WO2012108065A1 - 白色光源およびそれを用いた白色光源システム - Google Patents

白色光源およびそれを用いた白色光源システム Download PDF

Info

Publication number
WO2012108065A1
WO2012108065A1 PCT/JP2011/059484 JP2011059484W WO2012108065A1 WO 2012108065 A1 WO2012108065 A1 WO 2012108065A1 JP 2011059484 W JP2011059484 W JP 2011059484W WO 2012108065 A1 WO2012108065 A1 WO 2012108065A1
Authority
WO
WIPO (PCT)
Prior art keywords
white light
light source
phosphor
λmax2
λmax1
Prior art date
Application number
PCT/JP2011/059484
Other languages
English (en)
French (fr)
Inventor
昌彦 山川
康博 白川
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Priority to EP11858314.5A priority Critical patent/EP2674662B1/en
Priority to EP20160783.5A priority patent/EP3683494A1/en
Priority to JP2012556746A priority patent/JP5823416B2/ja
Priority to CN201180069970.1A priority patent/CN103459915B/zh
Priority to US13/983,378 priority patent/US9112120B2/en
Publication of WO2012108065A1 publication Critical patent/WO2012108065A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/10Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a white light source and a white light source system using the white light source, and more particularly to a white light source having an emission spectrum approximate to an emission spectrum of natural light and a white light source system using the same.
  • White light sources using LEDs are widely used as traffic lights, backlights for liquid crystal display devices, and general lighting equipment such as room lights.
  • a white light source using a conventional blue LED has an emission spectrum whose peak height of blue light emitted from the blue LED is as high as 1.5 times the peak height of yellow light from the phosphor, and is affected by blue light. There was a strong tendency.
  • the conventional white LED has a strong emission peak of the blue LED.
  • white light with a strong blue peak is significantly different from natural light.
  • natural light means sunlight.
  • Patent Document 2 In consideration of the influence of the white light source on the human body, International Publication WO 2008/069101 (Patent Document 2) mixes four types of light emission peaks by combining LEDs and phosphors having different light emission peaks. Provides white light with little deviation from the spectral luminous efficiency.
  • the spectral luminous efficiency refers to the sensitivity of the human eye to light, and is defined by the CIE (International Commission on Illumination) as the standard spectral relative luminous sensitivity V ( ⁇ ). Therefore, the spectral luminous efficiency and the standard spectral relative luminous sensitivity V ( ⁇ ) have the same meaning.
  • FIG. 1 shows the spectral luminous efficiency V ( ⁇ ) defined by CIE. That is, according to FIG. 1, humans recognize light having a wavelength of about 555 nm with the highest sensitivity.
  • Patent Document 2 aims to control light having a wavelength in the range of 420 to 490 nm in consideration of the influence of blue light on the human body. Such a method is considered to have the effect of normalizing the secretion of melatonin as a kind of hormone involved in regulation by the biological clock at night.
  • humans have a circadian rhythm (circadian rhythm, 24-hour rhythm) that is dominated by the body clock.
  • Human beings are based on living under natural light, but in modern society, lifestyles are diversifying, such as long indoor work and reversal of day and night. Continuing a life without natural light for a long time is disturbed by the circadian rhythm, and there are concerns about adverse effects on the human body.
  • a white light source using a current LED that is, a white light source using a blue LED, has an emission spectrum that is significantly different from that of natural light. If you live for a long time under the irradiation of such a white light source, there is a concern that it may adversely affect human circadian rhythm.
  • the present invention has been made to cope with such a problem, and an object of the present invention is to provide a white light source having an emission spectrum approximate to the emission spectrum of natural light.
  • the white light source according to the present invention has an emission spectrum of white light source P ( ⁇ ), a black body radiation emission spectrum having the same color temperature as the white light source B ( ⁇ ), and spectral luminous efficiency.
  • V ( ⁇ ) P ( ⁇ ) ⁇ V ( ⁇ ) has a maximum wavelength ⁇ max1
  • the relational expression: ⁇ 0.1 ⁇ [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ ) ) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))] ⁇ + 0.1 is more preferable.
  • the color temperature of the white light source is preferably 2500 to 7000K.
  • the white light source preferably includes an LED and a phosphor.
  • the emission peak wavelength of the LED is preferably 350 to 420 nm, and the emission peak wavelength of the phosphor is preferably in the range of 420 to 700 nm.
  • the white light source preferably includes three or more types, preferably four or more types of phosphors having different peak wavelengths. Further, it is more preferable to provide five or more types of phosphors having different peak wavelengths.
  • the phosphor preferably forms a phosphor layer in which the phosphor and the resin are mixed. Moreover, it is preferable that the phosphor layer has a multilayer structure in which a plurality of phosphor elements in which phosphor particles are dispersed in a resin are laminated.
  • the white light source system of the present invention is constituted by using a plurality of white light sources according to the present invention.
  • the white light source according to the present invention can reproduce the same emission spectrum as natural light. For this reason, even if white light from a white light source is exposed for a long time, the adverse effect on the human body can be made to the same level as natural light.
  • V ((lambda)). It is a mathematical formula for obtaining an emission spectrum B ( ⁇ ) of black body radiation. It is a graph which shows an example of the emission spectrum of natural light in the daytime. It is a graph which shows an example of the emission spectrum of Asahi's natural light. It is a graph which shows an example of the emission spectrum of the natural light of sunrise. 2 is a graph showing an emission spectrum of Example 1. 4 is a graph showing (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) in Example 1.
  • FIG. 4 is a graph showing (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) when black body radiation having the same color temperature as FIG. 3 is B ( ⁇ ).
  • 6 is a graph showing a difference A ( ⁇ ) in Example 1. It is sectional drawing which shows one Example of the white light source (bulb type) of this invention. 6 is a graph showing an emission spectrum of a white light source of Example 2. 10 is a graph showing (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) in Example 2.
  • Example 5 is a graph showing (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) when black body radiation having the same color temperature as FIG. 4 is B ( ⁇ ).
  • 10 is a graph showing a difference A ( ⁇ ) in Example 2.
  • 6 is a graph showing an emission spectrum of Example 3.
  • 10 is a graph showing (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) in Example 3.
  • 6 is a graph showing (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) when black body radiation having the same color temperature as FIG. 5 is B ( ⁇ ).
  • 10 is a graph showing a difference A ( ⁇ ) in Example 3.
  • 10 is a graph showing a difference A ( ⁇ ) of Comparative Example 1. It is sectional drawing which shows another Example of the white light source (bulb type) which concerns on this invention.
  • 10 is a graph showing an emission spectrum P ( ⁇ ) of a white light source of Example 5. It is a graph which shows the black body radiation B ((lambda)) whose color temperature is 5000K.
  • 10 is a graph showing (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of a white light source of Example 5.
  • 10 is a graph showing (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) of the white light source of Example 5.
  • 10 is a graph showing a difference A ( ⁇ ) of a white light source in Example 5.
  • the white light source according to the embodiment of the present invention has an emission spectrum of white light source P ( ⁇ ), an emission spectrum of black body radiation showing the same color temperature as the white light source B ( ⁇ ), and a spectral luminous efficiency spectrum V
  • the wavelength that maximizes ( ⁇ ) and P ( ⁇ ) ⁇ V ( ⁇ ) is ⁇ max1
  • the wavelength that maximizes B ( ⁇ ) ⁇ V ( ⁇ ) is ⁇ max2
  • ⁇ 0.2 ⁇ [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))] ⁇ + 0.2
  • represents a wavelength of 380 to 780 nm which is a visible light region.
  • the procedure for constructing a white light source that satisfies the above relational expression is as follows. First, the emission spectrum P ( ⁇ ) of a white light source is measured. The emission spectrum is measured by total luminous flux measurement using an integrating sphere according to JIS-C-8152. The color temperature is obtained by calculation from the emission spectrum. The unit of color temperature is Kelvin (K).
  • an emission spectrum B ( ⁇ ) of black body radiation that is the same as the color temperature of the white light source is obtained.
  • the emission spectrum B ( ⁇ ) is obtained from the Planck distribution.
  • the plank distribution can be obtained by the mathematical formula shown in FIG. In FIG. 2, h is the Planck constant, c is the speed of light, ⁇ is the wavelength, e is the base of the natural logarithm, k is the Boltzmann constant, and T is the color temperature. Since the emission spectrum of blackbody radiation is constant for h, c, e, and k, the emission spectrum corresponding to the wavelength ⁇ can be obtained if the color temperature T is determined.
  • black body radiation is also called black body radiation, and in the present invention, it indicates the emission spectrum of natural light (sunlight).
  • Natural light has different color temperatures, for example, during the daytime, in the morning, and at sunrise.
  • FIG. 3 shows an example of an emission spectrum of natural light during the day (color temperature 5100K)
  • FIG. 4 shows an example of an emission spectrum of natural light in the morning (color temperature 4200K)
  • FIG. 5 shows natural light at sunrise (color temperature 2700K).
  • An example of the emission spectrum of each was shown. The morning direction in FIG. 4 assumes 7:00 am.
  • FIG. 6 shows an emission spectrum P ( ⁇ ) of Example 1 described later.
  • FIG. 7 shows (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 1.
  • FIG. 8 shows (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) when the emission spectrum of natural light during the day (FIG. 3) is B ( ⁇ ). showed that.
