WO2012102264A1 - 波長分散量推定方法、波長分散補償回路、及び受信装置 - Google Patents

波長分散量推定方法、波長分散補償回路、及び受信装置 Download PDF

Info

Publication number
WO2012102264A1
WO2012102264A1 PCT/JP2012/051427 JP2012051427W WO2012102264A1 WO 2012102264 A1 WO2012102264 A1 WO 2012102264A1 JP 2012051427 W JP2012051427 W JP 2012051427W WO 2012102264 A1 WO2012102264 A1 WO 2012102264A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion compensation
compensation amount
amount
clock detection
detection value
Prior art date
Application number
PCT/JP2012/051427
Other languages
English (en)
French (fr)
Inventor
山崎 悦史
小林 孝行
富沢 将人
理一 工藤
浩一 石原
中川 匡夫
光映 石川
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2012554799A priority Critical patent/JP5663604B2/ja
Priority to CN201280011421.3A priority patent/CN103620986B/zh
Priority to US13/981,298 priority patent/US9178614B2/en
Publication of WO2012102264A1 publication Critical patent/WO2012102264A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07951Monitoring or measuring chromatic dispersion or PMD
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion

Definitions

  • the present invention is used in optical communication, and a chromatic dispersion amount estimation method for compensating for waveform distortion caused by chromatic dispersion, interpolarization interference, polarization mode dispersion, etc. in an optical fiber transmission line using digital signal processing, and chromatic dispersion
  • the present invention relates to a compensation circuit and a receiving device.
  • Non-Patent Documents 1 and 2 compensates for quasi-static chromatic dispersion with a fixed digital filter (for example, for a 28 Gbaud signal, the dispersion is 20000 ps / nm and the number of taps is 2048 tap).
  • a method is adopted in which the polarization mode dispersion with fluctuation is compensated with an adaptive filter having a small number of taps (for example, about 10 to 12 taps with a polarization mode dispersion of 50 ps) using a blind algorithm.
  • the amount of chromatic dispersion received in the transmission line includes various types of transmission line fibers such as a single mode fiber, a dispersion shifted fiber, and a non-zero dispersion shifted fiber, and the chromatic dispersion received by a signal differs. Further, since the cumulative chromatic dispersion amount increases in proportion to the length of the transmission line fiber through which the signal light has propagated, the cumulative dispersion amount also changes depending on the transmission distance.
  • an optical dispersion compensator is inserted in the repeater of the transmission system, and the residual dispersion amount changes depending on the compensation amount.
  • a dispersion compensating fiber may be used as a transmission line.
  • the coefficient of the dispersion compensation filter should be controlled at the receiving end in accordance with the accumulated chromatic dispersion amount. Therefore, a mechanism for estimating the accumulated chromatic dispersion received by the signal is required.
  • the estimated value of chromatic dispersion is set as the compensation amount for the dispersion compensation circuit, if there is an error between the value to be actually compensated and the estimated value, waveform distortion due to chromatic dispersion remains after compensation and the error rate is increased. End up.
  • the tolerance to distortion factors other than chromatic dispersion, such as polarization mode dispersion is reduced. Therefore, it is important to reduce the error with respect to the chromatic dispersion compensation amount.
  • the present invention provides a chromatic dispersion amount estimation that estimates and sets a chromatic dispersion amount to be compensated at high speed and with high accuracy in a receiver that compensates for waveform distortion in an optical fiber transmission line. It is an object to provide a method, a chromatic dispersion compensation circuit, and a receiving apparatus.
  • a chromatic dispersion amount estimation method includes: (1) A step of setting an arbitrary value as a first candidate value of the chromatic dispersion amount; (2) extracting a plurality of neighborhood values of the first candidate values as second candidate values; (3) measuring a digital clock extraction signal intensity corresponding to each candidate value; (4) extracting an optimum value (maximum value) from a plurality of signal intensity increasing / decreasing trends and setting it as the next first candidate value; (5) A determination step that repeats (2) to (4) until a predetermined condition is satisfied, It was decided to have.
  • the chromatic dispersion amount estimation method is a chromatic dispersion amount estimation method for estimating a dispersion compensation amount when compensating for waveform distortion due to chromatic dispersion of an optical fiber transmission line,
  • a clock detection procedure for detecting and storing the intensity at the dispersion compensation amount D (k) of the symbol arrival timing clock included in the received data as the clock detection value S (k);
  • Positive side for detecting and storing the intensity of the symbol arrival timing clock at the dispersion compensation amount D (k) + ⁇ D obtained by shifting the dispersion compensation amount D (k) to the plus side by a predetermined amount ⁇ D as a clock detection value S (k +) Shift procedure;
  • Minus shift procedure A comparison procedure for comparing the clock detection value S (k), the clock detection value S (k +) and the clock detection value S (k ⁇ ); If the clock detection value S (k) is the maximum as a result of the comparison procedure, the dispersion compensation amount D (k) is determined as the optimum dispersion compensation amount, and the estimation of the dispersion compensation amount is completed, and the clock detection When the value S (k +) or the clock detection value S (k ⁇ ) is the maximum, the clock detection procedure with the dispersion compensation amount of the maximum clock detection value as the (k + 1) th dispersion compensation amount D (k + 1), A determination procedure for determining to perform the plus shift procedure, the minus shift procedure, and the comparison procedure again; It is characterized by performing.
  • the optimal dispersion compensation amount can be obtained by comparing the clock detection value in the comparison procedure and adjusting the dispersion compensation amount in the direction in which the clock detection value increases.
  • the present invention can provide a chromatic dispersion amount estimation method for estimating and setting a chromatic dispersion amount to be compensated at high speed and with high accuracy in a receiver that compensates for waveform distortion in an optical fiber transmission line.
  • the chromatic dispersion amount estimation method acquires an approximate value of the dispersion compensation amount before the initial value setting procedure, and uses the approximate value of the dispersion compensation amount as the dispersion compensation amount D ( And 0) having an approximate dispersion compensation amount acquisition procedure.
  • a rough estimated value estimated by a chromatic dispersion estimation method using a known signal is set as an initial value of the dispersion compensation amount.
  • the predetermined amount ⁇ D for shifting the dispersion compensation amount in the plus side shift procedure and the minus side shift procedure has a dispersion tolerance capable of detecting the symbol arrival timing clock.
  • the amount is divided by the number of repetitions K.
  • the optimal dispersion compensation amount can be estimated accurately.
  • a minute amount ⁇ D smaller than the predetermined amount ⁇ D for shifting the dispersion compensation amount in the plus side shift procedure and the minus side shift procedure is set.
  • the clock detection value S (k ⁇ n ⁇ +) in (n is a natural number) is detected, the clock detection value S (k ⁇ 0 +) and the clock detection value S (k ⁇ n ⁇ +) are averaged, and the clock detection value S (k +) age, In the negative shift procedure, the dispersion compensation amount D (k) centered on the detected clock value S (k ⁇ 0 ⁇ ) at the dispersion compensation amount D (k) ⁇ D and the dispersion compensation amount D (k) ⁇ D.
  • the clock detection value S (k ⁇ n ⁇ ) in ⁇ D ⁇ n ⁇ D (n is a natural number) is detected, and the clock detection value S (k ⁇ 0 ⁇ ) and the clock detection value S (k ⁇ n ⁇ ) are averaged to The clock detection value S (k ⁇ ) is used.
  • the chromatic dispersion amount estimation method according to the present invention is characterized in that at least one of the clock detection procedure, the plus shift procedure, and the minus shift procedure is repeated a plurality of times at predetermined time intervals.
  • the difference between the clock detection value S (k) and the clock detection value S (k +) and the clock detection value S (k) and the clock detection value are determined.
  • the difference from S (k ⁇ ) is less than a predetermined threshold, the dispersion compensation amount D (k) is determined as the optimum dispersion compensation amount, and the estimation of the dispersion compensation amount is completed.
  • the estimation operation can be stabilized by avoiding estimation in a state where the difference between the clock detection values is small and the optimum value is in an uncertain state.
  • the chromatic dispersion compensation circuit is an analog-digital converter that converts an optical analog waveform received from the optical fiber transmission line into a digital signal;
  • a digital signal processor that compensates for waveform distortion due to chromatic dispersion of the optical fiber transmission line of the digital signal output by the analog-digital converter with the dispersion compensation amount estimated by the chromatic dispersion amount estimation method;
  • a symbol clock extractor that extracts a symbol arrival timing clock of received data included in the digital signal output by the analog-digital converter and outputs the intensity of the symbol arrival timing clock as the clock detection value; Is provided.
  • the chromatic dispersion compensation circuit according to the present invention employs the chromatic dispersion amount estimation method. Therefore, the present invention can provide a chromatic dispersion compensation circuit that estimates and sets the amount of chromatic dispersion to be compensated at high speed and with high accuracy in a receiver that compensates for waveform distortion in an optical fiber transmission line.
  • the receiving apparatus includes the chromatic dispersion compensation circuit.
  • a receiving apparatus includes the chromatic dispersion compensation circuit. Therefore, the present invention can provide a receiving apparatus that compensates for waveform distortion in an optical fiber transmission line and estimates and sets the amount of chromatic dispersion to be compensated at high speed and with high accuracy.
  • the present invention relates to a chromatic dispersion amount estimating method, a chromatic dispersion compensation circuit, and a receiving apparatus for estimating and setting a chromatic dispersion amount to be compensated at high speed and with high accuracy in a receiving apparatus for compensating waveform distortion in an optical fiber transmission line. Can be provided.
  • FIG. 8 is a diagram illustrating the receiving device 300 according to the present embodiment.
  • the receiving apparatus 300 includes a chromatic dispersion compensation circuit 101.
  • the chromatic dispersion compensation circuit 101 is based on an analog-digital converter 11 that converts an optical analog waveform received from an optical fiber transmission path into a digital signal, and wavelength dispersion of the optical fiber transmission path that the digital signal output from the analog-digital converter 11 has.
  • a digital signal processor 12 that compensates for waveform distortion with a dispersion compensation amount estimated by a chromatic dispersion amount estimation method described below, and a symbol arrival timing clock of received data included in the digital signal output from the analog-digital converter 11 And a symbol clock extractor 13 for extracting and outputting the intensity of the symbol arrival timing clock as a clock detection value.
  • a rough estimation value estimated by a chromatic dispersion estimation method using a known signal or the like is set as an initial value in the dispersion compensation circuit.
  • a waveform subjected to waveform distortion due to residual dispersion caused by an estimation error or the like is output from the dispersion compensation circuit.
  • D (k) represents the dispersion compensation amount set in the digital signal processor 12.
