WO2012105217A1 - 流量計測装置 - Google Patents

流量計測装置 Download PDF

Info

Publication number
WO2012105217A1
WO2012105217A1 PCT/JP2012/000572 JP2012000572W WO2012105217A1 WO 2012105217 A1 WO2012105217 A1 WO 2012105217A1 JP 2012000572 W JP2012000572 W JP 2012000572W WO 2012105217 A1 WO2012105217 A1 WO 2012105217A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
gas
pattern
flow
unit
Prior art date
Application number
PCT/JP2012/000572
Other languages
English (en)
French (fr)
Inventor
光男 横畑
名和 基之
龍井 洋
中村 彰成
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/983,266 priority Critical patent/US20130316293A1/en
Priority to EP12742393.7A priority patent/EP2672237A1/en
Priority to CN201280006854XA priority patent/CN103339480A/zh
Publication of WO2012105217A1 publication Critical patent/WO2012105217A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F9/00Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/002Gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N5/184Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/07Integration to give total flow, e.g. using mechanically-operated integrating mechanism
    • G01F15/075Integration to give total flow, e.g. using mechanically-operated integrating mechanism using electrically-operated integrating means
    • G01F15/0755Integration to give total flow, e.g. using mechanically-operated integrating mechanism using electrically-operated integrating means involving digital counting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/185Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of fuel

