WO2012102497A2 - Aimant fritté r-fe-b avec propriétés mécaniques améliorées et procédé de production associé - Google Patents

Aimant fritté r-fe-b avec propriétés mécaniques améliorées et procédé de production associé Download PDF

Info

Publication number
WO2012102497A2
WO2012102497A2 PCT/KR2012/000139 KR2012000139W WO2012102497A2 WO 2012102497 A2 WO2012102497 A2 WO 2012102497A2 KR 2012000139 W KR2012000139 W KR 2012000139W WO 2012102497 A2 WO2012102497 A2 WO 2012102497A2
Authority
WO
WIPO (PCT)
Prior art keywords
sintered magnet
crystal grains
sintering
thermal treatment
sintered
Prior art date
Application number
PCT/KR2012/000139
Other languages
English (en)
Other versions
WO2012102497A3 (fr
Inventor
Young-Do Kim
Se-Hoon Kim
Jin-Woo Kim
Original Assignee
Industry-University Cooperation Foundation, Hanyang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110126640A external-priority patent/KR101243347B1/ko
Application filed by Industry-University Cooperation Foundation, Hanyang University filed Critical Industry-University Cooperation Foundation, Hanyang University
Priority to US13/979,427 priority Critical patent/US20130284969A1/en
Publication of WO2012102497A2 publication Critical patent/WO2012102497A2/fr
Publication of WO2012102497A3 publication Critical patent/WO2012102497A3/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present inventors suggested in Korean Patent Laid-open No. 2010-97580 that coercive force can be improved by performing repeated thermal treatment processes at 300 to 600°C after sintering in the production of R-Fe-B sintered magnets, to allow R-rich phases to more rapidly move to Nd 2 Fe 14 B major crystals and evenly surround crystal grain systems.
  • the sintered magnets thus obtained can secure improved coercive force, but for example have a problem of readily cracking upon exposure to exterior impact due to low mechanical strength.
  • the present inventors performed research into novel sintered magnets in which cracks do not readily occur by limiting the thickness of R-rich phases surrounding crystal grain systems and a method for producing the same. As a result, the present invention has been completed.
  • the sintered magnet may be applied to motors or permanent magnets used at high temperatures including motors for hybrid automobiles and to permanent magnets used for satellites due to improved reliability under harsh environments.
  • FIG. 6(A) is a TEM (transmission electron microscope) image of a sintered magnet obtained in Comparative Example 1
  • FIGS. 6(B) to 6(D) are TEM images of sintered magnets obtained in Example 1;
  • FIG. 12 is a graph showing size and relative density of crystal grains of sintered magnets measured in FIG. 11;
  • FIG. 15 is a SEM (scanning electron microscope) image showing a propagation length of cracks of FIG. 14;
  • FIG. 17 is a graph showing variation in coercive force of sintered magnets produced in Comparative Example 1 and Example 1.
  • the thickness of R-rich phases present between the crystal grains further increases.
  • crystal grains are considered to be respective grains and coercive force is increased.
  • sintered magnets in the related art also have a structure in which crystal grainsare surrounded with R-rich phases, and, in this structure, thickness of crystal grain interfaces is considerably small (at maximum, a level lower than 5 nm) and the crystal grains are not sufficiently surrounded with R-rich phases.
  • all grains of crystal grains are considered to be one grain, that is, crystal grains increase in size and coercive force thus decreases.
  • the sintered magnet of the present invention has a crystal grain size of 6.0 to 7.0 ⁇ m, which is unsuitable for use in sintered magnets, and sufficiently secures the gap between crystal grains through R-rich phases, thus increasing coercive force.
  • the gap between crystal grains is at least 10 nm, preferably 10 to 50 nm, more preferably 10 to 20 nm.
  • the R-rich phases present at the interface of crystal grains exhibit superior toughness as compared to crystal grains, as can be seen from the observation results of crack passage in FIG. 8, as thickness of R-rich phases increases, crack length decreases. From the aforementioned results, it can be seen that mechanical properties of sintered magnets are improved due to R-rich phases present at the interface of crystal grains. At this time, R-rich phases are present at a predetermined area ratio, preferably, 5 to 15% with respect to the total area of crystal grains (R 2 Fe 14 B).
  • the microstructure of the sintered magnet of the present invention can be controlled by a variety of process conditions, in particular, sintering temperature, cycle number of sintering and thermal treatment. Specifically, by producing sintered magnets under controlled sintering and thermal treatment conditions, R-rich phases can be distributed such that they thickly surround the interface of R 2 Fe 14 B ferromagnetic crystal grains. In particular, this can be carried out by repeating the sintering and thermal treatment processes.
  • sintering heating
  • thermal treatment cooling
  • T 2 750 to 1000°C which is lower than T 1 .
  • the sintering and thermal treatment processes are repeated two or more times and are performed until the density of sintered magnets reaches 98% or more.
  • the sintering/thermal treatment is performed 2 to 10 cycles, most preferably 10 cycles. At this time, the total process time involved in the cyclic sintering/thermal treatment processes depends on common sintering and thermal treatment times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

La présente invention concerne un aimant fritté R-Fe-B et son procédé de production. Plus spécifiquement, l'invention concerne un aimant fritté R-Fe-B (R=Nd, Dy, Pr, Tb, Ho, La, Ce, Sm, Gd, Er, Tm, Yb, Lu or Th) ayant une structure dans laquelle les grains cristallins R2Fe14B en tant que phases majeures sont entourés de phases riches en R, l'angle dièdre entre deux grains cristallins R2Fe14B adjacents et la phase riche en R en contact avec les grains cristallins R2Fe14B étant de 70° ou moins dans une jonction triple formée par les grains cristallins R2Fe14B. L'aimant fritté conserve un champ coercitif élevé et présente des propriétés mécaniques améliorées et est donc applicable dans le domaine des moteurs ou des aimants permanents utilisés à températures élevées.
PCT/KR2012/000139 2011-01-25 2012-01-06 Aimant fritté r-fe-b avec propriétés mécaniques améliorées et procédé de production associé WO2012102497A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/979,427 US20130284969A1 (en) 2011-01-25 2012-01-06 R-fe-b sintered magnet with enhanced mechanical properties and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0007297 2011-01-25
KR20110007297 2011-01-25
KR1020110126640A KR101243347B1 (ko) 2011-01-25 2011-11-30 기계적 물성이 향상된 R-Fe-B계 소결자석 및 이의 제조방법
KR10-2011-0126640 2011-11-30

Publications (2)

Publication Number Publication Date
WO2012102497A2 true WO2012102497A2 (fr) 2012-08-02
WO2012102497A3 WO2012102497A3 (fr) 2012-11-01

Family

ID=46581244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000139 WO2012102497A2 (fr) 2011-01-25 2012-01-06 Aimant fritté r-fe-b avec propriétés mécaniques améliorées et procédé de production associé

Country Status (1)

Country Link
WO (1) WO2012102497A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474225A (zh) * 2013-07-20 2013-12-25 南通万宝实业有限公司 一种镝铈掺杂的钕铁硼磁体的制备方法
CN104112581A (zh) * 2013-04-22 2014-10-22 昭和电工株式会社 R-t-b系稀土族烧结磁铁及其制造方法
CN104505206A (zh) * 2014-12-04 2015-04-08 浙江大学 一种高矫顽力烧结钕铁硼的制备方法及产品
US20160042847A1 (en) * 2013-03-29 2016-02-11 Hitachi Metals, Ltd. R-t-b based sintered magnet
US20180061538A1 (en) * 2015-04-02 2018-03-01 Xiamen Tungsten Co., Ltd. Ho and w-containing rare-earth magnet
CN110148508A (zh) * 2019-04-28 2019-08-20 深圳市吉胜华力科技有限公司 一种稀土永磁材料
WO2021135141A1 (fr) * 2019-12-31 2021-07-08 厦门钨业股份有限公司 Matériau d'aimant permanent de séries r-t-b, composition de matière première, procédé de préparation et application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050036165A (ko) * 2003-10-15 2005-04-20 자화전자 주식회사 본드자석용 마이크로 결정구조의 고보자력 자석분말제조방법 및 이에 의해 제조된 자석분말
KR20060102483A (ko) * 2005-03-23 2006-09-27 신에쓰 가가꾸 고교 가부시끼가이샤 희토류 영구자석
US20080286595A1 (en) * 2006-03-03 2008-11-20 Hitachi Metals, Ltd. R-Fe-B Rare Earth Sintered Magnet and Method for Producing Same
KR20100097580A (ko) * 2009-02-26 2010-09-03 한양대학교 산학협력단 반복 열처리를 통한 소결자석의 제조방법 및 그로부터 제조된 소결자석

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050036165A (ko) * 2003-10-15 2005-04-20 자화전자 주식회사 본드자석용 마이크로 결정구조의 고보자력 자석분말제조방법 및 이에 의해 제조된 자석분말
KR20060102483A (ko) * 2005-03-23 2006-09-27 신에쓰 가가꾸 고교 가부시끼가이샤 희토류 영구자석
US20080286595A1 (en) * 2006-03-03 2008-11-20 Hitachi Metals, Ltd. R-Fe-B Rare Earth Sintered Magnet and Method for Producing Same
KR20100097580A (ko) * 2009-02-26 2010-09-03 한양대학교 산학협력단 반복 열처리를 통한 소결자석의 제조방법 및 그로부터 제조된 소결자석

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160042847A1 (en) * 2013-03-29 2016-02-11 Hitachi Metals, Ltd. R-t-b based sintered magnet
EP2980808A4 (fr) * 2013-03-29 2016-12-14 Hitachi Metals Ltd Aimant fritté à base de r-t-b
CN104112581A (zh) * 2013-04-22 2014-10-22 昭和电工株式会社 R-t-b系稀土族烧结磁铁及其制造方法
CN103474225A (zh) * 2013-07-20 2013-12-25 南通万宝实业有限公司 一种镝铈掺杂的钕铁硼磁体的制备方法
CN104505206A (zh) * 2014-12-04 2015-04-08 浙江大学 一种高矫顽力烧结钕铁硼的制备方法及产品
US20180061538A1 (en) * 2015-04-02 2018-03-01 Xiamen Tungsten Co., Ltd. Ho and w-containing rare-earth magnet
US10468168B2 (en) * 2015-04-02 2019-11-05 Xiamen Tungsten Co., Ltd. Rare-earth magnet comprising holmium and tungsten
CN110148508A (zh) * 2019-04-28 2019-08-20 深圳市吉胜华力科技有限公司 一种稀土永磁材料
WO2021135141A1 (fr) * 2019-12-31 2021-07-08 厦门钨业股份有限公司 Matériau d'aimant permanent de séries r-t-b, composition de matière première, procédé de préparation et application

Also Published As

Publication number Publication date
WO2012102497A3 (fr) 2012-11-01

Similar Documents

Publication Publication Date Title
WO2012102497A2 (fr) Aimant fritté r-fe-b avec propriétés mécaniques améliorées et procédé de production associé
US20130284969A1 (en) R-fe-b sintered magnet with enhanced mechanical properties and method for producing the same
WO2016175377A1 (fr) Aimant fritté à base de manganèse-bismuth ayant une stabilité thermique améliorée et son procédé de préparation
KR100606156B1 (ko) 영구 자석 및 r-tm-b계 영구 자석
US8388766B2 (en) Anisotropic rare earth sintered magnet and making method
JP6508571B2 (ja) R−t−b系焼結磁石の製造方法およびr−t−b系焼結磁石
US8981888B2 (en) Magnetic body
US20190153565A1 (en) ANISOTROPIC COMPLEX SINTERED MAGNET COMPRISING MnBi WHICH HAS IMPROVED MAGNETIC PROPERTIES AND METHOD OF PREPARING THE SAME
JP7220300B2 (ja) 希土類永久磁石材料、原料組成物、製造方法、応用、モーター
KR101585479B1 (ko) MnBi를 포함한 이방성 복합 소결 자석 및 이의 상압소결 방법
WO2016093379A1 (fr) Aimant pressé et déformé à chaud comprenant un alliage non magnétique et son procédé de fabrication
JPH0521218A (ja) 希土類永久磁石の製造方法
USRE37666E1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
CN114391170A (zh) 稀土类磁铁合金、其制造方法、稀土类磁铁、转子及旋转机
US6338761B1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
WO2020111772A1 (fr) Procédé de fabrication d'aimant à terre rare
Ko et al. Magnetic properties and microstructure of hot-pressed and die-upset Mischmetal-FeB-(Al) permanent magnets
WO2022234901A1 (fr) Feuille d'acier électrique à texture (001) et son procédé de fabrication
Tsubokawa et al. Effect of heat treatment on grain‐boundary microstructure in Nd‐Fe‐B sintered magnet
WO2014204106A1 (fr) Procédé de fabrication d'aimant permanent
US20040019271A1 (en) Pole pieces for magnetic resonance imaging systems
KR20220144858A (ko) 희토류 소결 자석 및 희토류 소결 자석의 제조 방법, 회전자, 및 회전기
WO2014058218A1 (fr) Procédé de contrôle de l'étape de désorption-recombinaison d'hydrogène dans le procédé hddr, procédé de fabrication de poudre magnétique d'élément des terres rares à base d'élément des terres rares-fer-bore comprenant une étape de désorption-recombinaison d'hydrogène et poudre magnétique d'élément des terre rare à base d'élément des terres rares-fer-bore fabriquée en conséquence
Jurczyk Magnetic and crystallographic properties of substituted didymium2Fe12− xTxCo2B compounds (T= Si, V, Cr, Ta and W)
Wang et al. Bulk Nanocrystalline Nd-Fe-B Magnets Solidified in Magnetic Field With Various Surface Area-to-Volume Ratios

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739155

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739155

Country of ref document: EP

Kind code of ref document: A2