  • the dispersion compensation amount D (0) is shifted in a positive direction by a certain amount ⁇ D (dispersion compensation amount D (0) + ⁇ ). Then, the clock-synchronized clock detection value S (0+) is measured and stored.
  • the dispersion compensation amount D (0) is shifted in a negative direction by a certain amount ⁇ D (dispersion compensation amount D (0) ⁇ ), and the clock detection value S (0 ⁇ ) Is measured and stored.
  • the certain amount ⁇ D can be set to 500 psec / nm or less, but is preferably set based on the target value of the chromatic dispersion deviation amount after adjustment by the fine adjustment process. For example, if an adaptive filter having a tap number of 10 to 20 and a delay amount per tap of 15 to 20 psec / nm is employed and the target value is ⁇ 100 to 150 psec / nm, ⁇ D is 25 to 150 psec. Set to / nm.
  • ⁇ D is set finely, the precision of fine adjustment is improved, but it takes time to complete fine adjustment. Therefore, it is desirable to set ⁇ D in consideration of the balance between accuracy and time. For example, if it is the target value, ⁇ D is set to 50 psec / nm in consideration of the balance between accuracy and time.
  • the clock detection value S (2) at the dispersion compensation amount D (2) is measured.
  • the chromatic dispersion amount estimation method of the present embodiment is a method of asymptotically approaching the optimum dispersion compensation amount by repeating the same process thereafter.
  • the detection signal originally includes an error
  • S (k +), S (k ⁇ ), and S (k) is small
  • S (k) is set again and measurement is performed again. There is a choice.
  • shifting based on uncertain information can reduce the risk of causing an unstable operation.
  • the dispersion compensation amount setting value is determined based on one measurement value of the clock detection signal at each setting value. Therefore, when the error in the measurement is large, the optimization sequence may be unstable.
  • a method for stabilization measure multiple times at different times for each set value, and compare the average value to determine which direction of positive or negative sign should be used for stable operation. Is expected.
  • the coarse estimation value of the dispersion estimation circuit is used as the initial value of the dispersion compensation amount.
  • a dispersion value given from the outside may be set.
  • a case where the dispersion amount of the transmission line is previously measured with a dispersion measuring device or the like can be considered.
  • FIG. 3 is a diagram for explaining the fine adjustment process of the present embodiment.
  • the dispersion compensation amount D (k) is shifted in the positive direction by a small amount ⁇ D from D (k).
  • the clock synchronous clock detection value S (k + ⁇ ) is measured and stored.
  • a shift of ⁇ D in the negative direction from D (k) is performed, and the clock detection value S (k ⁇ ) of the clock synchronization at that time is measured and stored in the memory.
  • the clock detection value S (k + 2 ⁇ ) in synchronization with the clock is measured by shifting it in the positive direction by 2 ⁇ D from D (k) and stored in the memory.
  • the dispersion compensation amount is shifted by ⁇ D steps in the positive direction and the negative direction, and the clock detection value S (k ⁇ n ⁇ ) is detected and stored in the memory.
  • the minute amount ⁇ D is set based on the period and amplitude of the ripple generated in the clock detection value S (k) with respect to the dispersion compensation amount in FIG. Specifically, the minute amount ⁇ D may be set to be equal to or less than the ripple period.
  • the average fluctuation amount of the clock detection value S (k) when the set dispersion compensation amount D (k) is shifted by ⁇ D is the clock. It is less than 10% of the detected value S (k).
  • the minute amount ⁇ D can be set to 1/3 to 1/50, preferably 1/5 to 1/10 of the constant amount ⁇ D.
  • ⁇ D is set to 5 to 25 psec / nm, preferably 5 to 15 psec / nm.
  • N is also set in consideration of the balance between accuracy and time. For example, N is set to 3 or more and 7 or less.
  • a representative value at D (k) is calculated from the clock detection S (k ⁇ n ⁇ ) measured and stored after shifting in ⁇ D steps around D (k).
  • a method of calculating the representative value there is a method of performing an averaging process (addition process) on n and calculating an average value Savg (k). For example, when the calculation example of Savg (k) is described by an equation, the following equation is obtained.
  • the dispersion compensation amount is increased to the plus side or the minus side by ⁇ D. Shift and obtain Savg (k + 1) as described above ([1] [2]). Then, the direction of the dispersion compensation amount is determined, and the dispersion compensation amount is further shifted by ⁇ D, and Savg (k + 2) and subsequent are sequentially acquired ([3]).
  • the chromatic dispersion amount estimation method averages the clock detection values at a plurality of surrounding points shifted by the ⁇ D step in each of the dispersion compensation amounts D (k). Even if there is a fluctuation, it can be stabilized.
  • the first stage of the coarse adjustment process and the fine adjustment process is the same as that described in the first embodiment.
  • the dispersion compensation amount D (k) has been described using k as a setting number.
  • k and m are used as setting numbers and the dispersion compensation amount is represented by D (k, m).
  • D (k, m) is the trial number of the first half process for comparing the clock detection values in the positive or negative direction
  • m corresponds to the number of trials of the second half process that shifts in the determined direction.
  • the dispersion compensation amount shifts in the positive direction in the first half of the first stage, as in the latter half of the first stage, the dispersion compensation amount is further shifted in the positive direction by ⁇ D, and the dispersion compensation amount is set to D (1,0). ) + ⁇ D.
  • the dispersion compensation amount is shifted in the negative direction in the first half of the first stage, the shift is ⁇ D in the negative direction also in the second half of the first stage.
  • the shift direction of the subsequent second half process is determined by the determination direction in the first stage, and therefore, time variation and detection error are assumed in the clock detection value. In some situations, it may not converge to the original optimum dispersion compensation value.
  • the second half of the second stage will be explained.
  • the dispersion compensation amount is determined to be the positive direction in the first half of the second stage, it is further shifted by ⁇ D / 2 in the positive direction.
  • the shift is further shifted by ⁇ D / 2 in the negative direction.
  • it is determined that the dispersion compensation amount does not shift it is determined that there is no need to shift the width of ⁇ D / 2 any more.
  • the dispersion compensation amount is determined to shift in the negative direction.
  • the dispersion compensation amount is further shifted in the negative direction by ⁇ D / 2, set to D (2,0) ⁇ D / 2, and the clock detection value S (2,0 ⁇ D / 2) is detected and stored in the memory. .
  • D (2,0) and D (2,0) ⁇ D / 2 are compared.
  • the dispersion compensation amount shift width is halved to ⁇ D / (2 k ⁇ 1 ), so that the optimum value of the dispersion compensation amount can be accurately and more efficiently. Can be searched.
  • FIG. 5 is a diagram for explaining the fine adjustment process of the present embodiment.
  • the dispersion compensation setting value is shifted in the positive direction by a small amount ⁇ D from D (k, m).
  • the clock detection value S (k, m + ⁇ ) synchronized with the clock is measured and stored.
  • it is shifted by ⁇ D in the negative direction around D (k, m), and the clock-synchronized clock detection value S (k, m ⁇ ) at that time is measured and stored in the memory.
  • the clock detection value S (k, m + 2 ⁇ ) in synchronization with the clock is measured and stored in the memory by shifting in the positive direction by 2 ⁇ D from the initial setting value.
  • the clock-synchronized clock detection signal S (k, m-2 ⁇ ) is measured and stored in the memory at a set value shifted by ⁇ 2 ⁇ D from the initial value in the negative direction. In this way, the dispersion compensation amount is shifted by ⁇ D steps in the positive direction and the negative direction, and the clock detection value S (k, m ⁇ n ⁇ ) is detected and stored in the memory. Repeat this N times.
  • a representative value at D (k, m) is calculated from the clock detection S (k, m ⁇ n ⁇ ) measured and stored by shifting in ⁇ D steps around D (k).
  • a method of calculating the representative value there is a method of performing an averaging process (addition process) on n and calculating an average value Savg (k, m). For example, when a calculation example of Savg (k, m) is described by an equation, the following equation is obtained.
  • the chromatic dispersion amount estimation method of the present embodiment averages the clock detection values at a plurality of surrounding points shifted by the ⁇ D step in each of the dispersion compensation amounts D (k, m). Can be stabilized even when there are general fluctuations.
  • FIG. 7 is a diagram for explaining a fine adjustment process of the chromatic dispersion amount estimation method of the present embodiment.
  • the rough adjustment process performed in advance is the same as that described in the first embodiment.
  • the subsequent fine adjustment process is as follows.
  • the clock detection signal value of the sampling clock extraction circuit when the initial value D (0) of the dispersion compensation amount is set in the dispersion compensation circuit is measured and stored. This is S (0).
  • the dispersion compensation amount is shifted in the positive direction by a small amount ⁇ D from the initial value D (0).
  • the clock detection value S (0 + ⁇ ) is measured and stored.
  • the dispersion compensation amount is shifted in the negative direction by a small amount ⁇ D from the initial value D (0), and the clock detection value S (0 ⁇ ) at that time is measured and stored in the memory.
  • the clock detection value S (0 + 2 ⁇ ) in synchronization with the clock is measured by shifting it in the positive direction from the initial value D (0) by 2 ⁇ D, and stored in the memory.
  • the negative value is also shifted by ⁇ 2 ⁇ D from the initial value D (0), and the clock-synchronized clock detection value S (0-2 ⁇ ) is measured and stored in the memory.
  • the clock detection value S (0 ⁇ n ⁇ ) is detected in the ⁇ D step in the positive direction and the negative direction, and stored in the memory. Repeat this N times.
  • the clock detection value S (0 + ⁇ ) is detected and stored in the memory by shifting in the positive direction by ⁇ D centering on D (0) ([1]). . Further, the clock detection value S (0 + ⁇ ⁇ n ⁇ ) is detected and stored in the memory by shifting in the positive direction and the negative direction in the ⁇ D step. Repeat this N times.
  • ⁇ D is considered to be smaller than ⁇ D.
  • the clock detection value S (0 ⁇ ) is detected by shifting in the negative direction by ⁇ D around D (0) and stored in the memory ([2]). .
  • the clock detection value S (0 ⁇ ⁇ n ⁇ ) is detected by shifting in the positive and negative directions at ⁇ D step and stored in the memory. Repeat this N times.
  • the clock is shifted in the positive direction by 2 ⁇ D around D (0), and the clock detection value S (0 + 2 ⁇ ) is detected and stored in the memory ([3 ]). Further, the clock detection value S (0 + 2 ⁇ ⁇ n ⁇ ) is detected by shifting in the positive and negative directions at the step ⁇ D and stored in the memory. Similarly, the clock detection value S (0-2 ⁇ ) is detected by shifting it in the negative direction by 2 ⁇ D centering on D (0) and stored in the memory ([4]). In addition, the clock detection value S (0 ⁇ 2 ⁇ ⁇ n ⁇ ) is detected by shifting in the positive and negative directions at the ⁇ D step and stored in the memory. Repeat this N times.
  • the clock detection value S (0 + k ⁇ ⁇ n ⁇ ) at each k is subjected to averaging processing (addition processing) at n, and each average value Savg (0 + k ⁇ ) is calculated.
  • averaging processing additional processing
  • k that maximizes the average value Savg (0 + k ⁇ ) of the clock detection values may be searched and set as the optimum k.
  • a minute change is given to the compensation amount of the chromatic dispersion compensation circuit of the optical communication system, and this is given when searching for the optimum compensation amount using the clock detection signal as a monitor signal.
  • the optimum dispersion compensation amount can be efficiently detected by reducing the change amount by half for each trial.

Abstract

 本発明は、光ファイバ伝送路における波形歪みを補償する受信装置において、補償すべき波長分散量を高速に、かつ高精度に推定及び設定する波長分散量推定方法、波長分散補償回路、及び受信装置を提供することを目的とする。本発明に係る波長分散補償回路101は、光ファイバ伝送路から受信した光アナログ波形をデジタル信号に変換するアナログデジタル変換器11と、アナログデジタル変換器11が出力するデジタル信号が持つ光ファイバ伝送路の波長分散による波形歪みを、波長分散量推定方法で推定した分散補償量で補償するデジタル信号処理器12と、アナログデジタル変換器11が出力するデジタル信号に含まれる受信データのシンボル到来タイミングクロックを抽出し、シンボル到来タイミングクロックの強度を前記クロック検出値として出力するシンボルクロック抽出器13と、を備える。

Description

波長分散量推定方法、波長分散補償回路、及び受信装置
 本発明は,光通信において用いられるものであり、光ファイバ伝送路における波長分散、偏波間干渉、偏波モード分散などによる波形歪みをデジタル信号処理を用いて補償する波長分散量推定方法、波長分散補償回路、及び受信装置に関する。
 光通信の分野において、周波数利用効率を飛躍的に向上する同期検波方式と信号処理を組み合わせた通信システムが注目されている。直接検波により構築されていたシステムと比較すると、受信感度を向上することができるだけでなく、デジタル信号として受信することで、光ファイバ伝送によって受ける波長分散、偏波モード分散による送信信号の波形歪みを補償することができることが知られており、次世代の光通信技術として導入が検討されている。
 非特許文献1および2に代表されるデジタルコヒーレント方式は、準静的な波長分散を固定のデジタルフィルタ(例えば、28Gbaudの信号に対し、20000ps/nmの分散でタップ数が2048tap)で補償し、変動のある偏波モード分散を、ブラインドアルゴリズムを用いた小さいタップ数(例えば、50psの偏波モード分散で10~12tap程度)の適応フィルタで補償する方法を採用している。
特開2001-053679号公報 WO/2009/144997パンフレット 特願2009-169518号公報 WO/2011/007803パンフレット
H. Masuda, et. al., "13.5-Tb/s(135x111-Gb/s/ch)No-Guard-Interval Coherent OFDM Transmission over 6,248 km using SNR Maximized Second-order DRA in the Extended L-band," OSA/OFC/NFOEC 2009, PDPB5. Jianjun Yu, et. al., "17 Tb/s(161x114 Gb/s)PolMux-RZ-8PSK transmission over 662 km of ultra-low loss fiber using C-band EDFA amplification and digital coherent detection," ECOC 2008, Th.3.E.2, Brussels,Belgium,21-25 September 2008. L. liu, et al., "Initial Tap Setup of Constant Modulus Algorithm for Polarization De-multiplexing in Optical Coherent Receivers," OSA/OFC/NFOEC 2009, OMT2.
 伝送システムでは、受信端において伝送路で付加された波長分散による波形歪みを、受信端のデジタル信号処理によって補償する。このとき、伝送路において受ける波長分散量は、伝送路ファイバには、シングルモードファイバ、分散シフトファイバ、ノンゼロ分散シフトファイバなどの種類があり、信号が受ける波長分散量が異なる。また、信号光が伝搬した伝送路ファイバの長さに比例して、累積波長分散量が増加するため、伝送距離によっても累積分散量が変化する。また、伝送システムの中継器において光分散補償器を挿入する場合もあり、その補償量によって残留分散量が変化する。また、海底システムなどでは、分散補償ファイバを伝送路として用いる場合もある。さらに、信号光のキャリア波長によって、波長分散係数が異なるため、累積分散量は信号光波長にも依存する。上記の理由により、受信端では累積波長分散量に合わせて、分散補償フィルタの係数を制御すべきである。したがって、信号が受けた累積波長分散量を推定する機構が必要になる。
 最適な波長分散補償量を検出する従来技術としては、波長分散による波形歪みが残留することで発生する受信信号品質の劣化する特徴を用いる方法がある。例えば、波長分散による残留波形歪みは誤り率を増大させる。従って、例えば既知信号パターンと受信パターンを比較して誤り率を算出し、その値が低くなるように波長分散補償回路への設定値を制御する方法がある。また、一般に波長分散による波形歪みが残留する場合、クロック抽出・同期回路における同期検出信号が小さくなる。これの特徴を利用することで、波長分散補償量を制御する方法がある(例えば、特許文献1を参照。)。また、アイパターンの開口度を利用する方法も提案されている(例えば、特許文献2を参照。)。
 しかし、これらの方法では、受信信号が受けてきた累積波長分散量と、分散補償回路における補償量が大きく異なる場合には、補償の残留分散量とモニタ信号変化との相関が極端に低くなり、モニタ信号を用いて分散補償量を制御することが不可能である。そのため、残留分散量とモニタ信号の相関が得られるような残留分散量となるように、網羅的に分散補償量を変化させて掃引するなどのプロセスが必要であり、設定時間が長くなる問題があった。
 一方、高速に補償すべき波長分散量を検知する方法として、既知信号を送信信号光に挿入して、既知信号の波形変化から受信端において既知信号部分を利用して波長分散量を推定する方法などがある(例えば、特許文献3を参照。)。
 しかしながら、既知信号を用いた分散推定法は高速であるが、偏波モード分散、非線形波形歪みなど波長分散以外の波形歪みによって推定量に誤差が生じてしまう問題があった。
 分散補償回路に対して波長分散の推定値を補償量として設定すると、実際補償すべき値と推定値に誤差があった場合、補償後にも波長分散による波形歪みが残留し、誤り率を増加させてしまう。また、例えば偏波モード分散など波長分散以外の歪み要因に対する耐力を低減させてしまう。従って、波長分散補償量に対する誤差を低減することが重要になる。
 上記で示したように、モニタ信号を用いた制御では検出までに長時間を要すること、また、既知信号を用いた分散推定法では推定誤差の発生を考慮する必要があること、という課題があった。
 そこで、前記課題を解決するために、本発明は、光ファイバ伝送路における波形歪みを補償する受信装置において、補償すべき波長分散量を高速に、かつ高精度に推定及び設定する波長分散量推定方法、波長分散補償回路、及び受信装置を提供することを目的とする。
 上記目的を達成するために、本発明に係る波長分散量推定方法は、
(1)任意の値を波長分散量の第1の候補値とするステップ、
(2)第1の候補値の近傍値を第2の候補値として複数抽出するステップ、
(3)各候補値に対応するデジタルクロック抽出信号強度を測定するステップ、
(4)複数の信号強度の増減の傾向から最適値(最大となる値)を抽出し、次の第1の候補値とするステップ、
(5)所定の条件を満たすまで、(2)~(4)を繰り返す判定ステップ、
を有することとした。
 具体的には、本発明に係る波長分散量推定方法は、光ファイバ伝送路の波長分散による波形歪みを補償する際の分散補償量を推定する波長分散量推定方法であって、
 第k(kは整数)番目の分散補償量D(k)の初期値(k=0)である分散補償量D(0)を設定する初期値設定手順と、
 受信データに含まれるシンボル到来タイミングクロックの分散補償量D(k)における強度をクロック検出値S(k)として検出し、記憶するクロック検出手順と、
 前記分散補償量D(k)を所定量ΔDだけプラス側にシフトした分散補償量D(k)+ΔDにおける前記シンボル到来タイミングクロックの強度をクロック検出値S(k+)として検出し、記憶するプラス側シフト手順と、
 前記分散補償量D(k)を所定量ΔDだけマイナス側にシフトした分散補償量D(k)-ΔDにおける前記シンボル到来タイミングクロックの強度をクロック検出値S(k-)として検出し、記憶するマイナス側シフト手順と、
 前記クロック検出値S(k)、前記クロック検出値S(k+)及び前記クロック検出値S(k-)を比較する比較手順と、
 前記比較手順の結果、前記クロック検出値S(k)が最大である場合、前記分散補償量D(k)を最適分散補償量として決定して前記分散補償量の推定を完了し、前記クロック検出値S(k+)又は前記クロック検出値S(k-)が最大である場合、最大の前記クロック検出値の前記分散補償量を第k+1番目の分散補償量D(k+1)として前記クロック検出手順、前記プラス側シフト手順、前記マイナス側シフト手順及び前記比較手順を再度行うことを決定する判定手順と、
を行うことを特徴とする。
 ある分散補償量のクロック検出値とその前後の分散補償量のクロック検出値とを比較したとき、クロック検出値が大きい分散補償量の方向に最適クロック検出値、すなわち最適分散補償量が存在すると考えられる。このため、比較手順でクロック検出値を比較し、クロック検出値が大きくなる方向へ分散補償量を調整することで、最適分散補償量を得ることができる。
 従って、本発明は、光ファイバ伝送路における波形歪みを補償する受信装置において、補償すべき波長分散量を高速に、かつ高精度に推定及び設定する波長分散量推定方法を提供することができる。
 本発明に係る波長分散量推定方法は、前記初期値設定手順の前に前記分散補償量の概略値を取得し、前記分散補償量の概略値を前記初期値設定手順における前記分散補償量D(0)とする概略分散補償量取得手順を有することを特徴とする。
 初段ステップとして、既知信号を用いた波長分散推定法(例えば、特許文献4を参照。)などによって推定された粗推定値を分散補償量の初期値とする。初段ステップの後に、微調整を行うステップを行うことで最適分散補償量の推定を短時間で行うことができる。
 本発明に係る波長分散量推定方法は、許容繰返し回数K(Kは自然数)が設定されており、前記判定手順で、kとKを比較し、k=Kとなったときに前記分散補償量の推定を完了することを特徴とする。無限に最適分散補償量の推定を行うことを防止できる。
 本発明に係る波長分散量推定方法は、前記プラス側シフト手順及び前記マイナス側シフト手順で前記分散補償量をシフトする前記所定量ΔDが、前記シンボル到来タイミングクロックを検出可能な分散耐力を前記許容繰返し回数Kで割った量であることを特徴とする。最適分散補償量の推定を精度よく行うことができる。
 本発明に係る波長分散量推定方法は、前記プラス側シフト手順及び前記マイナス側シフト手順で前記分散補償量をシフトする前記所定量ΔDより小さい微少量δDが設定されており、
 前記クロック検出手順において、前記分散補償量D(k)におけるクロック検出値S(k±0)、及び前記分散補償量D(k)を中心として分散補償量D(k)±nδD(nは自然数)におけるクロック検出値S(k±nδ)を検出し、クロック検出値S(k±0)及びクロック検出値S(k±nδ)を平均化して前記クロック検出値S(k)とし、
 前記プラス側シフト手順において、前記分散補償量D(k)+ΔDにおけるクロック検出値S(k±0+)、及び前記分散補償量D(k)+ΔDを中心として分散補償量D(k)+ΔD±nδD(nは自然数)におけるクロック検出値S(k±nδ+)を検出し、クロック検出値S(k±0+)及びクロック検出値S(k±nδ+)を平均化して前記クロック検出値S(k+)とし、
 前記マイナス側シフト手順において、前記分散補償量D(k)-ΔDにおけるクロック検出値S(k±0-)、及び前記分散補償量D(k)-ΔDを中心として分散補償量D(k)-ΔD±nδD(nは自然数)におけるクロック検出値S(k±nδ-)を検出し、クロック検出値S(k±0-)及びクロック検出値S(k±nδ-)を平均化して前記クロック検出値S(k-)とすることを特徴とする。
 分散補償量の周辺でクロック検出値を平均化することで、局所的な変動がある場合でも安定化することができる。
 本発明に係る波長分散量推定方法は、前記クロック検出手順、前記プラス側シフト手順及び前記マイナス側シフト手順の少なくとも1つは、所定時間間隔で複数回繰り返されることを特徴とする。
 クロック検出値を時間平均することで、局所的な変動がある場合でも安定化することができる。
 本発明に係る波長分散量推定方法は、前記判定手順で、前記クロック検出値S(k)と前記クロック検出値S(k+)との差及び前記クロック検出値S(k)と前記クロック検出値S(k-)との差が所定の閾値未満の場合、前記分散補償量D(k)を最適分散補償量として決定して前記分散補償量の推定を完了することを特徴とする。
 クロック検出値の差が小さく、最適値がどちらの方向にあるか不確定な状態で推定を行うことを避けることで、推定動作を安定化することができる。
 本発明に係る波長分散補償回路は、前記光ファイバ伝送路から受信した光アナログ波形をデジタル信号に変換するアナログデジタル変換器と、
 前記アナログデジタル変換器が出力する前記デジタル信号が持つ前記光ファイバ伝送路の波長分散による波形歪みを、前記波長分散量推定方法で推定した前記分散補償量で補償するデジタル信号処理器と、
 前記アナログデジタル変換器が出力する前記デジタル信号に含まれる受信データのシンボル到来タイミングクロックを抽出し、前記シンボル到来タイミングクロックの強度を前記クロック検出値として出力するシンボルクロック抽出器と、
を備える。
 本発明に係る波長分散補償回路は、前記波長分散量推定方法を採用する。従って、本発明は、光ファイバ伝送路における波形歪みを補償する受信装置において、補償すべき波長分散量を高速に、かつ高精度に推定及び設定する波長分散補償回路を提供することができる。
 本発明に係る受信装置は、前記波長分散補償回路を含む。
 本発明に係る受信装置は、前記波長分散補償回路を備える。従って、本発明は、光ファイバ伝送路における波形歪みを補償する受信装置において、補償すべき波長分散量を高速に、かつ高精度に推定及び設定する受信装置を提供することができる。
 本発明は、光ファイバ伝送路における波形歪みを補償する受信装置において、補償すべき波長分散量を高速に、かつ高精度に推定及び設定する波長分散量推定方法、波長分散補償回路、及び受信装置を提供することができる。
本発明に係る波長分散量推定方法を説明する図である。 本発明に係る波長分散量推定方法を説明するフロー図である。 本発明に係る波長分散量推定方法を説明する図である。 本発明に係る波長分散量推定方法を説明するフロー図である。 本発明に係る波長分散量推定方法を説明するフロー図である。 本発明に係る波長分散量推定方法を説明する図である。 本発明に係る波長分散量推定方法を説明するフロー図である。 本発明に係る受信装置を説明する図である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
 図8は、本実施形態の受信装置300を説明する図である。受信装置300は波長分散補償回路101を含む。波長分散補償回路101は、光ファイバ伝送路から受信した光アナログ波形をデジタル信号に変換するアナログデジタル変換器11と、アナログデジタル変換器11が出力するデジタル信号が持つ光ファイバ伝送路の波長分散による波形歪みを、以下で説明する波長分散量推定方法で推定した分散補償量で補償するデジタル信号処理器12と、アナログデジタル変換器11が出力するデジタル信号に含まれる受信データのシンボル到来タイミングクロックを抽出し、シンボル到来タイミングクロックの強度をクロック検出値として出力するシンボルクロック抽出器13と、を備える。
 デジタル信号処理器12が行う波長分散量推定方法の実施形態を説明する。
(実施形態1)
 まず、粗調整プロセスとして、既知信号を用いた波長分散推定法などによって推定された粗推定値を初期値として分散補償回路に設定する。このとき、波長分散の大部分が補償され、推定誤差などによって生じる残留分散による波形歪みを受けた波形が分散補償回路から出力される。
 この後、微調整プロセスに入る。図1及び図2は、本実施形態の微調整プロセスを説明する図である。D(k)はデジタル信号処理器12に設定する分散補償量を示す。まず、第一段階として、初期値k=0の分散補償量D(0)を設定し、クロック同期の検出信号値を測定してメモリに記憶する。これをクロック検出値S(0)とする。次に、図1(a)にあるように、第一段階として、
[1]分散補償量D(0)からある一定量ΔDだけ正の方向にシフトさせる(分散補償量D(0)+Δ)。そして、クロック同期のクロック検出値S(0+)を測定して記憶する。
[2]同様に、分散補償量D(0)からある一定量ΔDだけ負の方向にシフトさせ(分散補償量D(0)-Δ)、その際のクロック同期のクロック検出値S(0-)を測定して格納する。
 一定量ΔDは、500psec/nm以下に設定することができるが、微調整プロセスで調整した後の波長分散ずれ量の目標値に基づいて設定することが好ましい。例えば、タップ数10~20であり、1タップあたりの遅延量が15~20psec/nmである適応フィルタを採用し、当該目標値が±100~150psec/nmであるならば、ΔDを25~150psec/nmに設定する。ΔDを細かく設定すれば微調整する精度が向上するが、微調整完了までに時間がかかることになる。従って、精度と時間とのバランスを考慮してΔDを設定することが望ましい。例えば、上記目標値であるならば、精度と時間とのバランスを考慮してΔDを50psec/nmに設定する。
 クロック検出値が大きい符号方向に最適値が存在すると考えられる。このため、S(0),S(0+),S(0-)を比較する。クロック検出値がS(0+)>S(0-)の場合、D(0)+ΔDを次の分散補償量D(1)に設定する。逆に、クロック検出値がS(0+)<S(0-)の場合、D(0)-ΔDを次の分散補償量D(1)に設定する。S(0+),S(0-)ともにS(0)より小さい場合、すなわち、S(0)>S(0+)かつS(0)>S(0-)の場合、分散補償量D(1)=D(0)とする。
 ここでは、S(0+)>S(0-)であった場合を想定し、分散補償量D(1)=D(0)+ΔDに設定したとして、以降のプロセスを説明する。
 図1(b)の第二段階として、分散補償量D(1)=D(0)+ΔDのクロック検出値S(1)を測定して記憶する。
[3]次に、分散補償量をさらに正の方向へΔDだけシフトさせ、D1+ΔDに設定した場合のクロック検出値S(1+)を検出してメモリに格納する。
 第一段階にて正の方向にシフトしたため、分散補償量を正の方向D(1)+ΔDへシフトしたが、第一段階にて負の方向へシフトした場合は、第二段階でも分散補償量を負の方向D(1)-ΔDへシフトすることになる。両者のクロック検出値S(1)とS(1+)を比較して、S(1+)>S(1)の場合には、分散補償量をD(2)=D(1)+ΔDに、S(1+)<S(1)の場合には、これで完了となる。
 上記の例では、分散補償量 D(1)とD(1)+ΔDのみを比較したが、逆側D(1)=D(0)-ΔDへもシフトして、検出信号の値S(1-)を測定、記憶するプロセスを追加してもよい。一方の符号方向のみシフトさせて最適化シーケンスを進める場合、第一ステップでの判定方向で、それ以降の全ステップのシフト方向が決定されるため、クロック検出信号には時間変動や検出誤差が想定される状況では、本来の最適な分散補償値に収束しない可能性がある。ステップ毎に正側へシフトした点、負側へシフトした点での検出信号を測定し、毎ステップにおいてシフト方向を判断することが可能になるメリットがある。ただし、D(1)-ΔD と D(0)は同じ値となるため、既に測定済みのポイントであるため、必ずしも検出する必要はない。
 ここでは、S(1+)<S(1)であった場合を想定し、分散補償量をD(2)=D(1)+ΔDに設定したとして、以降を説明する。
 図1(c)の第三段階としては、まず分散補償量D(2)でのクロック検出値S(2)を測定する。
[4]次に、分散補償量をD(2)を中心として、正方向にΔDだけシフトさせ、そこでのクロック検出値S(2+)を測定、メモリ格納する。そして、両者を比較して、S(2+)>S(2)の場合には、分散補償量をD(3)=D(2)+ΔDに、S(2+)<S(2)の場合には、これで完了となる。
 本実施形態の波長分散量推定方法は、以降同様のプロセスを繰り返すことで、最適な分散補償量に漸近させる方法である。
 ここで、本来検出信号には誤差が含まれるため、S(k+),S(k-),及びS(k)の差分が小さい場合には、再度S(k)を設定し、やり直し測定する選択がある。これにより、差分が小さく、最適値が正負どちらの方向に存在するか不確定な状況で、不確定な情報を元にシフトさせることは不安定な動作を引き起こす危険性を低減することができる。
 上記の手法では、各設定値におけるクロック検出信号の1回の測定値によって、分散補償量の設定値を決定していくプロセスになっている。従って、その測定における誤差が大きい場合には、最適化のシーケンスが不安定な動作となってしまう可能性がある。安定化するための手法として、各設定値に対して異なる時刻において複数回測定して、その平均値を比較することで正負符号のどちらの方向にシフトすべきかを判断することで、動作の安定化が期待される。
 上記の例では、分散補償量の初期値として、分散推定回路の粗推定値を利用したが、外部から与えられた分散値を設定する場合もある。このような例として、伝送路の分散量を予め分散測定器などで測定した場合などが考えられる。
(実施形態2)
 クロック同期回路の検出信号の残留分散依存性が局所的に揺らぐ可能性がある。この場合、第一の実施例では、局所的な変化のために正方向にシフトすべきか、負方向にシフトすべきかの判断が困難となる場合がある。本実施形態は、局所的な残留分散依存性がある状況であっても、平均化することで高精度に分散補償量のシフト方向を判定し、安定的に分散補償量の推定を行うことができる。
 図3は、本実施形態の微調整プロセスを説明する図である。図3(a)に示すように、それぞれの分散補償量D(k)において、D(k)からある微小量δDだけ分散補償量を正の方向にシフトさせる。そして、クロック同期のクロック検出値S(k+δ)を測定して記憶する。次に、D(k)から負の方向にδDだけシフトさせ、その際のクロック同期のクロック検出値S(k-δ)を測定してメモリに格納する。また、D(k)から2δDだけ正方向にシフトさせて、クロック同期のクロック検出値S(k+2δ)を測定してメモリに格納する。同様に、D(k)から-2δDだけシフトさせ、クロック同期のクロック検出値S(k-2δ)を測定してメモリに格納する。このように、正方向及び負方向にδDステップで分散補償量をシフトさせ、クロック検出値S(k±nδ)を検出してメモリに格納する。
 微少量δDは、図3の分散補償量に対するクロック検出値S(k)に発生するリップルの周期及び振幅に基づいて設定する。具体的には、微少量δDはリップルの周期以下とすればよい。例えば、リップルの振幅がクロック検出値S(k)の10%程度である場合、設定分散補償量D(k)をΔDシフトした際のクロック検出値S(k)の平均的な変動量はクロック検出値S(k)の10%未満とする。また、他の具体例として、微少量δDを一定量ΔDの1/3~1/50、好ましくは1/5~1/10とすることができる。さらに、具体的数値として、ΔDが25~150psec/nmである場合、δDを5~25psec/nm、好ましくは5~15psec/nmに設定する。
 これを定められたN回だけ繰り返す。Nも精度と時間とのバランスを考慮して設定する。例えば、Nは3以上7以下に設定する。そして、D(k)を中心としてδDステップでシフトして測定・記憶したクロック検出S(k±nδ)からD(k)での代表値を算出する。代表値を算出する方法としては、nに対する平均化処理(加算処理)を施し、平均値Savg(k)を算出する方法がある。例えば、Savg(k)の算出例を式で記述すると、次式のようになる。
Figure JPOXMLDOC01-appb-M000001
 図3(b)に示すように、ある分散補償量D(k)でSavg(k)を取得した後は、実施形態1で説明したように、ΔDだけ分散補償量をプラス側又はマイナス側にシフトさせ、上述のようにSavg(k+1)を取得する([1][2])。そして、分散補償量の方向を決定してさらにΔDだけ分散補償量をシフトさせてSavg(k+2)以降を順に取得する([3])。
 このように、本実施形態の波長分散量推定方法は、分散補償量D(k)のそれぞれにおいて、δDステップでシフトさせた周囲複数ポイントでのクロック検出値を平均化することで、局所的な変動がある場合でも安定化することができる。
(実施形態3)
 実施形態1及び2では、分散シフト幅がΔDであるため、これ以上細かく最適化することが不可能であった。本実施形態では、この点を解決する方法を述べる。
 まず、粗調整プロセス及び微調整プロセスの第一段階は、実施形態1の説明と同様である。なお、実施形態1では、kを設定番号として分散補償量D(k)を説明したが、本実施形態では、k,mを設定番号とし、分散補償量をD(k,m)で表すことにする。kは、正又は負方向のクロック検出値を比較する前半工程の試行番号であり、mは判定した方向へシフトする後半工程の試行回数に相当する。
 すなわち、S(0),S(0+),S(0-)を比較した結果、クロック検出値がS(0+)>S(0-)の場合、分散補償量をD(1,0)=D(0)+ΔDに設定する。逆に、クロック検出値がS(0+)<S(0-)の場合、分散補償量をD(1,0)=D(0)-ΔDに設定する。また、S(0)>S(0+)かつS(0)>S(0-)の場合、分散補償量をD(1,0)=D0とする。
 ここでは、S(0+)>S(0-)であった場合を想定し、分散補償量D(1,0)=D(0)+ΔDに設定したとして、以降のプロセスを説明する。
 前述のように第一段階の前半にて分散補償量が正の方向にシフトすると判定したため、第一段階の後半として、さらにΔDだけ正の方向にシフトし、分散補償量をD(1,0)+ΔDとする。第一段階の前半にて分散補償量が負の方向へシフトした場合は、第一段階の後半でも負の方向へΔDシフトすることになる。
 分散補償量D(1,0)+ΔDに設定した場合のクロック検出値S(1,0+)を検出してメモリに格納する。そして、D(1,0)のときのクロック検出値S(1,0)とD(1,0)+ΔDのときのクロック検出値S(1,0+)を比較して、S(1,0+)>S(1,0)の場合には、分散補償量をD(1,1)=D(1,0)+ΔDにシフトすると判断する。
 これは、図4のシフト是非判定において、Yesを選択した場合に相当する。この場合、さらに、ΔDだけ正方向にシフトさせ、D(1,1)+ΔDに設定してクロック検出値S(1,1+)を測定して記憶し、D(1,1)のクロック検出値S(1,1)とD(1,1)+ΔDのクロック検出値S(1,1+)を比較する。図中のシフト是非判定において、Yesを選択した場合は、シフト是非判定の手順を繰り返すことになる。
 一方、S(1,0+Δ)<S(1,0)の場合には、これ以上のΔDの幅でシフトする必要はないと判断する。これは、図4のシフト是非判定において、Noを選択した場合に相当する。この場合は、前半の試行回数カウントkをインクリメントして、シフト量をΔDからΔD/2に半減させ、正又は負方向の両シフト方向での検出信号強度の比較のステップに戻る。
 上記の例では、シフト是非判定のステップにおいて、分散補償量D(1,0)とD(1,0)+ΔDのみを比較したが、逆側D(1,0)-ΔDへもシフトして、検出信号の値S(1,0-Δ)を測定して記憶するプロセスを追加してもよい。
 一方の符号方向のみシフトさせる最適化シーケンスの場合、第一段階での判定方向で、それ以降の後半工程のシフト方向が決定されるため、クロック検出値には時間変動や検出誤差が想定される状況では、本来の最適な分散補償値に収束しない可能性もある。本実施形態では、各段階毎に分散補償値を正側へシフトした点、負側へシフトした点でのクロック検出値を測定し、毎段階においてシフト方向を判断することが可能になる。このため、本実施形態では、クロック検出値には時間変動や検出誤差が想定される状況でも本来の最適な分散補償値に収束できるメリットがある。なお、例えば上記の例ではD(1,0)-ΔDと既に測定済みのD(0)は同じ値となるため、必ずしもクロック検出値を検出する必要はない。
 次に第二段階の前半工程でを説明する。ここで第一段階の前半工程でプラス側へのシフトを選択し、後半工程の1回目のシフト是非判定ステップにおいてYes、2回目のシフト是非判定ステップにてNoとなった場合を想定して以下の説明を進める。つまり、第一段階での分散補償量はD(1,1)=D(0)+2ΔDで完了した場合を想定する。
 第二段階の前半では、k=2とした上で、D(1,1)=D0+2ΔDを中心として正方向及び負方向にΔD/2だけ変化させて、それぞれでの検出信号強度を測定して記憶し、より検出信号強度が大きくなる方向を判定する。それぞれD(1,1)+ΔD/2、D(1,1)-ΔD/2に設定した場合のクロック検出値S(1,1+ΔD/2)、S(1,1-ΔD/2)を検出してメモリに格納する。
 そして、両者を比較して、S(1,1+ΔD/2)>S(1,1-ΔD/2)の場合には、シフト方向は正側と判断し、分散補償量をD(2,0)=D(1,1)+ΔD/2に設定する。一方、S(1,1+ΔD/2)<S(1,1-ΔD/2)の場合には、シフト方向は負側と判断し、D(2,0)=D(1,1)-ΔD/2に設定する。
 また、S(1,1+ΔD/2),S(1,1-ΔD/2)ともにS(1,1)より小さい場合、すなわちS(1,1)>S(1,1+ΔD/2)かつS(1,1)>S(1,1-ΔD/2)の場合、D(2,0)=D(1,1)とする。
 次に、第二段階の後半の説明を行う。ここでは、第一段階と同様であり、第二段階の前半にて、分散補償量が正方向と判定された場合には、正の方向にΔD/2だけ更にシフトする。一方、分散補償量が負方向と判定された場合には、負の方向にΔD/2だけ更にシフトする。一方、分散補償量がシフトしないと判定された場合、これ以上ΔD/2の幅でシフトする必要がないと判断されるため、シフト是非判定にてNoの手順に進む。
 ここでは、分散補償量が負方向へシフトすると判断された場合を想定して説明する。分散補償量をさらに負方向へΔD/2だけシフトさせ、D(2,0)-ΔD/2に設定し、クロック検出値S(2,0-ΔD/2)を検出してメモリに格納する。そして、D(2,0)とD(2,0)-ΔD/2を比較して、S(2,0-ΔD/2)>S(2,0)の場合には、分散補償量をD(2,1)=D(2,0)-ΔD/2にシフトすると判断する。これは、図4のシフト是非判定において、Yesを選択した場合に相当する。この場合、さらに、ΔD/2だけ負方向にシフトさせて、検出信号を測定・記憶の手順し、シフト是非判定の手順を繰り返すことになる。
 一方、S(2,0-ΔD/2)<S(2,0)の場合には、これ以上のΔD/2の幅でシフトする必要はないと判断する。これは、図4のシフト是非判定において、Noを選択した場合に相当する。この場合は、試行回数カウント(k,n)をインクリメントして、正負方向の両シフト方向での検出信号強度の比較の第一段階に戻る。ただし、ここではシフト量をΔD/2からΔD/4に更に半減させる。以降、同様なプロセスを繰り返すことで、最適な分散補償量を検索する。
 このように、試行回数kが大きくなるにつれて、分散補償量のシフト幅をΔD/(2k-1)のように半減させていくことで、分散補償量の最適値を精度よく、さらに効率的に検索することができる。
(実施形態4)
 クロック同期回路の検出信号の残留分散依存性が局所的に揺らぐ可能性がある。この場合、実施形態3の波長分散量推定方法では、局所的な変化のために正方向にシフトすべきか、負方向にシフトすべきかの判断が困難になる可能性がある。また、シフト是非判定においても、シフト回数の判断が困難となる可能性がある。本実施形態では、局所的な残留分散依存性がある状況であっても、平均化することで、高精度に分散補償量のシフト方向を判定し、安定に動作させることができる。
 図5は、本実施形態の微調整プロセスを説明する図である。図5に示すように、それぞれの分散補償量設定値D(k,m)において、D(k,m)からある微小量δDだけ、分散補償設定値を正の方向にシフトさせる。そして、クロック同期のクロック検出値S(k,m+δ)を測定し、記憶する。次に、D(k,m)を中心として負の方向にδDだけシフトさせ、その際のクロック同期のクロック検出値S(k,m-δ)を測定し、メモリに格納する。また、初期設定値から2δDだけ正方向にシフトさせて、クロック同期のクロック検出値S(k,m+2δ)を測定、メモリに格納する。同様に、負方向にも初期値から-2δDだけシフトさせた設定値において、クロック同期のクロック検出信号S(k,m-2δ)を測定し、メモリに格納する。このように、正方向及び負方向にδDステップで分散補償量をシフトさせ、クロック検出値S(k,m±nδ)を検出し、メモリに格納する。これを定められたN回だけ繰り返す。
 そして、D(k)を中心としてδDステップでシフトして測定し記憶したクロック検出S(k,m±nδ)からD(k,m)での代表値を算出する。代表値を算出する方法としては、nに対する平均化処理(加算処理)を施し、平均値Savg(k,m)を算出する方法がある。例えば、Savg(k,m)の算出例を式で記述すると、次式のようになる。
Figure JPOXMLDOC01-appb-M000002
このように、本実施形態の波長分散量推定方法は、分散補償量D(k,m)のそれぞれにおいて、δDステップでシフトさせた周囲複数ポイントでのクロック検出値を平均化することで、局所的な変動がある場合でも安定化することができる。
(実施形態5)
 クロック同期回路の検出信号の残留分散依存性が局所的に揺らぐ可能性がある。この場合、実施形態3の波長分散量推定方法では、局所的な変化のために正方向にシフトすべきか、負方向にシフトすべきかの判断が困難になる可能性がある。本実施形態では、局所的な残留分散依存性がある状況であっても、平均化することで、高精度に分散補償量のシフト方向を判定し、安定に動作させることができる。
 図7は、本実施形態の波長分散量推定方法の微調整プロセスを説明する図である。事前に行う粗調整プロセスは実施形態1の説明と同様である。
 続く微調整プロセスは以下の通りである。分散補償回路に分散補償量の初期値D(0)を設定した場合のサンプリングクロック抽出回路のクロック検出信号値を測定して記憶する。これをS(0)とする。次に、図6(a)に示すように、初期値D(0)からある微小量δDだけ分散補償量を正の方向にシフトさせる。そして、クロック検出値S(0+δ)を測定して記憶する。次に、初期値D(0)からある微小量δDだけ分散補償量を負の方向にシフトさせ、その際のクロック検出値S(0-δ)を測定してメモリに格納する。また、初期値D(0)から2δDだけ正方向にシフトさせて、クロック同期のクロック検出値S(0+2δ)を測定してメモリに格納する。同様に、負方向にも初期値D(0)から-2δDだけシフトさせて、クロック同期のクロック検出値S(0-2δ)を測定してメモリに格納する。このように、正方向及び負方向にδDステップでクロック検出値S(0±nδ)を検出し、メモリに格納する。これをN回だけ繰り返す。
 次の段階として、図6(b)に示すように、D(0)を中心としてΔDだけ正方向にシフトさせ、クロック検出値S(0+Δ)を検出してメモリに格納する([1])。さらに、δDステップで正方向及び負方向にシフトさせて、クロック検出値S(0+Δ±nδ)を検出してメモリに格納する。これをN回だけ繰り返す。ここで、一般には、δDはΔDに比較して小さい量を考える。
 同様に、図6(b)に示すように、D(0)を中心としてΔDだけ負方向にシフトさせてクロック検出値S(0-Δ)を検出してメモリに格納する([2])。加えて、δDステップで正方向及び負方向にシフトさせて、クロック検出値S(0-Δ±nδ)を検出し、メモリに格納する。これをN回だけ繰り返す。
 さらに次の段階として、図6(c)に示すように、D(0)を中心として、2ΔDだけ正方向にシフトさせ、クロック検出値S(0+2Δ)を検出してメモリに格納する([3])。さらに、δDステップで正方向及び負方向にシフトさせて、クロック検出値S(0+2Δ±nδ)を検出し、メモリに格納する。同様に、D(0)を中心として、2ΔDだけ負方向にシフトさせてクロック検出値S(0-2Δ)を検出してメモリに格納する([4])。加えて、δDステップで正方向及び負方向にシフトさせて、クロック検出値S(0-2Δ±nδ)を検出し、メモリに格納する。これをN回だけ繰り返す。
 以降のステップとしても、同様の手順を繰り返し、自然数kが設定された最大値Kとなるまでクロック検出値S(0+kΔ±nδ)を検出、メモリ格納を繰り返す。ただし、n=0,1,・・・,Nである。
 k=0,1,・・・,Kにおいて得られたクロック検出値S(0+kΔ±nδ)についてnに対して平均化してk=0,1,・・・,Kの中から最適値を判断する。平均化の一例としては、それぞれのkにおけるクロック検出値S(0+kΔ±nδ)に対して、nで平均化処理(加算処理)を施し、それぞれの平均値Savg(0+kΔ)を算出する。例えば、Savg(0+kΔ)の算出例を式で記述すると、次式のようになる。
Figure JPOXMLDOC01-appb-M000003
 他の実施形態として、忘却係数を用いた平均化の方法も考えられる。平均化途中の値をSavg(0+kΔ,n)と定義すると、以下の演算を忘却係数をα、Savg(0+kΔ,0)=0を初期値として、n=0,1,・・・,Nまで繰り返すことで、最終的な平均値Savg(0+kΔ)= Savg(0+kΔ,N)を得ることができる。
Figure JPOXMLDOC01-appb-M000004
 そして、分散補償量の最適値の選択方法としては、クロック検出値の平均値Savg(0+kΔ)が最大となるkを検索し、それを最適なkとしてもよい。
 以上説明した様に,本発明によれば,光通信システムの波長分散補償回路の補償量に対して微小な変化を与え、クロック検出信号をモニタ信号として最適な補償量を探索する際に、与える変化量を試行回数の度に半減させていくことで効率的に最適な分散補償量を検出することができる。
11:アナログデジタル変換器
12:デジタル信号処理器
13:シンボルクロック抽出器
15:光ファイバ
101:波長分散補償回路
300:受信装置

