WO2012108065A1 - 白色光源およびそれを用いた白色光源システム - Google Patents
白色光源およびそれを用いた白色光源システム Download PDFInfo
- Publication number
- WO2012108065A1 WO2012108065A1 PCT/JP2011/059484 JP2011059484W WO2012108065A1 WO 2012108065 A1 WO2012108065 A1 WO 2012108065A1 JP 2011059484 W JP2011059484 W JP 2011059484W WO 2012108065 A1 WO2012108065 A1 WO 2012108065A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- white light
- light source
- phosphor
- λmax2
- λmax1
- Prior art date
Links
- 238000000295 emission spectrum Methods 0.000 claims abstract description 70
- 230000005457 Black-body radiation Effects 0.000 claims abstract description 22
- 230000003595 spectral effect Effects 0.000 claims abstract description 21
- 238000001228 spectrum Methods 0.000 claims abstract description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 114
- 239000011347 resin Substances 0.000 claims description 13
- 229920005989 resin Polymers 0.000 claims description 13
- 229910052693 Europium Inorganic materials 0.000 description 34
- -1 europium activated strontium aluminate Chemical class 0.000 description 23
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 15
- 241000282414 Homo sapiens Species 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- YJPIGAIKUZMOQA-UHFFFAOYSA-N Melatonin Natural products COC1=CC=C2N(C(C)=O)C=C(CCN)C2=C1 YJPIGAIKUZMOQA-UHFFFAOYSA-N 0.000 description 8
- 230000027288 circadian rhythm Effects 0.000 description 8
- 229960003987 melatonin Drugs 0.000 description 8
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 230000002411 adverse Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000028327 secretion Effects 0.000 description 7
- 230000004907 flux Effects 0.000 description 6
- 230000002596 correlated effect Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000033764 rhythmic process Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 150000004762 orthosilicates Chemical class 0.000 description 2
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- VAWSWDPVUFTPQO-UHFFFAOYSA-N calcium strontium Chemical class [Ca].[Sr] VAWSWDPVUFTPQO-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- DXNVUKXMTZHOTP-UHFFFAOYSA-N dialuminum;dimagnesium;barium(2+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Mg+2].[Mg+2].[Al+3].[Al+3].[Ba+2].[Ba+2] DXNVUKXMTZHOTP-UHFFFAOYSA-N 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- YTYSNXOWNOTGMY-UHFFFAOYSA-N lanthanum(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[La+3].[La+3] YTYSNXOWNOTGMY-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- IBIRZFNPWYRWOG-UHFFFAOYSA-N phosphane;phosphoric acid Chemical compound P.OP(O)(O)=O IBIRZFNPWYRWOG-UHFFFAOYSA-N 0.000 description 1
- 210000004560 pineal gland Anatomy 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000010340 saliva test Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/20—Light sources comprising attachment means
- F21K9/23—Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
- F21K9/232—Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/60—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
- F21K9/64—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V3/00—Globes; Bowls; Cover glasses
- F21V3/04—Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
- F21V3/10—Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- the present invention relates to a white light source and a white light source system using the white light source, and more particularly to a white light source having an emission spectrum approximate to an emission spectrum of natural light and a white light source system using the same.
- White light sources using LEDs are widely used as traffic lights, backlights for liquid crystal display devices, and general lighting equipment such as room lights.
- a white light source using a conventional blue LED has an emission spectrum whose peak height of blue light emitted from the blue LED is as high as 1.5 times the peak height of yellow light from the phosphor, and is affected by blue light. There was a strong tendency.
- the conventional white LED has a strong emission peak of the blue LED.
- white light with a strong blue peak is significantly different from natural light.
- natural light means sunlight.
- Patent Document 2 In consideration of the influence of the white light source on the human body, International Publication WO 2008/069101 (Patent Document 2) mixes four types of light emission peaks by combining LEDs and phosphors having different light emission peaks. Provides white light with little deviation from the spectral luminous efficiency.
- the spectral luminous efficiency refers to the sensitivity of the human eye to light, and is defined by the CIE (International Commission on Illumination) as the standard spectral relative luminous sensitivity V ( ⁇ ). Therefore, the spectral luminous efficiency and the standard spectral relative luminous sensitivity V ( ⁇ ) have the same meaning.
- FIG. 1 shows the spectral luminous efficiency V ( ⁇ ) defined by CIE. That is, according to FIG. 1, humans recognize light having a wavelength of about 555 nm with the highest sensitivity.
- Patent Document 2 aims to control light having a wavelength in the range of 420 to 490 nm in consideration of the influence of blue light on the human body. Such a method is considered to have the effect of normalizing the secretion of melatonin as a kind of hormone involved in regulation by the biological clock at night.
- humans have a circadian rhythm (circadian rhythm, 24-hour rhythm) that is dominated by the body clock.
- Human beings are based on living under natural light, but in modern society, lifestyles are diversifying, such as long indoor work and reversal of day and night. Continuing a life without natural light for a long time is disturbed by the circadian rhythm, and there are concerns about adverse effects on the human body.
- a white light source using a current LED that is, a white light source using a blue LED, has an emission spectrum that is significantly different from that of natural light. If you live for a long time under the irradiation of such a white light source, there is a concern that it may adversely affect human circadian rhythm.
- the present invention has been made to cope with such a problem, and an object of the present invention is to provide a white light source having an emission spectrum approximate to the emission spectrum of natural light.
- the white light source according to the present invention has an emission spectrum of white light source P ( ⁇ ), a black body radiation emission spectrum having the same color temperature as the white light source B ( ⁇ ), and spectral luminous efficiency.
- V ( ⁇ ) P ( ⁇ ) ⁇ V ( ⁇ ) has a maximum wavelength ⁇ max1
- the relational expression: ⁇ 0.1 ⁇ [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ ) ) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))] ⁇ + 0.1 is more preferable.
- the color temperature of the white light source is preferably 2500 to 7000K.
- the white light source preferably includes an LED and a phosphor.
- the emission peak wavelength of the LED is preferably 350 to 420 nm, and the emission peak wavelength of the phosphor is preferably in the range of 420 to 700 nm.
- the white light source preferably includes three or more types, preferably four or more types of phosphors having different peak wavelengths. Further, it is more preferable to provide five or more types of phosphors having different peak wavelengths.
- the phosphor preferably forms a phosphor layer in which the phosphor and the resin are mixed. Moreover, it is preferable that the phosphor layer has a multilayer structure in which a plurality of phosphor elements in which phosphor particles are dispersed in a resin are laminated.
- the white light source system of the present invention is constituted by using a plurality of white light sources according to the present invention.
- the white light source according to the present invention can reproduce the same emission spectrum as natural light. For this reason, even if white light from a white light source is exposed for a long time, the adverse effect on the human body can be made to the same level as natural light.
- V ((lambda)). It is a mathematical formula for obtaining an emission spectrum B ( ⁇ ) of black body radiation. It is a graph which shows an example of the emission spectrum of natural light in the daytime. It is a graph which shows an example of the emission spectrum of Asahi's natural light. It is a graph which shows an example of the emission spectrum of the natural light of sunrise. 2 is a graph showing an emission spectrum of Example 1. 4 is a graph showing (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) in Example 1.
- FIG. 4 is a graph showing (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) when black body radiation having the same color temperature as FIG. 3 is B ( ⁇ ).
- 6 is a graph showing a difference A ( ⁇ ) in Example 1. It is sectional drawing which shows one Example of the white light source (bulb type) of this invention. 6 is a graph showing an emission spectrum of a white light source of Example 2. 10 is a graph showing (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) in Example 2.
- Example 5 is a graph showing (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) when black body radiation having the same color temperature as FIG. 4 is B ( ⁇ ).
- 10 is a graph showing a difference A ( ⁇ ) in Example 2.
- 6 is a graph showing an emission spectrum of Example 3.
- 10 is a graph showing (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) in Example 3.
- 6 is a graph showing (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) when black body radiation having the same color temperature as FIG. 5 is B ( ⁇ ).
- 10 is a graph showing a difference A ( ⁇ ) in Example 3.
- 10 is a graph showing a difference A ( ⁇ ) of Comparative Example 1. It is sectional drawing which shows another Example of the white light source (bulb type) which concerns on this invention.
- 10 is a graph showing an emission spectrum P ( ⁇ ) of a white light source of Example 5. It is a graph which shows the black body radiation B ((lambda)) whose color temperature is 5000K.
- 10 is a graph showing (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of a white light source of Example 5.
- 10 is a graph showing (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) of the white light source of Example 5.
- 10 is a graph showing a difference A ( ⁇ ) of a white light source in Example 5.
- the white light source according to the embodiment of the present invention has an emission spectrum of white light source P ( ⁇ ), an emission spectrum of black body radiation showing the same color temperature as the white light source B ( ⁇ ), and a spectral luminous efficiency spectrum V
- the wavelength that maximizes ( ⁇ ) and P ( ⁇ ) ⁇ V ( ⁇ ) is ⁇ max1
- the wavelength that maximizes B ( ⁇ ) ⁇ V ( ⁇ ) is ⁇ max2
- ⁇ 0.2 ⁇ [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))] ⁇ + 0.2
- ⁇ represents a wavelength of 380 to 780 nm which is a visible light region.
- the procedure for constructing a white light source that satisfies the above relational expression is as follows. First, the emission spectrum P ( ⁇ ) of a white light source is measured. The emission spectrum is measured by total luminous flux measurement using an integrating sphere according to JIS-C-8152. The color temperature is obtained by calculation from the emission spectrum. The unit of color temperature is Kelvin (K).
- an emission spectrum B ( ⁇ ) of black body radiation that is the same as the color temperature of the white light source is obtained.
- the emission spectrum B ( ⁇ ) is obtained from the Planck distribution.
- the plank distribution can be obtained by the mathematical formula shown in FIG. In FIG. 2, h is the Planck constant, c is the speed of light, ⁇ is the wavelength, e is the base of the natural logarithm, k is the Boltzmann constant, and T is the color temperature. Since the emission spectrum of blackbody radiation is constant for h, c, e, and k, the emission spectrum corresponding to the wavelength ⁇ can be obtained if the color temperature T is determined.
- black body radiation is also called black body radiation, and in the present invention, it indicates the emission spectrum of natural light (sunlight).
- Natural light has different color temperatures, for example, during the daytime, in the morning, and at sunrise.
- FIG. 3 shows an example of an emission spectrum of natural light during the day (color temperature 5100K)
- FIG. 4 shows an example of an emission spectrum of natural light in the morning (color temperature 4200K)
- FIG. 5 shows natural light at sunrise (color temperature 2700K).
- An example of the emission spectrum of each was shown. The morning direction in FIG. 4 assumes 7:00 am.
- FIG. 6 shows an emission spectrum P ( ⁇ ) of Example 1 described later.
- FIG. 7 shows (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 1.
- FIG. 8 shows (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) when the emission spectrum of natural light during the day (FIG. 3) is B ( ⁇ ). showed that.
- the spectral luminous efficiency shown in FIG. 1 was used for V ( ⁇ ) when obtaining FIG. 7 and FIG.
- FIG. 7 shows a value obtained by multiplying the emission spectrum P ( ⁇ ) of Example 1 shown in FIG. 6 and the spectral luminous efficiency V ( ⁇ ) by a value for each wavelength, (P ( ⁇ max1) ⁇ V ( ⁇ max1). It is the figure which plotted the value divided by)).
- FIG. 8 is obtained by dividing the value obtained by multiplying the emission spectrum B ( ⁇ ) and the spectral luminous efficiency V ( ⁇ ) of FIG. 3 by the value for each wavelength by (B ( ⁇ max2) ⁇ V ( ⁇ max2)). It is the figure which plotted the value.
- (B ( ⁇ ) ⁇ V ( ⁇ )) indicates the intensity of the emission spectrum of black body radiation in the spectral luminous efficiency V ( ⁇ ) region, and is the maximum value (B ( ⁇ max2) ⁇ By dividing by V ( ⁇ max2)), a value with 1.0 as the upper limit can be obtained as shown in FIG.
- the difference A ( ⁇ ) [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2 ) ⁇ V ( ⁇ max2))].
- the white light source of the present embodiment is ⁇ 0.2 ⁇ [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))] ⁇ + 0.2.
- FIG. 9 shows the difference A ( ⁇ ) in Example 1.
- the range of the difference A ( ⁇ ) is ⁇ 0.03 ⁇ A ( ⁇ ) ⁇ + 0.02, and natural light during the day is reproduced.
- the emission spectrum is designed to approximate the emission spectrum of black body radiation, it is more suitable for human circadian rhythm than the conventional white LED with a blue light peak protruding. Adverse effects can be greatly suppressed.
- the emission spectrum may be controlled according to the purpose.
- this white light source is used as a lighting equipment for a ward, a place where a long-time indoor work must be performed, or a room, adverse effects on the circadian rhythm of patients living there and workers performing work can be suppressed.
- natural light can be reproduced, it can be applied to agricultural fields such as plant cultivation using natural light.
- Such a white light source preferably has a light emission color temperature of 2500 to 7000K. If this color temperature is less than 2500K or more than 7000K, the color temperature may not be in natural light.
- the preferred range of color temperature is 2700-6700K.
- the white light source having such a difference A ( ⁇ ) preferably includes an LED (light emitting diode) and a phosphor.
- the emission peak wavelength of the LED is preferably in the range of 350 to 420 nm. It is preferable that the LED light having an emission peak in the ultraviolet to violet region be converted into visible light by a phosphor.
- the difference A ( ⁇ ) is controlled within the range of ⁇ 0.2 ⁇ A ( ⁇ ) ⁇ + 0.2 because the emission peak height is large. It is hard to do. Further, as long as the light emission source has an emission peak wavelength of 350 to 420 nm, not only the LED but also a semiconductor laser or the like may be used.
- the phosphor has an emission peak wavelength in the range of 420 to 700 nm when excited with a light source of 350 to 420 nm. Moreover, it is preferable to use 3 or more types of fluorescent substance from which a peak wavelength differs, and also 5 or more types of fluorescent substance.
- the peak wavelength of each phosphor is preferably 150 nm or less, more preferably 10 to 100 nm, and more preferably 10 to 50 nm. In other words, by combining three or more phosphors and further five or more phosphors from the blue region to the red region and shifting the peak wavelength every 10 to 100 nm, ⁇ 0.2 ⁇ difference A ( ⁇ ) ⁇ + 0 .2 is a method of realizing.
- the material of the phosphor is not particularly limited as long as the emission peak is in the range of 420 to 700 nm, but the following phosphor is preferable as the phosphor excited at 350 to 420 nm.
- the half width of the peak wavelength of the emission spectrum of the phosphor is preferably 40 nm or more, and more preferably 50 to 100 nm.
- blue phosphor examples include europium activated alkaline earth phosphate phosphor (peak wavelength 440 to 455 nm), europium activated barium magnesium aluminate phosphor (peak wavelength 450 to 460 nm) and the like. It is done.
- blue-green phosphors include europium activated strontium aluminate phosphors (peak wavelength: 480 to 500 nm) and europium and manganese activated barium magnesium aluminate phosphors (peak wavelength: 510 to 520 nm).
- green phosphor examples include europium activated orthosilicate phosphor (peak wavelength 520 to 550 nm), europium activated ⁇ sialon phosphor (peak wavelength 535 to 545 nm), europium activated strontium sialon phosphor ( Peak wavelength 510 to 530 nm).
- yellow phosphor examples include europium activated orthosilicate phosphor (peak wavelength 550 to 580 nm) and cerium activated rare earth aluminum garnet phosphor (peak wavelength 550 to 580 nm).
- red phosphor examples include europium activated strontium sialon phosphor (peak wavelength 600 to 630 nm), europium activated calcium strontium oxynitride phosphor (peak wavelength 610 to 650 nm), europium activated acid. Examples thereof include lanthanum sulfide phosphors (peak wavelength: 620 to 630 nm) and manganese activated magnesium fluorogermanate (peak wavelength: 640 to 660 nm).
- the difference A ( ⁇ ) it is preferable to use three or more, more preferably five or more of the blue phosphor, blue-green phosphor, green phosphor, yellow phosphor and red phosphor. .
- the color temperature can be controlled by changing the mixing ratio of the respective phosphors.
- the average particle size of each phosphor is preferably 5 to 40 ⁇ m. If the average particle size is less than 5 ⁇ m, the particle size is too small to be produced, which increases the cost. On the other hand, when the average particle size is larger than 40 ⁇ m, it is difficult to uniformly mix the phosphors.
- FIG. 10 shows a light bulb type white light source as an embodiment of the white light source of the present invention.
- 1 is an LED bulb (white light source)
- 2 is an LED module
- 3 is a base part
- 4 is a globe
- 5 is an insulating member
- 6 is a base
- 7 is a substrate
- 8 is an LED chip
- 9 is a phosphor layer
- Reference numeral 10 denotes a transparent resin layer.
- the LED bulb 1 shown in FIG. 10 includes an LED module 2, a base part 3 on which the LED module 2 is installed, a globe 4 attached on the base part 3 so as to cover the LED module 2, and a base part 3 A base 6 attached to the lower end of the base plate 3 through an insulating member 5 and a lighting circuit 11 provided in the base 3.
- the LED module 2 includes an ultraviolet or purple LED chip 8 mounted on a substrate 7.
- a plurality of LED chips 8 are surface-mounted on the substrate 7.
- a light emitting diode of InGaN, GaN, AlGaN or the like is used for the LED chip 8 emitting ultraviolet to purple light.
- a wiring network (not shown) is provided on the surface of the substrate 7 (and further inside if necessary), and the electrodes of the LED chip 8 are electrically connected to the wiring network of the substrate 7.
- a wiring 12 is drawn out on the side surface or the bottom surface of the LED module 2, and the wiring 12 is electrically connected to the lighting circuit 11 provided in the base portion 3.
- the LED chip 8 is lit by a DC voltage applied via the lighting circuit 11.
- a phosphor layer 9 that absorbs ultraviolet or violet light emitted from the LED chip 8 and emits white light.
- the phosphor layer 9 is formed by combining three or more, further five or more phosphors having different peak wavelengths. Moreover, you may mix with resin and form the fluorescent substance layer 9 as needed. Further, various phosphors may be mixed to form a mixed phosphor layer, or a multilayer phosphor layer in which about 1 to 3 types of phosphor layers are mixed.
- the phosphor layer is provided on the inner surface of the globe 4, but the phosphor may be mixed with the outer surface of the globe 4 or the globe 4 itself, or the phosphor may be added to the transparent resin layer 10. May be mixed.
- a light bulb type white light source is illustrated in FIG. 10, the present invention is not limited to this and can be applied to a one-chip type white light source.
- the white light source according to the present invention is not limited to the above-mentioned bulb type, but can be applied to a fluorescent lamp type (long and thin type), a chandelier type, and the shape is not limited.
- a white light source that reproduces natural light can be provided. Further, a white light source system that reproduces the rhythm of natural light of the day can be obtained by combining white light sources that reproduce natural light such as daytime, sunrise, morning, and evening. Thereby, the white light source and white light source system which suppressed the bad influence to the circadian rhythm of a human body can be provided.
- Example 1 An LED chip having an emission peak wavelength of 400 nm was prepared. Next, as a phosphor that emits light when irradiated with an electromagnetic wave of 400 nm, a europium-activated alkaline earth phosphate blue phosphor having a peak wavelength of 445 nm, and a europium-activated strontium aluminate blue-green having a peak wavelength of 490 nm A phosphor, a europium activated orthosilicate green phosphor having a peak wavelength of 530 nm, a europium activated orthosilicate yellow phosphor having a peak wavelength of 555 nm, and a europium activated orthostrontial sialon red phosphor having a peak wavelength of 630 nm A mixture was prepared.
- the average particle diameter of each phosphor was 15 ⁇ m.
- the bulb-type white light source shown in FIG. 10 was produced by mixing with a transparent resin and applying to the inner surface of the globe.
- the obtained white light source had a correlated color temperature of emission color of 5100K. This color temperature 5100K is a color temperature equivalent to natural light during the day.
- FIG. 6 shows the result of measuring the emission spectrum of the bulb-type white light source of Example 1 by measuring the total luminous flux using an integrating sphere according to JIS-C-8152. Further, (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 1 was obtained using the spectral luminous distribution V ( ⁇ ) of FIG. FIG. Note that ⁇ max1 in Example 1 is 556 nm.
- FIG. 3 shows the emission spectrum of black body radiation having a color temperature of 5100 K obtained by the Planck distribution (the formula of FIG. 2).
- FIG. 8 shows the result of calculating (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)), where the emission spectrum of FIG. 3 is B ( ⁇ ). Note that ⁇ max2 is 556 nm.
- Difference A ( ⁇ ) [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))].
- the result is shown in FIG.
- the difference A ( ⁇ ) from the natural light emission spectrum during the day is ⁇ 0.2 to +0.2 in the visible light region of 380 to 780 nm.
- the difference A ( ⁇ ) was ⁇ 0.03 to +0.02.
- Example 2 An LED chip having an emission peak wavelength of 400 nm was prepared.
- a phosphor that emits light when irradiated with an electromagnetic wave of 400 nm a europium-activated alkaline earth phosphate blue phosphor having a peak wavelength of 445 nm, a europium-activated strontium aluminate blue-green having a peak wavelength of 490 nm A phosphor, a europium activated orthosilicate green phosphor having a peak wavelength of 530 nm, a europium activated orthosilicate yellow phosphor having a peak wavelength of 555 nm, and a europium activated orthostrontial sialon red phosphor having a peak wavelength of 630 nm A mixture was prepared.
- the average particle diameter of each phosphor was 15 ⁇ m.
- the bulb-type white light source shown in FIG. 10 was produced by mixing with a transparent resin and applying to the inner surface of the globe.
- the obtained white light source had a correlated color temperature of emission color of 4200K. This color temperature 4200K is a color temperature equivalent to natural light in the morning.
- Example 2 the emission spectrum of the white light source of Example 2 was investigated by measuring the total luminous flux using an integrating sphere. The result is shown in FIG. Further, FIG. 1 is obtained by calculating (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 2 using the spectral luminous efficiency V ( ⁇ ) of FIG. 12. Note that ⁇ max1 in Example 2 is 560 nm.
- FIG. 4 shows the emission spectrum of black body radiation having a color temperature of 4200 K obtained by the Planck distribution (the formula of FIG. 2).
- FIG. 13 shows the result of obtaining (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)), where the emission spectrum of FIG. 4 is B ( ⁇ ). Note that ⁇ max2 is 560 nm.
- Difference A ( ⁇ ) [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))].
- the result is shown in FIG.
- the white light source according to Example 2 has a difference A ( ⁇ ) from the morning light emission spectrum in the range of ⁇ 0.2 to +0.2 in the visible light region of 380 to 780 nm. Specifically, the difference A ( ⁇ ) was ⁇ 0.04 to +0.03.
- Example 3 An LED chip having an emission peak wavelength of 400 nm was prepared.
- the phosphors that emit light when irradiated with electromagnetic waves of 400 nm are europium-activated alkaline earth phosphate blue phosphors having a peak wavelength of 445 nm and europium-activated strontium aluminate blue-green phosphors having a peak wavelength of 490 nm.
- a europium-activated orthosilicate green phosphor having a peak wavelength of 530 nm, a europium-activated orthosilicate yellow phosphor having a peak wavelength of 555 nm, and a europium-activated strontium sialon red phosphor having a peak wavelength of 630 nm Composed of a mixture with.
- the average particle diameter of each phosphor was 15 ⁇ m.
- the color temperature of the emission color of the obtained white light source was a correlated color temperature of 2700K.
- the color temperature of this white light source is the same color temperature as natural light at sunrise.
- Example 3 the emission spectrum of the white light source according to Example 3 was investigated by measuring the total luminous flux using an integrating sphere. The result is shown in FIG. Further, (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 3 was obtained using the spectral luminous efficiency V ( ⁇ ) of FIG. FIG. Note that ⁇ max1 in Example 3 is 570 nm.
- FIG. 5 shows the emission spectrum of black body radiation having a color temperature of 2700 K obtained by the Planck distribution (the formula of FIG. 2).
- FIG. 17 shows the result of calculating (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)), where the emission spectrum of FIG. 5 is B ( ⁇ ). Note that ⁇ max2 is 570 nm.
- Difference A ( ⁇ ) [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))].
- the result is shown in FIG.
- the white light source according to Example 3 has a difference A ( ⁇ ) from the emission spectrum of natural light at sunrise in the visible light region of ⁇ 0.2 to +0.2. Specifically, the difference A ( ⁇ ) was ⁇ 0.03 to +0.15.
- Example 4 An LED chip having an emission peak wavelength of 410 nm was prepared.
- a phosphor that emits light when irradiated with an electromagnetic wave of 410 nm a europium activated barium magnesium aluminate blue phosphor having a peak wavelength of 450 nm, europium having a peak wavelength of 515 nm, and a manganese activated barium magnesium Aluminate blue-green phosphor, europium activated orthosilicate green phosphor having a peak wavelength of 530 nm, europium activated orthosilicate yellow phosphor having a peak wavelength of 555 nm, and europium having a peak wavelength of 630 nm
- a mixture with activated calcium strontium oxynitride red phosphor was prepared.
- the average particle diameter of each phosphor was 20 ⁇ m.
- the bulb-type white light source shown in FIG. 10 was produced by mixing with a transparent resin and applying to the inner surface of the globe.
- the obtained white light source had a correlated color temperature of emission color of 5100K. This color temperature 5100K is a color temperature equivalent to natural light during the day.
- Example 4 the emission spectrum of the white light source of Example 4 was investigated by measuring the total luminous flux using an integrating sphere. Further, (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) was obtained using the spectral luminous efficiency V ( ⁇ ) of FIG. In Example 4, ⁇ max1 is 556 nm.
- the emission spectrum of black body radiation having a color temperature of 5100 K was obtained from the Planck distribution (the formula in FIG. 2). Assuming that the emission spectrum of blackbody radiation is B ( ⁇ ), (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) was obtained. Note that ⁇ max2 is 556 nm.
- Example 5 An LED chip having an emission peak wavelength of 400 nm was prepared.
- the phosphor that emits light by the electromagnetic wave of 400 nm includes a europium activated alkaline earth phosphate blue phosphor having a peak wavelength of 445 nm, a europium activated orthosilicate green phosphor having a peak wavelength of 530 nm, and a peak wavelength. It is composed of a mixture with europium activated strontium sialon red phosphor of 625 nm.
- a bulb-type white light source shown in FIG. The color temperature of the emission color of the obtained white light source was a correlated color temperature of 5000K. This color temperature is equivalent to that of natural light during the day.
- Example 2 the emission spectrum P ( ⁇ ) of the white light source according to Example 5 was investigated by measuring the total luminous flux using an integrating sphere. The result is shown in FIG. Further, FIG. 1 is obtained by calculating (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 5 using the standard relative luminous sensitivity V ( ⁇ ) of FIG. 23. In the example, ⁇ max1 is 540 nm.
- FIG. 22 shows the emission spectrum of black body radiation having a color temperature of 5000 K obtained by the Planck distribution (the formula of FIG. 2).
- FIG. 24 shows the result of calculating (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)), where the emission spectrum of FIG. 22 is B ( ⁇ ). Note that ⁇ max2 is 555 nm.
- Example A ( ⁇ ) [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ) ⁇ V ( ⁇ max2))].
- the result is shown in FIG.
- the white light source of Example 5 has a difference A ( ⁇ ) from the emission spectrum of natural light at sunrise in the range of ⁇ 0.2 to +0.2 in the visible light region of 380 to 780 nm. Specifically, the difference A ( ⁇ ) was ⁇ 0.2 to +0.1.
- Comparative Example 1 A white light source according to Comparative Example 1 was produced by combining a blue light emitting diode having an emission peak wavelength of 460 nm and a cerium-activated yttrium aluminum garnet yellow phosphor.
- the color temperature of the white light source of Comparative Example 1 was 5100 K, and the difference A ( ⁇ ) was ⁇ 0.28 to +0.04 as shown in FIG.
- the secretion amount (average value of 10 persons) of each Example when the melatonin secretion amount of the comparative example 1 was set to 100 was shown. The results are shown in Table 1 below.
- the melatonin secretion amount of the subject increased as compared with the case where the conventional white light source of Comparative Example 1 was used.
- Melatonin is a kind of hormone secreted from the pineal gland of the brain, and it is generally said that melatonin secretion is low during the day and high at night. This is thought to be due to living under natural light during the day. Therefore, melatonin is considered as a hormone necessary for obtaining a peaceful sleep. In the United States and the like, it is also widely used as a supplement for preventing oxidation in the body.
- using the white light source of this example can provide the same effect as natural light, and sleep disorders and circadian rhythms.
- the effect which suppresses going crazy can be expected.
- Example 3 daylight natural light (Example 1, Example 4 and Example 5), sunrise natural light (Example 2), and morning natural light (Example 3) were prepared separately.
- daylight natural light Example 1, Example 4 and Example 5
- sunrise natural light Example 2
- morning natural light Example 3
- the LED chip 8c for emitting light and the phosphor layer 9c are arranged on a common substrate 7, and the LED chips 8a, 8b, 8c on which the phosphor layers 9a, 9b, 9c are attached are the same common globe.
- the white light source system 1a can also be configured by being housed in 4.
- a transparent resin layer 10 may be provided between the LED chip 8 and the phosphor layer 9.
- Each LED chip 8a, 8b, 8c is connected to the lighting circuit 11a by the wiring 12a.
- the user is configured to be able to select an LED chip to be appropriately turned on by a switching mechanism (not shown) attached to the lighting circuit 11a as desired.
- the white light source system 1a having the above configuration, it is possible to selectively receive daytime natural light, sunrise natural light, and morning natural light from the single white light source system 1a in accordance with the user's request and illumination cycle. It becomes possible. That is, a white light source system that reproduces the natural light rhythm of the day can be obtained by combining white light sources that reproduce natural light such as daytime, sunrise, morning, and evening.
- the white light source and the white light source system according to the present invention can reproduce the same emission spectrum as that of natural light. Therefore, even if the white light from the white light source is exposed for a long time, the adverse effect on the human body can be made to the same level as natural light.
- LED bulb (white light source) DESCRIPTION OF SYMBOLS 1a ... White light source system 2, 2a ... LED module 3 ... Base
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Description
(実施例1)
LEDチップとして発光ピーク波長400nmのものを用意した。次に、400nmの電磁波を照射することにより発光する蛍光体として、ピーク波長が445nmであるユーロピウム付活アルカリ土類燐酸塩青色蛍光体、ピーク波長が490nmであるユーロピウム付活ストロンチウムアルミン酸塩青緑色蛍光体、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体とピーク波長が630nmであるユーロピウム付活ストロンチウムサイアロン赤色蛍光体の混合物を用意した。なお、各蛍光体の平均粒径は15μmとした。各蛍光体の混合比は重量比(質量比)として青色蛍光体:青緑色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=30:15:20:15:20の比率で混合し、透明樹脂と混合して、グローブ内面に塗布することにより、図10に示した電球型白色光源を作製した。得られた白色光源は、発光色の相関色温度が5100Kであった。この色温度5100Kは日中の自然光と同等の色温度である。
LEDチップとして発光ピーク波長が400nmのものを用意した。次に、400nmの電磁波を照射することにより発光する蛍光体として、ピーク波長が445nmであるユーロピウム付活アルカリ土類燐酸塩青色蛍光体、ピーク波長が490nmであるユーロピウム付活ストロンチウムアルミン酸塩青緑色蛍光体、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体とピーク波長が630nmであるユーロピウム付活ストロンチウムサイアロン赤色蛍光体の混合物を用意した。なお、各蛍光体の平均粒径は15μmとした。各蛍光体の混合比は重量比(質量比)として、青色蛍光体:青緑色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=10:15:25:20:30の比率で混合し、透明樹脂と混合して、グローブ内面に塗布することにより、図10に示す電球型白色光源を作製した。得られた白色光源は、発光色の相関色温度が4200Kであった。この色温度4200Kは朝方の自然光と同等の色温度である。
LEDチップとして発光ピーク波長が400nmのものを用意した。400nmの電磁波を照射することにより発光する蛍光体は、ピーク波長が445nmであるユーロピウム付活アルカリ土類燐酸塩青色蛍光体と、ピーク波長が490nmであるユーロピウム付活ストロンチウムアルミン酸塩青緑色蛍光体と、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体と、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体と、ピーク波長が630nmであるユーロピウム付活ストロンチウムサイアロン赤色蛍光体との混合物から構成される。なお、各蛍光体の平均粒径は15μmとした。蛍光体の混合比は重量比として青色蛍光体:青緑色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=5:10:20:25:40の比率で混合し、透明樹脂と混合して、グローブ内面に塗布することにより、図10に示す電球型白色光源を作製した。得られた白色光源の発光色の色温度は相関色温度2700Kであった。この白色光源の色温度は日の出の自然光と同等の色温度である。
LEDチップとして発光ピーク波長が410nmのものを用意した。次に、410nmの電磁波を照射することにより発光する蛍光体として、ピーク波長が450nmであるユーロピウム付活バリウムマグネシウムアルミン酸塩青色蛍光体と、ピーク波長が515nmであるユーロピウムと、マンガン付活バリウムマグネシウムアルミン酸塩青緑色蛍光体と、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体と、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体と、ピーク波長が630nmであるユーロピウム付活カルシウムストロンチウム酸窒化物赤色蛍光体との混合物を用意した。なお、各蛍光体の平均粒径は20μmとした。各蛍光体の混合比は重量比(質量比)として、青色蛍光体:青緑色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=30:20:15:20:15の比率で混合し、透明樹脂と混合して、グローブ内面に塗布することにより、図10に示す電球型白色光源を作製した。得られた白色光源は、発光色の相関色温度が5100Kであった。この色温度5100Kは日中の自然光と同等の色温度である。
LEDチップとして発光ピーク波長が400nmのものを用意した。この400nmの電磁波により発光する蛍光体は、ピーク波長が445nmであるユーロピウム付活アルカリ土類燐酸塩青色蛍光体と、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体と、ピーク波長が625nmであるユーロピウム付活ストロンチウムサイアロン赤色蛍光体との混合物から構成される。
発光ピーク波長460nmの青色発光ダイオードと、セリウム付活イットリウムアルミニウムガーネット黄色蛍光体とを組み合わせて、比較例1に係る白色光源を作製した。比較例1の白色光源の色温度は5100Kであり、差異A(λ)は図19に示した通り-0.28~+0.04であった。
1a…白色光源システム
2,2a…LEDモジュール
3…基体部
4…グローブ
5…絶縁部材
6…口金
7…基板
8,8a,8b,8c…LEDチップ
9,9a,9b,9c…蛍光体層
10…透明樹脂層
11,11a…点灯回路
12,12a…配線
Claims (11)
- 白色光源の発光スペクトルをP(λ)、白色光源と同じ色温度を示す黒体輻射の発光スペクトルをB(λ)、分光視感効率のスペクトルをV(λ)、P(λ)×V(λ)が最大となる波長をλmax1、B(λ)×V(λ)が最大となる波長をλmax2としたときに、関係式:
-0.2≦[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]≦+0.2、
を満たすことを特徴とする白色光源。 - -0.1≦[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]≦+0.1、
を満たすことを特徴とする請求項1記載の白色光源。 - 白色光源の色温度は2500~7000Kであることを特徴とする請求項1ないし請求項2のいずれか1項に記載の白色光源。
- LEDと蛍光体を具備することを特徴とする請求項1ないし請求項3のいずれか1項に記載の白色光源。
- LEDの発光ピークが350~420nmであり、蛍光体の発光ピークが420~700nmの範囲にあることを特徴とする請求項4記載の白色光源。
- ピーク波長の異なる3種類以上の蛍光体を具備することを特徴とする請求項4ないし請求項5のいずれか1項に記載の白色光源。
- ピーク波長の異なる5種類以上の蛍光体を具備することを特徴とする請求項4ないし請求項6のいずれか1項に記載の白色光源。
- 蛍光体は、蛍光体と樹脂を混合した蛍光体層を形成していることを特徴とする請求項4ないし請求項7のいずれか1項に記載の白色光源。
- 各蛍光体のピーク波長の間隔が150nm以下であることを特徴とする請求項4ないし請求項7のいずれか1項記載の白色光源。
- 前記蛍光体層が多層構造を具備していることを特徴とする請求項8記載の白色光源。
- 請求項1ないし請求項10のいずれか1項に記載の白色光源を複数個用いたことを特徴とする白色光源システム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11858314.5A EP2674662B1 (en) | 2011-02-09 | 2011-04-18 | White light source and white light source system using same |
EP20160783.5A EP3683494A1 (en) | 2011-02-09 | 2011-04-18 | White light source and white light source system including the same |
JP2012556746A JP5823416B2 (ja) | 2011-02-09 | 2011-04-18 | 白色光源およびそれを用いた白色光源システム |
CN201180069970.1A CN103459915B (zh) | 2011-02-09 | 2011-04-18 | 白光源以及包括所述白光源的白光源系统 |
US13/983,378 US9112120B2 (en) | 2011-02-09 | 2011-04-18 | White light source and white light source system including the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011026098 | 2011-02-09 | ||
JP2011-026098 | 2011-02-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012108065A1 true WO2012108065A1 (ja) | 2012-08-16 |
Family
ID=46638301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/059484 WO2012108065A1 (ja) | 2011-02-09 | 2011-04-18 | 白色光源およびそれを用いた白色光源システム |
Country Status (6)
Country | Link |
---|---|
US (1) | US9112120B2 (ja) |
EP (2) | EP2674662B1 (ja) |
JP (1) | JP5823416B2 (ja) |
CN (1) | CN103459915B (ja) |
TW (1) | TWI417486B (ja) |
WO (1) | WO2012108065A1 (ja) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014054290A1 (ja) * | 2012-10-04 | 2014-04-10 | 株式会社 東芝 | 白色発光装置、照明装置、および歯科用照明装置 |
JP2014182192A (ja) * | 2013-03-18 | 2014-09-29 | Canon Inc | 画像表示装置及びその制御方法 |
JP2017010817A (ja) * | 2015-06-24 | 2017-01-12 | 東芝マテリアル株式会社 | 医療施設照明用白色光源システム |
JPWO2016067609A1 (ja) * | 2014-10-28 | 2017-09-14 | 株式会社東芝 | 白色光源および白色光源システム |
US9825206B2 (en) | 2016-02-25 | 2017-11-21 | Toyoda Gosei, Co., Ltd. | Light-emitting device |
JP2018093161A (ja) * | 2016-12-02 | 2018-06-14 | 豊田合成株式会社 | 発光装置 |
JP2018125438A (ja) * | 2017-02-01 | 2018-08-09 | 豊田合成株式会社 | 発光装置 |
JP2018534751A (ja) * | 2015-11-10 | 2018-11-22 | フィリップス ライティング ホールディング ビー ヴィ | 可変uv成分を有する調整可能な白色光源 |
JP2018200884A (ja) * | 2013-01-31 | 2018-12-20 | 株式会社東芝 | 発光装置及びled電球 |
US10473274B2 (en) | 2015-06-24 | 2019-11-12 | Kabushiki Kaisha Toshiba | White light source system |
JP2020053664A (ja) * | 2018-09-20 | 2020-04-02 | 豊田合成株式会社 | 発光装置 |
JP2020136597A (ja) * | 2019-02-25 | 2020-08-31 | パナソニックIpマネジメント株式会社 | 発光装置及び照明装置 |
JP2020136619A (ja) * | 2019-02-25 | 2020-08-31 | パナソニックIpマネジメント株式会社 | 発光装置及び照明装置 |
JP2020532874A (ja) * | 2017-09-06 | 2020-11-12 | ジーエルビーテック カンパニー リミテッド | D50/d65高演色性標準led発光モジュールおよび照明装置 |
JP2021058141A (ja) * | 2019-10-08 | 2021-04-15 | 史朗 武藤 | 植物栽培用照明 |
JP2021068918A (ja) * | 2016-05-20 | 2021-04-30 | 株式会社東芝 | 白色光源 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI413748B (zh) * | 2011-06-15 | 2013-11-01 | Lextar Electronics Corp | Led照明燈具 |
US10688527B2 (en) | 2011-09-22 | 2020-06-23 | Delta Electronics, Inc. | Phosphor device comprising plural phosphor agents for converting waveband light into plural color lights with different wavelength peaks |
CN111208700A (zh) * | 2018-11-21 | 2020-05-29 | 台达电子工业股份有限公司 | 荧光剂装置 |
WO2013069435A1 (ja) * | 2011-11-07 | 2013-05-16 | 株式会社東芝 | 白色光源およびそれを用いた白色光源システム |
CN103775873B (zh) * | 2014-01-08 | 2017-01-11 | 南京琦光光电科技有限公司 | 一种紫光转换白光led灯及其制造方法 |
KR101937456B1 (ko) | 2016-04-01 | 2019-01-11 | 에스케이씨하이테크앤마케팅(주) | K-Si-F계 형광체 및 색순도 향상 필름을 포함하는 액정표시장치 |
JP6783985B2 (ja) | 2016-09-29 | 2020-11-11 | 豊田合成株式会社 | 発光装置 |
JP7125720B2 (ja) | 2017-03-28 | 2022-08-25 | 東芝マテリアル株式会社 | 半導体発光素子 |
CN109804476A (zh) * | 2017-09-15 | 2019-05-24 | 厦门市三安光电科技有限公司 | 一种白光led封装结构以及白光源系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10242513A (ja) | 1996-07-29 | 1998-09-11 | Nichia Chem Ind Ltd | 発光ダイオード及びそれを用いた表示装置 |
JP2004128443A (ja) * | 2002-07-31 | 2004-04-22 | Shin Etsu Handotai Co Ltd | 発光素子及びそれを用いた照明装置 |
JP2007288138A (ja) * | 2006-03-24 | 2007-11-01 | Toshiba Lighting & Technology Corp | 発光装置 |
WO2008069101A1 (ja) | 2006-12-08 | 2008-06-12 | Sharp Kabushiki Kaisha | 光源、光源システムおよび照明装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7564180B2 (en) | 2005-01-10 | 2009-07-21 | Cree, Inc. | Light emission device and method utilizing multiple emitters and multiple phosphors |
KR101318968B1 (ko) * | 2006-06-28 | 2013-10-17 | 서울반도체 주식회사 | 발광 다이오드를 이용한 인공태양광 시스템 |
JP5134788B2 (ja) * | 2006-07-19 | 2013-01-30 | 株式会社東芝 | 蛍光体の製造方法 |
JP2008218485A (ja) * | 2007-02-28 | 2008-09-18 | Toshiba Lighting & Technology Corp | 発光装置 |
AU2008321873A1 (en) | 2007-11-12 | 2009-05-22 | Mitsubishi Chemical Corporation | Illuminating Device |
JP5217800B2 (ja) * | 2008-09-03 | 2013-06-19 | 日亜化学工業株式会社 | 発光装置、樹脂パッケージ、樹脂成形体並びにこれらの製造方法 |
US20100059771A1 (en) * | 2008-09-10 | 2010-03-11 | Chris Lowery | Multi-layer led phosphors |
TW201011942A (en) * | 2008-09-11 | 2010-03-16 | Advanced Optoelectronic Tech | Method and system for configuring high CRI LED |
US20100123386A1 (en) * | 2008-11-13 | 2010-05-20 | Maven Optronics Corp. | Phosphor-Coated Light Extraction Structures for Phosphor-Converted Light Emitting Devices |
RU2011128712A (ru) * | 2008-12-12 | 2013-01-20 | Конинклейке Филипс Электроникс Н.В. | Способ максимизации эксплуатационных характеристик светильника |
KR20110118745A (ko) * | 2009-02-04 | 2011-11-01 | 파나소닉 주식회사 | 전구형 램프 및 조명장치 |
CN101806430A (zh) * | 2009-02-17 | 2010-08-18 | 福建省苍乐电子企业有限公司 | 高显色性白光led |
JP2010199145A (ja) * | 2009-02-23 | 2010-09-09 | Ushio Inc | 光源装置 |
WO2012144087A1 (ja) * | 2011-04-22 | 2012-10-26 | 株式会社東芝 | 白色光源およびそれを用いた白色光源システム |
-
2011
- 2011-04-18 CN CN201180069970.1A patent/CN103459915B/zh active Active
- 2011-04-18 US US13/983,378 patent/US9112120B2/en active Active
- 2011-04-18 JP JP2012556746A patent/JP5823416B2/ja active Active
- 2011-04-18 EP EP11858314.5A patent/EP2674662B1/en active Active
- 2011-04-18 EP EP20160783.5A patent/EP3683494A1/en active Pending
- 2011-04-18 WO PCT/JP2011/059484 patent/WO2012108065A1/ja active Application Filing
- 2011-05-05 TW TW100115768A patent/TWI417486B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10242513A (ja) | 1996-07-29 | 1998-09-11 | Nichia Chem Ind Ltd | 発光ダイオード及びそれを用いた表示装置 |
JP2004128443A (ja) * | 2002-07-31 | 2004-04-22 | Shin Etsu Handotai Co Ltd | 発光素子及びそれを用いた照明装置 |
JP2007288138A (ja) * | 2006-03-24 | 2007-11-01 | Toshiba Lighting & Technology Corp | 発光装置 |
WO2008069101A1 (ja) | 2006-12-08 | 2008-06-12 | Sharp Kabushiki Kaisha | 光源、光源システムおよび照明装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2674662A4 |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014054290A1 (ja) * | 2012-10-04 | 2014-04-10 | 株式会社 東芝 | 白色発光装置、照明装置、および歯科用照明装置 |
CN104718633A (zh) * | 2012-10-04 | 2015-06-17 | 株式会社东芝 | 白色发光装置、照明装置、以及牙科用照明装置 |
JPWO2014054290A1 (ja) * | 2012-10-04 | 2016-08-25 | 株式会社東芝 | 白色発光装置、照明装置、および歯科用照明装置 |
JP2018107471A (ja) * | 2012-10-04 | 2018-07-05 | 株式会社東芝 | 白色発光装置、照明装置、および歯科用照明装置 |
JP2020014006A (ja) * | 2012-10-04 | 2020-01-23 | 株式会社東芝 | 白色発光装置および照明装置 |
JP2018200884A (ja) * | 2013-01-31 | 2018-12-20 | 株式会社東芝 | 発光装置及びled電球 |
JP2014182192A (ja) * | 2013-03-18 | 2014-09-29 | Canon Inc | 画像表示装置及びその制御方法 |
JP7285877B2 (ja) | 2014-10-28 | 2023-06-02 | ソウル セミコンダクター カンパニー リミテッド | 白色光源システム |
JPWO2016067609A1 (ja) * | 2014-10-28 | 2017-09-14 | 株式会社東芝 | 白色光源および白色光源システム |
JP2021122014A (ja) * | 2014-10-28 | 2021-08-26 | 東芝マテリアル株式会社 | 白色光源の使用方法および白色光源システムの使用方法 |
JP2019062236A (ja) * | 2014-10-28 | 2019-04-18 | 株式会社東芝 | 白色光源 |
JP2017010817A (ja) * | 2015-06-24 | 2017-01-12 | 東芝マテリアル株式会社 | 医療施設照明用白色光源システム |
US10473274B2 (en) | 2015-06-24 | 2019-11-12 | Kabushiki Kaisha Toshiba | White light source system |
JP2018534751A (ja) * | 2015-11-10 | 2018-11-22 | フィリップス ライティング ホールディング ビー ヴィ | 可変uv成分を有する調整可能な白色光源 |
US10441809B2 (en) | 2015-11-10 | 2019-10-15 | Signify Holding B.V. | Tunable white light source with variable UV component |
US9825206B2 (en) | 2016-02-25 | 2017-11-21 | Toyoda Gosei, Co., Ltd. | Light-emitting device |
JP2021068918A (ja) * | 2016-05-20 | 2021-04-30 | 株式会社東芝 | 白色光源 |
JP7036955B2 (ja) | 2016-05-20 | 2022-03-15 | ソウル セミコンダクター カンパニー リミテッド | 白色光源 |
US11563155B2 (en) | 2016-05-20 | 2023-01-24 | Seoul Semiconductor Co., Ltd. | White light source including LED and phosphors |
JP2018093161A (ja) * | 2016-12-02 | 2018-06-14 | 豊田合成株式会社 | 発光装置 |
JP2018125438A (ja) * | 2017-02-01 | 2018-08-09 | 豊田合成株式会社 | 発光装置 |
JP2020532874A (ja) * | 2017-09-06 | 2020-11-12 | ジーエルビーテック カンパニー リミテッド | D50/d65高演色性標準led発光モジュールおよび照明装置 |
JP2020053664A (ja) * | 2018-09-20 | 2020-04-02 | 豊田合成株式会社 | 発光装置 |
JP2020136597A (ja) * | 2019-02-25 | 2020-08-31 | パナソニックIpマネジメント株式会社 | 発光装置及び照明装置 |
JP2020136619A (ja) * | 2019-02-25 | 2020-08-31 | パナソニックIpマネジメント株式会社 | 発光装置及び照明装置 |
JP2021058141A (ja) * | 2019-10-08 | 2021-04-15 | 史朗 武藤 | 植物栽培用照明 |
Also Published As
Publication number | Publication date |
---|---|
US9112120B2 (en) | 2015-08-18 |
EP2674662B1 (en) | 2020-04-01 |
CN103459915A (zh) | 2013-12-18 |
JPWO2012108065A1 (ja) | 2014-07-03 |
CN103459915B (zh) | 2016-06-01 |
TW201239274A (en) | 2012-10-01 |
EP2674662A4 (en) | 2014-07-30 |
EP2674662A1 (en) | 2013-12-18 |
US20130307011A1 (en) | 2013-11-21 |
EP3683494A1 (en) | 2020-07-22 |
TWI417486B (zh) | 2013-12-01 |
JP5823416B2 (ja) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5823416B2 (ja) | 白色光源およびそれを用いた白色光源システム | |
JP5770269B2 (ja) | 白色光源およびそれを用いた白色光源システム | |
JP6081367B2 (ja) | 白色光源およびそれを用いた白色光源システム | |
JP6081368B2 (ja) | 白色光源およびそれを用いた白色光源システム | |
JP5622927B2 (ja) | 白色光源 | |
US11127721B2 (en) | Full spectrum white light emitting devices | |
US8587190B2 (en) | Illumination device having improved visual perception of a skin color | |
EP3845033A1 (en) | Cyan enriched white light |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11858314 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011858314 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13983378 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2012556746 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |