WO2012103823A2 - Phase shifter, coupler and methods for their production - Google Patents

Phase shifter, coupler and methods for their production Download PDF

Info

Publication number
WO2012103823A2
WO2012103823A2 PCT/CN2012/072298 CN2012072298W WO2012103823A2 WO 2012103823 A2 WO2012103823 A2 WO 2012103823A2 CN 2012072298 W CN2012072298 W CN 2012072298W WO 2012103823 A2 WO2012103823 A2 WO 2012103823A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electro
waveguide
polymer material
cathode metal
Prior art date
Application number
PCT/CN2012/072298
Other languages
French (fr)
Chinese (zh)
Other versions
WO2012103823A3 (en
Inventor
许牧
高磊
苏翼凯
李菲
Original Assignee
华为技术有限公司
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 上海交通大学 filed Critical 华为技术有限公司
Priority to PCT/CN2012/072298 priority Critical patent/WO2012103823A2/en
Priority to CN201280000484.9A priority patent/CN102763264B/en
Publication of WO2012103823A2 publication Critical patent/WO2012103823A2/en
Publication of WO2012103823A3 publication Critical patent/WO2012103823A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/061Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material
    • G02F1/065Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material in an optical waveguide structure

Definitions

  • the present invention relates to the field of integrated silicon-based photonics, and more particularly to a phase shifter and coupler and a method of fabricating the same. Background technique
  • silicon-based phase shifter is the core device for realizing silicon-based high-speed modulation. It is of great significance in the field of integrated silicon-based photonics. Its research work has become academia and industry. hot spot.
  • the carrier dispersion effect is usually used to achieve the purpose of phase shifting due to the lack of linear electro-optic effect.
  • the change of refractive index mainly depends on the change of free carrier concentration.
  • the ordinary silicon-based waveguide has limited limitation on the optical field, and the modulation efficiency is not High, typically requiring waveguides of tens of microns to a few millimeters in length to phase shift, greatly limits the high density integration of silicon-based devices.
  • the free charge carriers dispersion (FCD) and free charge carrier absorption (FCA) effects associated with changes in carrier concentration cause delays in the response time of electro-optical conversion. The increase in the rate of the silicon based phase shifter is greatly limited.
  • Embodiments of the present invention provide a phase shifter and a coupler and a method of fabricating the same,
  • the gap between the metal upper electrode and the doped silicon dielectric fills the structure of the material having an electrooptic effect, which further miniaturizes the device and reduces the adverse effects of the carrier effect, thereby increasing the response speed of the device.
  • a phase shifter including:
  • the top silicon layer includes two isolation trenches, the two isolation trenches being separated by a common trench wall between the two isolation trenches, the common trench wall a waveguide, and the height of the waveguide is higher than an outer groove wall of the two isolation grooves;
  • first cathode metal layer and a second cathode metal layer respectively covering the two outer groove walls of the two isolation grooves
  • a coupler is provided, the output of the coupler being coincident with an input of the phase shifter, the coupler comprising:
  • the top silicon layer includes two isolation trenches, the two isolation trenches being separated by a common trench wall between the two isolation trenches, the common trench wall a coupler waveguide, wherein a height of the coupler waveguide is higher than an outer groove wall of the two isolation trenches, and a width of the input side of the coupler waveguide is greater than a width of the output side;
  • first cathode metal layer and a second cathode metal layer respectively covering the two outer groove walls of the two isolation grooves
  • Electro-optic polymer material layer Covering the first cathode metal layer, the second cathode metal layer, and the top silicon layer Electro-optic polymer material layer;
  • a method of fabricating a phase shifter comprising:
  • Pre-polarizing the electro-optic polymer material layer for a predetermined length of time by applying the first electric field strength to the polarized metal electrode as an anode and the first cathode metal layer and the second cathode metal layer as a cathode;
  • a method of manufacturing a coupler including:
  • Pre-polarizing the electro-optic polymer material layer for a predetermined length of time by applying the first electric field strength to the polarized metal electrode as an anode and the first cathode metal layer and the second cathode metal layer as a cathode;
  • Embodiments of the present invention provide a phase shifter and a coupler and a method of fabricating the same, which employ a structure in which a gap between a metal upper electrode and a doped silicon dielectric fills a material having an electrooptic effect, thereby making the device more compact and at the same time reducing The adverse effects of the carrier effect increase the response speed of the device.
  • FIG. 1 is a schematic structural diagram of an end surface of a phase shifter according to an embodiment of the present invention
  • phase shifter A-A of FIG. 1 is a cross-sectional structural view of the phase shifter A-A of FIG. 1 according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an end face surface of an output end of a coupler according to an embodiment of the present invention
  • 4 is a cross-sectional structural view of the coupler BB surface shown in FIG. 3 according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an end surface of a phase shifter according to another embodiment of the present invention
  • FIG. 6 is a schematic cross-sectional structural view of a phase shifter A-A of FIG. 5 according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an end surface of an output end of a coupler according to another embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing the B-B surface of the coupler shown in FIG.
  • FIG. 9 is a schematic flow chart of a method for manufacturing a phase shifter according to an embodiment of the present invention.
  • 10a to 10g are schematic diagrams showing a manufacturing process of a phase shifter according to an embodiment of the present invention.
  • FIG. 11 is a schematic flow chart of a method for manufacturing a coupler according to an embodiment of the present invention.
  • an embodiment of the present invention provides a phase shifter, including: an underlying silicon layer 1a and an insulating layer 2a covering the underlying silicon layer 1a; a top silicon layer covering the insulating layer 2a, and a top silicon layer including two An isolation groove 3a, the two isolation grooves 3a are separated by a common groove wall between the two isolation grooves, the common groove wall is the waveguide 4a, and the height of the waveguide 4a is higher than the outer groove walls of the two isolation grooves 3a; a first cathode metal layer 5a and a second cathode metal layer 6a covering the two outer groove walls of the two isolation grooves; and an electro-optical polymer material layer covering the first cathode metal layer 5a, the second cathode metal layer 6a and the top silicon layer 7a; an upper electrode 8a formed above the electro-optic polymer material layer 7a above the waveguide 4a, upper layer A slit filled with the electro-optic polymer material layer 7a
  • the phase shifter provided by the embodiment of the present invention adopts a structure in which a gap between a metal upper electrode and a doped silicon dielectric fills a material having an electrooptic effect, thereby making the device more compact and reducing the carrier effect.
  • the adverse effects increase the response speed of the device.
  • the upper electrode 8a is wider than the width of the waveguide 4a; the widths of the two isolation grooves are equal, and the thicknesses of the bottoms of the two isolation grooves are equal; the shape of the waveguide 4a is a rectangular parallelepiped.
  • the structure of the phase shifter provided by the embodiment of the present invention strengthens the limiting effect of the slit of the electro-optic polymer material on the light field due to the characteristics of the surface plasmon polarization mode, and controls the narrowness by changing the voltage on the upper electrode and the waveguide.
  • the refractive index of the electro-optic polymer material in the slit further adjusts the phase of the light field, and finally achieves the purpose of phase shifting.
  • an embodiment of the present invention provides a coupler, the output end of which is matched with the input end of the phase shifter provided in FIG. 1, and the coupler includes: a bottom silicon layer lb and An insulating layer 2b covering the underlying silicon layer lb;
  • the top silicon layer comprises two isolation trenches 3b, the two isolation trenches 3b being separated by a common trench wall between the two isolation trenches 3b, the common trench walls being the coupler waveguides 4b, wherein The height of the coupler waveguide 4b is higher than the outer groove walls of the two isolation grooves 3b, and the width of the input side of the coupler waveguide 4b is larger than the width of the output side;
  • first cathode metal layer 5b and a second cathode metal layer 6b covering the two outer groove walls of the two isolation grooves, respectively;
  • An electro-optic polymer material layer 7b covering the first cathode metal layer 5b, the second cathode metal layer 6b and the top silicon layer;
  • a slit formed by the electro-optic polymer material layer 7b is formed between the upper electrode 8b, the upper electrode 8b and the coupler waveguide 4b waveguide formed above the electro-optic polymer material layer 7b above the coupler waveguide 4b;
  • the upper protective layer 9b covering the upper electrode 8b and the electro-optic polymer material layer 7b. Further, the upper electrode 8b is wider than the widest width of the coupler waveguide 7b; two isolations The widths of the slots are equal and the thicknesses of the bottoms of the two isolation slots are equal.
  • the coupler provided by the embodiment of the present invention is limited in shape and structure to be applied only to the redirector provided by the present invention, and the phase shifter provided by the present invention provides input light waves. Since the output of the coupler coincides with the input of the phase shifter and the layer structure is the same, the upper electrode of the coupler and the coupler waveguide can provide the same electric field strength as in the phase shifter slit, so when the light wave enters the coupler The coupler also plays a phase shifting effect on the light field.
  • the length of the coupler is relatively short compared to the phase shifter, the light wave enters the design of the phase shifter through the coupler provided by the embodiment of the present invention, to a certain extent
  • the effect of phase shifting is enhanced, that is, a good phase shifting effect can be achieved when a lower voltage change amount occurs, thereby reducing energy consumption.
  • the preferred embodiment of the phase shifter has a width of 1.5 micrometers and a thickness of 200 nanometers;
  • the isolation trenches are all 2 microns wide and the bottom of the isolation trenches are 50 nanometers thick.
  • the height of the waveguide is 150 nm, the width of the waveguide is 400 nm, the length of the phase shifter is 10 ⁇ m, and the height of the slit is 20 nm.
  • ⁇ 2 a can obtain the change of the phase with the voltage.
  • the wavelength of the light wave introduced into the phase shifter is electro-optic polymerization.
  • the second-order nonlinear coefficient of the material is the length of the phase shifter, which is the height of the polymer slit, ⁇ is the percentage of the light field energy in the slit, and S is the ratio of the phase velocity to the group velocity in the waveguide.
  • is the amount of change in voltage value, ⁇ ⁇ phase change amount.
  • an embodiment of the present invention provides an example of a coupler.
  • the upper electrode of the coupler has a width of 1.5 ⁇ m and a thickness of 200 nm; both isolation slots have widths at the input end. 1.975 micron, 2 microns at the output, the thickness of the bottom of both isolation trenches is 50 nanometers; the height of the coupler waveguide is 150 nanometers, the width of the coupler waveguide at the input is 450 nanometers, the width at the output It is 400 nm; the coupler has a length of 500 nm and the slit has a height of 20 nm.
  • phase shifter and the coupler are given here, as long as those skilled in the art can easily think of the change or replacement of the parameters within the scope of the technology disclosed in the present invention, which should be covered by the scope of the present invention. .
  • the coupler provided by the embodiment of the present invention is limited in shape and structure to be applied only to the redirector provided by the present invention, and the phase shifter provided by the present invention provides input light waves.
  • a method for manufacturing a phase shifter according to an embodiment of the present invention includes the following steps in conjunction with FIGS. 10a-10g:
  • Two isolation trenches separated by an intermediate common trench wall are formed by etching on the top silicon layer of the silicon wafer having the underlying silicon layer, the intermediate insulating layer, and the top silicon layer.
  • the silicon wafer having the underlying silicon layer, the intermediate insulating layer and the top silicon layer is also referred to as an SOI (Silicon-On-Insulator) silicon wafer, wherein the intermediate insulating layer is a silicon oxide material, as shown in FIG. 10a.
  • SOI Silicon-On-Insulator
  • two isolation trenches separated by a central common trench wall are formed by an etch process.
  • S102a doping a low concentration N-type carrier to the intermediate common trench wall to form a waveguide.
  • S 103 a Doping a high concentration of N-type carriers to the bottom of the two isolation trenches and the two outer trench walls to form a waveguide cathode.
  • steps S 102 and S 103 shown in Figure 10b, the intermediate groove wall common low doping concentration N-type carriers, 10 1 6 ⁇ 10 1 8 cm_ 3, the waveguide is formed; two isolation trenches The bottom and the two outer groove walls are doped with a high concentration of N-type carriers, and the concentration is preferably
  • a first cathode metal layer and a second cathode metal layer may be formed on the outer groove walls of the two isolation trenches by evaporation and lift-off methods, wherein the first cathode metal layer and the second cathode metal layer In the case of silver or gold, the first cathode metal layer and the second cathode metal layer are electrically conductive and simultaneously serve as cathode electrodes of the waveguide when energized.
  • electro-optic polymer material layer covering the first cathode metal layer, the second cathode metal layer, and the top silicon layer.
  • a layer of electro-optic polymer material is prepared by spin coating, wherein the electro-optic polymer material layer is AJLS 103 cross-linked with poly(mercapto acrylate) PMMA, and optionally, the refractive index is 1.63.
  • the nonlinear coefficient is 100 ⁇ 200pm/V.
  • the molecular formula of AJLS 103 is as shown in the following formula 1:
  • a first protective layer is also formed by spin coating, the first protective layer being a silicon dioxide material; a polarized metal electrode is formed on the first protective layer by evaporation.
  • the first electric field intensity used in the pre-polarization process is 100 V/um, and the predetermined duration is 10 min.
  • the polarized metal electrode and the first protective layer may be directly peeled off.
  • S 1 10a forming an upper electrode on the layer of electro-optic polymer material above the waveguide.
  • an upper electrode is formed on the electro-optic polymer material layer by evaporation and lift-off.
  • S l l l a forming a second protective layer covering the upper electrode and the electro-optic polymer material layer.
  • a direct spin-on silica material is used as a second protective layer to cover the upper electrode and electro-optic polymer material layers.
  • the phase shifter manufacturing method provided by the embodiment of the present invention adopts a structure in which a gap between a metal upper electrode and a doped silicon dielectric material fills a material having an electrooptic effect, thereby making the device more compact and reducing the carrier effect band.
  • the adverse effects of the device increase the response speed of the device.
  • phase change formula of the phase shifter is: ⁇ 2 a where is the wavelength, "is the refractive index of the electro-optic material, the second-order nonlinear coefficient of the polymer, and z is the length of the phase shifter, which is the polymerization.
  • the thickness of the object slit ⁇ is the percentage of the light field energy in the slit, which is the ratio of the phase velocity to the group velocity in the waveguide, ⁇ is the voltage value change amount, ⁇ ⁇ phase change amount.
  • a method for manufacturing a coupler according to an embodiment of the present invention includes the following steps:
  • the silicon wafer having the underlying silicon layer, the intermediate insulating layer, and the top silicon layer is also referred to as an SOI (Silicon-On-Insulator) silicon wafer, wherein the intermediate insulating layer is a silicon oxide material.
  • SOI Silicon-On-Insulator
  • steps S 102 and S 103 of low concentration of 10 16 ⁇ 10 18 cm_ 3 a high concentration of S104b, forming a first cathode metal layer and a second cathode metal layer on the outer groove walls of the two isolation trenches.
  • the first cathode metal layer and the second cathode metal layer may be formed on the outer groove walls of the two isolation trenches by evaporation and lift-off methods, wherein the first cathode metal layer and the second cathode metal layer are silver or gold, When energized, the first cathode metal layer and the second cathode metal layer are conductive and simultaneously serve as cathode electrodes for the coupler waveguide.
  • a layer of electro-optic polymer material is prepared by spin coating, wherein the electro-optic polymer material layer is AJLS 103 which is cross-linked with polyacrylic acid decyl acrylate PMMA, optionally, having a refractive index of 1.63, a nonlinear coefficient It is 100 ⁇ 200pm/V.
  • the first protective layer can also be formed by spin coating, which is a silicon dioxide material.
  • a polarized metal electrode is formed on the first protective layer by evaporation.
  • the first electric field intensity used in the pre-polarization process is 100 V/um, and the predetermined duration is 10 min.
  • the polarized metal electrode and the first protective layer may be directly peeled off.
  • An upper electrode is formed on the electro-optic polymer material layer by evaporation and lift-off.
  • the coupler provided by the embodiment of the present invention limits the shape and structure to the direction shifter provided by the present invention, and provides the input light wave for the phase shifter provided by the present invention.
  • the phase shifter and the coupler provided by the embodiments of the present invention can also be integrally prepared, that is, the coupler provided by the present invention can be directly prepared by the present invention, because the processing process of the layers in the manufacturing process and the entire preparation steps are the same.
  • the input of the phase shifter further enhances the precision of the device.
  • the upper electrode of the coupler and the coupler waveguide can provide the same electric field strength as in the phase shifter slit, so the light wave enters the coupler.
  • the time coupler can also achieve the phase shifting effect on the light field.
  • the length of the coupler is relatively short compared to the phase shifter, the light wave enters the design of the phase shifter through the coupler provided by the embodiment of the present invention, to a certain extent.
  • the effect of phase shifting can be enhanced, that is, a good phase shifting effect can be achieved when a lower voltage change amount occurs, thereby reducing energy consumption.

