WO2012100618A1 - 利用双效反应器结合水泥生产处理废气的方法及其系统 - Google Patents

利用双效反应器结合水泥生产处理废气的方法及其系统 Download PDF

Info

Publication number
WO2012100618A1
WO2012100618A1 PCT/CN2011/084683 CN2011084683W WO2012100618A1 WO 2012100618 A1 WO2012100618 A1 WO 2012100618A1 CN 2011084683 W CN2011084683 W CN 2011084683W WO 2012100618 A1 WO2012100618 A1 WO 2012100618A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
incineration
reaction chamber
double
waste
Prior art date
Application number
PCT/CN2011/084683
Other languages
English (en)
French (fr)
Inventor
梁青照
Original Assignee
圣达瀚科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 圣达瀚科技有限公司 filed Critical 圣达瀚科技有限公司
Priority to US13/981,230 priority Critical patent/US8795616B2/en
Publication of WO2012100618A1 publication Critical patent/WO2012100618A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • C04B7/4407Treatment or selection of the fuel therefor, e.g. use of hazardous waste as secondary fuel ; Use of particular energy sources, e.g. waste hot gases from other processes
    • C04B7/4446Treatment or selection of the fuel therefor, e.g. use of hazardous waste as secondary fuel ; Use of particular energy sources, e.g. waste hot gases from other processes the fuel being treated in a separate gasifying or decomposing chamber, e.g. a separate combustion chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0225Other waste gases from chemical or biological warfare
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • B01D2258/0291Flue gases from waste incineration plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/095Exhaust gas from an external process for purification

Definitions

  • the present invention relates to a method for treating exhaust gas using a dual purpose reactor (DPR), and more particularly to a method for treating exhaust gas and increasing cement production by using a double effect reactor in combination with a cement production system.
  • DPR dual purpose reactor
  • the acid gas generated in the production of exhaust gas and cement is removed and the dioxins and their precursors are completely removed, and thermal energy recovery can be achieved.
  • incineration In contemporary methods of treating waste, incineration is widely used, including industrial waste, medical waste, hazardous waste, or municipal solid waste. A large number of toxic and harmful gas wastes, especially acid gases and toxic substances such as dioxins, are generally produced during incineration. Incineration If the waste gas is handled unreasonably and effectively, it will impose a serious burden on human life.
  • Dioxins also known as dioxins, are colorless, odorless, and highly toxic fat-soluble substances. They are not a single substance, but are similar in structure and properties. Two major classes of organic compounds or isomers. Dioxins include more than 200 compounds. These substances are very stable, have a high melting point, are extremely insoluble in water, are soluble in most organic solvents, and are colorless and odorless fat-soluble substances, so they are very easy to accumulate in living organisms.
  • dioxins can be formed either by the presence of hydrocarbon organics and inorganic chlorides in the presence of a catalyst, or by the precursor organic chloride of dioxins. It is widely believed that hydrocarbons and organic chlorides react chemically to form dioxins during incineration. From the current research, there are several reasons for the formation of dioxins:
  • Incineration temperature is less than 800 during incineration of chlorine-containing plastics such as vinyl chloride. C, chlorine-containing garbage does not completely burn, it is easy to generate dioxins.
  • waste gas generated by high-temperature incineration must be deacidified and detoxified before discharge to prevent a major threat to human health and the environment.
  • Efficient processing technology can greatly reduce the burden on the environment and production costs.
  • the present invention provides a method and system for treating exhaust gas and increasing cement production in combination with a cement production system, namely, Cement Processing - Oxidative Waste & Energy Recovery (C-POWER), which has been achieved.
  • C-POWER Cement Processing - Oxidative Waste & Energy Recovery
  • DPR dual purpose reactor
  • the present invention provides a method for treating incineration flue gas and increasing cement production using a double effect reactor in combination with a cement production system consisting of a connected incineration reaction chamber and a gas-solid suspension mixing chamber.
  • the method includes the following steps: (a) inputting the high temperature gas generated by the cooling of the clinker in the cement production through the high temperature gas passage to the incineration reaction chamber of the double effect reactor;
  • the gas in the incineration reaction chamber and the alkaline material or waste residue are passed from the incineration reaction chamber into the gas-solid suspension mixing chamber of the double-effect reactor and spirally advanced, and thoroughly mixed in the gas-solid suspension mixing chamber. Reaction, acid gas, dioxins and dioxin precursors are removed;
  • the incineration flue gas may be an incinerator, such as a rotary incinerator, high-temperature incineration of industrial waste, medical waste, hazardous waste, or smoke generated by municipal solid waste.
  • an incinerator such as a rotary incinerator, high-temperature incineration of industrial waste, medical waste, hazardous waste, or smoke generated by municipal solid waste.
  • the high temperature gas produced by the cooling of the clinker in the cement production stage is from a grate cooler in the clinker calcination stage.
  • the high temperature gas from the bypass venting system of the clinker calcination stage is also fed to the incineration reaction chamber of the double effect reactor via the high temperature gas passage.
  • the high temperature gas generated by the cooling of the clinker in the cement production process can be passed to the rotary incinerator of the incineration system.
  • high calorific value waste or fuel also enters the incinerator of the incineration system.
  • the residence time of the high calorific value waste or fuel in the incineration reaction chamber is not less than 2 seconds.
  • steps 850 to 950 are maintained in steps (c) through (e).
  • the temperature preferably, is maintained at 850 to 920.
  • the temperature of C most preferably, is maintained at 860 to 890. C.
  • the amount of the alkaline material or waste residue is from 20 to 85 times the molar mass required for the chemical reaction.
  • the residence time of the incineration flue gas in the incineration reaction chamber and the gas-solid suspension mixing chamber is 6 to 10 seconds, preferably 8 to 10 seconds.
  • the present invention also provides a system for a method of treating exhaust gas using a double effect reactor in combination with a cement production system, comprising: a double effect reactor 10, a high temperature dust collector 20, a heat recovery and dedusting system 30 The three-way valve 40 and the individual chimney 60, wherein the double-effect reactor 10 is composed of a connected incineration reaction chamber 11 and a gas-solid suspension mixing chamber 12.
  • the incineration reaction chamber 11 and the rotary incinerator 132 are connected by a high temperature gas passage, and the incineration flue gas discharged from the rotary incinerator 132 enters the incineration reaction chamber 11.
  • the incineration flue gas from the rotary incinerator 132 enters the gas-solid suspension mixing chamber 12.
  • the incineration reaction chamber 11 and the rotary incinerator 132 are connected to the clinker system 52 of the cement production system 50 through a high temperature gas passage to receive the cement production, such as from the clinker cooler 524.
  • the high temperature gas in addition, the incineration reaction chamber 11 has an inlet to receive an alkaline material or alkaline waste from the raw meal preparation and homogenization system 51, such as from a raw meal homogenization reservoir.
  • the three-way valve 40 is in communication with the high temperature dust collector 20, the incineration reaction chamber 11 and the rotary kiln 523, respectively.
  • the decomposed alkaline solid material enters the rotary kiln in the cement calcining system through a three-way valve. If the cement rotary kiln cannot receive the material, the alkaline material can be transferred to the incineration reaction chamber.
  • the incineration system 13 includes a feeder 131 and a rotary incinerator 132, and waste, such as industrial waste, medical waste, hazardous waste, or municipal solid waste, enters the rotary incinerator 132 from the feeder 131, and is in the rotary incinerator 132.
  • waste such as industrial waste, medical waste, hazardous waste, or municipal solid waste
  • the incineration flue gas is dried, incinerated, and sent to the incineration reaction chamber 11 for further processing.
  • the cement clinker calcining system 52 is composed of a preheater 521, a decomposition furnace 522, a rotary kiln 523, and a grate cooler 524.
  • the cement production system has its own chimney 54, which is used to discharge the fumes from the clinker calcination process.
  • the bypass venting system 55 of the cement production system consists of a quencher 551 and a heat recovery and dust collector 552. Sulphur, chlorine, potassium, sodium, etc. from the cement rotary kiln The high-temperature flue gas is quenched by the quencher 551, and then sent to the energy recovery and dust collector 552 for energy recovery and dust removal. The dust after the dust removal is discharged into the atmosphere through the smoke, and the recovered dust is sent to the cement grinding system 53 for use as a mixed material.
  • the present invention has the following advantages:
  • the alkaline material produced in the cement production is mixed with the waste gas and the harmful gas in the incineration flue gas in a high-temperature environment, and the entire exhaust gas treatment process is initially
  • the hazardous gas treatment begins at the stage, and all harmful gases have been processed before entering the heat recovery boiler. The steps are advanced, effectively reducing the corrosion of the acid gas to the equipment.
  • the purified exhaust gas discharged from the double-effect reactor does not generate harmful gases such as dioxins during the cooling process of heat recovery, so the available space of the thermal energy is 850 to 950. C to about 120 ⁇ 150. C, thus comparing the existing harmful gas purification-heat recovery system with higher heat recovery efficiency.
  • the harmful gases are heated to 850 ⁇ 950 in the incineration reaction chamber.
  • C enter the gas-solid suspension mixing chamber under high temperature conditions, and the whole process stays for 6 to 10 seconds. Therefore, the incineration of the reaction chamber is extremely thorough in the removal of dioxins and dioxin-forming hydrocarbon organic compounds, organic chlorides, and inorganic chlorides, and the effect is far superior to the existing methods.
  • the generation of nitrogen oxides ( ⁇ ) is controlled to be lower by introducing a sufficient amount of a reducing agent such as urea and ammonia into the gas-solid suspension mixing mode.
  • a reducing agent such as urea and ammonia
  • the output of cement production can be increased by no less than 10% of the original production.
  • excess sulfur, chlorine, potassium, sodium and the like produced by the cement production system can also be discharged, cooled, solidified and collected by the bypass venting system, and used as cement powder. Ground mixture.
  • the exhaust gas treatment method and system thereof provided by the present invention have continuous operation under high temperature conditions It operates, absorbs acid gases and eliminates the function of dioxins and their precursors, including hydrocarbon organics, organic chlorides and inorganic chlorides.
  • the system can highly eliminate harmful substances such as organic matter particles, CO, S0 2 , HC1, HF acid gas and dioxins in organic matter, toxicity and acid gases, while maintaining or increasing the temperature of the processing gas, making it a A stable source of heat available.
  • the toxicity and acid gases of the toxic gas are highly purified, the original harmful gas resources are realized.
  • FIG. 1 is a flow chart of a specific embodiment of an exhaust gas treatment method according to the present invention.
  • FIG. 2 is a schematic structural view of a specific embodiment of an exhaust gas treatment system using the exhaust gas treatment method shown in FIG. 1;
  • FIG. 1 is a flow chart showing a specific embodiment of an exhaust gas treatment method according to the present invention, the method comprising:
  • Step S101 the high temperature gas generated during the cooling process of the clinker calcination stage in the cement production is input to the incineration reaction chamber of the double effect reactor through the high temperature flue gas passage.
  • the high temperature gas can also be supplied to the rotary incinerator of the incineration system through the high temperature flue gas passage.
  • the production of cement mainly comprises three stages: raw material preparation, clinker calcination, cement grinding.
  • Raw material preparation mainly refers to: firstly extracting raw materials (mainly limestone or clay); secondly, crushing or hammering the raw materials into pieces; then grinding to obtain raw materials to ensure raw materials can be Perform high quality mixing.
  • Raw materials for cement production are basically The physical and chemical properties of the alkaline materials and/or waste residues required for the double-effect reactor of the present invention can be met.
  • Clinker calcination refers to: four steps of drying or preheating, calcining (heat treatment, calcium oxide formation in the process), and calcination (sintering) and cooling. Calcination is a core part of this process.
  • the raw meal is continuously weighed and fed to the cyclone at the top of the preheater.
  • the material in the preheater is heated by the rising hot air. Inside the huge rotary kiln, the material is at 1450.
  • C The soil material is ground into a powder and processed to form cement clinker by calcination and grinding.
  • the temperature of the clinker after calcination is high, and it is cooled by a grate cooler. During the cooling process, the grate cooler collected approximately 250. C to 350.
  • C high temperature gas The high temperature gas can be delivered to the incineration reaction chamber of the double effect reactor by a high temperature gas passage to provide the y3 ⁇ 4J warm oxygen required for combustion.
  • the high temperature gas may also be delivered to the rotary incinerator of the incineration system by a high temperature gas passage.
  • step S102 the alkaline material or waste residue (mainly cement raw material) produced in the cement production is input to the incineration reaction chamber of the double-effect reactor.
  • the alkaline material or waste used in the present invention is a powdery solid.
  • the main raw materials are limestone raw materials and clay raw materials.
  • the limestone raw material refers to limestone, marl, chalk, shells and combinations thereof containing calcium carbonate as a main component, and also contains a certain amount of alkaline raw materials such as calcium hydroxide;
  • the clay raw material is kaolin, montmorillonite Stone, hydromica, other hydrated aluminosilicates and combinations thereof.
  • the amount of the alkaline material in the incineration reaction chamber is 20 to the molar mass required for the chemical reaction. 85 times, far more than the double acid removal and detoxification effect of harmful substances such as acid gas.
  • the alkaline material and/or waste used in step S102 is primarily derived from a homogenization reservoir of the cement raw meal preparation and homogenization system. These alkaline materials and/or waste residues can be directly fed to the incineration reaction reaction chamber for use in exhaust gas treatment.
  • the alkaline raw meal produced by the cement production can be input to the incineration reaction furnace for use in exhaust gas treatment.
  • the alkali content of the raw meal is insufficient to achieve the desired molar mass of the acid gas in the flue gas to be treated (usually judged from the content of acid gas in the gas of the system dry), it is also required to be added to the cement production. Used limestone.
  • Step S103 injecting high calorific value waste or fuel into the incineration reaction chamber of the double effect reactor to increase and stabilize the temperature of the incineration reaction chamber.
  • Adding high calorific value waste or fuel can serve the following purposes: 1. Provide thermal energy to maintain a double-effect reactor, including a gas-solid suspension mixing chamber that is stable at 850. Above C; 2. Provide heat to increase the temperature of the air outside the combustion to 850. Above C, the air enters the gas-solid suspension mixing chamber through the incineration reaction chamber to ensure that the oxygen content of the outlet flue gas is not less than 8%; 3. Provide thermal energy to decompose the alkaline raw material for cement production.
  • the fuel used may be fuel or pulverized coal or gas.
  • the residence time of the fuel in the incineration reaction chamber is not less than 2 seconds.
  • fuel nozzles can be used to inject fuel into the incineration reaction chamber in order to achieve sufficient fuel and oxygen contact for greater combustion.
  • the high calorific value waste or fuel can be added to a rotary incinerator of an incineration system to increase and stabilize the temperature of the rotary incinerator.
  • Step S104 incineration flue gas from an incinerator, such as a rotary incinerator, is input to an incineration reaction chamber of a double effect reactor, and/or a gas-solid suspension mixing chamber.
  • an incinerator such as a rotary incinerator
  • the treated incineration flue gas may be high temperature incineration industrial waste, medical waste, hazardous waste or municipal solid waste.
  • acid gases such as CO, S0 2 , HC1 and HF are generated, and a large amount of particles such as dioxin precursor components and toxic organic substances are generated. Since the waste incineration uses a high-temperature incineration process, the temperature of these gases generated in the incineration is high.
  • these high temperature flue gases are first introduced into the incineration reaction chamber of the double effect reactor. In one aspect of the invention, these high temperature flue gases can also be fed to a gas-solid suspension mixing chamber of a double effect reactor.
  • Step S105 at a high temperature, the flue gas in the incineration reaction chamber of the double-effect reactor is thoroughly mixed with the alkaline material or waste into the gas-solid suspension mixing chamber of the double-effect reactor, the acid gas in the exhaust gas, Persistent organic pollutants and dioxins and dioxin-forming components are removed.
  • the gas-solid suspension mixing chamber may be squirting, swirling, or squirting and swirling compounding
  • the mode of the type makes the alkaline material form a vortex in the exhaust gas flow to achieve the uniform distribution of the alkaline material in the gas-solid suspension mixing chamber and to fully mix and contact with the hot flue gas.
  • the gas-solid suspension mixing chamber employs a mode of squirting and swirling composite.
  • sufficient reducing agents such as urea and ammonia may be added to the gas-solid suspension mixing chamber to reduce the production of nitrogen oxides (NO x ) to less than 100 mg/Nm 3 .
  • Steps S102 to S105 are both maintained at 850 to 950. Occurs between C.
  • steps 850 to 920 are maintained in steps S102 to S105.
  • the temperature of C most preferably, is maintained at 860 to 890 in steps S102 to S105 in the method.
  • the residence time of the exhaust gas in the double effect incineration reactor is 6 to 10 seconds, preferably 8 to 10 seconds.
  • Step S106 the gas powder mixture enters the high temperature dust collector, the gas and solid separation, and the gas is discharged.
  • the gas after gas-solid separation is passed through a heat recovery and dust removal system, and then the non-toxic gas is discharged out of the system.
  • the method of the present invention is maintained at a temperature of 120 to 150 by a stable chimney discharge temperature. Non-toxic gas above C.
  • the gases processed by the method and system of the present invention are discharged using a separate chimney.
  • An independent chimney refers to a gas or exhaust gas that is not used to discharge from other systems, equipment, methods, that is, the chimney used in the system of the present invention is separated from the chimney of the cement production system.
  • the original chimney of the cement production system is only used to discharge the fumes generated by the clinker calcination process.
  • the incinerator such as the flue gas generated by the rotary incinerator, is treated by a double-effect reactor, passed through a heat recovery system and a dust collection device, and discharged through a separate chimney.
  • the flue gas emissions from the cement system are completely independent of the flue gas emissions from the incineration system, and the two systems are separately discharged from different chimneys.
  • the flue gas emitted by the chimney of the cement system is discharged according to the cement industry, and the flue gas emitted from the chimney of the incineration system treated by the method and system of the present invention meets the strict emission standards of the incinerator of China or the European Union. .
  • Step S107 the alkaline solid after gas-solid separation can be recycled to the incineration reaction chamber through the high-temperature three-way valve through the high-temperature three-way valve, or can be recycled into the cement calcination system through the high-temperature three-way valve. kiln.
  • the system for the clinker calcination stage in cement production also includes a bypass venting system for the cement production process.
  • Solids entering the cement rotary kiln contain more sulfur, chlorine, potassium, sodium, etc.
  • a portion of the material is solidified in the cement clinker lattice.
  • Sulfur, chlorine, potassium, sodium, etc. which are not solidified by cement clinker, form an internal circulation material of the calcination system.
  • substances such as sulfur, chlorine, potassium, and sodium accumulate, they become blocked by the preheater, causing the cement production to stop.
  • the bypass air release system basically comprises a high temperature channel, and the flue gas of the sulfur, chlorine, potassium, sodium and the like with higher concentration is extracted from the calcination system. After the cooling device and the gas-solid separation device, the gas is discharged to the atmosphere, and the solid material is discharged. Transfer to a cement grinding system for use as a hybrid material.
  • excess sulfur, chlorine, potassium, sodium, etc. produced by the cement production system can also be passed through the double-effect reaction in the form of high temperature flue gas by the bypass venting system. The system is discharged, cooled, solidified and collected, and used as a mixture for cement grinding.
  • the amount of decomposed alkaline solids entering the cement rotary kiln can increase the production of the original design cement by about 10%.
  • the high-temperature flue gas generated by the bypass venting system of the cement production process can also be input to the incineration reaction chamber of the double-effect reactor.
  • these high temperature flue gases can also be fed to a gas-solid suspension mixing chamber of a double effect reactor.
  • these high temperature flue gases can also be fed to a rotary incinerator of an incineration system.
  • FIG. 2 is a schematic structural diagram of a system using a specific embodiment of the exhaust gas treatment method shown in FIG. 1, the system comprising:
  • Double-effect reactor 10 high-temperature dust collector 20, heat recovery and dust removal system 30, three-way valve 40, and individual chimney 60, wherein the double-effect reactor 10 is connected by a combined incineration reaction chamber 11 and gas-solid suspension Room 12 is composed.
  • the incineration reaction chamber 11 and the rotary incinerator 132 are connected to the clinker system 52 of the cement production system 50 through a high temperature gas passage to receive the cement production, for example, from the clinker cooler 524.
  • the high temperature gas in addition, the incineration reaction chamber 11 has an inlet to receive an alkaline material or alkaline waste from the raw meal preparation and homogenization system 51, such as from a raw meal homogenization reservoir.
  • the three-way valve 40 is in communication with the high temperature dust collector 20, the incineration reaction chamber 11 and the rotary kiln 523, respectively.
  • the decomposed alkaline solid material enters the rotary kiln in the cement calcining system through a three-way valve. If the cement rotary kiln cannot receive the material, the alkaline material can be transferred to the incineration reaction chamber.
  • the three-way valve (40) is in communication with the high temperature dust collector (20), the incineration reaction chamber (11) and the rotary kiln (523), respectively, and the decomposed alkaline material or waste passes through
  • the three-way valve is returned to the incineration reaction chamber for recycling, or is turned into a cement clinker in a rotary kiln in the cement calcination system.
  • Substances such as sulfur, chlorine, potassium, and sodium that are not solidified by cement clinker will be discharged from the bypass venting system 55.
  • the bypass air release system consists of a quencher 551 and an energy recovery and dust collector 552.
  • the high-temperature flue gas from the cement rotary kiln containing sodium sulphate, sodium sulphate and the like is quenched by the quencher 551, and then sent to the energy recovery and dust collector 552 for energy recovery and dust removal.
  • the dust after the dust removal is discharged into the atmosphere through the smoke, and the recovered dust is sent to the cement grinding system 53 for use as a mixed material.
  • the incineration system 13 includes a feeder 131 and a rotary incinerator 132. Waste, such as industrial waste, medical waste, hazardous waste or municipal solid waste, enters the rotary incinerator 132 by the feeder 131, is dried and incinerated in the rotary incinerator 132, and the generated incineration flue gas is sent to the incineration reaction chamber 11 further deal with.
  • Waste such as industrial waste, medical waste, hazardous waste or municipal solid waste
  • the clinker calcining system 52 of cement consists of a preheater 521, a decomposition furnace 522, a rotary kiln 523, and a grate cooler 524.
  • the cement production system has its own chimney 54, which is used to discharge the fumes from the clinker calcination process.
  • the bypass venting system 55 of the cement production system consists of a quencher 551 and a thermal energy recovery and deduster 552.
  • the high-temperature flue gas containing sulfur, chlorine, potassium, sodium and the like from the cement rotary kiln is quenched by the quencher 551, and then sent to the energy recovery and dust collector 552 for energy recovery and dust removal.
  • the dust after the dust removal is discharged into the atmosphere by the smoke, and the recovered dust is sent to the cement grinding system 53 for use as a mixed material.
  • the alkaline material from the raw material preparation and homogenization system of the cement production system is added to the incineration reaction chamber 11 of the double-effect reactor 10, and the flue gas generated by the rotary incinerator 132 is introduced at the same time.
  • the reaction process of incineration, calcination and acid removal is carried out at a reaction temperature of 850-950 ° C and a double effect reactor time of 6 to 10 seconds.
  • the high temperature gas generated by the grate cooler 524 in the clinker calcination stage of the cement production system is introduced into the incineration reaction chamber 11 of the double effect reactor 10 through a high temperature flue gas passage and/or slewing. Incinerator.
  • the energy recovery from the bypass bleed system 55 and the high temperature gas from the precipitator 552 can also be input to the incineration reaction chamber 11 and/or the rotary incinerator of the double effect reactor 10.
  • the suction port of the bypass air is connected to the incineration reaction chamber or the rotary incinerator 132 through a high temperature flue gas duct.
  • raw materials produced from the raw material preparation and homogenization system 51 of the cement production system 50 i.e., alkaline materials and waste slag
  • high calorific value waste or fuel is supplied to the incineration reaction chamber 11 of the double effect reactor 10.
  • the fuel nozzle can be used to inject the fuel into the combustion reaction chamber 11.
  • the high temperature gas is solidified in the incineration reaction chamber at a temperature not exceeding 950. C, keep at 860 ⁇ 890. The temperature of C.
  • the total residence time in the combustion reaction chamber 11 and the gas-solid suspension mixing chamber 12 is maintained at 6-10
  • the gas-powder mixture is discharged from the incineration reaction chamber 11, and the gas-powder mixture is introduced into the gas-solid suspension mixing chamber 12 of the double-effect reactor 10.
  • the gas-solid suspension mixing chamber 12 adopts a combination mode of jetting and swirling, so that the high-temperature powdery alkaline material and the high-temperature exhaust gas in the gas powder mixture are sufficiently homogenized, mixed, contacted and reacted in the gas-solid suspension mixing chamber. Finally, the effect of gas purification is achieved.
  • the fully reacted gas-powder mixture enters the high-temperature dust collector 20 from the gas-solid suspension mixing chamber 12.
  • the gas-solid suspension mixing chamber 12 and the high temperature dust collector 20 may be connected by a gas-solid mixing conduit.
  • the dust in the gas-powder mixture is separated from the gas, and after the dust in the gas-powder mixture is separated, the high-temperature gas is left for the next treatment.
  • the high-temperature dust collector used in the invention has a dust collecting efficiency of ⁇ 92%.
  • the high-temperature gas enters the heat recovery and dedusting system 30, and finally is discharged into the atmosphere, and the heat recovery and dedusting system 30 can be connected to other systems to reuse the discharged gas.
  • the high temperature gas is directly connected to the discharge means after the gas-solid separation, and the treated exhaust gas is discharged to the atmosphere.
  • a separate chimney 60 can be used.
  • the alkaline material is returned to the rotary kiln 523 of the cement production system 50 or the incineration reaction chamber 11 for recycling.
  • the method of the present invention is maintained at a stable discharge temperature by an independent chimney 60 Non-toxic gas at 120 ⁇ 150 °C.
  • the cement production system 50 is used to discharge the flue gas generated by the clinker calcination process of the cement production system 50.
  • the solid after gas-solid separation is a decomposed alkaline material which can be fed into a rotary kiln 523 in a cement calcining system through a high temperature three-way valve, and can be used for sintering into cement.
  • a system using the Dual Purpose Reactor (DPR) of the present invention that is, Cement Processing - Oxidative Waste & Energy Recovery (C-POWER), incinerated after treatment
  • the flue gas can reach the following standards when the chimney is discharged: dioxin is less than 0.01 ng TEQ/m 3 , total volatile organic carbon is less than 5 mg/m 3 , hydrogen chloride gas (HCl) is less than 6 mg/m 3 , hydrogen fluoride gas (HF) ) less than 0.5mg/m 3 , S0 2 less than 25mg/m 3 , NO less than 200mg/m 3 , CO less than 45mg/m 3 , heavy metals (first class: Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V) is less than 0.5 mg/m 3 , heavy metals (second type: Cd and Th) are less than 0.05 mg/m 3 , and mercury (Hg) is less than 0.05 mg/m 3 (under standard conditions)
  • the method and system for treating incineration waste gas using the Dual Purpose Reactor (DPR) and cement production system of the present invention not only simplifies the steps and equipment of the conventional method, but also removes the acid gas while thoroughly
  • the incineration decomposes and removes the precursors of dioxins and dioxins, so that the dioxin can not be re-formed during the cooling process, and it is no longer necessary to collect the re-formed dioxins like traditional incineration fumes. Secondary pollution.
  • the invention can decompose cement raw materials in a large amount and increase the cement production of the cement production system.
  • Cement Processing - Oxidative Waste & Energy Recovery using the system and method of the present invention can utilize the physical and chemical characteristics of the new dry rotary kiln cement production process, and cooperate with waste incineration
  • the need for environmental optimization and waste recycling of the process enables the two processes to be organically combined, operated in parallel, complement each other without interfering with each other, and promotes both waste incineration and cement production processes to reuse resources, save energy and reduce consumption, and optimize environmental protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Chimneys And Flues (AREA)

Description

利用双效反应器结合水泥生产处理废气的方法及其系统
技术领域
[0001】本发明涉及一种利用双效反应器 ( Dual Purpose Reactor, DPR ) 处理废气的方法, 尤其涉及一种利用双效反应器结合水泥生产系统来 处理废气和增加水泥产量的方法, 该方法去除了废气和水泥生产中产 生的酸性气体和完全去除二噁英及其前体物质, 同时能够实现热能回 收利用。
背景技术
[0002】在当代处理废物的方法中, 焚烧法的应用广泛, 包括工业废物, 医疗垃圾、 危险垃圾或城市生活垃圾等。 焚烧过程中普遍会产生大 量有毒有害气体废物, 特别是酸性气体和二噁英等有毒物。 焚烧 废气如果不合理有效的处理,将会对人类的生活产生严重的负担。
[0003】二噁英, 又称二氧杂芑, 是一种无色无味、 毒性严重的脂溶性 物质, 它指的并不是一种单一物质, 而是结构和性质都很相似的包含 众多同类物或异构体的两大类有机化合物。 二噁英包括 200多种化合 物, 这类物质非常稳定, 熔点较高, 极难溶于水, 可以溶于大部分有 机溶剂, 是无色无味的脂溶性物质, 所以非常容易在生物体内积累。
[0004】一般认为, 二噁英既可由烃类有机物和无机氯化物在催化剂存 在的条件下生成, 也可由二噁英的前体有机氯化物产生。 人们普遍认 为在焚烧过程中, 烃类有机物与有机氯化物会经化学反应生成二噁 英。 从目前的研究来看, 二噁英的生成有以下几种原因:
1. 在对氯乙烯等含氯塑料的焚烧过程中, 焚烧温度低于 800。C, 含氯垃圾不完全燃烧, 极易生成二噁英。
2. 其他含氯、 含碳物质如纸张、 木制品、 食物残渣等经过铜、 钴等金属离子的催化作用 ,经氯苯生成二噁英。 3. 在制造包括农药在内的化学物质, 尤其是氯系化学物质, 像 杀虫剂、 除草剂、 木材防腐剂、 多氯联苯等产品的过程中派生。 二噁 英大多数来源于垃圾焚烧、 水泥生产、 钢铁冶炼、 催化剂高温氯气活 化等过程都可向环境中释放二噁英。 日常生活所用的胶袋, PVC (聚 氯乙烯)软胶等物都含有氯, 燃烧这些物品时便会释放出二噁英。
[0005】焚烧过程产生大量有害酸性气体, 包括氯化氢气体(HC1 )、 氟 化氢气体( HF )、氨气( NH3 ),二氧化硫( S02 ),氰氢酸气体( HCN ), 硫化氢气体 (H2S ) 等。 酸性气体会对环境带来广泛的危害, 造成巨 大的经济损失。
[0006]因此, 高温焚烧产生的废气在排放前必须进行除酸除毒处理, 防止对人类健康和环境构成重大威胁。 高效的处理技术可大大减轻对 环境和生产成本的负担。
[0007】在水泥生产工业中, 通常使用高温煅烧法, 会产生大量有毒有 害气体废物。 水泥生产的特点为物料处理量大, 粉状物料或成品输送 环节多。 在物料破碎、 输送、 粉磨、 煅烧、 包装、 储存等环节中, 几 乎每道工序都伴随着有害气体废物的产生和排放。 其中, 危害最大、 排放量最多的就是产生于熟料煅烧过程的 S02、 NOx等酸性气体以及 二噁英等有毒废物。
[0008】目前, 处理由高温焚烧技术产生的含有机质、 毒性及酸性气体 的技术多采用急速冷却, 喷淋碱液, 活性炭吸附系统, 。
[0009】如中国专利申请号 200710114674.4"防止二噁英产生的可燃垃 圾气化制气装置及工艺"和中国专利号 200580002874.X"包括分流引 出含有害物质的转炉废气的水泥熟料生产方法" 。 上述两项申请中防 止有害气体生成都采用急冷方式进行处理, 将烟气从高温瞬间降至 200。C以下, 这样虽然清除了有害气体, 但是却造成了热能的浪费, 而且水耗量大, 加大了处理成本。
[0010】中国专利申请号 200710201255.4"—种利用盐碱渣处理含酸性 气体的废气的方法"采用喷头对废弃喷淋盐碱渣水溶液的方法, 来处 理废气中的酸性气体, 这种操作在处理前容易引起烟道和急冷换热设 备的高温腐蚀和低温腐蚀, 且设备体积庞大。
[0011】在活性炭吸附系统中, 由于活性炭吸附后, 二噁英只是存在于 活性炭之中, 并没有从根本上去除。 需要进一步处理, 价格 贵。 还 有采用电子束照射延期的方法破坏烟气中的二噁英, 然而, 用于产生 电子束的电压很高, 处理容量不大, 能耗大。
[0012】在中国专利申请号 01804541.3"用于废弃物转为能源的设备中 共燃烧的方法 "采用碱性物料与废弃物在高温燃烧室燃烧反应的方 法, 进行酸性废气以及二噁英的去除。 但是该发明的燃烧反应温度控 制在 1200。C, 在高温下反应, 不但不利于节约能源, 而且对反应炉 的材料要求很高。 如果燃烧室温度高达 1400〜1600。C时, 对燃烧室管 壁材料的要求很高, 需要 A1203含量为 90%的刚玉砖。 而当温度在 850~950°C区间时, 只需采用 A1203含量为 60〜75%的 II等高铝砖。
[0013】因此, 目前急需一种简单、 廉价、 能够有效去除焚化产生的废 气中的酸性气体和完全去除其中二噁英及其前体物质, 从而防止二噁 英在热能回收过程中再生的处理方法。 本发明提供了一种结合水泥生 产系统来处理废气和增加水泥产量的方法和系统, 即水泥生产-氧化 法废物同步资源化工艺 (Cement Processing - Oxidative Waste & Energy Recovery, C-POWER ), 达到了上述目的。 发明内容
[0014】本发明的目的是提供一种用双效反应器 ( Dual Purpose Reactor, DPR )结合水泥生产系统来处理废气和增加水泥产量的方法, 该方法 还能去除酸性气体和完全去除二噁英及其前体物质, 同时能够实现热 能回收利用。
[0015]本发明提供了一种利用双效反应器结合水泥生产系统来处理焚化 烟气和增加水泥产量的方法, 所述双效反应器由相连的焚烧反应室和气 固悬浮混合室所组成, 该方法包括以下步骤: (a) 将水泥生产中熟料煅烧阶段冷却产生的高温气体经过高温 气体通道输入到双效反应器的焚烧反应室;
(b) 将水泥生产中产生的碱性物料或废渣输入到双效反应器的 焚烧反应室;
(c) 将高热值废物或燃料注入到焚烧反应室进行燃烧,提高和稳 定焚烧反应室的温度;
(d) 将焚化烟气输入到焚烧反应室或气固悬浮混合室中;
(e) 在高温下, 焚烧反应室中的气体和所述碱性物料或废渣由所 述焚烧反应室进入双效反应器的气固悬浮混合室并螺旋前 进, 在气固悬浮混合室充分混合反应, 酸性气体、 二噁英以 及二噁英前体物质被清除;
(f) 气粉混合物离开双效反应器进入高温收尘器, 气固分离, 气 体经热能回收及除尘系统后, 经独立烟自排出温度保持在 120〜150。C的无毒气体;
(g) 已分解的碱性物料或废渣通过三通阀回入焚烧反应室循环 再用, 或进入水泥煅烧系统中的回转窑。
[0016】在本发明中, 所述焚化烟气可以是采用焚化炉, 例如回转焚化炉 高温焚烧工业废物, 医疗垃圾、 危险垃圾或城市生活垃圾产生的烟气。
[0017]在本发明的一个方面, 水泥生产中熟料煅烧阶段冷却产生的高温 气体来自熟料煅烧阶段的篦冷机。
[0018] 在本发明的又一个方面, 来自熟料煅烧阶段的旁路放风系统的 高温气体也经过高温气体通道输入到双效反应器的焚烧反应室。
[0019】在本发明中, 水泥生产中熟料煅烧阶段冷却产生的高温气体, 例 如来自熟料煅烧阶段的篦冷机和 /或旁路放风系统的高温气体可以通入 焚化系统的回转焚化炉。 另外, 高热值废物或燃料也进入焚化系统的回 转焚化炉。
[0020]在本发明的一个方面, 高热值废物或燃料在焚烧反应室的停留时 间不少于 2秒。
[0021】在本发明的一个方面, 步骤(c )至(e ) 中保持 850至 950。C的 温度,优选的,保持 850至 920。C的温度,最优选的,保持 860至 890。C。
[0022]本发明的方法中, 碱性物料或废渣的用量为其化学反应所需摩尔 质量的 20至 85倍。
[0023]本发明中, 焚化烟气在焚烧反应室和气固悬浮混合室中停留时间 合共为 6至 10秒, 优选 8至 10秒。
[0024] 本发明还提供了一种用于利用双效反应器结合水泥生产系统 来处理废气的方法的系统, 其包括: 双效反应器 10、 高温收尘器 20、 热能回收及除尘系统 30、 三通阀 40和独立烟囱 60, 其中所述双效反应 器 10由相连的焚烧反应室 11和气固悬浮混合室 12组成。
[0025] 其中所述焚烧反应室 11和回转焚化炉 132通过高温气体通道 相连, 回转焚化炉 132 排出的焚化烟气进入焚烧反应室 11。 在本发明 的一个方面, 回转焚化炉 132排出的焚化烟气进入气固悬浮混合室 12。
[0026] 其中所述焚烧反应室 11和回转焚化炉 132通过高温气体通道 与水泥生产系统 50的熟料;]段烧系统 52相连, 以接收水泥生产的, 例如 来自熟料篦冷机 524的高温气体, 另外所述焚烧反应室 11具有入口以 接收来自生料制备及均化系统 51 的, 例如来自生料均化库的碱性物料 或碱性废渣。
[0027】三通阀 40分别与高温收尘器 20, 焚烧反应室 11和回转窑 523相 通。 巳分解的碱性固体物料通过三通阀进入水泥煅烧系统中的回转窑。 如果水泥回转窑不能接收该物料, 则该碱性物料可转入焚烧反应室。
[0028] 焚化系统 13含喂料器 131和回转焚化炉 132,废弃物,例如工 业废物, 医疗垃圾、 危险垃圾或城市生活垃圾, 由喂料器 131进入回转 焚化炉 132, 在回转焚化炉 132中干燥、 焚化, 产生的焚化烟气送入焚 烧反应室 11进一步处理。
[0029】水泥的熟料煅烧系统 52由预热器 521、 分解炉 522、 回转窑 523 和篦冷机 524组成。 水泥生产系统有自己的烟囱 54, 用于排出熟料煅烧 过程产生的烟气。
[ 0030] 水泥生产系统的旁路放风系统 55由淬冷器 551和热能回收及 除尘器 552两部分组成。 从水泥回转窑出来的饱含硫、 氯、 钾、 钠等物 质的高温烟气经淬冷器 551急冷后, 送入能量回收及除尘器 552进行能 量回收和除尘。 经除尘后的烟气通过烟自排入大气, 回收下来的粉尘送 至水泥粉磨系统 53用作混合材。
[0031】本发明具有以下优点:
第一, 通过本发明废气处理系统的双效反应器中采用水泥生产 中产生的碱性物料与废渣与焚化烟气中的有害气体在高温的环境混 合的处理方式, 在整个废气处理过程在初始阶段就开始进行有害气体 处理, 在未进入热能回收锅炉前, 就已经处理完毕所有的有害气体, 步骤提前, 有效地减小了酸性气体对设备的腐蚀。
第二, 双效反应器排出的净化废气, 不会在热能回收的降温过 程中产生二噁英等有害气体, 因此其热能的可利用空间为 850〜950。C 到约 120〜150。C, 从而对比现有的有害气体净化一热回收系统有着更 高的热能回收效率。
第三, 有害气体在焚烧反应室被加热至 850~950。C, 在高度保 温条件下进入气固悬浮混合室, 整个过程停留时间达 6至 10秒。 因 此焚烧反应室对二噁英及形成二噁英的烃类有机物、有机氯化物和无 机氯化物等的去除极为彻底, 其效果远超过现有的方法。
第四, 使用水泥生产产生的碱性物料和废渣, 可以在本发明的 废气处理系统中循环使用, 降低了废气处理的成本。
第五, 在本发明的一个方面, 在通过将足量的尿素和氨气等还 原剂通入气固悬浮混合式, 从而将氮氧化物 (ΝΟχ)的产生控制为低于
100mg/Nm3
第六, 通过和废气处理系统的结合, 水泥生产的产量可增加不 少于原产量的 10%。
[0032] 与本发明的双效反应器系统结合后, 水泥生产系统产生的多 余硫、 氯、 钾、 钠等物质, 也可由旁路放风系统排出、 冷却、 凝固和 收集, 并使用作水泥粉磨的混合材。
[0033]本发明提供的废气处理方法及其系统具有能在高温条件下连续 运行、 吸收酸性气体和消除二噁英及其前体物质, 包括烃类有机物、 有机氯化物和无机氯化物的功能。 该系统既能高度消除含有机质、 毒 性及酸性气体中的有机物颗粒、 CO、 S02、 HC1、 HF酸性气体及二噁 英等有害物质, 同时又能保持或提高处理气体的温度, 使之成为可供 利用的稳定热源。 在高度净化毒气的毒性及酸性气体的同时, 实现原 有害气体资源化。 附图说明
[0034]通过阅读参照以下附图所作的对非限制性实施例所作的详细描 述, 本发明的其它特征、 目的和优点将会变得更明显:
[0035】图 1是根据本发明的废气处理方法的一种具体实施方式的流程 图;
[0036】图 2是使用图 1示出的废气处理方法的废气处理系统的一种具 体实施方式的结构示意图; 具体实施方式
[0037]本发明的方法和系统在产业中进行了中试。
[0038】下面结合附图对本发明作进一步详细描述。
[0039】请参考图 1, 图 1是根据本发明的废气处理方法的一种具体实 施方式的流程图, 该方法包括:
[0040】步骤 S101,将水泥生产中熟料煅烧阶段的冷却过程中产生的高温 气体经过高温烟气通道输入到双效反应器的焚烧反应室。 在另一个方 面, 所述高温气体也可以经过高温烟气通道输入到焚化系统的回转焚化 炉。
[0041】水泥的生产主要包括三个阶段: 生料制备、 熟料煅烧、 水泥粉 磨。
[0042】生料制备主要指: 首先进行原料(主要是石灰石或粘土)的提 取; 其次, 将原料经过破碎或锤击变成碎块; 之后, 再进行磨细得到 生料, 以保证原料能进行高质量的混合。 用于水泥生产的生料基本上 能滿足本发明双效反应器所需要的碱性物料和 /或废渣的物理和化学 特性的要求。
[0043】熟料煅烧是指: 烘干或预热、 煅烧(热处理, 在其过程中生成 氧化钙)以及焙烧(烧结)和冷却四个步骤。 煅烧是此工序中的核心 部分。 生料被连续地称重并送入预热器最顶部的旋风分离器, 预热器 中的材料被上升的热空气加热,在巨大的旋转窑内部,原料在 1450。C 土质原料被研磨成粉末状, 经过煅烧和粉磨等处理形成水泥熟料。 经 煅烧后的熟料的温度很高, 要通过篦冷机进行降温处理。 进行降温的 过程中, 篦冷机收集到约 250。C至 350。C的高温气体。 所述高温气体 可由高温气体通道输送到双效反应器的焚烧反应室, 提供燃烧所需的 y¾J温氧气。
[0044】在本发明的一个方面, 所述高温气体也可由高温气体通道输送 到焚化系统的回转焚化炉。
[0045】步骤 S102, 将水泥生产中产生的碱性物料或废渣 (主要为水泥生 料)输入到双效反应器的焚烧反应室。本发明中使用的所述碱性物料或 废渣为粉状固体。
[0046】在水泥生产工业中, 其主要原料是石灰石原料和黏土原料。 所 述石灰石原料是指以碳酸钙为主要成分的石灰石、 泥灰岩、 白垩、 贝 壳及其组合, 此外还夹杂一定含量的氢氧化钙等碱性原料; 所述黏土 质原料是高岭土、 蒙脱石、 水云母、 其它水化铝硅酸盐及其组合。
[0047]为了能够达到本发明在高温的情况下充分去除废气中酸性气体 和二噁英前体物质的目的, 焚烧反应室中的碱性物料的用量为其化学 反应所需摩尔质量的 20至 85倍, 远超过吸收酸性气体等有害物质的 附的双重除酸除毒效果。
[0048】在步骤 S102中使用的碱性物料和 /或废渣主要来自水泥生料制备 及均化系统的均化库。 这些碱性物料和 /或废渣可以直接输入所述焚烧 反应反应室供废气处理使用。 [0049】在步骤 S102 中可将水泥生产产生的碱性生料输入到所述焚烧 反应炉供废气处理所用。 当生料的含碱性不足以达到所需要中和待处 理烟气中的酸性气体的摩尔质量(通常从系统幹放的气体中酸性气体的 含量判断) 的情况下, 还需要加入水泥生产中使用的石灰石。
[0050】步骤 S103, 将高热值的废料或燃料注入到双效反应器的焚烧反应 室燃烧, 提高和稳定焚烧反应室的温度。 加入高热值的废料或燃料可达 到以下目的: 1. 提供热能保持双效反应器, 包括气固悬浮混合室的温度 稳定, 保持在 850。C以上; 2. 提供热能提高燃烧所需以外的大量空气温 度至 850。C以上, 所述空气经由焚烧反应室进入气固悬浮混合室, 确保 出口烟气的含氧量不低于 8%; 3. 提供热能分解碱性生料作水泥增产。所 用的燃料可以是燃油或煤粉或燃气。 为了使高热值的废料或燃料完全燃 烧, 燃料在焚烧反应室的停留时间不少于 2秒。 同时, 为了达到燃料与 氧气充分接触, 燃烧更加充分的目的, 可采用燃料喷嘴将燃料喷入焚烧 反应室。
[0051】在本发明的一个方面, 所述高热值的废料或燃料可加入到焚化 系统的回转焚化炉, 提高和稳定回转焚化炉的温度。。
[0052】步骤 S104, 将来自焚化炉, 例如回转焚化炉的焚化烟气输入到双 效反应器的焚烧反应室, 和 /或气固悬浮混合室。
[0053】本发明中, 处理的焚化烟气可以是高温焚烧工业废物, 医疗垃圾、 危险垃圾或城市生活垃圾的废气。 在回转焚化炉的高温焚化过程中, 会产生 CO、 S02、 HC1、 HF 等酸性气体, 还会产生大量如二噁英前 体组分、 毒性有机物等微粒。 由于废弃物焚化使用高温焚烧工艺, 因此 焚化中产生的这些气体的温度较高。 在本发明提供的废气处理方法中, 首先将这些高温烟气输入到双效反应器的焚烧反应室。 在本发明的一个 方面, 这些高温烟气也可以输入到双效反应器的气固悬浮混合室。
[0054】步骤 S105, 在高温下, 双效反应器的焚烧反应室内的烟气与所述 碱性物料或废渣进入双效反应器的气固悬浮混合室充分混合反应, 废气 中的酸性气体、 持久性有机污染物和二噁英及二噁英生成组分被清除。
[0055】所述气固悬浮混合室可采用喷腾型、 旋流型、 或喷腾和旋流复合 型的模式, 令碱性物料在废气流中形成涡流, 以达到碱性物料在气固悬 浮混合室中均匀分布, 并与热烟气充分混合接触的效果。 在本发明的一 个方面, 气固悬浮混合室采用喷腾和旋流复合型的模式。
[0056]优选的, 还可以将足够的尿素和氨气等还原剂加入气固悬浮混合 室, 可将氮氧化物 (NOx)的产生减至低于 100mg/Nm3
[0057]步骤 S102至 S105均保持在 850~950。C之间发生。 优选的所述方 法中, 步骤 S102至 S105中保持 850~920。C的温度, 最优选的, 所述 方法中步骤 S102至 S105中保持 860~890。C的温度。 所述废气在双效 焚烧反应器中停留时间合共为 6~10秒, 优选 8~10秒。
[0058】步骤 S106, 气粉混合物进入高温收尘器, 气固分离, 气体排出。
[0059】优选的, 气固分离后, 为了更好地利用热能资源, 减少污染, 要 使气固分离后的气体再通过热能回收及除尘系统, 之后将无毒气体排出 系统。 本发明的方法经独立烟囱稳定排出温度保持在 120〜150。C以上的 无毒气体。
[0060]在本发明的一个方面, 使用独立烟囱将经过本发明的方法和系统 处理后的气体排出。 独立烟囱是指不用于排出来自其它系统、 设备、 方 法的气体或废气, 也就是说, 本发明的系统使用的烟囱与水泥生产系统 的烟囱分开。 水泥生产系统原有的烟囱只用于排出熟料煅烧过程产生的 烟气。 而焚化炉, 例如回转焚化炉所产生的烟气经双效反应器处理, 再 通过热能回收系统和收尘设备后, 经由一独立烟囱排出。 水泥系统的烟 气排放是完全独立于焚化系统的烟气排放, 两个系统是分别由不同的烟 囱排出。 水泥系统的烟囱所排放的烟气是按水泥行业排放标准, 而通过 本发明的方法和系统处理过的来自焚化系统的烟囱所排放的烟气则符 合中国或欧盟的焚化炉的严格的排放标准。
[0061】步骤 S107, 气固分离后的碱性固体可经高温固料管道通过高温三 通阀随物料管道回入焚烧反应室循环再用, 或通过高温三通阀进入水泥 煅烧系统中的回转窑。
[0062]水泥生产中熟料煅烧阶段的系统还包括水泥生产工艺的旁路放风 系统。 进入水泥回转窑的固体中含有较多硫、 氯、 钾、 钠等物质, 这些 物质一部分被固化在水泥熟料晶格中形成熟料。 没有被水泥熟料固化的 硫、 氯、 钾、 钠等物质便形成了煅烧系统的内循环物料。 当硫、 氯、 钾、 钠等物质不断累积, 会做成预热器堵塞, 至使水泥生产停顿。 因此, 累 积了的硫、 氯、 钾、 钠等物质必须从内循环系统中幹放出来, 而水泥生 产工艺的旁路放风系统可以有效地解决硫、 氯、 钾、 钠等物质的循环问 题。 旁路放风系统基本上包含有一高温通道, 将浓度较高的硫、 氯、钾、 钠等物质的烟气从煅烧系统抽出, 经冷却设备和气固分离设备后, 气体 排往大气而固体物料则输送到水泥研磨系统用作混合材料。 在本发明的 一个方面, 与本发明的双效反应器系统结合后, 水泥生产系统产生的 多余硫、 氯、 钾、 钠等物质, 也可由旁路放风系统以高温烟气形式通 过双效反应器系统, 排出、 冷却、 凝固和收集, 并使用作水泥粉磨的 混合材。
[0063] 由此, 进入水泥回转窑的已分解的碱性固体量可提高原设计水 泥生产的产量能够提高约 10%左右。
[0064] 在本发明提供的废气处理方法中, 水泥生产工艺的旁路放风系 统产生的高温烟气也可以输入到双效反应器的焚烧反应室。 在本发明的 一个方面, 这些高温烟气也可以输入到双效反应器的气固悬浮混合室。 在本发明的另一个方面, 这些高温烟气也可以输入到焚化系统的回转焚 化炉。
[0065] 结合图 2进行参考,图 2是使用图 1示出的废气处理方法的一 种具体实施方式的系统结构示意图, 该系统包括:
[0066] 双效反应器 10、 高温收尘器 20、 热能回收及除尘系统 30、 三 通阀 40和独立烟囱 60, 其中所述双效反应器 10 由相连的焚烧反应室 11和气固悬浮混合室 12组成。
[0067] 其中所述焚烧反应室 11和回转焚化炉 132通过高温气体通道 与水泥生产系统 50的熟料;]段烧系统 52相连, 以接收水泥生产的, 例如 来自熟料篦冷机 524的高温气体, 另外所述焚烧反应室 11具有入口以 接收来自生料制备及均化系统 51 的, 例如来自生料均化库的碱性物料 或碱性废渣。 [0068] 三通阀 40分别与高温收尘器 20, 焚烧反应室 11和回转窑 523 相通。 已分解的碱性固体物料通过三通阀进入水泥煅烧系统中的回转 窑。如果水泥回转窑不能接收该物料,则该碱性物料可转入焚烧反应室。
[0069] 在本发明的一个方面, 其中三通阀 (40 ) 分别与高温收尘器 ( 20 ) , 焚烧反应室 (11 )和回转窑 ( 523 )相通, 已分解的碱性物料 或废渣通过三通阀回入焚烧反应室循环再用, 或进入水泥煅烧系统中的 回转窑烧结成水泥熟料。 未被水泥熟料固化的硫、 氯、 钾、 钠等物质将 由旁路放风系统 55排出。 旁路放风系统是由淬冷器 551和能量回收及 除尘器 552两部分组成。 从水泥回转窑出来的饱含硫氯钾钠等物质的高 温烟气经淬冷器 551急冷后, 送入能量回收及除尘器 552进行能量回收 和除尘。 经除尘后的烟气通过烟自排入大气, 回收下来的粉尘送至水泥 粉磨系统 53用作混合材。
[0070] 焚化系统 13含喂料器 131和回转焚化炉 132。废弃物,例如工 业废物, 医疗垃圾、 危险垃圾或城市生活垃圾, 由喂料器 131进入回转 焚化炉 132, 在回转焚化炉 132中干燥、 焚化, 产生的焚化烟气送入焚 烧反应室 11进一步处理。
[0071】水泥的熟料煅烧系统 52由预热器 521、 分解炉 522、 回转窑 523 和篦冷机 524组成。 水泥生产系统有自己的烟囱 54, 用于排出熟料煅烧 过程产生的烟气。
[0072]水泥生产系统的旁路放风系统 55由淬冷器 551和热能回收及除尘 器 552两部分组成。 从水泥回转窑出来的饱含硫、 氯、 钾、 钠等物质的 高温烟气经淬冷器 551急冷后, 送入能量回收及除尘器 552进行能量回 收和除尘。 经除尘后的烟气通过烟自排入大气, 回收下来的粉尘送至水 泥粉磨系统 53用作混合材。
[0073】下面结合图 1与图 2示出的方法对该系统的各部分进行说明。
[0074]本实施例中, 在双效反应器 10的焚烧反应室 11 内加入来自水泥 生产系统的生料制备及均化系统的碱性物料, 同时引入回转焚化炉 132 所产生的烟气, 进行焚化, 煅烧和除酸气等的反应工序, 反应温度 850-950° C, 停留在双效反应器时间为 6〜10秒。 [0075]如图 2所示,首先,将水泥生产系统中熟料煅烧阶段的篦冷机 524 产生的高温气体经过高温烟气通道输入到双效反应器 10 的焚烧反应室 11和 /或回转焚化炉。 在本发明的一个方面, 来自旁路放风系统 55 的能 量回收及除尘器 552的高温气体也可以输入到双效反应器 10的焚烧反 应室 11和 /或回转焚化炉。 旁路放风的抽气口通过高温烟气管道与焚烧 反应室或回转焚化炉 132连接。
[0076】其次, 将来自水泥生产系统 50的生料制备及均化系统 51产生的 生料, 即碱性物料与废渣, 加入到焚烧反应室 11。 同时, 将高热值的 废料或燃料投入双效反应器 10的焚烧反应室 11。 为使废料或燃料与 氧气充分燃烧, 可以利用燃料喷嘴将燃料喷入燃烧反应室 11。 高温气 固在焚烧反应室的煅烧,温度不超过 950。C,保持在 860~890。C的温度。 在燃烧反应室 11 和气固悬浮混合室 12的总停留时间要保持在 6-10
[0077】之后, 经过煅烧后, 由焚烧反应室 11排出气粉混合物, 将该气 粉混合物通入双效反应器 10的气固悬浮混合室 12。 气固悬浮混合室 12中采用喷腾和旋流复合式的模式,令前述气粉混合物中的高温粉状 碱性物料和高温废气在气固悬浮混合室充分均化、混合、接触和反应, 最终达到气体净化的效果。
[0078】然后,充分反应后的气粉混合物由气固悬浮混合室 12内进入高 温收尘器 20。通常气固悬浮混合室 12和高温收尘器 20可以通过气固 混合管道连接。 在该高温收尘器 20 中所述气粉混合物中的粉尘与气 体分离, 将所述气粉混合物中的粉尘分离后, 余下高温气体进行下一 步处理。 本发明使用的高温收尘器收尘效率≥92 %。
[0079】最后, 气固分离后高温气体进入热能回收及除尘系统 30, 最终 排入大气, 在热能回收及除尘系统 30可以与其他系统相连接, 对排 出的气体进行再利用。 在本发明的一个方面, 气固分离后高温气体直 接与排出装置相连, 将处理后的废气排入大气, 例如, 可以使用独立 烟囱 60。 碱性物料则回到水泥生产系统 50的回转窑 523或焚烧反应 室 11 循环使用。 本发明的方法经独立烟囱 60 稳定排出温度保持在 120~150°C的无毒气体。 水泥生产系统 50用于排出水泥生产系统 50 熟料煅烧过程产生的烟气。
[0080]气固分离后的固体是已分解的碱性物料, 可通过高温三通阀进 入水泥煅烧系统中的回转窑 523, 可用于烧结成水泥。
[0081】使用本发明双效反应器 ( Dual Purpose Reactor, DPR ) 的系统, 即水泥生产 -氧化法废物同步资源化工艺(Cement Processing - Oxidative Waste & Energy Recovery, C-POWER ), 处理后的焚化烟气 在烟囱排放时可达以下标准: 二噁英低于 0.01ngTEQ/m3, 总挥发性有 机碳低于 5mg/m3,氯化氢气体(HCl )低于 6mg/m3, 氟化氢气体(HF ) 低于 0.5mg/m3, S02低于 25mg/m3, NO 低于 200mg/m3, CO低于 45mg/m3, 重金属(第一类: Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V)低于 0.5mg/m3, 重金属(第二类: Cd 和 Th)低于 0.05mg/m3, 汞( Hg)低于 0.05mg/m3 (以标准状态下含 11%干烟气为参考值换算)。 排出的气体 的各项指标符合欧盟和中国对废物焚化炉的大气污染物综合排放标 准。 并且, 水泥生产的产量比结合双效反应器(Dual Purpose Reactor, DPR ) 处理废气系统前提升 10〜: 15%。
[0082】本发明利用双效反应器( Dual Purpose Reactor, DPR )和水泥生 产系统来处理焚化废气的方法和系统不仅简化了传统方法的步骤和 设备, 并在去除了酸性气体的同时, 彻底的焚烧分解和去除了二噁英 和二噁英的前体物质, 使二噁英在降温过程中不能重新形成, 再无需 像传统的焚化烟气的理处方法, 收集重新形成的二噁英, 造成二次污 染。 同时, 本发明可大量分解水泥生料, 增加水泥生产系统的水泥产 量。 采用了本发明系统和方法的水泥生产 -氧化法废物同步资源化工 艺 (Cement Processing - Oxidative Waste & Energy Recovery, C-POWER ) 能够利用新型干法旋窑水泥生产工艺的物理化学特点, 配合废物焚烧工艺对环保优化和废物资源化的需要, 使两工艺有机结 合、 并联运行、 相辅相成但互不干扰, 而促成废物焚烧及水泥生产两 工艺都向资源回用、 节能降耗、 优化环保的多元可持续发展目标有可 量化的实际进展。 [0083】对于本领域技术人员而言, 显然本发明不限于上述示范性实施 例的细节, 而且在不背离本发明的精神或基本特征的情况下, 能够以 其他的具体形式实现本发明。 因此, 无论从哪一点来看, 均应将实施 例看作是示范性的, 而且是非限制性的, 本发明的范围由所附权利要 求而不是上述说明限定, 因此旨在将落在权利要求的等同要件的含义 和范围内的所有变化涵括在本发明内。 不应将权利要求中的任何附图 标记视为限制所涉及的权利要求。 此外, 显然"包括"一词不排除其他 单元或步骤。

Claims

权 利 要 求
1. 一种利用双效反应器结合水泥生产系统来处理焚化烟气和增加水 泥产量的方法, 所述双效反应器由相连的焚烧反应室和气固悬浮混合室 所组成, 该方法包括以下步骤:
(a) 将水泥生产中熟料煅烧阶段冷却产生的高温气体经过高温气体 通道输入到双效反应器的焚烧反应室和 /或焚化系统的回转焚化炉;
(b) 将水泥生产中产生的碱性物料或废渣输入到双效反应器的焚烧 反应室;
(c) 将高热值废物或燃料注入到焚烧反应室进行燃烧, 提高和稳定 焚烧反应室的温度;
(d)将焚化烟气输入到焚烧反应室或气固悬浮混合室中;
(e) 在高温下, 焚烧反应室中的气体和所述碱性物料或废渣由所述 焚烧反应室进入双效反应器的气固悬浮混合室并螺旋前进, 在气固悬浮 混合室充分混合反应, 酸性气体、 二噁英以及二噁英前体物质被清除;
(f) 气粉混合物离开双效反应器进入高温收尘器, 气固分离, 气体经 热能回收及除尘系统后,经独立烟囱排出温度保持在 120〜150。C的无毒 气体;
(g)已分解的碱性物料或废渣通过三通阀回入焚烧反应室循环再用, 或进入水泥煅烧系统中的回转窑。
2.根据权利要求 1所述的方法, 所述焚化烟气为采用回转焚化炉高 温焚烧工业废物, 医疗垃圾、 危险垃圾或城市生活垃圾产生的烟气。
3.根据权利要求 1所述的方法, 所述高温气体来自熟料煅烧阶段的 篦冷机。
4. 根据权利要求 1所述的方法, 来自熟料煅烧阶段的旁路放风系统 的高温气体也经过高温气体通道输入到双效反应器的焚烧反应室和 /或 焚化系统的回转焚化炉。
5.根据权利要求 1-4中任一项所述的方法, 所述高温气体、 高热值 废物或燃料进入焚化系统的回转焚化炉。
6.根据权利要求 1所述的方法, 所述高热值废物或燃料在焚烧反应 室的停留时间不少于 2秒。
7.根据权利要求 1所述的方法, 其中步骤(c)至(e) 中保持 850 至 950°C的温度, 优选的, 保持 850至 920°C的温度, 最优选的, 保持 860至 890°C。
8.根据权利要求 1所述的方法, 所述碱性物料或废渣的用量为其化 学反应所需摩尔质量的 20至 85倍。
9.根据权利要求 1所述的方法, 其中所述烟气在焚烧反应室和气固 悬浮混合室中停留时间合共为 6至 10秒, 优选 8至 10秒。
10. 一种用于如权利要求 1-9 中任一项定义的利用双效反应器结合 水泥生产系统来处理废气的方法的系统, 其包括: 双效反应器(10) 、 高温收尘器(20) 、 热能回收及除尘系统(30) 、 三通阀 (40)和独立 烟囱 (60) , 其中所述双效反应器(10) 由相连的焚烧反应室 (11)和 气固悬浮混合室 (12)组成,
其中所述焚烧反应室( 11 )通过高温气体通道与水泥生产系统(50) 中的篦冷机 (524)连接以接收水泥熟料煅烧阶段冷却产生的高温气体, 另外所述焚烧反应室 (11)具有入口与水泥生产系统(50) 的生料制备 及均化系统(51)相连以接收碱性物料或碱性废渣,
以及, 其中三通阀(40)分别与高温收尘器(20), 焚烧反应室(11) 和水泥生产系统(50) 中的回转窑 (523 )相通, 已分解的碱性物料或 废渣通过三通阀回入焚烧反应室循环再用, 或进入水泥煅烧系统中的回 转窑烧结成水泥熟料。
PCT/CN2011/084683 2011-01-28 2011-12-26 利用双效反应器结合水泥生产处理废气的方法及其系统 WO2012100618A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/981,230 US8795616B2 (en) 2011-01-28 2011-12-26 Method for the treatment of waste gas with a dual-purpose reactor integrated within cement production facility and the system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110029962.6A CN102303957B (zh) 2011-01-28 2011-01-28 利用双效反应器结合水泥生产处理废气的方法及其系统
CN201110029962.6 2011-01-28

Publications (1)

Publication Number Publication Date
WO2012100618A1 true WO2012100618A1 (zh) 2012-08-02

Family

ID=45377901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084683 WO2012100618A1 (zh) 2011-01-28 2011-12-26 利用双效反应器结合水泥生产处理废气的方法及其系统

Country Status (3)

Country Link
US (1) US8795616B2 (zh)
CN (1) CN102303957B (zh)
WO (1) WO2012100618A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205516A1 (de) * 2014-12-22 2016-06-23 Dürr Systems GmbH Vorrichtung und Verfahren zur thermischen Abgasreinigung
CN106986566B (zh) * 2017-06-02 2019-10-29 天津金隅振兴环保科技有限公司 一种含氰污染土的处置工艺
CN111592249A (zh) * 2020-06-18 2020-08-28 山东东华水泥有限公司 一种利用冷却机处理有毒有害气体的装置
CN112923369B (zh) * 2021-02-04 2024-03-12 上海电气集团股份有限公司 一种水泥窑协同处置危险废物的方法及装置
CN115722518B (zh) * 2022-10-21 2023-10-24 太仓金马智能装备有限公司 一种建筑装修垃圾低碳高效资源化处置系统及其方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1778752A (zh) * 2004-11-20 2006-05-31 张相红 城市生活垃圾烧制水泥的方法
CN1780799A (zh) * 2003-10-29 2006-05-31 F.L.施米思公司 用于预热颗粒或粉末材料的方法和设备
CN101761928A (zh) * 2010-01-11 2010-06-30 中信重工机械股份有限公司 一种生活垃圾的焚烧处理方法
CN101776269A (zh) * 2010-01-11 2010-07-14 中信重工机械股份有限公司 生活垃圾的n级焚烧处理技术

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1084961A (en) * 1965-03-30 1967-09-27 Foseco Int Improvements in or relating to the production of iron alloys
DE3411144A1 (de) * 1984-03-27 1985-10-10 Dyckerhoff Engineering GmbH, 6200 Wiesbaden Verfahren zur entsorgung von brennbaren abfaellen
US5259876A (en) * 1990-05-04 1993-11-09 F. L. Smidth & Co. A/S Method and apparatus for the manufacture of clinker from mineral raw materials
DE10158968B4 (de) * 2001-11-30 2010-01-14 Khd Humboldt Wedag Gmbh Verfahren zur Emissionsminderung der Abgasschadstoffe Dioxine und/oder Furane bei einer Zementklinkerproduktionslinie
CN101474526A (zh) * 2008-12-19 2009-07-08 浙江菲达环保科技股份有限公司 一种钙基吸收剂双效反应脱硫方法及系统
US8003057B2 (en) * 2008-12-24 2011-08-23 Envirocare International Inc. Method and apparatus for controlling acid gas emissions from cement plants
US8430438B2 (en) * 2009-05-29 2013-04-30 Michael Murphy Skimmer basket cleaning rod

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780799A (zh) * 2003-10-29 2006-05-31 F.L.施米思公司 用于预热颗粒或粉末材料的方法和设备
CN1778752A (zh) * 2004-11-20 2006-05-31 张相红 城市生活垃圾烧制水泥的方法
CN101761928A (zh) * 2010-01-11 2010-06-30 中信重工机械股份有限公司 一种生活垃圾的焚烧处理方法
CN101776269A (zh) * 2010-01-11 2010-07-14 中信重工机械股份有限公司 生活垃圾的n级焚烧处理技术

Also Published As

Publication number Publication date
US8795616B2 (en) 2014-08-05
CN102303957B (zh) 2013-04-10
CN102303957A (zh) 2012-01-04
US20140024880A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
CN104211274A (zh) 污泥减量化资源化处理装置及处理方法
WO2011113298A1 (zh) 生活垃圾气化-液化处置的方法、系统及设备
CN109539272A (zh) 含氯废物高温等离子体资源化回收工艺及系统
WO2012089089A1 (zh) 用双效反应器处理高温废物焚化炉产生的烟气的方法和系统
CN101249378A (zh) 一种消除烟气中二噁英的方法
CN110513693B (zh) 一种污泥焚烧方法
WO2012100618A1 (zh) 利用双效反应器结合水泥生产处理废气的方法及其系统
CN110317038A (zh) 一种河道淤泥和污泥炭制备的烧结砖、烧制和废气净化系统及方法
CN2795672Y (zh) 液体、固体废弃物三燃式焚烧处理系统
CN110360575A (zh) 一种危废处置中心的焚烧系统
CN111911934B (zh) 一种利用载氧体辅助回转窑燃烧处理危险废弃物的方法
CN211358316U (zh) 一种水泥窑尾中低硫烟气干法脱硫脱硝除尘装置
CN201748434U (zh) 垃圾焚烧处理装置
CN1772662A (zh) 一种在生产水泥的同时又处理污泥的方法
CN106765159A (zh) 一种工业有机固体废弃物与污泥高温焚烧无害化共处置的方法
CN102302891B (zh) 用双效反应器处理焚烧产生的烟气的方法及其系统
CN1556349A (zh) 生活垃圾处理与水泥回转窑联合生产工艺
CN103936395A (zh) 市政污泥烧制陶粒过程中的二噁英“三阶段”减排方法
CN204097297U (zh) 污泥减量化资源化处理装置
CN104975179A (zh) 一种金属镁冶炼白云石焙烧和垃圾焚烧联合运行的方法
CN214198674U (zh) 一种工业废弃物分级焚烧系统
CN211232880U (zh) 一种高、低热值危险废弃物协同焚烧熔融无害化处理系统
CN212673222U (zh) 一种废弃物的处理设备
CN108421390B (zh) 一种垃圾焚烧烟气联合脱硝、脱二噁英的方法
CN208011726U (zh) 一种降低烟气二噁英含量的垃圾处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13981230

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856894

Country of ref document: EP

Kind code of ref document: A1