Claims (9)

  1.  光ファイバ伝送路の波長分散による波形歪みを補償する際の分散補償量を推定する波長分散量推定方法であって、
     第k(kは整数)番目の分散補償量D(k)の初期値(k=0)である分散補償量D(0)を設定する初期値設定手順と、
     受信データに含まれるシンボル到来タイミングクロックの分散補償量D(k)における強度をクロック検出値S(k)として検出し、記憶するクロック検出手順と、
     前記分散補償量D(k)を所定量ΔDだけプラス側にシフトした分散補償量D(k)+ΔDにおける前記シンボル到来タイミングクロックの強度をクロック検出値S(k+)として検出し、記憶するプラス側シフト手順と、
     前記分散補償量D(k)を所定量ΔDだけマイナス側にシフトした分散補償量D(k)-ΔDにおける前記シンボル到来タイミングクロックの強度をクロック検出値S(k-)として検出し、記憶するマイナス側シフト手順と、
     前記クロック検出値S(k)、前記クロック検出値S(k+)及び前記クロック検出値S(k-)を比較する比較手順と、
     前記比較手順の結果、前記クロック検出値S(k)が最大である場合、前記分散補償量D(k)を最適分散補償量として決定して前記分散補償量の推定を完了し、前記クロック検出値S(k+)又は前記クロック検出値S(k-)が最大である場合、最大の前記クロック検出値の前記分散補償量を第k+1番目の分散補償量D(k+1)として前記クロック検出手順、前記プラス側シフト手順、前記マイナス側シフト手順及び前記比較手順を再度行うことを決定する判定手順と、
    を行うことを特徴とする波長分散量推定方法。
  2.  前記初期値設定手順の前に前記分散補償量の概略値を取得し、前記分散補償量の概略値を前記初期値設定手順における前記分散補償量D(0)とする概略分散補償量取得手順を有することを特徴とする請求項1に記載の波長分散量推定方法。
  3.  許容繰返し回数K(Kは自然数)が設定されており、
     前記判定手順で、kとKを比較し、k=Kとなったときに前記分散補償量の推定を完了することを特徴とする請求項1又は2に記載の波長分散量推定方法。
  4.  前記プラス側シフト手順及び前記マイナス側シフト手順で前記分散補償量をシフトする前記所定量ΔDが、前記シンボル到来タイミングクロックを検出可能な分散耐力を前記許容繰返し回数Kで割った量であることを特徴とする請求項3に記載の波長分散量推定方法。
  5.  前記プラス側シフト手順及び前記マイナス側シフト手順で前記分散補償量をシフトする前記所定量ΔDより小さい微少量δDが設定されており、
     前記クロック検出手順において、前記分散補償量D(k)におけるクロック検出値S(k±0)、及び前記分散補償量D(k)を中心として分散補償量D(k)±nδD(nは自然数)におけるクロック検出値S(k±nδ)を検出し、クロック検出値S(k±0)及びクロック検出値S(k±nδ)を平均化して前記クロック検出値S(k)とし、
     前記プラス側シフト手順において、前記分散補償量D(k)+ΔDにおけるクロック検出値S(k±0+)、及び前記分散補償量D(k)+ΔDを中心として分散補償量D(k)+ΔD±nδD(nは自然数)におけるクロック検出値S(k±nδ+)を検出し、クロック検出値S(k±0+)及びクロック検出値S(k±nδ+)を平均化して前記クロック検出値S(k+)とし、
     前記マイナス側シフト手順において、前記分散補償量D(k)-ΔDにおけるクロック検出値S(k±0-)、及び前記分散補償量D(k)-ΔDを中心として分散補償量D(k)-ΔD±nδD(nは自然数)におけるクロック検出値S(k±nδ-)を検出し、クロック検出値S(k±0-)及びクロック検出値S(k±nδ-)を平均化して前記クロック検出値S(k-)とすることを特徴とする請求項1又は2に記載の波長分散量推定方法。
  6.  前記クロック検出手順、前記プラス側シフト手順及び前記マイナス側シフト手順の少なくとも1つは、所定時間間隔で複数回繰り返されることを特徴とする請求項1又は2に記載の波長分散量推定方法。
  7.  前記判定手順で、前記クロック検出値S(k)と前記クロック検出値S(k+)との差及び前記クロック検出値S(k)と前記クロック検出値S(k-)との差が所定の閾値未満の場合、前記分散補償量D(k)を最適分散補償量として決定して前記分散補償量の推定を完了することを特徴とする請求項1又は2に記載の波長分散量推定方法。
  8.  前記光ファイバ伝送路から受信した光アナログ波形をデジタル信号に変換するアナログデジタル変換器と、
     前記アナログデジタル変換器が出力する前記デジタル信号が持つ前記光ファイバ伝送路の波長分散による波形歪みを、請求項1から7のいずれかに記載の波長分散量推定方法で推定した前記分散補償量で補償するデジタル信号処理器と、
     前記アナログデジタル変換器が出力する前記デジタル信号に含まれる受信データのシンボル到来タイミングクロックを抽出し、前記シンボル到来タイミングクロックの強度を前記クロック検出値として出力するシンボルクロック抽出器と、
    を備える波長分散補償回路。
  9.  請求項8に記載の波長分散補償回路を含む受信装置。
PCT/JP2012/051427 2011-01-24 2012-01-24 波長分散量推定方法、波長分散補償回路、及び受信装置 WO2012102264A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012554799A JP5663604B2 (ja) 2011-01-24 2012-01-24 波長分散量推定方法、波長分散補償回路、及び受信装置
CN201280011421.3A CN103620986B (zh) 2011-01-24 2012-01-24 波长色散量推测方法、波长色散补偿电路以及接收装置
US13/981,298 US9178614B2 (en) 2011-01-24 2012-01-24 Method for estimating amount of wavelength dispersion, wavelength dispersion compensation circuit, and receiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-011544 2011-01-24
JP2011011544 2011-01-24

Publications (1)

Publication Number Publication Date
WO2012102264A1 true WO2012102264A1 (ja) 2012-08-02

Family

ID=46580830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051427 WO2012102264A1 (ja) 2011-01-24 2012-01-24 波長分散量推定方法、波長分散補償回路、及び受信装置

Country Status (4)

Country Link
US (1) US9178614B2 (ja)
JP (1) JP5663604B2 (ja)
CN (1) CN103620986B (ja)
WO (1) WO2012102264A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406919B (zh) * 2014-09-15 2019-08-23 中兴通讯股份有限公司 一种色散补偿的方法及装置
JP6288143B2 (ja) * 2015-10-19 2018-03-07 日本電信電話株式会社 コヒーレント光受信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048231A1 (fr) * 1998-03-19 1999-09-23 Fujitsu Limited Procede et dispositif d'egalisation de dispersion de longueurs d'onde
WO2007141846A1 (ja) * 2006-06-06 2007-12-13 Fujitsu Limited 分散補償制御装置および分散制御量探索方法
JP2010178222A (ja) * 2009-01-30 2010-08-12 Fujitsu Ltd 歪み補償装置,光受信装置及び光送受信システム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3649556B2 (ja) * 1997-08-20 2005-05-18 富士通株式会社 波長分散制御のための方法と装置及び分散量検出方法
US6081360A (en) * 1997-08-20 2000-06-27 Fujitsu Limited Method and apparatus for optimizing dispersion in an optical fiber transmission line in accordance with an optical signal power level
JP3770711B2 (ja) * 1997-09-11 2006-04-26 富士通株式会社 タイミング信号生成装置及び方法
JP3288023B2 (ja) * 1998-10-27 2002-06-04 日本電信電話株式会社 光伝送システム
JP3771755B2 (ja) 1999-08-11 2006-04-26 日本電信電話株式会社 光自動等化器
JP4011290B2 (ja) * 2001-01-10 2007-11-21 富士通株式会社 分散補償方法、分散補償装置および光伝送システム
US7536108B2 (en) * 2001-06-29 2009-05-19 Nippon Telegraph & Telephone Corporation High precision chromatic dispersion measuring method and automatic dispersion compensating optical link system that uses this method
JP4138557B2 (ja) * 2003-03-31 2008-08-27 富士通株式会社 波長分散補償制御システム
JP3853818B2 (ja) * 2003-04-30 2006-12-06 富士通株式会社 光伝送ネットワーク、光伝送装置、分散補償器配置計算装置及び分散補償器配置計算方法
JP4516907B2 (ja) * 2005-08-26 2010-08-04 富士通株式会社 光受信装置およびその制御方法
JP4744312B2 (ja) * 2006-01-31 2011-08-10 富士通株式会社 波長分散モニタ方法および装置、並びに、光伝送システム
JP4818142B2 (ja) * 2007-02-06 2011-11-16 富士通株式会社 光受信装置およびその制御方法、並びに、光伝送システム
JP5004181B2 (ja) 2008-01-11 2012-08-22 Kddi株式会社 領域識別装置およびコンテンツ識別装置
WO2009144997A1 (ja) 2008-05-27 2009-12-03 日本電気株式会社 光ファイバの分散検出装置およびそれを用いた自動分散補償システム
JP5169710B2 (ja) * 2008-10-10 2013-03-27 富士通株式会社 光受信装置および分散補償シーケンス制御方法
US8045856B2 (en) * 2008-10-31 2011-10-25 Ciena Corporation Polarization mode dispersion compensation and polarization demultiplexing systems and methods for optical transmission systems
WO2010116477A1 (ja) * 2009-03-30 2010-10-14 富士通株式会社 光通信装置及び分散補償方法
US8787769B2 (en) 2009-07-17 2014-07-22 Nippon Telegraph And Telephone Corporation Chromatic dispersion value calculating apparatus, optical signal receiving apparatus, optical signal transmitting apparatus, and chromatic dispersion value calculation method
JP5504759B2 (ja) * 2009-08-31 2014-05-28 富士通株式会社 光伝送装置、光伝送装置用送受信モジュール及び光伝送システムならびに光伝送装置における波長分散補償方法
JP5712935B2 (ja) * 2010-01-05 2015-05-07 日本電気株式会社 波長分散を検出する方法及び装置並びに波長分散を補償する方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048231A1 (fr) * 1998-03-19 1999-09-23 Fujitsu Limited Procede et dispositif d'egalisation de dispersion de longueurs d'onde
WO2007141846A1 (ja) * 2006-06-06 2007-12-13 Fujitsu Limited 分散補償制御装置および分散制御量探索方法
JP2010178222A (ja) * 2009-01-30 2010-08-12 Fujitsu Ltd 歪み補償装置,光受信装置及び光送受信システム

Also Published As

Publication number Publication date
US9178614B2 (en) 2015-11-03
JP5663604B2 (ja) 2015-02-04
JPWO2012102264A1 (ja) 2014-06-30
CN103620986A (zh) 2014-03-05
US20140016929A1 (en) 2014-01-16
CN103620986B (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
US7822350B2 (en) Reconstruction and restoration of two polarization components of an optical signal field
US9686020B2 (en) Signal processing device and signal processing method
US8488961B2 (en) Dispersion determining apparatus and automatic dispersion compensating system using the same
US20090116844A1 (en) Electrical-dispersion compensating apparatus, optical receiving apparatus, and optical receiving method
JP2010504694A (ja) 光信号フィールドの復元および修復
US8903255B2 (en) Polarization-multiplexed signal receiver, polarization multiplexing system and polarization-multiplexed signal receiving method
JP5495120B2 (ja) 光受信装置、光受信方法及び光受信装置の制御プログラム
JP5663604B2 (ja) 波長分散量推定方法、波長分散補償回路、及び受信装置
JP5263289B2 (ja) 光ファイバの分散検出装置およびそれを用いた自動分散補償システム
US20080181616A1 (en) Wavelength dispersion compensation control device and method thereof
JP5663606B2 (ja) 波長分散量推定方法、波長分散補償回路、及び受信装置
US10999659B2 (en) Optical network device and method for monitoring transmission line
JP7057500B2 (ja) 受信装置及び受信方法
JP2011035662A (ja) 分散補償装置
CN102111207A (zh) 高速相移键控(dpsk)光信号的分集探测-联合判决方法和系统
US20230396332A1 (en) Device and method for estimating characteristics of optical fiber transmission line
CN110971302B (zh) 一种低速延时采样估计光纤色散的装置与方法
Downie et al. Characterization of 30 μm Core Diameter Multimode Fiber for 200 Gb/s PM-16QAM Transmission at 1550 nm
Castro et al. Spectral-temporal imaging techniques for real time characterization of high speed VCSEL mode interaction.
Zhou et al. Bit rate identification using asynchronous delay-tap sampling
JP2004325249A (ja) 波長分散測定方法及び装置
BR102013004639B1 (pt) Método para estimar a dispersão cromática em sistemas de comunicações ópticas coerentes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554799

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13981298

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12739445

Country of ref document: EP

Kind code of ref document: A1