WO2012105264A1 - 電源開閉装置およびそれを備える電源システム - Google Patents

電源開閉装置およびそれを備える電源システム Download PDF

Info

Publication number
WO2012105264A1
WO2012105264A1 PCT/JP2012/000706 JP2012000706W WO2012105264A1 WO 2012105264 A1 WO2012105264 A1 WO 2012105264A1 JP 2012000706 W JP2012000706 W JP 2012000706W WO 2012105264 A1 WO2012105264 A1 WO 2012105264A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor elements
power supply
temperature
controller
semiconductor
Prior art date
Application number
PCT/JP2012/000706
Other languages
English (en)
French (fr)
Inventor
田米 正樹
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/635,979 priority Critical patent/US8508966B2/en
Priority to CN201280001038.XA priority patent/CN102823099B/zh
Priority to JP2012531135A priority patent/JP5097309B1/ja
Publication of WO2012105264A1 publication Critical patent/WO2012105264A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures

Definitions

  • the present invention relates to a precharge-type power supply switching device that opens and closes an electric circuit connecting a DC power supply and a capacitive element, and a power supply system including the same.
  • a power supply system that supplies power from a DC power source such as a battery to a load such as a motor includes a capacitor element such as a smoothing capacitor, a power supply switching device that opens and closes an electric circuit connecting the DC power source and the capacitor element in response to a command, and direct current power to AC
  • a power conversion device that converts power into power is provided as the main configuration.
  • the above-mentioned power switchgear opens the circuit connecting the DC power source and the capacitive element (cuts off the circuit) while not driving the load.
  • the electric circuit is closed (the power source and the capacitive element are made conductive).
  • a so-called inrush current flows through the electric circuit.
  • This inrush current causes destruction of an element inserted in the electric path connecting the power source and the capacitive element, adverse effects on other devices due to a temporary decrease in power supply voltage, and the like.
  • Various types of so-called pre-charging power supply switching devices that suppress inrush current are known (for example, Patent Documents 1 and 2).
  • FIG. 34 is a diagram showing an overall configuration of a power supply system 1000 including a precharge-type power supply switching device according to Patent Document 1. As shown in FIG.
  • the power supply system 1000 includes a power switchgear 91, a capacitive element 92, and a power converter 93.
  • the power supply switching device 91 is provided in an electric circuit connecting the DC power supply BA and the capacitive element 92, and opens and closes the electric circuit in accordance with an external command.
  • the capacitive element 92 is a so-called smoothing capacitor.
  • the power conversion device 93 is an inverter that is provided in an electric path connecting the capacitive element 92 and a three-phase AC motor (hereinafter simply referred to as “motor”) 94 and converts direct current into three-phase alternating current.
  • motor three-phase AC motor
  • the power switch 91 includes switches (system main relays SMR1, SMR2, switching element 98) inserted in a circuit connecting the DC power supply BA and the capacitive element 92, a backflow prevention diode 99, and switches.
  • a controller 95 for controlling on / off is provided.
  • On / off of system main relays SMR1 and SMR2 is controlled by whether or not excitation circuits 96 and 97 are energized, respectively, and on / off of switching element 98 is controlled by a control signal (gate voltage) to the gate terminal.
  • a control signal gate voltage
  • Controller 95 operates switches as follows. First, the switching element 98 is turned on while the system main relay SMR1 is turned off until a predetermined period elapses after receiving a command to close the electric circuit. After a predetermined period, switching element 98 is turned off and system main relay SMR1 is turned on. During this time, the system main relay SMR2 is always turned on. With this operation, immediately after the power is turned on, a current flows through the switching element 98 having a high on-resistance. By doing so, the current flowing in the electric circuit connecting the DC power supply BA and the smoothing capacitor 92 is not excessive, and as a result, inrush current can be prevented.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a power switchgear that can be miniaturized and a power supply system including the power switchgear.
  • a power switchgear disclosed in this specification is a power switchgear that opens and closes an electric circuit connecting a DC power source and a capacitive element in accordance with an external command, and is inserted into the electric circuit And a current equal to or lower than an upper limit current value determined according to a level of an input control signal, and a current corresponding to a difference between a voltage value of the DC power supply and a charging voltage value of the capacitive element is 1 or more.
  • the current flowing through the electric circuit does not exceed the limit current value and is controlled according to the temperature detected by the temperature detection circuit.
  • the current flowing through the electric path to adjust the level of the individual control signals to allow to exceed the limit current value.
  • FIG. 1 A block diagram showing an example of the configuration of the controller 105 according to the first embodiment, (b) the level of the control command signal Dg input to the variable voltage circuit 112, and the control output from the variable voltage circuit 112 It is a figure which shows the correspondence of the level of signal Vg. It is a figure which shows typically the IV characteristic of a semiconductor element. It is a figure which shows an example of the timing chart which concerns on 1st Embodiment. It is a figure which shows the whole structure of the power supply system 200 provided with the power supply switching device 201 which concerns on 2nd Embodiment.
  • (A) a diagram showing a table t 3 when stored in the memory of the controller 305 is a diagram schematically showing the I-V characteristic of the (b) a semiconductor device. It is a figure which shows the flowchart of the operation
  • FIG. 4A is a diagram schematically illustrating IV characteristics of a semiconductor element when the mutual conductance is large
  • FIG. 5B is a diagram schematically illustrating IV characteristics of the semiconductor element when the mutual conductance is small. It is a figure which shows the table stored in the memory of the controller 505 which concerns on a modification (27). It is a figure which shows the flowchart of the operation
  • the level of each control signal is set by the controller so that the upper limit value (upper limit current value) of the amount of current flowing through each semiconductor element becomes 0 [A]. Is adjusted, the electric circuit connecting the DC power source and the capacitive element is opened. Further, by adjusting the level of each control signal so that the upper limit current value is a finite current value other than 0 [A], the electric circuit connecting the DC power source and the capacitive element is closed.
  • the electric circuit is opened and closed regardless of the mechanical relay, no induced electromotive force is generated. Therefore, it is possible to reduce the size of the power switch as much as it is not necessary to provide a bypass circuit or the like for releasing the induced electromotive force. Further, other problems (for example, contact welding, etc.) peculiar to mechanical relays are not caused.
  • the semiconductor element can have both functions without separately providing the preliminary charging path and the system main relay. Therefore, the power supply switchgear can be further reduced in size.
  • the power switch is composed of a single semiconductor element having a large current capacity, it is difficult to control the control signal so that a small current such as a precharge current flows in the electric circuit.
  • the power switchgear is composed of semiconductor elements, it is desirable to use a plurality of semiconductor elements having a small current capacity, which can easily control a small current, connected in parallel.
  • a semiconductor element having a temperature dependency in which the upper limit current value changes depending on the temperature it is necessary to use more semiconductor elements in order to cope with a certain temperature change. Therefore, even if the power switching device is simply constituted by semiconductor elements, the number of semiconductor elements included in the device increases, and as a result, there is a possibility that the reduction in size cannot be achieved.
  • the power switchgear disclosed in this specification includes a temperature detection circuit, the level of each control signal can be adjusted according to the temperature detected by the circuit. For this reason, even if it is a semiconductor element which has temperature dependence, the extra semiconductor element for responding to a temperature change becomes unnecessary.
  • the temperature detection circuit is a small circuit, the influence on the size of the power switchgear by the provision of the temperature detection circuit is small as compared with the case where an extra semiconductor element is provided. Therefore, by providing the temperature detection circuit, it is possible to effectively reduce the size when the power switchgear is constituted by a semiconductor element.
  • FIG. 1 is a diagram illustrating an overall configuration of a power supply system 100 including a power switchgear according to the first embodiment.
  • the power supply system 100 is connected to the DC power supply BA on the input side and the motor 104 on the output side.
  • the power supply system 100 includes a power switchgear 101, a smoothing capacitor 102, and an inverter 103.
  • DC power supply BA is a DC power supply obtained by rectifying a power supply system or a DC power supply of a battery type (typically a secondary battery such as nickel metal hydride or lithium ion).
  • a battery type typically a secondary battery such as nickel metal hydride or lithium ion.
  • the motor 104 is a three-phase AC motor composed of three-phase windings that are supplied with three-phase AC power.
  • the power switching device 101 opens and closes an electric circuit connecting the DC power source BA and the smoothing capacitor 102 according to a command, and includes a controller 105 and a current amount variable unit 106.
  • the smoothing capacitor 102 smoothes the DC power input from the DC power supply BA via the power switchgear 101 and outputs it to the inverter 103.
  • the inverter 103 converts the DC power supplied from the DC power source BA into U-phase, V-phase, and W-phase three-phase AC power whose phases are shifted by 120 ° (2 ⁇ / 3 radians). Is supplied to the motor 104.
  • the current amount variable unit 106 includes one or more semiconductor elements 107A, 107B, and 107C inserted in an electric circuit connecting the DC power supply BA and the smoothing capacitor 102.
  • the semiconductor elements 107A, 107B, and 107C are currents that are less than or equal to the upper limit current value determined according to the level of the input control signal, and the difference between the voltage value of the DC power supply BA and the voltage value (charging voltage value) of the smoothing capacitor 102. It is a semiconductor element that supplies a current according to the current.
  • the number of semiconductor elements is three, and the semiconductor elements are switched such as an N-type metal-insulator-semiconductor field effect transistor (Metal-Insulator-Semiconductor Field Effect Transistor, hereinafter referred to as MISFET). It is an element.
  • a gate drive circuit GD is connected to the gate terminals of the semiconductor elements 107A, 107B, and 107C.
  • the current value flowing through the electric circuit connecting the DC power supply BA and the smoothing capacitor 102 is the current value flowing through the semiconductor elements 107A, 107B, 107C, that is, the current value flowing from the drain to the source of each semiconductor element (forward current value). Is equivalent to the sum of The forward current value of each semiconductor element is determined by the level of the control signal input to the gate terminal and the difference between the voltage value of the DC power supply BA and the voltage value of the smoothing capacitor 102.
  • the control signal since a MISFET is used as a semiconductor element, the control signal here corresponds to the gate voltage.
  • the value of the current flowing in the electric circuit connecting DC power supply BA and smoothing capacitor 102 is determined by the level of the control signal input to the gate terminal and the difference between the voltage value of DC power supply BA and the voltage value of smoothing capacitor 102. Become. This will be described in detail in FIG.
  • the controller 105 controls the current amount variable unit 106 and the inverter 103. As a control operation for the current variable unit 106, the controller 105 individually outputs a control signal Vg to the semiconductor elements 107A, 107B, and 107C via the gate drive circuit GD. Thereby, the magnitude of the upper limit value of the forward current of each semiconductor element (hereinafter, “the upper limit value of the forward current” is simply referred to as “upper limit current value”) is controlled.
  • the control signal Vg for the semiconductor element 107A is indicated as VGA
  • the control signal Vg for the semiconductor element 107B is indicated as VGB
  • the control signal Vg for the semiconductor element 107C is indicated as VGC.
  • FIG. 2A is a block diagram illustrating an example of the configuration of the controller 105.
  • FIG. 2A illustrates only a portion of the configuration of the controller 105 that controls the current amount variable unit 106.
  • the controller 105 includes a microcomputer 110, a memory 111, and a variable voltage circuit 112.
  • the microcomputer 110 sends a command S on to turn on the power switch 101 from the outside (for example, an ignition key) (command to close the electric circuit connecting the DC power supply BA and the smoothing capacitor 102) or a command S off (DC power supply).
  • a command to open the electric circuit connecting BA and smoothing capacitor 102 is received.
  • the microcomputer 110 changes the set value of the control signal command DgC output to the variable voltage circuit 112 according to information such as a table stored in the memory 111.
  • control signal commands Dg corresponding to the semiconductor elements 107A, 107B, and 107C are DgA, DgB, and DgC, respectively.
  • the variable voltage circuit 112 is a so-called D / A (digital / analog) converter, and converts digital control command signals DgA, DgB, DgC into analog control signals VGA, VGB, VGC, respectively.
  • FIG. 2B is a diagram illustrating a correspondence relationship between the level of the control command signal Dg input to the variable voltage circuit 112 (output from the microcomputer 110) and the level of the control signal Vg output from the variable voltage circuit 112. is there.
  • the variable voltage circuit 112 to which the control signal command Dg3 is input as DgA outputs the control signal Vg3 to the semiconductor element 107A.
  • the memory 111 stores information on the set value of the control signal command Dg output in the first period and the second period.
  • the first period means that a predetermined period has elapsed since the microcomputer 110 received a command S on for turning on the power switchgear 101 (a command for closing the electric circuit connecting the DC power supply BA and the smoothing capacitor 102). It refers to the period until.
  • the second period refers to a period from when the predetermined period elapses until a command S off (command for opening the electric circuit) is received.
  • a control signal of Vg7 is output. In this manner, the controller 105 individually adjusts the level of the control signal output to the semiconductor elements 107A, 107B, and 107C in the first period and the second period.
  • FIG. 3 is a diagram schematically showing IV characteristics of the semiconductor elements 107A, 107B, and 107C.
  • the relationship between the control signals Vg0 to Vg8 input to the semiconductor element and the upper limit current value of the semiconductor element will be described with reference to FIG.
  • the horizontal axis represents the drain-source voltage [V] (V DS ) of the semiconductor element
  • the vertical axis represents the forward current [A] (I D ).
  • the semiconductor element enters an off state in which no forward current flows.
  • the control signal Vg1 ⁇ VG6 although I D also rises with increasing V DS, the V DS exceeds a predetermined value I D reaches the upper limit current value, I D is a substantially constant value As shown.
  • the upper limit current value of I D increases in the order of Vg1 ⁇ Vg2 ⁇ ... ⁇ Vg5 ⁇ Vg6.
  • control signal Vg 7 when the VG8, I D also increases with increasing V DS, I D continues to rise until saturated with thermal constraints. Since the semiconductor element to which the control signal Vg7 or Vg8 is input has a smaller on-resistance than the semiconductor element to which the control signals Vg1 to Vg6 are input, the semiconductor element can be operated with lower loss.
  • the upper limit current value is determined according to the levels Vg0 to Vg8 of the input control signal. Therefore, by adjusting the level of the control signal Vg output from the controller 105 to the semiconductor elements 107A, 107B, and 107C, it is possible to adjust the amount of current flowing through the electric path connecting the DC power supply BA and the smoothing capacitor 102.
  • the forward current value at each level of the control signal Vg is determined according to the drain-source voltage (V DS ), that is, the difference between the voltage value of the DC power supply BA and the voltage value of the smoothing capacitor 102. It can be seen from 3.
  • “to allow” means that the controller 105 raises the upper limit value so that the upper limit value of the current that can be passed through the electric circuit exceeds the limit current value. Therefore, it does not mean that a current exceeding the limit current value is actually passed through the electric circuit.
  • the current that actually flows through the electric circuit is determined according to the voltage applied to the current amount variable unit 106 to the last. Details will be described later.
  • the desirable value of the limiting current value is determined by the type of the DC power supply BA, the capacitance of the smoothing capacitor 102, the difference between the voltage value of the DC power supply BA and the voltage value of the smoothing capacitor 102, and the like.
  • the limiting current value is about 20 [A].
  • the limit current value is a value equal to or less than the maximum output current value of the DC power supply BA, or the maximum rating of each element (for example, fuse, wiring, etc.) inserted in the electric circuit connecting the DC power supply BA and the smoothing capacitor 102.
  • the level of the control signal Vg is adjusted so that the sum of the upper limit current values in the first period of the semiconductor elements 107A, 107B, 107 is not more than the limit current value determined as described above.
  • the inverter 103 is inserted into an electric path connecting the smoothing capacitor 102 and the motor 104.
  • the inverter 103 includes a U-phase arm 108u, a V-phase arm 108v, and a W-phase arm 108w connected in parallel.
  • the U-phase arm 108u is formed by connecting in series semiconductor elements 109A and 109B that pass a current corresponding to the level of the input control signal.
  • the semiconductor elements 109 ⁇ / b> A and 109 ⁇ / b> B are configured by semiconductor elements having the same configuration as the semiconductor element included in the power supply switching device 101.
  • the gate terminals of the semiconductor elements 109A and 109B are also connected to the gate drive circuit GD.
  • the controller 105 generates not only control signals for the semiconductor elements 107A, 107B, and 107C included in the power switching device 101 but also a pulse width modulation signal (PWM signal) that is a control signal for the semiconductor elements 109A and 109B included in the inverter 103. is doing.
  • PWM signal a pulse width modulation signal for the semiconductor elements 109A and 109B is shown as PWM1.
  • the PWM signal PWM1 is output to the gate terminals of the semiconductor elements 109A and 109B via the gate drive circuit GD.
  • V-phase arm 108v and the W-phase arm 108w have the same configuration as the U-phase arm 108u.
  • Semiconductor elements 109C and 109D included in V-phase arm 108v are controlled by PWM signal PWM2
  • semiconductor elements 109E and 109F included in W-phase arm 108w are controlled by PWM signal PWM3.
  • the semiconductor elements 107A, 107B, and 107C included in the power switching device 101 and the semiconductor elements 109A to 109F included in the inverter 103 are accommodated in the same package. By doing in this way, it can contribute to further miniaturization of a power supply system, reduction of the work load in the manufacturing process of the power supply system 100, reduction of the number of parts, and cost reduction. Furthermore, since the wiring inductance can be reduced by reducing the wiring distance between the semiconductor elements 109A to 109F provided in the inverter 103 and the smoothing capacitor 102, an excessive surge voltage can be suppressed.
  • the semiconductor elements 107A to 107C and 109A to 109F generate heat during operation, it is necessary to dissipate these heats with a cooler or the like.
  • the semiconductor elements 107A to 107C included in the power supply switching device 101 and the semiconductor elements 109A to 109F included in the inverter 103 are mounted on the same cooler (for example, on a heat sink) and cooled. By doing so, it is not necessary to separately prepare a cooler for the semiconductor elements 107A to 107C and a cooler for the semiconductor elements 109A to 109F, so that the size can be reduced accordingly.
  • FIG. 4 is a diagram illustrating an example of a timing chart according to the present embodiment.
  • the fluctuation of the voltage value VC of the smoothing capacitor 102, the waveform of the control signal VGA, the waveform of the control signal VGB, the waveform of the control signal VGC, the waveform of the forward current IA flowing through the semiconductor element 107A, and the order of flowing through the semiconductor element 107B The waveform of the directional current IB and the waveform of the forward current IC flowing through the semiconductor element 107C are shown.
  • the operation period of the power supply system 100 is roughly divided into a first period (time (1) to (4)) and a second period (time (4) to (5)).
  • the smoothing capacitor 102 is precharged, and in the second period, an operation for connecting the electric circuit connecting the DC power source BA and the smoothing capacitor 102 with lower loss is performed.
  • the control signal Vg3 (FIG. 3) for relatively reducing the upper limit current value (relatively increasing the on-resistance) is output only to the semiconductor element 107A, so that the current supplied to the smoothing capacitor 102 Does not exceed the limit current value.
  • the smoothing capacitor 102 can be gradually charged while suppressing an inrush current when the electric circuit is closed. That is, the first period is provided as a period for precharging.
  • the operation of the semiconductor element 107A in the first period (time (1) to (4)) will be described in a little more detail.
  • a forward current starts to flow through the semiconductor element 107A.
  • the drain-source voltage (V DS ) of the semiconductor element 107A is relatively high. Therefore, the characteristics of the semiconductor element 107A in this period are those in the region (saturation region) indicated by the section (A) in FIG. Therefore, the current flowing through the semiconductor element 107A for a short period after the forward current starts to flow (the period until time (2)) is the upper limit current value I D 3 (this embodiment) corresponding to the case where the control signal Vg3 is input. (The value equal to the limit current value) in the first period.
  • V DS of the semiconductor element 107A decreases, and V DS becomes equal to the voltage (pinch-off voltage) corresponding to the boundary between the section (A) and the section (B). From the time point (time (2)), the characteristics of the semiconductor element 107A are in the region (linear region) indicated by the section (B). Accordingly, the forward current flowing through the semiconductor element 107A decreases from time (2) to (4).
  • the controller 105 sets all of the control signals VGA, VGB, VGC to Vg7.
  • the second period since charging of the smoothing capacitor 102 is completed, a large inrush current flows even if the current flowing through the electric circuit connecting the DC power source BA and the smoothing capacitor 102 is allowed to exceed the limit current value. Absent. Therefore, there is no upper limit of the forward current value until it is saturated due to thermal constraints or the like, and the control signal Vg7 that flows the forward current according to the drain-source voltage (V DS ) can be output to all three semiconductor elements. it can. As a result, the electric circuit connecting the DC power supply BA and the smoothing capacitor 102 can be operated with a smaller on-resistance.
  • the number of semiconductor elements in which current flows in the second period is determined based on the number of semiconductor elements in which current flows in the first period. Consider why there are so many.
  • the on-resistance of the semiconductor element is large.
  • the second period it is advantageous from the viewpoint of power consumption and the like to make the electric circuit connecting the DC power supply BA and the smoothing capacitor 102 conductive with lower loss. desirable.
  • the chip area of the semiconductor element is increased (that is, the current is increased). Is effective. Therefore, in the present embodiment, not only the on-resistance is adjusted by adjusting the level of the input control signal, but also the on-resistance is adjusted by changing the number of semiconductor elements through which a current flows.
  • the upper limit current value or on-resistance can be set with high accuracy.
  • the current flows only in the semiconductor element 107A in the first period.
  • the design concept in the present embodiment will be described with reference to fluctuations in the voltage value VC of the smoothing capacitor 102. Since the period required for pre-charging is a preparation period for operating the power supply system, the user's request that this period should be substantially constant regardless of the situation of the power supply system There is. Therefore, first, the length of the first period (time (1) to (4)) is determined. Then, next, considering the transition period from the first period to the second period due to the delay of the control signal Vg, etc., the charging of the smoothing capacitor 102 is completed (the voltage value VC of the smoothing capacitor 102 is set to VC full). The time (time (1) to (3)) that can be used for raising is determined.
  • the upper limit of the value of the current allowed to flow in the electric circuit connecting the DC power supply BA and the smoothing capacitor 102 in the first period is determined so that the charging time is within the determined time. That is, the fluctuation of the voltage value VC of the smoothing capacitor 102 shown in the uppermost stage in FIG. 4 is predetermined in the design stage.
  • the length of the first period is set within a range in which the value of the current allowed to flow through the electric path is equal to or less than the predetermined limit current value.
  • time (3) corresponds to the time when the smoothing capacitor 102 is charged 100% when the smoothing capacitor 102 is charged with a current that does not exceed the limit current value.
  • the time (4) at which the first period ends is designed to be later than the time (3).
  • the first period is designed to be longer than the period required for the smoothing capacitor 102 to be charged from 0% to 100% when the smoothing capacitor 102 is charged with a current that does not exceed the limit current value. It has been done.
  • the waveform of the forward current of the semiconductor element 107A shown in FIG. 4 shows a case where there is a load (when the smoothing capacitor 102 and the inverter 103 are connected).
  • the forward current of the semiconductor element 107A is not 0 [A] between times (4) and (5), but when the entire operation of the power supply system 100 ends at time (5), the forward direction is reached. The current becomes 0 [A].
  • the forward current of the semiconductor element 107A is 0 [A] during the times (4) to (5). ].
  • the electric circuit is opened and closed by the semiconductor element without using the mechanical relay.
  • an electric circuit is opened and closed by a mechanical relay, an induced electromotive force is generated. Therefore, it is necessary to provide a bypass circuit or the like for escaping the induced electromotive force. can do.
