WO2012105525A1 - チューブ継手 - Google Patents

チューブ継手 Download PDF

Info

Publication number
WO2012105525A1
WO2012105525A1 PCT/JP2012/052057 JP2012052057W WO2012105525A1 WO 2012105525 A1 WO2012105525 A1 WO 2012105525A1 JP 2012052057 W JP2012052057 W JP 2012052057W WO 2012105525 A1 WO2012105525 A1 WO 2012105525A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
ring
joint
diameter
cap nut
Prior art date
Application number
PCT/JP2012/052057
Other languages
English (en)
French (fr)
Inventor
洋平 関野
Original Assignee
株式会社フロウエル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フロウエル filed Critical 株式会社フロウエル
Priority to KR1020137022619A priority Critical patent/KR101929068B1/ko
Priority to US13/982,164 priority patent/US9091374B2/en
Publication of WO2012105525A1 publication Critical patent/WO2012105525A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L19/00Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts
    • F16L19/04Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts using additional rigid rings, sealing directly on at least one pipe end, which is flared either before or during the making of the connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L19/00Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts
    • F16L19/02Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member
    • F16L19/025Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member the pipe ends having integral collars or flanges
    • F16L19/028Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member the pipe ends having integral collars or flanges the collars or flanges being obtained by deformation of the pipe wall
    • F16L19/0283Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member the pipe ends having integral collars or flanges the collars or flanges being obtained by deformation of the pipe wall and having a bell-mouthed shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • F16L33/22Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses with means not mentioned in the preceding groups for gripping the hose between inner and outer parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • F16L33/22Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses with means not mentioned in the preceding groups for gripping the hose between inner and outer parts
    • F16L33/225Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses with means not mentioned in the preceding groups for gripping the hose between inner and outer parts a sleeve being movable axially
    • F16L33/226Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses with means not mentioned in the preceding groups for gripping the hose between inner and outer parts a sleeve being movable axially the sleeve being screwed over the hose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/04Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics with a swivel nut or collar engaging the pipe
    • F16L47/041Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics with a swivel nut or collar engaging the pipe the plastic pipe end being flared either before or during the making of the connection

Definitions

  • the present invention is applicable to the flow of any fluid, including ultrapure water used in various manufacturing processes such as semiconductor manufacturing, liquid crystal manufacturing, medical / pharmaceutical manufacturing, and food processing, as well as chemicals dangerous to the human body such as sulfuric acid and hydrochloric acid.
  • the present invention relates to a tube joint used as a connecting means for a tube serving as a path.
  • the advantages of the inner ring type are that once the ring is inserted into the tube, the tube processing is completed and the workability is excellent, and when the tensile load is applied to the tube, the ring is prevented from coming off and the tensile strength Is a high point.
  • the advantage of the flare type is that the connection between the tube and the joint body is pressed by a cap nut, and there is no gap, so there is little possibility of fluid penetration, and the tube is reliably expanded. Otherwise, since it is impossible to attach the tube to the joint body, it is possible to prevent mistakes leading to an accident.
  • the above-described conventional inner ring type (see FIG. 19) has a problem in that fluid easily penetrates into both ends of the ring inserted inside the tube and fluid easily accumulates.
  • the ring is deformed to be smaller than the inner diameter of the tube, there is a problem in that the pressure when transferring the fluid is lost.
  • the tube can be incorporated into the joint body, and the state cannot be confirmed from the outside, so the ring is inserted inside the tube. Otherwise, there was a problem that there was no danger of pulling out and there was a risk of causing an accident.
  • the flare type has a smaller problem than the inner ring type, but there is also a problem that the tip of the joint body is deformed inward and pressure is lost when the fluid is transferred.
  • the flare type as shown in FIG. 22, by providing a taper with an inclination angle ⁇ 2 on the inner diameter of the tip of the joint body, no gap is created at the interface between the tube and the joint body, although the liquid pool was prevented, as shown in FIG. 20, the tip of the joint body was locally deformed in the inner diameter direction.
  • microbubbles are a major problem because they cause defects in semiconductor products in the semiconductor manufacturing process.
  • the present invention has been made paying attention to the respective problems of the conventional inner ring type and flare type as described above, and the situation in which liquid stays inside (liquid pool) and pressure loss during liquid transfer are reduced. It can be eliminated as much as possible, the construction can be simplified to reduce costs, the reliability of quality can be improved, especially the ring and tube can be greatly prevented from moving, and the sealing performance is stabilized. At the same time, an object of the present invention is to provide a tube joint that can remarkably increase the tensile strength of the tube.
  • the gist of the present invention for achieving the object described above resides in the inventions of the following items.
  • a ring that holds the expanded state while expanding one end of the tube is press-fitted, and the expanded end of the tube is connected to the joint body, and the tube is penetrated in the state described above.
  • the cap nut includes a screw hole for accommodating one end portion of the tube having an enlarged diameter, a female screw portion formed on an inner periphery of the screw hole, a back wall for closing the back side of the screw hole, and the back wall.
  • the joint body has an annular recessed groove into which one end of the tube having an enlarged diameter is fitted on one end side for tightening the cap nut, and an inner end to which the enlarged diameter of the tube is fitted inside the recessed groove.
  • the ring has an outer periphery formed in a cross-sectional shape having a maximum diameter on the center side of both ends, and is engaged so that the thickest portion having the maximum diameter is inserted into the inner periphery of one end of the tube into which the tube is press-fitted.
  • the outer cylinder part of the joint body When the inner cylinder part of the joint body is inserted into the ring and the one end part with the expanded diameter of the tube is press-fitted into the recessed groove, the outer cylinder part reaches at least the thickest part of the ring.
  • the female thread part of the cap nut is screwed into the male thread part of the joint main body, and the thickest part of the ring is the tube through the outer cylinder part having the male thread part.
  • a tube joint wherein the peripheral edge of the insertion hole of the cap nut is in pressure contact with the refracting portion of the tube which is pressed against the inner cylinder portion together with one end portion of the tube and whose diameter has been expanded by the ring.
  • the inner diameter dimension of the outer tube portion of the joint body is set smaller than the maximum outer diameter dimension of one end portion of the tube expanded by the thickest portion of the ring,
  • the present invention operates as follows. According to the tube joint described in [1], before fitting one end of the tube to the joint body, the ring that holds the expanded state while expanding the one end of the tube is press-fitted in advance. deep.
  • the ring does not reduce the diameter of the expanded end of the tube.
  • the expanded end of the tube can be easily fitted to the inner cylinder of the joint body and the outer cylinder. It is possible to press fit into the groove. Thus, it is not necessary to use a jig when connecting the tube and the joint body.
  • the ring has an outer periphery formed in a cross-sectional shape having a maximum diameter at the center side than both ends, and is engaged so that the thickest portion having the maximum diameter is inserted into the inner periphery of one end of the tube into which the tube is press-fitted. It is positioned by doing. In this way, by positioning the ring at the position, it is possible to prevent the ring from getting into the back of the tube or coming out.
  • the outer tube portion is at least the thickest portion of the ring. It will be in a state to cover.
  • the thickest part of the ring, one end of the tube, and the outer cylinder part of the joint body overlap the inner cylinder part in the axial direction, respectively. Even when a load is applied, the ring and the tube can be largely prevented from moving, the sealing performance can be stabilized, and the tensile strength of the tube can be increased.
  • the outer cylinder portion of the joint main body inserts the inner cylinder portion of the joint main body into the ring, and the one end portion of the tube whose diameter is increased is the concave groove. Is formed so that the distal end side of the outer cylinder part extends over the thickest part of the ring to a position covering the entire ring.
  • the entire end portion of the tube expanded by the ring is covered with the outer cylinder portion of the joint body.
  • the ridge ring around the inner wall of the cap nut presses the distal end side of the outer cylinder portion against one end side of the ring. Accordingly, the inlet side of the concave groove is closed so as to be narrowed, and one end portion of the tube expanded in diameter by the ring is confined in the concave groove, so that the sealing performance and the tensile strength can be further improved.
  • the hole periphery of the insertion hole of the cap nut protrudes in a mountain-shaped cross-section toward the central axis and the inlet direction of the screw hole, and the refracting portion of the tube is It is clamped between the hole periphery of the insertion hole and the distal end side of the inner cylinder part of the joint body.
  • the tensile strength of the tube with respect to the joint body is further increased, and the situation where the tube is pulled out can be more reliably prevented.
  • the inner diameter dimension of the outer cylinder portion of the joint body is smaller than the maximum outer diameter dimension of one end portion of the tube expanded by the thickest portion of the ring.
  • the distal end side edge is directed toward the central axis after the cap nut is tightened to the joint body on the inner peripheral side of the distal end side edge of the inner cylinder portion of the joint body.
  • a first inner tapered portion chamfered in advance by the thickness to be deformed, and a second inner tapered portion that is inclined more than the inclination angle on the tip side of the first inner tapered portion and prevents accumulation of liquid as a moving medium. It was.
  • the first inner tapered portion is not limited to a one-step tapered shape, but may be a two-step or three-step tapered shape.
  • the first inner tapered part of the joint main body is locally deformed in the inner diameter direction of the through hole, the fluid flow is hindered, but the first inner tapered part is deformed instead of suppressing the deformation to the inner diameter. Do not make it convex so as to hinder the flow of fluid in the state.
  • the first inner tapered portion and the second inner tapered portion it is possible to prevent the permeation of the fluid and the accumulation of liquid and to suppress the local convex bulge that hinders the flow of the fluid. it can.
  • a cap nut is fastened to the joint body on the outer peripheral side of the distal end side edge of the inner cylinder portion of the joint body, and then pressed against the inner periphery of the bent portion of the tube.
  • an outer tapered portion that maintains airtightness was provided, and the outer tapered portion was formed into a round cross-sectional shape.
  • the outer tapered portion has a rounded cross-sectional shape, so that the leakage and permeation of fluid between the distal end side of the inner cylindrical portion and the refracting portion of the tube inside the joint can be achieved without increasing the tightening torque of the cap nut. Can be prevented.
  • the tube joint of the present invention it becomes possible to solve the respective problems of the conventional inner ring type and flare type, and the situation in which liquid stays inside (liquid pool) and pressure loss during liquid transfer can be reduced. It can be eliminated as much as possible, the construction can be simplified to reduce costs, the reliability of quality can be improved, especially the ring and tube can be greatly prevented from moving, and the sealing performance is stabilized. At the same time, the tensile strength of the tube can be significantly increased.
  • FIG. 1 is a cross-sectional view of a main part showing a tube joint 10 according to the present embodiment
  • FIG. 2 is a cross-sectional view showing one end of a joint body 20 in the tube joint 10
  • FIG. 4 is a cross-sectional view showing the ring 40 of the tube joint 10
  • FIG. 5 is a perspective view showing the appearance of the tube joint 10.
  • the tube joint 10 includes a tube 11, a joint body 20, a cap nut 30, and a ring 40.
  • the tube joint 10 press-fits a ring 40 that holds the expanded state while expanding the one end portion 12 of the tube 11, connects the expanded end portion 12 of the tube 11 to the joint body 20, and
  • the tube 11 is fixed to the joint main body 20 by tightening the cap nut 30 surrounding the one end portion 12 whose diameter has been increased in a state where the tube 11 is penetrated.
  • the tube 11 is a hollow cylindrical tube.
  • a fluororesin typified by PTFE (tetrafluoroethylene) resin, PFA (tetrafluoroethylene-perfluoroalkoxyethylene copolymer) resin, or the like is used. That is, as the material of the tube 11, a material that is not only excellent in heat resistance and chemical resistance but is elastically deformable so that one end portion 12 thereof can be expanded to some extent.
  • the ring 40 is a member that is press-fitted into the one end portion 12 of the tube 11 in advance and holds the one end portion 12 in an expanded state. That is, the one end portion 12 of the tube 11 is connected to the joint body 20 described later via the ring 40.
  • the ring 40 has an overall length that is slightly shorter than the length of the seal allowance between the tube 11 and the joint body 20, and the inner diameter dimension thereof is set to be substantially the same as or slightly larger than the outer diameter of the inner cylinder portion 22 of the joint body 20. ing.
  • the ring 40 has a cross-sectional shape in which the outer periphery has a maximum diameter on the center side of both ends, specifically, a cross-sectional shape like an abacus bead. That is, the outer periphery of both ends of the ring 40 is formed in a taper shape that expands toward the center, and the outer periphery on the center side of the ring 40 is the thickest portion 41 with the maximum diameter extending by a predetermined length. It has become.
  • the ring 40 is positioned in the one end portion 12 of the tube 11 by engaging with the innermost periphery of the one end portion 12 of the tube 11 into which the thickest portion 41 having the maximum diameter is press-fitted.
  • a material of the ring 40 for example, a PTFE (tetrafluoroethylene) resin having the lowest friction coefficient among the fluororesins having excellent friction characteristics is used.
  • PTFE (tetrafluoroethylene) resin has a low mechanical strength, and in order to prevent the tube 11 from shrinking to the inner diameter, the thickness of the ring 40 has to be set thick.
  • PFA has a smaller coefficient of friction next to PTFE (tetrafluoroethylene) resin and has higher mechanical strength than PTFE (tetrafluoroethylene) resin.
  • PTFE tetrafluoroethylene
  • tetrafluoroethylene-perfluoroalkoxy ethylene copolymer resin may be used.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • ETFE tetrafluoroethylene-ethylene copolymer
  • PVDF vinyldenfluoride
  • ECTFE ethylene-chlorotrifluoroethylene
  • PPS polyphenylene sulfide
  • one end 12 of the tube 11 is connected to a joint body 20 described below in a state where the ring 40 has been previously press-fitted and diameter-expanded.
  • the one end portion 12 of the tube 11 expanded in diameter by the ring 40 is expanded along the outer diameter shape of the ring 40 with respect to the reference portion 12a which is the original outer diameter, as shown in FIG. It comprises a bulging portion 12b and a refracting portion 12c that is located between the reference portion 12a and the bulging portion 12b and finishes expanding its diameter by the ring 40.
  • the joint body 20 has an annular concave groove 21 into which one end 12 having an enlarged diameter of the tube 11 is fitted on one end side thereof, and an inner side of the concave groove 21, and the tube 11.
  • an outer cylinder part 23 which is outside the concave groove 21 and into which the enlarged end part 12 of the tube 11 is fitted.
  • a male screw portion 24 is formed from the outer periphery of the outer cylinder portion 23 to the proximal end side of the joint body 20.
  • the inner side of the inner cylinder part 22 is a through hole 25 penetrating in the screw axis direction with a hole diameter substantially the same as the inner diameter of the reference part 12a of the tube 11.
  • the material of the joint body 20 is also suitably a fluororesin having excellent chemical resistance like the tube 11.
  • the inner cylinder portion 22 extends longer than the entire length of the ring 40.
  • the outer cylinder part 23 extends from the innermost part 21 a of the concave groove 21 in parallel to the inner cylinder part 22 toward the tip side, but the overall length of the outer cylinder part 23 is set shorter than the inner cylinder part 22. ing.
  • the outer cylinder part 23 is inserted into the ring 40 while the inner cylinder part 22 is inserted into the ring 40 and the one end part 12 with the expanded diameter of the tube 11 is press-fitted to the innermost part 21 a of the groove 21.
  • the tip edge of the ring 40 is set to a length that covers at least the thickest portion 41 of the ring 40.
  • the outer diameter dimension of the inner cylinder portion 22 is set to be substantially the same as or slightly smaller than the inner diameter dimension of the ring 40 described above. Further, as shown in FIG. 6, the inner diameter dimension ⁇ P of the outer cylinder part 23 is the maximum outer diameter dimension of the one end part 12 of the tube 11 expanded by the thickest part 41 of the ring 40. It is set smaller than the outer diameter dimension ⁇ Q. That is, by tightening a cap nut 30 (to be described later) to the joint body 20, the one end portion 12 having an enlarged diameter of the tube 11 is press-fitted to the depth of the concave groove 21.
  • the thickness at which the front end side lip is deformed toward the central axis after the cap nut 30 is fastened to the joint body 20 is provided on the inner peripheral side of the distal end side rim of the inner cylinder portion 22.
  • a first inner tapered portion 26 that is chamfered in advance is provided on the inner peripheral side of the distal end side rim of the inner cylinder portion 22.
  • a second inner taper portion 27 is provided on the tip side of the first inner taper portion 26 to prevent fluid accumulation at an inclination angle ⁇ 2 that is inclined more than the inclination angle ⁇ 1 of the first inner taper portion 26. .
  • the relationship between the inclination angles of the first inner tapered portion 26 and the second inner tapered portion 27 is ⁇ 1 ⁇ ⁇ 2, and the inclination angle ⁇ 1 of the first inner tapered portion 26 is 3 ° ⁇ ⁇ 1 ⁇ 17 °.
  • the numerical value limitation of the inclination angle ⁇ 1 is determined based on the experimental data of the local deformation suppression effect, and the criterion is the tip of the joint body after assembly of the conventional flare type as shown in FIG. Based on the deformed angle ⁇ 5 of the inner diameter, the following setting was made.
  • the deformation angle ⁇ 5 when the deformation angle ⁇ 5 is less than 1.5 ° ( ⁇ 5 ⁇ 1.5 °), the effect of local deformation suppression is “effective”, and the deformation angle ⁇ 5 is 1.5 ° or more ( ⁇ 5 ⁇ 1.5 °). In this case, it was judged as “no effect” in suppressing local deformation.
  • the results are shown in the chart of FIG. According to this result, the effect of suppressing local deformation can be obtained by setting the inclination angle ⁇ 1 of the first inner tapered portion 26 in the range of 3 ° ⁇ ⁇ 1 ⁇ 17 °.
  • the tube 11 having a size of ⁇ 9.5 ⁇ ⁇ 7.5 was adopted as a typical size.
  • the first inner tapered portion 26 is not limited to the one-step tapered shape described above, and may be a two-step or three-step tapered shape. Specifically, as shown in FIG. 8, the first inner tapered portion 26 has two stages, and the tapered portion 26 (inclination angle ⁇ 3) is further added to the original first inner tapered portion 26 (inclination angle ⁇ 1). Even in the shape, it is possible to suppress local deformation in such a part. In this case, since the additional taper portion 26 (inclination angle ⁇ 3) is arranged continuously to the first inner taper portion 26 (inclination angle ⁇ 1), the additional taper portion 26 has an inclination angle ⁇ 3 equal to the first inner taper portion. The angle is smaller than the inclination angle ⁇ 1 of 26.
  • the first inner tapered portion 26 has three steps as a multi-step tapered shape, and the original first inner tapered portion 26 (inclination angle ⁇ 1) has the tapered portion 26 (inclination angle ⁇ 3).
  • the shape which added another taper part 26 may be sufficient.
  • the relationship between the inclination angles in order from the inner tapered portion 26 is ⁇ 4 ⁇ 3 ⁇ 1.
  • the 1st inner taper part 26 when adding a taper newly so that the 1st inner side taper part 26 may become a multistage, from the smallest angle among the angles of the existing 1st inner taper part 26, the 1st inner taper part 26 of It arrange
  • the specific inclination angle ⁇ 2 of the second inner tapered portion 27 from the viewpoint of preventing the accumulation of fluid, as described above, it is equal to or larger than the largest inclination angle ⁇ 1 of the first inner tapered portion 26. An angle is sufficient.
  • the tube joint 10 generally presses the tube 11 by tightening the cap nut 30 into the joint body 20, and generates stress on the interface between the joint body 20 and the tube 11, thereby leaking or penetrating internal fluid. Is to prevent. In addition, the higher this stress is, the higher the ability to prevent leakage and penetration of internal fluid.
  • the tube joint 10 according to the present embodiment when the first inner tapered portion 26 is provided on the distal end side edge of the inner cylinder portion 22 of the joint main body 20 to make it thinner, the thinned portion is deformed. Since it will become large, the stress of the interface of the joint main body 20 and the tube 11 will reduce.
  • the tube joint 10 according to the present embodiment is provided with the first inner tapered portion 26 to eliminate a convex shape that hinders fluid, and does not reduce the stress at the interface between the joint body 20 and the tube 11.
  • the specific method for reducing such stress is as follows. By tightening a cap nut 30 to be described later on the joint body 20, an axial force P0 shown in FIG. 10 is generated.
  • P an axial force
  • the shape of the outer tapered portion 28 provided on the outer peripheral side of the distal end side edge of the inner cylindrical portion 22 is considered with two simple forces.
  • the force P1 in the taper angle direction and the force P2 in the perpendicular direction to the outer taper portion 28 are decomposed. Of these two forces, P2 corresponds to the stress at the interface between the joint body 20 and the tube 11.
  • the tube joint 10 employs a shape for increasing P2 without increasing P0.
  • FIG. 11A is an enlarged view of the main part in FIG. 10, and FIG. 11B is an enlarged view of ⁇ 6.
  • an angle of ⁇ 6 in the case of a round shape, ⁇ 6 is a point at which the angle is measured near the tip of the outer tapered portion 28 in FIG. 13 (portion close to p1).
  • the angle between the tangent line and the line parallel to the axis is larger, and as shown in FIG. 12, the further away from p1, ⁇ 6 becomes smaller.
  • the closer to p1, the larger ⁇ 6 and the component force P2. As a result, even if a necessary stress is applied in the vicinity of the tip, it is possible to prevent extra stress from being applied to other portions.
  • the axial force P0 shown in FIG. 10 is proportional to the sum of P2, even if a sufficient force is applied to the vicinity of the tip of the outer tapered portion 28 by forming the outer tapered portion 28 into a round shape. In a portion far from the tip, P2 becomes small, and the total sum of P2 can be suppressed smaller than that in the case where the outer tapered portion 28 is a straight line. From the above, it is possible to prevent leakage and penetration of internal fluid without increasing the tightening torque of the cap nut 30 by not increasing the axial force P0 as a whole.
  • a tightened portion having a substantially hexagonal cross section is provided in the outer peripheral center portion of the joint body 20.
  • a tightening tool such as a spanner is fitted into the tightened portion.
  • a concave groove 21, an inner cylinder part 22, an outer cylinder part 23, and a male screw part 24 are provided on the other end side of the joint body 20 with the tightened part in between, as in the one end side described above. Yes.
  • the joint body 20 communicates with the through hole 25 from the distal end side edge of the inner cylinder part 22 on one end side to the distal end side edge of the inner cylinder part 22 on the other end side.
  • the cap nut 30 has a back wall 33 perpendicular to the screw shaft so as to form a bag portion on the back side of the screw hole 31.
  • a female screw portion 32 is formed on the inlet side of the screw hole 31 of the cap nut 30, and an insertion hole 34 for penetrating the tube 11 is formed in the back wall 33.
  • a tightening portion 35 (see FIG. 5) having a substantially hexagonal cross section is provided on the outer periphery of the cap nut 30, and a nut tightening tool such as a spanner is fitted into the tightened portion 35.
  • the hole peripheral edge 34a of the insertion hole 34 protrudes in a mountain-shaped cross-sectional shape inclined toward the entrance of the screw hole 31 toward the central axis (screw axis).
  • the hole peripheral edge 34 a is a portion that is brought into pressure contact with the refracting portion 12 c in the one end portion 12 of the tube 11. That is, the refracting portion 12 c of the tube 11 is sandwiched between the hole peripheral edge 34 a of the insertion hole 34 and the outer tapered portion 28 that is the distal end side of the inner cylinder portion 22.
  • the cap nut 30 is also preferably made of a fluororesin or the like as a specific material, like the tube 11 and the joint body 20.
  • the tube joint 10 has a flare type as a basic shape. This is because it is difficult for the inner ring type to prevent fluid permeation and to prevent fluid pressure loss. Further, by adopting the flare type as the basic shape, there is no possibility of an accident when the ring 40 as shown in FIG. 21 is not inserted. This is because the tube 11 cannot be attached unless the diameter is increased, and no problem occurs when the diameter is increased.
  • the tube joint 10 has a flared type as a basic shape.
  • the tube 11 is flared, but the diameter of the tube 11 can be expanded by pressing the ring 40 once into the tube 11.
  • the work of expanding the diameter of the one end portion 12 of the tube 11 many times becomes unnecessary, and the workability is improved.
  • the ring 40 even when a tensile load is applied to the tube 11, the ring 40 is prevented from being pulled out, so that the tensile strength is increased.
  • the inner diameter portion of the ring becomes a fluid flow path after assembling the tube joint.
  • the inner cylinder portion 22 of the joint body 20 is disposed inside the ring 40, so that the inner diameter portion of the inner cylinder portion 22 serves as a fluid flow path.
  • the ring 40 proposed this time has a larger outer diameter.
  • the outer diameter dimension of the ring 40 is increased, when the ring 40 is inserted into the inner diameter of the tube 11, the load on the tube 11 is large, and the tube 11 may be bent and the ring 40 may not be inserted. .
  • the ring 40 is premised on using PFA (tetrafluoroethylene-perfluoroalkoxyethylene copolymer) resin or the like as described above.
  • the tube 11 may be buckled when the ring 40 is inserted into the inner diameter of the one end 12 of the tube 11, and the tube 11 is connected to one end of the tube 11. Even if it can be inserted into the inner diameter of the portion 12, the shrinkage to the inner diameter of the one end portion 12 of the tube 11 becomes large, and as a result, there is a high possibility that it is difficult to insert into the concave groove 21 of the joint body 20. Become.
  • FIG. 14 shows a process of press-fitting the ring 40 while expanding the one end portion 12 of the tube 11.
  • a jig 60 that is a ring insertion part is used.
  • the jig 60 includes a small diameter portion 61 smaller than the inner diameter of the tube 11, a flare portion 62 that gradually increases in diameter from the small diameter portion 61, and a tube following the flare portion 62. 11 and a large-diameter ring holding portion 63 that expands the inner diameter of the joint body 20 to a diameter that fits outside the inner cylinder portion 22 of the joint body 20.
  • the material of the jig 60 is suitably a PTFE (tetrafluoroethylene) resin having the lowest friction coefficient among the fluororesins having excellent friction characteristics.
  • the ring 40 is inserted up to the ring holding portion 63 of the jig 60.
  • the tube 11 is fixed on the same axis as the jig 60.
  • the one end portion 12 of the tube 11 is positioned in a state of being fitted on the small diameter portion 61 of the jig 60.
  • the jig 60 is moved in the direction of the tube 11, and the jig 60 and the ring 40 are pushed into the inside of the tube 11.
  • the ring 40 has its thickest portion 41 engaged with the inner diameter of the tube 11.
  • the tube 11 is held in a state of being positioned inside the one end portion 12 of the tube 11 by the contraction force.
  • the ring 40 can be internally fitted while the diameter of the ring 12 is expanded.
  • FIG. 15 shows an assembly process of the tube joint 10.
  • the joint body 20, the tube 11 whose end 12 is expanded by the ring 40, and the cap nut 30 are arranged on the same axis, as shown in FIG. 15 (b).
  • the inner tube portion 22 of the joint body 20 While inserting the inner tube portion 22 of the joint body 20 into the ring 40, the one end portion 12 whose diameter has been increased is press-fitted into the recessed groove 21 of the joint body 20.
  • the outer cylinder portion 23 of the joint body 20 covers the thickest portion 41 of the ring 40.
  • the female screw portion 32 of the cap nut 30 is screwed into the male screw portion 24 of the joint body 20, and is tightened to a predetermined position. Assembly is complete.
  • the thickest part 41 of the ring 40 is pressed together with the one end part 12 of the tube 11 to the inner cylinder part 22 through the outer cylinder part 23 with the male thread part 24 of the joint body 20.
  • the hole peripheral edge 34a of the insertion hole 34 of the cap nut 30 will be in the state which press-contacted to the bending part 12c of the tube 11 which diameter-expands by the ring 40.
  • the thickest part 41 of the ring 40, the one end part 12 of the tube 11, and the outer cylinder part 23 of the joint body 20 overlap with the inner cylinder part 22 in the axial direction, respectively. Even when a tensile force is applied to the tube 11, the ring 40 and the tube 11 can be largely prevented from moving, the sealing performance can be stabilized, and the tensile strength of the tube 11 can be increased.
  • the cap nut 30 has a hole peripheral edge 34a of the insertion hole 34 protruding in a mountain-shaped cross-sectional shape inclined toward the entrance of the screw hole 31 toward the central axis. Therefore, when the female threaded portion 32 of the cap nut 30 is screwed into the male threaded portion 24 of the joint body 20, the hole peripheral edge 34a comes into pressure contact with the bent portion 12c of the tube 11, and the bent portion 12c , And is sandwiched between the hole peripheral edge 34 a and the outer tapered portion 28 of the inner cylindrical portion 22. Thereby, the tensile strength of the tube 11 with respect to the coupling main body 20 becomes still larger, and the situation where the tube 11 comes off can be prevented more reliably.
  • the inner cylinder portion 22 of the joint body 20 when the inner cylinder portion 22 of the joint body 20 is locally deformed in the inner diameter direction of the through hole 25, the flow of the fluid is hindered, but the first inner tapered portion 26 reduces the inner diameter to the inner diameter. Instead of restraining the deformation of the fluid, it was made not to have a convex shape that would obstruct the flow of fluid in the deformed state.
  • the 1st inner taper part 26 and the 2nd inner taper part 27 may be not only a 1 step
  • the inner diameter dimension ⁇ P of the outer cylinder portion 23 is the maximum outer diameter dimension of the one end portion 12 of the tube 11 expanded by the thickest portion 41 of the ring 40.
  • the outer diameter dimension was set smaller than ⁇ Q.
  • FIG. 17 and 18 show a second embodiment of the present invention.
  • the basic configuration is the same as that of the tube joint 10 according to the first embodiment described above, but the specific configuration of the outer cylinder portion 23A of the joint body 20A is different.
  • FIG. 17 is a main part sectional view showing the tube joint 10A according to the present embodiment
  • FIG. 18 is a main part sectional view showing a state during the assembly of the tube joint 10A.
  • the cap nut 30A in FIG. 18 has shown the cut part end elevation.
  • the outer cylinder portion 23 ⁇ / b> A of the joint main body 20 ⁇ / b> A is inserted into the ring 40 with the inner cylinder portion 22 of the joint main body 20 ⁇ / b> A, and the one end of the tube 11 whose diameter is increased.
  • the tip end side 29 is formed so as to extend to a position covering the entire thickest portion 41 of the ring 40 and covering the entire ring 40. Yes.
  • the entire one end portion 12 of the tube 11 expanded in diameter by the ring 40 is covered with the outer cylinder portion 23A of the joint body 20A. That is, when the female screw portion 32 of the cap nut 30A is screwed into the male screw portion 24 of the joint body 20A in the state shown in FIG. 18, the protruding ring 36 around the back wall 33 of the cap nut 30A is The distal end side 29 of the cylindrical portion 23 ⁇ / b> A is pressed against one end side of the ring 40.
  • the inlet side of the concave groove 21 is closed so as to be narrowed, and the one end portion 12 of the tube 11 whose diameter is expanded by the ring 40 is confined in the concave groove 21.
  • the tensile strength can be increased.
  • symbol is attached
  • the specific configuration is not limited to the above-described embodiments, and there may be changes and additions within the scope not departing from the gist of the present invention. It is included in the present invention.
  • the inner cylinder part 22 and the outer cylinder part 23 on the one end side and the other end side of the joint body 20 are formed to have the same diameter, but may be formed to have different diameters.
  • the inner cylinder part 22 and the outer cylinder part 23 of both ends are located on the same axis, when the through holes 25 are bent in an L shape, they are connected in directions orthogonal to each other, and each has a T-shaped path. You may comprise so that it may continue.
  • the tube joint according to the present invention includes semiconductor manufacturing and liquid crystal manufacturing, ultrapure water handled in various manufacturing processes such as medical / pharmaceutical manufacturing, food processing, etc., and contains chemicals that are dangerous to the human body such as sulfuric acid and hydrochloric acid, It is used as a connecting means for tubes that serve as a flow path for all fluids.
  • SYMBOLS 10 Tube coupling 10A ... Tube coupling 11 ... Tube 12 ... One end part 12a ... Reference
  • Screw hole 32 Female thread part 33 ... Back wall 34 ... Insertion hole 34a ... Hole peripheral edge 35 ... Fastened part 36 ... Projection ring 40 ... Ring 41 ... Thickest part 60 ... Jig 61 ... Small diameter Part 62 ... Flare part 63 ... Ring holding part

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Joints That Cut Off Fluids, And Hose Joints (AREA)
  • Joints With Pressure Members (AREA)

Abstract

 施工作業を簡易化して迅速に行うことを可能とし、コスト低減を実現できると共に、品質の信頼性を向上させることができるチューブ継手である。チューブ(11)の一端部(12)にリング(40)を予め圧入することで、該一端部(12)は拡径した状態に保持される。このリング(40)内に継手本体(20)の内筒部(22)を挿入しつつ、前記一端部(12)を凹溝(21)の奥まで圧入した際に、外筒部(23)がリング(40)の最肉厚部(41)まで覆う状態となる。この状態で継手本体(20)に袋ナット(30)を螺合して、外筒部(23)を介してリング(40)の最肉厚部(41)が前記一端部(12)と共に内筒部(22)に押圧され、かつ、リング(40)によりチューブ(11)の屈折部(12c)に、袋ナット(30)の差込孔(34)の孔周縁(34a)が圧接する。

Description

チューブ継手
 本発明は、半導体製造や液晶製造を始め、医療・医薬品製造、食品加工等の各種製造工程で取り扱われる超純水や、硫酸、塩酸といったような人体に危険な薬液を含む、あらゆる流体の流路となるチューブの接続手段として用いられるチューブ継手に関する。
 従来、この種のチューブ継手はフッ素樹脂に代表される樹脂製のものが多く知られており、一般的には大別すると、図19に示した「インナーリングタイプ」と呼ばれる、チューブの内側にリングを挿入する種類と、図20に示した「フレアータイプ」と呼ばれる、チューブを拡径(フレアー)する種類が存在する。 
 インナーリングタイプとしては、特許文献1に記載されたものが知られており、また、フレアータイプとしては、特許文献2に記載されたものが知られている。このような各種類のチューブ継手は、それぞれ長所と短所を持ち合わせている。
 インナーリングタイプの長所としては、リングを一度チューブに挿入することで、チューブの処理が完了し、施工性に優れている点や、チューブに引っ張り荷重が負荷した際にリングが抜け防止となり引っ張り強度が高い点等である。 
 また、フレアータイプの長所としては、チューブと継手本体の接続部とは袋ナットにより圧接されており、隙間がないことから、流体が浸み込む可能性が低い点や、チューブを確実に拡径しないと、チューブを継手本体に取り付けることが不可能であることから、事故に繋がるようなミスを防止できる点等である。
特開平10-318475号公報 特開平11-182751号公報
 しかしながら、前述した従来一般のインナーリングタイプ(図19参照)では、チューブの内側に挿入したリングの両端に、流体が浸み込みやすく、また、流体が溜りやすいという問題点があった。また、リングがチューブ内径よりも小さく変形するため、流体を移送する際の圧力を損失するという問題点もあった。
 さらに、リングをチューブの内側に挿入しない状態でも、図21に示すように、チューブを継手本体内に組み込むことが可能な形状であり、その状態を外部から確認できないため、リングをチューブ内側に挿入しなかった場合は、引き抜き抵抗が全くなくなり、事故に繋がる危険性があるという問題点もあった。
 このような従来一般のインナーリングタイプの問題点は、前述した特許文献1に記載のチューブ継手によれば解決される。しかしながら、特許文献1に記載のチューブ継手であっても、継手に振動がかかった場合や、チューブに引っ張り力が負荷した場合には、拡径リングとチューブがどうしても動いてしまう。そのため、シール性能が不安定となったり、チューブの引っ張り強度が弱まるという問題点があった。
 一方、前述した従来一般のフレアータイプ(図20参照)の他、特許文献2に記載のチューブ継手は、チューブを継手本体に取り付けるために、チューブを拡径した形状で保持する必要がある。そのため、チューブを3~10回程拡径する動作を繰り返す必要があり、この動作にかなりの労力が必要となるため、施工性に難があるという問題点があった。また、チューブに引っ張り荷重が負荷した際に、インナーリングタイプと比較すると、引っ張り強度が弱い傾向にあるという問題点もあった。
 さらに、フレアータイプでは、インナーリングタイプと比較すると問題は小さいが、継手本体の先端部が内側に変形しており、流体を移送する際の圧力を損失するという問題点もあった。フレアータイプでは、図22に示すように、継手本体の先端部内径に傾斜角度θ2のテーパーを設けることで、チューブと継手本体の境界面に隙間が生まれないようにして、液の浸み込みや液溜りを防止していたが、図20に示すように、継手本体の先端部は、内径方向に局部的な変形を起こしていた。
 このような変形によって、流体の流れが妨げられたり、圧力損失の原因ともなっていた。しかも、変形によって、流体の流れが乱されることに起因して、マイクロバブルと呼ばれる微細な泡を発生させることもある。かかるマイクロバブルは、半導体製造工程では、半導体製品の不良を発生させる要因となるため、大きな問題点であった。
 本発明は、前述したような従来のインナーリングタイプとフレアータイプのそれぞれの問題点に着目してなされたものであり、内部に液体が滞留する事態(液溜り)や液体移送時の圧力損失を極力なくすことができ、施工を簡易化してコスト低減を実現すると共に、品質の信頼性を向上させることができ、特にリングとチューブが動くことを大幅に防止することができ、シール性能を安定させると共に、チューブの引っ張り強度を格段に高めることができるチューブ継手を提供することを目的としている。
 前述した目的を達成するための本発明の要旨とするところは、以下の各項の発明に存する。 
 [1]チューブの一端部を拡径しつつ該拡径した状態に保持するリングを圧入し、該チューブの拡径した一端部を継手本体に接続すると共に、該チューブを貫通させた状態で前記拡径した一端部を囲む袋ナットを継手本体に締め付けることで、継手本体にチューブを固定するチューブ継手において、
 前記袋ナットは、前記チューブの拡径した一端部を収めるネジ孔と、該ネジ孔の内周に形成された雌ネジ部と、該ネジ孔の奥側を塞ぐ奥壁と、該奥壁を貫き前記チューブを貫通させる差込孔とを有し、
 前記継手本体は、前記袋ナットを締め付ける一端側に、前記チューブの拡径した一端部が嵌入する環状の凹溝と、該凹溝の内側となり前記チューブの拡径した一端部が外嵌する内筒部と、該凹溝の外側となり前記チューブの拡径した一端部が内嵌する外筒部と、該外筒部の外周に形成されて前記雌ネジ部が螺合する雄ネジ部と、前記内筒部の内側で前記チューブの内径とほぼ同じ孔径でネジ軸方向へ貫通する貫通孔とを有し、
 前記リングは、その外周が両端よりも中央側で最大径となる断面形状に形成され、該最大径となる最肉厚部が圧入した前記チューブの一端部の内周に喰い込むように係合することで位置決めされ、
 前記リング内に前記継手本体の内筒部を挿入しつつ、前記チューブの拡径した一端部を前記凹溝の奥まで圧入した際に、前記外筒部が前記リングの少なくとも最肉厚部まで覆う状態となり、この状態で前記継手本体の雄ネジ部に前記袋ナットの雌ネジ部を螺合して、該雄ネジ部のある前記外筒部を介して前記リングの最肉厚部がチューブの一端部と共に前記内筒部に押圧され、かつ、前記リングにより拡径し終わるチューブの屈折部に、前記袋ナットの差込孔の孔周縁が圧接したことを特徴とするチューブ継手。
 [2]前記継手本体の外筒部は、前記リング内に前記継手本体の内筒部を挿入しつつ、前記チューブの拡径した一端部を前記凹溝の奥まで圧入した際に、先端側が前記リングの最肉厚部を乗り越えてリング全体を覆う位置まで延びる状態に形成され、
 前記袋ナットは、その前記奥壁の周囲に、中心軸かつ前記ネジ孔の入口方向へ山型断面形状に突出し、袋ナットを継手本体に締め付ける際、前記外筒部の先端側を前記リングの一端側に押し付ける突条環を有していることを特徴とする[1]に記載のチューブ継手。
 [3]前記袋ナットの差込孔の孔周縁は、中心軸かつ前記ネジ孔の入口方向へ山型断面形状に突出し、
 前記チューブの屈折部は、前記差込孔の孔周縁と前記内筒部の先端側との間に挟持されることを特徴とする[1]または[2]に記載のチューブ継手。
 [4]前記継手本体の外筒部の内径寸法を、前記リングの最肉厚部により拡径された前記チューブの一端部の最大外径寸法よりも小さく設定し、
 前記袋ナットを継手本体に締め付けることで、前記チューブの拡径した一端部が前記凹溝の奥まで圧入されることを特徴とする[1],[2]または[3]に記載のチューブ継手。
 [5]前記継手本体の内筒部の先端側口縁の内周側に、前記袋ナットを継手本体に締め付けた後に先端側口縁が中心軸に向って変形する厚み分だけ予め面取りした第1内側テーパー部と、該第1内側テーパー部の先端側でその傾斜角以上に傾斜し移動媒体である流体の溜りを防止する第2内側テーパー部とを設けたことを特徴とする[1],[2],[3]または[4]に記載のチューブ継手。
 [6]前記継手本体の内筒部の先端側口縁の外周側に、前記袋ナットを継手本体に締め付けた後に前記チューブの屈折部の内周に圧接して気密性を保持する外側テーパー部を設け、該外側テーパー部をアール断面形状に形成したことを特徴とする[1],[2],[3],[4]または[5]に記載のチューブ継手。
 前記本発明は、次のように作用する。 
 前記[1]に記載のチューブ継手によれば、チューブの一端部を継手本体に外嵌する前に、チューブの一端部を拡径しつつ該拡径した状態に保持するリングを予め圧入しておく。
 リングによって、チューブの拡径した一端部は縮径することはなく、かかる拡径した状態のチューブの一端部を、継手本体の内筒部に容易に外嵌させると共に外筒部に内嵌させつつ、凹溝に圧入することができる。このようにチューブと継手本体の接続時には、特に治具を用いる必要はない。
 前記リングは、その外周が両端よりも中央側で最大径となる断面形状に形成され、該最大径となる最肉厚部が圧入した前記チューブの一端部の内周に喰い込むように係合することで位置決めされる。このように、リングを当該位置に位置決めすることで、リングがチューブの奥に入り込んでしまったり、逆に抜け出てしまう事態を防止することができる。
 また、前記リング内に継手本体の内筒部を挿入しつつ、前記チューブの拡径した一端部を前記凹溝の奥まで圧入した際に、前記外筒部は前記リングの少なくとも最肉厚部まで覆う状態となる。
 この状態で継手本体の雄ネジ部に袋ナットの雌ネジ部を螺合すると、該雄ネジ部のある外筒部を介してリングの最肉厚部がチューブの一端部と共に内筒部に軸心方向に押圧され、かつ、リングにより拡径し終わるチューブの屈折部に、袋ナットの差込孔の孔周縁が圧接する。
 従って、継手本体の内筒部の先端側、袋ナットの差込孔の孔周縁、チューブの屈折部の各間の隙間がなくなり十分な密着性が得られ、継手本体にチューブを強固に接続し固定することができる。
 特に、リングの最肉厚部、チューブの一端部、それに継手本体の外筒部が、それぞれ軸心方向に内筒部に重なり合うので、継手本体に振動がかかった場合や、チューブに引っ張り力が負荷した場合でも、リングとチューブが動くことを大幅に防止することができ、シール性能を安定させると共に、チューブの引っ張り強度を高めることができる。
 前記[2]に記載のチューブ継手によれば、前記継手本体の外筒部は、前記リング内に前記継手本体の内筒部を挿入しつつ、前記チューブの拡径した一端部を前記凹溝の奥まで圧入した際に、外筒部の先端側が前記リングの最肉厚部を乗り越えてリング全体を覆う位置まで延びる状態に形成されている。
 これにより、リングにより拡径されたチューブの一端部全体が継手本体の外筒部で取り囲まれるよう覆われた状態となる。この状態で継手本体に袋ナットを螺合すると、袋ナットの奥壁の周囲にある突条環が、前記外筒部の先端側をリングの一端側に押し付けることになる。従って、前記凹溝の入口側が狭まるように塞がれ、リングで拡径されたチューブの一端部が凹溝に閉じ込められることにより、なおさらシール性能と引っ張り強度を高めることができる。
 前記[3]に記載のチューブ継手によれば、前記袋ナットの差込孔の孔周縁は、中心軸かつネジ孔の入口方向へ山型断面形状に突出しており、前記チューブの屈折部は、前記差込孔の孔周縁と前記継手本体の内筒部の先端側との間に挟持される。これにより、継手本体に対するチューブの引っ張り強度がいっそう大きくなり、チューブが抜ける事態をより確実に防止することができる。
 前記[4]に記載のチューブ継手によれば、前記継手本体の外筒部の内径寸法を、前記リングの最肉厚部により拡径された前記チューブの一端部の最大外径寸法よりも小さく設定する。そして、前記袋ナットを継手本体に締め付けることで、チューブの拡径した一端部が袋ナットの凹溝の奥まで圧入されるようにしたから、よりいっそうシール性能が安定して気密性を高めることができる。
 前記[5]に記載のチューブ継手によれば、前記継手本体の内筒部の先端側口縁の内周側に、袋ナットを継手本体に締め付けた後に先端側口縁が中心軸に向って変形する厚み分だけ予め面取りした第1内側テーパー部と、該第1内側テーパー部の先端側でその傾斜角以上に傾斜し移動媒体である液体の溜りを防止する第2内側テーパー部とを設けた。なお、第1内側テーパー部は、1段のみのテーパー形状に限らず、2段あるいは3段等と多段テーパー形状にしても良い。
 継手本体の内筒部が貫通孔の内径方向に局所的な変形を起こすと、流体の流れの妨げとなるが、前記第1内側テーパー部によって、内径への変形を抑えるのではなく、変形した状態で流体の流れの妨げとなるような凸状にならないようにする。第1内側テーパー部と第2内側テーパー部とを設けたことにより、流体の浸み込みや液溜りを防止すると共に、流体の流れの妨げとなる局部的な凸状の出っ張りを抑制することができる。
 前記[6]に記載のチューブ継手によれば、前記継手本体の内筒部の先端側口縁の外周側に、袋ナットを継手本体に締め付けた後に前記チューブの屈折部の内周に圧接して気密性を保持する外側テーパー部を設け、該外側テーパー部をアール断面形状に形成した。このように外側テーパー部をアール断面形状としたことにより、袋ナットの締め付けトルクを増加させずに、継手内部の特に内筒部の先端側とチューブの屈折部との間における流体の漏洩や浸透を防ぐことが可能となる。
 本発明に係るチューブ継手によれば、従来のインナーリングタイプとフレアータイプのそれぞれの問題点を解決することが可能となり、内部に液体が滞留する事態(液溜り)や液体移送時の圧力損失を極力なくすことができ、施工を簡易化してコスト低減を実現すると共に、品質の信頼性を向上させることができ、特にリングとチューブが動くことを大幅に防止することができ、シール性能を安定させると共に、チューブの引っ張り強度を格段に高めることができる。
本発明の第1実施の形態に係るチューブ継手を示す要部断面図である。 本発明の第1実施の形態に係るチューブ継手のうち継手本体の一端部を示す断面図である。 本発明の第1実施の形態に係るチューブ継手のうち袋ナットを示す断面図である。 本発明の第1実施の形態に係るチューブ継手のうちリングを示す断面図である。 本発明の第1実施の形態に係るチューブ継手の外観を示す斜視図である。 本発明の第1実施の形態に係るチューブ継手における外筒部の内径寸法とリングの最肉厚部により拡径されたチューブの一端部の最大外径寸法との関係を示す説明図である。 本発明の第1実施の形態に係るチューブ継手における内筒部の第1内側テーパー部と第2内側テーパー部の傾斜角を示す説明図である。 本発明の第1実施の形態に係るチューブ継手における内筒部の第1内側テーパー部を2段にした変形例を示す説明図である。 本発明の第1実施の形態に係るチューブ継手における内筒部の第1内側テーパー部を3段にした変形例を示す説明図である。 本発明の第1実施の形態に係るチューブ継手における内筒部の外側テーパー部での力のかかる方向を示す説明図である。 本発明の第1実施の形態に係るチューブ継手における内筒部の外側テーパー部での応力の分散例を示す説明図である。 本発明の第1実施の形態に係るチューブ継手における内筒部の外側テーパー部のアール形状の意義を示す説明図である。 本発明の第1実施の形態に係るチューブ継手における内筒部の外側テーパー部のアール形状の角度を特定する説明図である。 本発明の第1実施の形態に係るチューブ継手においてチューブの一端部を拡径しつつリングを圧入する工程を順に示す説明図である。 本発明の第1実施の形態に係るチューブ継手の組み立て工程を順に示す説明図である。 本発明の第1実施の形態に係るチューブ継手における各部品の具体的な寸法例を示す説明図である。 本発明の第2実施の形態に係るチューブ継手を示す要部断面図である。 本発明の第2実施の形態に係るチューブ継手の組み立て途中の状態を示す要部断面図である。 従来一般のインナーリングタイプのチューブ継手の代表例を示す要部断面図である。 従来一般のフレアータイプのチューブ継手の代表例を示す要部断面図である。 従来一般のインナーリングタイプのチューブ継手における問題点を説明するための要部断面図である。 従来一般のフレアータイプのチューブ継手における継手本体の先端部内径に設けたテーパーを示す要部断面図である。 従来一般のフレアータイプのチューブ継手における継手本体の先端部内径の変形した角度を説明するための要部断面図である。 本実施の形態に係るチューブ継手における継手本体の内筒部の第1内側テーパー部の傾斜角を定めるための実験データを示した図表である。
 以下、図面に基づき、本発明を代表する各種実施の形態を説明する。 
 図1~図16は、本発明の第1実施の形態を示している。 
 図1は、本実施の形態に係るチューブ継手10を示す要部断面図、図2は、チューブ継手10のうち継手本体20の一端部を示す断面図、図3は、チューブ継手10のうち袋ナット30を示す断面図、図4は、チューブ継手10のうちリング40を示す断面図、図5は、チューブ継手10の外観を示す斜視図である。
 図1~図5に示すように、チューブ継手10は、チューブ11と、継手本体20と、袋ナット30と、それにリング40とを組み合わせて成る。かかるチューブ継手10は、チューブ11の一端部12を拡径しつつ該拡径した状態に保持するリング40を圧入し、該チューブ11の拡径した一端部12を継手本体20に接続すると共に、該チューブ11を貫通させた状態で前記拡径した一端部12を囲む袋ナット30を継手本体20に締め付けることで、継手本体20にチューブ11を固定したものである。
 図1に示すように、チューブ11は内部が空洞の円筒管である。チューブ11の材質として、例えば、PTFE(四フッ化エチレン)樹脂、PFA(四フッ化エチレン-パーフルオロアルコキシエキレン共重合)樹脂等に代表されるフッ素樹脂等が用いられる。すなわち、チューブ11の材質としては、耐熱性や耐薬品性に優れるだけではなく、その一端部12が、ある程度拡径し得るように弾性変形が可能な材質が用いられる。
 図1,図5に示すように、リング40は、前記チューブ11の一端部12に予め圧入され、該一端部12を拡径した状態に保持するための部材である。すなわち、チューブ11の一端部12は、リング40を介して後述する継手本体20に接続されることになる。リング40は、チューブ11と継手本体20とのシール代の長さ分より若干短い全長を有し、その内径寸法は、継手本体20の内筒部22の外径とほぼ同じか若干大きく設定されている。
 詳しく言えばリング40は、その外周が両端よりも中央側で最大径となる断面形状、具体的には算盤珠のような断面形状に形成されている。すなわち、リング40の両端側の外周は、中央側に向って拡径するテーパー形状に形成されており、リング40の中央側の外周が、最大径で所定長さだけ延びた最肉厚部41となっている。
 リング40は、その最大径となる最肉厚部41が圧入した前記チューブ11の一端部12の内周に喰い込むように係合することにより、前記チューブ11の一端部12内に位置決めされる。なお、リング40の材質としては、例えば、摩擦特性に優れたフッ素樹脂の中でも最も摩擦係数の低いPTFE(四フッ化エチレン)樹脂を用いる。ただし、PTFE(四フッ化エチレン)樹脂は機械強度が低く、チューブ11の内径への収縮を防止するには、リング40の肉厚を厚く設定する必要があった。
 このことから、リング40に最適な材質として、PTFE(四フッ化エチレン)樹脂に次ぐ摩擦係数の小ささを有しており、かつPTFE(四フッ化エチレン)樹脂よりも機械強度の高い、PFA(四フッ化エチレン-パーフルオロアルコキシエキレン共重合)樹脂を用いると良い。この他、FEP(四フッ化エチレン-六フッ化プロピレン共重合)樹脂、ETFE(四フッ化エチレン-エチレン共重合)樹脂、PVDF(ビニルデンフルオライド)樹脂、ECTFE(エチレン-クロロトリフルオロエチレン)樹脂、PPS(ポリフェニレンサルファイド)樹脂も使用可能である。
 図1に示すように、チューブ11の一端部12は、前記リング40が予め圧入され拡径された状態で、次述する継手本体20に接続される。ここでリング40により拡径されたチューブ11の一端部12は、図6に示すように、本来の外径である基準部12aに対して、リング40の外径形状に沿って拡径された膨出部12b、および基準部12aと膨出部12bとの間に位置してリング40により拡径し終わる屈折部12cとから成る。
 図1,図2に示すように、継手本体20は、その一端側に、前記チューブ11の拡径した一端部12が嵌入する環状の凹溝21と、該凹溝21の内側となり前記チューブ11の拡径した一端部12が外嵌する内筒部22と、該凹溝21の外側となり前記チューブ11の拡径した一端部12が内嵌する外筒部23とを有している。
 ここで外筒部23の外周から継手本体20の基端側にかけて雄ネジ部24が形成されている。また、内筒部22の内側は、前記チューブ11の基準部12aの内径とほぼ同じ孔径でネジ軸方向へ貫通する貫通孔25となっている。なお、継手本体20の材質も、前記チューブ11と同様に耐薬品性に優れたフッ素樹脂等が適している。
 内筒部22は、前記リング40の全長分よりも長く延びている。外筒部23は、凹溝21の最奥部21aより内筒部22と平行にその先端側に向って延びているが、外筒部23の全長は前記内筒部22よりも短く設定されている。ここで外筒部23は、前記リング40内に内筒部22を挿入しつつ、チューブ11の拡径した一端部12を凹溝21の最奥部21aまで圧入した際に、外筒部23の先端縁が前記リング40の少なくとも最肉厚部41を覆う状態となる長さに設定されている。
 内筒部22の外径寸法は、前述したリング40の内径寸法とほぼ同じか若干小さく設定されている。また、図6に示すように、外筒部23の内径寸法φPは、リング40の最肉厚部41により拡径されたチューブ11の一端部12の最大外径寸法である膨出部12bの外径寸法φQよりも小さく設定されている。すなわち、後述する袋ナット30を継手本体20に締め付けることで、チューブ11の拡径した一端部12が凹溝21の奥まで圧入されるようになっている。
 また、図7に示すように、内筒部22の先端側口縁の内周側には、袋ナット30を継手本体20に締め付けた後に先端側口縁が中心軸に向って変形する厚み分だけ予め面取りした第1内側テーパー部26が設けられている。さらに、第1内側テーパー部26の先端側には、該第1内側テーパー部26の傾斜角θ1以上に傾斜した傾斜角θ2で流体の溜りを防止する第2内側テーパー部27が設けられている。
 第1内側テーパー部26と第2内側テーパー部27のそれぞれの傾斜角の関係は、θ1≦θ2であり、また、第1内側テーパー部26の傾斜角θ1は、3°≦θ1≦17°に設定されている。ここで傾斜角θ1の数値限定は、局部変形抑制効果の実験データに基づき定められたものであり、その判断基準は、図23に示すような従来のフレアータイプの組み立て後における継手本体の先端部内径の変形した角度θ5に基づき、次のように設定した。
 すなわち、変形角度θ5が1.5°未満(θ5<1.5°)の場合、局部変形抑制の「効果有り」とし、変形角度θ5が1.5°以上(θ5≧1.5°)の場合、局部変形抑制の「効果無し」として判断した。その結果を図24の図表に示している。この結果によれば、前述した第1内側テーパー部26の傾斜角θ1を3°≦θ1≦17°の範囲に設定することにより、局部変形抑制の効果を得られることになる。なお、チューブ11には多種のサイズが存在するが、前記局部変形抑制効果の実験では、チューブ11の代表的なサイズとしてφ9.5×φ7.5のものを採用した。
 また、第1内側テーパー部26に関しては、前述した1段のみのテーパー形状に限らず、2段あるいは3段等と多段テーパー形状にしても良い。具体的には、図8に示すように、第1内側テーパー部26を2段にして、本来の第1内側テーパー部26(傾斜角θ1)にさらにテーパー部26(傾斜角θ3)を追加した形状でも、かかる部位における局部的な変形を抑えることが可能である。この場合、追加するテーパー部26(傾斜角θ3)は、第1内側テーパー部26(傾斜角θ1)に連なって配置されるため、追加のテーパー部26の傾斜角θ3は、第1内側テーパー部26の傾斜角θ1よりも小さな角度となる。
 さらに、多段テーパー形状として、図9に示すように、第1内側テーパー部26を3段にして、本来の第1内側テーパー部26(傾斜角θ1)に前記テーパー部26(傾斜角θ3)の他、もう一つのテーパー部26(傾斜角θ4)を追加した形状でも良い。この場合、内側のテーパー部26から順にそれぞれの傾斜角の関係は、θ4<θ3<θ1となる。このように、第1内側テーパー部26を多段になるように新たにテーパーを追加する場合は、既存の第1内側テーパー部26の角度の中で最も小さな角度から、第1内側テーパー部26の傾斜角θ1に連なるように配置される。
 また、第2内側テーパー部27の具体的な傾斜角θ2に関しては、流体の溜りを防止する観点より、前述したように第1内側テーパー部26のうち最も大きな傾斜角θ1と同等かそれ以上の角度であれば足りる。なお、θ2=θ1の場合には、第1内側テーパー部26と第2内側テーパー部27とは同一角度で連続することになり、1つの内側テーパー部が形成されることになる。
 ところで、前記第1内側テーパー部26を設ける場合には、内筒部22の先端側口縁が薄肉となり新たな問題が発生する。チューブ継手10は、一般的に袋ナット30を継手本体20に締め込むことで、チューブ11を押圧し、継手本体20とチューブ11の境界面に応力を発生させることで、内部流体の漏洩や浸透を防ぐものである。また、この応力が高くなる程、内部流体の漏洩や浸透を防ぐ能力がより高くなる。
 しかしながら、本実施の形態に係るチューブ継手10のように、継手本体20の内筒部22の先端側口縁に第1内側テーパー部26を設けて薄肉にした場合、薄肉にした箇所の変形が大きくなってしまうため、継手本体20とチューブ11の境界面の応力が減少してしまうことになる。本実施の形態に係るチューブ継手10は、第1内側テーパー部26を設け流体の妨げとなるような凸形状をなくすと共に、継手本体20とチューブ11の境界面の応力を減少させないものである。
 かかる応力を減少させない具体的な方法は、以下の通りである。継手本体20に後述する袋ナット30を締め付けることで、図10に示すP0という軸方向の力が発生する。この力を部分的に見た場合の1つの力をPとすると、内筒部22の先端側口縁の外周側に設けた外側テーパー部28の形状により、2つの単純な力で考えた場合、テーパー角度方向の力P1と外側テーパー部28への垂線方向の力P2とに分解される。この2つの力のうちP2が継手本体20とチューブ11の境界面の応力に相当する。
 従って、境界面の応力を減少させないためには、分力P2をより大きくできる形状にすれば良いことが分かる。ただし、袋ナット30を既定の締め付け量よりもきつく締め付けた場合は、軸方向の全体の力P0が大きくなるため、Pが大きくなり、P1およびP2も大きくなる。しかし、軸方向の力P0が大きくなってしまうと、袋ナット30を締め付ける際の締め付けトルクも大きくなってしまうため、チューブ継手10を組み立てる際の作業性が著しく悪化してしまう。そこで、本実施の形態に係るチューブ継手10では、P0を大きくしないでP2を大きくするための形状を採用する。
 すなわち、継手本体20の内筒部22の先端側口縁の外周側に、袋ナット30を継手本体20に締め付けた後にチューブ11の屈折部12cの内周に圧接して気密性を保持する外側テーパー部28を設け、該外側テーパー部28をアール断面形状に形成した。図11(a)においてP2の応力を大きくするには、図13に示すθ6の角度(θ6は、軸線と平行な線と、外側テーパー部28との角度である)を、より大きくすることにより、P1とP2の分力の関係から、P2への分力が大きくなる。なお、図11(a)は図10中の要部を拡大して抜き出したものであり、図11(b)は、θ6を大きくしたものである。
 しかし、外側テーパー部28をアール形状ではなく、直線状とした場合は、テーパー部全体へP2と近い力が負荷され、結果的に、図10中のP0が大きくなり、袋ナット30を締め付ける際の締め付けトルクも大きくなってしまう。ここで内部流体の漏洩や浸透を防ぐために必要な応力は、外側テーパー部28全体に必要ではない。流体の漏洩や浸透を防ぐためには、外側テーパー部28の先端付近(図13中のp1により近い部分)に高い値が負荷することにより、流体の侵入する入口を抑えることが可能である。