Definitions

  • the present invention relates to a flow rate measuring device that enables discrimination of a used gas appliance, and particularly relates to a flow rate measuring device that enables discrimination of whether or not a used gas appliance is a fuel cell.
  • a flow rate measuring device that measures a gas flow rate is known to have a function of discriminating the type of gas appliance that uses gas.
  • a partial flow pattern obtained by dividing a series of gas flow patterns generated along with combustion control for each combustion control step is tabulated and detected gas flow patterns.
  • a gas appliance determination device that determines (discriminates) a gas appliance by extracting a partial flow rate pattern matching the above and a gas meter including the gas appliance determination device are disclosed.
  • a safe continuous usage time is set for each type of gas appliance.
  • gas appliances that are used for a relatively long time for example, a gas stove
  • gas appliances that are used for a relatively short time for example, a stove, a small water heater, etc.
  • the safe continuous use time is set longer in accordance with the gas appliance that is used for a long time.
  • the gas appliance is determined using a partial flow rate pattern obtained by dividing the gas flow rate pattern.
  • Patent Document 2 proposes a technique for performing an appliance discrimination operation in a state where the influence on the original operation of the gas appliance is extremely reduced. Specifically, a signal specific to the gas appliance is generated by a signal generator provided in the gas appliance, and this signal is detected by an instantaneous signal detector provided in the gas meter to identify the gas appliance. As this specific signal, for example, the flow of gas at a predetermined flow rate for a predetermined time is illustrated, and after the flow as this signal, the gas flows at the original flow rate of the gas appliance. Furthermore, it is possible to use a change pattern combining the flow rate and the duration time as the specific signal.
  • a general gas appliance is used temporarily, since the fuel cell is continuously used for power generation, its use duration is set to the general gas appliance. It will be much longer than the safe continuous use time. Therefore, when a conventional general gas meter measures the gas flow for a long time by using a fuel cell, it erroneously determines that there is a risk of forgetting to turn off the gas appliance and shuts off the gas flow. Since the interruption of the gas interrupts the power generation by the fuel cell, the continuous power generation is hindered.
  • the present invention has been made to solve such a problem, and it is possible to satisfactorily determine whether or not a gas appliance in use is a fuel cell while effectively suppressing wasteful consumption of gas.
  • An object of the present invention is to provide a flow rate measuring device capable of performing the above.
  • a flow rate measuring device is a flow rate measuring device that measures a flow rate of gas flowing into a plurality of gas appliances including a fuel cell, and a flow path through which the gas flows, Measured by a flow rate measurement unit that measures a gas flow rate in the flow path, a flow rate pattern storage unit that stores a flow rate pattern that is a temporal change pattern of the gas flow rate for each type of the gas appliance, and the flow rate measurement unit.
  • the gas appliance discrimination which discriminates the type of the gas appliance in use by comparing the measured flow rate pattern generated from the gas flow rate measured with the flow rate pattern stored in the flow rate pattern storage unit
  • a flow rate range that is a range of gas flow rates corresponding to the type of the gas appliance is preset, and the flow rate pattern storage unit includes a plurality of the gas appliances.
  • the flow rate pattern is stored for at least the fuel cell of and is configured to contain different artificial flow pattern of the fuel cell original flow pattern in the flow pattern of the fuel cell.
  • the artificial flow rate pattern is a flow rate variation pattern that is an increase or decrease of the gas flow rate for a predetermined time or less, and the increase or decrease of the gas flow rate in the flow rate variation pattern is a predetermined flow rate. It may be configured to be within the band.
  • the flow rate fluctuation pattern is set to repeatedly occur, the actually measured flow rate pattern including the flow rate fluctuation pattern is generated intermittently, and the gas appliance determination unit is
  • the actual flow rate pattern may be configured to be compared with the stored flow rate pattern.
  • the flow rate fluctuation pattern is set to be periodically generated, and the actually measured flow rate pattern including the flow rate fluctuation pattern is periodically generated, and the gas appliance determination unit May be configured to compare the measured flow rate pattern with the stored flow rate pattern.
  • the flow rate measuring unit measures an instantaneous flow rate intermittently at a constant measurement time interval, and the actually measured flow rate pattern is continuously measured by the flow rate measuring unit.
  • the gas appliance discriminating unit compares the measured flow rate pattern including the flow rate difference value with the stored flow rate pattern. It may be configured.
  • the flow rate measuring unit measures an instantaneous flow rate intermittently at a constant measurement time interval, and the actually measured flow rate pattern is the instantaneous flow rate measured by the flow rate measuring unit.
  • the flow rate difference value calculated at a time difference that is an integral multiple of the measurement time of the flow rate is included, and the gas appliance determination unit includes the measured flow rate pattern including the flow rate difference value as the stored flow rate pattern. It may be configured to compare.
  • the gas flow rate measuring device when the gas flow rate measured by the flow rate measuring unit is in a predetermined cutoff reference flow rate range for more than a predetermined time, the gas flow rate is measured.
  • a gas shut-off unit that shuts off the inflow of gas, and when the gas appliance discriminating unit discriminates that the gas appliance in use is the fuel cell, the gas shut-off unit Even if it is within the range of the cutoff reference flow rate, the configuration may be such that the inflow of the gas is not blocked.
  • the flow measurement device it is possible to satisfactorily determine whether or not the gas appliance in use is a fuel cell while effectively suppressing unnecessary gas consumption. Play.
  • FIG. 1 It is a block diagram which shows an example of a structure of the flow measuring device which concerns on Embodiment 1 of this invention, and its utilization form. It is a schematic diagram explaining an example of the flow volume of the gas appliance used with the utilization form of the flow measuring device shown in FIG. (A) is a time chart which shows an example of the flow pattern in the flow measuring device shown in FIG. 1, (b) is a time chart which shows an example of the flow pattern in the conventional flow measuring device. It is a schematic diagram explaining the instantaneous flow rate measured by the flow measuring device shown in FIG. (A) And (b) is a block diagram which shows an example of a structure of the flow measuring device which concerns on Embodiment 2 of this invention.
  • Embodiment 1 [Configuration of flow measurement device]
  • the flow rate measuring device 10 ⁇ / b> A is connected to a gas supply source 31 and a gas appliance 20 via a gas supply line 32.
  • the gas supply source 31 is connected to a source gas source (for example, an infrastructure such as so-called city gas or liquefied petroleum gas (LP gas)), and according to demand, a hydrocarbon gas (for example, methane as a main component). Natural gas, LP gas mainly composed of propane) is supplied to the gas supply line 32 and the gas appliance 20.
  • a source gas source for example, an infrastructure such as so-called city gas or liquefied petroleum gas (LP gas)
  • LP gas mainly composed of propane
  • propane is supplied to the gas supply line 32 and the gas appliance 20.
  • the gas supply line 32 a known gas pipe is used, but other known paths other than the gas pipe may be used.
  • the gas supply line 32 is provided with various on-off valves, branch mechanisms, and the like.
  • the gas appliance 20 for example, a fuel cell 21, a fan heater 22, and a gas table 23 are illustrated.
  • the specific configuration of the fuel cell 21 is not particularly limited, in the present embodiment, for example, a fuel cell stack, a desulfurizer, a raw material supplier, an oxidant gas supplier, a reformer, a heat supplier, and these are connected. And a well-known configuration including a valve or the like provided in these lines. In addition, a well-known thing is used also about the other gas appliances 20 (fan heater 22, gas table 23).
  • a fuel cell stack is a stack of a plurality of power generation cells.
  • the specific type of each power generation cell is not particularly limited, and examples thereof include known ones such as a solid polymer electrolyte form, a solid oxide form, a phosphoric acid form, and a molten carbonate form.
  • the specific structure of a desulfurizer, a raw material supply device, an oxidizing gas supply device, a reformer, a heat supply device, each line and each valve is not particularly limited, and a known one can be suitably used.
  • the flow rate measuring device 10A is provided in the gas supply line 32 to measure the flow rate of gas flowing into the plurality of gas appliances 20 including the fuel cell 21, and includes a flow rate measuring unit 11, a gas appliance discriminating unit 12, and a flow rate pattern.
  • a storage unit 13 is provided.
  • the flow rate measurement unit 11 measures the gas flow rate in the flow path 33 through which the gas flows, and the specific configuration thereof is not particularly limited, but in this embodiment, a fluid such as a gas using ultrasonic waves.
  • An ultrasonic flow rate measuring device is used to measure the flow rate.
  • the flow meter 11 may be an electronic flow meter such as a flow sensor, but is not particularly limited.
  • the propagation time difference method As a typical ultrasonic flow rate measuring device, one using a propagation time difference method can be cited.
  • an ultrasonic transducer is provided on each of the upstream side and the downstream side of the flow path 33 to be subjected to flow rate measurement, and ultrasonic waves are alternately transmitted and received.
  • the flow velocity of the fluid is measured from the difference in propagation time between the forward direction and the reverse direction, and the flow rate of the fluid is measured using the flow velocity and the cross-sectional area of the flow path 33.
  • the flow path 33 is a part of the flow rate measuring device 10 ⁇ / b> A and is connected to the gas supply line 32.
  • the gas appliance discriminating unit 12 discriminates the type of the gas appliance 20 in use among the gas appliances 20 connected to the gas supply line 32.
  • the gas appliance 20 is determined based on the gas flow rate pattern. Determine specifically.
  • the gas appliance discriminating unit 12 may perform a leakage handling operation as necessary after discriminating the type of the gas appliance 20.
  • the gas flow rate pattern is defined as a temporal change pattern of the gas flow rate, and a gas flow rate fluctuation chart measured as a continuous change by the flow rate measurement unit 11 or intermittently.
  • a plot of elapsed time of the instantaneous gas flow rate (instantaneous flow rate) measured in the above is standardized (patterned) corresponding to the type (or category) of the gas appliance 20.
  • the flow measuring device 10A is a gas meter including a microcomputer, it is realized by a program or the like incorporated in the microcomputer.
  • the flow rate measuring device 10A measures the gas flow rate by the flow rate measuring unit 11, and the gas appliance discriminating unit 12 generates an actually measured flow rate pattern (hereinafter referred to as an actual measured pattern).
  • the flow rate pattern storage unit 13 stores a flow rate pattern (hereinafter referred to as a setting pattern) set for each type of gas appliance 20.
  • the gas appliance discriminating unit 12 discriminates the type of the gas appliance 20 in use by comparing the generated actual measurement pattern with the setting pattern stored in the flow rate pattern storage unit 13.
  • FIG. 2 is a graph showing the relationship between the standard usage flow rate zones of the fuel cell 21, the fan heater 22, and the gas table 23 and the abnormal usage determination time in each usage flow rate zone.
  • the vertical axis represents the maximum gas flow rate V set in the gas appliance 20, and the horizontal axis represents the abnormal use determination time t (or safe continuous use time). Normally, as shown in FIG. 2, the abnormal use determination time is set shorter as the use flow rate band of the gas appliance 20 becomes larger.
  • the abnormal use determination time t3 in the flow rate zone III (V2 ⁇ V ⁇ V3) in which the gas table 23 or the like is used is in the flow rate zone II (V1 ⁇ V ⁇ V2) in which the fan heater 22 or the like is used. It is shorter than the abnormal use determination time t2. Furthermore, the abnormal use determination time t2 in the flow rate zone II (V1 ⁇ V ⁇ V2) is shorter than the abnormal use determination time t1 in the flow rate zone I (0 ⁇ V ⁇ V1) in which the fuel cell 21 or the like is used.
  • the flow rate measuring device 10A is used for more than the abnormal use determination time. However, it is desirable not to block the flow path 33.
  • an artificial flow rate fluctuation pattern P different from the original flow rate pattern is generated in the fuel cell 21 as shown in FIG. .
  • the flow measuring device 10A can accurately determine whether or not the fuel cell 21 is in use by detecting a flow pattern including the flow fluctuation pattern P.
  • the flow rate variation pattern P is included in the setting pattern of the fuel cell 21 stored in the flow rate pattern storage unit 13, and the gas appliance determination unit 12 uses the set pattern and the actual measurement pattern. In comparison, it can be determined that the fuel cell 21 is continuously used.
  • the flow rate measuring device 10A is configured not to block the flow path even if there is gas usage for the abnormal usage determination time t1 or more in the flow rate zone I.
  • the use accuracy of the fuel cell 21 can be further improved, and therefore a more convenient flow rate measuring device is provided. Can do.
  • the flow rate variation pattern P is not particularly limited as long as the flow rate variation pattern P is distinguishable from the flow rate variation that may occur during the original operation of the fuel cell 21.
  • the method of generating the flow rate fluctuation pattern P by the fuel cell 21 is not particularly limited. For example, as shown in FIG. Variation (or pulsation) may be generated.
  • Such a flow rate fluctuation pattern P is a gas flow rate fluctuation that is much smaller than the fluctuation peak M shown in FIG. Therefore, useless consumption of gas is not caused, and erroneous determination of the gas appliance can be appropriately avoided.
  • the flow rate fluctuation pattern P is set so as to repeatedly occur.
  • the gas appliance determination unit 12 may intermittently generate an actual measurement pattern including the flow rate fluctuation pattern P and compare it with the set pattern.
  • the timing at which the flow rate fluctuation pattern P is repeatedly generated is not particularly limited, but may be periodic or random (irregular). Note that it is preferable to generate the flow rate fluctuation pattern P at least once during the predetermined interval C, whether periodic or random.
  • the predetermined interval C is desirably set to the same time as the abnormal use determination time described above.
  • a safety function for preventing leakage may be temporarily disabled.
  • the safety function for preventing leakage is a function for blocking the flow path 33 because there is a possibility of leakage when the gas is continuously used for a long time (for example, 30 days).
  • the flow rate pattern used for discrimination of the gas appliance 20 in the present embodiment may be a temporal change pattern of the gas flow rate, and specifically, the gas flow rate measured as a continuous change. Or a plot of elapsed time of an instantaneous gas flow rate (instantaneous flow rate) measured intermittently.
  • the gas flow rate is not continuously measured as in the former, but intermittent as in the latter. It is preferable that the gas flow rate is measured.
  • the flow rate measuring unit 11 is preferably configured to measure the gas flow rate at a constant measurement interval. It is preferable that the flow rate pattern is configured as aggregate data of temporal changes in the instantaneous gas flow rate measured at each measurement interval. This point will be described with reference to FIG.
  • the flow rate pattern 41 of the fuel cell 21 may be another general gas appliance 20 as shown in part in FIG.
  • the flow rate pattern 42 is also generated as a set data F of continuous instantaneous flow rates.
  • FIG. 4 shows only a part of each of the flow rate patterns 41 and 42, and the flow rate pattern 41 whose change is gradual changes as a continuous (q1 to q4) of four instantaneous flow rates.
  • the abrupt flow pattern 42 is shown as a continuation of two instantaneous flow rates (Q1, Q2).
  • the flow rate pattern only needs to be configured as a continuous set of instantaneous flow rates.
  • the flow rate pattern includes two consecutive times.
  • the difference value of the instantaneous flow rate may be included.
  • the difference value D ⁇ b> 1 between the two instantaneous flow rates F of the four instantaneous flow rates F is shown, and for the flow rate pattern 42, the difference between the two instantaneous flow rates F.
  • the value D2 is shown. This difference value may be calculated from two continuous instantaneous flow rates, or may be calculated from two instantaneous flow rates F measured at a certain time exceeding the measurement interval T.
  • Difference values calculated from two consecutive instantaneous flow rates are (q2-q1), (q3-q2), and the like in FIG.
  • the difference values calculated from the two instantaneous flow rates F measured over a certain time exceeding the measurement interval T are (q3-q1), (q4-q2), etc. in FIG.
  • the gas appliance discriminating unit 12 is configured to generate the actual measurement data (actual pattern) of the flow rate pattern.
  • the present invention is not limited to this, and the gas appliance discriminating unit 12 is Alternatively, an actual measurement pattern generation unit may be provided, or the flow rate measurement unit 11 may be configured to generate an actual measurement pattern.
  • the flow rate measurement device 10A compares the actual measurement pattern generated from the gas flow rate measured by the flow rate measurement unit 11 with the setting pattern stored in the flow rate pattern storage unit 13, thereby allowing the type of the gas appliance 20 to be used. It is only necessary to be configured so that it can be determined.
  • the flow rate measuring device 10A includes only the configuration for determining the type of the gas appliance 20 in use, but the present invention is not limited to this, and the present embodiment is not limited thereto.
  • the flow rate measuring device according to 2 may further include a gas leakage countermeasure function. This point will be specifically described with reference to FIGS. 5 (a) and 5 (b).
  • the flow rate measuring device 10 ⁇ / b> B may include a notification unit 14.
  • the notification unit 14 issues an alarm according to a command from the gas appliance determination unit 12.
  • reporting part 14 is not specifically limited, The structure which emits an alarm with an audio
  • another flow rate measuring device 10 ⁇ / b> C may include a gas blocking unit 15 in addition to the notification unit 14.
  • the gas shut-off unit 15 shuts off the gas flow in the gas supply line 32 when it is determined from the gas flow rate measured by the flow rate measuring unit 11 that there is some abnormal state or there is a possibility of such an abnormal state.
  • the gas blocking unit 15 is controlled by a control unit of a flow rate measuring device 10C (not shown in FIG. 5B).
  • a control unit it is determined whether or not the gas flow rate measured by the flow rate measurement unit 11 is within a preset cutoff reference flow rate range, and a state within the cutoff reference flow rate range is predetermined.
  • the gas cutoff part 15 is operated and the inflow of the gas in the flow path 33 is interrupted
  • an actual measurement pattern is generated from the gas flow rate measured by the flow rate measurement unit 11, and the gas appliance determination unit 12 compares the actual measurement pattern with the set pattern. .
  • the gas appliance discriminating unit 12 may not be configured to output a gas cutoff command to the gas cutoff unit 15, and a signal indicating that the fuel cell 21 is in use may be output from the gas appliance discriminating unit 12.
  • the configuration may be such that control is performed so as not to block the inflow of gas as a result of being output to the unit 15 or a control unit (not shown). If it is determined that a gas leak has occurred, the gas appliance discriminating unit 12 operates the gas blocking unit 15 to block the gas inflow in the gas supply line 32 and issues an alarm to the notification unit 14. Let me know.
  • the flow rate measuring device 10B or 10C has a known gas leak handling function, but the gas leak handling function is not limited to the notification unit 14, the gas blocking unit 15, and the like, and is publicly known. Other configurations may be used. Needless to say, the flow rate measuring device 10B or 10C may have a function other than the function for dealing with gas leakage.
  • the present invention can be widely used in the field of a flow rate measuring device having a function of not only measuring a gas flow rate but also discriminating a gas appliance in use, and particularly suitable for an environment including a fuel cell in the gas appliance. Can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Fuel Cell (AREA)

Abstract

 流量計測装置(10A)が備えるガス器具判別部(12)は、使用中のガス器具(20)に燃料電池(21)が含まれる場合には、ガス流量の時間的変化のパターンである流量パターンとして、ガス流量の増減の範囲が燃料電池(21)に設定される流量帯以内となっている流量パターンを利用して、使用中のガス器具(20)の種類を判別する。これにより、ガスの無駄な消費を有効に抑制しつつ、使用中のガス器具が燃料電池であるか否かを良好に判別することができる。

Description

流量計測装置
 本発明は、使用されているガス器具の判別を可能とする流量計測装置に関し、特に、使用されているガス器具が燃料電池であるか否かの判別を可能とする流量計測装置に関する。
 ガスの流量を計測する流量計測装置には、従来からガスを使用しているガス器具の種類を判別する機能を備えているものが知られている。例えば特許文献1には、複数種類のガス器具について、燃焼制御に伴って発生する一連のガス流量パターンを、燃焼制御ステップ毎に分割した部分流量パターンをテーブル化しておき、検出されたガス流量パターンにマッチングする部分流量パターンを抽出してガス器具を判定(判別)するガス器具判定装置と、当該ガス器具判定装置を備えるガスメータとが開示されている。
 検出されたガス流量の継続時間があまり長くなるときには、ガス器具の消し忘れ等の何らかの異常な使用状態が発生するおそれがあるので、ガス器具の種類毎に安全継続使用時間が設定されている。ここで、比較的長時間使用されるガス器具(例えばガスストーブ)と、比較的短時間しか使用されないガス器具(例えばコンロ、小型湯沸かし器等)とが混在しており、ガス器具の種類が判別できない場合には、長時間使用のガス器具に合わせて安全継続使用時間が長く設定されることになる。このような課題に対応すべく、特許文献1においては、ガス流量パターンを分割した部分流量パターンを用いてガス器具を判別している。
 また、特許文献2には、ガス器具の本来動作に与える影響を極めて少なくした状態で器具判別動作を行う技術が提案されている。具体的には、ガス器具に設けた信号発生部によりガス器具特有の信号が発生され、この信号をガスメータに設けた瞬時信号検知部により検知して、ガス器具の特定が行われる。この特有の信号としては、例えば、所定流量で所定時間だけのガスの流れが例示されており、この信号としての流れの後に、ガス器具本来の流量でガスが流れることになる。さらに、流量と継続時間とを組み合わせた変化パターンを前記特有の信号とすることが可能となっている。
 ところで、これまで大規模または中規模の発電設備で燃料電池が実用化されてきたが、近年では、家庭用燃料電池の開発が進み、市販も開始されている。燃料電池による発電には水素が必要となるが、家庭用燃料電池では、家庭用に供給される炭化水素系ガス(いわゆる都市ガスまたは液化石油ガス(LPガス)等)を水素供給源としている。したがって、家庭用燃料電池は、ガスを使用するという観点から「ガス器具」である、ということができる。
 ここで、一般的なガス器具は一時的に使用されるものであるが、燃料電池は発電のために継続的に使用されるため、その使用継続時間は一般的なガス器具に設定される前記安全継続使用時間よりも大幅に長いものとなる。それゆえ、従来の一般的なガスメータは、燃料電池の使用により長時間のガス流量を計測すると、ガス器具の消し忘れのおそれありと誤判定し、ガスの流れを遮断してしまう。ガスの遮断は燃料電池による発電を中断するため、継続的な発電を妨げることになる。
特開2003-149027号公報 特開2006-200798号公報
 しかしながら、特許文献1または2に開示されるガス器具の判別機能では、燃料電池の起動のタイミングにおいて他のガス器具の流量変化が生じた場合、当該燃料電池の流量波形を検出することができず、燃料電池の使用を検出することができないという課題が生じていた。また、燃料電池の使用が検出できないことにより、燃料電池が使用されているにもかかわらず異常使用判定機能によりガスが遮断してしまうという課題も生じていた。
 本発明はこのような課題を解決するためになされたものであって、ガスの無駄な消費を有効に抑制しつつ、使用中のガス器具が燃料電池であるか否かを良好に判別することができる流量計測装置を提供することを目的とする。
 本発明に係る流量計測装置は、前記の課題を解決するために、燃料電池を含む複数のガス器具に流入するガスの流量を計測する流量計測装置であって、前記ガスが流れる流路と、当該流路内でのガス流量を計測する流量計測部と、前記ガス器具の種類別に、ガス流量の時間的変化のパターンである流量パターンを記憶する流量パターン記憶部と、前記流量計測部により計測された前記ガス流量から生成される、実測された流量パターンを、前記流量パターン記憶部に記憶されている前記流量パターンと比較することにより、使用中の前記ガス器具の種類を判別するガス器具判別部と、を備えており、前記ガス器具には、その種類に応じたガス流量の範囲である流量帯が予め設定されており、前記流量パターン記憶部には、複数の前記ガス器具のうち少なくとも燃料電池についての流量パターンが記憶されており、かつ、その燃料電池の流量パターンには燃料電池本来の流量パターンとは異なる人為的な流量パターンが含まれている構成である。
 前記構成の流量計測装置においては、前記人為的な流量パターンは、所定時間以下の前記ガス流量の増減である流量変動パターンであり、当該流量変動パターンにおける前記ガス流量の増減が予め定められた流量帯以内であるように構成されてもよい。
 前記構成の流量計測装置においては、前記流量変動パターンは、繰り返し生じるように設定され、当該流量変動パターンを含む前記実測された流量パターンは間欠的に生成されており、前記ガス器具判別部は、前記実測された流量パターンを、前記記憶されている流量パターンと比較するように構成であってもよい。
 前記構成の流量計測装置においては、前記流量変動パターンは、周期的に生じるように設定され、当該流量変動パターンを含む前記実測された流量パターンは周期的に生成されており、前記ガス器具判別部は、前記実測された流量パターンを、前記記憶されている流量パターンと比較するように構成されてもよい。
 前記構成の流量計測装置においては、前記流量計測部は、一定の計測時間間隔で間欠的に瞬時流量を測定するものであり、前記実測された流量パターンは、前記流量計測部で計測された連続する2回の前記瞬時流量から算出される流量差分値を含み、前記ガス器具判別部は、前記流量差分値を含む前記実測された流量パターンを、前記記憶されている流量パターンと比較するように構成されてもよい。
 前記構成の流量計測装置においては、前記流量計測部は、一定の計測時間間隔で間欠的に瞬時流量を測定するものであり、前記実測された流量パターンは、前記流量計測部で計測された瞬時流量のうち前記計測時間の整数倍の時間差において算出された流量差分値を含み、前記ガス器具判別部は、前記流量差分値を含む前記実測された流量パターンを、前記記憶されている流量パターンと比較するよう構成されてもよい。
 前記構成の流量計測装置においては、前記流量計測部で計測される前記ガス流量が、予め設定された遮断基準流量の範囲内にある状態が所定時間を超えて継続しているときに、前記ガスの流入を遮断するガス遮断部をさらに備えており、前記ガス器具判別部が、使用中の前記ガス器具を前記燃料電池であると判別したときには、前記ガス遮断部は、前記ガス流量が所定時間以上前記遮断基準流量の範囲内にあっても、前記ガスの流入を遮断しないような構成であってもよい。
 本発明の前記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 以上のように、本発明では、流量計測装置において、ガスの無駄な消費を有効に抑制しつつ、使用中のガス器具が燃料電池であるか否かを良好に判別することができる、という効果を奏する。
本発明の実施の形態1に係る流量計測装置の構成およびその利用形態の一例を示すブロック図である。 図1に示す流量計測装置の利用形態で用いられるガス器具の流量帯の一例を説明する模式図である。 (a)は、図1に示す流量計測装置における流量パターンの一例を示すタイムチャートであり、(b)は、従来の流量計測装置における流量パターンの一例を示すタイムチャートである。 図1に示す流量計測装置により計測される瞬時流量とその差分とを説明する模式図である。 (a)および(b)は、本発明の実施の形態2に係る流量計測装置の構成の一例を示すブロック図である。
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 (実施の形態1)
 [流量計測装置の構成]
 まず、本発明の実施の形態1に係る流量計測装置の構成の一例と、当該流量計測装置の利用形態の一例について、図1を参照して具体的に説明する。図1に示すように、本実施の形態に係る流量計測装置10Aは、ガス供給ライン32を介してガス供給源31とガス器具20とにつながっている。
 ガス供給源31は、原料ガス源(例えば、いわゆる都市ガスまたは液化石油ガス(LPガス)等のインフラストラクチャ)に接続されており、需要に応じて炭化水素系ガス(例えば、メタンを主成分とする天然ガス、プロパンを主成分とするLPガス)をガス供給ライン32およびガス器具20に供給する。ガス供給ライン32としては、公知のガス配管が用いられるが、ガス配管以外の他の公知の経路を用いてもよい。また、図1では省略しているが、ガス供給ライン32には、種々の開閉弁、分岐機構等が設けられている。
 ガス器具20としては、例えば、燃料電池21、ファンヒータ22、およびガステーブル23を例示している。燃料電池21の具体的な構成は特に限定されないが、本実施の形態では、例えば、燃料電池スタック、脱硫器、原料供給器、酸化剤ガス供給器、改質器、熱供給器およびこれらを接続するライン、並びに、これらラインに設けられる弁等を備える公知の構成を挙げることができる。なお、他のガス器具20(ファンヒータ22、ガステーブル23)についても公知のものが用いられる。
 燃料電池スタックは、複数の発電セルをスタック化したものである。各発電セルの具体的な種類は特に限定されず、固体高分子電解質形、固体酸化物形、りん酸形、溶融炭酸塩形等の公知のものを挙げることができる。また、脱硫器、原料供給器、酸化剤ガス供給器、改質器、熱供給器、各ラインおよび各弁の具体的構成も特に限定されず、公知のものを好適に用いることができる。
 流量計測装置10Aは、燃料電池21を含む複数のガス器具20に流入するガスの流量を計測するために、ガス供給ライン32に設けられ、流量計測部11、ガス器具判別部12、および流量パターン記憶部13を備えている。流量計測部11は、ガスが流れる流路33内でのガス流量を計測するものであり、その具体的な構成は特に限定されないが、本実施の形態では、超音波を用いてガス等の流体の流量を計測する超音波流量計測器が用いられている。また、流量計測部11としては、前記超音波流量計測器以外に、フローセンサ等の電子式流量計測器を挙げることができるが、特に限定されない。
 典型的な超音波流量計測器としては、伝搬時間差法を利用したものを挙げることができる。伝搬時間差法では、流量計測の対象となる流路33の上流側および下流側のそれぞれに超音波送受波器を設け、超音波を交互に送受信させる。これにより、順方向および逆方向それぞれの伝搬時間の差から流体の流速を測定し、当該流速と流路33の断面積とを利用して流体の流量を計測する。流路33は、図1では模式的に示すのみであるが、流量計測装置10Aの一部であるとともに、ガス供給ライン32に接続されている構成となっている。
 ガス器具判別部12は、ガス供給ライン32につながるガス器具20のうち使用中のガス器具20の種類を判別するものであり、本実施の形態では、ガスの流量パターンに基づいてガス器具20を具体的に判別する。ガス器具判別部12は、ガス器具20の種類を判別した後に、必要に応じて、漏洩対応動作を行ってもよい。
 ここで、ガスの流量パターンは、本実施の形態では、ガス流量の時間的変化のパターンとして定義され、流量計測部11により連続的な変化として計測されたガス流量の変動チャート、または、間欠的に計測された瞬間的なガス流量(瞬時流量)の経過時間のプロット等を、ガス器具20の種類(またはカテゴリ)に対応して定型化(パターン化)したものである。なお、流量計測装置10Aがマイクロコンピュータを備えるガスメータである場合には、当該マイクロコンピュータ内に組み込まれたプログラム等により、実現されるものである。
 [ガス器具の判別]
 流量計測装置10Aが器具判別を行う構成について以下に説明する。
流量計測装置10Aは、流量計測部11によりガス流量を計測することで、ガス器具判別部12は、実測された流量パターン(以下、実測パターンと称する。)を生成する。また、流量パターン記憶部13には、ガス器具20の種類別に設定されている流量パターン(以下、設定パターンと称する。)が記憶されている。ガス器具判別部12は、生成した実測パターンと流量パターン記憶部13に記憶されている設定パターンとを比較することにより、使用中のガス器具20の種類を判別する。
 ここで、流量計測装置10Aには、使用流量帯(区分帯)に応じた異常使用判定時間が設定されている。そして、一つの使用流量帯において異常使用判定時間以上のガス使用が検出されると、流量計測装置10Aは安全のために流路33を遮断する構成となっている。図2は、燃料電池21、ファンヒータ22、およびガステーブル23の標準的な使用流量帯と各使用流量帯における異常使用判定時間との関係をグラフとして示している。縦軸がガス器具20に設定される最大のガス流量V、横軸が異常使用判定時間t(あるいは安全継続使用時間)である。通常、図2に示すように、ガス器具20の使用流量帯が大きくなるに従って異常使用判定時間は短く設定されている。
 具体的には、ガステーブル23などが使用される流量帯III(V2<V≦V3)の異常使用判定時間t3は、ファンヒータ22などが使用される流量帯II(V1<V≦V2)の異常使用判定時間t2よりも短い。さらに、流量帯II(V1<V≦V2)の異常使用判定時間t2は、燃料電池21などが使用される流量帯I(0<V≦V1)の異常使用判定時間t1よりも短い。
 しかしながら、燃料電池21は、発電のために常時稼働することが想定されるため、燃料電池21が使用されている状態であれば、流量計測装置10Aは、前記異常使用判定時間以上の使用があっても流路33を遮断しないことが望ましい。
 そこで、本実施の形態においては、前述した器具判別に加えて、図3(a)に示すように、燃料電池21に本来の流量パターンとは異なる人為的な流量変動パターンPを発生させている。これにより、流量計測装置10Aは、この流量変動パターンPを含む流量パターンを検出することで燃料電池21が使用中であるか否かを正確に判定することが可能となる。つまり、流量計測装置10Aでは、流量パターン記憶部13に記憶されている燃料電池21の設定パターンに流量変動パターンPが含まれており、ガス器具判別部12は、この設定パターンと実測パターンとを比較して燃料電池21が継続的に使用されていることを判別することができる。
 また、燃料電池21の使用が判定された場合には、流量計測装置10Aは、流量帯Iにおいて異常使用判定時間t1以上のガス使用があっても流路を遮断しない構成となっている。とりわけ、本来の流量パターンとは異なる人為的な流量変動パターンPを発生させることで燃料電池21の使用の判別精度がいっそう向上させることができるため、より利便性の高い流量計測装置を提供することができる。
 また、流量変動パターンPは、燃料電池21の本来的な動作時に生じうる流量変動と区別可能なパターンであれば、その具体的な流量変動、パターン長さ等は特に限定されない。また、燃料電池21による流量変動パターンPの発生の方法も特に限定されず、例えば、図3(a)に示すように、燃料電池21が備える弁等を用いて短時間、少量のガス流量の変動(あるいは脈動)を生じさせればよい。このような流量変動パターンPは、図3(b)に示す変動のピークMよりも非常に小さいガス流量の変動となっている。それゆえ、ガスの無駄な消費を招くことがなく、かつ、ガス器具の誤判定を適切に回避することができる。
 また、燃料電池21の流量パターンにおいては、流量変動パターンPは、繰り返し生じるように設定されていると好ましい。この場合、ガス器具判別部12は、流量変動パターンPを含む実測パターンを間欠的に生成して設定パターンと比較すればよい。流量変動パターンPを繰り返し生じさせるタイミングは特に限定されないが、周期的であってもよいしランダム(不規則)であってもよい。なお、周期的であってもランダムであっても、所定間隔Cの間に少なくとも1回以上流量変動パターンPを生じさせることが好ましい。なお、所定間隔Cは、前述した異常使用判定時間と同じ時間に設定することが望ましい。
 なお、燃料電池21が使用されていることを判別した際には、漏洩防止用の安全機能を一時的に機能させない構成としてもよい。漏洩防止用の安全機能とは、ガスが長時間(例えば、30日間)にわたって継続使用した場合に、漏洩の可能性があるとして流路33を遮断する機能である。
 [流量パターンの構成]
 本実施の形態でガス器具20の判別に用いられる流量パターンは、前述したように、ガス流量の時間的変化のパターンであればよく、具体的には、連続的な変化として計測されたガス流量の変動チャート、または、間欠的に計測された瞬間的なガス流量(瞬時流量)の経過時間のプロットを挙げることができる。ここで、家庭用ガスメータのような流量計測装置10Aにおいては、一般的に低消費電力化が求められるため、前者のように連続的にガス流量を計測するのではなく、後者のように間欠的にガス流量を計測するように構成されていることが好ましい。
 したがって、本実施の形態に係る流量計測装置10Aにおいては、流量計測部11は、ガス流量を一定の計測間隔で計測するよう構成されていることが好ましく、それゆえ、ガス器具判別部12で生成される流量パターンは、計測間隔毎に計測されたガス流量の瞬時流量の時間的変化の集合データとして構成されていることが好ましい。この点について、図4を参照して説明する。
 流量計測部11が、計測間隔T毎にガス流量を計測するように構成されていれば、図4に部分的に示すように、燃料電池21の流量パターン41も他の一般的なガス器具20の流量パターン42も、連続する瞬時流量の集合データFとして生成される。なお、説明の便宜上、図4では、流量パターン41および42のいずれもごく一部を図示しており、変化が緩やかな流量パターン41は4点の瞬時流量の連続(q1~q4)として、変化が急激な流量パターン42は2点の瞬時流量(Q1、Q2)の連続として示している。
 このように、流量パターンは、瞬時流量の連続した集合データとして構成されていればよいが、ガス器具判別部12による判別の精度を向上するために、流量パターンには、前連続する2回の瞬時流量の差分値が含まれていてもよい。図4に示す例では、流量パターン41については、4つの瞬時流量Fのうち、中2点の瞬時流量Fの差分値D1を示しており、流量パターン42については、2つの瞬時流量Fの差分値D2を示している。この差分値は、連続する2つの瞬時流量から算出されてもよいし、計測間隔Tを超えた一定時間を隔てて計測される2つの瞬時流量Fから算出されてもよい。連続する2つの瞬時流量から算出される差分値とは、図4における(q2-q1)や(q3-q2)などである。計測間隔Tを超えた一定時間を隔てて計測される2つの瞬時流量Fから算出される差分値とは、図4における(q3-q1)や(q4-q2)などである。
 なお、本実施の形態では、ガス器具判別部12が、流量パターンの実測データ(実測パターン)を生成する構成となっているが、本発明はこれに限定されず、ガス器具判別部12とは別に実測パターン生成部を備えてもよいし、流量計測部11が実測パターンを生成するよう構成されてもよい。いずれにせよ流量計測装置10Aは、流量計測部11で計測されたガス流量から生成される実測パターンを、流量パターン記憶部13に記憶されている設定パターンと比較することにより、ガス器具20の種類を判別できるように構成されていればよい。
 (実施の形態2)
 前記実施の形態1では、流量計測装置10Aは、使用中のガス器具20の種類を判別するための構成のみを備えていたが、本発明はこれに限定されるものではなく、本実施の形態2に係る流量計測装置は、さらにガス漏れ対応機能を備えていてもよい。この点について、図5(a),(b)を参照して具体的に説明する。
 まず、図5(a)に示すように、本実施の形態に係る流量計測装置10Bは、報知部14を備えていてもよい。この報知部14はガス器具判別部12からの指令により警報を発報する。報知部14の構成は特に限定されないが、音声で警報を発する構成、あるいは、音声とともに光を発する構成等が挙げられる。
 また、図5(b)に示すように、本実施の形態に係る他の流量計測装置10Cは、報知部14に加えてガス遮断部15を備えていてもよい。ガス遮断部15は、流量計測部11で計測されるガス流量から何らかの異常状態またはそのおそれがあると判断されたときに、ガス供給ライン32におけるガスの流通を遮断するものである。このガス遮断部15は、図5(b)には図示しない流量計測装置10Cの制御部により制御される。
 図示しない制御部では、流量計測部11で計測されたガス流量が、予め設定された遮断基準流量の範囲内にあるか否かを判定し、さらに、遮断基準流量の範囲内にある状態が所定時間を超えて継続しているときには、ガス遮断部15を動作させて、流路33におけるガスの流入を遮断する。
 そこで、本実施の形態に係る流量計測装置10Cでは、まず、流量計測部11で計測されたガス流量から実測パターンを生成し、ガス器具判別部12において、当該実測パターンと設定パターンとを比較する。その結果、ガス器具判別部12が、使用中のガス器具20を燃料電池21であると判別したときにはガスの流入を遮断しない。この場合、ガス器具判別部12からガス遮断のための指令がガス遮断部15に出力されない構成であってもよいし、燃料電池21の使用中を表す信号が、ガス器具判別部12からガス遮断部15または図示されない制御部に出力され、その結果、ガスの流入を遮断しない制御を行う構成であってもよい。なお、ガス漏れが生じていると判定されれば、ガス器具判別部12は、ガス遮断部15を動作させてガス供給ライン32でのガスの流入を遮断するとともに、報知部14に警報を発報させる。
 このように本実施の形態では、流量計測装置10Bまたは10Cが、公知のガス漏れ対応機能を備えているが、ガス漏れ対応機能は、報知部14、ガス遮断部15等に限定されず、公知の他の構成であってもよい。また、流量計測装置10Bまたは10Cは、ガス漏れ対応機能以外の他の機能を備えてもよいことは言うまでもない。
 前記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、前記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 また、本発明は前記実施の形態の記載に限定されるものではなく、特許請求の範囲に示した範囲内で種々の変更が可能であり、異なる実施の形態や複数の変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 本発明は、ガス流量を計測するだけでなく、使用中のガス器具を判別する機能を有する流量計測装置の分野に広く好適に用いることができ、特に、ガス器具に燃料電池を含む環境で好適に用いることができる。
10A 流量計測装置
10B 流量計測装置
10C 流量計測装置
11  流量計測部
12  ガス器具判別部
13  流量パターン記憶部
15  ガス遮断部
20  ガス器具
21  燃料電池(ガス器具)
22  ファンヒータ(ガス器具)
23  ガステーブル(ガス器具)
33  流路
D1  差分値
D2  差分値
 F  瞬時流量
 P  流量変動パターン
 T  計測間隔
 
 

Claims (7)

  1.  燃料電池を含む複数のガス器具に流入するガスの流量を計測する流量計測装置であって、
     前記ガスが流れる流路と、
     当該流路内でのガス流量を計測する流量計測部と、
     前記ガス器具の種類別に、ガス流量の時間的変化のパターンである流量パターンを記憶する流量パターン記憶部と、
     前記流量計測部により計測された前記ガス流量から生成される、実測された流量パターンを、前記流量パターン記憶部に記憶されている前記流量パターンと比較することにより、使用中の前記ガス器具の種類を判別するガス器具判別部と、を備えており、
     前記流量パターン記憶部には、複数の前記ガス器具のうち少なくとも燃料電池についての流量パターンが記憶されており、かつ、その燃料電池の流量パターンには燃料電池本来の流量パターンとは異なる人為的な流量パターンが含まれていることを特徴とする流量計測装置。
  2.  前記人為的な流量パターンは、所定時間以下の前記ガス流量の増減である流量変動パターンであり、
     当該流量変動パターンにおける前記ガス流量の増減が予め定められた流量帯以内であることを特徴とする請求項1に記載の流量計測装置。
  3.  前記流量変動パターンは、繰り返し生じるように設定され、当該流量変動パターンを含む前記実測された流量パターンは間欠的に生成されており、
     前記ガス器具判別部は、前記実測された流量パターンを、前記記憶されている流量パターンと比較するように構成されていることを特徴とする請求項2に記載の流量計測装置。
  4.  前記流量変動パターンは、周期的に生じるように設定され、当該流量変動パターンを含む前記実測された流量パターンは周期的に生成されており、
     前記ガス器具判別部は、前記実測された流量パターンを、前記記憶されている流量パターンと比較するように構成されていることを特徴とする請求項3に記載の流量計測装置。
  5.  前記流量計測部は、一定の計測時間間隔で間欠的に瞬時流量を測定するものであり、
     前記実測された流量パターンは、前記流量計測部で計測された連続する2回の前記瞬時流量から算出される流量差分値を含み、
     前記ガス器具判別部は、前記流量差分値を含む前記実測された流量パターンを、前記記憶されている流量パターンと比較するよう構成されていることを特徴とする請求項1から4のいずれか1項に記載の流量計測装置。
  6.  前記流量計測部は、一定の計測時間間隔で間欠的に瞬時流量を測定するものであり、
     前記実測された流量パターンは、前記流量計測部で計測された瞬時流量のうち前記計測時間の整数倍の時間差において算出された流量差分値を含み、
     前記ガス器具判別部は、前記流量差分値を含む前記実測された流量パターンを、前記記憶されている流量パターンと比較するよう構成されていることを特徴とする請求項1から4のいずれか1項に記載の流量計測装置。
  7.  前記流量計測部で計測される前記ガス流量が、予め設定された遮断基準流量の範囲内にある状態が所定時間を超えて継続しているときに、前記ガスの流入を遮断するガス遮断部をさらに備えており、
     前記ガス器具判別部が、使用中の前記ガス器具を前記燃料電池であると判別したときには、前記ガス遮断部は、前記ガス流量が所定時間以上前記遮断基準流量の範囲内にあっても、前記ガスの流入を遮断しないことを特徴とする請求項1から4のいずれか1項に記載の流量計測装置。
     
     
PCT/JP2012/000572 2011-02-04 2012-01-30 流量計測装置 WO2012105217A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/983,266 US20130316293A1 (en) 2011-02-04 2012-01-30 Flow meter device
EP12742393.7A EP2672237A1 (en) 2011-02-04 2012-01-30 Flow measurement device
CN201280006854XA CN103339480A (zh) 2011-02-04 2012-01-30 流量测量装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011023285A JP2012163417A (ja) 2011-02-04 2011-02-04 流量計測装置
JP2011-023285 2011-02-04

Publications (1)

Publication Number Publication Date
WO2012105217A1 true WO2012105217A1 (ja) 2012-08-09

Family

ID=46602442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000572 WO2012105217A1 (ja) 2011-02-04 2012-01-30 流量計測装置

Country Status (5)

Country Link
US (1) US20130316293A1 (ja)
EP (1) EP2672237A1 (ja)
JP (1) JP2012163417A (ja)
CN (1) CN103339480A (ja)
WO (1) WO2012105217A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6498387B2 (ja) * 2014-04-23 2019-04-10 矢崎エナジーシステム株式会社 ガスメータ
JP6800029B2 (ja) * 2017-01-24 2020-12-16 大阪瓦斯株式会社 エネルギ供給システム
WO2018156699A1 (en) 2017-02-23 2018-08-30 Carrier Corporation Fuel leak detection in a gaseous fueled transportation refrigeration unit
JP2020193947A (ja) * 2019-05-30 2020-12-03 パナソニックIpマネジメント株式会社 ガスメータ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149027A (ja) 2001-11-15 2003-05-21 Tokyo Gas Co Ltd ガス器具判定装置及びガス機器判定機能を有するガスメータ
JP2006200798A (ja) 2005-01-20 2006-08-03 Matsushita Electric Ind Co Ltd ガス器具と器具判別装置とガスメータ
JP2006313114A (ja) * 2005-05-09 2006-11-16 Matsushita Electric Ind Co Ltd ガスメータ装置
JP2008196991A (ja) * 2007-02-14 2008-08-28 Tokyo Gas Co Ltd ガス器具判別装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283815A (ja) * 1999-03-30 2000-10-13 Osaka Gas Co Ltd 情報発信機能付ガス機器
WO2008050490A1 (en) * 2006-10-25 2008-05-02 Panasonic Corporation Flowmeter and its program
WO2008087989A1 (ja) * 2007-01-17 2008-07-24 Panasonic Corporation 流量計測装置とこの装置のプログラム、流量計測方法および流体供給システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149027A (ja) 2001-11-15 2003-05-21 Tokyo Gas Co Ltd ガス器具判定装置及びガス機器判定機能を有するガスメータ
JP2006200798A (ja) 2005-01-20 2006-08-03 Matsushita Electric Ind Co Ltd ガス器具と器具判別装置とガスメータ
JP2006313114A (ja) * 2005-05-09 2006-11-16 Matsushita Electric Ind Co Ltd ガスメータ装置
JP2008196991A (ja) * 2007-02-14 2008-08-28 Tokyo Gas Co Ltd ガス器具判別装置

Also Published As

Publication number Publication date
JP2012163417A (ja) 2012-08-30
US20130316293A1 (en) 2013-11-28
CN103339480A (zh) 2013-10-02
EP2672237A1 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP4935334B2 (ja) 流量計測装置とこの装置を用いたガス供給システム
JP5798354B2 (ja) 燃料電池へのガス供給システム
WO2012105218A1 (ja) 流量計測装置
WO2012105217A1 (ja) 流量計測装置
JP2009047678A (ja) 流量計測装置とこの装置のプログラム、流量計測方法および流体供給システム
JP2006200797A (ja) 器具判別装置と流量計測装置
JP2017116385A (ja) 流量計測装置
JP2013231599A (ja) 燃料電池判別システム
JP2007024806A (ja) ガスメータ装置
JP5074791B2 (ja) ガス漏れ判別装置
JP2008175705A (ja) 流量計測装置
WO2013157257A1 (ja) 流量計測装置
JP2009052754A (ja) ガス遮断装置
JP2009068956A (ja) 流量計測装置、流量計測システム、及び流量計測方法
JP2009210244A (ja) ガス供給システム
JP5293198B2 (ja) ガス遮断装置
JP5213221B2 (ja) 流量計測装置、通信システム、流量計測方法、流量計測プログラムおよび流体供給システム
JP2009047363A (ja) ガス遮断装置
JP5269365B2 (ja) 流量計測装置、通信システム、流量計測方法、流量計測プログラムおよび流体供給システム
JP2009174976A (ja) ガス遮断装置
JP2008128700A (ja) 流量計測装置
JP6078779B2 (ja) ガス遮断装置
JP2006105890A (ja) 流速または流量計測装置
JP5334283B2 (ja) 器具監視装置
JP5213220B2 (ja) 流量計測装置、通信システム、流量計測方法、流量計測プログラムおよび流体供給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13983266

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012742393

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE