,而是公共(common)配置,可被多个UE使用。
或者,网络设备可以不发送第一配置信息,UE也不必接收第一配置信息,例如UE在确定是否发起用于下行小包传输的RRC连接恢复流程时可以不参考第一配置信息。或者,第一配置信息也可以不由网络设备配置,但UE可以通过其他方式获得第一配置信息,例如第一配置信息可以通过协议预定义等,则UE在确定是否发起用于下行小包传输的RRC连接恢复流程时还是可以参考第一配置信息。
可选的,第一配置信息可以专用于下行小包传输流程,而不涉及上行小包传输流程,下面进行介绍。
上行小包传输流程是由UE发起,因此UE可以判断是否发起上行小包传输流程。例如,UE可以判断是否发起用于上行小包传输的RRC连接恢复流程,如果确定能够发起用于上行小包传输的RRC连接恢复流程,则UE可以发起用于上行小包传输的RRC连接恢复流程。UE可以根据第三条件判断是否发起用于上行小包传输的RRC连接恢复流程,第三条件可包括如下至少一项:条件1,条件2,条件3,条件4,或,条件5。
其中,条件1为UE的上层请求恢复RRC连接。例如该上层为非接入层(non-access stratum,NAS)。
条件2为UE从基站接收的系统消息SIB1中包括了SDT公共配置(sdt-ConfigCommon)信息。
条件3为UE被配置了SDT配置,例如该SDT配置包括RB的配置,CG-SDT资源的配置等。
条件4为所有待处理或待发送的上行数据都映射到为SDT配置的RB。
条件5为UE的下层指示满足发起SDT的条件,该下层例如为MAC层。发起SDT的条件例如包括,上行数据包大小小于或等于小包数据量门限,UE当前的RSRP大于或等于小包数据对应的RSRP门限,以及有可用的用于发送上行小包数据的CG-SDT资源或者随机接入(random access,RA)-SDT资源。
基于上述条件2,UE可以判断当前基站或者当前小区是否支持上行小包传输。例如,如果SIB1包括SDT公共配置,则UE确定当前基站或当前小区支持上行小包传输,而如果SIB1不包括SDT公共配置,则UE确定当前基站或当前小区不支持上行小包传输。其中,条件2中的SDT公共配置信息可包括以下至少一项:SDT RSRP门限(sdt-RSRP-Threshold),SDT逻辑信道调度请求延迟定时器(sdt-LogicalChannelSR-DelayTimer,SDT数据量门限(sdt-DataVolumeThreshold),或,SDT失败检测定时器(t319a)。
根据前文可知,在上行小包传输流程中,SDT公共配置信息可用于UE判断是否发起用于上行小包传输的RRC连接恢复流程。而本申请实施例中,UE也可以根据相应的配置信息(例如第一配置信息)确定是否发起用于下行小包传输的RRC连接恢复流程。如果重用上行小包传输流程的该SDT公共配置信息,即,第一配置信息与该SDT公共配置信息为同一信息,或者第一配置信息的内容可以包括在该SDT公共配置信息中,则该SDT公共配置信息除了包括第一配置信息外,至少会额外包括仅对应于上行小包传输流程的SDT数据量门限这一信息,因为该SDT数据量门限是该SDT公共配置信息中的必选项。但下行小包传输流程可以不需要SDT数据量门限。而该SDT公共配置信息要包括SDT数据量门限,网络设备就应该支持上行小包传输流程。即,如果重用上行小包传输流程的该SDT公共配置信息,则网络设备就要同时支持上行小包传输和下行小包传输,而不能单独仅支持上行小包传输或下行小包传输,对网络设备的要求较高。
另外,即使网络设备能够支持上行小包传输和下行小包传输,但在某些场景下,可能并不满足上行小包传输或下行小包传输的条件,即,虽然网络设备能够支持这两种传输,但并不一定表明任何时候都能够执行这两种传输。例如在某些情况下,网络设备认为能够执行下行小包传输流程,则网络设备可以广播SDT公共配置信息,用于UE确定是否发起用于下行小包传输的RRC连接恢复。即,此时的该SDT公共配置信息并不用于确定是否发起用于上行小包传输的RRC连接恢复流程,或者并不表明当前网络设备或当前小区支持上行小包传输。但对于待发起用于上行小包传输的RRC连接恢复流程的UE来说,如果确定SIB1包括了该SDT公共配置信息,就可以确定当前的网络设备或当前小区支持上行小包传输流程,则UE可以继续执行其他判断条件。当UE判断至条件5时,可能会发现当前并没有可用于上行小包传输的RA-SDT资源或CG-SDT资源,此时UE才能确定并不满足发起用于上行小包传输的RRC连接恢复流程的条件。但实际上,UE本应在判断条件2时就可以确定不满足发起用于上行小包传输的RRC连接恢复流程的条件。可见,如果下行小包传输流程重用上行小包传输流程对应的SDT公共配置信息,则可能导致UE执行过多的冗余判断步骤,降低了UE的效率,也会增加UE的功耗。