Abstract

A phase shifter, a coupler and methods for their production are provided by the embodiments of the present invention, which relates to the field of photonics, wherein the methods can reduce optical damage, improve the utilization ratio of the light field energy, and improve the response speed of device. The phase shifter comprises: a base silicon layer and an insulated layer covering the base silicon layer; a top silicon layer covering the insulated layer, wherein the top silicon layer includes two isolation grooves, which are separated by a common groove wall with each other, wherein the common groove wall is a waveguide, and the height of the waveguide is higher than the outside groove walls of the two isolation grooves; a first cathode metal layer and a second cathode metal layer covering two outside groove walls of the two isolation grooves respectively; an electro-optic polymer material layer covering the first cathode metal layer,the second cathode metal layer and the top silicon layer; an upper electrode formed on the top of the electro-optic polymer material layer, and the slits formed between the upper electrode and the waveguide and filled by the electro-optic polymer material layer; a second protect layer covering the upper electrode and the electro-optic polymer material layer. The embodiments of the present invention are applied to the electro-optic phase shift.

Description

一种移相器和耦合器及其制造方法 技术领域  Phase shifter and coupler and manufacturing method thereof
本发明涉及集成硅基光子学领域, 尤其涉及一种移相器和耦合 器及其制造方法。 背景技术  The present invention relates to the field of integrated silicon-based photonics, and more particularly to a phase shifter and coupler and a method of fabricating the same. Background technique
硅基移相器作为实现电信号-光信号转换的关键, 是实现硅基高 速调制的核心器件, 在集成硅基光子学领域具有十分重要的意义, 其研究工作已成为学术界和工业界的热点。 对于硅材料, 由于其本 身缺乏线性电光效应, 通常采用载流子色散效应来实现对折射率的 调制以达到移相的目 的。 总体上看, 在硅基器件中, 折射率的改变 主要依赖于自由载流子浓度的变化, 它主要存在两方面问题: 第一, 普通硅基波导对光场的限制作用有限, 调制效率不高, 通常需要几 十微米到几毫米长度级别的波导进行移相, 极大地限制了硅基器件 的高密度集成。 第二, 伴随载流子浓度变化而产生的 自由载流子色 散 ( FCD , free charge carriers dispersion )和自由载流子吸收 ( FCA , free charge carriers absorption )效应会对电光转换的响应时间造成延 迟, 极大地限制了硅基移相器速率的提升。  As the key to realize electrical signal-to-optical signal conversion, silicon-based phase shifter is the core device for realizing silicon-based high-speed modulation. It is of great significance in the field of integrated silicon-based photonics. Its research work has become academia and industry. hot spot. For silicon materials, the carrier dispersion effect is usually used to achieve the purpose of phase shifting due to the lack of linear electro-optic effect. Generally speaking, in silicon-based devices, the change of refractive index mainly depends on the change of free carrier concentration. It mainly has two problems: First, the ordinary silicon-based waveguide has limited limitation on the optical field, and the modulation efficiency is not High, typically requiring waveguides of tens of microns to a few millimeters in length to phase shift, greatly limits the high density integration of silicon-based devices. Second, the free charge carriers dispersion (FCD) and free charge carrier absorption (FCA) effects associated with changes in carrier concentration cause delays in the response time of electro-optical conversion. The increase in the rate of the silicon based phase shifter is greatly limited.
近年来, 随着对表面等离子体效应研究的深入, 出现了一些基 于表面等离子体波导结构的移相器设计方案。 然而, 这些新型表面 等离子体移相调制器的工作性能并不令人满意, 主要原因可以归结 于以下几个方面: 第一, 波导结构设计存在缺陷, 加工工艺要求高, 由等离子体效应带来的损耗较大, 性能不稳定。 第二, 严重依赖硅 基载流子效应, 调制信号延迟大, 畸变严重。 发明内容  In recent years, with the deepening of research on surface plasmon effects, some phase shifter designs based on surface plasmon waveguide structures have emerged. However, the performance of these new surface-plasma phase shift modulators is not satisfactory. The main reasons can be attributed to the following aspects: First, the waveguide structure design has defects, the processing technology is high, and it is brought by the plasma effect. The loss is large and the performance is unstable. Second, it relies heavily on the silicon-based carrier effect, and the modulation signal has a large delay and severe distortion. Summary of the invention
本发明的实施例提供一种移相器和耦合器及其制造方法, 采用 在金属上电极和掺杂硅电介质之间的缝隙填充具有电光效应的材料 的结构, 使得器件更加小型化、 同时降低了载流子效应带来的不利 影响提高了器件的响应速度。 Embodiments of the present invention provide a phase shifter and a coupler and a method of fabricating the same, The gap between the metal upper electrode and the doped silicon dielectric fills the structure of the material having an electrooptic effect, which further miniaturizes the device and reduces the adverse effects of the carrier effect, thereby increasing the response speed of the device.
为达到上述目 的, 本发明的实施例采用如下技术方案: 一方面, 提供一种移相器, 包括:  In order to achieve the above, the embodiment of the present invention adopts the following technical solutions: In one aspect, a phase shifter is provided, including:
底层硅层和覆盖所述底层硅层的绝缘层;  a bottom silicon layer and an insulating layer covering the underlying silicon layer;
覆盖所述绝缘层的顶层硅层, 所述顶层硅层包括两个隔离槽, 所述两个隔离槽被位于所述两个隔离槽之间的公共槽壁隔开, 所述 公共槽壁即波导, 且所述波导的高度高于所述两个隔离槽的外侧槽 壁;  Covering a top silicon layer of the insulating layer, the top silicon layer includes two isolation trenches, the two isolation trenches being separated by a common trench wall between the two isolation trenches, the common trench wall a waveguide, and the height of the waveguide is higher than an outer groove wall of the two isolation grooves;
分别覆盖所述两个隔离槽的两个外侧槽壁的第一阴极金属层和 第二阴极金属层;  a first cathode metal layer and a second cathode metal layer respectively covering the two outer groove walls of the two isolation grooves;
覆盖第一阴极金属层、 所述第二阴极金属层和所述顶层硅层的 电光聚合物材料层;  a layer of electro-optic polymer material covering the first cathode metal layer, the second cathode metal layer and the top silicon layer;
形成在所述波导上方的所述电光聚合物材料层上方的上层电 极, 所述上层电极和所述波导之间形成有被所述电光聚合物材料层 填充的狭缝;  Forming an upper electrode above the electro-optic polymer material layer above the waveguide, and forming a slit filled by the electro-optic polymer material layer between the upper layer electrode and the waveguide;
覆盖所述上层电极和所述电光聚合物材料层的第二保护层。 另一方面, 提供一种耦合器, 所述耦合器的输出端与所述移相 器的输入端相吻合, 所述耦合器包括:  Covering the upper electrode and the second protective layer of the electro-optic polymer material layer. In another aspect, a coupler is provided, the output of the coupler being coincident with an input of the phase shifter, the coupler comprising:
底层硅层和覆盖所述底层硅层的绝缘层;  a bottom silicon layer and an insulating layer covering the underlying silicon layer;
覆盖所述绝缘层的顶层硅层, 所述顶层硅层包括两个隔离槽, 所述两个隔离槽被位于所述两个隔离槽之间的公共槽壁隔开, 所述 公共槽壁即耦合器波导, 其中所述耦合器波导的高度高于所述两个 隔离槽的外侧槽壁, 所述耦合器波导输入侧的宽度大于输出侧的宽 度;  Covering a top silicon layer of the insulating layer, the top silicon layer includes two isolation trenches, the two isolation trenches being separated by a common trench wall between the two isolation trenches, the common trench wall a coupler waveguide, wherein a height of the coupler waveguide is higher than an outer groove wall of the two isolation trenches, and a width of the input side of the coupler waveguide is greater than a width of the output side;
分别覆盖所述两个隔离槽的两个外侧槽壁的第一阴极金属层和 第二阴极金属层;  a first cathode metal layer and a second cathode metal layer respectively covering the two outer groove walls of the two isolation grooves;
覆盖第一阴极金属层、 所述第二阴极金属层和所述顶层硅层的 电光聚合物材料层; Covering the first cathode metal layer, the second cathode metal layer, and the top silicon layer Electro-optic polymer material layer;
形成在所述耦合器波导上方的所述电光聚合物材料层上方的上 层电极, 所述上层电极和所述波导之间形成有被所述电光聚合物材 料层填充的狭缝;  Forming an upper electrode above the electro-optic polymer material layer above the coupler waveguide, and forming a slit filled by the electro-optic polymer material layer between the upper layer electrode and the waveguide;
覆盖所述上层电极和所述电光聚合物材料层的第二保护层。 在一方面, 提供一种移相器的制造方法, 包括:  Covering the upper electrode and the second protective layer of the electro-optic polymer material layer. In one aspect, a method of fabricating a phase shifter is provided, comprising:
在具有底层硅层、 中间绝缘层和顶层硅层的硅片的顶层硅层上 通过刻蚀形成被中间公共槽壁隔开的两个隔离槽;  Forming two isolation trenches separated by an intermediate common trench wall on the top silicon layer of the silicon wafer having the underlying silicon layer, the intermediate insulating layer and the top silicon layer;
对所述中间公共槽壁掺杂低浓度 N型载流子, 形成波导; 对所述两个隔离槽的底部和两个外侧槽壁掺杂高浓度 N型载流 子, 形成波导阴极;  Doping the intermediate common trench wall with a low concentration of N-type carriers to form a waveguide; doping the bottom of the two isolation trenches and the two outer trench walls with a high concentration of N-type carriers to form a waveguide cathode;
在所述两个隔离槽的外侧槽壁上制作第一阴极金属层和第二阴 极金属层;  Forming a first cathode metal layer and a second cathode metal layer on the outer groove walls of the two isolation grooves;
制作覆盖所述第一阴极金属层、 所述第二阴极金属层、 所述顶 层硅层的电光聚合物材料层;  Forming an electro-optic polymer material layer covering the first cathode metal layer, the second cathode metal layer, and the top silicon layer;
制作覆盖所述电光聚合物材料层上的第一保护层;  Making a first protective layer covering the layer of electro-optic polymer material;
制作覆盖所述第一保护层的极化金属电极;  Making a polarized metal electrode covering the first protective layer;
以所述极化金属电极作为阳极、 以所述第一阴极金属层和第二 阴极金属层作为阴极施加第一电场强度对所述电光聚合物材料层进 行预定时长的预极化;  Pre-polarizing the electro-optic polymer material layer for a predetermined length of time by applying the first electric field strength to the polarized metal electrode as an anode and the first cathode metal layer and the second cathode metal layer as a cathode;
去除所述极化金属电极和所述第一保护层;  Removing the polarized metal electrode and the first protective layer;
在所述波导上方的所述电光聚合物材料层上形成上层电极; 制作覆盖所述上层电极和所述电光聚合物材料层的第二保护 层。  Forming an upper layer electrode on the layer of electro-optic polymer material above the waveguide; and forming a second protective layer covering the upper layer electrode and the electro-optic polymer material layer.
又一方面, 提供一种耦合器的制造方法, 包括:  In still another aspect, a method of manufacturing a coupler is provided, including:
在具有底层硅层、 中间绝缘层和顶层硅层的硅片的顶层硅层上 通过刻蚀形成被中间公共槽壁隔开的两个隔离槽;  Forming two isolation trenches separated by an intermediate common trench wall on the top silicon layer of the silicon wafer having the underlying silicon layer, the intermediate insulating layer and the top silicon layer;
对所述中间公共槽壁掺杂低浓度 N型载流子,形成耦合器波导; 对所述两个隔离槽的底部和两个外侧槽壁掺杂高浓度 N型载流 子, 形成耦合器波导阴极; Doping the intermediate common trench wall with a low concentration of N-type carriers to form a coupler waveguide; doping the bottom of the two isolation trenches and the two outer trench walls with a high concentration of N-type current carrying Substituting a coupler waveguide cathode;
在所述两个隔离槽的外侧槽壁上制作第一阴极金属层和第二阴 极金属层;  Forming a first cathode metal layer and a second cathode metal layer on the outer groove walls of the two isolation grooves;
制作覆盖所述第一阴极金属层、 所述第二阴极金属层、 所述顶 层硅层的电光聚合物材料层;  Forming an electro-optic polymer material layer covering the first cathode metal layer, the second cathode metal layer, and the top silicon layer;
制作覆盖所述电光聚合物材料层上的第一保护层;  Making a first protective layer covering the layer of electro-optic polymer material;
制作覆盖所述第一保护层的极化金属电极;  Making a polarized metal electrode covering the first protective layer;
以所述极化金属电极作为阳极、 以所述第一阴极金属层和第二 阴极金属层作为阴极施加第一电场强度对所述电光聚合物材料层进 行预定时长的预极化;  Pre-polarizing the electro-optic polymer material layer for a predetermined length of time by applying the first electric field strength to the polarized metal electrode as an anode and the first cathode metal layer and the second cathode metal layer as a cathode;
去除所述极化金属电极和所述第一保护层;  Removing the polarized metal electrode and the first protective layer;
在所述波导上方的所述电光聚合物材料层上形成上层电极; 制作覆盖所述上层电极和所述电光聚合物材料层的第二保护 层。  Forming an upper layer electrode on the layer of electro-optic polymer material above the waveguide; and forming a second protective layer covering the upper layer electrode and the electro-optic polymer material layer.
本发明的实施例提供一种移相器和耦合器及其制造方法, 采用 在金属上电极和掺杂硅电介质之间的缝隙填充具有电光效应的材料 的结构, 使得器件更加小型化、 同时降低了载流子效应带来的不利 影响提高了器件的响应速度。 附图说明  Embodiments of the present invention provide a phase shifter and a coupler and a method of fabricating the same, which employ a structure in which a gap between a metal upper electrode and a doped silicon dielectric fills a material having an electrooptic effect, thereby making the device more compact and at the same time reducing The adverse effects of the carrier effect increase the response speed of the device. DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。  In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the embodiments or the description of the prior art will be briefly described below. Obviously, the drawings in the following description are only It is a certain embodiment of the present invention, and other drawings can be obtained from those skilled in the art without any creative work.
图 1 为本发明实施例提供的移相器端面结构示意图;  FIG. 1 is a schematic structural diagram of an end surface of a phase shifter according to an embodiment of the present invention; FIG.
图 2为本发明实施例提供的图 1所示的移相器 A-A面的剖面结 构示意图;  2 is a cross-sectional structural view of the phase shifter A-A of FIG. 1 according to an embodiment of the present invention;
图 3为本发明实施例提供的耦合器输出端端面面结构示意图; 图 4为本发明实施例提供的图 3所示的耦合器 B-B面的剖面结 构示意图; 3 is a schematic structural diagram of an end face surface of an output end of a coupler according to an embodiment of the present invention; 4 is a cross-sectional structural view of the coupler BB surface shown in FIG. 3 according to an embodiment of the present invention;
图 5为本发明另一实施例提供的移相器端面结构示意图; 图 6为本发明实施例提供的图 5所示的移相器 A-A面的剖面结 构示意图;  FIG. 5 is a schematic structural diagram of an end surface of a phase shifter according to another embodiment of the present invention; FIG. 6 is a schematic cross-sectional structural view of a phase shifter A-A of FIG. 5 according to an embodiment of the present invention;
图 7 为本发明另一实施例提供的耦合器输出端端面结构示意 图;  FIG. 7 is a schematic structural diagram of an end surface of an output end of a coupler according to another embodiment of the present invention; FIG.
图 8为本发明实施例提供的图 Ί所示的耦合器 B-B面的剖面结 构示意图;  FIG. 8 is a schematic cross-sectional view showing the B-B surface of the coupler shown in FIG.
图 9 为本发明实施例提供的一种移相器的制造方法流程示意 图;  FIG. 9 is a schematic flow chart of a method for manufacturing a phase shifter according to an embodiment of the present invention; FIG.
图 10a〜10g为本发明实施例提供的一种移相器的制造过程示意 图;  10a to 10g are schematic diagrams showing a manufacturing process of a phase shifter according to an embodiment of the present invention;
图 11 为本发明实施例提供的一种耦合器的制造方法流程示意 图。  FIG. 11 is a schematic flow chart of a method for manufacturing a coupler according to an embodiment of the present invention.
具体实施方式 detailed description
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。  The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
结合图 1、 2所示, 本发明实施例提供一种移相器, 包括: 底层硅层 la 和覆盖底层硅层 la 的绝缘层 2a; 覆盖绝缘层 2a 的顶层硅层, 顶层硅层包括两个隔离槽 3a, 两个隔离槽 3a被位于两 个隔离槽之间的公共槽壁隔开, 公共槽壁即波导 4a, 且波导 4a的高 度高于两个隔离槽 3a的外侧槽壁; 分别覆盖两个隔离槽的两个外侧 槽壁的第一阴极金属层 5a和第二阴极金属层 6a;覆盖第一阴极金属 层 5a、 第二阴极金属层 6a和顶层硅层的电光聚合物材料层 7a; 形 成在波导 4a上方的电光聚合物材料层 7a上方的上层电极 8a, 上层 电极 8a和波导 4a之间形成有被电光聚合物材料层 7a填充的狭缝; 覆盖上层电极 8a和电光聚合物材料层 7a的第二保护层 9a。 As shown in FIG. 1 and FIG. 2, an embodiment of the present invention provides a phase shifter, including: an underlying silicon layer 1a and an insulating layer 2a covering the underlying silicon layer 1a; a top silicon layer covering the insulating layer 2a, and a top silicon layer including two An isolation groove 3a, the two isolation grooves 3a are separated by a common groove wall between the two isolation grooves, the common groove wall is the waveguide 4a, and the height of the waveguide 4a is higher than the outer groove walls of the two isolation grooves 3a; a first cathode metal layer 5a and a second cathode metal layer 6a covering the two outer groove walls of the two isolation grooves; and an electro-optical polymer material layer covering the first cathode metal layer 5a, the second cathode metal layer 6a and the top silicon layer 7a; an upper electrode 8a formed above the electro-optic polymer material layer 7a above the waveguide 4a, upper layer A slit filled with the electro-optic polymer material layer 7a is formed between the electrode 8a and the waveguide 4a; and a second protective layer 9a covering the upper layer electrode 8a and the electro-optic polymer material layer 7a.
本发明的实施例提供的种移相器, 采用在金属上电极和掺杂硅 电介质之间的缝隙填充具有电光效应的材料的结构, 使得器件更加 小型化、 同时降低了载流子效应带来的不利影响提高了器件的响应 速度。  The phase shifter provided by the embodiment of the present invention adopts a structure in which a gap between a metal upper electrode and a doped silicon dielectric fills a material having an electrooptic effect, thereby making the device more compact and reducing the carrier effect. The adverse effects increase the response speed of the device.
需要说明的是, 上层电极 8a宽于波导 4a的宽度; 两个隔离槽 的宽度相等、 两个隔离槽的底部的厚度相等; 波导 4a的形状为长方 体。  It is to be noted that the upper electrode 8a is wider than the width of the waveguide 4a; the widths of the two isolation grooves are equal, and the thicknesses of the bottoms of the two isolation grooves are equal; the shape of the waveguide 4a is a rectangular parallelepiped.
本发明实施例提供的移相器的结构中由于表面等离子体极化模 式的特性, 强化了电光聚合物材料狭缝对光场的限制作用, 通过通 过改变上层电极和波导上的电压来控制狭缝中电光聚合物材料的折 射率进而实现对光场相位的调节, 最终达到移相的目 的。  The structure of the phase shifter provided by the embodiment of the present invention strengthens the limiting effect of the slit of the electro-optic polymer material on the light field due to the characteristics of the surface plasmon polarization mode, and controls the narrowness by changing the voltage on the upper electrode and the waveguide. The refractive index of the electro-optic polymer material in the slit further adjusts the phase of the light field, and finally achieves the purpose of phase shifting.
结合图 3、 4所示, 本发明实施例提供一种耦合器, 该耦合器的 输出端与图 1、 2提供的移相器的输入端相吻合, 该耦合器包括: 底层硅层 l b和覆盖底层硅层 l b的绝缘层 2b ;  As shown in FIG. 3 and FIG. 4, an embodiment of the present invention provides a coupler, the output end of which is matched with the input end of the phase shifter provided in FIG. 1, and the coupler includes: a bottom silicon layer lb and An insulating layer 2b covering the underlying silicon layer lb;
覆盖绝缘层 2b 的顶层硅层, 顶层硅层包括两个隔离槽 3b , 两 个隔离槽 3b被位于两个隔离槽 3b之间的公共槽壁隔开, 公共槽壁 即耦合器波导 4b , 其中耦合器波导 4b的高度高于两个隔离槽 3b的 外侧槽壁, 耦合器波导 4b输入侧的宽度大于输出侧的宽度;  Covering the top silicon layer of the insulating layer 2b, the top silicon layer comprises two isolation trenches 3b, the two isolation trenches 3b being separated by a common trench wall between the two isolation trenches 3b, the common trench walls being the coupler waveguides 4b, wherein The height of the coupler waveguide 4b is higher than the outer groove walls of the two isolation grooves 3b, and the width of the input side of the coupler waveguide 4b is larger than the width of the output side;