  • mechanical relay issues include, for example, a decrease in reliability due to switching life due to contact wear and the like, and maintenance problems.
  • the problems of mechanical relays include noise generation due to arc discharge occurring at the contact point when opening and closing, delay due to large hysteresis, and the like.
  • this embodiment does not employ mechanical relays, problems specific to these mechanical relays do not occur.
  • the electric circuit connecting the DC power source and the capacitive element is opened and closed by adjusting the level of the control signal (gate voltage) input to the semiconductor element. Also, when the circuit connecting the DC power supply and the capacitive element is closed, the control signal level input to the semiconductor element is also adjusted to control the amount of current flowing through the circuit so that it does not exceed the limit current value. Yes. Therefore, the functions of the preliminary charging path and the system main relay in Patent Document 1 can be performed only by the current amount variable unit made of a semiconductor element, so that the power supply switching device can be further miniaturized.
  • the semiconductor element through which current flows in the first period is fixed at 107A (FIG. 4).
  • a configuration will be described in which a load applied to a semiconductor element is distributed by switching a semiconductor element through which a current flows during the first period.
  • FIG. 5 is a diagram illustrating an overall configuration of a power supply system 200 including a power supply switching apparatus according to the second embodiment.
  • the power switch 201 is characterized in that it includes temperature detection circuits 213A, 213B, and 213C in addition to the configuration of the power switch 101 (first embodiment, FIG. 1).
  • the same reference numerals are given to the same components as those in the first embodiment, and the description thereof is omitted.
  • the current amount variable unit 206 includes semiconductor elements 207A, 207B, and 207C having the same configuration as that of the first embodiment.
  • Temperature detection circuits 213A, 213B, and 213C individually detect the temperature TA [° C.] of the semiconductor element 207A, the temperature TB [° C.] of the semiconductor element 207B, and the temperature TC of the semiconductor element 207C [° C.], respectively.
  • the controller 205 outputs control signals VGA, VGB, VGC for the semiconductor elements 207A, 207B, 207C.
  • the controller 205 further acquires information on the temperatures TA, TB, and TC detected by the temperature detection circuits 213A, 213B, and 213C, and selects a semiconductor element that conducts current during the first period according to the detected temperature. To do.
  • the semiconductor elements are selected as the semiconductor elements that allow current to flow in the first period in order from the semiconductor element having the lowest temperature. Details of the operation of the controller 205 including this operation will be described with reference to FIG.
  • FIG. 6 is a diagram illustrating a flowchart of operations performed by the controller 205 according to the present embodiment.
  • the controller 205 determines whether or not there is a command to turn on the power switching device 201 (S on in FIG. 2A) (step S201). If it is determined that there is no such command (NO in step S201), the process returns to step S201. If it is determined that the instruction has been issued (YES in step S201), the entire operation of the power supply system 200 is started, and information on the temperatures TA, TB, and TC detected by the temperature detection circuits 213A, 213B, and 213C is acquired (step S202). ).
  • step S203 it is determined which one of the temperatures TA, TB, and TC is the lowest (step S203). If it is determined that the temperature TA is the lowest (TA in step S203), the controller 205 outputs Vg3 as VGA, Vg0 as VGB, and Vg0 as VGC, respectively (see step S204A, FIGS. 2 and 3). If it is determined that the temperature TB is the lowest (TB in step S203), the controller 205 outputs Vg0 as VGA, Vg3 as VGB, and Vg0 as VGC, respectively (step S204B). When it is determined that the temperature TC is the lowest (TC in step S203), the controller 205 outputs Vg0 as VGA, Vg0 as VGB, and Vg3 as VGC (step S204C).
  • step S205 determines whether or not the first period has ended. If it is determined that the first period has not ended (NO in step S205), the process returns to step S205. If it is determined that the first period has ended (YES in step S205), the controller 205 outputs Vg7 as VGA, Vg7 as VGB, and Vg7 as VGC, respectively (step S206).
  • step S207 it is determined whether or not there is a command to turn off the power supply switching device 201 (S off in FIG. 2A) (step S207). If it is determined that there is no such command (NO in step S207), the process returns to step S207. If it is determined that the instruction has been issued (YES in step S207), Vg0 is output as VGA, VGB, and VGC, respectively, in order to end the entire operation of power supply system 200 (step S208).
  • the controller selects the semiconductor element having the lowest temperature as the element that allows current to flow during the first period. By doing so, it is possible to disperse the load due to heat generation of the semiconductor element, as compared to the case where the semiconductor element that conducts current in the first period is fixedly selected. As a result, the lifetime reduction of the semiconductor element can be suppressed and the reliability of the power switchgear can be improved.
  • the temperature of the semiconductor element is individually detected.
  • a configuration in which the temperature of the entire semiconductor element (the temperature of the current amount variable unit 206) can be detected.
  • FIG. 7 is a diagram illustrating an overall configuration of a power supply system 200a including a power switchgear according to this modification.
  • the power switch 201a is characterized in that it includes a temperature detection circuit 213a in addition to the configuration of the power switch 101 (first embodiment, FIG. 1).
  • the difference from the power switchgear 201 in the second embodiment will be mainly described.
  • the temperature detection circuit 213a detects the temperature T sur [° C.] as a whole of the semiconductor elements 207A, 207B, and 207C.
  • the controller 205a acquires information on the temperature T sur detected by the temperature detection circuit 213a, and selects a semiconductor element that allows current to flow in the first period according to the detected temperature T sur .
  • the semiconductor element that has flowed current in the previous first period is selected as the semiconductor element that continues to flow current in the first period.
  • a semiconductor element excluding at least one of the semiconductor elements that has passed a current in the previous first period is newly set out of the plurality of semiconductor elements according to a predetermined rule.
  • a predetermined rule are selected as semiconductor elements for passing current during the first period. Details of the operation of the controller 205a including this operation will be described with reference to FIG.
  • FIG. 8 is a diagram illustrating a flowchart of operations performed by the controller 205a according to the present modification.
  • Step S201a corresponds to step S201 (FIG. 6) in the second embodiment.
  • controller 205a determines that there is a command to turn on power supply switching device 201a (YES in step S201a), it starts the entire operation of power supply system 200a and acquires information on temperature T sur detected by temperature detection circuit 213a. (Step S202a).
  • step S203a it is determined whether or not the temperature T sur is equal to or higher than a predetermined threshold temperature (step S203a). If it is determined that the temperature T sur is equal to or higher than the threshold temperature (YES in step S203a), the count value Ct stored in the microcomputer or the like of the controller 205a is incremented (step S204a), and the process proceeds to step S205a. If it is determined that the temperature T sur is not equal to or higher than the threshold temperature (NO in step S203a), the process proceeds to step S205a without incrementing the count value Ct.
  • the controller 205a determines how much the remainder is when the count value Ct is divided by 3 (the number of semiconductor elements included in the current amount variable unit 206) (step S205a).
  • the controller 205a outputs Vg3 as VGA, Vg0 as VGB, and Vg0 as VGC, respectively (step S206A).
  • the controller 205a outputs Vg0 as VGA, Vg3 as VGB, and Vg0 as VGC (step S206B).
  • a semiconductor element different from the semiconductor element that has passed a current in the first period of operation of the previous power supply system is used. Then, it is newly selected as a semiconductor element through which a current flows in the first period.
  • a semiconductor element such as a MISFET has a temperature dependency in which an upper limit current value determined by the level of an input control signal changes depending on the temperature.
  • FIG. 9 is a diagram illustrating an overall configuration of a power supply system 300 including a power supply switching apparatus according to the third embodiment.
  • the power switchgear 301 includes a temperature detection circuit 313 corresponding to the temperature detection circuit 213a (FIG. 7) in the modification of the second embodiment.
  • the point to be prepared is a feature.
  • the same reference numerals are given to the same configurations as those in the first embodiment.
  • the current amount variable unit 306 includes semiconductor elements 107A, 107B, and 107C having the same configuration as that of the first embodiment.
  • the temperature detection circuit 313 detects the ambient temperature T sur [° C.] of the entire semiconductor elements 307A, 307B, 307C (current amount variable unit 306).
  • the controller 305 outputs control signals VGA, VGB, VGC for the semiconductor elements 307A, 307B, 307C.
  • the controller 305 further acquires information on the ambient temperature T sur detected by the temperature detection circuit 313, and according to the ambient temperature T sur , a control signal output to the semiconductor element that conducts current in the first period. Adjust the level.
  • FIG. 10 is a diagram for explaining the temperature dependence of the semiconductor element.
  • FIG. 10A is a diagram schematically showing the IV characteristics of the semiconductor element at a low temperature
  • FIG. 10B is a diagram schematically showing the IV characteristics of the semiconductor element at a high temperature. is there.
  • the horizontal axis represents the drain-source voltage [V] (V DS ) of the semiconductor element
  • the vertical axis represents the forward current [A] (I D ).
  • the control signals Vg1 to Vg6 are inputted, even when the control signals are the same level, the forward current is less likely to flow when the temperature is high than when the temperature is low. It can be seen that the current value decreases.
  • the length of the first period is substantially constant. If the control signal Vg of the same level is input, the upper limit current value is smaller at a high temperature, and therefore the precharge time is longer than that at a low temperature. It will be necessary to take extra time. In order to prevent this and make the first period substantially constant, it is effective to perform temperature compensation by inputting a control signal at a higher level at a high temperature than at a low temperature.
  • FIG. 11A shows a table t 3 stored in the memory of the controller 305.
  • the table t 3 lists the temperature range to which the ambient temperature T sur [° C.] detected by the temperature detection circuit 313 belongs, and the level of the control signal command Dg output from the microcomputer (FIG. 2).
  • table t 3 indicating that the temperature is higher in the order of T1 ⁇ T2 ⁇ T3 ⁇ T4 ⁇ T5. Therefore, the lower the table t 3 is, the higher the ambient temperature T sur is.
  • the level of the control signal Vg corresponding to the level of the control signal command Dg is shown in parentheses, but this is only shown for convenience of explanation, and actually the controller 305. Is not stored in the memory.
  • FIG. 11B is a diagram showing the relationship between the control signals Vg0, VgT 0 to VgT 5 , Vg7 to Vg8 shown in FIG. 11A and the upper limit current value when these control signals are input. .
  • the control signal Vg0 as in the first embodiment (FIG. 3)
  • the value of I D is 0 [A] regardless of the value of V DS , and therefore the upper limit current value is 0 [A ].
  • the control signal VgT 0 ⁇ VgT 5 although I D also increases with increasing V DS, the I D has an upper limit current value.
  • the upper limit current value of ID increases in the order of VgT 0 ⁇ VgT 1 ⁇ ...
  • the controller 305 adjusts the output control signals VgT 0 to VgT 5 according to which temperature range the ambient temperature T sur belongs according to the table t 3 . Specifically, the controller 305 adjusts the control signal output to each semiconductor element so that the upper limit current value of the semiconductor element becomes higher as the temperature range to which the ambient temperature T sur belongs is higher. For example, when the ambient temperature T sur is in a relatively low temperature range, the control signal VgT 1 that relatively reduces the upper limit current value is selected. On the other hand, when the ambient temperature T sur is in a relatively high temperature range, the control signal VgT 4 that relatively increases the upper limit current value is selected.
  • FIG. 12 is a diagram illustrating a flowchart of operations performed by the controller 305 according to the present embodiment.
  • Steps S301 and S302 correspond to steps S201a and S202a (FIG. 8) in the modified example of the second embodiment.
  • the controller 305 acquires information on the ambient temperature T sur detected by the temperature detection circuit 313 (step S302), and then performs control corresponding to the temperature range to which the ambient temperature T sur belongs from the table t 3 (FIG. 11A).
  • the signal Vg (control command signal Dg) is selected (step S303).
  • the controller 305 outputs VgX as VGA, Vg0 as VGB, and Vg0 as VGC, respectively (step S304).
  • VGX in Figure 12 the control of the signals VgT 0 ⁇ VgT 5, refers to a control signal Vg corresponding to the control command signal Dg selected from the table t 3 in step S303.
  • Steps S305 to S308 correspond to steps S205 to S208 (FIG. 6) in the second embodiment.
  • FIG. 13 is a diagram illustrating an example of a timing chart according to the present embodiment. 13A and 13B, in order from the top, the fluctuation of the voltage value VC of the smoothing capacitor 102, the waveform of the control signal VGA, the waveform of the control signal VGB, the waveform of the control signal VGC, and the forward direction flowing through the semiconductor element 307A.
  • the waveform of the current IA, the waveform of the forward current IB flowing through the semiconductor element 307B, and the waveform of the forward current IC flowing through the semiconductor element 307C are shown. Also, times (1) to (5) shown in the figure correspond to times (1) to (5) in the timing chart (first embodiment) shown in FIG.
  • FIG. 13A is a timing chart when the ambient temperature T sur is in a relatively low temperature range. Specifically, in step S303, the ambient temperature T sur is T1 ⁇ T sur ⁇ T2 in the table t 3. This corresponds to the case where VgT 1 is output as VgX in step S304.
  • FIG. 13B is a timing chart when the ambient temperature T sur is in a relatively high temperature range. Specifically, in step S303, the ambient temperature T sur is T4 ⁇ T sur ⁇ T5 in the table t 3. This corresponds to the case where VgT 4 is output as VgX in step S304.
  • FIG. 13B when the semiconductor element is at a high temperature (FIG. 13B), the level of the input control signal Vg is higher than that at the low temperature (FIG. 13A). The amount of forward current IA flowing through 307A has increased (time (1) to (2)).
  • the configuration of the present embodiment it is possible to appropriately compensate for the fluctuation of the upper limit current value due to the temperature fluctuation of the semiconductor element. As a result, even if the temperature of the semiconductor element varies due to the operation of the power switchgear, the time required for the preliminary charging can be made substantially constant.
  • the amount of current flowing through the smoothing capacitor depends on the difference between the voltage value of the DC power supply and the voltage value of the smoothing capacitor.
  • the capacitance of the smoothing capacitor is determined by the specifications of the power supply system, and is selected so as not to fluctuate greatly during the operation of the normal power supply system. Therefore, in such a power supply system in which the potential of the smoothing capacitor does not vary much, the voltage value of the DC power supply greatly affects the amount of current flowing through the smoothing capacitor.
  • the power supply voltage value of the DC power supply BA varies greatly during operation of the power switchgear.
  • the power supply voltage at which the power switchgear can operate is about 180 to 320 [V] with respect to a rated voltage of 240V.
  • FIG. 14 is a diagram illustrating an overall configuration of a power supply system 400 including a power supply switching apparatus according to the fourth embodiment.
  • the power supply switching device 401 is characterized by including a power supply voltage detection circuit 414 in addition to the configuration of the power supply switching device 101 (first embodiment, FIG. 1).
  • the same reference numerals are given to the same configurations as those in the first embodiment.
  • the current amount variable unit 406 includes semiconductor elements 407A, 407B, and 407C having the same configuration as that of the first embodiment.
  • the power supply voltage detection circuit 414 detects the voltage value VB [V] of the DC power supply BA.
  • the controller 405 outputs control signals VGA, VGB, VGC for the semiconductor elements 407A, 407B, 407C.
  • the controller 405 further acquires information on the voltage value VB detected by the power supply voltage detection circuit 414, and outputs the information to the semiconductor element that conducts current in the first period according to the detected voltage value VB. Adjust the signal level.
  • FIG. 15 is a diagram showing a table t 4 stored in the memory of the controller 405.
  • the table t 4 lists the voltage range to which the voltage value VB [V] detected by the power supply voltage detection circuit 414 belongs, and the level of the control signal command Dg output from the microcomputer (FIG. 2). Also it shows in parentheses the level of the control signal Vg corresponding to the level of the control signal command Dg in table t 4.
  • the smoothing capacitor 102 when the electric circuit connecting the DC power supply BA and the smoothing capacitor 102 is closed, the smoothing capacitor 102 must first be charged to the voltage value VB of the DC power supply BA.
  • the higher the voltage value VB the more current must be supplied to precharge the smoothing capacitor 102, which means that it takes a longer time to complete the precharging of the smoothing capacitor 102.
  • the controller 405 of the present embodiment according to the table t 4, so that the upper limit current value of the semiconductor device as the voltage value VB is in the high range is higher, adjusting the control signal to be outputted to the semiconductor elements.
  • FIG. 16 is a diagram illustrating a flowchart of operations performed by the controller 405 according to the present embodiment.
  • Step S401 corresponds to step S201 (FIG. 6) in the second embodiment.
  • the controller 405 after acquiring the information of the detected voltage value VB by the power supply voltage detection circuit 414 (step S402), the control signal Vg the voltage value VB from the table t 4 corresponds to the voltage range belonging (control command signal Dg) Is selected (step S403).
  • the controller 405 outputs VgX as VGA, Vg0 as VGB, and Vg0 as VGC, respectively (step S404).
  • VGX among the control signals Vg1 ⁇ VG6, refers to a control signal Vg corresponding to the control command signal Dg selected from the table t 4 at step S403.
  • Steps S405 to S408 correspond to steps S205 to S208 (FIG. 6) in the second embodiment.
  • the time required for the preliminary charging is maintained substantially constant by appropriately adjusting the level of the control signal. Is possible.
  • FIG. 17 is a diagram illustrating an overall configuration of a power supply system 500 including a power supply switching apparatus according to the fifth embodiment.
  • the power switch 501 is characterized in that it includes a capacitance voltage detection circuit 515 in addition to the configuration of the power switch 101 (first embodiment, FIG. 1).
  • the same reference numerals are given to the same configurations as those in the first embodiment.
  • the current amount variable unit 506 includes semiconductor elements 507A, 507B, and 507C having the same configuration as that of the first embodiment.
  • the capacitance voltage detection circuit 515 detects the voltage value VC [V] of the smoothing capacitor 102.
  • the controller 505 outputs control signals VGA, VGB, VGC for the semiconductor elements 507A, 507B, 507C.
  • the controller 505 further acquires information on the voltage value VC detected by the capacitance voltage detection circuit 515, and outputs the information to the semiconductor element that conducts current in the first period according to the detected voltage value VC. Adjust the signal level.
  • FIG. 18 is a diagram showing a table t 5 stored in the memory of the controller 505.
  • the table t 5 lists the voltage range to which the voltage value VC [V] detected by the capacitance voltage detection circuit 515 belongs, and the level of the control signal command Dg output from the microcomputer (FIG. 2). Moreover, the level of the control signal Vg corresponding to the level of the control signal command Dg in table t 5 shows in parentheses.
  • the controller 505 of the present embodiment according to the table t 5, so that the upper limit current value of the semiconductor device as the voltage value VC is a small voltage range is higher, adjusting the control signal to be outputted to the semiconductor elements.
  • Flowchart of operation performed by controller 505 is the same operation except for steps S402 to S404 in the flowchart shown in FIG.
  • the controller 505 acquires information on the voltage value VC detected by the capacitance voltage detection circuit 515.
  • the controller 505 selects a control signal Vg (control command signal Dg) corresponding to the voltage range which the voltage value VC belongs from the table t 5.
  • VgX is output as VGA
  • Vg0 is output as VGB
  • Vg0 is output as VGC.
  • VGX among the control signals Vg1 ⁇ VG6, in step corresponding to step S403, refers to a control signal Vg corresponding to the control command signal Dg selected from the table t 5.
  • the time required for the preliminary charging can be made substantially constant by appropriately adjusting the level of the control signal. It is possible to maintain.
  • FIG. 19 is a diagram illustrating an overall configuration of a power supply system 600 including a power supply switching apparatus according to the sixth embodiment.
  • the power switching device 601 includes a power voltage detection circuit 614 corresponding to the power voltage detection circuit 414 (FIG. 14) in the fourth embodiment, It is characterized in that a capacitance voltage detection circuit 615 corresponding to the capacitance voltage detection circuit 515 (FIG. 17) in the fifth embodiment is provided.
  • FIG. 19 the same reference numerals are given to the same configurations as those in the first embodiment.
  • the current amount variable unit 606 includes semiconductor elements 607A, 607B, and 607C having the same configuration as that of the first embodiment.
  • the power supply voltage detection circuit 614 detects the voltage value VB [V] of the DC power supply BA.
  • the capacitance voltage detection circuit 515 detects the voltage value VC [V] of the smoothing capacitor 102.
  • the controller 605 outputs control signals VGA, VGB, VGC for the semiconductor elements 607A, 607B, 607C.
  • the controller 605 further acquires information on the voltage value VB detected by the power supply voltage detection circuit 614 and the voltage value VC detected by the capacitance voltage detection circuit 615, and according to the difference Dif between the voltage value VB and the voltage value VC.
  • the level of the control signal output to the semiconductor element that supplies current during the first period is adjusted.
  • FIG. 20 is a diagram showing a table t 6 stored in the memory of the controller 605.
  • the table t 6 lists the numerical range to which the difference Dif between the voltage value VB and the voltage value VC belongs, and the level of the control signal command Dg output from the microcomputer (FIG. 2). Also it shows in parentheses the level of the control signal Vg corresponding to the level of the control signal command Dg in table t 6. In table t 6, it shows a Dif1 ⁇ Dif2 ⁇ Dif3 ⁇ Dif4 ⁇ the higher number in order Dif5. Therefore, it means that the difference Dif between the voltage value VB and the voltage value VC increases as it goes below the table t 6 .
  • a larger value of the difference Dif means that the amount of charge of the smoothing capacitor 102 is smaller and it takes a longer time to complete the preliminary charging of the smoothing capacitor 102. Accordingly, the controller 605 of the present embodiment, according to the table t 6, so that the upper limit current value of the semiconductor element as in large numeric range difference Dif is higher, adjusting the control signal to be outputted to the semiconductor elements.
  • Flowchart of operation performed by controller 605 is the same operation except for steps S402 to S404 in the flowchart shown in FIG.
  • the controller 605 acquires information on the voltage value VB detected by the power supply voltage detection circuit 614 and the voltage value VC detected by the capacitance voltage detection circuit 615.
  • VgX is output as VGA
  • Vg0 is output as VGB
  • Vg0 is output as VGC.
  • VGX among the control signals Vg1 ⁇ VG6, in step corresponding to step S403, refers to a control signal Vg corresponding to the control command signal Dg selected from the table t 6.
  • the time required for the preliminary charging can be adjusted by appropriately adjusting the level of the control signal. Can be made substantially constant.
  • FIG. 21 is a diagram illustrating an overall configuration of a power supply system 700 including a power supply switching apparatus according to the seventh embodiment.
  • the power switchgear 701 is a temperature detection circuit corresponding to each of the temperature detection circuits 213A, 213B, and 213C (FIG. 5) in the second embodiment. 713A, 713B, 713C, and the point provided with the power supply voltage detection circuit 714 corresponding to the power supply voltage detection circuit 414 (FIG. 14) in 4th Embodiment.
  • the current amount variable unit 706 includes semiconductor elements 707A, 707B, and 707C having the same configuration as that of the first embodiment.
  • Temperature detection circuits 713A, 713B, and 713C individually detect the temperature TA [° C.] of the semiconductor element 707A, the temperature TB [° C.] of the semiconductor element 707B, and the temperature TC [° C.] of the semiconductor element 707C, respectively.
  • the power supply voltage detection circuit 714 detects the voltage value VB of the DC power supply BA.
  • the controller 705 outputs control signals VGA, VGB, VGC for the semiconductor elements 707A, 707B, 707C.
  • the controller 705 also acquires information on the temperatures TA, TB, and TC detected by the temperature detection circuits 713A, 713B, and 713C, and based on this information, sequentially supplies current in the first period from the semiconductor element having the lowest temperature. Select as a semiconductor element to flow. Further, the controller 705 acquires information on the voltage value VB detected by the power supply voltage detection circuit 714, and according to the voltage value VB, the level of the control signal output to the semiconductor element that conducts current in the first period. Adjust.
  • the memory of the controller 705 stores a table similar to the table t 4 (FIG. 15) in the fourth embodiment.
  • FIG. 22 is a diagram illustrating a flowchart of operations performed by the controller 705 according to the present embodiment. Steps S701 to S703 correspond to steps S401 to S403 (FIG. 16) in the fourth embodiment. Steps S704 and S705 correspond to steps S202 and S203, respectively.
  • step S705 when it is determined that the temperature TA is the lowest (TA in step S705), the controller 705 outputs VgX as VGA, Vg0 as VGB, and Vg0 as VGC (step S706A).
  • VGX among the control signals Vg1 ⁇ VG6, refers to a control signal Vg corresponding to the control command signal Dg selected from the table t 4 in step S703.
  • the controller 705 If it is determined that the temperature TB is the lowest (TB in step S705), the controller 705 outputs Vg0 as VGA, VgX as VGB, and Vg0 as VGC (step S706B). If it is determined that the temperature TC is the lowest (TC in step S705), the controller 705 outputs Vg0 as VGA, Vg0 as VGB, and VgX as VGC (step S706C).