考虑到如上这些问题,本申请实施例为下行小包传输流程额外设置了第一配置信息,第一配置信息可以专用于下行小包传输流程,而不涉及上行小包传输流程。第一配置信息与SDT公共配置信息可以是不同的信息,例如第一配置信息与SDT公共配置信息可以包括在不同的消息中,或者二者虽然包括在同一消息(例如SIB1)中,但二者可以包括在不同的信息元素(information element,IE)中。例如,待发起上行小包传输的UE可以根据SDT公共配置信息来确定是否满足发起用于上行小包传输的RRC连接恢复流程的条件,待发起下行小包传输的UE可以根据第一配置信息来确定是否满足发起用于下行小包传输的RRC连接恢复流程的条件,这两个判断过程不会互相影响,使得UE的判断结果更为准确,也提高了UE的判断效率。另外,由于为下行小包传输流程配置了第一配置信息,也使得网络设备能够单独支持上行小包传输或下行小包传输,即,将网络设备对于不同小包传输的支持情况进行解耦,降低了对于网络设备的能力要求。
UE要发起用于下行小包传输的RRC连接恢复流程,一种可选的方式为,UE可以向网络设备发送RRC请求消息,例如该RRC请求消息为RRC连接恢复请求消息,或者RRC恢复请求(RRC resume request)消息。下文中以RRC恢复请求消息为例进行说明。可选的,如果UE获得了第一配置信息,且第一配置信息包括第一定时器的信息,则在UE发送该RRC恢复请求消息完毕时,或者在UE发送该RRC恢复请求消息后,UE可以启动第一定时器。
可选的,UE可以通过RA-SDT资源或CG-SDT资源发送该RRC恢复请求消息,或者UE也可以通过普通的随机接入过程发送该RRC恢复请求消息,该随机接入过程对应的随机接入资源不是基站为小包传输配置的随机接入资源。
举例来说,在UE接收到S203中的寻呼消息时,无论UE是否有需要发送的上行小包数据,UE都可以通过RA-SDT的第三消息(Msg3)或消息A(MsgA)发送该RRC恢复请求消息。例如,UE可以向网络设备发送RA-SDT的随机接入前导(preamble),可理解为,该preamble对应于RA-SDT。网络设备接收该preamble后,可以为UE调度用于发送Msg3的资源,例如网络设备向UE发送随机接入响应(random access response,RAR)消息,该RAR消息可以为UE调度用于发送Msg3的资源。UE可以使用该RAR消息调度的资源向网络设备发送该RRC恢复请求消息。其中,如果UE有需要发送的上行小包数据,则UE可以一并使用RAR消息调度的资源发送该上行小包数据。或者,在UE接收到S203中的寻呼消息时,UE仅在有上行小包数据需要传输时,才通过RA-SDT的第三消息(Msg3)或消息A(MsgA)发送该RRC恢复请求消息。
或者,在UE接收到S203中的寻呼消息时,无论UE是否有需要发送的上行小包数据,UE都可以在满足CG-SDT的条件时,通过CG-SDT资源发送该RRC恢复请求消息。其中,如果UE有需要发送的上行小包数据,则UE可以一并通过该CG-SDT资源发送该上行小包数据。或者,在UE接收到S203中的寻呼消息时,UE仅在有上行小包数据需要传输时,才会在满足CG-SDT的条件时,通过CG-SDT发送该RRC恢复请求消息。例如,该CG-SDT资源是基站专门为下行小包传输配置CG-SDT资源,或者该CG-SDT资源是上行小包传输中使用的CG-SDT资源。
或者,在UE接收到S203中的寻呼消息时,如果UE没有需要发送的上行小包数据,则UE可以通过普通的随机接入过程发送该RRC恢复请求消息。例如,UE可以向网络设备发送普通的preamble,可理解为,该preamble不对应于上行小包传输流程。网络设备接收该preamble后,可以为UE调度用 于发送Msg3的资源,例如网络设备向UE发送RAR消息,该RAR消息可以为UE调度用于发送Msg3的资源。UE可以使用该RAR消息调度的资源向网络设备发送该RRC恢复请求消息。可选的,该RRC恢复请求消息还可以携带原因值(cause),该原因值可以指示UE当前发起的RRC恢复的原因为下行小包数据。其中,如果UE使用了RA-SDT对应的preamble,则网络设备为了保证UE的上行小包数据的传输,一般都会为UE调度较多的资源,例如网络设备为UE所调度的资源会多于根据普通的preamble所调度的资源。因此,如果UE没有需要发送的上行小包数据,则UE使用普通的preamble,可以减少网络设备调度的资源,以节省资源开销。
可选的,该方法还包括S206,网络设备向UE发送第一下行小包数据。相应的,UE接收来自网络设备的第一下行小包数据。
网络设备接收RRC连接恢复请求消息后,可以将待发送的下行小包数据发送给UE。例如,网络设备可以通过动态调度的方式向UE发送第一下行小包数据,例如网络设备可以向UE发送下行控制信息(downlink control information,DCI),以调度下行资源,网络设备可以通过该下行资源向UE发送第一下行小包数据。其中,第一下行小包数据可能一次发送完毕,或者也可能经历多次发送过程。如果第一下行小包数据经历多次发送过程才发送完毕,则在每次发送过程前,网络设备都可以为UE调度本次发送所使用的下行资源。
又例如,网络设备也可以通过(semi-persistent scheduling,半静态调度)方式向UE发送第一下行小包数据。例如网络设备可以向UE发送高层信令,该高层信令可用于调度周期性的下行资源,UE可以在该高层信令所调度的周期性的下行资源上接收下行小包数据。该高层信令例如为RRC消息或MAC CE等。
可选的,该方法还包括S207,网络设备向UE发送RRC响应消息。相应的,UE接收来自网络设备的该RRC响应消息。可选的,该RRC响应消息例如为RRC释放(RRC release)消息。
在第一下行小包数据发送完毕后,网络设备可以向UE发送RRC响应消息,以结束当前的下行小包传输流程。UE接收该RRC响应消息后,可以停止接收下行小包数据,例如UE可以继续保持在当前的RRC非连接态。
可选的,如果UE在S204中启动了第一定时器,且第一定时器超时,则UE可以进入RRC空闲态。或者,UE接收该RRC响应消息时,或者接收该RRC响应消息之后,如果第一定时器处于运行状态,则UE可以停止第一定时器。其中,第一定时器超时可理解为,在第一定时器超时时,UE未接收到来自网络设备的RRC响应消息。可见,第一定时器可用于监控下行小包传输流程。例如第一定时器可以是定时器t319a,或者也可以是本申请实施例新定义的定时器。如果第一定时器是本申请实施例新定义的定时器,则第一定时器的定时时长与定时器t319a的定时时长可以相同或不同。
本申请实施例中,UE如果接收了用于指示下行小包数据的寻呼消息,则UE可以根据相应的条件确定发起用于下行小包传输的RRC连接恢复流程,或者理解为,UE可以根据相应的条件确定是否发起用于下行小包传输的RRC连接恢复流程。例如,如果满足本申请实施例所提出的一项或多项,则可以发起用于下行小包传输的RRC连接恢复流程,而如果不满足这一项或多项,UE可以不发起用于下行小包传输的RRC连接恢复流程。通过该判断过程,可以减少不具备条件的UE发起用于下行小包传输流程的RRC连接恢复流程的概率,减小此类UE的功耗。而且尽量使得确定发起用于下行小包传输的RRC连接恢复流程的UE是具备发起条件的设备,从而能够提高UE接收下行小包数据的成功率。发起上行小包传输的UE与发起下行小包传输的UE可以根据不同的条件判断是否能够发起相应的小包传输,减少了UE需要执行的判断步骤,简化了UE的实现复杂度,节省了UE的功耗。另外,本申请实施例引入了用于下行小包传输流程的第一配置信息,使得网络设备能够单独支持上行小包传输或下行小包传输,而不必同时支持上行小包传输和下行小包传输,降低了对网络设备的能力要求。
图3给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置300可以是图2所示的实施例所述的UE或该UE的电路系统,用于实现上述方法实施例中对应于UE的方法。或者,所述通信装置300可以是图2所示的实施例所述的网络设备的电路系统,用于实现上述方法实施例中对应于网络设备的方法。具体的功能可以参见上述方法实施例中的说明。其中,例如一种电路系统为芯片系统。
该通信装置300包括至少一个处理器301。处理器301可以用于装置的内部处理,实现一定的控制处理功能。可选地,处理器301包括指令。可选地,处理器301可以存储数据。可选地,不同的处理器可以是独立的器件,可以位于不同物理位置,可以位于不同的集成电路上。可选地,不同的处理器可以 集成在一个或多个处理器中,例如,集成在一个或多个集成电路上。
可选地,通信装置300包括一个或多个存储器303,用以存储指令。可选地,所述存储器303中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选地,通信装置300包括通信线路302,以及至少一个通信接口304。其中,因为存储器303、通信线路302以及通信接口304均为可选项,因此在图3中均以虚线表示。
可选地,通信装置300还可以包括收发器和/或天线。其中,收发器可以用于向其他装置发送信息或从其他装置接收信息。所述收发器可以称为收发机、收发电路、输入输出接口等,用于通过天线实现通信装置300的收发功能。可选地,收发器包括发射机(transmitter)和接收机(receiver)。示例性地,发射机可以用于将基带信号生成射频(radio frequency)信号,接收机可以用于将射频信号转换为基带信号。
处理器301可以包括一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路302可包括一通路,在上述组件之间传送信息。
通信接口304,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器303可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器303可以是独立存在,通过通信线路302与处理器301相连接。或者,存储器303也可以和处理器301集成在一起。
其中,存储器303用于存储执行本申请方案的计算机执行指令,并由处理器301来控制执行。处理器301用于执行存储器303中存储的计算机执行指令,从而实现本申请上述实施例提供的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置300可以包括多个处理器,例如图3中的处理器301和处理器305。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
当图3所示的装置为芯片时,例如是UE的芯片,或网络设备的芯片,则该芯片包括处理器301(还可以包括处理器305)、通信线路302、存储器303和通信接口304。具体地,通信接口304可以是输入接口、管脚或电路等。存储器303可以是寄存器、缓存等。处理器301和处理器305可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述任一实施例的通信方法的程序执行的集成电路。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图4示出了一种装置示意图,该装置400可以是上述各个方法实施例中所涉及的UE或网络设备,或者为UE中的芯片或网络设备中的芯片。该装置400包括发送单元401、处理单元402和接收单元403。
应理解,该装置400可以用于实现本申请实施例的方法中由UE或网络设备执行的步骤,相关特征可以参照上文的各个实施例,此处不再赘述。
可选的,图4中的发送单元401、接收单元403以及处理单元402的功能/实现过程可以通过图3 中的处理器301调用存储器303中存储的计算机执行指令来实现。或者,图4中的处理单元402的功能/实现过程可以通过图3中的处理器301调用存储器303中存储的计算机执行指令来实现,图4中的发送单元401和接收单元403的功能/实现过程可以通过图3中的通信接口304来实现。
可选的,当该装置400是芯片或电路时,则发送单元401和接收单元403的功能/实现过程还可以通过管脚或电路等来实现。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现前述方法实施例中由UE或网络设备所执行的方法。这样,上述实施例中所述功能可以软件功能单元的形式实现并作为独立的产品销售或使用。基于这样的理解,本申请的技术方案本质上或者说对做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由UE或网络设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的UE或网络设备所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA),或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的范围的情况下,可对其进行各种修改和组合。相应地,本申请实施例和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。 这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。

Claims (19)

  1. 一种通信方法,其特征在于,应用于终端设备,所述方法包括:
    接收来自网络设备的寻呼消息,所述寻呼消息用于寻呼所述终端设备以接收下行小包数据;
    当满足如下一项或多项时,发起用于小包传输的无线资源控制RRC连接恢复流程:
    接收到携带第一指示信息的所述寻呼消息,所述第一指示信息用于指示下行小包传输;
    接收到来自所述网络设备的第一配置信息,所述第一配置信息用于指示第一下行小包传输配置;
    接收到来自所述网络设备的第二下行小包传输配置;或,
    没有待处理或待发送的上行数据,或者,没有待处理或待发送的上行非小包数据。
  2. 根据权利要求1所述的方法,其特征在于,发起用于小包传输的RRC连接恢复流程,包括:
    发起用于下行小包传输的RRC连接恢复流程。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一配置信息包括在系统消息中。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述第一配置信息与小包数据传输SDT公共配置信息为不同的信息。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述第一配置信息包括第一定时器的信息,和/或小包传输对应的信号质量门限,其中,所述第一定时器用于监控小包传输过程。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一定时器用于监控下行小包传输过程;
    所述小包传输对应的信号质量门限为下行小包传输对应的信号质量门限。
  7. 根据权利要求5或6所述的方法,其特征在于,
    发起用于小包传输的RRC连接恢复流程,包括:向所述网络设备发送RRC恢复请求消息,并启动所述第一定时器;
    所述方法还包括:
    在接收到来自所述网络设备的RRC响应消息时,如果所述第一定时器处于运行状态,则停止所述第一定时器;或者,
    如果所述第一定时器超时,进入RRC空闲态。
  8. 根据权利要求7所述的方法,其特征在于,在发起用于小包传输的RRC连接恢复流程之后,所述方法还包括:
    接收来自所述网络设备的第一下行小包数据。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,所述第二下行小包传输配置包括支持下行小包传输的无线承载的配置,和/或支持下行小包传输的预配置资源的配置。
  10. 一种通信方法,其特征在于,应用于接入网设备,所述方法包括:
    发送第一配置信息,所述第一配置信息用于指示第一下行小包传输配置,所述第一配置信息与SDT公共配置信息为不同的信息,所述SDT公共配置用于上行小包传输。
  11. 根据权利要求10所述的方法,其特征在于,所述第一配置信息包括在系统消息中。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一配置信息包括第一定时器的信息,和/或小包传输对应的信号质量门限,其中,所述第一定时器用于监控小包传输过程。
  13. 根据权利要求12所述的方法,其特征在于,
    所述第一定时器用于监控下行小包传输过程;
    所述小包传输对应的信号质量门限为下行小包传输对应的信号质量门限。
  14. 根据权利要求10~13任一项所述的方法,其特征在于,所述方法还包括:
    发送寻呼消息,所述寻呼消息用于寻呼终端设备以接收下行小包数据;
    接收来自所述终端设备的RRC恢复请求消息;
    向所述终端设备发送第一下行小包数据。
  15. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1~9任一项所述的方法。
  16. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求10~14任一项所述的方法。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所 述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~9任一项所述的方法,或使得所述计算机执行如权利要求10~14任一项所述的方法。
  18. 一种芯片系统,其特征在于,所述芯片系统包括:
    处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1~9任一项所述的方法,或实现如权利要求10~14任一项所述的方法。
  19. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~9任一项所述的方法,或使得所述计算机执行如权利要求10~14任一项所述的方法。
PCT/CN2023/128321 2022-11-03 2023-10-31 一种通信方法及装置 WO2024093986A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211369927.3 2022-11-03
CN202211369927 2022-11-03
CN202211455033.6A CN117998681A (zh) 2022-11-03 2022-11-21 一种通信方法及装置
CN202211455033.6 2022-11-21

Publications (1)

Publication Number Publication Date
WO2024093986A1 true WO2024093986A1 (zh) 2024-05-10

Family

ID=90894251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128321 WO2024093986A1 (zh) 2022-11-03 2023-10-31 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117998681A (zh)
WO (1) WO2024093986A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390557A (zh) * 2020-10-21 2022-04-22 大唐移动通信设备有限公司 数据传输控制方法、装置及存储介质
CN114727414A (zh) * 2021-01-04 2022-07-08 华为技术有限公司 数据传输方法及相关装置
CN114788380A (zh) * 2021-09-30 2022-07-22 北京小米移动软件有限公司 下行传输配置、接收方法及装置、通信设备及存储介质
CN115175328A (zh) * 2021-04-02 2022-10-11 华为技术有限公司 一种切换载波的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390557A (zh) * 2020-10-21 2022-04-22 大唐移动通信设备有限公司 数据传输控制方法、装置及存储介质
CN114727414A (zh) * 2021-01-04 2022-07-08 华为技术有限公司 数据传输方法及相关装置
CN115175328A (zh) * 2021-04-02 2022-10-11 华为技术有限公司 一种切换载波的方法和装置
CN114788380A (zh) * 2021-09-30 2022-07-22 北京小米移动软件有限公司 下行传输配置、接收方法及装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN117998681A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US11871349B2 (en) Sleep method for terminal device and apparatus
KR101386052B1 (ko) 무선 자원 스케줄링 방법, 접속 네트워크 및 터미널
WO2018170913A1 (zh) 一种系统信息传输方法及装置
WO2018019001A1 (zh) 一种终端状态转换方法及装置
US9113370B2 (en) Method and apparatus for handling a stationary user terminal in a network
WO2018050065A1 (en) Method and apparatus for application aware notifications in a wireless communication network
US20200092805A1 (en) Reception scheme
WO2020221093A1 (zh) 搜索空间的监测、配置方法及装置
WO2021062797A1 (zh) 配置方法和装置
WO2020181943A1 (zh) 一种请求系统信息的方法及设备
US20230284231A1 (en) Data transmission method and apparatus, communication device, and storage medium
US20230389081A1 (en) Communication system
WO2024093986A1 (zh) 一种通信方法及装置
WO2018149280A1 (zh) 数据接收方法及装置
WO2022178813A1 (zh) 一种侧行链路通信方法及装置
WO2021180098A1 (zh) 无线通信方法和通信装置
KR20230146656A (ko) 사이드링크 불연속 수신 커맨드 트리거 방법, 장치, 및 시스템
WO2021134377A1 (zh) 接入网络切片的方法和装置
WO2023134332A1 (zh) 一种通信方法及系统
CN113382379B (zh) 无线通信方法和通信装置
WO2024032800A1 (zh) 数据传输方法、装置、设备、存储介质及程序产品
WO2023093868A1 (zh) 一种通信方法及设备
EP4329340A1 (en) Method and apparatus for transmitting system information (si)
WO2023212893A1 (zh) 无线通信的方法及装置
WO2023124823A1 (zh) 一种通信方法及装置