WO2017173804A1 - 接入资源调整方法及装置 - Google Patents

接入资源调整方法及装置 Download PDF

Info

Publication number
WO2017173804A1
WO2017173804A1 PCT/CN2016/102475 CN2016102475W WO2017173804A1 WO 2017173804 A1 WO2017173804 A1 WO 2017173804A1 CN 2016102475 W CN2016102475 W CN 2016102475W WO 2017173804 A1 WO2017173804 A1 WO 2017173804A1
Authority
WO
WIPO (PCT)
Prior art keywords
access resources
proportion
terminal
current
threshold
Prior art date
Application number
PCT/CN2016/102475
Other languages
English (en)
French (fr)
Inventor
段敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017173804A1 publication Critical patent/WO2017173804A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present disclosure relates to a wireless communication technology in the field of satellite communications, for example, to an access resource adjustment method and apparatus.
  • the primary station periodically transmits a Superframe Composition Table (SCT) to all terminals in the system in the form of a broadcast, and then the terminal accesses the resources in the system according to the signaling in the superframe structure table.
  • SCT Superframe Composition Table
  • the proportion of access resources is connected to the satellite communication system and communicates with the primary station.
  • the system access resource is an access resource of a reverse link of the satellite communication system, and includes an information access resource and a signaling access resource, where the information access resource is used to transmit a signal required by the user, for example, a voice when the user talks.
  • the signal, the packet signal when the user goes online, and the signaling access resource is the signal used to transmit the control circuit, these signals are usually not directly required by the user.
  • the signaling access resources allocated by the primary station to the terminal are fixed, but the fixed signaling access resources are often not applicable to all communication states in the satellite communication system.
  • the maximum number of terminal accesses supported by a satellite communication system is 500.
  • the proportion of signaling access resources allocated by the primary station to the terminal is 10 in the system. %, then the terminal uses 10% as the signaling access resource to access the system in the system access resources.
  • the terminal enters the normal operation state.
  • the signaling access resources to be occupied will be very small.
  • the terminal only needs 5% as the signaling access resource to access the resources in the system.
  • the ratio can meet the normal communication with the main station.
  • the proportion of the signaling access resources allocated by the primary station to the terminal is fixed in the system, the terminal still uses 10% as the signaling access resource in the proportion of the system access resources and the primary station. Communication, resulting in waste of signaling access resources.
  • An embodiment of the present disclosure provides a method and an apparatus for adjusting an access resource, which can dynamically adjust a signaling access resource allocated to a terminal, so that the signaling access resource allocated by the primary station to the terminal is applicable to different application scenarios, thereby improving communication. System performance.
  • An embodiment of the disclosure provides an access resource adjustment method, including:
  • the adjusting the signaling access resources allocated to the terminal according to the channel collision rate and the proportion of the current signaling access resources in the system access resources includes:
  • the signaling access resource allocated to the terminal is in the system.
  • the proportion of the access resources is adjusted to be the first ratio, and the first ratio is greater than the proportion of the current signaling access resources in the system access resources.
  • the adjusting the signaling access resources allocated to the terminal according to the channel collision rate and the proportion of the current signaling access resources in the system access resources includes:
  • the signaling access resource allocated to the terminal is accessed in the system.
  • the ratio of the resources is adjusted to a second ratio, where the second ratio is smaller than the proportion of the current signaling access resources in the system access resources;
  • the third threshold is greater than the first threshold; the fourth threshold is smaller than the second threshold.
  • the obtaining, according to the channel idle ratio and the channel error rate in the preset time period, acquiring the channel collision rate in the preset time period includes:
  • C is the channel collision rate
  • E is the channel error rate
  • D is the channel idle ratio
  • the method before the obtaining the proportion of the current signaling access resource in the system access resource, the method further includes:
  • the percentage of acquiring the current signaling access resource in the system access resource includes:
  • An embodiment of the present disclosure further provides an access resource adjustment apparatus, including:
  • the first acquiring unit is configured to acquire a channel collision rate in the preset time period according to the channel idle ratio and the channel error rate in the preset time period;
  • a second acquiring unit configured to acquire a proportion of current signaling access resources in the system access resources
  • the adjusting unit is configured to adjust the signaling access resource allocated to the terminal according to the channel collision rate and the proportion of the current signaling access resource in the system access resource.
  • the adjustment unit is set to:
  • the signaling access resource allocated to the terminal is in the system.
  • the proportion of the access resources is adjusted to be the first ratio, and the first ratio is greater than the proportion of the current signaling access resources in the system access resources.
  • the adjustment unit is set to:
  • the signaling access resource allocated to the terminal is accessed in the system.
  • the ratio of the resources is adjusted to a second ratio, where the second ratio is smaller than the proportion of the current signaling access resources in the system access resources;
  • the third threshold is greater than the first threshold; the fourth threshold is smaller than the second threshold.
  • the first obtaining unit is set to:
  • C is the channel collision rate
  • E is the channel error rate
  • D is the channel idle ratio
  • the device further includes:
  • a storage unit configured to store a proportion of signaling access resources allocated by the primary station to the terminal in the system accessing resources
  • the second acquisition unit is set to:
  • the present disclosure also provides a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the above method.
  • the present disclosure also provides an electronic device, including:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the method described above.
  • An embodiment of the present disclosure provides a method and an apparatus for adjusting an access resource, including: acquiring a channel collision rate in a preset time period according to a channel idle ratio and a channel error rate in a preset time period; and acquiring a current signaling connection The proportion of the incoming resource in the system accessing the resource; and adjusting the signaling access resource allocated to the terminal according to the channel collision rate and the proportion of the current signaling access resource in the system access resource.
  • the primary station dynamically adjusts the signaling access resources allocated to the terminal through the channel collision rate and the proportion of the current signaling access resources in the system access resources, so that the adjusted signaling access resources can be Applicable to different application scenarios, which can avoid the phenomenon that the terminal can not access the system or the signaling access resources are wasted by allocating fixed signaling access resources to the terminal, thereby improving the performance of the communication system.
  • FIG. 1 is a schematic flowchart 1 of an access resource adjustment method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart 2 of an access resource adjustment method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram 1 of an access resource adjusting apparatus according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram 2 of an access resource adjusting apparatus according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of hardware of an electronic device according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides an access resource adjustment method, which is applied to a primary station.
  • the satellite communication system usually has at least one channel, and the embodiment of the present disclosure uses the current channel as an example for description.
  • the access resource adjustment method includes the following steps.
  • step 110 the channel collision rate in the preset time period is obtained according to the channel idle ratio and the channel error rate in the preset time period.
  • the channel idle ratio in the preset time period is the proportion of the accumulated duration of the channel in the preset time period in the preset time period, which reflects the utilization of the channel.
  • the channel error rate in the preset time period reflects the transmission accuracy of the code stream transmitted by the terminal to the primary station within the preset time period.
  • the channel collision rate reflects the probability that a code stream will collide during channel transmission.
  • the terminal when the terminal sends the code stream to the primary station, it is discontinuous in time, that is, there is a time in the preset time period that the terminal does not send the code stream channel to the idle state in the idle state.
  • the stream length, L2 is the total length of the code stream. It is worth noting that the acquisition of the signal to noise ratio can be achieved by methods well known in the art. Quality threshold can be set according to requirements
  • the preset time period can be set according to requirements.
  • step 120 the proportion of the current signaling access resources in the system access resources is obtained.
  • the primary station when the primary station stores the proportion of the signaling access resources allocated by the primary station to the terminal in the system access resources, the proportion of the signaling access resources in the system access resources may be directly obtained. As a percentage of the current signaling access resources in the system access resources.
  • the primary station may receive the terminal and send it to the primary.
  • the code stream includes a signaling message and an information message, and the length of the signaling message corresponds to the signaling access resource, and the length of the information packet corresponds to the information access resource, therefore, the letter
  • the proportion of the length of the packet in the total length of the code stream is the proportion of the current signaling access resource in the system access resource.
  • step 130 the signaling access resources allocated to the terminal are adjusted according to the channel collision rate and the proportion of the current signaling access resources in the system access resources.
  • the primary station when the channel collision rate is greater than or equal to the first threshold, the channel collision rate is high, and the code stream is prone to collision during the transmission process, resulting in a code stream transmission error or a code stream transmission delay, and the terminal increases. Signaling access resources to reduce channel collision rate. At the same time, the proportion of the current signaling access resources in the system access resources is less than or equal to the second threshold, indicating that the signaling access resources allocated by the primary station to the terminal are small, and it is likely that all terminals cannot simultaneously access the system. Therefore, the primary station also increases the signaling access resources allocated to the terminal. In summary, when the channel collision rate is greater than or equal to the first threshold, and the proportion of the current signaling access resources in the system access resources is less than or equal to the second threshold, the primary station may increase the signaling connection allocated to the terminal. Into the resource.
  • the channel collision rate is less than or equal to the third threshold, it indicates that the channel collision rate is low, the code stream is not easy to collide during the transmission process, and the primary station can appropriately reduce the signaling access resources allocated to the terminal.
  • the proportion of the current signaling access resources in the system access resources is greater than or equal to the fourth threshold, indicating that the signaling access resources allocated by the primary station to the terminal are large, which usually causes waste of signaling access resources.
  • the primary station should reduce the signaling connection allocated to the terminal. Into the resource.
  • the first threshold, the second threshold, the third threshold, and the fourth threshold may be set as needed.
  • the third threshold is greater than the first threshold; the fourth threshold is less than the second threshold.
  • the primary station dynamically adjusts the signaling access resources allocated to the terminal through the channel collision rate and the proportion of the current signaling access resources in the system access resources, so that the adjusted signaling access resources can be applied to different application scenarios.
  • the phenomenon that the terminal cannot access the system or the signaling access resource is wasted due to the allocation of the fixed signaling access resource to the terminal, thereby improving the performance of the communication system.
  • the signaling access resource allocated to the terminal is adjusted according to the channel collision rate and the proportion of the current signaling access resource in the system access resource, if the channel collision rate is greater than or equal to the first And a threshold value, and the proportion of the current signaling access resource in the system access resource is less than or equal to the second threshold, and then the proportion of the signaling access resource allocated to the terminal in the system access resource is adjusted to the first The first ratio is greater than the proportion of the current signaling access resource in the system access resource.
  • the signaling access resources allocated to the terminal may be adjusted by adjusting the proportion of the signaling access resources allocated to the terminal in the system access resources; when the signaling access resources allocated to the terminal need to be increased, the allocation may be improved.
  • the ratio of the signaling access resources of the terminal to the access resources of the system; when the signaling access resources allocated to the terminal need to be reduced, the proportion of the signaling access resources allocated to the terminal in the system access resources may be reduced. .
  • the primary station increases the signaling access resources allocated to the terminal.
  • the primary station can adjust the proportion of the signaling access resources allocated to the terminal in the system access resources to the first proportion, because the first proportion is greater than the current signaling access resources in the system access resources. Ratio, thereby increasing the signaling access resources allocated to the terminal.
  • the signaling access resource allocated to the terminal is adjusted.
  • the threshold value, and the proportion of the current signaling access resource in the system access resource is greater than or equal to the fourth threshold, and then the proportion of the signaling access resource allocated to the terminal in the system access resource is adjusted to the second ratio.
  • the second ratio is smaller than the proportion of the current signaling access resource in the system access resource; wherein the third threshold is greater than the first threshold; the fourth threshold is smaller than the second threshold .
  • the primary station when the channel collision rate is less than or equal to the third threshold, and the current signaling access resource has a ratio of the system access resources greater than or equal to the fourth threshold, the primary station reduces the signaling access resources allocated to the terminal. At this time, the primary station can adjust the proportion of the signaling access resources allocated to the terminal in the system access resources to the second proportion, because the second proportion is smaller than the current signaling access resources in the system access resources. Ratio, thereby reducing the signaling access resources allocated to the terminal.
  • the proportion of the signaling access resources allocated by the primary station to the terminal in the system access resources may be stored.
  • the proportion of the signaling access resources allocated by the primary station to the terminal in the system access resources may be obtained as the current signaling access resources. The proportion of resources accessed by the system.
  • the primary station periodically sends the proportion of the signaling access resources in the system access resources to the terminal, so that the terminal adjusts the signaling access resources according to the ratio.
  • the primary station periodically sends a superframe structure table to the terminal, and the superframe structure table includes the proportion of the signaling access resources in the system access resources. Therefore, when each primary station sends a superframe structure table to the terminal, the access resources in the superframe structure table can be The proportion of the access resources is stored in the proportion record of the primary station in turn.
  • the ratio of the current access resources of the system to the access resources of the system is required, the ratio of the last access of the signaling access resources to the system access resources may be obtained as the current signaling access resource.
  • the proportion of resources accessed in the system is required.
  • An embodiment of the present disclosure provides an access resource adjustment method, including: acquiring a channel collision rate in a preset time period according to a channel idle ratio and a channel error rate in a preset time period; and acquiring current signaling access resources.
  • the proportion of access resources in the system and adjusting the signaling access resources allocated to the terminal according to the channel collision rate and the proportion of the current signaling access resources in the system access resources.
  • the primary station adopts the channel collision rate and the proportion of the current signaling access resources in the system access resources
  • the disclosure is an access resource adjustment method and device provided by the embodiment, which can dynamically adjust the allocation to the terminal.
  • the signaling access resources enable the adjusted signaling access resources to be applied to different application scenarios, and the terminal can not access the system or the signaling access caused by the fixed signaling access resources allocated to the terminal. The phenomenon of waste of resources, thereby improving the performance of the communication system.
  • the embodiment of the present disclosure provides an access resource adjustment method, which is applied to a primary station.
  • a satellite communication system usually has at least one channel.
  • the current embodiment of the present disclosure uses the current channel as an example for description.
  • the access resource adjustment method includes the following steps.
  • step 210 the accumulated duration of the received terminal code stream and the total length of the code stream are obtained in the preset time period, and step 220 is performed.
  • the terminal may send the code stream to the primary station discontinuously in time. Therefore, the primary station may record the duration of each received terminal code stream and the code stream length in a preset time period, and calculate the preset time period. The sum of the durations of all received terminal code streams recorded as the accumulated duration of the received terminal code stream in the preset time period; calculating the sum of all the code stream lengths recorded in the preset time period as the preset time period inner code The total length of the stream.
  • the preset time period can be set as needed.
  • step 220 the channel idle ratio in the preset time period is obtained according to the accumulated duration of the received terminal code stream in the preset time period, and step 230 is performed.
  • the cumulative duration of the stream, t2 is the duration of the preset time period.
  • step 230 the channel error rate in the preset time period is obtained according to the length of the code stream and the total length of the code stream whose signal to noise ratio is less than or equal to the quality threshold in the received terminal code stream, and step 240 is performed.
  • the length of the code stream, L2 is the total length of the code stream.
  • step 240 the channel collision rate is calculated according to the channel idle ratio and the channel error rate, and step 250 is performed.
  • the code rate, D is the channel idle ratio in the preset time period.
  • step 250 the proportion of the current signaling access resources in the system access resources is obtained, and step 260 or step 2100 is performed.
  • the proportion of the signaling access resources allocated by the primary station to the terminal in the system access resources may be directly obtained. As a percentage of the current signaling access resources in the system access resources.
  • the embodiments of the present disclosure provide two signaling access resource adjustment schemes, namely, an signaling addition resource adjustment scheme and a signaling isolation resource adjustment scheme.
  • the primary station increases the signaling access resource allocated to the terminal; when the condition for reducing the signaling access resource adjustment scheme is met, the primary station reduces the signaling allocated to the terminal.
  • Access resources when the above two conditions are not met, the primary station maintains the signaling access resources currently allocated to the terminal. Therefore, after obtaining the proportion of the current signaling access resources in the system access resources, it is also separately determined whether the above two conditions are met.
  • Step 260 and step 2100 are respectively initial steps for judging whether the above two conditions are met.
  • step 260 it is determined whether the channel collision rate is greater than or equal to the first threshold; when the channel collision rate is greater than or equal to the first threshold, step 270 is performed; when the channel collision rate is less than the first threshold, step 2140 is performed.
  • the channel collision rate is greater than or equal to the first threshold, the channel collision rate is high, and the terminal needs to increase signaling access resources to reduce the channel collision rate.
  • the channel collision rate is high, when the primary station allocates more signaling access resources to the terminal, it indicates that the higher channel collision rate is not caused by insufficient signaling access resources, so even The addition of signaling access resources still fails to alleviate the high channel collision rate, which in turn reduces channel utilization and thus reduces system performance. Therefore, when the channel collision rate is greater than or equal to the first threshold, it is determined that the current primary station allocates signaling access resources to the terminal.
  • step 270 it is determined whether the proportion of the current signaling access resource in the system access resource is less than or equal to the second threshold; if the proportion of the current signaling access resource in the system access resource is less than or equal to the second threshold, Step 280 is performed. If the proportion of the current access resources of the system accessing the system is greater than the second threshold, step 2140 is performed.
  • the proportion of the signaling access resources in the system access resources reflects the signaling access resources allocated by the primary station to the terminal; if the current signaling access resources account for a large proportion of the system access resources, the current primary station allocation There are many signaling access resources to the terminal; if the current signaling access resources occupy less resources in the system, the current primary station allocates less signaling access resources to the terminal. Therefore, if the proportion of the current signaling access resources in the system access resources is less than or equal to the second threshold, the current primary station allocates less signaling access resources to the terminal.
  • the channel collision rate is greater than or equal to the first threshold, and the proportion of the current signaling access resources in the system access resources is less than or equal to the second threshold, the channel collision rate is high, and the current primary station is allocated to The signaling access resources of the terminal are small, and the primary station increases the signaling access resources allocated to the terminal at this time.
  • a first superframe structure table for increasing signaling access resources allocated to a terminal may be generated.
  • step 280 a first superframe structure table for increasing signaling access resources allocated to the terminal is generated, and step 2130 is performed.
  • the first superframe structure table includes a first proportion, and the first proportion is greater than a proportion of the current signaling access resources in the system access resources.
  • the primary station may send a first superframe structure table including the first proportion to the terminal.
  • the terminal accesses the system according to the first proportion in the first superframe structure table, and communicates with the primary station. Since the first ratio is greater than the proportion of the current signaling access resources of the terminal in the system access resources, the signaling access resources of the terminal are increased. Further, when the channel collision rate is greater than or equal to the first threshold and the proportion of the current signaling access resources in the system access resources is less than or equal to the second threshold, the terminal may be unable to access the system.
  • step 290 the first superframe structure table is sent to the terminal, and the process ends.
  • step 2100 it is determined whether the channel collision rate is less than or equal to the third threshold; when the channel collision rate is less than or equal to the third threshold, step 2110 is performed; when the channel collision rate is greater than the third threshold, step 2140 is performed.
  • the channel collision rate is less than or equal to the third threshold, it indicates that the channel collision rate is low, and the terminal can appropriately reduce the signaling access resources.
  • the channel collision rate is low, it is determined that reducing the signaling access resources allocated by the primary station to the terminal is often not comprehensive enough to cause misjudgment. For example, although the channel collision rate is low, when the signaling access resources allocated by the primary station to the terminal are already small, if the signaling access resources allocated to the terminal are reduced at this time, the signaling access resources may occur. Too few to meet the situation that all terminals access the system at the same time. Therefore, when the channel collision rate is less than or equal to the third threshold, it is determined that the current primary station allocates signaling access resources to the terminal.
  • step 2110 it is determined whether the proportion of the current signaling access resource in the system access resource is greater than or equal to a fourth threshold; if the proportion of the current signaling access resource in the system access resource is greater than or equal to the fourth threshold, Step 2120 is performed. If the ratio of the current signaling access resources to the system access resources is less than the fourth threshold, step 2140 is performed.
  • the current primary station allocates more signaling access resources to the terminal. Therefore, when the channel collision rate is less than or equal to the third threshold, and the proportion of the current signaling access resources in the system access resources is greater than or equal to the fourth threshold, the channel collision rate is low, and the current primary station is allocated to The terminal has more signaling access resources, and the primary station can appropriately reduce the signaling access resources allocated to the terminal at this time.
  • a second superframe structure table for reducing signaling access resources allocated to the terminal can be generated.
  • step 2120 a second superframe structure table for reducing signaling access resources allocated to the terminal is generated, and step 2130 is performed.
  • the second superframe structure table includes a second proportion, and the second ratio is smaller than a proportion of the current signaling access resources in the system access resources.
  • the primary station may send a second superframe structure table including the second proportion to the terminal. Then, the terminal accesses the system according to the second ratio in the second superframe structure table, and communicates with the primary station. Because the second ratio is smaller than the proportion of the current signaling access resources of the terminal in the system access resources, the signaling access resources of the terminal are reduced, thereby avoiding the situation of wasting signaling access resources.
  • step 2130 the second superframe structure table is sent to the terminal, and the process ends.
  • step 2140 a third superframe structure table for maintaining signaling access resources allocated to the terminal is generated, and step 2150 is performed.
  • the third superframe structure table includes a third proportion, and the third ratio is equal to the proportion of the current signaling access resources in the system access resources.
  • the primary station may send a third superframe structure table including the third proportion to the terminal.
  • the terminal accesses the system according to the third proportion in the third superframe structure table, and communicates with the primary station. Since the third ratio is equal to the proportion of the current signaling access resources of the terminal in the system access resources, the signaling access resources of the terminal are maintained.
  • step 2150 the third superframe structure table is sent to the terminal, and the process ends.
  • the embodiment of the present disclosure provides an access resource adjustment method.
  • the primary station dynamically adjusts signaling allocated to the terminal by using a channel collision rate and a proportion of the current signaling access resource in the system access resource. Accessing the resources, so that the adjusted signaling access resources can be applied to different application scenarios, and the terminal can not access the system or the signaling access resources are wasted due to the allocation of the fixed signaling access resources to the terminal.
  • An embodiment of the present disclosure provides an access resource adjustment apparatus 30.
  • the apparatus 30 includes a first acquisition unit 301, a second acquisition unit 302, and an adjustment unit 303.
  • the first obtaining unit 301 is configured to acquire a channel collision rate in the preset time period according to the channel idle ratio and the channel error rate in the preset time period.
  • the second obtaining unit 302 is configured to acquire the proportion of the current signaling access resources in the system access resources.
  • the adjusting unit 303 is configured to adjust the signaling access resource allocated to the terminal according to the channel collision rate and the proportion of the current signaling access resource in the system access resource.
  • the primary station dynamically adjusts the signaling access resources allocated to the terminal through the channel collision rate and the proportion of the current signaling access resources in the system access resources, so that the adjusted signaling access resources can be applied to different application scenarios.
  • the phenomenon that the terminal cannot access the system or the signaling access resource is wasted due to the allocation of the fixed signaling access resource to the terminal, thereby improving the performance of the communication system.
  • the adjusting unit 303 is configured to: when the channel collision rate is greater than or equal to the first threshold, and the current signaling access resource is less than or equal to the second threshold in the system access resource, The ratio of the signaling access resources of the terminal to the system access resources is adjusted to a first proportion, and the first ratio is greater than the proportion of the current signaling access resources in the system access resources.
  • the adjusting unit 303 is configured to: when the channel collision rate is less than or equal to the third threshold, and the current signaling access resource is greater than or equal to the fourth threshold in the system access resource, the terminal is allocated to the terminal.
  • the proportion of the signaling access resources in the system access resources is adjusted to a second proportion, and the second proportion is smaller than the proportion of the current signaling access resources in the system access resources;
  • the third threshold is greater than the first threshold; the fourth threshold is less than the second threshold.
  • the apparatus 30 further includes: a storage unit 304, configured to store a proportion of signaling access resources allocated by the primary station to the terminal in the system access resource; and a second acquiring unit The 302 is set to: obtain the proportion of the signaling access resources allocated by the last primary station to the terminal in the system access resources, and the proportion of the current signaling access resources in the system access resources.
  • the first obtaining unit 301, the second obtaining unit 302, the adjusting unit 303, and the storage unit 304 may each be a central processing unit (CPU) and a microprocessor (Micro Processor) located in the device 30.
  • CPU central processing unit
  • MPU Micro Processor
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the embodiments of the present disclosure provide an access resource adjustment apparatus, which can dynamically adjust the signaling access resources allocated to the terminal, so that the adjusted signaling access resources can be applied to different application scenarios, and the fixed information can be avoided.
  • the phenomenon that the terminal cannot access the system or the signaling access resource is wasted due to the allocation of the access resource to the terminal, thereby improving the performance of the communication system.
  • the present disclosure also provides a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the method of any of the above embodiments.
  • the present disclosure also provides a hardware structure diagram of an electronic device.
  • the electronic device includes:
  • At least one processor 40 which is exemplified by a processor 40 in FIG. 5; and a memory 50, may further include a communication interface 60 and a bus 70.
  • the processor 40, the communication interface 60, and the memory 50 can complete communication with each other through the bus 70.
  • Communication interface 60 can be used for information transfer.
  • Processor 40 may invoke logic instructions in memory 50 to perform the methods of the above-described embodiments.
  • logic instructions in the memory 50 described above may be implemented in the form of software functional units and sold or used as separate products, and may be stored in a computer readable storage medium.
  • the memory 50 is a computer readable storage medium and can be used to store software programs, computer executable programs, program instructions or modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 40 executes the functional application and the data processing by executing a software program, an instruction or a module stored in the memory 50, that is, implementing the method in the above method embodiment.
  • the memory 50 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory 50 may include a high speed random access memory, and may also include a nonvolatile memory.
  • the technical solution of the present disclosure may be embodied in the form of a software product stored in a storage medium, including one or more instructions for causing a computer device (which may be a personal computer, a server, a network device, etc.) Performing all or part of the steps of the method of the embodiments of the present disclosure.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the present disclosure refers to a method, device (system), and computer program product according to an embodiment of the present disclosure.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the access resource adjustment method and device provided by the embodiments of the present disclosure can dynamically adjust the signaling access resources allocated to the terminal, so that the signaling access resources allocated by the primary station to the terminal are applicable to different application scenarios, thereby improving the communication system. Performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种接入资源调整方法,所述方法包括:根据预设时间段内的信道空闲比和信道误码率,获取预设时间段内的信道碰撞率;获取当前信令接入资源在系统接入资源的占比;以及根据所述信道碰撞率和当前信令接入资源在系统接入资源的占比,调整分配给终端的信令接入资源。

Description

接入资源调整方法及装置 技术领域
本公开涉及卫星通讯领域的无线通信技术,例如涉及一种接入资源调整方法及装置。
背景技术
在卫星通讯系统中,主站通过广播的形式周期性地向系统中的所有终端发送超帧结构表(Superframe Composition Table,SCT),然后终端根据超帧结构表中的信令接入资源在系统接入资源的占比接入卫星通讯系统,与主站进行通讯。其中,系统接入资源为卫星通讯系统反向链路的接入资源,包括信息接入资源和信令接入资源,信息接入资源用于传输用户所需要的信号,例如用户通话时的语音信号、用户上网时的数据包信号;而信令接入资源则是用于传输控制电路的信号,这些信号通常并不是用户直接需要的信号。
主站分配给终端的信令接入资源是固定的,但是固定的信令接入资源往往并不适用于卫星通讯系统中所有的通讯状态。例如,一个卫星通讯系统所支持的最大终端接入数为500个,为了保证500个终端能够同时接入系统,主站分配给终端的信令接入资源在系统接入资源的占比为10%,然后终端以10%作为信令接入资源在系统接入资源的占比接入系统。接下来,终端进入正常运营状态,当终端处于正常运营状态时,需要占用的信令接入资源将会非常小,此时,终端仅需要5%作为信令接入资源在系统接入资源的占比,就可以满足与主站的正常通讯。但是由于主站分配给终端的信令接入资源在系统接入资源的占比是固定,因此,终端仍然会以10%作为信令接入资源在系统接入资源的占比与主站进行通讯,从而造成信令接入资源的浪费。
发明内容
本公开实施例提供一种接入资源调整方法及装置,能够动态调整分配给终端的信令接入资源,使得主站分配给终端的信令接入资源适用于不同的应用场景,从而提高通讯系统的性能。
本公开实施例一方面提供一种接入资源调整方法,包括:
根据预设时间段内的信道空闲比和信道误码率,获取预设时间段内的信道碰撞率;
获取当前信令接入资源在系统接入资源的占比;以及
根据所述信道碰撞率和当前信令接入资源在系统接入资源的占比,调整分配给终端的信令接入资源。
可选的,所述根据所述信道碰撞率和当前信令接入资源在系统接入资源的占比,调整分配给终端的信令接入资源包括:
当所述信道碰撞率大于或等于第一阈值,且所述当前信令接入资源在系统接入资源的占比小于或等于第二阈值时,将分配给终端的信令接入资源在系统接入资源的占比调整为第一占比,所述第一占比大于所述当前信令接入资源在系统接入资源的占比。
可选的,所述根据所述信道碰撞率和当前信令接入资源在系统接入资源的占比,调整分配给终端的信令接入资源包括:
当所述信道碰撞率小于或等于第三阈值,且当前信令接入资源在系统接入资源的占比大于或等于第四阈值时,将分配给终端的信令接入资源在系统接入资源的占比调整为第二占比,所述第二占比小于所述当前信令接入资源在系统接入资源的占比;
其中,所述第三阈值大于所述第一阈值;所述第四阈值小于所述第二阈值。
可选的,所述根据预设时间段内的信道空闲比和信道误码率,获取预设时间段内的信道碰撞率包括:
根据公式(1),获取预设时间段内的信道碰撞率;
所述公式(1)为:C=E*(1-D),
其中,C为信道碰撞率,E为信道误码率,D为信道空闲比。
可选的,在所述获取当前信令接入资源在系统接入资源的占比之前,所述方法还包括:
存储上一次主站分配给终端的信令接入资源在系统接入资源的占比;
所述获取当前信令接入资源在系统接入资源的占比包括:
获取所述上一次主站分配给终端的信令接入资源在系统接入资源的占比, 作为当前信令接入资源在系统接入资源的占比。
本公开实施例还提供一种接入资源调整装置,包括:
第一获取单元,设置为根据预设时间段内的信道空闲比和信道误码率,获取预设时间段内的信道碰撞率;
第二获取单元,设置为获取当前信令接入资源在系统接入资源的占比;以及
调整单元,设置为根据所述信道碰撞率和当前信令接入资源在系统接入资源的占比,调整分配给终端的信令接入资源。
可选的,调整单元设置为:
当所述信道碰撞率大于或等于第一阈值,且所述当前信令接入资源在系统接入资源的占比小于或等于第二阈值时,将分配给终端的信令接入资源在系统接入资源的占比调整为第一占比,所述第一占比大于所述当前信令接入资源在系统接入资源的占比。
可选的,调整单元设置为:
当所述信道碰撞率小于或等于第三阈值,且当前信令接入资源在系统接入资源的占比大于或等于第四阈值时,将分配给终端的信令接入资源在系统接入资源的占比调整为第二占比,所述第二占比小于所述当前信令接入资源在系统接入资源的占比;
其中,所述第三阈值大于所述第一阈值;所述第四阈值小于所述第二阈值。
可选的,第一获取单元设置为:
根据公式(1),获取预设时间段内的信道碰撞率;
所述公式(1)为:C=E*(1-D),
其中,C为信道碰撞率,E为信道误码率,D为信道空闲比。
可选的,所述装置还包括:
存储单元,设置为存储上一次主站分配给终端的信令接入资源在系统接入资源的占比;
第二获取单元设置为:
获取所述上一次主站分配给终端的信令接入资源在系统接入资源的占比,作为当前信令接入资源在系统接入资源的占比。本公开还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述方法。
本公开还提供了一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述的方法。
本公开实施例提供了一种接入资源调整方法及装置,包括:根据预设时间段内的信道空闲比和信道误码率,获取预设时间段内的信道碰撞率;获取当前信令接入资源在系统接入资源的占比;以及根据所述信道碰撞率和当前信令接入资源在系统接入资源的占比,调整分配给终端的信令接入资源。相较于相关技术,主站通过信道碰撞率和当前信令接入资源在系统接入资源的占比,动态调整分配给终端的信令接入资源,使得调整后的信令接入资源可以适用于不同的应用场景,能够避免将固定的信令接入资源分配给终端而造成的终端无法接入系统或是信令接入资源浪费的现象,从而提高了通讯系统的性能。
附图说明
图1为本公开实施例提供的一种接入资源调整方法的流程示意图1;
图2为本公开实施例提供的一种接入资源调整方法的流程示意图2;
图3为本公开实施例提供的一种接入资源调整装置的结构示意图1;
图4为本公开实施例提供的一种接入资源调整装置的结构示意图2;以及
图5是本公开实施例提供的电子设备的硬件结构示意图。
具体实施方式
以下参照附图对实施例进行说明,在不冲突的情况下,实施例和实施例中的特征可以相互任意组合。下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。
实施例一
本公开实施例提供了一种接入资源调整方法,应用于主站。实际应用中,卫星通讯系统通常存在至少一个信道,本公开实施例以当前信道为例进行说明。如图1所示,所述接入资源调整方法包括以下步骤。
在步骤110中,根据预设时间段内的信道空闲比和信道误码率,获取预设时间段内的信道碰撞率。
这里,预设时间段内的信道空闲比为预设时间段内信道处于空闲的累计时长在预设时间段时长的占比,反映了信道的利用情况。预设时间段内的信道误码率反映了在预设时间段内终端向主站发送的码流的传输精确性。信道碰撞率反映了码流在信道传输过程中发生碰撞的概率。
示例的,在预设时间段内,终端发送给主站码流时,在时间上是不连续的,即预设时间段内会存在终端不会向主站发送码流信道处于空闲状态的时间。可选的,可以计算预设时间段时长与预设时间段内终端发送给主站码流的累计时长之差,作为信道处于空闲状态的累计时长。因此,可以首先根据公式(2),获取预设时间段内的信道空闲比D,公式(2)为:D=(t2-t1)/t2。其中,t1为预设时间段内终端发送给主站码流的累计时长,t2为预设时间段的时长。
然后,根据公式(3),获取预设时间段内的信道误码率E,公式(3)为:E=L1/L2,其中,L1为码流中信噪比小于或等于质量阈值的码流长度,L2为码流总长度。值得说明的是,信噪比的获取可通过本领域公知的方法来实现,。质量阈值可以根据需求进行设置
根据公式(1),获取预设时间段内的信道碰撞率C,所述公式(1)为:C=E*(1-D),其中,E为预设时间段内的信道误码率,D为预设时间段内的信道空闲比。
预设时间段可以根据需求进行设置。
在步骤120中,获取当前信令接入资源在系统接入资源的占比。
示例的,当主站中存储有上一次主站分配给终端的信令接入资源在系统接入资源的占比时,可以直接获取该信令接入资源在系统接入资源的占比,作为当前信令接入资源在系统接入资源的占比。当主站中没有存储上一次主站分配给终端的信令接入资源在系统接入资源的占比时,主站可以接收终端发送给主 站的一段码流,所述码流中包括信令报文和信息报文,信令报文的长度对应于信令接入资源,信息报文的长度对应于信息接入资源,因此,信令报文的长度在所述码流总长度的占比即为当前信令接入资源在系统接入资源的占比。
在步骤130中,根据所述信道碰撞率和当前信令接入资源在系统接入资源的占比,调整分配给终端的信令接入资源。
示例的,当信道碰撞率大于或等于第一阈值时,说明信道碰撞率较高,码流在传输过程中容易发生碰撞而导致码流传输错误或码流传输时延较大,这时终端增加信令接入资源来降低信道碰撞率。与此同时,当前信令接入资源在系统接入资源的占比小于或等于第二阈值,说明主站分配给终端的信令接入资源较小,很可能无法满足所有终端同时接入系统,因此主站也增加分配给终端的信令接入资源。综上所述,当信道碰撞率大于或等于第一阈值,且当前信令接入资源在系统接入资源的占比小于或等于第二阈值时,主站可以增加分配给终端的信令接入资源。
当信道碰撞率小于或等于第三阈值时,说明信道碰撞率较低,码流在传输过程中不容易发生碰撞,主站可以适当降低分配给终端的信令接入资源。与此同时,当前信令接入资源在系统接入资源的占比大于或等于第四阈值,说明主站分配给终端的信令接入资源较大,通常会造成信令接入资源的浪费。综上所述,当信道碰撞率小于或等于第三阈值,且当前信令接入资源在系统接入资源的占比大于或等于第四阈值时,主站应该减少分配给终端的信令接入资源。
在实际应用中,第一阈值、第二阈值、第三阈值以及第四阈值可以根据需要进行设置。其中,第三阈值大于第一阈值;第四阈值小于第二阈值。
主站通过信道碰撞率和当前信令接入资源在系统接入资源的占比,动态调整分配给终端的信令接入资源,使得调整后的信令接入资源可以适用于不同的应用场景,能够避免将固定的信令接入资源分配给终端而造成的终端无法接入系统或是信令接入资源浪费的现象,从而提高了通讯系统的性能。
可选的,在根据所述信道碰撞率和当前信令接入资源在系统接入资源的占比,调整分配给终端的信令接入资源时,如果所述信道碰撞率大于或等于第一阈值,且所述当前信令接入资源在系统接入资源的占比小于或等于第二阈值,那么,将分配给终端的信令接入资源在系统接入资源的占比调整为第一占比,所述第一占比大于所述当前信令接入资源在系统接入资源的占比。
可以通过调整分配给终端的信令接入资源在系统接入资源的占比,来调整分配给终端的信令接入资源;当需要增加分配给终端的信令接入资源时,可以提高分配给终端的信令接入资源在系统接入资源的占比;当需要减少分配给终端的信令接入资源时,可以降低分配给终端的信令接入资源在系统接入资源的占比。
示例的,当信道碰撞率大于或等于第一阈值,且当前信令接入资源在系统接入资源的占比小于或等于第二阈值时,主站增加分配给终端的信令接入资源。此时,主站可以将分配给终端的信令接入资源在系统接入资源的占比调整为第一占比,由于第一占比大于当前信令接入资源在系统接入资源的占比,从而增加了分配给终端的信令接入资源。
可选的,在根据所述信道碰撞率和当前信令接入资源在系统接入资源的占比,调整分配给终端的信令接入资源时,如果所述信道碰撞率小于或等于第三阈值,且当前信令接入资源在系统接入资源的占比大于或等于第四阈值,那么,将分配给终端的信令接入资源在系统接入资源的占比调整为第二占比,所述第二占比小于所述当前信令接入资源在系统接入资源的占比;其中,所述第三阈值大于所述第一阈值;所述第四阈值小于所述第二阈值。
示例的,当信道碰撞率小于或等于第三阈值,且当前信令接入资源在系统接入资源的占比大于或等于第四阈值时,主站减少分配给终端的信令接入资源。此时,主站可以将分配给终端的信令接入资源在系统接入资源的占比调整为第二占比,由于第二占比小于当前信令接入资源在系统接入资源的占比,从而减少了分配给终端的信令接入资源。
可选的,在获取当前信令接入资源在系统接入资源的占比之前,还可以存储上一次主站分配给终端的信令接入资源在系统接入资源的占比。在获取当前信令接入资源在系统接入资源的占比时,可以获取上一次主站分配给终端的信令接入资源在系统接入资源的占比,作为当前信令接入资源在系统接入资源的占比。
示例的,主站会周期性地向终端发送信令接入资源在系统接入资源的占比,以便于终端根据该占比调整信令接入资源。例如,主站会周期性地向终端发送超帧结构表,超帧结构表中会包括信令接入资源在系统接入资源的占比。因此,当每一次主站向终端发送超帧结构表时,可以将超帧结构表中的接入资源在系 统接入资源的占比依次存储于主站的占比记录中。当需要获取当前信令接入资源在系统接入资源的占比时,可以在占比记录中获取上一次的信令接入资源在系统接入资源的占比,作为当前信令接入资源在系统接入资源的占比。
本公开实施例提供了一种接入资源调整方法,包括:根据预设时间段内的信道空闲比和信道误码率,获取预设时间段内的信道碰撞率;获取当前信令接入资源在系统接入资源的占比;以及根据所述信道碰撞率和当前信令接入资源在系统接入资源的占比,调整分配给终端的信令接入资源。相较于相关技术,主站通过信道碰撞率和当前信令接入资源在系统接入资源的占比,本公开是实施例提供的接入资源调整方法和装置,能够动态调整分配给终端的信令接入资源,使得调整后的信令接入资源可以适用于不同的应用场景,能够避免将固定的信令接入资源分配给终端而造成的终端无法接入系统或是信令接入资源浪费的现象,从而提高了通讯系统的性能。
实施例二
本公开实施例提供了一种接入资源调整方法,应用于主站,在实际应用中,卫星通讯系统通常存在至少一个信道,本公开实施例以当前信道为例进行说明。如图2所示,所述接入资源调整方法包括以下步骤。
在步骤210中,获取预设时间段内接收终端码流的累计时长,以及码流总长度,执行步骤220。
示例的,终端会在时间上不连续地向主站发送码流,因此,主站可以在预设时间段内记录每一次接收终端码流的时长以及码流长度,计算在该预设时间段内记录的所有接收终端码流的时长之和作为预设时间段内接收终端码流的累计时长;计算在该预设时间段内记录的所有的码流长度之和作为预设时间段内码流总长度。
预设时间段可以根据需要进行设置。
在步骤220中,根据预设时间段内接收终端码流的累计时长,获取预设时间段内信道空闲比,执行步骤230。
可以根据公式(2),获取预设时间段内的信道空闲比D,公式(2)为:D=(t2-t1)/t2,其中,t1为预设时间段内终端发送给主站码流的累计时长,t2为预设时间段的时长。
在步骤230中,根据接收的终端码流中信噪比小于或等于质量阈值的码流长度和码流总长度,获取预设时间段内信道误码率,执行步骤240。
示例的,可以根据公式(3),获取预设时间段内的信道误码率E,公式(3)为:E=L1/L2,其中,L1为码流中信噪比小于或等于质量阈值的码流长度,L2为码流总长度。
在步骤240中,根据信道空闲比和信道误码率,计算信道碰撞率,执行步骤250。
示例的,可以根据公式(1),获取预设时间段内的信道碰撞率C,公式(1)为:C=E*(1-D),其中,E为预设时间段内的信道误码率,D为预设时间段内的信道空闲比。
在步骤250中,获取当前信令接入资源在系统接入资源的占比,执行步骤260或步骤2100。
示例的,当主站中存储有上一次主站分配给终端的信令接入资源在系统接入资源的占比时,可以直接获取该信令接入资源在系统接入资源的占比,作为当前信令接入资源在系统接入资源的占比。
值得说明的是,本公开实施例提供了两种信令接入资源调整方案,分别为增加信令接入资源调整方案和减少信令接入资源调整方案。当符合增加信令接入资源调整方案的条件时,主站增加分配给终端的信令接入资源;当符合减少信令接入资源调整方案的条件时,主站减少分配给终端的信令接入资源;当上述两个条件均不符合时,主站保持当前分配给终端的信令接入资源即可。因此,在获取当前信令接入资源在系统接入资源的占比之后,还分别判断是否符合上述两个条件。步骤260和步骤2100分别是判断是否符合上述两个条件的起始步骤。
在步骤260中,判断信道碰撞率是否大于或等于第一阈值;当信道碰撞率大于或等于第一阈值时,执行步骤270;当信道碰撞率小于第一阈值时,执行步骤2140。
当信道碰撞率大于或等于第一阈值时,说明信道碰撞率较高,终端需要增加信令接入资源来降低信道碰撞率。但是,仅由于信道碰撞率较高,就确定需要增加主站分配给终端的信令接入资源,往往不够全面,容易造成误判。示例 的,虽然信道碰撞率较高,但主站分配给终端的信令接入资源已经较多时,说明此时较高的信道碰撞率并不是由于信令接入资源不足而导致的,因此,即使增加了信令接入资源,仍然无法缓解较高的信道碰撞率,反而会降低信道利用率,进而降低系统的性能。因此,当信道碰撞率大于或等于第一阈值时,判断当前主站分配给终端的信令接入资源的情况。
在步骤270中,判断当前信令接入资源在系统接入资源的占比是否小于或等于第二阈值;若当前信令接入资源在系统接入资源的占比小于或等于第二阈值,执行步骤280;若当前信令接入资源在系统接入资源的占比大于第二阈值,执行步骤2140。
信令接入资源在系统接入资源的占比反映了主站分配给终端的信令接入资源情况;若当前信令接入资源在系统接入资源的占比较大,则当前主站分配给终端的信令接入资源较多;若当前信令接入资源在系统接入资源的占比较小,则当前主站分配给终端的信令接入资源较少。因此,若当前信令接入资源在系统接入资源的占比小于或等于第二阈值,说明当前主站分配给终端的信令接入资源较少。
因此,当信道碰撞率大于或等于第一阈值,且当前信令接入资源在系统接入资源的占比小于或等于第二阈值时,说明信道碰撞率较高,同时,当前主站分配给终端的信令接入资源较少,主站此时增加分配给终端的信令接入资源。示例的,可以生成用于增加分配给终端的信令接入资源的第一超帧结构表。
在步骤280中,生成用于增加分配给终端的信令接入资源的第一超帧结构表,执行步骤2130。
第一超帧结构表中包括第一占比,第一占比大于当前信令接入资源在系统接入资源的占比。
为了增加终端的信令接入资源,主站可以向终端发送包括第一占比的第一超帧结构表。终端按照第一超帧结构表中的第一占比接入系统,并且与主站进行通讯。由于第一占比大于终端的当前信令接入资源在系统接入资源的占比,因此,终端的信令接入资源得到了增加。进而避免了当信道碰撞率大于或等于第一阈值,且当前信令接入资源在系统接入资源的占比小于或等于第二阈值时,终端可能会出现的无法接入系统的情况。
在步骤290中,将第一超帧结构表发送给终端,本流程结束。
在步骤2100中,判断信道碰撞率是否小于或等于第三阈值;当信道碰撞率小于或等于第三阈值时,执行步骤2110;当信道碰撞率大于第三阈值时,执行步骤2140。
当信道碰撞率小于或等于第三阈值时,说明信道碰撞率较低,终端可以适当减少信令接入资源。但是,仅由于信道碰撞率较低,就确定减少主站分配给终端的信令接入资源,往往不够全面,容易造成误判。示例的,虽然信道碰撞率较低,但主站分配给终端的信令接入资源已经较少时,如果此时减少分配给终端的信令接入资源,可能会出现由于信令接入资源过少而无法满足所有终端同时接入系统的情况。因此,当信道碰撞率小于或等于第三阈值时,判断当前主站分配给终端的信令接入资源的情况。
在步骤2110中,判断当前信令接入资源在系统接入资源的占比是否大于或等于第四阈值;若当前信令接入资源在系统接入资源的占比大于或等于第四阈值,执行步骤2120;若当前信令接入资源在系统接入资源的占比小于第四阈值时,执行步骤2140。
若当前信令接入资源在系统接入资源的占比大于或等于第四阈值,说明当前主站分配给终端的信令接入资源较多。因此,当信道碰撞率小于或等于第三阈值,且当前信令接入资源在系统接入资源的占比大于或等于第四阈值时,说明信道碰撞率较低,同时,当前主站分配给终端的信令接入资源较多,主站此时可以适当减少分配给终端的信令接入资源。示例的,可以生成用于减少分配给终端的信令接入资源的第二超帧结构表。
在步骤2120中,生成用于减少分配给终端的信令接入资源的第二超帧结构表,执行步骤2130。
第二超帧结构表中包括第二占比,第二占比小于当前信令接入资源在系统接入资源的占比。
为了减少终端的信令接入资源,主站可以向终端发送包括第二占比的第二超帧结构表。然后,终端按照第二超帧结构表中的第二占比接入系统,并且与主站进行通讯。由于第二占比小于终端的当前信令接入资源在系统接入资源的占比,因此,终端的信令接入资源得到了减少,进而避免了浪费信令接入资源的情况。
在步骤2130中,将第二超帧结构表发送给终端,本流程结束。
在步骤2140中,生成用于保持分配给终端的信令接入资源的第三超帧结构表,执行步骤2150。
这里,第三超帧结构表中包括第三占比,第三占比等于当前信令接入资源在系统接入资源的占比。
为了保持终端的信令接入资源,主站可以向终端发送包括第三占比的第三超帧结构表。终端按照第三超帧结构表中的第三占比接入系统,并且与主站进行通讯。由于第三占比等于终端的当前信令接入资源在系统接入资源的占比,因此,终端的信令接入资源得到了保持。
在步骤2150中,将第三超帧结构表发送给终端,本流程结束。
需要说明的是,本公开实施例提供的接入资源调整方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减。
本公开实施例提供了一种接入资源调整方法,相较于相关技术,主站通过信道碰撞率和当前信令接入资源在系统接入资源的占比,动态调整分配给终端的信令接入资源,使得调整后的信令接入资源可以适用于不同的应用场景,能够避免将固定的信令接入资源分配给终端而造成的终端无法接入系统或是信令接入资源浪费的现象,从而提高了通讯系统的性能。
实施例三
本公开实施例提供了一种接入资源调整装置30,如图3所示,所述装置30包括:第一获取单元301、第二获取单元302和调整单元303。
第一获取单元301,设置为根据预设时间段内的信道空闲比和信道误码率,获取预设时间段内的信道碰撞率。
第二获取单元302,设置为获取当前信令接入资源在系统接入资源的占比。
调整单元303,设置为根据所述信道碰撞率和当前信令接入资源在系统接入资源的占比,调整分配给终端的信令接入资源。
主站通过信道碰撞率和当前信令接入资源在系统接入资源的占比,动态调整分配给终端的信令接入资源,使得调整后的信令接入资源可以适用于不同的应用场景,能够避免将固定的信令接入资源分配给终端而造成的终端无法接入系统或是信令接入资源浪费的现象,从而提高了通讯系统的性能。
可选的,调整单元303设置为:当所述信道碰撞率大于或等于第一阈值,且所述当前信令接入资源在系统接入资源的占比小于或等于第二阈值时,将分配给终端的信令接入资源在系统接入资源的占比调整为第一占比,所述第一占比大于所述当前信令接入资源在系统接入资源的占比。
可选的,调整单元303设置为:当所述信道碰撞率小于或等于第三阈值,且当前信令接入资源在系统接入资源的占比大于或等于第四阈值时,将分配给终端的信令接入资源在系统接入资源的占比调整为第二占比,所述第二占比小于所述当前信令接入资源在系统接入资源的占比;其中,所述第三阈值大于所述第一阈值;所述第四阈值小于所述第二阈值。
可选的,第一获取单元301设置为:根据公式(1),获取预设时间段内的信道碰撞率;所述公式(1)为:C=E*(1-D),其中,C为信道碰撞率,E为信道误码率,D为信道空闲比。
可选的,如图4所示,所述装置30还包括:存储单元304,设置为存储上一次主站分配给终端的信令接入资源在系统接入资源的占比;第二获取单元302设置为:获取所述上一次主站分配给终端的信令接入资源在系统接入资源的占比,作为当前信令接入资源在系统接入资源的占比。
需要说明的是,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的工作过程,可以参考前述方法实施例中的对应过程。
在实际应用中,所述第一获取单元301、第二获取单元302、调整单元303和存储单元304均可由位于装置30中的中央处理器(Central Processing Unit,CPU)、微处理器(Micro Processor Unit,MPU)、数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现。
本公开实施例提供了一种接入资源调整装置,能够动态调整分配给终端的信令接入资源,使得调整后的信令接入资源可以适用于不同的应用场景,能够避免将固定的信令接入资源分配给终端而造成的终端无法接入系统或是信令接入资源浪费的现象,从而提高了通讯系统的性能。
本公开还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述任一实施例中的方法。
本公开还提供了一种电子设备的硬件结构示意图。参见图5,该电子设备包括:
至少一个处理器(processor)40,图5中以一个处理器40为例;和存储器(memory)50,还可以包括通信接口(Communications Interface)60和总线70。其中,处理器40、通信接口60、存储器50可以通过总线70完成相互间的通信。通信接口60可以用于信息传输。处理器40可以调用存储器50中的逻辑指令,以执行上述实施例的方法。
此外,上述的存储器50中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器50作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令或模块。处理器40通过运行存储在存储器50中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的方法。
存储器50可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器50可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品 的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
工业实用性
本公开实施例提供的接入资源调整方法及装置,能够动态调整分配给终端的信令接入资源,使得主站分配给终端的信令接入资源适用于不同的应用场景,从而提高通讯系统的性能。

Claims (11)

  1. 一种接入资源调整方法,包括:
    根据预设时间段内的信道空闲比和信道误码率,获取预设时间段内的信道碰撞率;
    获取当前信今接入资源在系统接入资源的占比;以及
    根据所述信道碰撞率和当前信今接入资源在系统接入资源的占比,调整分配给终端的信今接入资源。
  2. 根据权利要求1所述的方法,其中,所述根据所述信道碰撞率和当前信今接入资源在系统接入资源的占比,调整分配给终端的信今接入资源包括:
    当所述信道碰撞率大于或等于第一阈值,且所述当前信今接入资源在系统接入资源的占比小于或等于第二阈值时,将分配给终端的信今接入资源在系统接入资源的占比调整为第一占比,所述第一占比大于所述当前信今接入资源在系统接入资源的占比。
  3. 根据权利要求2所述的方法,其中,所述根据所述信道碰撞率和当前信今接入资源在系统接入资源的占比,调整分配给终端的信今接入资源包括:
    当所述信道碰撞率小于或等于第三阈值,且当前信今接入资源在系统接入资源的占比大于或等于第四阈值时,将分配给终端的信今接入资源在系统接入资源的占比调整为第二占比,所述第二占比小于所述当前信今接入资源在系统接入资源的占比;
    其中,所述第三阈值大于所述第一阈值;所述第四阈值小于所述第二阈值。
  4. 根据权利要求1至3任意一项权利要求所述的方法,其中,所述根据预设时间段内的信道空闲比和信道误码率,获取预设时间段内的信道碰撞率包括:
    根据公式(1),获取预设时间段内的信道碰撞率;
    所述公式(1)为:C=E*(1-D),
    其中,C为信道碰撞率,E为信道误码率,D为信道空闲比。
  5. 根据权利要求1至3任意一项权利要求所述的方法,在所述获取当前信今接入资源在系统接入资源的占比之前,所述方法还包括:
    存储上一次主站分配给终端的信今接入资源在系统接入资源的占比;
    所述获取当前信今接入资源在系统接入资源的占比包括:
    获取所述上一次主站分配给终端的信今接入资源在系统接入资源的占比,作为当前信今接入资源在系统接入资源的占比。
  6. 一种接入资源调整装置,包括:
    第一获取单元,设置为根据预设时间段内的信道空闲比和信道误码率,获取预设时间段内的信道碰撞率;
    第二获取单元,设置为获取当前信今接入资源在系统接入资源的占比;以及
    调整单元,设置为根据所述信道碰撞率和当前信今接入资源在系统接入资源的占比,调整分配给终端的信今接入资源。
  7. 根据权利要求6所述的装置,其中,调整单元设置为:
    当所述信道碰撞率大于或等于第一阈值,且所述当前信今接入资源在系统接入资源的占比小于或等于第二阈值时,将分配给终端的信今接入资源在系统接入资源的占比调整为第一占比,所述第一占比大于所述当前信今接入资源在系统接入资源的占比。
  8. 根据权利要求7所述的装置,其中,调整单元设置为:
    当所述信道碰撞率小于或等于第三阈值,且当前信今接入资源在系统接入资源的占比大于或等于第四阈值时,将分配给终端的信今接入资源在系统接入资源的占比调整为第二占比,所述第二占比小于所述当前信今接入资源在系统 接入资源的占比;
    其中,所述第三阈值大于所述第一阈值;所述第四阈值小于所述第二阈值。
  9. 根据权利要求6至8任意一项权利要求所述的装置,其中,第一获取单元设置为:
    根据公式(1),获取预设时间段内的信道碰撞率;
    所述公式(1)为:C=E*(1一D),
    其中,C为信道碰撞率,E为信道误码率,D为信道空闲比。
  10. 根据权利要求6至8任意一项权利要求所述的装置,其中,所述装置还包括:
    存储单元,设置为存储上一次主站分配给终端的信今接入资源在系统接入资源的占比;
    第二获取单元设置为:
    获取所述上一次主站分配给终端的信今接入资源在系统接入资源的占比,作为当前信今接入资源在系统接入资源的占比。
  11. 一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-5中任一项的方法。
PCT/CN2016/102475 2016-04-05 2016-10-18 接入资源调整方法及装置 WO2017173804A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610206600.2A CN107295667B (zh) 2016-04-05 2016-04-05 一种接入资源调整方法及装置
CN201610206600.2 2016-04-05

Publications (1)

Publication Number Publication Date
WO2017173804A1 true WO2017173804A1 (zh) 2017-10-12

Family

ID=60000894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102475 WO2017173804A1 (zh) 2016-04-05 2016-10-18 接入资源调整方法及装置

Country Status (2)

Country Link
CN (1) CN107295667B (zh)
WO (1) WO2017173804A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108243504A (zh) * 2017-12-31 2018-07-03 深圳中科讯联科技股份有限公司 一种基于信道池的集群通讯管理方法、接收器、终端和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543218B (zh) * 2021-07-20 2023-06-16 四川安迪科技实业有限公司 一种tdma信令报文超长的拆分方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011535A1 (en) * 1994-10-07 1996-04-18 Comsat Corporation A technique for efficient integration of integrated services digital network (isdn) into satellite systems
CN102883374A (zh) * 2012-10-15 2013-01-16 航天恒星科技有限公司 一种卫星通信系统的资源分配方法
CN103595461A (zh) * 2013-10-17 2014-02-19 航天恒星科技有限公司 一种超大规模vsat系统帧结构及资源分配方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041339A1 (en) * 2004-10-11 2006-04-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and system of communication over channels of diverse channel characteristics
CN101312589B (zh) * 2007-05-21 2011-08-24 中兴通讯股份有限公司 一种动态调整伴随专用物理信道重复周期的方法
CN101938770B (zh) * 2010-09-20 2013-04-10 南京邮电大学 基于网络信道状态的无线网络最大重传次数的优化方法
WO2015000178A1 (zh) * 2013-07-05 2015-01-08 华为技术有限公司 共小区的资源分配方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011535A1 (en) * 1994-10-07 1996-04-18 Comsat Corporation A technique for efficient integration of integrated services digital network (isdn) into satellite systems
CN102883374A (zh) * 2012-10-15 2013-01-16 航天恒星科技有限公司 一种卫星通信系统的资源分配方法
CN103595461A (zh) * 2013-10-17 2014-02-19 航天恒星科技有限公司 一种超大规模vsat系统帧结构及资源分配方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108243504A (zh) * 2017-12-31 2018-07-03 深圳中科讯联科技股份有限公司 一种基于信道池的集群通讯管理方法、接收器、终端和系统

Also Published As

Publication number Publication date
CN107295667A (zh) 2017-10-24
CN107295667B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
CN107948988B (zh) 一种资源控制方法及相关设备
CN106330757B (zh) 流量控制方法及装置
JP7032306B2 (ja) リソース衝突低減方法およびue
US20160088577A1 (en) Timing value adjustment method and apparatus
US10321482B2 (en) Method and device for processing carrier resource of unlicensed carrier and transmission node
US9351241B2 (en) Indicating a busy period in a wireless network
US11464000B2 (en) Information indication method, terminal device, and network device
WO2017197949A1 (zh) 一种数据传输的控制方法及相关设备
JP5653474B2 (ja) 無線データネットワーク切替方法、電子装置及びコンピュータプログラム
CN106455114B (zh) 基于多信道的退避方法及设备
JP6438132B2 (ja) データ送信方法、リソース測定方法、装置、及びデバイス
CN108513362B (zh) 一种信道检测方法、装置及基站
EP2915370B1 (en) Enhanced extended access class barring
WO2020216010A1 (zh) 一种随机接入方法、网络设备和终端设备
US20170006636A1 (en) Multi-channel access method and apparatus
JP2019503119A (ja) ネットワーク利用率を向上させるためのネットワーク支援プロトコルの使用
WO2017173804A1 (zh) 接入资源调整方法及装置
TWI616111B (zh) 在未授權頻譜中的無線電資源排程方法及使用其之基地台
US9924407B2 (en) Contention adjustment method, apparatus, and system in wireless local area network
WO2017193674A1 (zh) 一种数据传输的控制方法及相关设备
WO2018141281A1 (zh) 数据传输的方法和装置
WO2022078317A1 (zh) 上行数据发送方法及相关产品
US20150351123A1 (en) Techniques for Reverse Direction Grants on a Wireless Communication Channel
WO2018046016A1 (zh) 为终端分配上行资源的装置、方法及上行资源分配装置
US20200396757A1 (en) Downlink transmission resource allocation method and apparatus

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897736

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897736

Country of ref document: EP

Kind code of ref document: A1