  • Steps S707 to S710 correspond to steps S205 to S208 (FIG. 6) in the second embodiment.
  • FIG. 23 is a diagram illustrating an example of a timing chart according to the present embodiment.
  • 23A and 23B in order from the top, the fluctuation of the voltage value VC of the smoothing capacitor 102, the waveform of the control signal VGA, the waveform of the control signal VGB, the waveform of the control signal VGC, and the forward direction flowing through the semiconductor element 707A.
  • the waveform of the current IA, the waveform of the forward current IB flowing through the semiconductor element 707B, and the waveform of the forward current IC flowing through the semiconductor element 707C are shown.
  • times (1) to (5) shown in the figure correspond to times (1) to (5) in the timing chart (first embodiment) shown in FIG.
  • FIG. 23 (a) is selected the control signal Vg2 from the table t 4 at step S703, the case where the temperature TA is determined to be the most temperature is low in step S705. That is, In S706A, Vg2 is output as VGA, Vg0 is output as VGB, and Vg0 is output as VGC.
  • FIG. 23 (b) selects the control signal Vg4 from the table t 4 at step S703, the case where the temperature TB is determined most temperature is low in step S705. That is, in S706A, Vg0 is output as VGA, Vg4 is output as VGB, and Vg0 is output as VGC.
  • FIG. 24 is a diagram illustrating an overall configuration of a power supply system 800 including a power supply switching apparatus according to the eighth embodiment.
  • the power switching device 801 includes a temperature detection circuit 813 corresponding to the temperature detection circuit 313 (FIG. 9) in the third embodiment, This embodiment is characterized in that a power supply voltage detection circuit 814 corresponding to the power supply voltage detection circuit 414 (FIG. 14) is provided.
  • the current variable unit 806 includes semiconductor elements 807A, 807B, and 807C having the same configuration as that of the first embodiment.
  • the temperature detection circuit 813 detects the temperature TA [° C.] of the semiconductor element 807A.
  • the semiconductor element 807A is the semiconductor element through which current flows in the first period. Therefore, the temperature detection circuit 813 is configured to detect the temperature of only the semiconductor element 807A.
  • the power supply voltage detection circuit 814 detects the voltage value VB [V] of the DC power supply BA.
  • the controller 805 outputs control signals VGA, VGB, VGC for the semiconductor elements 807A, 807B, 807C.
  • the controller 805 also acquires information on the temperature TA detected by the temperature detection circuit 813 and information on the voltage value VB detected by the power supply voltage detection circuit 814. Further, the controller 805 adjusts the level of the control signal output to the semiconductor element 807A in the first period based on the table stored in the memory according to the temperature TA and the voltage value VB.
  • FIG. 25 is a diagram showing a table t 8 stored in the memory of the controller 805.
  • the voltage range to which the voltage value VB [V] detected by the power supply voltage detection circuit 814 belongs in the leftmost column of the table t 8 is detected by the temperature detection circuit 813 in the uppermost row of the table t 8 .
  • Each temperature range to which the temperature TA belongs is shown.
  • the level of the control command signal Dg output as) and the level of the control signal Vg corresponding thereto are listed in parentheses.
  • the controller 805 selects a control signal Vg at a level corresponding to a portion where a column corresponding to the temperature range to which the temperature TA belongs and a row corresponding to the voltage range to which the voltage value VB belongs. For example, when the temperature TA is T2 or more and less than T3 (“T2 ⁇ TA ⁇ T3”) and the voltage value VB is 275 [V] (“250 to 299”), Vg3-T 2 is output as VGA To do.
  • the level of the control signal is increased toward the lower side of the table t 8 .
  • the level of the control signal is set higher. That is, the controller 805 of the present embodiment, according to the table t 8, the higher the voltage value VB is in the high range and the higher the temperature TA is higher temperature range, the control as the upper limit current value increases of the semiconductor element Adjust the signal.
  • FIG. 26 is a diagram illustrating a flowchart of operations performed by the controller 805 according to the present embodiment. Steps S801 and S802 correspond to steps S401 and S402 (FIG. 16) in the fourth embodiment.
  • the controller 805 after acquiring the information of the detected temperature TA by the temperature detection circuit 813 (step S803), the control signal Vg corresponding from the table t 8 the voltage value VB and a temperature TA (the control command signal Dg) Is selected (step S804).
  • VgX is output as VGA
  • Vg0 is output as VGB
  • Vg0 is output as VGC (step S805).
  • VGX in Figure 26 among the control signals shown in table t 8, which refers to a control signal Vg corresponding to the control command signal Dg selected from the table t 8 in step S804.
  • Steps S806 to S809 correspond to steps S205 to S208 (FIG. 6) in the second embodiment.
  • FIG. 27 is a diagram illustrating an overall configuration of a power supply system 900 including a power supply switching apparatus according to the ninth embodiment.
  • the power switchgear 901 includes temperature detection circuits corresponding to the temperature detection circuits 213A, 213B, and 213C (FIG. 5) in the second embodiment in addition to the configuration of the power switchgear 101 (first embodiment, FIG. 1).
  • the power supply voltage detection circuit 914 corresponding to the power supply voltage detection circuit 414 (FIG. 14) in the fourth embodiment is characterized by 913A, 913B, and 913C.
  • the current amount variable unit 906 includes semiconductor elements 907A, 907B, and 907C having the same configuration as that of the first embodiment.
  • Temperature detection circuits 913A, 913B, and 913C individually detect the temperature TA [° C.] of the semiconductor element 907A, the temperature TB [° C.] of the semiconductor element 907B, and the temperature TC [° C.] of the semiconductor element 907C, respectively.
  • the power supply voltage detection circuit 914 detects the voltage value VB of the DC power supply BA.
  • the controller 905 outputs control signals VGA, VGB, VGC for the semiconductor elements 907A, 907B, 907C.
  • the controller 705 acquires information on the temperatures TA, TB, and TC detected by the temperature detection circuits 713A, 713B, and 713C, and based on this information, a semiconductor that allows current to flow in the first period in order from the semiconductor element having the lowest temperature. Select as an element. Further, the controller 905 also acquires information on the voltage value VB detected by the power supply voltage detection circuit 914. As in the eighth embodiment, the controller 905 adjusts the level of the control signal output to the semiconductor element that conducts current in the first period based on the information on the temperatures TA, TB, and TC and the voltage value VB. To do. Therefore, the memory of the controller 905 stores a table similar to the table t 8 (FIG. 25) in the eighth embodiment. However, “TA” in the table t 8 is read as the lowest temperature among the temperatures TA, TB, and TC.
  • FIG. 28 is a diagram illustrating a flowchart of operations performed by the controller 905 according to the present embodiment.
  • Steps S901 and S902 correspond to steps S201 and S202 (FIG. 6) in the second embodiment.
  • the lowest temperature is stored in the memory (step S903).
  • the control signal Vg (control command signal corresponding to the temperature stored in the voltage value VB and Step S903 from the table t 8 Dg) is selected (step S905).
  • step S903 when the temperature stored in step S903 is TA (TA in step S906), the controller 905 outputs VgX as VGA, Vg0 as VGB, and Vg0 as VGC, respectively (step S907A).
  • VGX refers to a control signal Vg corresponding to the control command signal Dg selected from the table t 8 in step S905.
  • the controller 905 When the temperature stored in step S903 is TB (TB in step S906), the controller 905 outputs Vg0 as VGA, VgX as VGB, and Vg0 as VGC (step S907B). If the temperature stored in step S903 is TC (TC in step S906), the controller 905 outputs Vg0 as VGA, Vg0 as VGB, and VgX as VGC (step S907C).
  • Steps S908 to S911 correspond to steps S205 to S208 (FIG. 6) in the second embodiment.
  • the present embodiment it is possible to compensate for the fluctuation of the upper limit current value due to the temperature dependence of the semiconductor element while solving the problem of fluctuation of the precharging period due to the fluctuation of the potential of the DC power supply. It becomes.
  • a current flows in the semiconductor element having the lowest temperature in the first period the load applied to the semiconductor element can be dispersed, and the life reduction of the semiconductor element due to overheating can be suppressed.
  • the semiconductor element through which a current flows in the first period is fixed at 107 A, but in the first period every time the power switchgear operates. It is good also as switching the semiconductor element through which an electric current is sent in order. By doing in this way, since the load of a semiconductor element can be disperse
  • the present invention is not limited to this.
  • the ambient temperature of the entire semiconductor elements 807A, 807B, and 807C may be detected, and the control signal may be adjusted based on the ambient temperature.
  • Vg3 may be output as VGA, Vg3 as VGB, Vg3 as VGC, and Vg7 as VGA, Vg7 as VGB, and Vg7 as VGC in the second period.
  • each of the control signals output to the semiconductor element that flows current in the first period is at the same level, and each of the control signals that are output to the semiconductor element that flows current in the second period has the same level.
  • the number of semiconductor elements through which current flows and the level of a control signal output to the semiconductor element through which current flows are different between the first period and the second period.
  • the present invention is not limited to this.
  • the number of semiconductor elements through which current flows may be different between the first period and the second period.
  • Vg7 is output as VGA
  • Vg0 is output as VGB
  • Vg0 is output as VGC
  • Vg7 is output as VGA
  • Vg7 is output as VGB
  • Vg7 is output as VGC.
  • the number in the first period and the number in the second period are not particularly limited, but as described in the first embodiment, the number in the first period should be smaller than the number in the second period. desirable.
  • the second and fourth embodiments are combined, but the fifth or sixth embodiment, which is an embodiment having a voltage detection circuit as in the fourth embodiment, is used. These can be combined with the second embodiment.
  • the second, third, and fourth embodiments are combined, but the fifth or sixth embodiment is an embodiment having a voltage detection circuit as in the fourth embodiment. It is also possible to combine the embodiments with the second and third embodiments, respectively.
  • the modification according to the modification (1) may be added to the configuration corresponding to the third embodiment with respect to the modification obtained by combining the third and fifth embodiments according to the modification (7).
  • the number of semiconductor elements that allow current to flow in the first period is not limited to one, and may be two.
  • semiconductor elements that conduct current in the first period are semiconductor elements 207A and 207B, semiconductor elements 207B and 207C, semiconductor elements 207C and 207A, semiconductor elements 207A and 207B.
  • the current is supplied in the previous first period among the plurality of semiconductor elements.
  • a semiconductor element excluding at least one of the flowed semiconductor elements is newly selected as a semiconductor element through which a current flows during the first period.
  • the temperature T sur greatly exceeds the threshold temperature
  • the operation of the power switching device 201a is stopped, and after waiting for the temperature T sur to fall below a predetermined temperature, the operation of the power switching device 201a is resumed. It is good as well. By doing in this way, the failure by the overheating abnormality of a semiconductor element can be avoided.
  • the same may be performed in the modified examples of the seventh and ninth embodiments described in the modified example (4).
  • the numerical value of the voltage value VB of the table t 4 shown in FIG. 15 and the numerical value of the voltage value VC of the table t 5 shown in FIG. 18 are merely examples. Further, the level of the control signal Vg is given the same reference sign across the embodiments, but this is only used for the sake of convenience. That is, even if the same reference numerals are given between different embodiments, the control signals are not necessarily the same numerical value. Specifically, the control signal Vg3 in the first embodiment and the control signal Vg3 in the second embodiment are not necessarily the same numerical value.
  • control signal Vg may be zero.
  • Vg8 0 [V] can also be set.
  • the control signal output to the semiconductor element through which current flows in the first period is Vg2, Vg3, or Vg4, but this is merely an example.
  • the control signal is such that I D reaches the upper limit value (upper limit current value) when V DS exceeds a predetermined value, the level is not the above level. There may be.
  • the level of the control signal output in the second period is Vg7, but this is merely an example.
  • control signal Vg 7, VG8 shown in FIG. 3 may be a control signal I D rises until saturation with thermal constraints.
  • the control signal output in the second period is preferably the maximum rated voltage that can be applied to the gate terminal of the semiconductor element. By doing so, the power switchgear can be operated with a smaller on-resistance.
  • the number of semiconductor elements included in the current amount variable unit is three, but this is merely an example.
  • the number of semiconductor elements is not particularly limited, but the sum of the current capacities of the respective semiconductor elements is preferably equal to or greater than the maximum rated current of the DC power supply.
  • the method of changing the number of semiconductor elements to be used is adopted as a method of changing the on-resistance between the first period and the second period, but is not limited thereto.
  • the present invention by appropriately adjusting the level of each control signal output to the semiconductor element, the current flowing in the electric circuit is prevented from exceeding the limit current value in the first period, and the second In this period, it is sufficient that the current flowing in the electric circuit is allowed to exceed the limit current value.
  • Vg1 may be output as VGA, Vg1 as VGB, and Vg1 as VGC in the first period
  • Vg8 may be output as VGA, Vg8 as VGB, and Vg0 as VGC in the second period.
  • the first period is longer than the period required for the smoothing capacitor to be charged from 0% to 100%.
  • the present invention is not limited to this.
  • the smoothing capacitor may be operated to be longer than the period required for charging from 0% to 80%. Good. Even with such a configuration, the inrush current can be suppressed within a range that the smoothing capacitor can tolerate.
  • a MISFET is used as a semiconductor element.
  • a gate insulating film of this MISFET for example, a silicon oxide film such as SiO 2 , a silicon oxynitride film, alumina ( Al 2 O 3 ), hafnium oxides such as HfO, transition metal oxides such as Ti, Zr, Nb, and Ta.
  • a MISFET that employs an oxide as a gate insulating film is also referred to as a metal-oxide-semiconductor field effect transistor (MOSFET).
  • MOSFET metal-oxide-semiconductor field effect transistor
  • the semiconductor element has been described as an N-type MISFET.
  • a P-type MISFET may be used.
  • the definitions of “source” and “drain” with respect to the current direction are reversed. Therefore, it is only necessary to replace “source” and “drain” in the above description with “drain” and “source”, respectively.
  • a metal-semiconductor field effect transistor (MESFET), a junction type Field Effect Transistor (Junction Field Effect Transistor, JFET), Static Induction Transistor (Static Induction Transistor, SIT), Gate Injection Transistor (Gate Injection Transistor, GIT), Insulated Gate Bipolar Transistor (Insulated Transistor Gate) i-based bipolar transistor, and the like of.
  • the semiconductor element is an IGBT, the “source” and “drain” in the above description may be read as “emitter” and “collector”, respectively.
  • the semiconductor element is a bipolar transistor, the “source”, “drain”, and “gate” in the above description may be read as “emitter”, “collector”, and “base”, respectively.
  • the semiconductor element is described as a normally-off type, but may be a normally-on type.
  • Vg0> Vg1> Vg2>...> Vg7> Vg8 0 [V].
  • the power supply switchgear and the semiconductor element included in the inverter may be composed of wide band gap semiconductors such as SiC and GaN, which have attracted attention in recent years.
  • the on-resistance is small as compared with the case where a conventional semiconductor element made of Si semiconductor is used, it is possible to operate with lower resistance in the second period.
  • the switching operation is fast and that a stable switching operation can be performed even at high temperatures. Since the MISFET used in the above embodiment is an element having a high switching speed from the beginning, the MISFET can be made of a wide bandgap semiconductor to cope with further increase in the switching speed.
  • the temperature is detected every time the power switchgear is operated, but the temperature may be detected every predetermined number of times. In the case of a power supply switching device in which the temperature of the semiconductor element does not fluctuate very much, it is possible to shorten the startup time by adopting such a configuration.
  • the number of semiconductor elements that flow current in the first period is less than the number of semiconductor elements that flow current in the second period, so that the number of semiconductor elements in the first period can be reduced.
  • the upper limit current value or on-resistance can be set finely.
  • the present invention is not limited to this.
  • the above effect can be obtained also by using semiconductor elements having different transconductances.
  • the mutual conductance is an amount defined by a forward current change amount ( ⁇ I D / ⁇ V g ) with respect to a gate voltage change amount.
  • a MISFET having a small transconductance is suitable for fine control of the current value of the drain current because the amount of change in the forward current when the gate voltage is changed is smaller than that of a MISFET having a large transconductance.
  • a MISFET with a large transconductance has a large amount of change in the forward current when the gate voltage is changed, so that a large forward current can flow even if the gate voltage is small.
  • FIG. 29 is a diagram schematically showing IV characteristics of a semiconductor element.
  • FIG. 29A shows a semiconductor element when the mutual conductance is large
  • FIG. 29B shows a semiconductor element when the mutual conductance is small.
  • the upper limit current value can be controlled more finely in the saturation region when the mutual conductance is smaller.
  • the saturation region it can be seen that a larger upper conductance value can be set for a control signal of the same level when the mutual conductance is larger.
  • the controllability of the upper limit current value in the first period is improved.
  • the gate voltage in the second period can be suppressed.
  • FIGS. 29A and 29B are similar to those in FIG. Specifically, the case where the semiconductor element is at a low temperature (FIG. 10A) corresponds to the case where the mutual conductance is large (FIG. 29A), and the case where the semiconductor element is at a high temperature (FIG. 10B). ) Corresponds to the case where the mutual conductance is small (FIG. 29B). Therefore, the same effect can be obtained by properly using semiconductor elements having different temperatures.
  • Each semiconductor element included in the power switchgear is preferably composed of semiconductor elements having the same specifications such as withstand voltage and current capacity. This makes it possible to simplify the control in the controller when switching the semiconductor element through which a current flows in the first period for each operation of the power switchgear, and as a result, the power switchgear can be reduced. Can contribute to cost reduction. Note that this is not the case when semiconductor elements having different threshold voltages are used as in the modified example (25).
  • the period required for the preliminary charging is substantially constant. Therefore, the preliminary charging is performed within the predetermined first period. It was designed to complete charging. Specifically, when it is determined that the charge amount of the smoothing capacitor is low from the difference between the temperature of the semiconductor element, the voltage value of the DC power supply and the voltage value of the smoothing capacitor, the controller controls the upper limit current value of the semiconductor element to be high. I was adjusting the signal. In the present invention, an embodiment based on a different design concept can be adopted. Here, a description will be given of a configuration in which a modification based on the design concept for shortening the precharge period is applied to the fifth embodiment.
  • the configuration is the same as that shown in FIG. 17, but the table stored in the memory of the controller 505 is different.
  • Figure 30 (a) is a diagram showing a table t 10 stored in the memory of the controller 505 according to this modification.
  • the difference from the table t 5 in the fifth embodiment is a column in which the voltage range to which the voltage value VC [V] belongs is listed.
  • the upper limit current value of the semiconductor element is increased as the voltage value VC is in a smaller voltage range, but the relationship is reversed in the present modification.
  • the memory of the controller 505 further stores a table t 11 shown in FIG.
  • the table t 11 lists the level of the control signal Vg input to the semiconductor element through which a current flows in the first period, and the length Prd of the first period.
  • the table t 11 shows a Prd1 ⁇ Prd2 ⁇ ... ⁇ Prd5 ⁇ is a long high period in the order of Prd6.
  • the time required for the level precharging higher increases of a given control signal can be shortened, the length of the first period Prd are possible shortened.
  • FIG. 31 is a diagram illustrating a flowchart of operations performed by the controller 505 according to the present modification.
  • Step S1001 corresponds to step S201 (FIG. 6) in the second embodiment.
  • step S1002 selects the control signal Vg corresponding from the table t 10 to a voltage value VC (control command signal Dg) (step S1003).
  • step S1003 selects the length Prd of the first period corresponding to the control signal Vg selected at step S1003 (step S1004).
  • the controller 505 outputs VgX as VGA, Vg0 as VGB, and Vg0 as VGC (step S1005).
  • VGX refers to a control signal Vg corresponding to the control command signal Dg selected from the table t 10 at step S1003.
  • step S1006 NO the process returns to step S1006. If it is determined that the length Prd of the first period has elapsed (YES in step S1006), the controller 505 outputs Vg7 as VGA, Vg7 as VGB, and Vg7 as VGC, respectively (step S1007). Steps S1008 and S1009 correspond to steps S207 and S208 (FIG. 6) in the second embodiment, respectively.
  • the level of the control signal to be applied is increased to shorten the length of the first period.
  • the amount of charge of the smoothing capacitor is small, a large inrush current is expected to flow when the power is turned on. Therefore, the inrush current is more carefully suppressed by lowering the level of the control signal.
  • the configuration is the same as that shown in FIG. 17, but the table stored in the memory of the controller 505 is different.
  • Figure 32 is a diagram showing a table t 12 stored in the memory of the controller 505 according to this modification.
  • the difference from the table t 5 in the fifth embodiment is that the length Prd of the first period is listed instead of the levels of the control signal Vg and the control command signal Dg.
  • the table t 12 indicates that the periods are long and high in the order of Prd1 ⁇ Prd2 ⁇ ... ⁇ Prd5 ⁇ Prd6.
  • the length Prd of the first period is increased instead of the level of the control signal applied to the semiconductor element through which a current flows in the first period being fixed.
  • FIG. 33 is a diagram illustrating a flowchart of operations performed by the controller 505 according to the present modification. Steps S1101 and S1102 correspond to steps S1001 and S1002 (FIG. 31) in the modified example (27). Then select the length Prd of the first period corresponding from the table t 12 to a voltage value VC (step S1103), the controller 505, as Vg3, VGB as VGA Vg0, and outputs the Vg0 as VGC (step S1005).
  • VGA Vg3 is merely an example.
  • step S1105 determines that the length Prd of the first period has not elapsed selected from the table t 12 in step S1103 (NO in step S1105), the process returns to step S1105. If it is determined that the length Prd of the first period has elapsed (YES in step S1105), the controller 505 outputs Vg7 as VGA, Vg7 as VGB, and Vg7 as VGC (step S1106). Steps S1107 and S1108 correspond to steps S1008 and S1009 (FIG. 31) in the modified example (27), respectively.
  • the precharge time can be shortened by reducing the length of the first period. Further, since the level of the control signal given to the semiconductor element through which a current flows in the first period can be fixed regardless of the charge amount of the smoothing capacitor 102, the controller can be simplified and reduced in cost.
  • the semiconductor element is described in which the forward current is less likely to flow when the temperature is high, but the present invention is not limited to this.
  • temperature compensation is possible if the table t 3 is appropriately changed.
  • FIG. 35 is a diagram illustrating an overall configuration of a power supply system 100A including a power switchgear according to a modification (30).
  • the power switch 101A shown in FIG. 35 includes a current amount variable unit 106p inserted in a positive circuit connecting the DC power supply BA and the smoothing capacitor 102, and a negative circuit connecting the DC power supply BA and the smoothing capacitor 102.
  • the current variable unit 106p includes semiconductor elements 107Ap, 107Bp, and 107Cp
  • the current variable unit 106n includes semiconductor elements 107An, 107Bn, and 107Cn. These semiconductor elements have the same configuration as that used in the first embodiment.
  • the operations of the semiconductor elements 107Ap, 107Bp, and 107Cp are controlled by control signals VGAp, VGBp, and VGCp output from the controller 105A, respectively.
  • the operations of the semiconductor elements 107An, 107Bn, and 107Cn are controlled by control signals VGAn, VGBn, and VGCn that are also output from the controller 105A.
  • a fuse 116 is further inserted between the DC power supply BA and the power switching device 101A.
  • the power switchgear according to this modification can open and close both the positive side and the negative side of the circuit. According to the present modification, even if an abnormality occurs in either the current amount variable unit 106p or the current amount variable unit 106n, the power switching operation is continued by the current variable unit that can operate normally. be able to. Therefore, a highly reliable power switchgear can be configured.
  • FIG. 35 an example in which the first embodiment is modified is illustrated, but it goes without saying that other embodiments and modifications can be modified.
  • a power supply switching device that only opens and closes the negative electric circuit connecting the DC power supply BA and the smoothing capacitor 102 may be used.
  • the present invention can be suitably used for, for example, a power switchgear mounted in a hybrid electric vehicle, an electric vehicle, an electric compressor, an electric power steering, an elevator, a wind power generation system, or the like that is required to be downsized.
  • Power supply system 91, 101, 101A, 201, 301, 401, 501, 601, 701, 801, 901 Power supply switchgear 92 , 102 Capacitor (capacitance element) 93,103 Inverter (Power converter) 94,104 Three-phase AC motor (load) 95, 105, 105A, 205, 205a, 305, 405, 505, 605, 705, 805, 905 Controller 106, 106p, 106n, 206, 306, 406, 506, 606, 706, 806, 906 Current amount variable unit 107A 107Ap, 107An, 107B, 107Bp, 107Bn, 107C, 107Cp, 107Cn, 207A, 207B, 207C, 307A, 307B, 307C, 407A, 407B, 407C, 507A, 507B, 507C,