 そこで、外側テーパー部28をアール形状にした場合には、図13の外側テーパー部28の先端付近(p1に近い部分)では、θ6の角度(アール形状の場合、θ6は角度を測定する点での接線と軸線と平行な線との角度である。)が大きくなり、図12に示すように、p1より遠くなる程、θ6は小さくなる。このように、外側テーパー部28をアール形状とすることで、p1に近くなる程、θ6が大きくなり、分力P2も大きくなる。これにより、先端付近に必要な応力を負荷させても、余分な応力を他の部分に負荷させないことが可能となる。
 図10に示す軸方向の力P0は、このP2の総和と比例関係にあるので、外側テーパー部28をアール形状にすることで、外側テーパー部28の先端付近に十分な力を負荷しても、先端から遠い部分ではP2は小さくなり、P2の総和も外側テーパー部28が直線の場合と比較して小さく抑えることが可能となる。以上より、全体としての軸方向の力P0を大きくしないことで、袋ナット30の締め付けトルクを増加させずに、内部流体の漏洩や浸透を防ぐことが可能となった。
 また、図5に示すように、継手本体20の外周中央部には、略六角断面形の被締付部が設けられている。被締付部に、スパナ等の締付工具を嵌め込むように成っている。この被締付部を間にして、継手本体20の他端側にも、凹溝21、内筒部22、外筒部23、雄ネジ部24が、前述した一端側と同様に設けられている。継手本体20には、その一端側の内筒部22の先端側口縁から他端側の内筒部22の先端側口縁に亘って前記貫通孔25が連通している。
 図1に示すように、袋ナット30は、そのネジ孔31の奥側に袋部を成すようにネジ軸に直交する奥壁33を有している。袋ナット30のネジ孔31の入口側には、雌ネジ部32が刻設され、奥壁33には、チューブ11を貫通させるための差込孔34が穿設されている。また、袋ナット30の外周には略六角断面形の被締付部35(図5参照)が設けられ、被締付部35にスパナ等のナット締付工具を嵌め込むようになっている。
 また、図1に示すように、前記差込孔34の孔周縁34aは、中心軸(ネジ軸心)に向ってネジ孔31の入口方向へ傾斜する山型断面形状に突出している。この孔周縁34aが、前記チューブ11の一端部12における屈折部12cに圧接させる部位である。すなわち、チューブ11の屈折部12cは、差込孔34の孔周縁34aと内筒部22の先端側である外側テーパー部28との間に挟持されることになる。なお、袋ナット30も、前記チューブ11や継手本体20と同様に、具体的な材質としてはフッ素樹脂等が適している。
 次に、本発明の実施の形態の作用について説明する。 
 図1に示すように、チューブ継手10はフレアータイプを基本形状とする。インナーリングタイプでは、流体の浸み込みを防止すること、流体の圧力損失を防止することが難しいためである。また、フレアータイプを基本形状とすることにより、図21に示すようなリング40を挿入しなかった場合の事故の可能性がなくなる。これは、拡径しないとチューブ11の取り付けが不可能であり、拡径して取り付けた場合、問題は起こらないからである。
 チューブ継手10はフレアータイプを基本形状とするが、リング40を使用することで、フレアータイプでありながら、チューブ11の拡径は、リング40を一度チューブ11に圧入することで、チューブ処理が完了となり、チューブ11の一端部12を何度も拡径させる作業は不要となり施工性が改善される。また、リング40を使用することで、チューブ11に引っ張り荷重が負荷した際も、リング40によって抜け出ることが防止されるために、引っ張り強度が高くなる。
 ところで、従来のインナーリングタイプでは、チューブ継手の組み立て後にリングの内径部が流体の流路となる。この場合は、リングの内径寸法は、チューブ内径寸法と同等に設定することにより、流体の圧力損失を抑えることが可能であった。これに対して本実施の形態に係るチューブ継手10では、リング40の内側に継手本体20の内筒部22が配置されるため、内筒部22の内径部が流体の流路となる。
 従って、流体の圧力損失を抑えるためには、内筒部22の内径寸法をチューブ11の内径寸法と同等にする必要があり、拡径したチューブ11の内径への収縮を防止するためには、一定以上の肉厚をリング40に持たせる必要がある。よって、従来のリングと比較すると今回提案するリング40は、外径寸法が大きくなってしまう。リング40の外径寸法が大きくなると、リング40をチューブ11の内径に挿入する場合には、チューブ11への負荷が大きく、チューブ11の挫屈が発生してリング40を挿入できない虞があった。
 このようなチューブ11の挫屈を防止するには、チューブ11への負荷をできる限り小さくする必要がある。そのための手段は、チューブ11の内径への収縮を防止する範囲で、リング40の外径寸法をできる限り小さくすることと、チューブ11に負荷する摩擦抵抗を小さくするために、摩擦係数の小さな材質でリング40を製作することである。そこでリング40は、前述したようにPFA(四フッ化エチレン-パーフルオロアルコキシエキレン共重合)樹脂等を用いることが前提となる。
 また、リング40の具体的な外径寸法に関しては、以下のように設定する必要がある。すなわち、図16において、リング40の外径寸法φBは、次のように設定する。 
  φB = (m×t)+φA
  2<m≦4
 また、リング40の長さCは、次の範囲とする。 
  3mm≦C≦12mm
 さらに、リング40のテーパー角度Eは、次の範囲とする。 
  20°≦E≦35°
 以上の関係性により、リング40をチューブ11の一端部12の内径に挿入することが可能であり、拡径したチューブ11の一端部12を継手本体20の凹溝21に挿入することが可能となる。
 このような関係性を持たない場合は、リング40をチューブ11の一端部12の内径に挿入する際に、チューブ11の挫屈が発生する可能性があり、また、チューブ11をチューブ11の一端部12の内径に挿入できた場合でも、チューブ11の一端部12の内径への収縮が大きくなってしまい、結果として、継手本体20の凹溝21に挿入することが困難となる可能性が高くなる。
 図14は、チューブ11の一端部12を拡径しつつリング40を圧入する工程を示している。かかる工程では、リング挿入部品である治具60を用いる。図14(a)に示すように、治具60は、チューブ11の内径よりも小さい細径部61と、該細径部61より漸次拡径するフレアー部62と、該フレアー部62に続きチューブ11の内径を前記継手本体20の内筒部22に外嵌する径まで広げる太径のリング保持部63とから成る。なお、治具60の材質は、摩擦特性に優れたフッ素樹脂の中でも最も摩擦係数の低いPTFE(四フッ化エチレン)樹脂が適している。
 先ず、図14(b)に示すように、リング40を治具60のリング保持部63まで挿入する。続いて、図14(c)に示すように、チューブ11を治具60と同芯上に固定する。この時、チューブ11の一端部12は、治具60の細径部61に外嵌した状態に位置決めされる。かかる状態で、図14(d)に示すように、治具60をチューブ11の方向へ移動させ、チューブ11の内側へ治具60およびリング40を押し込む。
 その後、図14(e)に示すように、治具60をチューブ11と逆方向へ移動させることで、リング40はその最肉厚部41がチューブ11の内径に係合し、チューブ11の内径への収縮力により、チューブ11の一端部12内部に位置決めされた状態で保持される。このようなリング40の圧入工程においては、チューブ11の一端部12を加熱する必要はなく、治具60をチューブ11の一端部12に対して1回のみ圧入するだけで、チューブ11の一端部12を拡径しつつリング40を内嵌させることができる。
 図15は、チューブ継手10の組み立て工程を示している。かかる工程では、図15(a)に示すように、継手本体20と、リング40により一端部12を拡径したチューブ11、それに袋ナット30を同軸上に並べて、図15(b)に示すようにリング40内に継手本体20の内筒部22を挿入しつつ、チューブ11の拡径した一端部12を継手本体20の凹溝21の奥まで圧入する。この時、継手本体20の外筒部23がリング40の最肉厚部41まで覆う状態となる。
 かかる状態で、図15(c)に示すように、継手本体20の雄ネジ部24に袋ナット30の雌ネジ部32を螺合させ、既定された位置まで締め込むことで、チューブ継手10の組み立て完了となる。組み立てが完了したチューブ継手10では、継手本体20の雄ネジ部24のある外筒部23を介してリング40の最肉厚部41がチューブ11の一端部12と共に内筒部22に押圧され、かつ、リング40により拡径し終わるチューブ11の屈折部12cに、袋ナット30の差込孔34の孔周縁34aが圧接した状態となる。
 このようにして、図1に示すように、継手本体20の内筒部22の先端側、袋ナット30の差込孔34の孔周縁34a、チューブ11の屈折部12cの各間の隙間がなくなり十分な密着性が得られ、継手本体20にチューブ11を強固に接続し固定することが可能となる。
 特に、リング40の最肉厚部41、チューブ11の一端部12、それに継手本体20の外筒部23が、それぞれ軸心方向に内筒部22に重なり合うので、継手本体20に振動がかかった場合や、チューブ11に引っ張り力が負荷した場合でも、リング40とチューブ11が動くことを大幅に防止することができ、シール性能を安定させると共に、チューブ11の引っ張り強度を高めることができる。
 また、袋ナット30は、その差込孔34の孔周縁34aが、中心軸に向ってネジ孔31の入口方向へ傾斜する山型断面形状に突出している。従って、継手本体20の雄ネジ部24に袋ナット30の雌ネジ部32を螺合していくと、前記孔周縁34aがチューブ11の屈折部12cに喰い込むように圧接し、屈折部12cは、孔周縁34aと内筒部22の外側テーパー部28との間に挟持される。これにより、継手本体20に対するチューブ11の引っ張り強度がいっそう大きくなり、チューブ11が抜ける事態をより確実に防止することができる。
 ここで、内筒部22の先端側の外側テーパー部28をアール断面形状としたことにより、図10において軸方向の力P0を大きくしないことで、袋ナット30の締め付けトルクを増加させずに、継手内部の特に内筒部22の先端側とチューブ11の屈折部12cとの間における流体の漏洩や浸透を防ぐことが可能となる。
 また、前述したように、継手本体20の内筒部22が貫通孔25の内径方向に局所的な変形を起こすと、流体の流れの妨げとなるが、第1内側テーパー部26によって、内径への変形を抑えるのではなく、変形した状態で流体の流れの妨げとなるような凸状にならないようにした。
 このように、第1内側テーパー部26と第2内側テーパー部27とを設けたことにより、流体の浸み込みや液溜りを防止すると共に、流体の流れの妨げとなる局部的な凸状の出っ張りを抑制することができる。なお、第1内側テーパー部26は、1段のみのテーパー形状に限らず、2段あるいは3段等と多段テーパー形状にしても良い。
 さらに、図6に示すように、外筒部23の内径寸法φPは、リング40の最肉厚部41により拡径されたチューブ11の一端部12の最大外径寸法である膨出部12bの外径寸法φQよりも小さく設定した。これにより、袋ナット30を継手本体20に締め付けることで、チューブ11の拡径した一端部12が凹溝21の奥まで圧入される。これにより、いっそうシール性能が安定して気密性を高めることができる。
 図17および図18は、本発明の第2実施の形態を示している。 
 本実施の形態では、前述した第1実施の形態に係るチューブ継手10と基本的な構成は共通するが、継手本体20Aの外筒部23Aの具体的な構成が異なっている。図17は、本実施の形態に係るチューブ継手10Aを示す要部断面図、図18は、チューブ継手10Aの組み立て途中の状態を示す要部断面図である。なお、図18中における袋ナット30Aは切断部端面図を示している。
 本実施の形態に係るチューブ継手10Aによれば、継手本体20Aの外筒部23Aは、前記リング40内に継手本体20Aの内筒部22を挿入しつつ、前記チューブ11の拡径した一端部12を前記凹溝21の奥まで圧入した際に、図17に示すように、先端側29が前記リング40の最肉厚部41を乗り越えてリング40全体を覆う位置まで延びる状態に形成されている。
 これにより、リング40により拡径されたチューブ11の一端部12全体が継手本体20Aの外筒部23Aで取り囲まれるよう覆われた状態となる。すなわち、図18に示すような状態で継手本体20Aの雄ネジ部24に袋ナット30Aの雌ネジ部32を螺合すると、袋ナット30Aの奥壁33の周囲にある突条環36が、外筒部23Aの先端側29をリング40の一端側に押し付けることになる。
 その結果、図17に示すように、前記凹溝21の入口側が狭まるように塞がれ、リング40で拡径されたチューブ11の一端部12が凹溝21に閉じ込められることにより、なおさらシール性能と引っ張り強度を高めることができる。なお、第1実施の形態と同種の部位には同一符号を付して重複した説明を省略する。
 以上、本発明の各種実施の形態を図面によって説明してきたが、具体的な構成は前述した実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。例えば、前記実施の形態では、継手本体20における一端側と他端側における内筒部22や外筒部23をそれぞれ同径に形成してあるが、それぞれ異なる径に形成しても良い。また、両端の内筒部22や外筒部23は同軸上に並ぶが、貫通孔25がL字形に曲がっている場合には、それぞれ直交する方向に連なり、また、それぞれがT字路形に連なるように構成しても良い。
 本発明に係るチューブ継手は、半導体製造や液晶製造を始め、医療・医薬品製造、食品加工等の各種製造工程で取り扱われる超純水や、硫酸、塩酸といったような人体に危険な薬液を含む、あらゆる流体の流路となるチューブの接続手段として用いられる。
 10…チューブ継手
 10A…チューブ継手
 11…チューブ
 12…一端部
 12a…基準部
 12b…膨出部
 12c…屈折部
 20…継手本体
 20A…継手本体
 21…凹溝
 21a…最奥部
 22…内筒部
 23…外筒部
 23A…外筒部
 24…雄ネジ部
 25…貫通孔
 26…第1内側テーパー部
 27…第2内側テーパー部
 28…外側テーパー部
 29…先端側
 30…袋ナット
 30A…袋ナット
 31…ネジ孔
 32…雌ネジ部
 33…奥壁
 34…差込孔
 34a…孔周縁
 35…被締付部
 36…突条環
 40…リング
 41…最肉厚部
 60…治具
 61…細径部
 62…フレアー部
 63…リング保持部

Claims (6)

  1.  チューブ(11)の一端部(12)を拡径しつつ該拡径した状態に保持するリング(40)を圧入し、該チューブ(11)の拡径した一端部(12)を継手本体(20,20A)に接続すると共に、該チューブ(11)を貫通させた状態で前記拡径した一端部(12)を囲む袋ナット(30,30A)を継手本体(20,20A)に締め付けることで、継手本体(20,20A)にチューブ(11)を固定するチューブ継手(10,10A)において、
     前記袋ナット(30,30A)は、前記チューブ(11)の拡径した一端部(12)を収めるネジ孔(31)と、該ネジ孔(31)の内周に形成された雌ネジ部(32)と、該ネジ孔(31)の奥側を塞ぐ奥壁(33)と、該奥壁(33)を貫き前記チューブ(11)を貫通させる差込孔(34)とを有し、
     前記継手本体(20,20A)は、前記袋ナット(30,30A)を締め付ける一端側に、前記チューブ(11)の拡径した一端部(12)が嵌入する環状の凹溝(21)と、該凹溝(21)の内側となり前記チューブ(11)の拡径した一端部(12)が外嵌する内筒部(22)と、該凹溝(21)の外側となり前記チューブ(11)の拡径した一端部(12)が内嵌する外筒部(23,23A)と、該外筒部(23,23A)の外周に形成されて前記雌ネジ部(32)が螺合する雄ネジ部(24)と、前記内筒部(22)の内側で前記チューブ(11)の内径とほぼ同じ孔径でネジ軸方向へ貫通する貫通孔(25)とを有し、
     前記リング(40)は、その外周が両端よりも中央側で最大径となる断面形状に形成され、該最大径となる最肉厚部(41)が圧入した前記チューブ(11)の一端部(12)の内周に喰い込むように係合することで位置決めされ、
     前記リング(40)内に前記継手本体(20,20A)の内筒部(22)を挿入しつつ、前記チューブ(11)の拡径した一端部(12)を前記凹溝(21)の奥まで圧入した際に、前記外筒部(23,23A)が前記リング(40)の少なくとも最肉厚部(41)まで覆う状態となり、この状態で前記継手本体(20,20A)の雄ネジ部(24)に前記袋ナット(30,30A)の雌ネジ部(32)を螺合して、該雄ネジ部(24)のある前記外筒部(23,23A)を介して前記リング(40)の最肉厚部(41)がチューブ(11)の一端部(12)と共に前記内筒部(22)に押圧され、かつ、前記リング(40)により拡径し終わるチューブ(11)の屈折部(12c)に、前記袋ナット(30,30A)の差込孔(34)の孔周縁(34a)が圧接したことを特徴とするチューブ継手(10,10A)。
  2.  前記継手本体(20A)の外筒部(23A)は、前記リング(40)内に前記継手本体(20A)の内筒部(22)を挿入しつつ、前記チューブ(11)の拡径した一端部(12)を前記凹溝(21)の奥まで圧入した際に、先端側(29)が前記リング(40)の最肉厚部(41)を乗り越えてリング(40)全体を覆う位置まで延びる状態に形成され、
     前記袋ナット(30A)は、その前記奥壁(33)の周囲に、中心軸かつ前記ネジ孔(31)の入口方向へ山型断面形状に突出し、袋ナット(30A)を継手本体(20A)に締め付ける際、前記外筒部(23A)の先端側(29)を前記リング(40)の一端側に押し付ける突条環(36)を有していることを特徴とする請求項1に記載のチューブ継手(10A)。
  3.  前記袋ナット(30,30A)の差込孔(34)の孔周縁(34a)は、中心軸かつ前記ネジ孔(31)の入口方向へ山型断面形状に突出し、
     前記チューブ(11)の屈折部(12c)は、前記差込孔(34)の孔周縁(34a)と前記内筒部(22)の先端側との間に挟持されることを特徴とする請求項1または2に記載のチューブ継手(10,10A)。
  4.  前記継手本体(20,20A)の外筒部(23,23A)の内径寸法を、前記リング(40)の最肉厚部(41)により拡径された前記チューブ(11)の一端部(12)の最大外径寸法よりも小さく設定し、
     前記袋ナット(30,30A)を継手本体(20,20A)に締め付けることで、前記チューブ(11)の拡径した一端部(12)が前記凹溝(21)の奥まで圧入されることを特徴とする請求項1,2または3に記載のチューブ継手(10,10A)。
  5.  前記継手本体(20,20A)の内筒部(22)の先端側口縁の内周側に、前記袋ナット(30,30A)を継手本体(20,20A)に締め付けた後に先端側口縁が中心軸に向って変形する厚み分だけ予め面取りした第1内側テーパー部(26)と、該第1内側テーパー部(26)の先端側でその傾斜角以上に傾斜し移動媒体である流体の溜りを防止する第2内側テーパー部(27)とを設けたことを特徴とする請求項1,2,3または4に記載のチューブ継手(10,10A)。
  6.  前記継手本体(20,20A)の内筒部(22)の先端側口縁の外周側に、前記袋ナット(30,30A)を継手本体(20,20A)に締め付けた後に前記チューブ(11)の屈折部(12c)の内周に圧接して気密性を保持する外側テーパー部(28)を設け、該外側テーパー部(28)をアール断面形状に形成したことを特徴とする請求項1,2,3,4または5に記載のチューブ継手(10,10A)。
PCT/JP2012/052057 2011-02-04 2012-01-31 チューブ継手 WO2012105525A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137022619A KR101929068B1 (ko) 2011-02-04 2012-01-31 튜브 이음매
US13/982,164 US9091374B2 (en) 2011-02-04 2012-01-31 Tube coupling joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011022553A JP5758640B2 (ja) 2011-02-04 2011-02-04 チューブ継手
JP2011-022553 2011-02-04

Publications (1)

Publication Number Publication Date
WO2012105525A1 true WO2012105525A1 (ja) 2012-08-09

Family

ID=46602738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052057 WO2012105525A1 (ja) 2011-02-04 2012-01-31 チューブ継手

Country Status (5)

Country Link
US (1) US9091374B2 (ja)
JP (1) JP5758640B2 (ja)
KR (1) KR101929068B1 (ja)
TW (1) TWI557353B (ja)
WO (1) WO2012105525A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179678A1 (ja) * 2017-03-30 2018-10-04 日本ピラー工業株式会社 樹脂製管継手

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968427B2 (ja) * 2012-04-02 2016-08-10 三菱電機株式会社 管継手、空気調和機、接続管、及び接続方法
TWI483792B (zh) * 2013-02-01 2015-05-11 China Steel Corp Take over the device
US9482375B2 (en) * 2013-03-07 2016-11-01 Zbigniew Robert Paul Hose connector assembly for coupling pressurized hoses
JP2015225712A (ja) * 2014-05-26 2015-12-14 株式会社エクセル電子 電子機器の防水接続器具及び電子機器
GB2539456A (en) * 2015-06-16 2016-12-21 Woodford Heating & Energy Ltd A pipe for connection with a pipe fitting
DE102015122309A1 (de) * 2015-12-18 2017-06-22 Voss Fluid Gmbh Rohrverbindung
KR102193779B1 (ko) * 2016-10-03 2020-12-21 니폰 필라고교 가부시키가이샤 수지제관 이음매
CN109642694B (zh) * 2016-10-03 2021-02-23 日本皮拉工业株式会社 树脂制管接头
JP6734179B2 (ja) * 2016-10-31 2020-08-05 三桜工業株式会社 燃料配管
US11396963B2 (en) * 2018-01-29 2022-07-26 Brian B. Scott Device for making plumbing connections and a method of use thereof
JP6847888B2 (ja) * 2018-03-28 2021-03-24 日本ピラー工業株式会社 ガスケットの装着構造
CN110529676A (zh) * 2019-09-23 2019-12-03 杭州科百特过滤器材有限公司 一种密封管接头
WO2021260858A1 (ja) * 2020-06-24 2021-12-30 イハラサイエンス株式会社 管継手及び結合方法
JP2022017782A (ja) * 2020-07-14 2022-01-26 日本ピラー工業株式会社 インナーリング、及び管継手
NL2026093B1 (en) 2020-07-20 2022-03-21 Wassenburg Medical B V A coupling for coupling of one or more hoses to a cleaning machine
JP7030175B2 (ja) * 2020-12-02 2022-03-04 日本ピラー工業株式会社 樹脂製管継手
CN114263798A (zh) * 2021-12-31 2022-04-01 上海至纯精密制造有限公司 一种双斜面扩口管道连接接头
JP7340292B1 (ja) * 2022-03-14 2023-09-07 株式会社トヨックス 管継手
US20240021416A1 (en) * 2022-07-18 2024-01-18 Taiwan Semiconductor Manufacturing Company Limited Connect structure for semiconductor processing equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341899U (ja) * 1989-08-30 1991-04-22
JPH0614674U (ja) * 1992-06-24 1994-02-25 株式会社柿崎製作所 樹脂製袋ナット
JPH10252968A (ja) * 1997-03-13 1998-09-22 Furoueru:Kk チューブ継手
JPH10299964A (ja) * 1997-04-23 1998-11-13 Furoueru:Kk チューブ材の継手
JPH10318475A (ja) * 1997-05-16 1998-12-04 Furoueru:Kk チューブ継手

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500118A (en) * 1982-12-30 1985-02-19 Colder Products Company Fitting apparatus for soft tubing
EP0473807B1 (de) * 1990-09-03 1995-03-08 Ruppert, Hans-Peter Rohrverbindung
US5388871A (en) * 1992-05-22 1995-02-14 Kakizaki Manufacturing Co., Ltd. Fittings with box nuts
JP2799562B2 (ja) * 1996-08-09 1998-09-17 日本ピラー工業株式会社 樹脂製管継手
TW443459U (en) * 1997-03-27 2001-06-23 Flowell Corp Pipe connector
JP3041899U (ja) 1997-03-27 1997-10-03 株式会社フロウエル チューブ継手
JPH11182751A (ja) 1997-12-24 1999-07-06 Flowell:Kk チューブ材の継手
JP3644786B2 (ja) * 1997-04-14 2005-05-11 Smc株式会社 管継手
JP2949576B2 (ja) * 1998-02-02 1999-09-13 日本ピラー工業株式会社 樹脂製管継手
DE69825786T2 (de) * 1998-11-05 2005-08-18 Nippon Pillar Packing Co., Ltd. Rohrverbindung aus harz
JP3118589B2 (ja) * 1999-03-29 2000-12-18 日本ピラー工業株式会社 樹脂製管継手
JP3430237B2 (ja) * 1999-07-02 2003-07-28 Smc株式会社 管継手
JP2001248768A (ja) * 2000-03-02 2001-09-14 Advance Denki Kogyo Kk プラスチックチューブの継ぎ手構造
US6991266B2 (en) * 2001-04-20 2006-01-31 Nippon Pillar Packing Co., Ltd. Pipe joint made of resin
JP3706813B2 (ja) * 2001-06-01 2005-10-19 日本ピラー工業株式会社 樹脂製管継手におけるチューブ抜止め方法及びチューブ抜止め構造
JP3947971B2 (ja) * 2002-11-25 2007-07-25 Smc株式会社 管継手
US6971683B2 (en) * 2003-07-23 2005-12-06 Flowell Corporation Joint for tubings
US7530602B2 (en) * 2005-01-17 2009-05-12 Nippon Pillar Packing Co., Ltd. Double-pipe joint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341899U (ja) * 1989-08-30 1991-04-22
JPH0614674U (ja) * 1992-06-24 1994-02-25 株式会社柿崎製作所 樹脂製袋ナット
JPH10252968A (ja) * 1997-03-13 1998-09-22 Furoueru:Kk チューブ継手
JPH10299964A (ja) * 1997-04-23 1998-11-13 Furoueru:Kk チューブ材の継手
JPH10318475A (ja) * 1997-05-16 1998-12-04 Furoueru:Kk チューブ継手

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179678A1 (ja) * 2017-03-30 2018-10-04 日本ピラー工業株式会社 樹脂製管継手
JP2018168947A (ja) * 2017-03-30 2018-11-01 日本ピラー工業株式会社 樹脂製管継手
US11486525B2 (en) 2017-03-30 2022-11-01 Nippon Pillar Packing Co., Ltd. Resin tube fitting

Also Published As

Publication number Publication date
US20130307265A1 (en) 2013-11-21
JP2012163132A (ja) 2012-08-30
TWI557353B (zh) 2016-11-11
TW201250147A (en) 2012-12-16
JP5758640B2 (ja) 2015-08-05
KR101929068B1 (ko) 2018-12-13
KR20140008353A (ko) 2014-01-21
US9091374B2 (en) 2015-07-28

Similar Documents

Publication Publication Date Title
JP5758640B2 (ja) チューブ継手
EP2470817B1 (en) Press-connect fitting with improved grab-ring function
EP3604883B1 (en) Resinous pipe joint
JP5891537B2 (ja) 管継手
JP5311795B2 (ja) 管継手
KR101361228B1 (ko) 수지관 이음매
EP2899441B1 (en) Pipe joint structure
KR100571698B1 (ko) 수지제 관이음매에 있어서의 튜브이탈방지방법 및튜브이탈방지구조
EP0823578A2 (en) Pipe joint made of resin
KR101887260B1 (ko) 이너 링
CN109661532B (zh) 管接头及卡定构件
WO2014181591A1 (ja) 管接続装置
KR101945656B1 (ko) 오일 파이프 및 가스 파이프와 같은 파이프용 나사산 구비 연결부
KR20160025499A (ko) 관 접속 장치
JP5179269B2 (ja) 樹脂管用ワンタッチ継手
JP2007198543A (ja) 管継手
JP5764469B2 (ja) インナーリング
US20070013189A1 (en) Sealing fitting for stainless steel tubing
WO2021199570A1 (ja) シール部材
JP5764470B2 (ja) 管接続装置
JP5764471B2 (ja) 管継手構造
JP4885201B2 (ja) 樹脂管継手
JP5028396B2 (ja) 樹脂管継手
CN115769009A (zh) 内环以及管接头
JP2010038273A (ja) 樹脂管継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742530

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13982164

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137022619

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12742530

Country of ref document: EP

Kind code of ref document: A1