分别覆盖两个隔离槽的两个外侧槽壁的第一阴极金属层 5b 和 第二阴极金属层 6b ;  a first cathode metal layer 5b and a second cathode metal layer 6b covering the two outer groove walls of the two isolation grooves, respectively;
覆盖第一阴极金属层 5b、 第二阴极金属层 6b 和顶层硅层的电 光聚合物材料层 7b ;  An electro-optic polymer material layer 7b covering the first cathode metal layer 5b, the second cathode metal layer 6b and the top silicon layer;
形成在耦合器波导 4b上方的电光聚合物材料层 7b上方的上层 电极 8b , 上层电极 8b和耦合器波导 4b波导之间形成有被电光聚合 物材料层 7b填充的狭缝;  A slit formed by the electro-optic polymer material layer 7b is formed between the upper electrode 8b, the upper electrode 8b and the coupler waveguide 4b waveguide formed above the electro-optic polymer material layer 7b above the coupler waveguide 4b;
覆盖上层电极 8b和电光聚合物材料层 7b的第二保护层 9b。 此外, 上层电极 8b宽于耦合器波导 7b的最宽宽度; 两个隔离 槽的宽度相等、 两个隔离槽的底部的厚度相等。 The upper protective layer 9b covering the upper electrode 8b and the electro-optic polymer material layer 7b. Further, the upper electrode 8b is wider than the widest width of the coupler waveguide 7b; two isolations The widths of the slots are equal and the thicknesses of the bottoms of the two isolation slots are equal.
这里, 本发明实施例提供的耦合器从形状和结构上限制了只能 配合应用于本发明所提供的移向器, 为本发明提供的移相器提供输 入光波。 由于耦合器输出端和移相器的输入端相吻合, 且层结构相 同, 耦合器的上层电极和耦合器波导可以提供与移相器狭缝中相同 的电场强度, 因此在光波进入耦合器时耦合器也起到了对光场的移 相作用, 虽然耦合器的长度相对移相器来说比较短, 但是光波通过 本发明实施例提供的耦合器进入移相器的设计, 在一定程度上可以 增强移相的效果, 即可以在更低的电压改变量发生时便能达到良好 的移相效果, 从而降低了能耗。  Here, the coupler provided by the embodiment of the present invention is limited in shape and structure to be applied only to the redirector provided by the present invention, and the phase shifter provided by the present invention provides input light waves. Since the output of the coupler coincides with the input of the phase shifter and the layer structure is the same, the upper electrode of the coupler and the coupler waveguide can provide the same electric field strength as in the phase shifter slit, so when the light wave enters the coupler The coupler also plays a phase shifting effect on the light field. Although the length of the coupler is relatively short compared to the phase shifter, the light wave enters the design of the phase shifter through the coupler provided by the embodiment of the present invention, to a certain extent The effect of phase shifting is enhanced, that is, a good phase shifting effect can be achieved when a lower voltage change amount occurs, thereby reducing energy consumption.
具体的,结合图 5、 6所示本发明实施例给出一种移相器的实例, 其中, 优选的该移相器的上层电极的宽度为 1 .5 微米、 厚度为 200 纳米; 两个隔离槽的宽度均为 2微米, 隔离槽底部的厚度均为 50纳 米。 波导的高度为 150纳米, 波导的宽度为 400纳米; 移相器的长 度为 10微米; 狭缝的高度为 20纳米。  Specifically, an embodiment of the present invention is shown in conjunction with FIG. 5 and FIG. 6. The preferred embodiment of the phase shifter has a width of 1.5 micrometers and a thickness of 200 nanometers; The isolation trenches are all 2 microns wide and the bottom of the isolation trenches are 50 nanometers thick. The height of the waveguide is 150 nm, the width of the waveguide is 400 nm, the length of the phase shifter is 10 μm, and the height of the slit is 20 nm.
这时根据移相器的相位改变公式: λ 2 a 可以得到相位随电压的改变量, 在上述公式中, 为导入移相 器的光波波长, "为电光聚合物材料的折射率, 为电光聚合物材料 的二阶非线性系数, 为移相器的长度, 为聚合物狭缝的高度, Γ为 狭缝中的光场能量所占的百分比, S为波导中相速度与群速度的比 值, △ 为电压值改变量, Δ^相位改变量。 At this time, according to the phase change formula of the phase shifter: λ 2 a can obtain the change of the phase with the voltage. In the above formula, the wavelength of the light wave introduced into the phase shifter, "is the refractive index of the electro-optic polymer material, is electro-optic polymerization. The second-order nonlinear coefficient of the material is the length of the phase shifter, which is the height of the polymer slit, Γ is the percentage of the light field energy in the slit, and S is the ratio of the phase velocity to the group velocity in the waveguide. △ is the amount of change in voltage value, Δ ^ phase change amount.
结合图 7、 8所述, 本发明实施例给出一种耦合器的实例, 优选 的该耦合器上层电极宽度为 1 .5 微米、 厚度为 200 纳米; 两个隔离 槽在输入端宽度均为 1 .975 微米, 在输出端宽度均为 2微米, 两个 隔离槽底部的厚度均为 50纳米; 耦合器波导的高度为 150纳米, 耦 合器波导在输入端宽度为 450纳米、 在输出端宽度为 400纳米; 耦 合器的的长度为 500纳米, 狭缝的高度为 20纳米。 当然这里给出的只是移相器和耦合器的优选参数, 只要本领域 技术人员在本发明揭露的技术范围内, 可轻易想到参数的变化或替 换, 都应涵盖在本发明的保护范围之内。 As shown in FIG. 7 and FIG. 8 , an embodiment of the present invention provides an example of a coupler. Preferably, the upper electrode of the coupler has a width of 1.5 μm and a thickness of 200 nm; both isolation slots have widths at the input end. 1.975 micron, 2 microns at the output, the thickness of the bottom of both isolation trenches is 50 nanometers; the height of the coupler waveguide is 150 nanometers, the width of the coupler waveguide at the input is 450 nanometers, the width at the output It is 400 nm; the coupler has a length of 500 nm and the slit has a height of 20 nm. Of course, only the preferred parameters of the phase shifter and the coupler are given here, as long as those skilled in the art can easily think of the change or replacement of the parameters within the scope of the technology disclosed in the present invention, which should be covered by the scope of the present invention. .
这里, 本发明实施例提供的耦合器从形状和结构上限制了只能 配合应用于本发明所提供的移向器, 为本发明提供的移相器提供输 入光波。  Here, the coupler provided by the embodiment of the present invention is limited in shape and structure to be applied only to the redirector provided by the present invention, and the phase shifter provided by the present invention provides input light waves.
如图 9所示为本发明实施例提供的移相器的制造方法, 结合图 10a〜10g包括以下步骤:  As shown in FIG. 9, a method for manufacturing a phase shifter according to an embodiment of the present invention includes the following steps in conjunction with FIGS. 10a-10g:
S 101 a、 在具有底层硅层、 中间绝缘层和顶层硅层的硅片的顶层 硅层上通过刻蚀形成被中间公共槽壁隔开的两个隔离槽。  S 101 a. Two isolation trenches separated by an intermediate common trench wall are formed by etching on the top silicon layer of the silicon wafer having the underlying silicon layer, the intermediate insulating layer, and the top silicon layer.
这里, 具有底层硅层、 中间绝缘层和顶层硅层的硅片也称作 SOI ( Silicon-On-Insulator , 绝缘衬底上的硅)硅片, 其中中间绝缘层为 氧化硅材料, 如图 10a所示, 通过刻蚀工艺形成被中间公共槽壁隔开 的两个隔离槽。  Here, the silicon wafer having the underlying silicon layer, the intermediate insulating layer and the top silicon layer is also referred to as an SOI (Silicon-On-Insulator) silicon wafer, wherein the intermediate insulating layer is a silicon oxide material, as shown in FIG. 10a. As shown, two isolation trenches separated by a central common trench wall are formed by an etch process.
S 102a、 对中间公共槽壁掺杂低浓度 N型载流子, 形成波导。 S 103 a、 对两个隔离槽的底部和两个外侧槽壁掺杂高浓度 N 型 载流子, 形成波导阴极。  S102a, doping a low concentration N-type carrier to the intermediate common trench wall to form a waveguide. S 103 a. Doping a high concentration of N-type carriers to the bottom of the two isolation trenches and the two outer trench walls to form a waveguide cathode.
具体的, 步骤 S 102和 S 103 , 如图 10b所示, 对中间公共槽壁 掺杂低浓度 N型载流子, 101 6〜101 8cm_3 , 形成波导; 对两个隔离槽 的底部和两个外侧槽壁掺杂高浓度 N 型载流子, 此浓度优选Specifically, steps S 102 and S 103, shown in Figure 10b, the intermediate groove wall common low doping concentration N-type carriers, 10 1 6 ~10 1 8 cm_ 3, the waveguide is formed; two isolation trenches The bottom and the two outer groove walls are doped with a high concentration of N-type carriers, and the concentration is preferably
1020cm-310 20 cm- 3 .
S 104 a、在两个隔离槽的外侧槽壁上制作第一阴极金属层和第二 阴极金属层。  S104a, forming a first cathode metal layer and a second cathode metal layer on the outer groove walls of the two isolation trenches.
这里, 如图 10c所示, 可以采用蒸镀和剥离法在两个隔离槽的 外侧槽壁上制作第一阴极金属层和第二阴极金属层, 其中第一阴极 金属层和第二阴极金属层为银或金, 在通电时第一阴极金属层和第 二阴极金属层为导通的并同时作为波导的阴极电极。  Here, as shown in FIG. 10c, a first cathode metal layer and a second cathode metal layer may be formed on the outer groove walls of the two isolation trenches by evaporation and lift-off methods, wherein the first cathode metal layer and the second cathode metal layer In the case of silver or gold, the first cathode metal layer and the second cathode metal layer are electrically conductive and simultaneously serve as cathode electrodes of the waveguide when energized.
S 105 a、 制作覆盖第一阴极金属层、 第二阴极金属层、 顶层硅层 的电光聚合物材料层。 如图 10d所示, 这里采用旋涂的方式制作电光聚合物材料层, 其中电光聚合物材料层为与聚曱基丙烯酸曱酯 PMMA 发生交联的 AJLS 103 , 可选的, 其折射率为 1.63 , 非线性系数为 100〜200pm/V。 其中 AJLS 103 的分子式为如以下式 1 所示: S 105 a, forming an electro-optic polymer material layer covering the first cathode metal layer, the second cathode metal layer, and the top silicon layer. As shown in FIG. 10d, a layer of electro-optic polymer material is prepared by spin coating, wherein the electro-optic polymer material layer is AJLS 103 cross-linked with poly(mercapto acrylate) PMMA, and optionally, the refractive index is 1.63. The nonlinear coefficient is 100~200pm/V. The molecular formula of AJLS 103 is as shown in the following formula 1:
Figure imgf000011_0001
式 1
Figure imgf000011_0001
Formula 1
S 106a、 制作覆盖所述电光聚合物材料层上的第一保护层。  S 106a, fabricating a first protective layer overlying the layer of electro-optic polymer material.
S 107a、 制作覆盖第一保护层的极化金属电极。  S 107a, forming a polarized metal electrode covering the first protective layer.
如图 10e所示, 同样采用旋涂的方式制作第一保护层, 该第一 保护层为二氧化硅材料; 采用蒸镀的方法在第一保护层上制作极化 金属电极。  As shown in Fig. 10e, a first protective layer is also formed by spin coating, the first protective layer being a silicon dioxide material; a polarized metal electrode is formed on the first protective layer by evaporation.
S 108a、 以极化金属电极作为阳极、 以第一阴极金属层和第二阴 极金属层作为阴极施加第一电场强度对电光聚合物材料层进行预定 时长的预极化。  S 108a, pre-polarizing the electro-optic polymer material layer for a predetermined duration by applying a first electric field strength with the polarized metal electrode as an anode and the first cathode metal layer and the second cathode metal layer as a cathode.
可选的,这里的预极化过程所采用的第一电场强度为 100V/um , 预定时长为 10min。  Optionally, the first electric field intensity used in the pre-polarization process is 100 V/um, and the predetermined duration is 10 min.
S 109a、 去除极化金属电极和第一保护层。  S 109a, removing the polarized metal electrode and the first protective layer.
这里直接将极化金属电极和第一保护层剥离即可。 S 1 10a、 在波导上方的电光聚合物材料层上形成上层电极。 Here, the polarized metal electrode and the first protective layer may be directly peeled off. S 1 10a, forming an upper electrode on the layer of electro-optic polymer material above the waveguide.
如图 10f 所示, 通过蒸镀和剥离法在电光聚合物材料层上形成 上层电极。  As shown in Fig. 10f, an upper electrode is formed on the electro-optic polymer material layer by evaporation and lift-off.
S l l l a、 制作覆盖上层电极和电光聚合物材料层的第二保护层。 如图 10g所示, 直接旋涂二氧化硅材料作为第二保护层覆盖上 层电极和电光聚合物材料层。  S l l l a, forming a second protective layer covering the upper electrode and the electro-optic polymer material layer. As shown in Figure 10g, a direct spin-on silica material is used as a second protective layer to cover the upper electrode and electro-optic polymer material layers.
本发明的实施例提供的移相器制造方法, 采用在金属上电极和 掺杂硅电介质之间的缝隙填充具有电光效应的材料的结构, 使得器 件更加小型化、 同时降低了载流子效应带来的不利影响提高了器件 的响应速度。  The phase shifter manufacturing method provided by the embodiment of the present invention adopts a structure in which a gap between a metal upper electrode and a doped silicon dielectric material fills a material having an electrooptic effect, thereby making the device more compact and reducing the carrier effect band. The adverse effects of the device increase the response speed of the device.
需要说明的是, 移相器的相位改变公式为: λ 2 a 其中, 为波长, "为电光材料的折射率, 为聚合物的二阶非 线性系数, z为移相器的长度, 为聚合物狭缝的厚度, Γ为狭缝中 的光场能量所占的百分比, 为波导中相速度与群速度的比值, △ 为 电压值改变量, Δ^相位改变量。 It should be noted that the phase change formula of the phase shifter is: λ 2 a where is the wavelength, "is the refractive index of the electro-optic material, the second-order nonlinear coefficient of the polymer, and z is the length of the phase shifter, which is the polymerization. The thickness of the object slit, Γ is the percentage of the light field energy in the slit, which is the ratio of the phase velocity to the group velocity in the waveguide, Δ is the voltage value change amount, Δ ^ phase change amount.
如图 10所示, 为本发明实施例提供的耦合器的制造方法, 包括 以下步骤:  As shown in FIG. 10, a method for manufacturing a coupler according to an embodiment of the present invention includes the following steps:
S 101b、 在具有底层硅层、 中间绝缘层和顶层硅层的硅片的顶层 硅层上通过刻蚀形成被中间公共槽壁隔开的两个隔离槽。  S 101b, forming two isolation trenches separated by an intermediate common trench wall by etching on the top silicon layer of the silicon wafer having the underlying silicon layer, the intermediate insulating layer, and the top silicon layer.
这里, 具有底层硅层、 中间绝缘层和顶层硅层的硅片也称作 SOI ( Silicon-On-Insulator , 绝缘衬底上的硅)硅片, 其中中间绝缘层为 氧化硅材料。  Here, the silicon wafer having the underlying silicon layer, the intermediate insulating layer, and the top silicon layer is also referred to as an SOI (Silicon-On-Insulator) silicon wafer, wherein the intermediate insulating layer is a silicon oxide material.
S 102b、 对中间公共槽壁掺杂低浓度 N 型载流子, 形成耦合器 波导。  S 102b, doping a low concentration N-type carrier to the intermediate common trench wall to form a coupler waveguide.
S 103b、 对两个隔离槽的底部和两个外侧槽壁掺杂高浓度 N 型 载流子, 形成耦合器波导阴极。  S 103b, doping a high concentration of N-type carriers to the bottom of the two isolation trenches and the two outer trench walls to form a coupler waveguide cathode.
可选的, 步骤 S 102和 S 103 中低浓度为 1016〜1018cm_3,高浓度为 S 104 b、在两个隔离槽的外侧槽壁上制作第一阴极金属层和第二 阴极金属层。 Alternatively, steps S 102 and S 103 of low concentration of 10 16 ~10 18 cm_ 3, a high concentration of S104b, forming a first cathode metal layer and a second cathode metal layer on the outer groove walls of the two isolation trenches.
这里, 可以采用蒸镀和剥离法在两个隔离槽的外侧槽壁上制作 第一阴极金属层和第二阴极金属层, 其中第一阴极金属层和第二阴 极金属层为银或金, 在通电时第一阴极金属层和第二阴极金属层为 导通的并同时作为耦合器波导的阴极电极。  Here, the first cathode metal layer and the second cathode metal layer may be formed on the outer groove walls of the two isolation trenches by evaporation and lift-off methods, wherein the first cathode metal layer and the second cathode metal layer are silver or gold, When energized, the first cathode metal layer and the second cathode metal layer are conductive and simultaneously serve as cathode electrodes for the coupler waveguide.
S 105b、 制作覆盖第一阴极金属层、 第二阴极金属层、 顶层硅层 的电光聚合物材料层。  S 105b, forming an electro-optic polymer material layer covering the first cathode metal layer, the second cathode metal layer, and the top silicon layer.
这里采用旋涂的方式制作电光聚合物材料层, 其中电光聚合物 材料层为与聚曱基丙烯酸曱酯 PMMA发生交联的 AJLS 103 ,可选的, 其折射率为 1 .63 , 非线性系数为 100〜200pm/V。  Here, a layer of electro-optic polymer material is prepared by spin coating, wherein the electro-optic polymer material layer is AJLS 103 which is cross-linked with polyacrylic acid decyl acrylate PMMA, optionally, having a refractive index of 1.63, a nonlinear coefficient It is 100~200pm/V.
S 106b、 制作覆盖电光聚合物材料层上的第一保护层。  S 106b, forming a first protective layer overlying the layer of electro-optic polymer material.
同样可以采用旋涂的方式制作第一保护层, 该第一保护层为二 氧化硅材料。  The first protective layer can also be formed by spin coating, which is a silicon dioxide material.
S 107b、 制作覆盖第一保护层的极化金属电极。  S 107b, forming a polarized metal electrode covering the first protective layer.
采用蒸镀的方法在第一保护层上制作极化金属电极。  A polarized metal electrode is formed on the first protective layer by evaporation.
S 108b、 以极化金属电极作为阳极、 以第一阴极金属层和第二阴 极金属层作为阴极施加第一电场强度对电光聚合物材料层进行预定 时长的预极化。  S 108b, applying a first electric field strength to the electro-optic polymer material layer for a predetermined duration of pre-polarization by using a polarized metal electrode as an anode and a first cathode metal layer and a second cathode metal layer as a cathode.
可选的,这里的预极化过程所采用的第一电场强度为 100V/um , 预定时长为 10min。  Optionally, the first electric field intensity used in the pre-polarization process is 100 V/um, and the predetermined duration is 10 min.
S 109b、 去除极化金属电极和第一保护层。  S 109b, removing the polarized metal electrode and the first protective layer.
这里直接将极化金属电极和第一保护层剥离即可。  Here, the polarized metal electrode and the first protective layer may be directly peeled off.
S 1 10b、 在波导上方的电光聚合物材料层上形成上层电极。  S 1 10b, forming an upper electrode on the layer of electro-optic polymer material above the waveguide.
通过蒸镀和剥离法在电光聚合物材料层上形成上层电极。  An upper electrode is formed on the electro-optic polymer material layer by evaporation and lift-off.
S l l lb、 制作覆盖上层电极和电光聚合物材料层的第二保护层。 直接旋涂二氧化硅材料作为第二保护层覆盖上层电极和电光聚 合物材料层。 这里, 本发明实施例提供的耦合器从形状和结构上限制了只能 配合应用于本发明所提供的移向器, 为本发明提供的移相器提供输 入光波。 且由于在制作工艺上各层的处理工艺及整个制备步骤相同 因此本发明实施例所提供的移相器和耦合器也可以一体制备, 即直 接将本发明提供的耦合器制备在本发明提供的移相器的输入端, 从 而进一步增强器件的精密性。 此外由于耦合器输出端和移相器的输 入端相吻合, 且层结构相同, 耦合器的上层电极和耦合器波导可以 提供与移相器狭缝中相同的电场强度, 因此在光波进入耦合器时耦 合器也能到了对光场的移相作用, 虽然耦合器的长度相对移相器来 说比较短, 但是光波通过本发明实施例提供的耦合器进入移相器的 设计, 在一定程度上可以增强移相的效果, 即可以在更低的电压改 变量发生时便能达到良好的移相效果, 从而降低了能耗。 S ll lb, a second protective layer covering the upper electrode and the electro-optic polymer material layer. The direct spin-coated silica material serves as a second protective layer covering the upper electrode and the electro-optic polymer material layer. Here, the coupler provided by the embodiment of the present invention limits the shape and structure to the direction shifter provided by the present invention, and provides the input light wave for the phase shifter provided by the present invention. The phase shifter and the coupler provided by the embodiments of the present invention can also be integrally prepared, that is, the coupler provided by the present invention can be directly prepared by the present invention, because the processing process of the layers in the manufacturing process and the entire preparation steps are the same. The input of the phase shifter further enhances the precision of the device. In addition, since the output of the coupler coincides with the input of the phase shifter and the layer structure is the same, the upper electrode of the coupler and the coupler waveguide can provide the same electric field strength as in the phase shifter slit, so the light wave enters the coupler. The time coupler can also achieve the phase shifting effect on the light field. Although the length of the coupler is relatively short compared to the phase shifter, the light wave enters the design of the phase shifter through the coupler provided by the embodiment of the present invention, to a certain extent. The effect of phase shifting can be enhanced, that is, a good phase shifting effect can be achieved when a lower voltage change amount occurs, thereby reducing energy consumption.
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。  The above is only the specific embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily think of changes or substitutions within the technical scope of the present invention. It should be covered by the scope of the present invention. Therefore, the scope of the invention should be determined by the scope of the claims.

Claims

权 利 要 求 书 Claim
1、 一种移相器, 其特征在于, 包括:  A phase shifter, comprising:
底层硅层和覆盖所述底层硅层的绝缘层;  a bottom silicon layer and an insulating layer covering the underlying silicon layer;
覆盖所述绝缘层的顶层硅层, 所述顶层硅层包括两个隔离槽, 所 述两个隔离槽被位于所述两个隔离槽之间的公共槽壁隔开, 所述公共 槽壁即波导, 且所述波导的高度高于所述两个隔离槽的外侧槽壁; 分别覆盖所述两个隔离槽的两个外侧槽壁的第一阴极金属层和 第二阴极金属层;  Covering a top silicon layer of the insulating layer, the top silicon layer includes two isolation trenches, the two isolation trenches being separated by a common trench wall between the two isolation trenches, the common trench wall a waveguide, and the height of the waveguide is higher than an outer groove wall of the two isolation grooves; a first cathode metal layer and a second cathode metal layer respectively covering the two outer groove walls of the two isolation grooves;
覆盖第一阴极金属层、所述第二阴极金属层和所述顶层硅层的电 光聚合物材料层;  a layer of electro-optic polymer material covering the first cathode metal layer, the second cathode metal layer, and the top silicon layer;
形成在所述波导上方的所述电光聚合物材料层上方的上层电极, 所述上层电极和所述波导之间形成有被所述电光聚合物材料层填充 的狭缝;  Forming an upper electrode above the electro-optic polymer material layer above the waveguide, and forming a slit filled by the electro-optic polymer material layer between the upper layer electrode and the waveguide;
覆盖所述上层电极和所述电光聚合物材料层的第二保护层。  Covering the upper electrode and the second protective layer of the electro-optic polymer material layer.
2、 根据权利要求 1 所述的移相器, 其特征在于, 所述上层电极 宽于所述波导的宽度。  2. The phase shifter according to claim 1, wherein the upper layer electrode is wider than the width of the waveguide.
3、 根据权利要求 2所述的移相器, 其特征在于, 所述上层电极 的宽度为 1 .5微米、 厚度为 200纳米。  The phase shifter according to claim 2, wherein the upper electrode has a width of 1.5 μm and a thickness of 200 nm.
4、 根据权利要求 1 所述的移相器, 其特征在于, 所述两个隔离 槽的宽度相等且所述两个隔离槽的底部的厚度相等。  4. The phase shifter according to claim 1, wherein the two isolation grooves have the same width and the bottom portions of the two isolation grooves have the same thickness.
5、 根据权利要求 4所述的移相器, 其特征在于, 所述两个隔离 槽的宽度均为 2微米, 所述隔离槽底部的厚度均为 50纳米。  The phase shifter according to claim 4, wherein the two isolation grooves have a width of 2 μm, and the bottom of the isolation groove has a thickness of 50 nm.
6、 根据权利要求 1 所述的移相器, 其特征在于, 所述波导的形 状为长方体。  6. The phase shifter according to claim 1, wherein the shape of the waveguide is a rectangular parallelepiped.
7、 根据权利要求 6所述的移相器, 其特征在于, 所述波导的高 度为 150纳米, 所述波导的宽度为 400纳米。  7. The phase shifter according to claim 6, wherein the waveguide has a height of 150 nm and the waveguide has a width of 400 nm.
8、 根据权利要求 1 所述的移相器, 所述移相器的的长度为 10 微米。  8. The phase shifter of claim 1 wherein said phase shifter has a length of 10 microns.
9、 根据权利要求 1所述的移相器, 所述狭缝的高度为 20纳米。 9. The phase shifter according to claim 1, wherein the slit has a height of 20 nm.
10、 一种耦合器, 其特征在于, 所述耦合器的输出端与所述移相 器的输入端相吻合, 所述耦合器包括: 10. A coupler, wherein an output of the coupler coincides with an input of the phase shifter, the coupler comprising:
底层硅层和覆盖所述底层硅层的绝缘层;  a bottom silicon layer and an insulating layer covering the underlying silicon layer;
覆盖所述绝缘层的顶层硅层, 所述顶层硅层包括两个隔离槽, 所 述两个隔离槽被位于所述两个隔离槽之间的公共槽壁隔开, 所述公共 槽壁即耦合器波导, 其中所述耦合器波导的高度高于所述两个隔离槽 的夕卜侧槽壁, 所述耦合器波导输入侧的宽度大于输出侧的宽度;  Covering a top silicon layer of the insulating layer, the top silicon layer includes two isolation trenches, the two isolation trenches being separated by a common trench wall between the two isolation trenches, the common trench wall a coupler waveguide, wherein a height of the coupler waveguide is higher than a sidewall of the two isolation trenches, and a width of the input side of the coupler waveguide is greater than a width of the output side;
分别覆盖所述两个隔离槽的两个外侧槽壁的第一阴极金属层和 第二阴极金属层;  a first cathode metal layer and a second cathode metal layer respectively covering the two outer groove walls of the two isolation grooves;
覆盖第一阴极金属层、所述第二阴极金属层和所述顶层硅层的电 光聚合物材料层;  a layer of electro-optic polymer material covering the first cathode metal layer, the second cathode metal layer, and the top silicon layer;
形成在所述耦合器波导上方的所述电光聚合物材料层上方的上 层电极, 所述上层电极和所述耦合器波导之间形成有被所述电光聚合 物材料层填充的狭缝;  Forming an upper electrode above the electro-optic polymer material layer above the coupler waveguide, and forming a slit filled by the electro-optic polymer material layer between the upper layer electrode and the coupler waveguide;
覆盖所述上层电极和所述电光聚合物材料层的第二保护层。  Covering the upper electrode and the second protective layer of the electro-optic polymer material layer.
1 1、 根据权利要求 10所述的耦合器, 其特征在于, 所述上层电 极宽于所述耦合器波导的最宽宽度。  A coupler according to claim 10, wherein said upper layer electrode is wider than a widest width of said coupler waveguide.
12、 根据权利要求 1 1 所述的耦合器, 其特征在于, 所述上层电 极宽度为 1 .5微米、 厚度为 200纳米。  12. The coupler according to claim 1, wherein the upper layer electrode has a width of 1.5 μm and a thickness of 200 nm.
13、 根据权利要求 10所述的耦合器, 其特征在于, 在所述两个 隔离槽的宽度相等且所述两个隔离槽的底部的厚度相等。  13. The coupler according to claim 10, wherein the widths of the two isolation grooves are equal and the thicknesses of the bottoms of the two isolation grooves are equal.
14、 根据权利要求 13 所述的耦合器, 其特征在于, 所述两个隔 离槽在输入端宽度均为 1 .975微米, 在输出端宽度均为 2微米, 所述 两个隔离槽底部的厚度均为 50纳米。  The coupler according to claim 13, wherein the two isolation grooves have a width of 1.975 μm at the input end and a width of 2 μm at the output end, and the bottom of the two isolation grooves The thickness is 50 nm.
15、 根据权利要求 10所述的耦合器, 其特征在于, 所述波导的 高度为 150纳米, 所述波导在输入端宽度为 450纳米、 在输出端宽度 为 400纳米。  The coupler according to claim 10, wherein the waveguide has a height of 150 nm, and the waveguide has a width of 450 nm at the input end and a width of 400 nm at the output end.
16、根据权利要求 10所述的耦合器,所述耦合器的的长度为 500 纳米。 16. The coupler of claim 10, said coupler having a length of 500 nanometers.
17、根据权利要求 10所述的耦合器,所述狭缝的高度为 20纳米。17. The coupler of claim 10, said slit having a height of 20 nanometers.
18、 一种移相器的制造方法, 其特征在于, 包括: 18. A method of manufacturing a phase shifter, comprising:
在具有底层硅层、中间绝缘层和顶层硅层的硅片的顶层硅层上通 过刻蚀形成被中间公共槽壁隔开的两个隔离槽;  Forming two isolation trenches separated by an intermediate common trench wall on the top silicon layer of the silicon wafer having the underlying silicon layer, the intermediate insulating layer and the top silicon layer;
对所述中间公共槽壁掺杂低浓度 N型载流子, 形成波导; 对所述两个隔离槽的底部和两个外侧槽壁掺杂高浓度 N 型载流 子, 形成波导阴极;  Doping the intermediate common trench wall with a low concentration of N-type carriers to form a waveguide; doping the bottom of the two isolation trenches and the two outer trench walls with a high concentration of N-type carriers to form a waveguide cathode;
在所述两个隔离槽的外侧槽壁上制作第一阴极金属层和第二阴 极金属层;  Forming a first cathode metal layer and a second cathode metal layer on the outer groove walls of the two isolation grooves;
制作覆盖所述第一阴极金属层、 所述第二阴极金属层、 所述顶层 硅层的电光聚合物材料层;  Forming an electro-optic polymer material layer covering the first cathode metal layer, the second cathode metal layer, and the top silicon layer;
制作覆盖所述电光聚合物材料层上的第一保护层;  Making a first protective layer covering the layer of electro-optic polymer material;
制作覆盖所述第一保护层的极化金属电极;  Making a polarized metal electrode covering the first protective layer;
以所述极化金属电极作为阳极、以所述第一阴极金属层和第二阴 极金属层作为阴极施加第一电场强度对所述电光聚合物材料层进行 预定时长的预极化;  Pre-polarizing the electro-optic polymer material layer for a predetermined duration by applying the first electric field strength to the polarized metal electrode as an anode and the first cathode metal layer and the second cathode metal layer as a cathode;
去除所述极化金属电极和所述第一保护层;  Removing the polarized metal electrode and the first protective layer;
在所述波导上方的所述电光聚合物材料层上形成上层电极; 制作覆盖所述上层电极和所述电光聚合物材料层的第二保护层。 Forming an upper layer electrode on the electro-optic polymer material layer above the waveguide; and forming a second protective layer covering the upper layer electrode and the electro-optic polymer material layer.
19、 根据权利要求 1 8所述的方法, 其特征在于, 上层金属、 第 一阴极金属层、 第二阴极金属层和极化金属电极为银、 金。 19. The method of claim 18, wherein the upper metal, the first cathode metal layer, the second cathode metal layer, and the polarized metal electrode are silver or gold.
20、 根据权利要求 1 8所述的方法, 其特征在于, 所述电光聚合 物材料层为与聚曱基丙烯酸曱酯 PMMA发生交联的 AJLS 103 , 其中 所述电光聚合物材料的折射率为 1 .63 , 非线性系数为 100〜200pm/V。  20. The method according to claim 18, wherein the electro-optic polymer material layer is AJLS 103 cross-linked with poly(mercapto acrylate) PMMA, wherein the electro-optic polymer material has a refractive index of 1.63, the nonlinear coefficient is 100~200pm/V.
21、 根据权利要求 1 8所述的方法, 其特征在于, 所述低浓度为 1016〜1018cm-3,所述高浓度为 102°cm—321. The method according to claim 18 , wherein the low concentration is 10 16 to 10 18 cm - 3 and the high concentration is 10 2 ° cm -3 .
22、 根据权利要求 18 所述的方法, 其特征在于, 通电时所述第 一阴极金属层与所述第二阴极金属层连通。  22. The method of claim 18 wherein said first cathode metal layer is in communication with said second cathode metal layer upon energization.
23、 根据权利要求 18 所述的方法, 其特征在于, 所述绝缘层为 Si02,所述第一保护层为 Si02, 所述第二保护层为 Si0223. The method according to claim 18, wherein the insulating layer is Si0 2 , the first protective layer is Si0 2 , and the second protective layer is Si0 2 .
24、 根据权利要求 18 所述的方法, 其特征在于, 所述第一电场 强度为 100V/um , 所述预定时长为 10min。  24. The method of claim 18, wherein the first electric field strength is 100 V/um and the predetermined time length is 10 min.
25、 根据权利要求 1 8所述的方法, 其特征在于, 所述移相器的 相位改变公式为: λ 2 a 其中, 为波长, 《为电光材料的折射率, 为聚合物的二阶非 线性系数, /为移相器的长度, ^ /为聚合物狭缝的厚度, Γ为狭缝中的 光场能量所占的百分比, S为波导中相速度与群速度的比值, 为电 压值改变量, 相位改变量。  25. The method according to claim 18, wherein the phase change formula of the phase shifter is: λ 2 a where is a wavelength, “is the refractive index of the electro-optic material, and is a second-order non-polymer Linear coefficient, / is the length of the phase shifter, ^ / is the thickness of the polymer slit, Γ is the percentage of the light field energy in the slit, and S is the ratio of the phase velocity to the group velocity in the waveguide, which is the voltage value Change amount, phase change amount.
26、 一种耦合器的制造方法, 其特征在于, 包括:  26. A method of fabricating a coupler, comprising:
在具有底层硅层、中间绝缘层和顶层硅层的硅片的顶层硅层上通 过刻蚀形成被中间公共槽壁隔开的两个隔离槽;  Forming two isolation trenches separated by an intermediate common trench wall on the top silicon layer of the silicon wafer having the underlying silicon layer, the intermediate insulating layer and the top silicon layer;
对所述中间公共槽壁掺杂低浓度 Ν型载流子, 形成耦合器波导; 对所述两个隔离槽的底部和两个外侧槽壁掺杂高浓度 Ν 型载流 子, 形成耦合器波导阴极;  Doping low-concentration Ν-type carriers to the intermediate common trench walls to form a coupler waveguide; doping high-concentration Ν-type carriers to the bottom and the two outer trench walls of the two isolation trenches to form a coupler Waveguide cathode
在所述两个隔离槽的外侧槽壁上制作第一阴极金属层和第二阴 极金属层;  Forming a first cathode metal layer and a second cathode metal layer on the outer groove walls of the two isolation grooves;
制作覆盖所述第一阴极金属层、 所述第二阴极金属层、 所述顶层 硅层的电光聚合物材料层;  Forming an electro-optic polymer material layer covering the first cathode metal layer, the second cathode metal layer, and the top silicon layer;
制作覆盖所述电光聚合物材料层上的第一保护层;  Making a first protective layer covering the layer of electro-optic polymer material;
制作覆盖所述第一保护层的极化金属电极;  Making a polarized metal electrode covering the first protective layer;
以所述极化金属电极作为阳极、以所述第一阴极金属层和第二阴 极金属层作为阴极施加第一电场强度对所述电光聚合物材料层进行 预定时长的预极化;  Pre-polarizing the electro-optic polymer material layer for a predetermined duration by applying the first electric field strength to the polarized metal electrode as an anode and the first cathode metal layer and the second cathode metal layer as a cathode;
去除所述极化金属电极和所述第一保护层;  Removing the polarized metal electrode and the first protective layer;
在所述波导上方的所述电光聚合物材料层上形成上层电极; 制作覆盖所述上层电极和所述电光聚合物材料层的第二保护层。 Forming an upper layer electrode on the electro-optic polymer material layer above the waveguide; and forming a second protective layer covering the upper layer electrode and the electro-optic polymer material layer.
27、 根据权利要求 26所述的方法, 其特征在于, 上层金属、 第 一阴极金属层、 第二阴极金属层和极化金属电极为银、 金。 27. The method of claim 26 wherein the upper metal, the first cathode metal layer, the second cathode metal layer, and the polarized metal electrode are silver or gold.
28、 根据权利要求 26所述的方法, 其特征在于, 所述电光聚合 物材料层为与聚曱基丙烯酸曱酯 PMMA发生交联的 AJLS 103 , 其中 所述电光聚合物材料的折射率为 1.63 , 非线性系数为 100〜200pm/V。  The method according to claim 26, wherein the electro-optic polymer material layer is AJLS 103 cross-linked with polyacrylic acid decyl acrylate PMMA, wherein the electro-optic polymer material has a refractive index of 1.63 The nonlinear coefficient is 100~200pm/V.
29、 根据权利要求 26所述的方法, 其特征在于, 所述低浓度为 1016〜1018cm-3,所述高浓度为 102°cm—329. The method according to claim 26, wherein the low concentration is 10 16 to 10 18 cm - 3 and the high concentration is 10 2 ° cm -3 .
30、 根据权利要求 26所述的方法, 其特征在于, 通电时所述第 一阴极金属层与所述第二阴极金属层连通。  30. The method of claim 26 wherein said first cathode metal layer is in communication with said second cathode metal layer upon energization.
3 1、 根据权利要求 26所述的方法, 其特征在于, 所述绝缘层为 Si02,第一保护层为 Si02, 所述第二保护层为 Si02The method according to claim 26, wherein the insulating layer is Si0 2 , the first protective layer is Si0 2 , and the second protective layer is Si0 2 .
32、 根据权利要求 26所述的方法, 其特征在于, 所述第一电场 强度为 100V/um , 所述预定时长为 10min。  32. The method of claim 26, wherein the first electric field strength is 100 V/um and the predetermined time length is 10 min.
PCT/CN2012/072298 2012-03-14 2012-03-14 Phase shifter, coupler and methods for their production WO2012103823A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/072298 WO2012103823A2 (en) 2012-03-14 2012-03-14 Phase shifter, coupler and methods for their production
CN201280000484.9A CN102763264B (en) 2012-03-14 2012-03-14 Phase shifter, coupler and methods for their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/072298 WO2012103823A2 (en) 2012-03-14 2012-03-14 Phase shifter, coupler and methods for their production

Publications (2)

Publication Number Publication Date
WO2012103823A2 true WO2012103823A2 (en) 2012-08-09
WO2012103823A3 WO2012103823A3 (en) 2013-02-28

Family

ID=46603126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072298 WO2012103823A2 (en) 2012-03-14 2012-03-14 Phase shifter, coupler and methods for their production

Country Status (2)

Country Link
CN (1) CN102763264B (en)
WO (1) WO2012103823A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884331A1 (en) * 2013-12-10 2015-06-17 Institute of Solid State Physics, University of Latvia Electro-optic modulator and method of fabricating same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923660B2 (en) * 2013-05-24 2014-12-30 Futurewei Technologies, Inc. System and method for an optical phase shifter
CN103698847B (en) * 2013-12-27 2016-01-20 南京邮电大学 A kind of matching strengthens the method for long chain molecule type polymer optical wave guide birefringence
CN109581696A (en) * 2017-09-28 2019-04-05 北京万集科技股份有限公司 A kind of waveguide phase shifter and preparation method thereof
CN111458909B (en) * 2020-04-22 2023-12-26 中国计量大学 Electro-optic modulator of silicon-based composite waveguide based on plasma structure and organic material
CN115053172A (en) * 2020-11-02 2022-09-13 深圳市速腾聚创科技有限公司 Phase shifter, optical phased array and preparation method of optical phased array
CN112666726B (en) * 2020-12-23 2024-02-06 联合微电子中心有限责任公司 Thermo-optic phase shifter and preparation method thereof
CN116953960A (en) * 2022-04-16 2023-10-27 华为技术有限公司 Phase shifter, electro-optical device, optical communication system, and method for manufacturing phase shifter
CN117441266A (en) * 2022-05-20 2024-01-23 北京小米移动软件有限公司 Phase shifting unit, antenna module and mobile terminal
CN117850075A (en) * 2022-09-30 2024-04-09 华为技术有限公司 Electro-optic polymer device, optical device and optical integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954291A (en) * 1995-08-11 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> Optical phase shifter and optical switch using the same
WO2005060043A2 (en) * 2003-12-11 2005-06-30 University Of Washington Techtransfer Invention Licensing Phase shifters, such as for a multiple antenna wireless communication system
CN101006382A (en) * 2004-08-16 2007-07-25 卢森特技术有限公司 High-speed semiconductor waveguide phase-shifter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448479A (en) * 1981-11-16 1984-05-15 Bell Telephone Laboratories, Incorporated Traveling wave, electrooptic devices with effective velocity matching
US7079714B2 (en) * 2002-11-27 2006-07-18 Lucent Technologies Inc. Electro-optic devices having flattened frequency response with reduced drive voltage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954291A (en) * 1995-08-11 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> Optical phase shifter and optical switch using the same
WO2005060043A2 (en) * 2003-12-11 2005-06-30 University Of Washington Techtransfer Invention Licensing Phase shifters, such as for a multiple antenna wireless communication system
CN101006382A (en) * 2004-08-16 2007-07-25 卢森特技术有限公司 High-speed semiconductor waveguide phase-shifter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIAO, L. ET AL.: 'Phase Modulation Efficiency and Transmission Loss of Silicon Optical Phase Shifters' IEEE JOURNAL OF QUANTUM ELECTRONICS vol. 41, February 2005, pages 250 - 257 *
MICHEL, S. ET AL.: 'High-performance electro-optic modulators realized with a commercial side-chain DR1-PMMA electro-optic copolymer' ORGANIC PHOTONIC MATERIALS AND DEVICES XII, PROCEEDINGS OF SPIE vol. 7599, February 2010, page 759901 *
XIAO, S. M. ET AL.: 'Electro-optic polymer assisted optical switch based on silicon slot structure' PROC. OF SPIE. vol. 7134, November 2008, page 713421 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884331A1 (en) * 2013-12-10 2015-06-17 Institute of Solid State Physics, University of Latvia Electro-optic modulator and method of fabricating same

Also Published As

Publication number Publication date
CN102763264A (en) 2012-10-31
WO2012103823A3 (en) 2013-02-28
CN102763264B (en) 2014-04-30

Similar Documents

Publication Publication Date Title
WO2012103823A2 (en) Phase shifter, coupler and methods for their production
US9632335B2 (en) Electro-optical modulator with a vertical capacitor structure
JP6622228B2 (en) Optical modulator and manufacturing method thereof
US10718904B2 (en) Thin-film integration compatible with silicon photonics foundry production
JP5577909B2 (en) Optical semiconductor device and manufacturing method thereof
WO2009058470A1 (en) Method for fabricating butt-coupled electro-absorptive modulators
TW200533966A (en) Method and apparatus for modulating an optical beam in an optical device with a photonic crystal lattice
JP6330041B2 (en) Optical modulator and manufacturing method thereof
JP2019008163A (en) Electroabsorption modulator
WO2019049681A1 (en) Optical modulator and method for manufacturing same
KR100825723B1 (en) Optical device including gate insulator with edge effect
CN107290874B (en) Large bandwidth electro-optic modulator
JP5369737B2 (en) Optical communication system and manufacturing method thereof
CN112363331A (en) Silicon-based lithium niobate mixed electro-optical modulator
JP4653391B2 (en) Manufacturing method of light control element
TWI810493B (en) Dielectric electro-optic phase shifter
JP2013025011A (en) Optical semiconductor element and manufacturing method thereof
CN115685598A (en) Waveguide structure with core-spun electro-optic material layer, preparation method and application
CN115145057A (en) Multi-doped flat silicon optical modulator
US7539358B2 (en) SOI-based opto-electronic device including corrugated active region
CN105629379A (en) Silicon base electro-optical tunable waveguide structure based on interpolation-type MOS structure
WO2020245618A2 (en) Electro-optic modulator, optical component, and optical module
WO2014156480A1 (en) Optical modulator
JP7276452B2 (en) optical modulator
CN113805364B (en) Photonic crystal microcavity-graphene electro-optic modulator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000484.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742237

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12742237

Country of ref document: EP

Kind code of ref document: A2