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

 制御信号VGA,VGB,VGCのレベルに応じて定まる上限電流値以下の電流であって、直流電源BAの電圧値とコンデンサ102の充電電圧値の差分に応じた電流を流す半導体素子107A,107B,107C、各半導体素子に各制御信号を出力するコントローラ105、各半導体素子の温度を検出する温度検出回路を備え、コントローラ105は、上記電路を閉状態にしてから所定期間が経過するまでは、上記電路に流れる電流が制限電流値を超えないように、温度検出回路により検出された温度に応じて各制御信号のレベルを調整し、かつ、所定期間経過後は、上記電路に流れる電流が制限電流値を超えることを許容するように各制御信号のレベルを調整する。

Description

電源開閉装置およびそれを備える電源システム
 本発明は、直流電源と容量素子とを結ぶ電路を開閉する予備充電方式の電源開閉装置およびそれを備える電源システムに関する。
 バッテリ等の直流電源からモータ等の負荷に電力を供給する電源システムは、平滑コンデンサ等の容量素子,直流電源と容量素子とを結ぶ電路を指令に応じて開閉する電源開閉装置,直流電力を交流電力に変換する電力変換装置を、その主要な構成として備える。
 上記の電源開閉装置は、負荷を駆動させない間は直流電源と容量素子とを結ぶ電路を開状態にする(電路を遮断する)。そして、負荷を駆動させる場合には上記電路を閉状態にする(電源と容量素子を導通させる)。しかしながら、上記電路を閉状態にした際には先ず容量素子が充電される必要があるため、上記電路にいわゆる突入電流が流れることとなる。この突入電流は、電源と容量素子とを結ぶ電路に挿入される素子の破壊、電源電圧の一時的な低下による他の機器への悪影響等の原因となる。この問題を解決するものとして、上記電路を閉状態にさせる指令を受けてから所定時間が経過するまでは、抵抗を介して容量素子を充電することにより、上記電路が閉状態となった際の突入電流を抑制する、いわゆる予備充電方式の電源開閉装置が種々知られている(例えば、特許文献1,2)。
 図34は、特許文献1に係る予備充電方式の電源開閉装置を含む電源システム1000の全体構成を示す図である。
 電源システム1000は、電源開閉装置91,容量素子92,電力変換装置93を備える。電源開閉装置91は、直流電源BAと容量素子92とを結ぶ電路に設けられ、外部からの指令に応じて電路を開閉する。容量素子92は、いわゆる平滑コンデンサである。電力変換装置93は、容量素子92と三相交流モータ(以下、単に「モータ」という)94とを結ぶ電路に設けられ、直流を三相交流に変換するインバータである。
 電源開閉装置91は、詳細には、直流電源BAと容量素子92とを結ぶ電路に挿入されたスイッチ類(システムメインリレーSMR1,SMR2、スイッチング素子98),逆流防止用のダイオード99,スイッチ類のオンオフを制御するコントローラ95を備える。システムメインリレーSMR1,SMR2のオンオフは、それぞれ励磁回路96,97への通電の有無により制御され、スイッチング素子98のオンオフは、ゲート端子への制御信号(ゲート電圧)により制御される。なお、スイッチング素子98にはオン抵抗の高い素子が採用されている(特許文献1の図4参照)。
 コントローラ95は、次のようにスイッチ類を動作させる。まず、電路を閉状態にさせる指令を受けたときから所定期間が経過するまで、システムメインリレーSMR1をオフにしたままでスイッチング素子98をオンにする。そして、所定期間経過後には、スイッチング素子98をオフにしてシステムメインリレーSMR1をオンにする。この間、システムメインリレーSMR2は、常時オンとする。この動作により、電源投入直後には、オン抵抗の高いスイッチング素子98を介して電流が流される。このようにすることで直流電源BAと平滑コンデンサ92を結ぶ電路に流れる電流を過大にならず、その結果、突入電流を防止することができる。
特開2009-44914号公報 特開2005-312156号公報
 特許文献1に記載の電源開閉装置では、システムメインリレーとして、励磁回路に通電することによる電磁作用で接点を開閉する、いわゆる機械式リレーが用いられている。しかしながら、機械式リレー自体の寸法が大きい上に、コイルに発生する誘導起電力を逃がすためのバイパス回路等を設ける必要があり、これに伴って、電源開閉装置も大型化してしまうという問題がある。
 本発明は上記の問題点に鑑みてなされたもので、小型化が可能な電源開閉装置、およびそれを備えた電源システムを提供することを目的とする。
 上記目的を達成するため、本明細書において開示される電源開閉装置等は、直流電源と容量素子とを結ぶ電路を外部からの指令に応じて開閉する電源開閉装置であって、前記電路に挿入されるとともに、入力される制御信号のレベルに応じて定まる上限電流値以下の電流であって、前記直流電源の電圧値と前記容量素子の充電電圧値の差分に応じた電流を流す、1以上の半導体素子と、前記1以上の半導体素子に対し個別に制御信号を出力するコントローラと、前記1以上の半導体素子の温度を検出する温度検出回路と、を備え、前記コントローラは、前記電路を閉状態にさせる指令を受けてから所定期間が経過するまでは、前記電路に流れる電流が制限電流値を超えないように、前記温度検出回路により検出された温度に応じて個々の制御信号のレベルを調整し、かつ、前記所定期間経過後は、前記電路に流れる電流が前記制限電流値を超えることを許容するように個々の制御信号のレベルを調整する。
 本明細書において開示される電源開閉装置等によれば、小型化を図ることが可能となる。
第1の実施形態に係る電源開閉装置101を備える電源システム100の全体構成を示す図である。 (a)第1の実施形態に係るコントローラ105の構成の一例を示すブロック図と、(b)可変電圧回路112に入力される制御指令信号Dgのレベルと、可変電圧回路112から出力される制御信号Vgのレベルの対応関係を示す図である。 半導体素子のI-V特性を模式的に示す図である。 第1の実施形態に係るタイミングチャートの一例を示す図である。 第2の実施形態に係る電源開閉装置201を備える電源システム200の全体構成を示す図である。 第2の実施形態に係るコントローラ205が行う動作のフローチャートを示す図である。 第2の実施形態の変形例に係る電源開閉装置201aを備える電源システム200aの全体構成を示す図である。 第2の実施形態の変形例に係るコントローラ205aが行う動作のフローチャートを示す図である。 第3の実施形態に係る電源開閉装置301を備える電源システム300の全体構成を示す図である。 半導体素子の温度依存性を説明するための図である。 (a)コントローラ305のメモリに格納されているテーブルt3を示す図と、(b)半導体素子のI-V特性を模式的に示す図である。 第3の実施形態に係るコントローラ305が行う動作のフローチャートを示す図である。 第3の実施形態に係るタイミングチャートの一例を示す図である。 第4の実施形態に係る電源開閉装置401を備える電源システム400の全体構成を示す図である。 コントローラ405のメモリに格納されているテーブルt4を示す図である。 第4の実施形態に係るコントローラ405が行う動作のフローチャートを示す図である。 第5の実施形態に係る電源開閉装置501を備える電源システム500の全体構成を示す図である。 コントローラ505のメモリに格納されているテーブルt5を示す図である。 第6の実施形態に係る電源開閉装置601を備える電源システム600の全体構成を示す図である。 コントローラ605のメモリに格納されているテーブルt6を示す図である。 第7の実施形態に係る電源開閉装置701を備える電源システム700の全体構成を示す図である。 第7の実施形態に係るコントローラ705が行う動作のフローチャートを示す図である。 第7の実施形態に係るタイミングチャートの一例を示す図である。 第8の実施形態に係る電源開閉装置801を備える電源システム800の全体構成を示す図である。 コントローラ805のメモリに格納されているテーブルt8を示す図である。 第8の実施形態に係るコントローラ805が行う動作のフローチャートを示す図である。 第9の実施形態に係る電源開閉装置901を備える電源システム900の全体構成を示す図である。 第9の実施形態に係るコントローラ905が行う動作のフローチャートを示す図である。 (a)相互コンダクタンスが大きい場合における半導体素子のI-V特性を模式的に示す図と、(b)相互コンダクタンスが小さい場合における半導体素子のI-V特性を模式的に示す図である。 変形例(27)に係るコントローラ505のメモリに格納されているテーブルを示す図である。 変形例(27)に係るコントローラ505が行う動作のフローチャートを示す図である。 変形例(28)に係るコントローラ505のメモリに格納されているテーブルを示す図である。 変形例(28)に係るコントローラ505が行う動作のフローチャートを示す図である。 特許文献1に係る電源開閉装置91を備える電源システム1000の全体構成を示す図である。 変形例(30)に係る電源開閉装置を備える電源システム100Aの全体構成を示す図である。
 本明細書において開示される電源開閉装置の構成によれば、コントローラにより、各々の半導体素子を流れる電流量の上限値(上限電流値)が0[A]となるように個々の制御信号のレベルを調整することで、直流電源と容量素子を結ぶ電路が開状態となる。また、上限電流値が0[A]ではない有限の電流値となるように個々の制御信号のレベルを調整することで、直流電源と容量素子を結ぶ電路が閉状態となる。このように、本発明では機械式リレーによらずに電路の開閉が行われるため、誘導起電力が発生しない。したがって、誘導起電力を逃がすためのバイパス回路等を設ける必要がなくなる分、電源開閉装置を小型化することができる。また、機械式リレー特有の他の問題(例えば、接点の溶着等)も招来しない。
 さらに、上記の電路を閉状態にさせる指令を受けてから所定期間が経過するまでの期間(予備充電期間)においては、制御信号のレベルを調整することで、上記の電路に流れる電流が所定の制限電流値を超えないように制御され、その結果、電路を閉状態にした際の突入電流を抑制することができる。このような構成によれば、予備充電経路とシステムメインリレーを別個に設けることなく、半導体素子にその両者の機能を持たせることができる。よって、電源開閉装置のさらなる小型化を図ることができる。
 ここで、予備充電期間においては、上記電路に流れる電流(予備充電電流)を細かく制御できる方が望ましい。仮に電源開閉装置を大電流容量の半導体素子1つで構成した場合には、予備充電電流のような小電流が上記電路に流れるように制御信号を制御することは難しい。そのため、電源開閉装置を半導体素子で構成する場合には、小電流の制御が容易な小電流容量の半導体素子を複数並列接続して用いることが望ましい。さらに、上限電流値が温度に依存して変化する温度依存性を有する半導体素子の場合、ある程度の温度変化に対応できるようにするため、さらに多くの半導体素子を用いる必要がある。したがって、電源開閉装置を単に半導体素子で構成したとしても、当該装置に含まれる半導体素子の個数が多くなる結果、小型化の実効が図れないおそれがある。
 しかしながら、本明細書において開示される電源開閉装置は温度検出回路を備えているため、当該回路により検出された温度に応じて、個々の制御信号のレベルを調整することができる。このため、温度依存性を有する半導体素子であったとしても、温度変化に対応させるための余分な半導体素子は不要となる。また、温度検出回路は小型な回路であるため、余分な半導体素子を備える場合と比較して、温度検出回路を備えることによる電源開閉装置のサイズに与える影響は小さい。よって、温度検出回路を備えることで、電源開閉装置を半導体素子で構成した際の小型化の実効を図ることができる。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 [第1の実施形態]
 ≪構成≫
 図1は、第1の実施形態に係る電源開閉装置を備える電源システム100の全体構成を示す図である。
 電源システム100は、入力側が直流電源BA、出力側がモータ104にそれぞれ接続されてなる。電源システム100は、電源開閉装置101,平滑コンデンサ102,インバータ103,を備える。
 直流電源BAは電源系統を整流して得られる直流電源、または、バッテリタイプ(代表的には、ニッケル水素またはリチウムイオン等の二次電池)の直流電源である。
 モータ104は、三相交流電力の供給を受ける三相巻線から構成される三相交流モータである。
 電源開閉装置101は、直流電源BAと平滑コンデンサ102とを結ぶ電路を指令に応じて開閉するものであり、コントローラ105,電流量可変部106からなる。
 平滑コンデンサ102は、直流電源BAから電源開閉装置101を介して入力された直流電力を平滑化し、インバータ103へ出力する。
 インバータ103は、直流電源BAから供給される直流電力を、位相が各々120°(2π/3ラジアン)ずれたU相,V相,W相の三相交流電力に変換し、その三相交流電力をモータ104に供給する。
 電流量可変部106は、直流電源BAと平滑コンデンサ102とを結ぶ電路に挿入された、1以上の半導体素子107A,107B,107Cを備える。半導体素子107A,107B,107Cは、入力される制御信号のレベルに応じて定まる上限電流値以下の電流であって、直流電源BAの電圧値と平滑コンデンサ102の電圧値(充電電圧値)の差分に応じた電流を流す半導体素子である。本実施形態では、半導体素子の個数が3個とし、半導体素子をN型の金属-絶縁体-半導体電界効果トランジスタ(Metal-Insulator-Semiconductor Field Effect Transistor,以下、MISFETと記載する。)等のスイッチング素子としている。半導体素子107A,107B,107Cのゲート端子には、ゲート駆動回路GDが接続されている。
 半導体素子107A,107B,107Cは並列接続されている。したがって、直流電源BAと平滑コンデンサ102とを結ぶ電路に流れる電流値は、半導体素子107A,107B,107Cが流す電流値、すなわち、各半導体素子のドレインからソースに流れる電流値(順方向電流値)の合計に相当する。各半導体素子の順方向電流値は、ゲート端子に入力される制御信号のレベルと、直流電源BAの電圧値と平滑コンデンサ102の電圧値の差分により定まる。本実施形態においては、半導体素子としてMISFETが用いられているため、ここでの制御信号はゲート電圧に対応する。したがって、直流電源BAと平滑コンデンサ102とを結ぶ電路に流れる電流値は、ゲート端子に入力される制御信号のレベルと、直流電源BAの電圧値と平滑コンデンサ102の電圧値の差分により定まることとなる。このことについては、図3で詳細を述べることとする。
 (コントローラ105)
 コントローラ105は、電流量可変部106とインバータ103を制御する。電流量可変部106に対する制御動作として、コントローラ105は、ゲート駆動回路GDを介して、半導体素子107A,107B,107Cに対し個別に制御信号Vgを出力する。これにより、各半導体素子の順方向電流の上限値(以下、「順方向電流の上限値」を単に「上限電流値」と記載する。)の大きさが制御される。図1において、半導体素子107Aに対する制御信号VgをVGA,半導体素子107Bに対する制御信号VgをVGB,半導体素子107Cに対する制御信号VgをVGCと図示している。
 図2(a)は、コントローラ105の構成の一例を示すブロック図である。図2(a)は、コントローラ105の構成のうち、電流量可変部106の制御を行う部分のみを抜粋して図示している。図2(a)に示すように、コントローラ105はマイコン110,メモリ111,可変電圧回路112を備える。
 マイコン110は、外部(例えばイグニッションキー)から電源開閉装置101をオンする指令Son(直流電源BAと平滑コンデンサ102とを結ぶ電路を閉状態にさせる指令)、またはオフする指令Soff(直流電源BAと平滑コンデンサ102とを結ぶ電路を開状態にさせる指令)を受ける。さらに、マイコン110は、メモリ111に格納されたテーブル等の情報に従って、可変電圧回路112に出力する制御信号指令DgCの設定値を変化させる。図2(a)において、半導体素子107A,107B,107Cに対応する制御信号指令Dgを、それぞれ、DgA,DgB,DgCとしている。
 可変電圧回路112は、いわゆるD/A(デジタル/アナログ)コンバータであり、デジタルの制御指令信号DgA、DgB、DgCを、それぞれ、アナログの制御信号VGA、VGB、VGCに変換する。
 図2(b)は、可変電圧回路112に入力される(マイコン110が出力する)制御指令信号Dgのレベルと、可変電圧回路112から出力される制御信号Vgのレベルの対応関係を示す図である。例えば、DgAとして制御信号指令Dg3が入力された可変電圧回路112は、半導体素子107Aに対し制御信号Vg3を出力する。
 メモリ111には、第1の期間および第2の期間に出力する制御信号指令Dgの設定値の情報が格納されている。ここで、第1の期間とは、電源開閉装置101をオンする指令Son(直流電源BAと平滑コンデンサ102とを結ぶ電路を閉状態にさせる指令)をマイコン110が受けてから所定期間が経過するまでの期間を指す。また、第2の期間とは、上記所定期間経過後から電源開閉装置101をオフする指令Soff(上記電路を開状態にさせる指令)を受けるまでの期間を指す。
 本実施形態におけるメモリ111には、第1の期間はDgA=Dg3,DgB=Dg0,DgC=Dg0とし、第2の期間はDgA=Dg7,DgB=Dg7,DgC=Dg7とする、設定値の情報が格納されている。最終的には、コントローラ105は、第1の期間にはVGA=Vg3,VGB=Vg0,VGC=Vg0の制御信号を出力し、第2の期間には、VGA=Vg7,VGB=Vg7,VGC=Vg7の制御信号を出力することになる。このようにして、コントローラ105は、第1の期間および第2の期間において、半導体素子107A,107B,107Cに出力する制御信号のレベルを個々に調整している。
 (半導体素子のI-V特性)
 図3は、半導体素子107A,107B,107CのI-V特性を模式的に示す図である。図3を用いて、半導体素子に入力される制御信号Vg0~Vg8と、半導体素子の上限電流値との関係について説明する。なお、以下では、半導体素子がノーマリオフ型である場合について説明する。図3において、横軸は半導体素子のドレイン-ソース間電圧[V](VDS)、縦軸は順方向電流[A](ID)を示している。
 制御信号Vg0の場合、VDSがどのような値であってもIDの値は0[A]であり、したがって、上限電流値は0[A]である。このとき、半導体素子は順方向電流が流れないオフ状態となる。また、制御信号Vg1~Vg6の場合、VDSの上昇に伴ってIDも上昇するが、VDSが所定の値を超えるとIDは上限電流値に達し、IDは略一定の値を示すようになる。図3に示すように、Vg1<Vg2<・・・<Vg5<Vg6の順にIDの上限電流値は大きくなる。さらに、制御信号Vg7,Vg8の場合、VDSの上昇とともにIDも上昇し、IDは熱制約などで飽和するまで上昇し続ける。制御信号Vg7もしくはVg8が入力されている半導体素子は、制御信号Vg1~Vg6が入力されている半導体素子と比較してオン抵抗が小さいため、より低損失で動作させることができる。
 図3に示すように、上限電流値は、入力される制御信号のレベルVg0~Vg8に応じて定まることが分かる。したがって、コントローラ105が半導体素子107A,107B,107Cに出力する制御信号Vgのレベルを調整することで、直流電源BAと平滑コンデンサ102とを結ぶ電路に流れる電流量を調整することが可能となる。また、制御信号Vgの各レベルにおける順方向電流値は、ドレイン-ソース間電圧(VDS)、すなわち、直流電源BAの電圧値と平滑コンデンサ102の電圧値の差分に応じて定まることも、図3から見て取れる。
 本実施形態のコントローラ105の動作について総括すると、上述したように、第1の期間にはVGA=Vg3,VGB=Vg0,VGC=Vg0の制御信号を出力し、第2の期間には、VGA=Vg7,VGB=Vg7,VGC=Vg7の制御信号を出力する。したがって、コントローラ105は、半導体素子107A,107B,107Cに出力する制御信号のレベルを個々に調整することで、第1の期間においては、上記電路に流れる電流が所定の制限電流値を超えないようにし、一方、第2の期間においては、上記電路に流れる電流が上記制限電流値を超えることを許容するようにする。
 なお、ここでいう「許容するようにする」とは、電路に流すことが可能な電流の上限値が制限電流値を超えるように、コントローラ105によって当該上限値を引き上げることを意味する。したがって、制限電流値を超えるような電流を実際に電路に流すことまでは意味しない。実際に電路を流れる電流は、あくまでも電流量可変部106に印加される電圧に応じて決まる。詳細は後述する。
 ここで、制限電流値の望ましい値は、直流電源BAの種類、平滑コンデンサ102の静電容量、直流電源BAの電圧値と平滑コンデンサ102の電圧値の差分等によって決まる。例えば、直流電源BAの定格電圧が300[V]とし、平滑コンデンサ102の定格容量が888[μF]であり、かつ、平滑コンデンサ102が充電されていない場合の制限電流値は、約20[A]である。また、制限電流値は、直流電源BAの最大出力電流値以下の値、もしくは、直流電源BAと平滑コンデンサ102とを結ぶ電路に挿入されている各素子(例えば、ヒューズ、配線等)における最大定格電流の合計値以下の値とすることもできる。半導体素子107A,107B,107の第1の期間における上限電流値の足し合わせが、上記のように定まる制限電流値以下となるように、制御信号Vgのレベルが調整される。本実施形態では、制限電流値をID3に設定した上で、第1の期間に出力する制御信号をVGA=Vg3,VGB=Vg0,VGC=Vg0としている。すなわち、以下の説明では、第1の期間における上限電流値の足し合わせが、制限電流値と等しい場合について説明する。
 〈インバータ103〉
 インバータ103は、平滑コンデンサ102とモータ104とを結ぶ電路に挿入される。インバータ103は、U相アーム108u,V相アーム108v,W相アーム108wが並列接続されてなる。U相アーム108uは、入力される制御信号のレベルに応じた電流を流す半導体素子109A,109Bが直列接続されてなる。半導体素子109A,109Bは、電源開閉装置101が備える半導体素子と同様の構成の半導体素子で構成されている。電源開閉装置101の場合と同様に、半導体素子109A,109Bのゲート端子もゲート駆動回路GDと接続されている。
 上記のコントローラ105は、電源開閉装置101が備える半導体素子107A,107B,107Cに対する制御信号だけでなく、インバータ103が備える半導体素子109A,109Bに対する制御信号であるパルス幅変調信号(PWM信号)も生成している。図1において、半導体素子109A,109Bに対するパルス幅変調信号をPWM1と図示している。PWM信号PWM1は、ゲート駆動回路GDを介して半導体素子109A,109Bのゲート端子に出力される。
 V相アーム108v,W相アーム108wもU相アーム108uと同様の構成である。V相アーム108vが備える半導体素子109C,109Dは、PWM信号PWM2により制御され、W相アーム108wが備える半導体素子109E,109Fは、PWM信号PWM3により制御される。
 ここで、電源開閉装置101が備える半導体素子107A,107B,107Cと、インバータ103が備える半導体素子109A~109Fは、同一のパッケージに収容されている。このようにすることで、電源システムのさらなる小型化、電源システム100の製造工程における作業負荷の低減、部品点数の削減、低コスト化に貢献できる。さらに、インバータ103が備える半導体素子109A~109Fと平滑コンデンサ102までの配線距離が短縮されることにより配線インダクタンスを低減できるので、過大なサージ電圧を抑制することもできる。
 また、半導体素子107A~107Cならびに109A~109Fは、動作中に発熱するので、これらの熱を冷却器等で放熱する必要がある。この場合、電源開閉装置101が備える半導体素子107A~107Cと、インバータ103が備える半導体素子109A~109Fを、同一の冷却器上(例えばヒートシンク上)に実装し、冷却されることが望ましい。このようにすることで、半導体素子107A~107C用の冷却器と、半導体素子109A~109F用の冷却器とを別個に用意する必要がなくなるので、その分、小型化を図ることができる。
 ≪電源システム100の全体動作≫
 次に、図4を参照しながら、電源システム100における全体動作について説明する。
 図4は、本実施形態に係るタイミングチャートの一例を示す図である。上から順に、平滑コンデンサ102の電圧値VCの変動,制御信号VGAの波形,制御信号VGBの波形,制御信号VGCの波形,半導体素子107Aに流れる順方向電流IAの波形,半導体素子107Bに流れる順方向電流IBの波形,半導体素子107Cに流れる順方向電流ICの波形を、それぞれ示している。
 上述したように、電源システム100の動作期間は、第1の期間(時刻(1)~(4))と第2の期間(時刻(4)~(5))に大別される。第1の期間においては、平滑コンデンサ102の予備充電を行い、第2の期間においては、直流電源BAと平滑コンデンサ102とを結ぶ電路をより低損失で導通させる動作を行う。
 〈第1の期間〉
 先ず、図4の時刻(1)において、マイコン110が指令Son(図2)を受けることにより、電源システム100の全体動作が開始される。第1の期間(時刻(1)~(4))において、コントローラ105は、制御信号VGAとしてVg3、制御信号VGB,VGCとしてVg0を出力する。
 なお、正確には、マイコン110が指令Sonを受けてから可変電圧回路112が制御信号VGA,VGB,VGCを出力するまでには時間差がある。しかしながら、図4のタイミングチャートをはじめ、本明細書においては、簡略化のため、この時間差を考慮せずに(時間差が0[sec]であるものとして)説明している。
 第1の期間においては、半導体素子107Aのみに上限電流値を比較的小さくする(オン抵抗を比較的大きくする)制御信号Vg3(図3)が出力されるので、平滑コンデンサ102に供給される電流は、制限電流値を超えない。この結果、上記電路を閉状態にした際の突入電流を抑制しつつ、平滑コンデンサ102を徐々に充電することができる。すなわち、第1の期間は予備充電するための期間として設けられていることとなる。
 第1の期間(時刻(1)~(4))における半導体素子107Aの動作について、もう少し詳しく説明する。制御信号Vg3の入力を受けて(時刻(1))、半導体素子107Aには順方向電流が流れ始める。この順方向電流が流れ始めてからしばらくの期間は、半導体素子107Aのドレイン-ソース間電圧(VDS)は比較的大きい。そのため、この期間における半導体素子107Aの特性は、図3の区間(A)で示す領域(飽和領域)のものになる。よって、順方向電流が流れ始めてからしばらくの期間(時刻(2)まで期間)に半導体素子107Aを流れる電流は、制御信号Vg3が入力された場合に対応する上限電流値ID3(本実施形態の第1の期間においては、制限電流値と等しい値)を超えない。
 そして、平滑コンデンサ102の予備充電が進むにつれて、半導体素子107AのVDSが減少していき、VDSが区間(A)と区間(B)との境界に対応する電圧(ピンチオフ電圧)と等しくなった時点(時刻(2))から、半導体素子107Aの特性は区間(B)で示す領域(線形領域)のものになる。したがって、時刻(2)~(4)にわたって、半導体素子107Aに流れる順方向電流は減少する。
 〈第2の期間〉
 次に、第2の期間(時刻(4)~(5))では、コントローラ105は、制御信号VGA,VGB,VGCの全てをVg7に設定する。第2の期間においては、平滑コンデンサ102の充電は完了しているので、直流電源BAと平滑コンデンサ102とを結ぶ電路に流れる電流が制限電流値を超えることを許容したとしても大きな突入電流は流れない。したがって、熱制約などで飽和するまで順方向電流値の上限がなく、ドレイン-ソース間電圧(VDS)に応じた順方向電流を流す制御信号Vg7を3個の半導体素子全てに出力することができる。その結果、直流電源BAと平滑コンデンサ102とを結ぶ電路をより小さいオン抵抗で動作させることができる。
 (制御信号Vgが入力される半導体素子の個数)
 ここで、第2の期間において電流が流れる半導体素子(Vg1~Vg8のいずれかのレベルの制御信号Vgが入力される半導体素子)の個数を、第1の期間において電流が流れる半導体素子の個数よりも多くしている理由について考察する。
 第1の期間においては、直流電源BAと平滑コンデンサ102とを結ぶ電路を閉状態にした際の突入電流を抑制する必要があるため、半導体素子のオン抵抗は大きいことが望ましい。逆に、第2の期間においては、直流電源BAと平滑コンデンサ102とを結ぶ電路をより低損失で導通させる方が消費電力等の観点から有利であるため、半導体素子のオン抵抗は小さい方が望ましい。一般的に、オン抵抗を小さくするには、半導体素子のチップ面積拡大(すなわち、大電流化)が、逆にオン抵抗を大きくするには、半導体素子のチップ面積縮小(すなわち、低電流化)が有効である。そこで、本実施形態においては、入力する制御信号のレベルを調整することでオン抵抗の調整をするだけでなく、電流を流す半導体素子の個数を変えることでも、オン抵抗の調整を行っている。
 第1の期間においては、精度良く上限電流値またはオン抵抗を設定できることが望ましい。本実施形態では、第1の期間においては電流が流されるのは半導体素子107Aのみである。このようにすることで、3個の半導体素子全てに電流が流れるようにした場合と比較して、上限電流値またはオン抵抗を細かく設定できるようにしている。
 〈電源システム100の全体動作の終了、その他〉
 時刻(5)において、マイコン110が指令Soff(図2)を受けることにより、電源システム100の全体動作が終了する。そして、時刻(6)において、再びマイコン110が指令Son(図2)を受けることにより、電源システム100の全体動作が開始される。2回目の全体動作における時刻(6)は、1回目の全体動作における時刻(1)に対応しており、時刻(6)から始まる2回目の全体動作も1回目の全体動作と同様の流れである。
 次に、平滑コンデンサ102の電圧値VCの変動を参照しながら本実施形態における設計思想について説明する。予備充電に要する期間は電源システムを動作させるための言わば準備期間であるため、電源システムがどのような状況下に置かれていても、この期間は略一定であることが望ましいというユーザー側の要望がある。したがって、先ず、第1の期間(時刻(1)~(4))の長さが定まることとなる。そうすると、次は、制御信号Vgの遅延による第1の期間から第2の期間への遷移期間等を考慮して、平滑コンデンサ102の充電を完了させる(平滑コンデンサ102の電圧値VCをVCfullまで上げる)のに使用できる時間(時刻(1)~(3))が決まる。そして最後に、決められた時間内に充電時間が収まるように、第1の期間において直流電源BAと平滑コンデンサ102とを結ぶ電路に流れることが許容される電流の値の上限が定まる。つまり、図4の最上段に示す平滑コンデンサ102の電圧値VCの変動は、設計段階であらかじめ決められているものである。
 とはいえ、第1の期間の長さを決定するにあたっては、この長さがあまりにも短い場合、平滑コンデンサ102の予備充電が適切に行われず、突入電流を効果的に抑制することができない。したがって、電路に流れることが許容される電流の値が、定められた制限電流値以下となるような範囲内で、第1の期間の長さが設定されている。
 また、時刻(3)は、制限電流値を超えない電流により平滑コンデンサ102を充電した場合に、平滑コンデンサ102が100%充電される時刻に相当する。上述したように、第1の期間が終了する時刻(4)は、時刻(3)よりも遅れるように設計されている。換言すると、第1の期間は、制限電流値を超えない電流により平滑コンデンサ102を充電した場合に、平滑コンデンサ102が0%から100%まで充電されるのに要する期間よりも長くなるように設計されたものである。
 なお、図4に示す半導体素子107Aの順方向電流の波形は、有負荷時の場合(平滑コンデンサ102とインバータ103とが接続されている場合)を示している。有負荷時の場合、時刻(4)~(5)の間は半導体素子107Aの順方向電流が0[A]ではないが、時刻(5)で電源システム100の全体動作が終了すると、順方向電流が0[A]となる。図示していないが、無負荷時の場合(平滑コンデンサ102とインバータ103とが接続されていない場合)は、時刻(4)~(5)の間も半導体素子107Aの順方向電流が0[A]となる。
 ≪まとめ≫
 以上説明したように、本実施形態においては、機械式リレーによらずに半導体素子によって電路の開閉が行われる。機械式リレーによる電路の開閉では誘導起電力が発生するため、これを逃がすためのバイパス回路等を設ける必要があったが、本実施形態ではこれらを設ける必要がなくなる分、電源開閉装置を小型化することができる。
 上記以外にも、機械式リレーの課題としては、例えば、接点の摩耗等が原因の開閉寿命による信頼性低下やメンテナンスの問題がある。これ以外にも、機械式リレーの課題としては、開閉時に接点でアーク放電が起こることによるノイズ発生、ヒステリシス性が大きいことによる遅延等が挙げられる。しかしながら、本実施形態においては機械式リレーを採用していないため、これらの機械式リレー特有の問題は招来しない。
 さらに、本実施形態では、半導体素子に入力する制御信号(ゲート電圧)のレベルを調整することで、直流電源と容量素子を結ぶ電路が開閉を行っている。また、直流電源と容量素子を結ぶ電路が閉状態のときには、同じく半導体素子に入力する制御信号レベルを調整することで、上記の電路に流れる電流量が制限電流値を超えないように制御している。したがって、特許文献1における予備充電経路とシステムメインリレーが担っていた機能を、半導体素子からなる電流量可変部だけで行うことができるので、電源開閉装置のさらなる小型化を図ることができる。
 [第2の実施形態]
 第1の実施形態においては、第1の期間に電流が流される半導体素子は107Aで固定であった(図4)。本実施形態では、第1の期間に電流が流される半導体素子を切り替えることにより、半導体素子にかかる負荷を分散させるようにする構成について説明する。
 ≪構成≫
 図5は、第2の実施形態に係る電源開閉装置を備える電源システム200の全体構成を示す図である。電源開閉装置201は、電源開閉装置101(第1の実施形態、図1)の構成に加え、温度検出回路213A,213B,213Cを備える点が特徴である。以下、第1の実施形態と同様の構成については同じ符号を付し、説明を省略する。
 電流量可変部206は、第1の実施形態と同様の構成の半導体素子207A,207B,207Cからなる。
 温度検出回路213A,213B,213Cは、それぞれ、半導体素子207Aの温度TA[℃],半導体素子207Bの温度TB[℃],半導体素子207C[℃]の温度TCを個別に検出する。
 コントローラ205は、半導体素子207A,207B,207Cに対する制御信号VGA,VGB,VGCを出力する。コントローラ205は、さらに、温度検出回路213A,213B,213Cにより検出された温度TA,TB,TCの情報を取得し、検出された温度に応じて、第1の期間に電流を流す半導体素子を選択する。本実施形態においては、温度の低い半導体素子から順に第1の期間に電流を流す半導体素子として選択する。この動作を含めたコントローラ205の動作の詳細について、図6を用いて説明する。
 ≪コントローラ205が行う動作のフローチャート≫
 図6は、本実施形態に係るコントローラ205が行う動作のフローチャートを示す図である。
 先ず、コントローラ205は、電源開閉装置201をオンする指令(図2(a)のSon)があったか否かを判定する(ステップS201)。当該指令がないと判定すると(ステップS201においてNO)、ステップS201の処理に戻る。当該指令があったと判定すると(ステップS201においてYES)、電源システム200の全体動作を開始し、温度検出回路213A,213B,213Cにより検出された温度TA,TB,TCの情報を取得する(ステップS202)。
 次いで、温度TA,TB,TCのうち、どの温度が最も低い温度かを判定する(ステップS203)。温度TAが最も温度が低いと判定すると(ステップS203においてTA)、コントローラ205は、VGAとしてVg3,VGBとしてVg0,VGCとしてVg0をそれぞれ出力する(ステップS204A、図2,3参照)。また、温度TBが最も温度が低いと判定すると(ステップS203においてTB)、コントローラ205は、VGAとしてVg0,VGBとしてVg3,VGCとしてVg0をそれぞれ出力する(ステップS204B)。そして、温度TCが最も温度が低いと判定すると(ステップS203においてTC)、コントローラ205は、VGAとしてVg0,VGBとしてVg0,VGCとしてVg3をそれぞれ出力する(ステップS204C)。
 次に、コントローラ205は、第1の期間が終了したか否かを判定する(ステップS205)。第1の期間が終了していないと判定すると(ステップS205においてNO)、ステップS205の処理に戻る。第1の期間が終了したと判定すると(ステップS205においてYES)、コントローラ205は、VGAとしてVg7,VGBとしてVg7,VGCとしてVg7をそれぞれ出力する(ステップS206)。
 そして、電源開閉装置201をオフする指令(図2(a)のSoff)があったか否かを判定する(ステップS207)。当該指令がないと判定すると(ステップS207においてNO)、ステップS207の処理に戻る。当該指令があったと判定すると(ステップS207においてYES)、電源システム200の全体動作を終了するため、VGA,VGB,VGCとしてVg0をそれぞれ出力する(ステップS208)。
 以上説明したように、本実施形態では、コントローラは温度の最も低い半導体素子を第1の期間に電流を流す素子として選択する。このようにすることで、第1の期間に電流を流す半導体素子を固定的に選択する場合と比較して、半導体素子の発熱による負荷を分散させることが可能となる。その結果、半導体素子の寿命低下を抑制し、電源開閉装置の信頼性を向上させることができる。
 [第2の実施形態の変形例]
 第2の実施形態においては、半導体素子の温度を個別に検出していたが、半導体素子全体としての温度(電流量可変部206の温度)を検出する構成を採ることもできる。
 ≪構成≫
 図7は、本変形例に係る電源開閉装置を備える電源システム200aの全体構成を示す図である。電源開閉装置201aは、電源開閉装置101(第1の実施形態、図1)の構成に加え、温度検出回路213aを備える点が特徴である。以下、第2の実施形態における電源開閉装置201と相違する点を中心に説明する。
 温度検出回路213aは、半導体素子207A,207B,207C全体としての温度Tsur[℃]を検出する。
 コントローラ205aは、温度検出回路213aにより検出された温度Tsurの情報を取得し、検出された温度Tsurに応じて、第1の期間に電流を流す半導体素子を選択する。本実施形態においては、温度Tsurが所定温度未満である場合は、前回の第1の期間において電流を流した半導体素子を、引き続き第1の期間に電流を流す半導体素子として選択する。一方、温度Tsurが所定温度以上である場合は、所定規則に従い、前記複数の半導体素子のうち、前回の第1の期間において電流を流した半導体素子の少なくとも1つを除く半導体素子を、新たに第1の期間に電流を流す半導体素子として選択する。この動作を含めたコントローラ205aの動作の詳細について、図8を用いて説明する。
 ≪コントローラ205aが行う動作のフローチャート≫
 図8は、本変形例に係るコントローラ205aが行う動作のフローチャートを示す図である。
 ステップS201aは、第2の実施形態におけるステップS201(図6)に対応する。コントローラ205aは、電源開閉装置201aをオンする指令があったと判定すると(ステップS201aにおいてYES)、電源システム200aの全体動作を開始し、温度検出回路213aにより検出された温度Tsurの情報を取得する(ステップS202a)。
 次いで、温度Tsurが所定の閾値温度以上であるか否かを判定する(ステップS203a)。温度Tsurが閾値温度以上であると判定すると(ステップS203aにおいてYES)、コントローラ205aのマイコン等で記憶されているカウント値Ctをインクリメントし(ステップS204a)、ステップS205aの処理に移行する。温度Tsurが閾値温度以上でないと判定すると(ステップS203aにおいてNO)、カウント値CtをインクリメントせずにステップS205aの処理に移行する。
 次に、コントローラ205aは、カウント値Ctを3(電流量可変部206に含まれる半導体素子の個数である。)で割った場合の剰余がいくらであるかを判定する(ステップS205a)。剰余が0である場合(ステップS205aにおいてCt=3n)、コントローラ205aは、VGAとしてVg3,VGBとしてVg0,VGCとしてVg0をそれぞれ出力する(ステップS206A)。剰余が1である場合(ステップS205aにおいてCt=3n+1)、コントローラ205aは、VGAとしてVg0,VGBとしてVg3,VGCとしてVg0をそれぞれ出力する(ステップS206B)。剰余が2である場合(ステップS205aにおいてCt=3n+2)、コントローラ205aは、VGAとしてVg0,VGBとしてVg0,VGCとしてVg3をそれぞれ出力する(ステップS206C)。ステップS207a~S210aは、第2の実施形態におけるステップS205~S208(図6)に対応する。
 以上説明したように、本変形例では、半導体素子全体の温度が所定の閾値を超えた場合に、前回の電源システムの動作における第1の期間で電流を流した半導体素子とは異なる半導体素子を、新たに第1の期間で電流を流す半導体素子として選択する。このようにすることで、連続使用による半導体素子の過熱を防止し、半導体素子の寿命低下を抑制することができる。
 [第3の実施形態]
 MISFET等の半導体素子は、入力される制御信号のレベルによって決まる上限電流値が温度に依存して変化する温度依存性を有する。本実施形態では、半導体素子の温度に応じて制御信号のレベルを温度補償することにより、半導体素子温度が変化しても、第1の期間の長さを略一定に維持できるようにする構成について説明する。
 ≪構成≫
 図9は、第3の実施形態に係る電源開閉装置を備える電源システム300の全体構成を示す図である。電源開閉装置301は、電源開閉装置101(第1の実施形態、図1)の構成に加え、第2の実施形態の変形例における温度検出回路213a(図7)に対応する温度検出回路313を備える点が特徴である。図9において、第1の実施形態と同様の構成については同じ符号を付している。
 電流量可変部306は、第1の実施形態と同様の構成の半導体素子107A,107B,107Cからなる。
 温度検出回路313は、半導体素子307A,307B,307C全体(電流量可変部306)の周囲温度Tsur[℃]を検出する。
 コントローラ305は、半導体素子307A,307B,307Cに対する制御信号VGA,VGB,VGCを出力する。コントローラ305は、さらに、温度検出回路313により検出された周囲温度Tsurの情報を取得し、周囲温度Tsurに応じて、第1の期間に電流を流す半導体素子に対して出力する制御信号のレベルを調整する。
 〈半導体素子の温度依存性〉
 図10は、半導体素子の温度依存性を説明するための図である。図10(a)は、半導体素子の低温時におけるI-V特性を模式的に示す図であり、図10(b)は、半導体素子の高温時におけるI-V特性を模式的に示す図である。両図において、横軸は半導体素子のドレイン-ソース間電圧[V](VDS)、縦軸は順方向電流[A](ID)を示している。
 図10に示すように、制御信号Vg1~Vg6が入力された場合に注目すると、同じレベルの制御信号であっても、高温時の場合は低温時と比較して順方向電流が流れにくく、上限電流値が小さくなることがわかる。ここで、上述したように、第1の期間(予備充電期間)の長さは略一定であることが望ましい。仮に、同じレベルの制御信号Vgが入力されたとすると、高温時の場合は上記の上限電流値が小さくなるため、低温時の場合よりも予備充電時間に要する時間が長くなり、その結果、第1の期間を余分に取る必要が出てきてしまう。これを防止して第1の期間を略一定にするためには、高温時の場合は低温時よりも高いレベルの制御信号を入力することによる温度補償を行うのが有効である。
 なお、制御信号Vg7,Vg8の場合、低温時と比べて高温時の方がVDSに対する順方向電流IDの上がり方は鈍く、高温の半導体素子の方が、より損失が多いことが分かる。また、制御信号Vg0の場合は、高温時でも低温時でも変化はない。
 〈コントローラ305のメモリに格納されているテーブル〉
 図11(a)は、コントローラ305のメモリに格納されているテーブルt3を示す図である。テーブルt3には、温度検出回路313により検出された周囲温度Tsur[℃]が属する温度範囲と、マイコン(図2)が出力する制御信号指令Dgのレベルとが列挙されている。テーブルt3において、T1<T2<T3<T4<T5の順に温度が高いことを示している。したがって、テーブルt3の下に行くほど周囲温度Tsurが高いことを意味している。なお、テーブルt3において制御信号指令Dgのレベルに対応する制御信号Vgのレベルを括弧書きにて示しているが、これは説明の都合上便宜的に示しているだけであり、実際上コントローラ305のメモリに記憶されているものではない。以下、他の実施形態のテーブルにおいても同様とする。
 図11(b)は、図11(a)に示す制御信号Vg0,VgT0~VgT5,Vg7~Vg8と、これらの制御信号が入力された場合の上限電流値との関係を示す図である。制御信号Vg0の場合、第1の実施形態(図3)と同様に、VDSがどのような値であってもIDの値は0[A]であり、したがって上限電流値は0[A]である。制御信号VgT0~VgT5の場合、VDSの上昇に伴ってIDも上昇するものの、IDには上限電流値がある。図11(b)に示すように、VgT0<VgT1<・・・<VgT4<VgT5の順にIDの上限電流値は大きくなる。制御信号Vg7,Vg8の場合も第1の実施形態(図3)と同様に、VDSの上昇とともにIDも上昇し続け、熱制約などで飽和するまでIDに上限はない。
 コントローラ305は、テーブルt3に従って、周囲温度Tsurがどの温度範囲に属するかによって、出力する制御信号VgT0~VgT5を調整する。具体的には、コントローラ305は、周囲温度Tsurが属する温度範囲が高いほど半導体素子の上限電流値が高くなるように、各半導体素子に出力する制御信号を調整する。例えば、周囲温度Tsurが比較的低い温度範囲である場合は、比較的上限電流値を小さくする制御信号VgT1が選択される。一方、周囲温度Tsurが比較的高い温度範囲である場合は、比較的上限電流値を大きくする制御信号VgT4が選択される。
 次に、コントローラ305の一連の動作について、図12を用いて説明する。
 ≪コントローラ305が行う動作のフローチャート≫
 図12は、本実施形態に係るコントローラ305が行う動作のフローチャートを示す図である。
 ステップS301,S302は、第2の実施形態の変形例におけるステップS201a,S202a(図8)に対応する。コントローラ305は、温度検出回路313により検出された周囲温度Tsurの情報を取得した後(ステップS302)、テーブルt3より(図11(a))周囲温度Tsurが属する温度範囲に対応する制御信号Vg(制御指令信号Dg)を選択する(ステップS303)。コントローラ305は、VGAとしてVgX,VGBとしてVg0,VGCとしてVg0をそれぞれ出力する(ステップS304)。ここで、図12中のVgXは、制御信号VgT0~VgT5のうち、ステップS303においてテーブルt3より選択した制御指令信号Dgに対応する制御信号Vgのことを指している。ステップS305~S308は、第2の実施形態におけるステップS205~S208(図6)に対応する。
 ≪タイミングチャートの一例≫
 図13は、本実施形態に係るタイミングチャートの一例を示す図である。図13(a),(b)ともに、上から順に、平滑コンデンサ102の電圧値VCの変動,制御信号VGAの波形,制御信号VGBの波形,制御信号VGCの波形,半導体素子307Aに流れる順方向電流IAの波形,半導体素子307Bに流れる順方向電流IBの波形,半導体素子307Cに流れる順方向電流ICの波形を、それぞれ示している。また、同図に示す時刻(1)から(5)は、図4に示すタイミングチャート(第1の実施形態)における時刻(1)から(5)に対応している。
 図13(a)は、周囲温度Tsurが比較的低い温度範囲である場合のタイミングチャートであり、具体的には、ステップS303において周囲温度Tsurがテーブルt3中のT1≦Tsur<T2に該当し、ステップS304においてVgXとしてVgT1を出力した場合である。図13(b)は、周囲温度Tsurが比較的高い温度範囲である場合のタイミングチャートであり、具体的には、ステップS303において周囲温度Tsurがテーブルt3中のT4≦Tsur<T5該当し、ステップS304においてVgXとしてVgT4を出力した場合である。図13に示すように、半導体素子が高温である場合(図13(b))は、低温時(図13(a))よりも入力する制御信号Vgのレベルを高くしているので、半導体素子307Aに流れる順方向電流IAの電流量が多くなっている(時刻(1)~(2))。
 以上説明したように、本実施形態の構成によれば、半導体素子の温度変動に起因する上記上限電流値の変動を適切に温度補償することが可能である。その結果、電源開閉装置を動作により半導体素子の温度が変動しても、予備充電に要する時間を略一定にすることが可能である。
 [第4の実施形態]
 平滑コンデンサに流れる電流量は、直流電源の電圧値と平滑コンデンサの電圧値の差分に依存する。ここで、平滑コンデンサの静電容量は電源システムの仕様により決定され、また、通常の電源システムの動作中は大きく変動しないように選定される。したがって、このような平滑コンデンサの電位があまり変動しない電源システムにおいては、直流電源の電圧値が平滑コンデンサに流れる電流量に大きく影響する。
 一方、直流電源BAに鉛蓄電池,ニッケル水素電池,リチウムイオン電池,キャパシタ,燃料電池等を用いた場合には、直流電源BAの電源電圧値は、電源開閉装置動作中に大きく変動する。例えば、鉛蓄電池を直流電源とする電気自動車に搭載される電源開閉装置の場合、定格電圧240Vに対し、電源開閉装置が動作可能な電源電圧は180~320[V]程度である。
 本実施形態では、平滑コンデンサの電位があまり変動しないが、直流電源の電位は変動する電源システムにおいて、第1の期間の長さを略一定に維持できるようにする構成について説明する。
 ≪構成≫
 図14は、第4の実施形態に係る電源開閉装置を備える電源システム400の全体構成を示す図である。電源開閉装置401は、電源開閉装置101(第1の実施形態、図1)の構成に加え、電源電圧検出回路414を備える点が特徴である。図14において、第1の実施形態と同様の構成については同じ符号を付している。
 電流量可変部406は、第1の実施形態と同様の構成の半導体素子407A,407B,407Cからなる。
 電源電圧検出回路414は、直流電源BAの電圧値VB[V]を検出する。
 コントローラ405は、半導体素子407A,407B,407Cに対する制御信号VGA,VGB,VGCを出力する。コントローラ405は、さらに、電源電圧検出回路414により検出された電圧値VBの情報を取得し、検出された電圧値VBに応じて、第1の期間に電流を流す半導体素子に対して出力する制御信号のレベルを調整する。
 ≪コントローラ405のメモリに格納されているテーブル≫
 図15は、コントローラ405のメモリに格納されているテーブルt4を示す図である。テーブルt4には、電源電圧検出回路414により検出された電圧値VB[V]が属する電圧範囲と、マイコン(図2)が出力する制御信号指令Dgのレベルとが列挙されている。また、テーブルt4において制御信号指令Dgのレベルに対応する制御信号Vgのレベルを括弧書きにて示している。
 ここで、上述したように、直流電源BAと平滑コンデンサ102とを結ぶ電路を閉状態にした際、平滑コンデンサ102は先ず直流電源BAの電圧値VBまで充電される必要がある。電圧値VBが高いほど平滑コンデンサ102を予備充電するのに多くの電流が供給されなければならず、平滑コンデンサ102の予備充電を完了するのに要する時間が長くかかることを意味する。したがって、本実施形態のコントローラ405は、テーブルt4に従って、電圧値VBが高い電圧範囲にあるほど半導体素子の上限電流値が高くなるように、各半導体素子に出力する制御信号を調整する。
 次に、コントローラ405の一連の動作について、図16を用いて説明する。
 ≪コントローラ405が行う動作のフローチャート≫
 図16は、本実施形態に係るコントローラ405が行う動作のフローチャートを示す図である。
 ステップS401は、第2の実施形態におけるステップS201(図6)に対応する。コントローラ405は、電源電圧検出回路414により検出された電圧値VBの情報を取得した後(ステップS402)、テーブルt4より電圧値VBが属する電圧範囲に対応する制御信号Vg(制御指令信号Dg)を選択する(ステップS403)。次いで、コントローラ405は、VGAとしてVgX,VGBとしてVg0,VGCとしてVg0をそれぞれ出力する(ステップS404)。ここで、VgXは、制御信号Vg1~Vg6のうち、ステップS403においてテーブルt4より選択した制御指令信号Dgに対応する制御信号Vgのことを指している。ステップS405~S408は、第2の実施形態におけるステップS205~S208(図6)に対応する。
 以上説明したように、本実施形態の構成によれば、直流電源の電圧値が変動した場合であっても、制御信号のレベルを適切に調整することで予備充電に要する時間を略一定に維持することが可能である。
 [第5の実施形態]
 第4の実施形態では、平滑コンデンサの電位があまり変動しないが、直流電源の電位が変動する電源システムの場合に、第1の期間の長さを略一定にする構成について説明した。本実施形態では、第4の実施形態とは逆に、平滑コンデンサの電位は変動するが、直流電源の電位はあまり変動しない電源システムの場合に有効な構成について説明する。
 ≪構成≫
 図17は、第5の実施形態に係る電源開閉装置を備える電源システム500の全体構成を示す図である。電源開閉装置501は、電源開閉装置101(第1の実施形態、図1)の構成に加え、容量電圧検出回路515を備える点が特徴である。図17において、第1の実施形態と同様の構成については同じ符号を付している。
 電流量可変部506は、第1の実施形態と同様の構成の半導体素子507A,507B,507Cからなる。
 容量電圧検出回路515は、平滑コンデンサ102の電圧値VC[V]を検出する。
 コントローラ505は、半導体素子507A,507B,507Cに対する制御信号VGA,VGB,VGCを出力する。コントローラ505は、さらに、容量電圧検出回路515により検出された電圧値VCの情報を取得し、検出された電圧値VCに応じて、第1の期間に電流を流す半導体素子に対して出力する制御信号のレベルを調整する。
 ≪コントローラ505のメモリに格納されているテーブル≫
 図18は、コントローラ505のメモリに格納されているテーブルt5を示す図である。テーブルt5には、容量電圧検出回路515により検出された電圧値VC[V]が属する電圧範囲と、マイコン(図2)が出力する制御信号指令Dgのレベルとが列挙されている。また、テーブルt5において制御信号指令Dgのレベルに対応する制御信号Vgのレベルを括弧書きにて示している。
 電圧値VCが小さい値であるほど、平滑コンデンサ102の充電量は少なく、平滑コンデンサ102の予備充電を完了するのに要する時間が長くかかることを意味する。したがって、本実施形態のコントローラ505は、テーブルt5に従って、電圧値VCが小さい電圧範囲にあるほど半導体素子の上限電流値が高くなるように、各半導体素子に出力する制御信号を調整する。
 ≪コントローラ505が行う動作のフローチャート≫
 コントローラ505の一連の動作については、図16に示すフローチャートにおけるステップS402~S404を除いて同様の動作である。ステップS402に対応するステップでは、コントローラ505は、容量電圧検出回路515により検出された電圧値VCの情報を取得する。ステップS403に対応するステップでは、テーブルt5より電圧値VCが属する電圧範囲に対応する制御信号Vg(制御指令信号Dg)を選択する。ステップS404に対応するステップでは、VGAとしてVgX,VGBとしてVg0,VGCとしてVg0をそれぞれ出力する。ここで、VgXは、制御信号Vg1~Vg6のうち、ステップS403に対応するステップにおいて、テーブルt5より選択した制御指令信号Dgに対応する制御信号Vgのことを指している。
 以上説明したように、本実施形態の構成によれば、平滑コンデンサの電圧値が大きく変動した場合であっても、制御信号のレベルを適切に調整することで予備充電に要する時間を略一定に維持することが可能である。
 [第6の実施形態]
 本実施形態では、平滑コンデンサ、直流電源の双方の電位が変動する電源システムの場合に、第1の期間の長さを略一定にする構成について説明する。
 ≪構成≫
 図19は、第6の実施形態に係る電源開閉装置を備える電源システム600の全体構成を示す図である。電源開閉装置601は、電源開閉装置101(第1の実施形態、図1)の構成に加え、第4の実施形態における電源電圧検出回路414(図14)に対応する電源電圧検出回路614と、第5の実施形態における容量電圧検出回路515(図17)に対応する容量電圧検出回路615を備える点が特徴である。図19において、第1の実施形態と同様の構成については同じ符号を付している。
 電流量可変部606は、第1の実施形態と同様の構成の半導体素子607A,607B,607Cからなる。
 電源電圧検出回路614は、直流電源BAの電圧値VB[V]を検出する。
 容量電圧検出回路515は、平滑コンデンサ102の電圧値VC[V]を検出する。
 コントローラ605は、半導体素子607A,607B,607Cに対する制御信号VGA,VGB,VGCを出力する。コントローラ605は、さらに、電源電圧検出回路614により検出された電圧値VBおよび容量電圧検出回路615により検出された電圧値VCの情報を取得し、電圧値VBと電圧値VCの差Difに応じて、第1の期間に電流を流す半導体素子に対して出力する制御信号のレベルを調整する。
 ≪コントローラ605のメモリに格納されているテーブル≫
 図20は、コントローラ605のメモリに格納されているテーブルt6を示す図である。テーブルt6には、電圧値VBと電圧値VCの差Difが属する数値範囲と、マイコン(図2)が出力する制御信号指令Dgのレベルとが列挙されている。また、テーブルt6において制御信号指令Dgのレベルに対応する制御信号Vgのレベルを括弧書きにて示している。テーブルt6において、Dif1<Dif2<Dif3<Dif4<Dif5の順に数値が高いことを示している。したがって、テーブルt6の下に行くほど電圧値VBと電圧値VCの差Difが大きいことを意味している。
 差Difが大きい値であるほど、平滑コンデンサ102の充電量は少なく、平滑コンデンサ102の予備充電を完了するのに要する時間が長くかかることを意味する。したがって、本実施形態のコントローラ605は、テーブルt6に従って、差Difが大きい数値範囲にあるほど半導体素子の上限電流値が高くなるように、各半導体素子に出力する制御信号を調整する。
 ≪コントローラ605が行う動作のフローチャート≫
 コントローラ605の一連の動作については、図16に示すフローチャートにおけるステップS402~S404を除いて同様の動作である。ステップS402に対応するステップでは、コントローラ605は、電源電圧検出回路614により検出された電圧値VB、および容量電圧検出回路615により検出された電圧値VCの情報を取得する。ステップS403に対応するステップでは、テーブルt6より電圧値VBと電圧値VCの差Difが属する数値範囲に対応する制御信号Vg(制御指令信号Dg)を選択する。ステップS404に対応するステップでは、VGAとしてVgX,VGBとしてVg0,VGCとしてVg0をそれぞれ出力する。ここで、VgXは、制御信号Vg1~Vg6のうち、ステップS403に対応するステップにおいて、テーブルt6より選択した制御指令信号Dgに対応する制御信号Vgのことを指している。
 以上説明したように、本実施形態の構成によれば、電源電圧ならびに平滑コンデンサ双方の電圧値が大きく変動した場合であっても、制御信号のレベルを適切に調整することで予備充電に要する時間を略一定にすることができる。
 [第7の実施形態]
 本実施形態では、第2および第4の実施形態を組み合わせた例について説明する。すなわち、直流電源の電位変動があった場合でも第1の期間の長さを略一定に維持しつつ、第1の期間に電流が流される半導体素子を切り替えることにより半導体素子にかかる負荷を分散させるようにする構成について説明する。
 ≪構成≫
 図21は、第7の実施形態に係る電源開閉装置を備える電源システム700の全体構成を示す図である。電源開閉装置701は、電源開閉装置101(第1の実施形態、図1)の構成に加え、第2の実施形態における温度検出回路213A,213B,213C(図5)にそれぞれ対応する温度検出回路713A,713B,713Cと、第4の実施形態における電源電圧検出回路414(図14)に対応する電源電圧検出回路714を備える点が特徴である。
 電流量可変部706は、第1の実施形態と同様の構成の半導体素子707A,707B,707Cからなる。
 温度検出回路713A,713B,713Cは、それぞれ、半導体素子707Aの温度TA[℃],半導体素子707Bの温度TB[℃],半導体素子707Cの温度TC[℃]を個別に検出する。
 電源電圧検出回路714は、直流電源BAの電圧値VBを検出する。
 コントローラ705は、半導体素子707A,707B,707Cに対する制御信号VGA,VGB,VGCを出力する。コントローラ705は、また、温度検出回路713A,713B,713Cにより検出された温度TA,TB,TCの情報を取得し、この情報を基に、温度の低い半導体素子から順に第1の期間に電流を流す半導体素子として選択する。さらに、コントローラ705は、電源電圧検出回路714により検出された電圧値VBの情報を取得し、電圧値VBに応じて、第1の期間に電流を流す半導体素子に対して出力する制御信号のレベルを調整する。コントローラ705のメモリには、第4の実施形態におけるテーブルt4(図15)と同様のテーブルが格納されている。
 ≪コントローラ705が行う動作のフローチャート≫
 図22は、本実施形態に係るコントローラ705が行う動作のフローチャートを示す図である。ステップS701~S703は、第4の実施形態におけるステップS401~S403(図16)に対応する。ステップS704,S705は、それぞれ、ステップS202,S203に対応する。
 次いて、温度TAが最も温度が低いと判定すると(ステップS705においてTA)、コントローラ705は、VGAとしてVgX,VGBとしてVg0,VGCとしてVg0をそれぞれ出力する(ステップS706A)。ここで、VgXは、制御信号Vg1~Vg6のうち、ステップS703においてテーブルt4より選択した制御指令信号Dgに対応する制御信号Vgのことを指している。温度TBが最も温度が低いと判定すると(ステップS705においてTB)、コントローラ705は、VGAとしてVg0,VGBとしてVgX,VGCとしてVg0をそれぞれ出力する(ステップS706B)。そして、温度TCが最も温度が低いと判定すると(ステップS705においてTC)、コントローラ705は、VGAとしてVg0,VGBとしてVg0,VGCとしてVgXをそれぞれ出力する(ステップS706C)。
 ステップS707~S710は、第2の実施形態におけるステップS205~S208(図6)に対応する。
 ≪タイミングチャートの一例≫
 図23は、本実施形態に係るタイミングチャートの一例を示す図である。図23(a),(b)ともに、上から順に、平滑コンデンサ102の電圧値VCの変動,制御信号VGAの波形,制御信号VGBの波形,制御信号VGCの波形,半導体素子707Aに流れる順方向電流IAの波形,半導体素子707Bに流れる順方向電流IBの波形,半導体素子707Cに流れる順方向電流ICの波形を、それぞれ示している。また、同図に示す時刻(1)から(5)は、図4に示すタイミングチャート(第1の実施形態)における時刻(1)から(5)に対応している。
 図23(a)は、ステップS703においてテーブルt4より制御信号Vg2を選択し、ステップS705において温度TAが最も温度が低いと判定した場合である。すなわち、
S706Aにおいて、VGAとしてVg2,VGBとしてVg0,VGCとしてVg0が出力される場合である。図23(b)は、ステップS703においてテーブルt4より制御信号Vg4を選択し、ステップS705において温度TBが最も温度が低いと判定した場合である。すなわち、S706Aにおいて、VGAとしてVg0,VGBとしてVg4,VGCとしてVg0が出力される場合である。
 以上説明したように、本実施形態によれば、直流電源の電位変動による予備充電期間の変動の問題を解消することができる。さらに、半導体素子にかかる負荷を分散し、過熱による半導体素子の寿命低減を抑制することができる。
 [第8の実施形態]
 本実施形態では、第3および第4の実施形態を組み合わせた例について説明する。すなわち、直流電源の電位変動があった場合でも第1の期間の長さを略一定に維持しつつ、さらに、半導体素子の温度依存性による上限電流値の変動を温度補償する構成について説明する。
 ≪構成≫
 図24は、第8の実施形態に係る電源開閉装置を備える電源システム800の全体構成を示す図である。電源開閉装置801は、電源開閉装置101(第1の実施形態、図1)の構成に加え、第3の実施形態における温度検出回路313(図9)に対応する温度検出回路813と、第4の実施形態における電源電圧検出回路414(図14)に対応する電源電圧検出回路814を備える点が特徴である。
 電流量可変部806は、第1の実施形態と同様の構成の半導体素子807A,807B,807Cからなる。
 温度検出回路813は、半導体素子807Aの温度TA[℃]を検出する。本実施形態では、第1の期間において電流を流す半導体素子は半導体素子807Aのみである。したがって、温度検出回路813は半導体素子807Aのみの温度を検出する構成としている。
 電源電圧検出回路814は、直流電源BAの電圧値VB[V]を検出する。
 コントローラ805は、半導体素子807A,807B,807Cに対する制御信号VGA,VGB,VGCを出力する。コントローラ805は、また、温度検出回路813により検出された温度TAの情報、および電源電圧検出回路814により検出された電圧値VBの情報を取得する。さらに、コントローラ805は、温度TA,電圧値VBに応じて、メモリに格納されているテーブルに基づき、半導体素子807Aに対して第1の期間に出力する制御信号のレベルを調整する。
 ≪コントローラ805のメモリに格納されているテーブル≫
 図25は、コントローラ805のメモリに格納されているテーブルt8を示す図である。テーブルt8の最左列には、電源電圧検出回路814により検出された電圧値VB[V]が属する電圧範囲が、テーブルt8の最も上段の行には、温度検出回路813により検出された温度TAが属する温度範囲が、それぞれ示されている。テーブルt8の右下における二重線で囲まれた部分(テーブルt8の最も左側の列と最も上段の行を除く部分)には、コントローラ805がVGA,VGB,VGC(図2(a))として出力する制御指令信号Dgのレベルと、これらに対応する制御信号Vgのレベルが括弧書きにて列挙されている。
 コントローラ805は、温度TAが属する温度範囲に対応する列と、電圧値VBが属する電圧範囲に対応する行が交差する部分に該当するレベルの制御信号Vgを選択する。例えば、温度TAがT2以上T3未満であり(「T2≦TA<T3」)であり、電圧値VBが275[V]である(「250~299」)場合、VGAとしてVg3-T2を出力する。
 ここで、テーブルt8の最左列においては、下側に行くほど電圧値VBは大きくなる。最上段においては、T1<T2<…<T5の順に温度が高く、右側に行くほど温度TAは高くなる。制御信号Vg(または制御指令信号Dg)のレベルについて、「Vg」(または「Dg」)の直後に付されている数字が同じである場合(テーブルt8で同じ行に属する場合)は、「T」の直後に付されている下付き数字が大きいほど制御信号のレベルが高く、半導体素子の上限電流値は大きくなることを示している。また、「T」の直後に付されている下付き数字が同じである場合(テーブルt8で同じ列に属する場合)、「Vg」(または「Dg」)の直後に付されている数字が大きいほど、制御信号のレベルが高いことを示している。
 第4の実施形態で述べたように、電圧値VBの値が大きいほど、平滑コンデンサ102の予備充電を完了するのに要する時間が長くかかることを意味する。したがって、第4の実施形態におけるテーブルt4(図15)と同様に、テーブルt8の下側に行くに従って、制御信号のレベルは高くなるようにしている。また、第3の実施形態で述べたように、半導体素子の温度依存性により、同じレベルの制御信号が入力された場合には、低温時の上限電流値よりも高温時の上限電流値の方がより小さくなるため、予備充電時間に要する時間が長くなる。したがって、テーブルt8の右側に行くに従って、制御信号のレベルは高くなるようにしている。すなわち、本実施形態のコントローラ805は、テーブルt8に従って、電圧値VBが高い電圧範囲にあるほど、また、温度TAが高い温度範囲にあるほど、半導体素子の上限電流値が高くなるように制御信号を調整する。
 ≪コントローラ805が行う動作のフローチャート≫
 図26は、本実施形態に係るコントローラ805が行う動作のフローチャートを示す図である。ステップS801,S802は、第4の実施形態におけるステップS401,S402(図16)に対応する。次に、コントローラ805は、温度検出回路813により検出された温度TAの情報を取得した後(ステップS803)、テーブルt8より電圧値VBと温度TAに対応する制御信号Vg(制御指令信号Dg)を選択する(ステップS804)。
 続いて、VGAとしてVgX,VGBとしてVg0,VGCとしてVg0をそれぞれ出力する(ステップS805)。ここで、図26中のVgXは、テーブルt8に示す各制御信号のうち、ステップS804においてテーブルt8より選択した制御指令信号Dgに対応する制御信号Vgのことを指している。ステップS806~S809は、第2の実施形態におけるステップS205~S208(図6)に対応する。
 以上説明したように、本実施形態によれば、直流電源の電位変動による予備充電期間の変動の問題を解消しつつ、半導体素子の温度依存性による上限電流値の変動を温度補償することが可能となる。
 [第9の実施形態]
 本実施形態では、第2,第3,第4の実施形態を組み合わせた例について説明する。つまり、直流電源の電位変動があった場合でも第1の期間の長さを略一定に維持しつつ、第1の期間に電流が流される半導体素子を切り替えることにより半導体素子にかかる負荷を分散させる。加えて、半導体素子の温度依存性による上限電流値の変動を温度補償する。
 ≪構成≫
 図27は、第9の実施形態に係る電源開閉装置を備える電源システム900の全体構成を示す図である。電源開閉装置901は、電源開閉装置101(第1の実施形態、図1)の構成に加え、第2の実施形態における温度検出回路213A,213B,213C(図5)にそれぞれ対応する温度検出回路913A,913B,913Cと、第4の実施形態における電源電圧検出回路414(図14)に対応する電源電圧検出回路914を備える点が特徴である。
 電流量可変部906は、第1の実施形態と同様の構成の半導体素子907A,907B,907Cからなる。
 温度検出回路913A,913B,913Cは、それぞれ、半導体素子907Aの温度TA[℃],半導体素子907Bの温度TB[℃],半導体素子907Cの温度TC[℃]を個別に検出する。
 電源電圧検出回路914は、直流電源BAの電圧値VBを検出する。
 コントローラ905は、半導体素子907A,907B,907Cに対する制御信号VGA,VGB,VGCを出力する。コントローラ705は、温度検出回路713A,713B,713Cにより検出された温度TA,TB,TCの情報を取得し、この情報を基に、温度の低い半導体素子から順に第1の期間に電流を流す半導体素子として選択する。さらに、コントローラ905は、電源電圧検出回路914により検出された電圧値VBの情報も取得する。コントローラ905は、第8の実施形態と同様に、温度TA,TB,TCの情報および電圧値VBに基づいて、第1の期間に電流を流す半導体素子に対して出力する制御信号のレベルを調整する。したがって、コントローラ905のメモリには、第8の実施形態におけるテーブルt8(図25)と同様のテーブルが格納されている。但し、テーブルt8における「TA」は、温度TA,TB,TCのうち最も温度の低いものに読み替えるものとする。
 ≪コントローラ905が行う動作のフローチャート≫
 図28は、本実施形態に係るコントローラ905が行う動作のフローチャートを示す図である。ステップS901,S902は、第2の実施形態におけるステップS201,S202(図6)に対応する。次に、温度TA,TB,TCのうち、最も温度の低いものをメモリに記憶させる(ステップS903)。次に、電源電圧検出回路914により検出された電圧値VBの情報を取得した後(ステップS904)、テーブルt8より電圧値VBとステップS903で記憶した温度に対応する制御信号Vg(制御指令信号Dg)を選択する(ステップS905)。
 次いて、ステップS903で記憶した温度がTAである場合(ステップS906においてTA)、コントローラ905は、VGAとしてVgX,VGBとしてVg0,VGCとしてVg0をそれぞれ出力する(ステップS907A)。ここで、VgXは、ステップS905においてテーブルt8より選択した制御指令信号Dgに対応する制御信号Vgのことを指している。ステップS903で記憶した温度がTBである場合(ステップS906においてTB)、コントローラ905は、VGAとしてVg0,VGBとしてVgX,VGCとしてVg0をそれぞれ出力する(ステップS907B)。そして、ステップS903で記憶した温度がTCである場合(ステップS906においてTC)、コントローラ905は、VGAとしてVg0,VGBとしてVg0,VGCとしてVgXをそれぞれ出力する(ステップS907C)。
 ステップS908~S911は、第2の実施形態におけるステップS205~S208(図6)に対応する。
 以上説明したように、本実施形態によれば、直流電源の電位変動による予備充電期間の変動の問題を解消しつつ、半導体素子の温度依存性による上限電流値の変動を温度補償することが可能となる。これに加え、第1の期間には最も温度の低い半導体素子に電流が流されるので、半導体素子にかかる負荷を分散し、過熱による半導体素子の寿命低減を抑制することができる。
 以上、第1乃至第9の実施形態について説明したが、本発明はこれらの実施形態に限られない。例えば、以下のような変形例等が考えられる。
 [変形例]
 (1)第3の実施形態(図9)においては、半導体素子307A,307B,307C全体の周囲温度Tsurを検出することしていたが、これらの半導体素子の温度を個別に検出することとしてもよい。このようにすることで、第1の期間に電流を流す半導体素子の温度を知ることができるので、より精度良く制御信号のレベルを温度補償することができる。第9の実施形態(図27)においても同様である。
 (2)第1の実施形態において、図4に示すタイミングチャートでは、第1の期間に電流が流される半導体素子は107Aで固定であったが、電源開閉装置の動作毎に第1の期間に電流が流される半導体素子を順に切り替えることとしてもよい。このようにすることで、半導体素子の負荷を均一に分散することができるので、半導体素子の寿命低下を抑制できる。
 (3)第8の実施形態においては、第1の期間に電流が流される半導体素子は807Aのみであったため、半導体素子807Aのみの温度を検出する構成としていたが、本発明はこれに限定されない。例えば、半導体素子807A,807B,807C全体の周囲温度を検出し、この周囲温度を基に制御信号を調整することとしてもよい。さらに、電源開閉装置の動作毎に第1の期間に電流が流される半導体素子を順に切り替えることとしてもよい。かかる場合、各半導体素子の温度を個別に検出する回路を設けることが望ましい。
 (4)第1,第3,第4,第5,第6,第8の実施形態においては、第1の期間に電流が流される半導体素子は1個のみであったが、3個の半導体素子全て(電源開閉装置が備える半導体素子全て)に電流を流すこととしてもよい。言い換えれば、第1の期間に電流を流す半導体素子の数と、第2の期間に電流を流す半導体素子の数が同じであってもよい。例えば、第1の期間においては、VGAとしてVg3,VGBとしてVg3,VGCとしてVg3を出力し、第2の期間においては、VGAとしてVg7,VGBとしてVg7,VGCとしてVg7を出力することとしてもよい。このように、第1の期間に電流を流す半導体素子に出力される制御信号の各々は同じレベルであるとともに、第2の期間に電流を流す半導体素子に出力される制御信号の各々は同じレベルであるようにすることで、コントローラにおける制御を簡略化することができる。
 (5)上記の実施形態においては、第1の期間と第2の期間との間で、電流が流される半導体素子の個数と、電流が流される半導体素子に出力される制御信号のレベルは異なっていることとしたが、本発明はこれに限定されない。例えば、第1の期間と第2の期間との間で電流が流される半導体素子の個数のみを異ならせることとしてもよい。具体的には、第1の期間においては、VGAとしてVg7,VGBとしてVg0,VGCとしてVg0を出力し、第2の期間においては、VGAとしてVg7,VGBとしてVg7,VGCとしてVg7を出力することとしてもよい。また、第1の期間における個数と第2の期間における個数は特に限定されないが、第1の実施形態で述べたように、第1の期間における個数は第2の期間における個数よりも少ない方が望ましい。
 (6)第2の実施形態の変形例は、第7の実施形態(図21)および第9の実施形態(図27)にも適用することができる。
 (7)第2の実施形態の変形例と変形例(3)を組み合わせることも可能である。また、変形例(4)に記載の第7の実施形態に係る変形例と変形例(3)の組合せ,変形例(4)に記載の第9の実施形態に係る変形例と変形例(3)の組合せも可能である。
 (8)第7の実施形態では、第2および第4の実施形態を組み合わせることとしたが、第4の実施形態と同じく電圧検出回路を有する実施形態である第5または第6の実施形態を、それぞれ第2の実施形態と組み合わせることも可能である。
 (9)第8の実施形態では、第3および第4の実施形態を組み合わせることとしたが、第4の実施形態と同じく電圧検出回路を有する実施形態である第5または第6の実施形態を、それぞれ第3の実施形態と組み合わせることも可能である。
 (10)第9の実施形態では、第2,第3および第4の実施形態を組み合わせることとしたが、第4の実施形態と同じく電圧検出回路を有する実施形態である第5または第6の実施形態を、それぞれ第2および第3の実施形態と組み合わせることも可能である。
 (11)変形例に記載した変形例に対してさらなる変形を加えることも可能である。例えば、変形例(7)に係る第3および第5の実施形態を組み合わせた変形例に対し、第3の実施形態に相当する構成に変形例(1)に係る変形を加えることとしてもよい。
 (12)第2の実施形態の変形例(図7,8)では、温度Tsurが閾値温度以上である場合は、所定規則に従い、前記複数の半導体素子のうち、前回の第1の期間において電流を流した半導体素子の少なくとも1つを除く半導体素子を、新たに第1の期間に電流を流す半導体素子として選択することとしていた。図7,8においては、第1の期間に電流を流す半導体素子は1個であるため、「所定規則」に従って半導体素子を選択するとは、前記複数の半導体素子のうち、前回の第1の期間において電流を流した半導体素子とは異なる半導体素子を順に選択することを意味している。
 しかしながら、変形例(5)で述べたように、第1の期間に電流を流す半導体素子の個数は1個に限定されず、2個とすることもできる。例えば、図7において、第1の期間に電流を流す半導体素子を、半導体素子207Aおよび半導体素子207B、半導体素子207Bおよび半導体素子207C、半導体素子207Cおよび半導体素子207A、半導体素子207Aおよび半導体素子207Bの順に選択することができる。すなわち、「所定規則」に従って半導体素子を選択するとは、前回の第1の期間で電流を流さなかった半導体素子を次回の第1の期間で電流を流す半導体素子に含まれるように選択することを意味する。
 さらに、上述しているように、第2の実施形態の変形例においては、温度Tsurが閾値温度以上である場合には、前記複数の半導体素子のうち、前回の第1の期間において電流を流した半導体素子の少なくとも1つを除く半導体素子を、新たに第1の期間に電流を流す半導体素子として選択する構成とした。しかしながら、この温度Tsurが閾値温度を大幅に超えている場合には、電源開閉装置201aの動作を中止し、温度Tsurが所定温度を下回るまで待った後、電源開閉装置201aの動作を再開することとしてもよい。このようにすることで、半導体素子の過熱異常による故障を回避することができる。変形例(4)に記載にした第7および第9の実施形態の変形例でも同様のことを行うこととしてもよい。
 (13)図15に示すテーブルt4の電圧値VBの数値、および図18に示すテーブルt5の電圧値VCの数値は単なる一例である。また、制御信号Vgのレベルは実施形態をまたいで同じ符号が付されているが、これは便宜的に同じ符号を用いているだけである。すなわち、異なる実施形態間で同じ符号が付されていた場合であっても、制御信号同士が同じ数値であるとは限らない。具体的には、第1の実施形態における制御信号Vg3と、第2の実施形態における制御信号Vg3は同じ数値であるとは限らない。
 また、制御信号Vgの数値は0であってもよい。例えば、図3に示される半導体素子がノーマリオフ型のMISFETである場合、Vg0=0[V]とすることもできる。反対に、ノーマリオン型のMISFETである場合、Vg8=0[V]とすることもできる。
 (14)上記の実施形態において、第1の期間に電流が流される半導体素子に出力する制御信号はVg2,Vg3またはVg4であったが、これは単なる例示である。図3に示す制御信号Vg1~Vg6のように、VDSが所定の値を超えるとIDが上限値(上限電流値)に達するような制御信号であれば、上記に示すレベル以外のレベルであってもよい。また、上記では、第2の期間に出力される制御信号のレベルはVg7としていたが、これも単なる例示である。図3に示す制御信号Vg7,Vg8のように、熱制約などで飽和するまでIDが上昇する制御信号であればよい。さらに、第2の期間に出力される制御信号は、半導体素子のゲート端子へ印加できる最大定格電圧であることが望ましい。このようにすることで、より小さいオン抵抗で電源開閉装置を動作させることができる。
 (15)上記の実施形態では、電流量可変部が備える半導体素子の個数は3個であったが、これは単なる例示である。本発明において半導体素子の個数は特に限定されないが、各半導体素子の電流容量の足し合わせが、直流電源の最大定格電流以上であることが望ましい。
 (16)上記の実施形態では、第2の期間においては電流量可変部が備える全ての半導体素子に電流が流されるようにする構成を示したが、全体動作を通じて、全く電流が流されない半導体素子が存在していてもよい。
 (17)第1の期間と第2の期間でオン抵抗を変える方法として、使う半導体素子の個数を変える方法を採用したが、これに限定されない。本発明においては、半導体素子に出力される個々の制御信号のレベルを適切に調整することで、第1の期間においては、電路に流れる電流が制限電流値を超えないようにし、かつ、第2の期間においては、電路に流れる電流が制限電流値を超えることを許容するような構成になっていればよい。例えば、第1の期間において、VGAとしてVg1,VGBとしてVg1,VGCとしてVg1を出力し、第2の期間において、VGAとしてVg8,VGBとしてVg8,VGCとしてVg0を出力することとしてもよい。この場合、第1の期間では、全ての半導体素子をオン抵抗が高くなるようにされ、第2の期間では、第1の期間よりも電流が流される半導体素子の個数は少ないものの、オン抵抗が低くなるようにされているため、上記の条件を満たすことができる。
 (18)上記の実施形態においてフローチャートに示した順序は単なる一例であり、適宜、順序を変更することが可能である。例えば、第7の実施形態(図22),第8の実施形態(図26),第9の実施形態(図28)において、温度検出と電圧検出の順序を逆にすることもできる。また、適宜、公知の方法を組み合わせて、他のステップを挿入したり、並行して行うこともできる。
 (19)上記の実施形態においては、第1の期間が、制限電流値を超えない電流により平滑コンデンサを充電した場合に、当該平滑コンデンサが0%から100%まで充電されるのに要する期間よりも長くなるように動作させていたが、本発明はこれに限定されない。第1の期間が、制限電流値を超えない電流により平滑コンデンサを充電した場合に、当該平滑コンデンサが0%から80%まで充電されるのに要する期間よりも長くなるように動作させることとしてもよい。このような構成によっても、平滑コンデンサが許容できる範囲に突入電流を抑えることができる。
 (20)上記の実施形態においては、半導体素子としてMISFETが用いられていると説明したが、このMISFETのゲート絶縁膜としては、例えば、SiO2等のシリコン酸化膜、シリコン酸窒化膜、アルミナ(Al23等)、HfO等のハフニウム酸化物、Ti,Zr,Nb,Ta等の遷移金属酸化物等が挙げられる。なお、MISFETのうち、ゲート絶縁膜として酸化物を採用したMISFETは、金属-酸化物-半導体電界効果トランジスタ(Metal-Oxide-Semiconductor Field Effect Transistor,MOSFET)とも呼ばれる。
 なお、上記の実施形態においては、半導体素子がN型MISFETとして説明したが、P型MISFETであってもよい。半導体素子がP型MISFETである場合は、電流方向に対する「ソース」,「ドレイン」の定義が反転する。そのため、上記説明の「ソース」,「ドレイン」を入れ替えて、それぞれ「ドレイン」,「ソース」と読み替えればよい。
 (21)電源開閉装置およびインバータが備える半導体素子として用いることが可能なものとしては、実施形態に記載したMISFETの他、金属-半導体電界効果トランジスタ(Metal-Semiconductor Field Effect Transistor,MESFET)、接合型電界効果トランジスタ(Junction Field Effect Transistor,JFET)、静電誘導型トランジスタ(Static Induction Transistor,SIT)、ゲート注入トランジスタ(Gate Injection Transistor,GIT)、絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transistor,IGBT),Si系のバイポーラトランジスタ等が挙げられる。なお、半導体素子がIGBTである場合には、上記説明の「ソース」,「ドレイン」をそれぞれ「エミッタ」,「コレクタ」と読みかえればよい。また、半導体素子がバイポーラトランジスタである場合には、上記説明の「ソース」,「ドレイン」,「ゲート」をそれぞれ「エミッタ」,「コレクタ」,「ベース」と読みかえればよい。
 なお、上記の実施形態においては、半導体素子がノーマリオフ型として説明したが、ノーマリオン型であってもよい。ノーマリオン型の場合、図3において、例えば、Vg0>Vg1>Vg2>・・・>Vg7>Vg8=0[V]となる。ただし、フェールセーフの観点からは、ノーマリオフ型の半導体素子を用いることが望ましい。
 (22)電源開閉装置、ならびにインバータが備える半導体素子は、近年注目されているSiCやGaN等のワイドバンドギャップ半導体により構成されていることとしてもよい。この場合、従来のSi半導体からなる半導体素子を用いた場合と比較してオン抵抗が小さいため、第2の期間においてより低抵抗で動作させることができる。この他にも、スイッチング動作が速い、高温下でも安定したスイッチング動作を行うことができるといった利点を有する。なお、上記の実施形態で用いているMISFETは元々スイッチング速度が速い素子であるので、MISFETをワイドバンドギャップ半導体で構成することで、さらなるスイッチング速度の高速化に対応できる。
 (23)上記の実施形態では、電源開閉装置およびインバータが備える半導体素子とが、同一のパッケージに収容されているとする例を説明した。しかしながら、本発明はこの例に限定されず、電源開閉装置が備える半導体素子と、インバータが備える半導体素子とが、別個のパッケージに収容されていることとしてもよい。
 (24)第2の実施形態およびその変形例では、電源開閉装置の動作毎に毎回温度を検出することしていたが、所定回数ごとに温度を検出することとしてもよい。半導体素子の温度があまり変動しない電源開閉装置の場合はこのような構成にすることで、起動時間の短縮を図ることが可能である。
 (25)上記の実施形態では、第2の期間に電流を流す半導体素子の個数よりも、第1の期間に電流を流す半導体素子の個数を少なくすることで、第1の期間における半導体素子の上限電流値またはオン抵抗を細かく設定できるようにしている。しかしながら、本発明はこれに限定されない。例えば、相互コンダクタンスの異なる半導体素子を用いることによっても、上記の効果を得ることができる。MISFETにおいて、相互コンダクタンスとは、ゲート電圧の変化量に対する順方向電流の変化量(ΔID/ΔVg)で定義される量である。相互コンダクタンスの小さいMISFETは、相互コンダクタンスの大きいMISFETに比べて、ゲート電圧を変化させたときの順方向電流の変化量が小さいため、ドレイン電流の電流値の細かい制御に適している。他方、相互コンダクタンスの大きいMISFETは、ゲート電圧を変化させたときの順方向電流の変化量が大きいため、ゲート電圧が小さくとも大きな順方向電流を流すことができる。
 図29は半導体素子のI-V特性を模式的に示す図である。図29(a)は相互コンダクタンスが大きい場合の半導体素子、図29(b)は相互コンダクタンスが小さい場合の半導体素子をそれぞれ示している。図29(a),(b)を比較すると分かるように、同じレベルの制御信号が入力されている場合、飽和領域において、相互コンダクタンスが小さい方がより細かく上限電流値を制御できることがわかる。他方、飽和領域において、相互コンダクタンスが大きい方が、同じレベルの制御信号に対してより大きな上限電流値を設定できることがわかる。したがって、第1の期間においては相互コンダクタンスが小さい半導体素子に電流を流し、第2の期間においては相互コンダクタンスが大きい半導体素子に電流を流すことで、第1の期間における上限電流値の制御性を高め、第2の期間におけるゲート電圧を抑制することができる。
 なお、図29(a),(b)に示すI-V特性は、図10と類似している。具体的には、半導体素子が低温である場合(図10(a))が、相互コンダクタンスが大きい場合(図29(a))に相当し、半導体素子が高温である場合(図10(b))が、相互コンダクタンスが小さい場合(図29(b))に相当する。したがって、温度の異なる半導体素子を使い分けることによっても、同様の効果を得ることができる。
 (26)電源開閉装置が備える各半導体素子は、耐圧や電流容量などの仕様が同一の半導体素子で構成されていることが望ましい。このようにすることで、第1の期間に電流が流される半導体素子を電源開閉装置の動作毎に切り換える場合に、コントローラにおける制御の簡素化を図ることができ、結果として、電源開閉装置の低コスト化に貢献できる。なお、変形例(25)のように閾値電圧の違う半導体素子を用いる場合はこの限りではない。
 (27)第3乃至第9の実施形態では、第1の実施形態で説明したように、予備充電に要する期間は略一定であることが望ましいため、あらかじめ決められた第1の期間内で予備充電を完了できるような設計がなされていた。具体的には、半導体素子の温度、直流電源の電圧値と平滑コンデンサの電圧値の差分から平滑コンデンサの充電量が低いと判断した場合、コントローラは半導体素子の上限電流値が高くなるように制御信号を調整していた。本発明では、これとは異なる設計思想に基づいた実施形態を採用することもできる。ここでは、予備充電期間の短縮化を目的とする設計思想に基づく変形例を、第5の実施形態に適用した構成について説明する。
 構成は図17に示すものと同様であるが、コントローラ505のメモリに格納されているテーブルが異なる。
 図30(a)は、本変形例に係るコントローラ505のメモリに格納されているテーブルt10を示す図である。第5の実施形態におけるテーブルt5と異なる部分は、電圧値VC[V]が属する電圧範囲が列挙された列である。第5の実施形態におけるテーブルt5では、電圧値VCが小さい電圧範囲にあるほど半導体素子の上限電流値が高くなるようにされていたが、本変形例ではその関係が逆になっている。
 電圧値VCが高い値であるほど、平滑コンデンサ102の充電量は高く、突入電流が流れにくいことを意味する。この場合、半導体素子の上限電流値が大きくなるような制御信号を与えたとしても突入電流は過大にならない。したがって、本変形例では、電圧値VCが高い値であるほど、与える制御信号のレベルを高くすることによって、電路に流れることを許容する電流値(半導体素子の個々の上限電流値の足し合わせ)を大きくし、予備充電期間の短縮化を図っている。
 当然のことながら、第1の期間が終了する時刻を変更するようにされていなければ(図16におけるステップS405に相当するステップ)、実際に予備充電期間を短縮することはできない。したがって、本変形例に係るコントローラ505のメモリには、図30(b)に示すテーブルt11がさらに格納されている。テーブルt11には、第1の期間において電流が流される半導体素子に入力される制御信号Vgのレベルと、第1の期間の長さPrdが列挙されている。テーブルt11において、Prd1<Prd2<…<Prd5<Prd6の順に期間が長い高いことを示している。テーブルt11に示すように、与えられる制御信号のレベルが高くなるほど予備充電に要する時間は短くて済むため、第1の期間の長さPrdは短くすることしている。
 図31は、本変形例に係るコントローラ505が行う動作のフローチャートを示す図である。ステップS1001は、第2の実施形態におけるステップS201(図6)に対応する。次に、容量電圧検出回路515により検出された電圧値VCの情報を取得した後(ステップS1002)、テーブルt10より電圧値VCに対応する制御信号Vg(制御指令信号Dg)を選択する(ステップS1003)。そして、テーブルt11より、ステップS1003で選択した制御信号Vgに対応する第1の期間の長さPrdを選択する(ステップS1004)。次いで、コントローラ505は、VGAとしてVgX,VGBとしてVg0,VGCとしてVg0をそれぞれ出力する(ステップS1005)。ここで、VgXは、ステップS1003においてテーブルt10より選択した制御指令信号Dgに対応する制御信号Vgのことを指している。
 コントローラ505がステップS1004においてテーブルt11より選択した第1の期間の長さPrdが経過していないと判定すると(ステップS1006においてNO)、ステップS1006の処理に戻る。第1の期間の長さPrdが経過したと判定すると(ステップS1006においてYES)、コントローラ505は、VGAとしてVg7,VGBとしてVg7,VGCとしてVg7をそれぞれ出力する(ステップS1007)。ステップS1008,S1009は、第2の実施形態におけるステップS207,S208(図6)にそれぞれ対応する。
 以上説明したように、本変形例では、平滑コンデンサの充電量が多い場合には、与える制御信号のレベルを高くして、第1の期間の長さの短縮を図っている。一方、平滑コンデンサの充電量が少ない場合には、電源投入時に大きな突入電流が流れることが予想されるので、制御信号のレベルを低くすることでより慎重に突入電流の抑制を図っている。
 なお、上記では、第5の実施形態に対して適用した変形例について説明したが、第5の実施形態の他、第4,第6,第7,第8,第9の実施形態のような、電圧検出回路を有する実施形態およびこれらの変形例に適用することが可能である。
 (28)コントローラの構成の簡略化を目的とする設計思想に基づく変形例を、第5の実施形態に適用した構成について説明する。第5の実施形態では、電圧値VCの大きさに応じて第1の期間に電流が流される半導体素子に与える制御信号のレベルを変更していたが、本変形例においては、制御信号のレベルではなく第1の期間の長さを変更する。
 構成は図17に示すものと同様であるが、コントローラ505のメモリに格納されているテーブルが異なる。
 図32は、本変形例に係るコントローラ505のメモリに格納されているテーブルt12を示す図である。第5の実施形態におけるテーブルt5と異なる部分は、制御信号Vgおよび制御指令信号Dgのレベルの代わりに、第1の期間の長さPrdが列挙されている点である。なお、テーブルt12において、Prd1<Prd2<…<Prd5<Prd6の順に期間が長い高いことを示している。
 電圧値VCが低い値であるほど平滑コンデンサ102の充電量は低く、その分、予備充電に長い時間を要することを意味する。したがって、本変形例では、第1の期間に電流が流される半導体素子に与える制御信号のレベルが固定である代わりに、第1の期間の長さPrdを長くとるようにしている。
 図33は、本変形例に係るコントローラ505が行う動作のフローチャートを示す図である。ステップS1101,S1102は、変形例(27)におけるステップS1001,S1002(図31)に対応する。次に、テーブルt12より電圧値VCに対応する第1の期間の長さPrdを選択し(ステップS1103)、コントローラ505は、VGAとしてVg3,VGBとしてVg0,VGCとしてVg0をそれぞれ出力する(ステップS1005)。なお、ここでVGA=Vg3としているのは単なる例示である。
 次いで、コントローラ505がステップS1103においてテーブルt12より選択した第1の期間の長さPrdが経過していないと判定すると(ステップS1105においてNO)、ステップS1105の処理に戻る。第1の期間の長さPrdが経過したと判定すると(ステップS1105においてYES)、コントローラ505は、VGAとしてVg7,VGBとしてVg7,VGCとしてVg7をそれぞれ出力する(ステップS1106)。ステップS1107,S1108は、変形例(27)におけるステップS1008,S1009(図31)にそれぞれ対応する。
 以上説明したように、本変形例の構成によれば、平滑コンデンサ102の充電量が高い場合には第1の期間の長さを短くすることで予備充電時間の短縮を図ることができる。また、平滑コンデンサ102の充電量に関わらず、第1の期間に電流が流される半導体素子に与える制御信号のレベルが固定に設定できるため、コントローラを簡略化および低コスト化することができる。
 なお、上記では、第5の実施形態に対して適用した変形例について説明したが、第5の実施形態の他、第4,第6,第7,第8,第9の実施形態のような、電圧検出回路を有する実施形態およびこれらの変形例に適用することが可能である。
 (29)第3の実施形態では、図10に示されるように、高温時の場合に順方向電流が流れにくくなるような半導体素子について説明したが、これに限定されない。例えば、高温時の場合に順方向電流が流れにくくなるような半導体素子を用いた場合であっても、テーブルt3を適宜変更すれば、温度補償が可能である。
 (30)上記の実施形態においては、直流電源と平滑コンデンサとを結ぶ電路のうち、正側の電路の開閉のみを行うような電源開閉装置について説明したが、本発明はこれに限定されない。図35は、変形例(30)に係る電源開閉装置を備える電源システム100Aの全体構成を示す図である。
 図35に示す電源開閉装置101Aには、直流電源BAと平滑コンデンサ102とを結ぶ正側の電路に挿入された電流量可変部106pと、直流電源BAと平滑コンデンサ102とを結ぶ負側の電路に挿入された電流量可変部106nとが含まれる。電流量可変部106pは半導体素子107Ap,107Bp,107Cpを備え、電流量可変部106nは半導体素子107An,107Bn,107Cnを備える。これらの半導体素子は、第1の実施形態で用いられているものと同様の構成である。半導体素子107Ap,107Bp,107Cpの動作は、それぞれ、コントローラ105Aから出力される制御信号VGAp,VGBp,VGCpにより制御される。また、半導体素子107An,107Bn,107Cnの動作は、それぞれ、同じくコントローラ105Aから出力される制御信号VGAn,VGBn,VGCnにより制御される。電源システム100Aには、さらに、直流電源BAと電源開閉装置101Aとの間にヒューズ116が挿入されている。
 本変形例に係る電源開閉装置は、上記電路における正側および負側の両方の開閉を行うことができる。本変形例によれば、万が一、電流量可変部106pまたは電流量可変部106nのいずれかに異常が発生した場合であっても、正常動作可能な方の電流可変部により電源開閉動作を継続することができる。よって、信頼性の高い電源開閉装置を構成することができる。
 なお、図35においては、第1の実施形態に対して変形を加えた例について図示したが、他の実施形態および変形例に対して変形を加えることが可能であることは言うまでもない。
 また、上記の実施形態および本変形例のほか、直流電源BAと平滑コンデンサ102とを結ぶ負側の電路の開閉のみを行うような電源開閉装置であってもよい。
 (31)特許文献1に代表される機械式リレーにおいて、接点溶着による接点破壊が起こった場合、機械式リレーが挿入された電路は必ず閉状態となる。したがって、接点破壊が起こると電路は導通したままとなってしまい、不都合が生じる。しかしながら、上記の実施形態では、電路の開閉に半導体素子を用いているので、半導体素子が開状態となっているタイミングで半導体素子を破壊することができる。例えば、温度検出回路等が半導体素子の過熱異常等による破壊の危険を検知した場合、半導体素子が開状態となっているタイミングを見計らって、半導体素子を破壊することができる。よって、上記の実施形態においては、電路が導通したまま半導体素子が破壊されることによる不都合は生じない。
 (32)各図は、本発明が理解できる程度に配置関係を概略的に示してあるに過ぎず、従って、本発明は図示例に限定されるものではない。また、図を分かり易くするために、一部省略した部分がある。
 (33)上記の実施形態および変形例は単なる好適例に過ぎず、何らこれに限定されない。また、これらの実施形態および変形例に挙げた構成を適宜好適に組み合わせることも可能である。
 (34)各構成成分間の特性差等が同一という場合、例えば、電源開閉装置が備える半導体素子の仕様が同一である場合であっても、製造誤差等の範囲内での誤差は当然許容されるものとする。なお、数値範囲を示す際に用いる符号「~」は、その両端の数値を含む。
 本発明は、例えば、小型化が要求されるハイブリッド電気自動車、電気自動車、電動コンプレッサ、電動パワーステアリング、エレベータ、風力発電システム等に搭載される電源開閉装置へ好適に利用可能である。
  100,100A,200,200a,300,400,500,600,700、800,900,1000 電源システム
  91,101,101A,201,301,401,501,601,701、801,901 電源開閉装置
  92,102 コンデンサ(容量素子)
  93,103 インバータ(電力変換装置)
  94,104 三相交流モータ(負荷)
  95,105,105A,205,205a,305,405,505,605,705、805,905 コントローラ
  106,106p,106n,206,306,406,506,606,706、806,906 電流量可変部
  107A,107Ap,107An,107B,107Bp,107Bn,107C,107Cp,107Cn,207A,207B,207C,307A,307B,307C,407A,407B,407C,507A,507B,507C,607A,607B,607C,707A,707B,707C,807A,807B,807C,907A,907B,907C 半導体素子
  108u U相アーム
  108v V相アーム
  108w W相アーム
  109A、109B,109C、109D、109E、109F 半導体素子
  110 マイコン
  111 メモリ
  112 可変電圧回路
  213A,213B,213C,213a,313,713A,713B,713C,813,913A,913B,913C 温度検出回路
  414,614,714,814,914 電源電圧検出回路
  515,615 容量電圧検出回路
  116 ヒューズ
  96、97 励磁回路
  98 半導体素子
  99 ダイオード
  BA 直流電源
  GD ゲート駆動回路
  SMR1、SMR2 システムメインリレー

Claims (21)

  1.  直流電源と容量素子とを結ぶ電路を外部からの指令に応じて開閉する電源開閉装置であって、
     前記電路に挿入されるとともに、入力される制御信号のレベルに応じて定まる上限電流値以下の電流であって、前記直流電源の電圧値と前記容量素子の充電電圧値の差分に応じた電流を流す、1以上の半導体素子と、
     前記1以上の半導体素子に対し個別に制御信号を出力するコントローラと、
     前記1以上の半導体素子の温度を検出する温度検出回路と、を備え、
     前記コントローラは、
     前記電路を閉状態にさせる指令を受けてから所定期間が経過するまでは、前記電路に流れる電流が制限電流値を超えないように、前記温度検出回路により検出された温度に応じて個々の制御信号のレベルを調整し、かつ、
     前記所定期間経過後は、前記電路に流れる電流が前記制限電流値を超えることを許容するように個々の制御信号のレベルを調整する、
     電源開閉装置。
  2.  前記1以上の半導体素子は、前記入力される制御信号のレベルに応じて定まる上限電流値が温度に依存して変化する温度依存性を有し、
     前記コントローラは、
     前記所定期間が経過するまでは、前記温度検出回路により検出された温度に応じて、個々の制御信号のレベルを温度補償する、
     請求項1に記載の電源開閉装置。
  3.  前記1以上の半導体素子は、複数の半導体素子が並列接続されてなり、
     前記コントロ-ラは、
     前記所定期間が経過するまでは、前記複数の半導体素子の全個数より少ない第1の個数の半導体素子に対し、当該第1の個数の半導体素子の個々の上限電流値の足し合わせが前記制限電流値を超えないように、前記個々の制御信号のレベルを調整し、かつ、
     前記所定期間経過後は、前記第1の個数以上の第2の個数の半導体素子に対し、当該第2の個数の半導体素子の個々の上限電流値の足し合わせが、前記制限電流値を超えるように、前記個々の制御信号のレベルを調整する、
     請求項1に記載の電源開閉装置。
  4.  前記第2の個数は、前記第1の個数よりも多い、
     請求項3に記載の電源開閉装置。
  5.  前記第2の個数の半導体素子の個々の上限電流値は、前記第1の個数の半導体素子に含まれるいずれの半導体素子の上限電流値よりも大きい、
     請求項3または4のいずれか1項に記載の電源開閉装置。
  6.  前記コントローラは、前記温度検出回路により検出された温度に応じて、前記第1の個数の半導体素子として採用する半導体素子を選択する、
     請求項3に記載の電源開閉装置。
  7.  前記温度検出回路は、前記複数の半導体素子の温度を個別に検出し、
     前記コントローラは、前記複数の半導体素子のうち、温度の低い半導体素子から順に前記第1の個数の半導体素子として選択する、
     請求項6に記載の電源開閉装置。
  8.  前記温度検出回路は、前記複数の半導体素子全体としての温度を検出し、
     前記コントローラは、
     前記電路を閉状態にさせる指令を所定回数受ける毎に、前記温度検出回路により検出された温度を取得し、
     前記温度検出回路により検出された温度が所定温度未満である場合は、前回閉状態にさせる指令を受けた際に第1の個数の半導体素子として採用した半導体素子を、引き続き前記第1の個数の半導体素子として選択し、
     前記温度検出回路により検出された温度が所定温度以上である場合は、所定規則に従い、前記複数の半導体素子のうち、前回閉状態にさせる指令を受けた際に第1の個数の半導体素子として採用した半導体素子の少なくとも1つを除く半導体素子を、新たに第1の個数の半導体素子として選択する、
     請求項6に記載の電源開閉装置。
  9.  前記コントローラは、
     前記直流電源の電圧値と前記容量素子の充電電圧値の差分が大きくなるに従って、前記1以上の半導体素子の個々の上限電流値の足し合わせが大きくなるように、前記1以上の半導体素子に対する制御信号のレベルを個々に調整する、
     請求項1に記載の電源開閉装置。
  10.  前記電源開閉装置は、さらに、前記直流電源の電圧値を検出する電源電圧検出回路を備え、
     前記コントローラは、
     前記電源電圧検出回路により検出された電圧値が大きくなるに従って、前記1以上の半導体素子の個々の上限電流値の足し合わせが大きくなるように、前記1以上の半導体素子に対する制御信号のレベルを個々に調整する、
     請求項9に記載の電源開閉装置。
  11.  前記電源開閉装置は、さらに、前記容量素子の充電電圧値を検出する容量電圧検出回路を備え、
     前記コントローラは、
     前記容量電圧検出回路により検出された充電電圧値が小さくなるに従って、前記1以上の半導体素子の個々の上限電流値の足し合わせが大きくなるように、前記1以上の半導体素子に対する制御信号のレベルを個々に調整する、
     請求項9に記載の電源開閉装置。
  12.  前記電源開閉装置は、さらに、前記直流電源の電圧値を検出する電源電圧検出回路と、前記容量素子の充電電圧値を検出する容量電圧検出回路と、を備え、
     前記コントローラは、
     前記電源電圧検出回路により検出された電圧値と前記容量電圧検出回路により検出された充電電圧値の差分が大きくなるに従って、前記1以上の半導体素子の個々の上限電流値の足し合わせが大きくなるように、前記1以上の半導体素子に対する制御信号のレベルを個々に調整する、
     請求項9に記載の電源開閉装置。
  13.  前記所定期間が経過するまで電流を流す半導体素子の数と、前記所定期間経過後に電流を流す半導体素子の数が同じであり、かつ、
     前記所定期間が経過するまで電流を流す半導体素子に出力される制御信号の各々は同じレベルであるとともに、前記所定期間経過後に電流を流す半導体素子に出力される制御信号の各々は同じレベルである、
     請求項1に記載の電源開閉装置。
  14.  前記所定期間は、前記制限電流値を超えない電流により前記容量素子を充電した場合に、前記容量素子が0%から80%まで充電されるのに要する期間よりも長い、
     請求項1に記載の電源開閉装置。
  15.  前記制限電流値は、前記直流電源の最大出力電流値以下の値に設定される、
     請求項1に記載の電源開閉装置。
  16.  前記制限電流値は、前記直流電源と前記容量素子とを結ぶ電路に挿入されている各素子における最大定格電流の合計値以下の値に設定される、
     請求項1に記載の電源開閉装置。
  17.  前記1以上の半導体素子の少なくとも1つは、ワイドバンドギャップ半導体により構成されている、
     請求項1に記載の電源開閉装置。
  18.  前記1以上の半導体素子の少なくとも1つは、金属-絶縁体-半導体電界効果トランジスタにより構成されており、
     前記制御信号は、前記金属-絶縁体-半導体電界効果トランジスタのゲートに入力されるゲート電圧であり、
     前記金属-絶縁体-半導体電界効果トランジスタのドレイン-ソース間に流れる電流の上限電流値は、ゲート電圧の大きさによって定まる、
     請求項17に記載の電源開閉装置。
  19.  前記1以上の半導体素子は、複数の金属-絶縁体-半導体電界効果トランジスタが並列接続されてなり、
     前記コントロ-ラは、前記所定期間が経過するまでは、前記複数の金属-絶縁体-半導体電界効果トランジスタの全個数より少ない第1の個数の金属-絶縁体-半導体電界効果トランジスタに対しゲート電圧を出力し、かつ、前記所定期間経過後は、前記第1の個数以上の第2の個数の金属-絶縁体-半導体電界効果トランジスタに対しゲート電圧を出力し、
     前記第1の個数の金属-絶縁体-半導体電界効果トランジスタの相互コンダクタンスは、前記第2の個数の金属-絶縁体-半導体電界効果トランジスタの相互コンダクタンスよりも小さい、
     請求項18に記載の電源開閉装置。
  20.  直流電源から負荷に電力を供給する電源システムであって、
     容量素子と、
     前記直流電源と前記容量素子とを結ぶ電路を外部からの指令に応じて開閉する電源開閉装置と、
     前記容量素子と負荷とを結ぶ電路に挿入され、入力される制御信号のレベルに応じた電流を流す1以上の半導体素子を含む電力変換装置と、を備え、
     前記電源開閉装置は、
     前記電路に挿入されるとともに、入力される制御信号のレベルに応じて定まる上限電流値以下の電流であって、前記直流電源の電圧値と前記容量素子の充電電圧値の差分に応じた電流を流す、1以上の半導体素子と、
     前記電源開閉装置が備える1以上の半導体素子に対し個別に制御信号を出力するコントローラと、
     前記1以上の半導体素子の温度を検出する温度検出回路と、を備え、
     前記コントローラは、
     前記電路を閉状態にさせる指令を受けてから所定期間が経過するまでは、前記電路に流れる電流が所定の制限電流値を超えないように、前記温度検出回路により検出された温度に応じて個々の制御信号のレベルを調整し、かつ、
     前記所定期間経過後は、前記電路に流れる電流が前記制限電流値を超えることを許容するように個々の制御信号のレベルを調整する、
     電源システム。
  21.  前記電源開閉装置が備える1以上の半導体素子と、前記電力変換装置が備える1以上の半導体素子とが、同一のパッケージに収容されている、
     請求項20に記載の電源システム。
PCT/JP2012/000706 2011-02-04 2012-02-02 電源開閉装置およびそれを備える電源システム WO2012105264A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/635,979 US8508966B2 (en) 2011-02-04 2012-02-02 Power source switch device and power source system provided with same
CN201280001038.XA CN102823099B (zh) 2011-02-04 2012-02-02 电源开关装置及具备该电源开关装置的电源系统
JP2012531135A JP5097309B1 (ja) 2011-02-04 2012-02-02 電源開閉装置およびそれを備える電源システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011023023 2011-02-04
JP2011-023023 2011-02-04

Publications (1)

Publication Number Publication Date
WO2012105264A1 true WO2012105264A1 (ja) 2012-08-09

Family

ID=46602486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000706 WO2012105264A1 (ja) 2011-02-04 2012-02-02 電源開閉装置およびそれを備える電源システム

Country Status (4)

Country Link
US (1) US8508966B2 (ja)
JP (1) JP5097309B1 (ja)
CN (1) CN102823099B (ja)
WO (1) WO2012105264A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018074746A (ja) * 2016-10-28 2018-05-10 京セラドキュメントソリューションズ株式会社 モーター制御装置及び画像形成装置
US11156220B2 (en) 2012-12-13 2021-10-26 Zf Cv Systems Europe Bv Compressor for compressed air supply and pneumatic systems
WO2022186293A1 (ja) * 2021-03-04 2022-09-09 パナソニックIpマネジメント株式会社 レーザ発振器及びレーザ加工システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2548757B1 (de) * 2011-07-18 2014-10-29 Siemens Aktiengesellschaft Antriebssystem und Verfahren zum Betrieb eines solchen Antriebssystems
US9713995B2 (en) * 2012-08-06 2017-07-25 Mitsubishi Electric Corporation Power conversion device
EP3232470B1 (en) * 2016-04-13 2019-01-02 ABB Schweiz AG Cooling of wide bandgap semiconductor devices
US10833502B2 (en) * 2018-01-19 2020-11-10 Hamilton Sundstrand Corporation System for controlling inrush current between a power source and a load
US11784639B2 (en) 2018-11-02 2023-10-10 Rohm Co., Ltd. Semiconductor device, semiconductor module, relay unit, battery unit, and vehicle
CN117039796A (zh) 2018-11-02 2023-11-10 罗姆股份有限公司 半导体单元、半导体装置、电池单元以及车辆
EP3726719A1 (en) * 2019-04-15 2020-10-21 Infineon Technologies Austria AG Power converter and power conversion method
WO2020234964A1 (ja) * 2019-05-20 2020-11-26 三菱電機株式会社 電源装置
CN112713823B (zh) * 2020-12-18 2022-08-02 博奥生物集团有限公司 一种在电源系统上抑制直流电机反电势干扰的方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236227A (ja) * 1992-09-11 1995-09-05 Masaya Maruo 過電流保護装置
JPH08331756A (ja) * 1995-05-31 1996-12-13 Toshiba Corp 突入電流防止装置及び電子回路保護装置
JP2003289620A (ja) * 2002-03-27 2003-10-10 Fujitsu Ltd 突入電流抑制装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650499A (en) 1979-10-02 1981-05-07 Atsushi Kiuchi Preventing automobile accidents in tunnel
JP2753907B2 (ja) * 1991-11-18 1998-05-20 株式会社エクォス・リサーチ モータ駆動のための電源装置
JP2891208B2 (ja) 1996-10-24 1999-05-17 日本電気株式会社 突入電流制限機能付きスイッチ回路
JPH114539A (ja) 1997-06-12 1999-01-06 Matsushita Electric Ind Co Ltd 通信機器用電源供給制御装置
US6798175B2 (en) 2000-04-11 2004-09-28 Pentax Corporation Power supply circuit
JP2001298861A (ja) 2000-04-11 2001-10-26 Asahi Optical Co Ltd 電源回路及び電子スチルカメラ
US7270910B2 (en) 2003-10-03 2007-09-18 Black & Decker Inc. Thermal management systems for battery packs
WO2005034604A2 (en) 2003-10-03 2005-04-21 Black & Decker, Inc. Methods of discharge control for a battery pack of a cordless power tool system, a cordless power tool system and battery pack adapted to provide over-discharge protection and discharge control
WO2005038952A2 (en) 2003-10-14 2005-04-28 Black & Decker Inc. Protection methods, protection circuits and protective devices for secondary batteries, a power tool, charger and battery pack adapted to provide protection against fault conditions in the battery pack
JP2005312156A (ja) 2004-04-20 2005-11-04 Toyota Motor Corp 電源制御装置およびそれを備えたモータ駆動装置
JP2007166874A (ja) * 2005-12-16 2007-06-28 Toyota Motor Corp 電圧変換装置
JP4710588B2 (ja) * 2005-12-16 2011-06-29 トヨタ自動車株式会社 昇圧コンバータの制御装置
JP2007318849A (ja) 2006-05-24 2007-12-06 Toyota Motor Corp 電気自動車の電気システム
JP4644163B2 (ja) * 2006-07-04 2011-03-02 トヨタ自動車株式会社 車両の電力制御装置
JP2009044914A (ja) 2007-08-10 2009-02-26 Toyota Motor Corp 電源制御装置およびそれを備えたモータ駆動装置
JP5115093B2 (ja) 2007-08-20 2013-01-09 日産自動車株式会社 予備充電回路および車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236227A (ja) * 1992-09-11 1995-09-05 Masaya Maruo 過電流保護装置
JPH08331756A (ja) * 1995-05-31 1996-12-13 Toshiba Corp 突入電流防止装置及び電子回路保護装置
JP2003289620A (ja) * 2002-03-27 2003-10-10 Fujitsu Ltd 突入電流抑制装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156220B2 (en) 2012-12-13 2021-10-26 Zf Cv Systems Europe Bv Compressor for compressed air supply and pneumatic systems
JP2018074746A (ja) * 2016-10-28 2018-05-10 京セラドキュメントソリューションズ株式会社 モーター制御装置及び画像形成装置
WO2022186293A1 (ja) * 2021-03-04 2022-09-09 パナソニックIpマネジメント株式会社 レーザ発振器及びレーザ加工システム

Also Published As

Publication number Publication date
JPWO2012105264A1 (ja) 2016-05-26
US20130009624A1 (en) 2013-01-10
JP5097309B1 (ja) 2012-12-12
CN102823099A (zh) 2012-12-12
US8508966B2 (en) 2013-08-13
CN102823099B (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5097309B1 (ja) 電源開閉装置およびそれを備える電源システム
JP6369808B2 (ja) 駆動装置、電力変換装置
CN103208908B (zh) 开关元件的驱动器及使用该驱动器的旋转机器的控制系统
CN106463955B (zh) 电源开关装置及使用该电源开关装置的系统
US8963476B2 (en) Synchronous machine with switching element in the excitation circuit
CN106817113B (zh) 用于场控开关的过电流保护的系统及方法
JP5206198B2 (ja) 電力変換回路の駆動回路
US8680795B2 (en) Vehicle electric drive and power systems
JP5975833B2 (ja) 電力変換装置
US20100148830A1 (en) Gate driver circuit, switch assembly and switch system
JP2015119625A (ja) 駆動装置、電力変換装置
JP2012130133A (ja) スイッチング素子の駆動回路およびその製造方法
US7907431B2 (en) Devices and methods for converting or buffering a voltage
JP2016073052A (ja) スイッチング制御装置
JP4771172B2 (ja) 車両用電力変換装置の平滑コンデンサ放電装置
JP2018133892A (ja) パワー半導体のゲート駆動装置およびゲート駆動方法
JP2013187940A (ja) 電力変換装置
JP2005204421A (ja) 電源装置
WO2014119374A1 (ja) プリチャージ回路
CN108134511B (zh) 利用温度补偿的截止的栅极驱动器
JP2018050243A (ja) スイッチング素子駆動回路
JP5098872B2 (ja) 電力変換回路の駆動回路
JP5251553B2 (ja) 半導体装置
JP2007104739A (ja) 電力用半導体モジュールの駆動回路
CN117044093A (zh) 冲击电流抑制电路、转换系统以及电动机驱动装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001038.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012531135

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13635979

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12742207

Country of ref document: EP

Kind code of ref document: A1