  • the spectral luminous efficiency shown in FIG. 1 was used for V ( ⁇ ) when obtaining FIG. 7 and FIG.
  • FIG. 7 shows a value obtained by multiplying the emission spectrum P ( ⁇ ) of Example 1 shown in FIG. 6 and the spectral luminous efficiency V ( ⁇ ) by a value for each wavelength, (P ( ⁇ max1) ⁇ V ( ⁇ max1). It is the figure which plotted the value divided by)).
  • FIG. 8 is obtained by dividing the value obtained by multiplying the emission spectrum B ( ⁇ ) and the spectral luminous efficiency V ( ⁇ ) of FIG. 3 by the value for each wavelength by (B ( ⁇ max2) ⁇ V ( ⁇ max2)). It is the figure which plotted the value.
  • (B ( ⁇ ) ⁇ V ( ⁇ )) indicates the intensity of the emission spectrum of black body radiation in the spectral luminous efficiency V ( ⁇ ) region, and is the maximum value (B ( ⁇ max2) ⁇ By dividing by V ( ⁇ max2)), a value with 1.0 as the upper limit can be obtained as shown in FIG.
  • the difference A ( ⁇ ) [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2 ) ⁇ V ( ⁇ max2))].
  • the white light source of the present embodiment is ⁇ 0.2 ⁇ [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))] ⁇ + 0.2.
  • FIG. 9 shows the difference A ( ⁇ ) in Example 1.
  • the range of the difference A ( ⁇ ) is ⁇ 0.03 ⁇ A ( ⁇ ) ⁇ + 0.02, and natural light during the day is reproduced.
  • the emission spectrum is designed to approximate the emission spectrum of black body radiation, it is more suitable for human circadian rhythm than the conventional white LED with a blue light peak protruding. Adverse effects can be greatly suppressed.
  • the emission spectrum may be controlled according to the purpose.
  • this white light source is used as a lighting equipment for a ward, a place where a long-time indoor work must be performed, or a room, adverse effects on the circadian rhythm of patients living there and workers performing work can be suppressed.
  • natural light can be reproduced, it can be applied to agricultural fields such as plant cultivation using natural light.
  • Such a white light source preferably has a light emission color temperature of 2500 to 7000K. If this color temperature is less than 2500K or more than 7000K, the color temperature may not be in natural light.
  • the preferred range of color temperature is 2700-6700K.
  • the white light source having such a difference A ( ⁇ ) preferably includes an LED (light emitting diode) and a phosphor.
  • the emission peak wavelength of the LED is preferably in the range of 350 to 420 nm. It is preferable that the LED light having an emission peak in the ultraviolet to violet region be converted into visible light by a phosphor.
  • the difference A ( ⁇ ) is controlled within the range of ⁇ 0.2 ⁇ A ( ⁇ ) ⁇ + 0.2 because the emission peak height is large. It is hard to do. Further, as long as the light emission source has an emission peak wavelength of 350 to 420 nm, not only the LED but also a semiconductor laser or the like may be used.
  • the phosphor has an emission peak wavelength in the range of 420 to 700 nm when excited with a light source of 350 to 420 nm. Moreover, it is preferable to use 3 or more types of fluorescent substance from which a peak wavelength differs, and also 5 or more types of fluorescent substance.
  • the peak wavelength of each phosphor is preferably 150 nm or less, more preferably 10 to 100 nm, and more preferably 10 to 50 nm. In other words, by combining three or more phosphors and further five or more phosphors from the blue region to the red region and shifting the peak wavelength every 10 to 100 nm, ⁇ 0.2 ⁇ difference A ( ⁇ ) ⁇ + 0 .2 is a method of realizing.
  • the material of the phosphor is not particularly limited as long as the emission peak is in the range of 420 to 700 nm, but the following phosphor is preferable as the phosphor excited at 350 to 420 nm.
  • the half width of the peak wavelength of the emission spectrum of the phosphor is preferably 40 nm or more, and more preferably 50 to 100 nm.
  • blue phosphor examples include europium activated alkaline earth phosphate phosphor (peak wavelength 440 to 455 nm), europium activated barium magnesium aluminate phosphor (peak wavelength 450 to 460 nm) and the like. It is done.
  • blue-green phosphors include europium activated strontium aluminate phosphors (peak wavelength: 480 to 500 nm) and europium and manganese activated barium magnesium aluminate phosphors (peak wavelength: 510 to 520 nm).
  • green phosphor examples include europium activated orthosilicate phosphor (peak wavelength 520 to 550 nm), europium activated ⁇ sialon phosphor (peak wavelength 535 to 545 nm), europium activated strontium sialon phosphor ( Peak wavelength 510 to 530 nm).
  • yellow phosphor examples include europium activated orthosilicate phosphor (peak wavelength 550 to 580 nm) and cerium activated rare earth aluminum garnet phosphor (peak wavelength 550 to 580 nm).
  • red phosphor examples include europium activated strontium sialon phosphor (peak wavelength 600 to 630 nm), europium activated calcium strontium oxynitride phosphor (peak wavelength 610 to 650 nm), europium activated acid. Examples thereof include lanthanum sulfide phosphors (peak wavelength: 620 to 630 nm) and manganese activated magnesium fluorogermanate (peak wavelength: 640 to 660 nm).
  • the difference A ( ⁇ ) it is preferable to use three or more, more preferably five or more of the blue phosphor, blue-green phosphor, green phosphor, yellow phosphor and red phosphor. .
  • the color temperature can be controlled by changing the mixing ratio of the respective phosphors.
  • the average particle size of each phosphor is preferably 5 to 40 ⁇ m. If the average particle size is less than 5 ⁇ m, the particle size is too small to be produced, which increases the cost. On the other hand, when the average particle size is larger than 40 ⁇ m, it is difficult to uniformly mix the phosphors.
  • FIG. 10 shows a light bulb type white light source as an embodiment of the white light source of the present invention.
  • 1 is an LED bulb (white light source)
  • 2 is an LED module
  • 3 is a base part
  • 4 is a globe
  • 5 is an insulating member
  • 6 is a base
  • 7 is a substrate
  • 8 is an LED chip
  • 9 is a phosphor layer
  • Reference numeral 10 denotes a transparent resin layer.
  • the LED bulb 1 shown in FIG. 10 includes an LED module 2, a base part 3 on which the LED module 2 is installed, a globe 4 attached on the base part 3 so as to cover the LED module 2, and a base part 3 A base 6 attached to the lower end of the base plate 3 through an insulating member 5 and a lighting circuit 11 provided in the base 3.
  • the LED module 2 includes an ultraviolet or purple LED chip 8 mounted on a substrate 7.
  • a plurality of LED chips 8 are surface-mounted on the substrate 7.
  • a light emitting diode of InGaN, GaN, AlGaN or the like is used for the LED chip 8 emitting ultraviolet to purple light.
  • a wiring network (not shown) is provided on the surface of the substrate 7 (and further inside if necessary), and the electrodes of the LED chip 8 are electrically connected to the wiring network of the substrate 7.
  • a wiring 12 is drawn out on the side surface or the bottom surface of the LED module 2, and the wiring 12 is electrically connected to the lighting circuit 11 provided in the base portion 3.
  • the LED chip 8 is lit by a DC voltage applied via the lighting circuit 11.
  • a phosphor layer 9 that absorbs ultraviolet or violet light emitted from the LED chip 8 and emits white light.
  • the phosphor layer 9 is formed by combining three or more, further five or more phosphors having different peak wavelengths. Moreover, you may mix with resin and form the fluorescent substance layer 9 as needed. Further, various phosphors may be mixed to form a mixed phosphor layer, or a multilayer phosphor layer in which about 1 to 3 types of phosphor layers are mixed.
  • the phosphor layer is provided on the inner surface of the globe 4, but the phosphor may be mixed with the outer surface of the globe 4 or the globe 4 itself, or the phosphor may be added to the transparent resin layer 10. May be mixed.
  • a light bulb type white light source is illustrated in FIG. 10, the present invention is not limited to this and can be applied to a one-chip type white light source.
  • the white light source according to the present invention is not limited to the above-mentioned bulb type, but can be applied to a fluorescent lamp type (long and thin type), a chandelier type, and the shape is not limited.
  • a white light source that reproduces natural light can be provided. Further, a white light source system that reproduces the rhythm of natural light of the day can be obtained by combining white light sources that reproduce natural light such as daytime, sunrise, morning, and evening. Thereby, the white light source and white light source system which suppressed the bad influence to the circadian rhythm of a human body can be provided.
  • Example 1 An LED chip having an emission peak wavelength of 400 nm was prepared. Next, as a phosphor that emits light when irradiated with an electromagnetic wave of 400 nm, a europium-activated alkaline earth phosphate blue phosphor having a peak wavelength of 445 nm, and a europium-activated strontium aluminate blue-green having a peak wavelength of 490 nm A phosphor, a europium activated orthosilicate green phosphor having a peak wavelength of 530 nm, a europium activated orthosilicate yellow phosphor having a peak wavelength of 555 nm, and a europium activated orthostrontial sialon red phosphor having a peak wavelength of 630 nm A mixture was prepared.
  • the average particle diameter of each phosphor was 15 ⁇ m.
  • the bulb-type white light source shown in FIG. 10 was produced by mixing with a transparent resin and applying to the inner surface of the globe.
  • the obtained white light source had a correlated color temperature of emission color of 5100K. This color temperature 5100K is a color temperature equivalent to natural light during the day.
  • FIG. 6 shows the result of measuring the emission spectrum of the bulb-type white light source of Example 1 by measuring the total luminous flux using an integrating sphere according to JIS-C-8152. Further, (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 1 was obtained using the spectral luminous distribution V ( ⁇ ) of FIG. FIG. Note that ⁇ max1 in Example 1 is 556 nm.
  • FIG. 3 shows the emission spectrum of black body radiation having a color temperature of 5100 K obtained by the Planck distribution (the formula of FIG. 2).
  • FIG. 8 shows the result of calculating (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)), where the emission spectrum of FIG. 3 is B ( ⁇ ). Note that ⁇ max2 is 556 nm.
  • Difference A ( ⁇ ) [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))].
  • the result is shown in FIG.
  • the difference A ( ⁇ ) from the natural light emission spectrum during the day is ⁇ 0.2 to +0.2 in the visible light region of 380 to 780 nm.
  • the difference A ( ⁇ ) was ⁇ 0.03 to +0.02.
  • Example 2 An LED chip having an emission peak wavelength of 400 nm was prepared.
  • a phosphor that emits light when irradiated with an electromagnetic wave of 400 nm a europium-activated alkaline earth phosphate blue phosphor having a peak wavelength of 445 nm, a europium-activated strontium aluminate blue-green having a peak wavelength of 490 nm A phosphor, a europium activated orthosilicate green phosphor having a peak wavelength of 530 nm, a europium activated orthosilicate yellow phosphor having a peak wavelength of 555 nm, and a europium activated orthostrontial sialon red phosphor having a peak wavelength of 630 nm A mixture was prepared.
  • the average particle diameter of each phosphor was 15 ⁇ m.
  • the bulb-type white light source shown in FIG. 10 was produced by mixing with a transparent resin and applying to the inner surface of the globe.
  • the obtained white light source had a correlated color temperature of emission color of 4200K. This color temperature 4200K is a color temperature equivalent to natural light in the morning.
  • Example 2 the emission spectrum of the white light source of Example 2 was investigated by measuring the total luminous flux using an integrating sphere. The result is shown in FIG. Further, FIG. 1 is obtained by calculating (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 2 using the spectral luminous efficiency V ( ⁇ ) of FIG. 12. Note that ⁇ max1 in Example 2 is 560 nm.
  • FIG. 4 shows the emission spectrum of black body radiation having a color temperature of 4200 K obtained by the Planck distribution (the formula of FIG. 2).
  • FIG. 13 shows the result of obtaining (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)), where the emission spectrum of FIG. 4 is B ( ⁇ ). Note that ⁇ max2 is 560 nm.
  • Difference A ( ⁇ ) [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))].
  • the result is shown in FIG.
  • the white light source according to Example 2 has a difference A ( ⁇ ) from the morning light emission spectrum in the range of ⁇ 0.2 to +0.2 in the visible light region of 380 to 780 nm. Specifically, the difference A ( ⁇ ) was ⁇ 0.04 to +0.03.
  • Example 3 An LED chip having an emission peak wavelength of 400 nm was prepared.
  • the phosphors that emit light when irradiated with electromagnetic waves of 400 nm are europium-activated alkaline earth phosphate blue phosphors having a peak wavelength of 445 nm and europium-activated strontium aluminate blue-green phosphors having a peak wavelength of 490 nm.
  • a europium-activated orthosilicate green phosphor having a peak wavelength of 530 nm, a europium-activated orthosilicate yellow phosphor having a peak wavelength of 555 nm, and a europium-activated strontium sialon red phosphor having a peak wavelength of 630 nm Composed of a mixture with.
  • the average particle diameter of each phosphor was 15 ⁇ m.
  • the color temperature of the emission color of the obtained white light source was a correlated color temperature of 2700K.
  • the color temperature of this white light source is the same color temperature as natural light at sunrise.
  • Example 3 the emission spectrum of the white light source according to Example 3 was investigated by measuring the total luminous flux using an integrating sphere. The result is shown in FIG. Further, (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 3 was obtained using the spectral luminous efficiency V ( ⁇ ) of FIG. FIG. Note that ⁇ max1 in Example 3 is 570 nm.
  • FIG. 5 shows the emission spectrum of black body radiation having a color temperature of 2700 K obtained by the Planck distribution (the formula of FIG. 2).
  • FIG. 17 shows the result of calculating (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)), where the emission spectrum of FIG. 5 is B ( ⁇ ). Note that ⁇ max2 is 570 nm.
  • Difference A ( ⁇ ) [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))].
  • the result is shown in FIG.
  • the white light source according to Example 3 has a difference A ( ⁇ ) from the emission spectrum of natural light at sunrise in the visible light region of ⁇ 0.2 to +0.2. Specifically, the difference A ( ⁇ ) was ⁇ 0.03 to +0.15.
  • Example 4 An LED chip having an emission peak wavelength of 410 nm was prepared.
  • a phosphor that emits light when irradiated with an electromagnetic wave of 410 nm a europium activated barium magnesium aluminate blue phosphor having a peak wavelength of 450 nm, europium having a peak wavelength of 515 nm, and a manganese activated barium magnesium Aluminate blue-green phosphor, europium activated orthosilicate green phosphor having a peak wavelength of 530 nm, europium activated orthosilicate yellow phosphor having a peak wavelength of 555 nm, and europium having a peak wavelength of 630 nm
  • a mixture with activated calcium strontium oxynitride red phosphor was prepared.
  • the average particle diameter of each phosphor was 20 ⁇ m.
  • the bulb-type white light source shown in FIG. 10 was produced by mixing with a transparent resin and applying to the inner surface of the globe.
  • the obtained white light source had a correlated color temperature of emission color of 5100K. This color temperature 5100K is a color temperature equivalent to natural light during the day.
  • Example 4 the emission spectrum of the white light source of Example 4 was investigated by measuring the total luminous flux using an integrating sphere. Further, (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) was obtained using the spectral luminous efficiency V ( ⁇ ) of FIG. In Example 4, ⁇ max1 is 556 nm.
  • the emission spectrum of black body radiation having a color temperature of 5100 K was obtained from the Planck distribution (the formula in FIG. 2). Assuming that the emission spectrum of blackbody radiation is B ( ⁇ ), (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) was obtained. Note that ⁇ max2 is 556 nm.
  • Example 5 An LED chip having an emission peak wavelength of 400 nm was prepared.
  • the phosphor that emits light by the electromagnetic wave of 400 nm includes a europium activated alkaline earth phosphate blue phosphor having a peak wavelength of 445 nm, a europium activated orthosilicate green phosphor having a peak wavelength of 530 nm, and a peak wavelength. It is composed of a mixture with europium activated strontium sialon red phosphor of 625 nm.
  • a bulb-type white light source shown in FIG. The color temperature of the emission color of the obtained white light source was a correlated color temperature of 5000K. This color temperature is equivalent to that of natural light during the day.
  • Example 2 the emission spectrum P ( ⁇ ) of the white light source according to Example 5 was investigated by measuring the total luminous flux using an integrating sphere. The result is shown in FIG. Further, FIG. 1 is obtained by calculating (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 5 using the standard relative luminous sensitivity V ( ⁇ ) of FIG. 23. In the example, ⁇ max1 is 540 nm.
  • FIG. 22 shows the emission spectrum of black body radiation having a color temperature of 5000 K obtained by the Planck distribution (the formula of FIG. 2).
  • FIG. 24 shows the result of calculating (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)), where the emission spectrum of FIG. 22 is B ( ⁇ ). Note that ⁇ max2 is 555 nm.
  • Example A ( ⁇ ) [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ) ⁇ V ( ⁇ max2))].
  • the result is shown in FIG.
  • the white light source of Example 5 has a difference A ( ⁇ ) from the emission spectrum of natural light at sunrise in the range of ⁇ 0.2 to +0.2 in the visible light region of 380 to 780 nm. Specifically, the difference A ( ⁇ ) was ⁇ 0.2 to +0.1.
  • Comparative Example 1 A white light source according to Comparative Example 1 was produced by combining a blue light emitting diode having an emission peak wavelength of 460 nm and a cerium-activated yttrium aluminum garnet yellow phosphor.
  • the color temperature of the white light source of Comparative Example 1 was 5100 K, and the difference A ( ⁇ ) was ⁇ 0.28 to +0.04 as shown in FIG.
  • the secretion amount (average value of 10 persons) of each Example when the melatonin secretion amount of the comparative example 1 was set to 100 was shown. The results are shown in Table 1 below.
  • the melatonin secretion amount of the subject increased as compared with the case where the conventional white light source of Comparative Example 1 was used.
  • Melatonin is a kind of hormone secreted from the pineal gland of the brain, and it is generally said that melatonin secretion is low during the day and high at night. This is thought to be due to living under natural light during the day. Therefore, melatonin is considered as a hormone necessary for obtaining a peaceful sleep. In the United States and the like, it is also widely used as a supplement for preventing oxidation in the body.
  • using the white light source of this example can provide the same effect as natural light, and sleep disorders and circadian rhythms.
  • the effect which suppresses going crazy can be expected.
  • Example 3 daylight natural light (Example 1, Example 4 and Example 5), sunrise natural light (Example 2), and morning natural light (Example 3) were prepared separately.
  • daylight natural light Example 1, Example 4 and Example 5
  • sunrise natural light Example 2
  • morning natural light Example 3
  • the LED chip 8c for emitting light and the phosphor layer 9c are arranged on a common substrate 7, and the LED chips 8a, 8b, 8c on which the phosphor layers 9a, 9b, 9c are attached are the same common globe.
  • the white light source system 1a can also be configured by being housed in 4.
  • a transparent resin layer 10 may be provided between the LED chip 8 and the phosphor layer 9.
  • Each LED chip 8a, 8b, 8c is connected to the lighting circuit 11a by the wiring 12a.
  • the user is configured to be able to select an LED chip to be appropriately turned on by a switching mechanism (not shown) attached to the lighting circuit 11a as desired.
  • the white light source system 1a having the above configuration, it is possible to selectively receive daytime natural light, sunrise natural light, and morning natural light from the single white light source system 1a in accordance with the user's request and illumination cycle. It becomes possible. That is, a white light source system that reproduces the natural light rhythm of the day can be obtained by combining white light sources that reproduce natural light such as daytime, sunrise, morning, and evening.
  • the white light source and the white light source system according to the present invention can reproduce the same emission spectrum as that of natural light. Therefore, even if the white light from the white light source is exposed for a long time, the adverse effect on the human body can be made to the same level as natural light.
  • LED bulb (white light source) DESCRIPTION OF SYMBOLS 1a ... White light source system 2, 2a ... LED module 3 ... Base

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 白色光源の発光スペクトルをP(λ)、白色光源と同じ色温度を示す黒体輻射の発光スペクトルをB(λ)、分光視感効率のスペクトルをV(λ)、P(λ)×V(λ)が最大となる波長をλmax1、B(λ)×V(λ)が最大となる波長をλmax2としたとき、関係式:-0.2≦[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]≦+0.2、 を満たすことを特徴とする白色光源である。上記白色光源によれば、自然光と同等の発光スペクトルを有する白色光源を提供することができる。

Description

白色光源およびそれを用いた白色光源システム
 本発明は、白色光源およびそれを用いた白色光源システムに係り、特に自然光の発光スペクトルに近似した発光スペクトルを有する白色光源およびそれを用いた白色光源システムに関する。
 近年、省エネルギー対策や二酸化炭素の排出量削減の観点からLED(発光ダイオード)を使用した白色光源が注目されている。タングステンフィラメントを使った従来の白熱電球と比較して、LEDは長寿命で、かつ省エネルギーが可能である。従来の白色LEDは、特開平10-242513号公報(特許文献1)に示されているように、発光ピーク波長が400~530nmの範囲にある青色LEDを使用してYAG蛍光体を励起させ、LEDの青色光とYAG蛍光体の黄色光とを混合して白色光を実現していた。
 LEDを使った白色光源は、信号機や液晶表示装置のバックライト、さらには室内灯などの一般用照明機器としても広く使用されている。従来の青色LEDを使った白色光源は、その発光スペクトルは青色LEDから発する青色光のピーク高さが蛍光体からの黄色光のピーク高さの1.5倍以上と高く、青色光の影響が強い傾向があった。
 一方、LEDを使用した白色光源の普及に伴って、白色光源の人体への悪影響が懸念され始めている。前述のように従来の白色LEDは青色LEDの発光ピークが強い。このような青色ピークの強い白色光は自然光とは大きく異なる光である。ここで自然光とは、太陽光を意味する。
 このような白色光源の人体への影響を考慮して、国際公開WO2008/069101号パンフレット(特許文献2)では、発光ピークの異なるLEDと蛍光体とを組合せて4種類の発光ピークを混合することにより分光視感効率とのずれが少ない白色光を提供している。
 ここで分光視感効率とは、人間の目の光に対する感度を視感度と呼び、CIE(国際照明委員会)は標準分光比視感度V(λ)として定めたものである。従って、分光視感効率と標準分光比視感度V(λ)とは同じ意味である。図1にCIEが定めた分光視感効率V(λ)を示す。すなわち、図1によれば、人間は波長が約555nmの光を最も高い感度で認識することを表している。
 一方、特許文献2では、青色光の人体への影響を考慮して、波長が420~490nmの範囲の光を制御することを目的としている。このような方法により、夜間において生物時計による調節に関わるホルモンの一種としてのメラトニンの分泌を正常化する効果があると考えられる。
 一方、人間は、体内時計で支配されるサーカディアンリズム(circadian rhythm:概日リズム、24時間リズム)を有している。人間は、自然光の下で生活することを基本としているが、現代社会では、長時間の室内労働や昼夜逆転生活など生活スタイルが多様化している。自然光を浴びない生活を長期間続けていると、サーカディアンリズムに乱れが生じ人体への悪影響が懸念されている。
特開平10-242513号公報 国際公開WO2008/069101号パンフレット
 現在のLEDを使用した白色光源、すなわち青色LEDを使用した白色光源は、自然光とは大きく異なる発光スペクトルを有している。このような白色光源の照射下で長時間生活していると人間のサーカディアンリズムに悪影響を与えることが懸念される。
 本発明は、このような問題に対処するためになされたものであり、自然光の発光スペクトルに近似した発光スペクトルを有する白色光源を提供することを目的としたものである。
 上記目的を達成するために本発明に係る白色光源は、白色光源の発光スペクトルをP(λ)、白色光源と同じ色温度を示す黒体輻射の発光スペクトルをB(λ)、分光視感効率のスペクトルをV(λ)、P(λ)×V(λ)が最大となる波長をλmax1、B(λ)×V(λ)が最大となる波長をλmax2としたとき、関係式:-0.2≦[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]≦+0.2、を満たすことを特徴とするものである。
 また、上記白色光源において、関係式:-0.1≦[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]≦+0.1、を満たすことがより好ましい。また、白色光源の色温度は2500~7000Kであることが好ましい。
 また、上記白色光源がLEDと蛍光体とを具備することが好ましい。また、LEDの発光ピーク波長が350~420nmであり、蛍光体の発光ピーク波長が420~700nmの範囲にあることが好ましい。また、上記白色光源が、ピーク波長が異なる3種類以上、好ましくは4種類以上の蛍光体を具備することが好ましい。また、ピーク波長が異なる5種類以上の蛍光体を具備することが、さらに好ましい。また、上記蛍光体は、蛍光体と樹脂とを混合した蛍光体層を形成していることが好ましい。また、蛍光体層が、樹脂中に蛍光体粒子を分散した蛍光体要素を複数積層した多層構造を具備していることが好ましい。また、本発明の白色光源システムは、上記本発明に係る白色光源を複数個用いて構成したことを特徴とするものである。
 本発明に係る白色光源によれば、自然光と同じ発光スペクトルを再現できる。そのため、白色光源からの白色光を長時間浴びても人体への悪影響を自然光と同等のレベルにすることができる。
分光視感効率V(λ)を示すグラフである。 黒体輻射の発光スペクトルB(λ)を求める数式である。 日中の自然光の発光スペクトルの一例を示すグラフである。 朝日の自然光の発光スペクトルの一例を示すグラフである。 日の出の自然光の発光スペクトルの一例を示すグラフである。 実施例1の発光スペクトルを示すグラフである。 実施例1の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を示すグラフである。 図3と同色温度の黒体輻射をB(λ)としたときの、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示すグラフである。 実施例1の差異A(λ)を示すグラフである。 本発明の白色光源(電球型)の一実施例を示す断面図である。 実施例2の白色光源の発光スペクトルを示すグラフである。 実施例2の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を示すグラフである。 図4と同色温度の黒体輻射をB(λ)としたときの、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示すグラフである。 実施例2の差異A(λ)を示すグラフである。 実施例3の発光スペクトルを示すグラフである。 実施例3の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を示すグラフである。 図5と同色温度の黒体輻射をB(λ)としたときの、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示すグラフである。 実施例3の差異A(λ)を示すグラフである。 比較例1の差異A(λ)を示すグラフである。 本発明に係る白色光源(電球型)の他の一実施例を示す断面図である。 実施例5の白色光源の発光スペクトルP(λ)を示すグラフである。 色温度が5000Kの黒体輻射B(λ)を示すグラフである。 実施例5の白色光源の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を示すグラフである。 実施例5の白色光源の(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示すグラフである。 実施例5の白色光源の差異A(λ)を示すグラフである。
 本発明の実施形態に係る白色光源は、白色光源の発光スペクトルをP(λ)、白色光源と同じ色温度を示す黒体輻射の発光スペクトルをB(λ)、分光視感効率のスペクトルをV(λ)、P(λ)×V(λ)が最大となる波長をλmax1、B(λ)×V(λ)が最大となる波長をλmax2としたとき、-0.2≦[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]≦+0.2の関係式を満たすことを特徴とするものである。ここでλは可視光領域である380~780nmの波長を示す。
 上記関係式を満たす白色光源を構成する手順は以下の通りである。まず、白色光源の発光スペクトルP(λ)を測定する。発光スペクトルの測定はJIS-C-8152に準じて積分球を使用した全光束測定で実施するものとする。色温度は、発光スペクトルから計算により求めるものである。なお、色温度の単位はケルビン(K)である。
 次に、白色光源の色温度と同じ黒体輻射の発光スペクトルB(λ)を求める。発光スペクトルB(λ)はプランク分布により求める。プランク分布は図2に示す数式により求めることができる。図2中、hはプランク定数、cは光速、λは波長、eは自然対数の底、kはボルツマン定数、Tは色温度である。黒体輻射の発光スペクトルは、h、c、e、kが定数であるため色温度Tが決まれば、波長λに応じた発光スペクトルを求めることができる。
 また、黒体輻射は黒体放射とも呼ばれ、本発明では自然光(太陽光)の発光スペクトルを示すものである。自然光は、例えば、日中、朝方、日の出の時にはそれぞれ色温度が異なっている。図3に日中の自然光(色温度5100K)の発光スペクトルの一例を示し、図4に朝方の自然光(色温度4200K)の発光スペクトルの一例を示し、図5に日の出の自然光(色温度2700K)の発光スペクトルの一例をそれぞれ示した。なお、図4の朝方は午前7:00時を想定したものである。
 また、図6に後述する実施例1の発光スペクトルP(λ)を示した。一方、図7に、実施例1の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を示した。また、図8に、日中の自然光(図3)の発光スペクトルをB(λ)としたときの、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示した。
 図7および図8を求める際のV(λ)は図1に示した分光視感効率を用いた。
 図7は、図6に示した実施例1の発光スペクトルP(λ)と分光視感効率V(λ)を各波長毎の値を掛け合わせた値を、(P(λmax1)×V(λmax1))で割った値をプロットした図である。図7において、(P(λ)×V(λ))が最大値となる波長は、λmax1=556nmである。
 また、図8は、図3の発光スペクトルB(λ)と分光視感効率V(λ)を各波長毎の値を掛け合わせた値を、(B(λmax2)×V(λmax2))で割った値をプロットした図である。図8において、(B(λ)×V(λ))が最大となるのは、λmax2=556nmである。
 (P(λ)×V(λ))は、分光視感効率V(λ)領域における白色光源の発光スペクトルの強さを示すものである。最大値である(P(λmax1)×V(λmax1))で割ることにより、図7に示したように1.0を上限とした値とすることができる。
 また、(B(λ)×V(λ))は、分光視感効率V(λ)領域における黒体輻射の発光スペクトルの強さを示すものであり、最大値である(B(λmax2)×V(λmax2))で割ることにより図8に示したように1.0を上限とした値とすることができる。
 次に、差異A(λ)=[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]を求める。本実施形態の白色光源は、-0.2≦[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]≦+0.2である。この差異A(λ)が-0.2≦A(λ)≦+0.2であるということは、分光視感効率V(λ)領域における白色光源の発光スペクトルが黒体輻射の発光スペクトル、つまりは自然光の発光スペクトルに近似していることを示している。つまり、差異A(λ)=0であれば、自然光と同じ発光スペクトルを再現できるという意味である。
 図9に実施例1の差異A(λ)を示した。図9から明らかな通り、実施例1は差異A(λ)の範囲が-0.03≦A(λ)≦+0.02であり、日中の自然光を再現していることが分かる。
 このように本実施形態によれば、発光スペクトルを黒体輻射の発光スペクトルに近似するよう設計されているので、従来のような青色光のピークが突出した白色LEDと比べて人間のサーカディアンリズムに対する悪影響を大幅に抑制することができる。
 また、後述する実施例のように日の出の自然光や朝方の自然光を再現することもできるので、その目的に合わせて発光スペクトルを制御すればよい。また、日中の自然光、日の出の自然光、朝方の自然光を再現した白色光源を組合せて、一日の太陽光と同じ自然光を再現することも可能である。例えば、病棟や長時間の室内業務を行わなければならない場所や部屋の照明設備として、この白色光源を用いれば、そこで生活する患者や作業を行う労働者のサーカディアンリズムへの悪影響を抑制できる。また、自然光を再現できるので、自然光を利用した植物栽培などの農業分野などへの応用も可能である。
 このような白色光源は、発光の色温度が2500~7000Kであることが好ましい。この色温度が2500K未満および7000Kを超えると、自然光にない色温度となってしまうおそれがある。色温度の好ましい範囲は2700~6700Kである。
 このような差異A(λ)を有する白色光源は、LED(発光ダイオード)と蛍光体を具備することが好ましい。LEDの発光ピーク波長は350~420nmの範囲にあるものが好ましい。紫外線~紫色領域に発光ピークがあるLED光を蛍光体により可視光に変換する方式であることが好ましい。LEDの発光ピーク波長が420nm以上の青色LED、緑色LED、赤色LEDは、その発光ピーク高さが大きいため差異A(λ)を-0.2≦A(λ)≦+0.2の範囲に制御し難い。また、発光ピーク波長が350~420nmの発光源であれば、LEDに限らず半導体レーザなどを用いてもよい。
 また、蛍光体は、350~420nmの発光源で励起させたとき、蛍光体の発光ピーク波長が420~700nmの範囲にあることが好ましい。また、蛍光体は、ピーク波長の異なる3種類以上、さらには5種類以上の蛍光体を用いることが好ましい。また、各蛍光体のピーク波長は、150nm以下、さらには10~100nm、さらには10~50nmずれていることが好ましい。つまり、青色領域~赤色領域にかけて、3種以上、さらには5種以上の蛍光体を使ってピーク波長を10~100nm毎ずらして組合せることにより、-0.2≦差異A(λ)≦+0.2を実現する方法である。
 蛍光体の材質は、発光ピークが420~700nmにあれば特に限定されるものではないが、350~420nmで励起される蛍光体として次の蛍光体が好ましい。また、蛍光体の発光スペクトルのピーク波長の半値幅は40nm以上、さらには50~100nmと広いものが好ましい。
 青色蛍光体(B)の例としては、ユーロピウム付活アルカリ土類リン酸塩蛍光体(ピーク波長440~455nm)やユーロピウム付活バリウムマグネシウムアルミン酸塩蛍光体(ピーク波長450~460nm)などが挙げられる。また、青緑色蛍光体として、ユーロピウム付活ストロンチウムアルミン酸塩蛍光体(ピーク波長480~500nm)や、ユーロピウム、マンガン付活バリウムマグネシウムアルミン酸塩蛍光体(ピーク波長510~520nm)などが挙げられる。
 緑色蛍光体(G)の例としては、ユーロピウム付活オルソ珪酸塩蛍光体(ピーク波長520~550nm)、ユーロピウム付活βサイアロン蛍光体(ピーク波長535~545nm)、ユーロピウム付活ストロンチウムサイアロン蛍光体(ピーク波長510~530nm)などが挙げられる。
 また、黄色蛍光体(Y)の例としては、ユーロピウム付活オルソ珪酸塩蛍光体(ピーク波長550~580nm)やセリウム付活希土類アルミニウムガーネット蛍光体(ピーク波長550~580nm)などが挙げられる。
 また、赤色蛍光体(R)の例としては、ユーロピウム付活ストロンチウムサイアロン蛍光体(ピーク波長600~630nm)、ユーロピウム付活カルシウムストロンチウム酸窒化物蛍光体(ピーク波長610~650nm)、ユーロピウム付活酸硫化ランタン蛍光体(ピーク波長620~630nm)やマンガン付活マグネシウムフロロジャーマネート(ピーク波長640~660nm)などが挙げられる。
 前記差異A(λ)を制御するためには、上記青色蛍光体、青緑色蛍光体、緑色蛍光体、黄色蛍光体および赤色蛍光体の中から3種以上、さらには5種以上用いることが好ましい。また、色温度の制御は、それぞれの蛍光体の混合割合を変えることにより制御できる。
 また、各蛍光体の平均粒径は5~40μmが好ましい。平均粒径が5μm未満では粒径が小さすぎて製造することが困難でありコストアップの要因となる。一方、平均粒径が40μmを超えて大きいと、各蛍光体を均一に混合するのが困難となる。
 次に白色光源の構造について説明する。図10に本発明の白色光源の一実施形態例としての電球型白色光源を示した。図中、1はLED電球(白色光源)、2はLEDモジュール、3は基体部、4はグローブ、5は絶縁部材、6は口金、7は基板、8はLEDチップ、9は蛍光体層、10は透明樹脂層である。
 すなわち、図10に示すLED電球1は、LEDモジュール2と、LEDモジュール2が設置された基体部3と、LEDモジュール2を覆うように基体部3上に取り付けられたグローブ4と、基体部3の下端部に絶縁部材5を介して取り付けられた口金6と、基体部3内に設けられた点灯回路11とを具備する。
 LEDモジュール2は、基板7上に実装された紫外乃至紫色発光のLEDチップ8を備えている。基板7上には複数のLEDチップ8が面実装されている。紫外乃至紫色発光のLEDチップ8には、InGaN系、GaN系、AlGaN系等の発光ダイオードが用いられる。基板7の表面(さらに必要に応じて内部)には、配線網(図示せず)が設けられており、LEDチップ8の電極は基板7の配線網と電気的に接続されている。LEDモジュール2の側面もしくは底面には、配線12が引き出されており、この配線12が基体部3内に設けられた点灯回路11と電気的に接続されている。LEDチップ8は、点灯回路11を介して印加される直流電圧により点灯する。
 グローブ4の内面には、LEDチップ8から出射された紫外乃至紫色光を吸収して白色光を発光する蛍光体層9が設けられている。蛍光体層9は、3種以上、さらには5種以上のピーク波長の異なる蛍光体を組合せて形成される。また、必要に応じて、樹脂と混合して蛍光体層9を形成してもよい。また、各種蛍光体は、すべて混合して混合蛍光体層としてもよいし、1~3種類程度ずつ混合した蛍光体層を多層化した多層蛍光体層としてもよい。
 また、図10ではグローブ4の内面に蛍光体層を設けた構造としたが、グローブ4の外面やグローブ4自体に蛍光体を混合する構造であってもよいし、透明樹脂層10に蛍光体を混合してもよい。また、図10では電球型白色光源を例示したが、本発明はこれに限らず、ワンチップ型の白色光源にも適用できる。また、本発明に係る白色光源は、上記電球型に限らず、蛍光灯タイプ(長細いもの)、シャンデリアタイプなどにも適用でき、その形状も限定されるものではない。
 以上のように、差異A(λ)を-0.2≦A(λ)≦+0.2に制御することにより、自然光を再現した白色光源を提供することができる。また、日中、日の出、朝方、夕方などの各自然光を再現した白色光源をそれぞれ組合せて一日の自然光のリズムを再現した白色光源システムとすることもできる。これにより、人体のサーカディアンリズムへの悪影響を抑制した白色光源および白色光源システムを提供することができる。
(実施例)
(実施例1)
 LEDチップとして発光ピーク波長400nmのものを用意した。次に、400nmの電磁波を照射することにより発光する蛍光体として、ピーク波長が445nmであるユーロピウム付活アルカリ土類燐酸塩青色蛍光体、ピーク波長が490nmであるユーロピウム付活ストロンチウムアルミン酸塩青緑色蛍光体、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体とピーク波長が630nmであるユーロピウム付活ストロンチウムサイアロン赤色蛍光体の混合物を用意した。なお、各蛍光体の平均粒径は15μmとした。各蛍光体の混合比は重量比(質量比)として青色蛍光体:青緑色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=30:15:20:15:20の比率で混合し、透明樹脂と混合して、グローブ内面に塗布することにより、図10に示した電球型白色光源を作製した。得られた白色光源は、発光色の相関色温度が5100Kであった。この色温度5100Kは日中の自然光と同等の色温度である。
 JIS-C-8152に準じて積分球を使った全光束測定により、実施例1の電球型白色光源の発光スペクトルを測定した結果を図6に示す。また、図1の分光視感分布V(λ)を使用して、実施例1の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を求めたものが図7である。なお、実施例1のλmax1は556nmである。
 次に、色温度5100Kの黒体輻射の発光スペクトルをプランク分布(図2の式)により求めたものが図3である。図3の発光スペクトルをB(λ)として、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を求めたものが図8である。なお、λmax2は556nmである。
 実施例1の差異A(λ)=[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]により求めた。その結果を図9に示す。図9から明らかなように、実施例1に係る白色光源では、日中の自然光の発光スペクトルとの差異A(λ)が可視光領域である380~780nmにおいて-0.2~+0.2の範囲であり、具体的に差異A(λ)は-0.03~+0.02であった。
(実施例2)
 LEDチップとして発光ピーク波長が400nmのものを用意した。次に、400nmの電磁波を照射することにより発光する蛍光体として、ピーク波長が445nmであるユーロピウム付活アルカリ土類燐酸塩青色蛍光体、ピーク波長が490nmであるユーロピウム付活ストロンチウムアルミン酸塩青緑色蛍光体、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体とピーク波長が630nmであるユーロピウム付活ストロンチウムサイアロン赤色蛍光体の混合物を用意した。なお、各蛍光体の平均粒径は15μmとした。各蛍光体の混合比は重量比(質量比)として、青色蛍光体:青緑色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=10:15:25:20:30の比率で混合し、透明樹脂と混合して、グローブ内面に塗布することにより、図10に示す電球型白色光源を作製した。得られた白色光源は、発光色の相関色温度が4200Kであった。この色温度4200Kは朝方の自然光と同等の色温度である。
 実施例1同様に積分球を使った全光束測定により、実施例2の白色光源の発光スペクトルを調査した。その結果を図11に示す。また、図1の分光視感効率V(λ)を使って、実施例2の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を求めたものが図12である。なお、実施例2のλmax1は560nmである。
 次に、色温度4200Kの黒体輻射の発光スペクトルをプランク分布(図2の式)により求めたものが図4である。図4の発光スペクトルをB(λ)として、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を求めたものが図13である。なお、λmax2は560nmである。
 実施例2の差異A(λ)=[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]により求めた。その結果を図14に示す。図14から明らかなように、実施例2に係る白色光源は、朝方の自然光の発光スペクトルとの差異A(λ)が可視光領域である380~780nmにおいて-0.2~+0.2の範囲であり、具体的に差異A(λ)は-0.04~+0.03であった。
(実施例3)
 LEDチップとして発光ピーク波長が400nmのものを用意した。400nmの電磁波を照射することにより発光する蛍光体は、ピーク波長が445nmであるユーロピウム付活アルカリ土類燐酸塩青色蛍光体と、ピーク波長が490nmであるユーロピウム付活ストロンチウムアルミン酸塩青緑色蛍光体と、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体と、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体と、ピーク波長が630nmであるユーロピウム付活ストロンチウムサイアロン赤色蛍光体との混合物から構成される。なお、各蛍光体の平均粒径は15μmとした。蛍光体の混合比は重量比として青色蛍光体:青緑色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=5:10:20:25:40の比率で混合し、透明樹脂と混合して、グローブ内面に塗布することにより、図10に示す電球型白色光源を作製した。得られた白色光源の発光色の色温度は相関色温度2700Kであった。この白色光源の色温度は日の出の自然光と同等の色温度である。
 実施例1と同様に積分球を使った全光束測定により、実施例3に係る白色光源の発光スペクトルを調査した。その結果を図15に示す。また、図1の分光視感効率V(λ)を使用して、実施例3の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を求めたものが図16である。なお、実施例3のλmax1は570nmである。
 次に、色温度2700Kの黒体輻射の発光スペクトルをプランク分布(図2の式)により求めたものが図5である。図5の発光スペクトルをB(λ)として、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を求めたものが図17である。なお、λmax2は570nmである。
 実施例3の差異A(λ)=[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]により求めた。その結果を図18に示す。図18から明らかなように、実施例3に係る白色光源は、日の出の自然光の発光スペクトルとの差異A(λ)が、可視光領域である380~780nmにおいて-0.2~+0.2の範囲であり、具体的に差異A(λ)は-0.03~+0.15であった。
(実施例4)
 LEDチップとして発光ピーク波長が410nmのものを用意した。次に、410nmの電磁波を照射することにより発光する蛍光体として、ピーク波長が450nmであるユーロピウム付活バリウムマグネシウムアルミン酸塩青色蛍光体と、ピーク波長が515nmであるユーロピウムと、マンガン付活バリウムマグネシウムアルミン酸塩青緑色蛍光体と、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体と、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体と、ピーク波長が630nmであるユーロピウム付活カルシウムストロンチウム酸窒化物赤色蛍光体との混合物を用意した。なお、各蛍光体の平均粒径は20μmとした。各蛍光体の混合比は重量比(質量比)として、青色蛍光体:青緑色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=30:20:15:20:15の比率で混合し、透明樹脂と混合して、グローブ内面に塗布することにより、図10に示す電球型白色光源を作製した。得られた白色光源は、発光色の相関色温度が5100Kであった。この色温度5100Kは日中の自然光と同等の色温度である。
 実施例1同様に積分球を使った全光束測定により、実施例4の白色光源の発光スペクトルを調査した。また、図1の分光視感効率V(λ)を使って、(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を求めた。なお、実施例4のλmax1は556nmである。
 次に、色温度5100Kの黒体輻射の発光スペクトルをプランク分布(図2の式)により求めた。黒体輻射の発光スペクトルをB(λ)として、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を求めた。なお、λmax2は556nmである。
 実施例4の差異A(λ)=[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]により求めた。実施例4の白色光源は、日中の自然光の発光スペクトルとの差異A(λ)が可視光領域である380~780nmにおいて-0.2~+0.2の範囲であり、具体的に差異A(λ)は-0.18~+0.19であった。
(実施例5)
 LEDチップとして発光ピーク波長が400nmのものを用意した。この400nmの電磁波により発光する蛍光体は、ピーク波長が445nmであるユーロピウム付活アルカリ土類燐酸塩青色蛍光体と、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体と、ピーク波長が625nmであるユーロピウム付活ストロンチウムサイアロン赤色蛍光体との混合物から構成される。
 蛍光体の混合比は重量比として青色蛍光体:緑色蛍光体:赤色蛍光体=30:40:30の比率で混合し、さらに透明樹脂と混合して、グローブ内面に塗布することにより、図10に示す電球型白色光源を作製した。得られた白色光源の発光色の色温度は相関色温度5000Kであった。この色温度は日中の自然光と同等の色温度である。
 次に実施例1と同様に、積分球を使った全光束測定により、実施例5に係る白色光源の発光スペクトルP(λ)を調査した。その結果を図21に示す。また、図1の標準比視感度V(λ)を使って、実施例5の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を求めたものが図23である。なお、実施例のλmax1は540nmである。
 次に、色温度5000Kの黒体輻射の発光スペクトルをプランク分布(図2の式)により求めたものが図22である。図22の発光スペクトルをB(λ)として、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を求めたものが図24である。なお、λmax2は555nmである。
 実施例の差異A(λ)=[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]により求めた。その結果を図25に示す。図25から明らかなように、実施例5の白色光源は、日の出の自然光の発光スペクトルとの差異A(λ)が、可視光領域である380~780nmにおいて-0.2~+0.2の範囲であり、具体的に差異A(λ)は-0.2~+0.1であった。
(比較例1)
 発光ピーク波長460nmの青色発光ダイオードと、セリウム付活イットリウムアルミニウムガーネット黄色蛍光体とを組み合わせて、比較例1に係る白色光源を作製した。比較例1の白色光源の色温度は5100Kであり、差異A(λ)は図19に示した通り-0.28~+0.04であった。
 各実施例と比較例1との白色光源を同照度下で被験者(各10人)が日中9:00から17:00まで過ごし、その夜(21:00)にメラトニンの分泌量の測定を行った。なお、メラトニンの分泌量の分析は唾液検査で実施した。また、比較例1のメラトニン分泌量を100としたときの各実施例の分泌量(10人の平均値)を示した。その結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示す結果から明らかなように、各実施例に係る白色光源においては、従来の比較例1の白色光源を使用した場合と比較して、被験者のメラトニンの分泌量が多くなった。メラトニンは脳の松果体から分泌されるホルモンの一種であり、一般的に昼間はメラトニンの分泌量は低く、夜間は高くなるといわれている。これは日中においては自然光の下で暮らしているためと考えられている。そのため、メラトニンは安らかな睡眠を得るために必要なホルモンと考えられている。また、米国等では体内の酸化を防止するサプリメントとしても広く使用されている。
 従って、自然光を浴びることが困難な環境(病棟や長時間の室内活動など)では本実施例の白色光源を使用することにより、自然光を浴びるのと同等の効果が得られ、睡眠障害やサーカディアンリズムが狂うことを抑制する効果が期待できる。
 また、各実施例においては、日中の自然光(実施例1,実施例4および実施例5)、日の出の自然光(実施例2)および朝方の自然光(実施例3)を別々に作製したが、適宜、それらの複数個を組み合わせて白色光源システムを構成することにより、一日の自然光と同等の光を再現することもできる。
 具体的には、図20に示すように、日中の自然光を発するためのLEDチップ8aおよび蛍光体層9aと、日の出の自然光を発するためのLEDチップ8bおよび蛍光体層9bと、朝方の自然光を発するためのLEDチップ8cおよび蛍光体層9cとを共通した基板7上に配置し、これらの蛍光体層9a,9b,9cを被着したLEDチップ8a,8b,8cを同一の共通するグローブ4内に収容して白色光源システム1aを構成することも可能である。また、LEDチップ8と蛍光体層9の間に透明樹脂層10を設けてもよい。
 各LEDチップ8a,8b,8cは、配線12aによって点灯回路11aに接続されている。使用者は要望に応じて点灯回路11aに付設された図示しない切替機構によって適宜点灯させるLEDチップを選択できるように構成されている。
 上記構成を有する白色光源システム1aによれば、使用者の要望や照明周期に応じて日中の自然光、日の出の自然光および朝方の自然光を1基の白色光源システム1aから選択的に享受することが可能になる。すなわち、日中、日の出、朝方、夕方などの各自然光を再現した白色光源をそれぞれ組合せて一日の自然光のリズムを再現した白色光源システムとすることもできる。
 本発明に係る白色光源および白色光源システムによれば、自然光と同じ発光スペクトルを再現できる。そのため、この白色光源からの白色光を長時間浴びても人体への悪影響を自然光と同等のレベルにすることができる。
1…LED電球(白色光源)
1a…白色光源システム
2,2a…LEDモジュール
3…基体部
4…グローブ
5…絶縁部材
6…口金
7…基板
8,8a,8b,8c…LEDチップ
9,9a,9b,9c…蛍光体層
10…透明樹脂層
11,11a…点灯回路
12,12a…配線

Claims (11)

  1. 白色光源の発光スペクトルをP(λ)、白色光源と同じ色温度を示す黒体輻射の発光スペクトルをB(λ)、分光視感効率のスペクトルをV(λ)、P(λ)×V(λ)が最大となる波長をλmax1、B(λ)×V(λ)が最大となる波長をλmax2としたときに、関係式:
     -0.2≦[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]≦+0.2、
    を満たすことを特徴とする白色光源。
  2. -0.1≦[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]≦+0.1、
    を満たすことを特徴とする請求項1記載の白色光源。
  3. 白色光源の色温度は2500~7000Kであることを特徴とする請求項1ないし請求項2のいずれか1項に記載の白色光源。
  4. LEDと蛍光体を具備することを特徴とする請求項1ないし請求項3のいずれか1項に記載の白色光源。
  5. LEDの発光ピークが350~420nmであり、蛍光体の発光ピークが420~700nmの範囲にあることを特徴とする請求項4記載の白色光源。
  6. ピーク波長の異なる3種類以上の蛍光体を具備することを特徴とする請求項4ないし請求項5のいずれか1項に記載の白色光源。
  7. ピーク波長の異なる5種類以上の蛍光体を具備することを特徴とする請求項4ないし請求項6のいずれか1項に記載の白色光源。
  8. 蛍光体は、蛍光体と樹脂を混合した蛍光体層を形成していることを特徴とする請求項4ないし請求項7のいずれか1項に記載の白色光源。
  9. 各蛍光体のピーク波長の間隔が150nm以下であることを特徴とする請求項4ないし請求項7のいずれか1項記載の白色光源。
  10. 前記蛍光体層が多層構造を具備していることを特徴とする請求項8記載の白色光源。
  11. 請求項1ないし請求項10のいずれか1項に記載の白色光源を複数個用いたことを特徴とする白色光源システム。
PCT/JP2011/059484 2011-02-09 2011-04-18 白色光源およびそれを用いた白色光源システム WO2012108065A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11858314.5A EP2674662B1 (en) 2011-02-09 2011-04-18 White light source and white light source system using same
EP20160783.5A EP3683494A1 (en) 2011-02-09 2011-04-18 White light source and white light source system including the same
JP2012556746A JP5823416B2 (ja) 2011-02-09 2011-04-18 白色光源およびそれを用いた白色光源システム
CN201180069970.1A CN103459915B (zh) 2011-02-09 2011-04-18 白光源以及包括所述白光源的白光源系统
US13/983,378 US9112120B2 (en) 2011-02-09 2011-04-18 White light source and white light source system including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011026098 2011-02-09
JP2011-026098 2011-02-09

Publications (1)

Publication Number Publication Date
WO2012108065A1 true WO2012108065A1 (ja) 2012-08-16

Family

ID=46638301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059484 WO2012108065A1 (ja) 2011-02-09 2011-04-18 白色光源およびそれを用いた白色光源システム

Country Status (6)

Country Link
US (1) US9112120B2 (ja)
EP (2) EP2674662B1 (ja)
JP (1) JP5823416B2 (ja)
CN (1) CN103459915B (ja)
TW (1) TWI417486B (ja)
WO (1) WO2012108065A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054290A1 (ja) * 2012-10-04 2014-04-10 株式会社 東芝 白色発光装置、照明装置、および歯科用照明装置
JP2014182192A (ja) * 2013-03-18 2014-09-29 Canon Inc 画像表示装置及びその制御方法
JP2017010817A (ja) * 2015-06-24 2017-01-12 東芝マテリアル株式会社 医療施設照明用白色光源システム
JPWO2016067609A1 (ja) * 2014-10-28 2017-09-14 株式会社東芝 白色光源および白色光源システム
US9825206B2 (en) 2016-02-25 2017-11-21 Toyoda Gosei, Co., Ltd. Light-emitting device
JP2018093161A (ja) * 2016-12-02 2018-06-14 豊田合成株式会社 発光装置
JP2018125438A (ja) * 2017-02-01 2018-08-09 豊田合成株式会社 発光装置
JP2018534751A (ja) * 2015-11-10 2018-11-22 フィリップス ライティング ホールディング ビー ヴィ 可変uv成分を有する調整可能な白色光源
JP2018200884A (ja) * 2013-01-31 2018-12-20 株式会社東芝 発光装置及びled電球
US10473274B2 (en) 2015-06-24 2019-11-12 Kabushiki Kaisha Toshiba White light source system
JP2020053664A (ja) * 2018-09-20 2020-04-02 豊田合成株式会社 発光装置
JP2020136597A (ja) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 発光装置及び照明装置
JP2020136619A (ja) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 発光装置及び照明装置
JP2020532874A (ja) * 2017-09-06 2020-11-12 ジーエルビーテック カンパニー リミテッド D50/d65高演色性標準led発光モジュールおよび照明装置
JP2021058141A (ja) * 2019-10-08 2021-04-15 史朗 武藤 植物栽培用照明
JP2021068918A (ja) * 2016-05-20 2021-04-30 株式会社東芝 白色光源

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI413748B (zh) * 2011-06-15 2013-11-01 Lextar Electronics Corp Led照明燈具
US10688527B2 (en) 2011-09-22 2020-06-23 Delta Electronics, Inc. Phosphor device comprising plural phosphor agents for converting waveband light into plural color lights with different wavelength peaks
CN111208700A (zh) * 2018-11-21 2020-05-29 台达电子工业股份有限公司 荧光剂装置
WO2013069435A1 (ja) * 2011-11-07 2013-05-16 株式会社東芝 白色光源およびそれを用いた白色光源システム
CN103775873B (zh) * 2014-01-08 2017-01-11 南京琦光光电科技有限公司 一种紫光转换白光led灯及其制造方法
KR101937456B1 (ko) 2016-04-01 2019-01-11 에스케이씨하이테크앤마케팅(주) K-Si-F계 형광체 및 색순도 향상 필름을 포함하는 액정표시장치
JP6783985B2 (ja) 2016-09-29 2020-11-11 豊田合成株式会社 発光装置
JP7125720B2 (ja) 2017-03-28 2022-08-25 東芝マテリアル株式会社 半導体発光素子
CN109804476A (zh) * 2017-09-15 2019-05-24 厦门市三安光电科技有限公司 一种白光led封装结构以及白光源系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242513A (ja) 1996-07-29 1998-09-11 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いた表示装置
JP2004128443A (ja) * 2002-07-31 2004-04-22 Shin Etsu Handotai Co Ltd 発光素子及びそれを用いた照明装置
JP2007288138A (ja) * 2006-03-24 2007-11-01 Toshiba Lighting & Technology Corp 発光装置
WO2008069101A1 (ja) 2006-12-08 2008-06-12 Sharp Kabushiki Kaisha 光源、光源システムおよび照明装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564180B2 (en) 2005-01-10 2009-07-21 Cree, Inc. Light emission device and method utilizing multiple emitters and multiple phosphors
KR101318968B1 (ko) * 2006-06-28 2013-10-17 서울반도체 주식회사 발광 다이오드를 이용한 인공태양광 시스템
JP5134788B2 (ja) * 2006-07-19 2013-01-30 株式会社東芝 蛍光体の製造方法
JP2008218485A (ja) * 2007-02-28 2008-09-18 Toshiba Lighting & Technology Corp 発光装置
AU2008321873A1 (en) 2007-11-12 2009-05-22 Mitsubishi Chemical Corporation Illuminating Device
JP5217800B2 (ja) * 2008-09-03 2013-06-19 日亜化学工業株式会社 発光装置、樹脂パッケージ、樹脂成形体並びにこれらの製造方法
US20100059771A1 (en) * 2008-09-10 2010-03-11 Chris Lowery Multi-layer led phosphors
TW201011942A (en) * 2008-09-11 2010-03-16 Advanced Optoelectronic Tech Method and system for configuring high CRI LED
US20100123386A1 (en) * 2008-11-13 2010-05-20 Maven Optronics Corp. Phosphor-Coated Light Extraction Structures for Phosphor-Converted Light Emitting Devices
RU2011128712A (ru) * 2008-12-12 2013-01-20 Конинклейке Филипс Электроникс Н.В. Способ максимизации эксплуатационных характеристик светильника
KR20110118745A (ko) * 2009-02-04 2011-11-01 파나소닉 주식회사 전구형 램프 및 조명장치
CN101806430A (zh) * 2009-02-17 2010-08-18 福建省苍乐电子企业有限公司 高显色性白光led
JP2010199145A (ja) * 2009-02-23 2010-09-09 Ushio Inc 光源装置
WO2012144087A1 (ja) * 2011-04-22 2012-10-26 株式会社東芝 白色光源およびそれを用いた白色光源システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242513A (ja) 1996-07-29 1998-09-11 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いた表示装置
JP2004128443A (ja) * 2002-07-31 2004-04-22 Shin Etsu Handotai Co Ltd 発光素子及びそれを用いた照明装置
JP2007288138A (ja) * 2006-03-24 2007-11-01 Toshiba Lighting & Technology Corp 発光装置
WO2008069101A1 (ja) 2006-12-08 2008-06-12 Sharp Kabushiki Kaisha 光源、光源システムおよび照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2674662A4

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054290A1 (ja) * 2012-10-04 2014-04-10 株式会社 東芝 白色発光装置、照明装置、および歯科用照明装置
CN104718633A (zh) * 2012-10-04 2015-06-17 株式会社东芝 白色发光装置、照明装置、以及牙科用照明装置
JPWO2014054290A1 (ja) * 2012-10-04 2016-08-25 株式会社東芝 白色発光装置、照明装置、および歯科用照明装置
JP2018107471A (ja) * 2012-10-04 2018-07-05 株式会社東芝 白色発光装置、照明装置、および歯科用照明装置
JP2020014006A (ja) * 2012-10-04 2020-01-23 株式会社東芝 白色発光装置および照明装置
JP2018200884A (ja) * 2013-01-31 2018-12-20 株式会社東芝 発光装置及びled電球
JP2014182192A (ja) * 2013-03-18 2014-09-29 Canon Inc 画像表示装置及びその制御方法
JP7285877B2 (ja) 2014-10-28 2023-06-02 ソウル セミコンダクター カンパニー リミテッド 白色光源システム
JPWO2016067609A1 (ja) * 2014-10-28 2017-09-14 株式会社東芝 白色光源および白色光源システム
JP2021122014A (ja) * 2014-10-28 2021-08-26 東芝マテリアル株式会社 白色光源の使用方法および白色光源システムの使用方法
JP2019062236A (ja) * 2014-10-28 2019-04-18 株式会社東芝 白色光源
JP2017010817A (ja) * 2015-06-24 2017-01-12 東芝マテリアル株式会社 医療施設照明用白色光源システム
US10473274B2 (en) 2015-06-24 2019-11-12 Kabushiki Kaisha Toshiba White light source system
JP2018534751A (ja) * 2015-11-10 2018-11-22 フィリップス ライティング ホールディング ビー ヴィ 可変uv成分を有する調整可能な白色光源
US10441809B2 (en) 2015-11-10 2019-10-15 Signify Holding B.V. Tunable white light source with variable UV component
US9825206B2 (en) 2016-02-25 2017-11-21 Toyoda Gosei, Co., Ltd. Light-emitting device
JP2021068918A (ja) * 2016-05-20 2021-04-30 株式会社東芝 白色光源
JP7036955B2 (ja) 2016-05-20 2022-03-15 ソウル セミコンダクター カンパニー リミテッド 白色光源
US11563155B2 (en) 2016-05-20 2023-01-24 Seoul Semiconductor Co., Ltd. White light source including LED and phosphors
JP2018093161A (ja) * 2016-12-02 2018-06-14 豊田合成株式会社 発光装置
JP2018125438A (ja) * 2017-02-01 2018-08-09 豊田合成株式会社 発光装置
JP2020532874A (ja) * 2017-09-06 2020-11-12 ジーエルビーテック カンパニー リミテッド D50/d65高演色性標準led発光モジュールおよび照明装置
JP2020053664A (ja) * 2018-09-20 2020-04-02 豊田合成株式会社 発光装置
JP2020136597A (ja) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 発光装置及び照明装置
JP2020136619A (ja) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 発光装置及び照明装置
JP2021058141A (ja) * 2019-10-08 2021-04-15 史朗 武藤 植物栽培用照明

Also Published As

Publication number Publication date
US9112120B2 (en) 2015-08-18
EP2674662B1 (en) 2020-04-01
CN103459915A (zh) 2013-12-18
JPWO2012108065A1 (ja) 2014-07-03
CN103459915B (zh) 2016-06-01
TW201239274A (en) 2012-10-01
EP2674662A4 (en) 2014-07-30
EP2674662A1 (en) 2013-12-18
US20130307011A1 (en) 2013-11-21
EP3683494A1 (en) 2020-07-22
TWI417486B (zh) 2013-12-01
JP5823416B2 (ja) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5823416B2 (ja) 白色光源およびそれを用いた白色光源システム
JP5770269B2 (ja) 白色光源およびそれを用いた白色光源システム
JP6081367B2 (ja) 白色光源およびそれを用いた白色光源システム
JP6081368B2 (ja) 白色光源およびそれを用いた白色光源システム
JP5622927B2 (ja) 白色光源
US11127721B2 (en) Full spectrum white light emitting devices
US8587190B2 (en) Illumination device having improved visual perception of a skin color
EP3845033A1 (en) Cyan enriched white light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011858314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13983378

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012556746

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE