WO2012089089A1 - 用双效反应器处理高温废物焚化炉产生的烟气的方法和系统 - Google Patents

用双效反应器处理高温废物焚化炉产生的烟气的方法和系统 Download PDF

Info

Publication number
WO2012089089A1
WO2012089089A1 PCT/CN2011/084693 CN2011084693W WO2012089089A1 WO 2012089089 A1 WO2012089089 A1 WO 2012089089A1 CN 2011084693 W CN2011084693 W CN 2011084693W WO 2012089089 A1 WO2012089089 A1 WO 2012089089A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
temperature
flue gas
incineration
high temperature
Prior art date
Application number
PCT/CN2011/084693
Other languages
English (en)
French (fr)
Inventor
梁青照
Original Assignee
圣达瀚科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 圣达瀚科技有限公司 filed Critical 圣达瀚科技有限公司
Priority to US13/977,218 priority Critical patent/US8728421B2/en
Publication of WO2012089089A1 publication Critical patent/WO2012089089A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/26Cements from oil shales, residues or waste other than slag from raw materials containing flue dust, i.e. fly ash
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/11Clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • B01D2258/0291Flue gases from waste incineration plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8681Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/06Temperature control

Definitions

  • the present invention relates to the field of environmental protection technology for a waste incineration process using a dual purpose reactor (DPR), and more particularly to solving harmful organic substances, toxic and acid gases generated in a waste incineration process. And issues such as resource technology.
  • DPR dual purpose reactor
  • the generally effective waste incineration treatment method is waste incinerator treatment, but the harmful substances in the flue gas generated by the garbage incinerator are correspondingly increased, especially the large amount of toxic substances generated after incineration of hazardous waste such as medical and industrial waste. .
  • waste incinerators sometimes need to be set up near residential areas, the emission standards set by countries are relatively strict.
  • waste incineration technology itself is an environmentally friendly technology, and its emission standards will become more and more strict. This puts high demands on waste incineration flue gas purification technology. Strict emission targets often lead to a significant increase in the investment and operating costs of the purification system.
  • Waste incineration flue gas pollutants generally contain the following pollutants:
  • the present invention provides a method of treating flue gas produced by a high temperature waste incinerator using a double effect reactor, comprising the steps of:
  • the gas powder mixture composed of the flue gas and the alkaline material enters the gas-solid suspension mixing chamber of the double-effect reactor, and the reaction mixture is thoroughly mixed in the gas-solid suspension mixing chamber.
  • the acid gas and dioxin precursor substances in the flue gas are removed;
  • the gas-powder mixture enters the high-temperature dust collector, and the gas-solid separation, the gas enters the heat recovery and dust removal system, and finally is discharged through the independent smoke.
  • the high temperatures described in steps (1) through (4) of the method are 850-920.
  • the high temperature is 860 to 890.
  • the solids are solid such as lime (including quicklime and slaked lime), limestone, silica sand, alumina and clay, or combinations thereof.
  • the solid is used in a powder form.
  • the main component of limestone is calcium carbonate.
  • Lime has quicklime and slaked lime.
  • the main component of quicklime is calcium oxide.
  • the main component of slaked lime is calcium hydroxide.
  • the slaked lime is blended into lime slurry, lime paste, lime mortar, and the like.
  • Clay is a mineral raw material consisting of a variety of hydrated silicates and a certain amount of alumina, alkali metal oxides and alkaline earth metal oxides, and contains quartz, feldspar, mica and sulfates, sulfides, carbonates. And other impurities. Clay with a high silicon content is more suitable for flue gas treatment.
  • the incineration reaction chamber of the double-effect reactor has a fuel nozzle, and the fuel is injected into the incineration reaction chamber through the fuel nozzle for combustion, and the temperature of the incineration reaction chamber is maintained at the high temperature; preferably
  • the fuel nozzle is a compound fuel nozzle that acts as a nozzle for the fuel nozzle and alkaline material.
  • sufficient reducing agent such as urea and ammonia may be added to the gas-solid suspension mixing chamber of the double-effect reactor in step (4) to reduce the production of nitrogen oxides (NO x ). To less than 100mg/Nm3.
  • the present invention also provides a flue gas treatment system
  • the flue gas treatment system includes: an incinerator 10, a temperature monitoring system 20, a cooling system 30, a double effect reactor 40, a high temperature dust collector 50, The heat recovery and dedusting system 60, the ash storage silo 70 and the individual chimney 80, wherein the double-effect reactor 40 is composed of a connected incineration reaction chamber 41 and a gas-solid suspension mixing chamber 42.
  • the present invention includes the following advantages:
  • the harmful gas treatment is carried out in the entire flue gas treatment process and the initial stage of the system, thereby eliminating the lime spraying device commonly used in the subsequent flue gas treatment, and at the same time, due to the processing steps In advance, the corrosion of the acid gas to the equipment is effectively reduced.
  • the purification flue gas discharged from the incineration reaction chamber has a heat available space of about 850 to 950. C to about 120. C, thus comparing the existing harmful gas purification-heat recovery system with higher heat recovery efficiency.
  • the harmful gases are heated to about 850 to 950 in the incineration reaction chamber.
  • C enter the gas-solid suspension mixing chamber under high heat preservation conditions, and the whole process stays for 6 to 10 seconds. Therefore, the incineration reaction chamber is extremely thorough in the removal of dioxins and dioxin-forming hydrocarbon organic compounds, organic chlorides, and inorganic chlorides, and the effect is far superior to the existing methods.
  • the generation of nitrogen oxides (NO x ) is controlled to be less than 100 mg/Nm 3 by introducing a sufficient amount of a reducing agent such as urea and ammonia into the gas-solid suspension mixing chamber. .
  • the alkaline material can be recycled in the flue gas treatment system of the present invention, reducing the input of the alkaline material.
  • the flue gas treatment method and system thereof provided by the present invention have the ability to continuously operate under high temperature conditions, absorb acid gases, and eliminate dioxins and/or their precursors, including hydrocarbon organics, organic chlorides, and inorganic chlorides. And other functions.
  • the system can highly eliminate organic matter particles, CO, S0 2 , HC1, HF acid gases and dioxins in organic matter, toxicity and acid gases, while maintaining or increasing the temperature of the processing gas, making it a A stable source of heat available.
  • the toxicity and acid gas of the flue gas are highly purified, the original harmful gas resources are realized.
  • Description 1 is a flow chart of one embodiment of a method of addressing environmental pollution caused by a waste incineration process in accordance with the present invention
  • FIG. 2 is a schematic structural view of a specific embodiment of a system using the method of solving environmental pollution caused by a waste incineration process shown in FIG. 1;
  • DPR Dual Purposes Reactor
  • FIG. 1 is a flow chart of a specific embodiment of a method for treating flue gas according to the present invention, the method comprising:
  • step S101 monitors the temperature of the incineration flue gas generated by the waste incinerator so as not to be too high in temperature, particularly not exceeding the high temperature maintained in the subsequent reaction step.
  • the incineration flue gas produced by the waste incinerator is relatively high, exceeding 1200. C. If the temperature of the incineration flue gas is higher than the upper limit of the high temperature, it is subjected to a temperature lowering treatment so that the temperature is close to the upper limit of the temperature. Once the temperature exceeds the upper temperature limit, it first enters the cooling system for cooling.
  • the cooling system can employ an automatic adjustment of the cold air valve.
  • S102 is an incineration reaction chamber for inputting incineration flue gas maintained in the above temperature range to the double effect reactor. Since the incineration flue gas is a high-temperature flue gas, it can be transported using a special high-temperature flue gas passage, and the high-temperature flue gas passage and the incineration reaction chamber can be connected through a hydraulic valve.
  • the temperature is as high as 1400 to 1600 ° C, the requirements for the material of the combustion reaction chamber wall are very high, and a corundum brick having an A1 2 0 3 content of 90% is required.
  • the temperature is between 850 and 950 ° (in the interval, only the aluminum alloy brick with the A1 2 0 3 content of 60 to 75% is used.
  • the incineration reaction chamber of the present invention can use the A1 2 0 3 content of 60 to 75%.
  • S 103 inputs the alkaline material to the incineration reaction chamber for heating.
  • the alkaline material is a powdery solid selected from the group consisting of lime, limestone, silica sand, alumina, and clay, or Its combination. Clay with a high silicon content is more suitable for flue gas treatment.
  • the alkaline material can be sprayed through the nozzle into the incineration reaction chamber.
  • a combined nozzle can also be used, which is characterized in that fuel can be injected if necessary.
  • the flue gas in the present invention is a high temperature gas, generally no fuel is required, but in the case where a small amount of flue gas temperature is not high, it is necessary to replenish fuel into the incineration reaction chamber, and the temperature of the incineration reaction chamber is maintained by combustion. Temperature range.
  • a separate fuel adding device such as a gas fuel nozzle, a fuel oil nozzle, or the like may be employed, and the above-mentioned combined nozzle may be employed. This not only makes the structure more compact, it can effectively reduce the system footprint, and can also improve the contact between the flue gas and the high temperature airflow.
  • the amount of the alkaline material is 20 to 85 times the molar mass required for the chemical reaction.
  • the amount of the alkaline material is 20 to 85 times the amount required for the reaction, the reaction is more sufficient, and the acid gas and dioxins in the exhaust gas can be completely eliminated. Less than 20 times, the reaction is not enough, it will lead to a small amount of exhaust gas removal is not thorough enough; more than 85 times, will increase the burden on the furnace.
  • the alkaline material in the present invention can be recycled, although it is used in a large amount, it does not cause waste of materials.
  • the gas powder mixture composed of the flue gas and the alkaline material enters a gas-solid suspension mixing chamber of a double-effect reactor, acid gas, persistent organic pollutants and two in the flue gas.
  • the oxin-forming component is cleared.
  • the gas-solid suspension mixing chamber adopts a combination mode of squirting and swirling, so that the alkaline material forms a vortex in the flue gas flow, so as to achieve uniform distribution of the alkaline material in the gas-solid suspension mixing chamber, and the heat The gas is thoroughly mixed to contact the effect.
  • reducing agents such as urea and ammonia may be added to the gas-solid suspension mixing chamber to reduce the production of nitrogen oxides (NO x ) to less than 100 mg/Nm 3 .
  • Steps S102 to S104 are each maintained at a high temperature between 850 and 950 °C.
  • steps 850 to 920 are maintained in steps (b) to (d).
  • the high temperature of C, and most preferably, 860 to 890 are maintained in steps (b) to (d) of the method.
  • C high [0032]
  • the time for treating the flue gas is also important, and the time is too short, which may result in insufficient reaction; if the time is too long, the resource is wasted and the efficiency is lowered.
  • the residence time of the flue gas in the incineration reaction chamber and the gas-solid suspension mixing chamber is 6 to 10 seconds, preferably 8 to 10 seconds.
  • the gas powder mixture of S105 enters a high-temperature dust collector, and the gas-solid separation, the gas enters a heat energy recovery and dust removal system for treatment, and the treated gas is a harmless gas having a temperature of 120 to 150 ° C, and can be directly discharged.
  • a separate chimney can be placed on the heat recovery and dedusting system.
  • the gases treated by the method and system of the present invention are discharged using separate cigarettes.
  • a separate chimney refers to a gas or fumes that are not used to vent other systems, equipment, methods, that is, the smoke used by the system of the present invention is separated from other systems or equipment.
  • the gas may not be directly discharged into the atmosphere, but may be passed to other systems, and the heat recovery and dedusting system may be connected to other systems through a flue gas duct.
  • the solid residue after gas-solid separation by high-temperature dust collector is the remaining unreacted alkaline material, which is recycled to the incineration reaction chamber for recycling or collected in the ash storage bin.
  • the high temperature dust collector, the incineration reaction chamber and the ash storage chamber can be connected by a high temperature three-way valve.
  • the solid alkaline material separated from the high-temperature dust collector passes through the gas-solid separation, it can be directly returned to the incineration reaction chamber through the high-temperature solid material pipeline; and when the quality of the solid alkaline material is lowered, or other reasons are not suitable for reuse , can be directly stored in the ash storage, or converted to other industrial applications.
  • FIG. 2 is a structural schematic diagram of a specific embodiment of a system for solving the environmental pollution caused by the waste incineration process shown in FIG. 1, the system comprising:
  • Incinerator 10 temperature monitoring system 20, cooling system 30, double effect reactor 40, high temperature dust collector 50, heat recovery and dedusting system 60, ash storage silo 70 and independent chimney 80, wherein double effect reactor 40 by the connected incineration reaction chamber 41 and gas-solid suspension mixing
  • the combination chamber 42 is composed.
  • powdered solid alkaline material is added to the incineration reaction chamber 41 of the double-effect reactor 40, and the oxygen content of the exhaust gas is 8 to 11%. , scrubbing temperature 850 to 950. C, residence time is 6 to 10 seconds.
  • the flue gas generated by the waste incineration 10 enters a temperature monitoring system 20 which monitors the temperature of the flue gas.
  • the temperature of the incineration reaction chamber 41 of the double-effect reactor 40 is always maintained at 850 to 950 °C.
  • the flue gas is input to the cooling system 30 for cooling treatment so that the temperature is at 850 to 950 ° C.
  • the temperature can be lowered by automatically adjusting the cold air valve.
  • the flue gas is directly input to the incineration reaction chamber 41. If the temperature is lower than 850 °C, the fuel is burned in the incineration reaction chamber to raise the temperature to 850 ⁇ 950 °C. If the temperature is between 850 and 950 ° C, the fuel injection step is omitted.
  • the double-effect reactor of the present invention employs a high-aluminum brick of a crucible having an A1 2 0 3 content of 60 to 75%.
  • the alkaline material is input to the incineration reaction chamber 1 for heating.
  • the alkaline material can be lime, limestone, silica sand, alumina, and clay, or a combination thereof.
  • the gas-powder mixture is discharged from the incineration reaction chamber 41, and the gas-powder mixture is passed to the gas-solid suspension mixing chamber 42 of the double-effect reactor 40, the high-temperature powdery alkaline material in the gas-powder mixture and The high temperature flue gas is sufficiently homogenized, mixed, contacted and reacted in the gas-solid suspension mixing chamber 42; finally, the effect of gas purification is achieved.
  • the gas-solid suspension mixing chamber 42 of the present invention employs a combined mode of blasting and swirling to achieve a scrubbing temperature of 850. C to 950. C. While removing the acid gas, completely suppress and burn out the constituent elements and organic matter of dioxins, so that the dioxin is cooling down. It is difficult to reform in the process.
  • the fully reacted gas-powder mixture is introduced into the high-temperature dust collector 50 from the gas-solid suspension mixing chamber 42.
  • the gas-solid suspension mixing chamber 42 and the high-temperature dust collector 50 may be connected by a gas-solid mixing pipe.
  • the dust in the gas-powder mixture is separated from the gas, and after the dust in the gas-powder mixture is purified, the remaining high-temperature gas is subjected to the next treatment.
  • the high-temperature gas enters the heat recovery and dust removal system 60, and the gas after the heat recovery and dust collection treatment is a harmless gas having a temperature of 120 to 150 ° C, and can be directly discharged into the atmosphere, for example, in heat energy.
  • a separate chimney 80 is disposed on the recovery and dedusting system 60, or the thermal energy recovery and dedusting system 60 is coupled to the individual chimney 80 via a flue gas duct. If the gas needs to be used, it can be discharged directly into the atmosphere, but it can be connected to other systems, and the heat recovery and dedusting system 60 can be connected to other systems through the flue gas duct.
  • the remaining unreacted alkaline material is returned to the incineration reaction chamber 41 for recycling, or collected in the ash storage chamber 70.
  • the high temperature dust collector 50, the incineration reaction chamber 41 and the ash storage chamber 70 may be connected by a high temperature three-way valve.
  • the solid alkaline material that has been gas-solid separated from the high-temperature dust collector 50 When the solid alkaline material that has been gas-solid separated from the high-temperature dust collector 50 is discharged, it can be directly returned to the incineration reaction chamber 41 through a high-temperature solid material pipeline; when the alkaline material is found to have poor performance and needs to be fast in actual operation, [0048] When replacing, the alkaline material coming out of the high-temperature dust collector 50 can also directly enter the ash storage silo 70, and at the same time increase the input amount of the alkaline material in the incineration reaction chamber 41 and increase the fuel amount until the specific gravity of the alkaline material reaches the reaction requirement. And the temperature returned to normal.
  • the system using the dual purpose reactor (DPR) of the present invention finally releases a gas having a dioxin of less than 0.018 ng TEQ/m 3 and a total volatile organic carbon lower than that.
  • 3mg/m 3 hydrogen chloride gas (HC1 ) is less than 3 mg/m 3
  • hydrogen fluoride gas (HF) is less than 0.03 mg/m 3
  • S0 2 is lower than 20 mg/m 3 (11% 0 2 in standard state)
  • the dry smoke is converted to the reference value).
  • the indicators of the emitted gases comply with the comprehensive emission standards for atmospheric pollutants in the EU and China.

Description

用双效反应器处理高温废物焚化炉产生 的烟气的方法和系统
技术领域
[0001]本发明涉及一种用双效反应器 ( Dual Purposes Reactor, DPR ) 应用于垃圾焚烧工艺的环保技术领域, 尤其涉及用于解决 在垃圾焚烧过程所产生的有害含有机质、 毒性及酸性气体及资源 化技术等的问题。 背景技术
[0002]随着经济的高速发展, 城市废物垃圾急剧增多, 特别是工 业危险废物, 医疗垃圾等, 若处理不当, 会直接威胁人类的健康。 城市垃圾产量不断增长, 近年来, 年增长速度达到 8%左右。 目 前, 我国的垃圾年产量已超过 1.5亿吨, 因此垃圾处理日益引起 重视。 目前, 最有效处理废物垃圾的方法是焚烧处理。 但是焚烧 法在緩解城市垃圾处理压力、 节约耕地的同时, 也带来了许多问 题, 如焚烧烟气中的酸性气体, 会造成换热面和烟道的高温腐蚀 和低温腐蚀。 另外, 焚烧烟气中的二噁英, 毒性极大, 可致癌, 若处理不当, 仍会产生严重的二次污染。
[0003]普遍有效的垃圾焚烧处理方法是垃圾焚化炉处理, 但垃圾 焚化炉产生的烟气中的有害物成分也相应增加, 特别是医疗, 工 业垃圾等危险废弃物焚烧后产生的大量有毒物质。 同时由于垃圾 焚化炉有时需要在居民区附近设立, 因此各国制定的废气排放标 准都比较严格。 加上垃圾焚烧技术本身就是一项环保技术, 其排 放标准也将越来越严格, 这对垃圾焚烧烟气净化技术提出了很高 的要求。 严格的排放指标往往导致净化系统的投资及运行费用大 大增力口。 [0004]垃圾焚化炉产生的主要污染物是各种酸性气体、 氯的化合 物、 二氧化硫、 一氧化碳、 氮氧化物、 重金属、 粉尘、 二噁英等 等, 另外烟气中焦油含量往往也比较高。 这些污染物有的是气态 形式, 有的是固态形式, 还有的是液态形式。 其中有些污染物可 以通过改进燃烧工艺来削减, 但最重要的还是烟气净化技术及系 统工艺设计。 垃圾焚烧烟气污染物一般含有以下污染物:
Figure imgf000004_0001
[0005]可以看出, 垃圾焚化炉处理产生的烟气中的污染物含量是 比较高的。 烟气中污染物的成分及含量与垃圾成分有很大关系, 还与辅助燃料有关。 国内国外对焚化炉烟气排放的限制项目比较 多, 排放标准也比工业上的要求要高。 我国垃圾焚烧技术起步较 晚, 烟气净化技术也比较落后, 往往导致二次污染。 我国自有的 垃圾焚烧烟气净化技术虽然有了一些应用, 但在实际应用中还存 在很多问题, 释放烟气的指标与国外相比还有不小的差距。
[0006]目前技术和申请专利都未能很好地解决垃圾焚烧烟气净化 技术存在的问题。 已有的除酸性气体和二噁英技术多采用急速冷 却, 喷淋碱液, 活性炭吸附系统, 处理成本高, 处理设备复杂, 而且存在着处理不彻底, 二次污染严重等缺陷。 中国申请专利号 200710178933.X 的专利采用急冷方式将烟气温度从高温瞬间降 至 155〜180°C , 之后喷淋碱液, 这样操作造成了热能的浪费, 而 且水耗量大, 加大了处理成本。 中国专利申请号 200710025602.2 的专利采用活性炭吸附烟气中的二噁英气体, 这种操作并不能从 根本上阻止有毒二噁英的生成, 而且成本极高。 中国专利申请号 200710040771.3的专利采用水热处理的方法对垃圾焚烧产生的烟 气进行处理。 虽然本方法可以销毁飞灰中的二噁英等有害气体, 但是会产生废水, 增加了废水处理环节, 且浪费了水资源。
[0007]因此, 本领域需要提供一种解决由垃圾焚烧, 特别是垃圾 焚化炉处理工艺产生的烟气所引起的环境污染, 并完全去除烟气 中酸性有害气体和二噁英及其前体物质的方法及其系统。 发明内容
[0008]本发明提供了一种用双效反应器处理高温废物焚化炉产生 的烟气的方法, 其包括以下步骤:
(1) 对垃圾焚化炉产生的焚烧烟气的温度进行监控,令其保持 在高温, 所述高温为 850〜950°C ; 如果焚烧烟气的温度高于所述 高温的上限, 则对其进行降温处理, 使得温度接近所述温度的上 限; 在烟气温度不到所述高温的情况下, 向焚烧反应室内补充燃 料, 通过燃烧维持焚烧反应室的温度在所述高温;
(2) 将焚烧烟气输入到双效反应器的焚烧反应室;
(3) 将碱性物料输入到焚烧反应室进行加热;
(4) 在维持所述高温的条件下,所述烟气与所述碱性物料组成 的气粉混合物进入双效反应器的气固悬浮混合室, 在气固悬浮混 合室充分混合反应, 所述烟气中的酸性气体和二噁英前体物质被 清除;
(5) 所述气粉混合物进入高温收尘器, 气固分离, 气体进入热 能回收及除尘系统, 最终通过独立烟 it]排出;
(6) 剩余未反应的碱性物料回入焚烧反应室循环再用,或收集 于储灰仓。
[0009]在本发明的一个方面, 所述方法中步骤 ( 1 ) 至 (4 ) 中所 述高温为 850〜920。C, 优选的, 所述高温为 860至 890。C。 质。 在本发明的一个方面, 使^的是固体的碱性物 i了 例如石灰 (包括生石灰和熟石灰)、 石灰石、 硅沙、 氧化铝和粘土, 或其组 合等。 在本发明的方法中, 所述固体以粉状方式使用。 石灰石主 要成分是碳酸钙。 石灰有生石灰和熟石灰。 生石灰的主要成分是 氧化钙。 熟石灰主要成分是氢氧化钙。 熟石灰经调配成石灰浆、 石灰膏、 石灰砂浆等。 粘土是一种矿物原料, 由多种水合硅酸盐 和一定量的氧化铝、 碱金属氧化物和碱土金属氧化物组成, 并含 有石英、 长石、 云母及硫酸盐、 硫化物、 碳酸盐等杂质。 含硅量 高的粘土更适合用于烟气处理。
[001 1]在本发明的另一个方面, 双效反应器的焚烧反应室具有燃 料喷嘴, 燃料经燃料喷嘴注入到焚烧反应室进行燃烧, 维持焚烧 反应室的温度在所述高温;优选所述燃料喷嘴为复合式燃料喷嘴, 其可作为燃料喷嘴和碱性物料的喷嘴。
[0012]在本发明的另一个方面, 可以在步骤(4 )将足够的尿素和 氨气等还原剂加入双效反应器的气固悬浮混合室, 将氮氧化物 (NOx)的产生减至低于 100mg/Nm3 。
[0013]相应地, 本发明还提供了一种烟气处理系统, 该烟气处理 统包括: 焚化炉 10、 温度监控系统 20、 降温系统 30、 双效反应 器 40、 高温收尘器 50、 热能回收及除尘系统 60、 储灰仓 70和独 立烟囱 80, 其中, 双效反应器 40由相连的焚烧反应室 41和气固 悬浮混合室 42组成。
[0014]本发明包括以下优点:
第一, 通过在本发明烟气处理系统的双效反应器中采用碱 性物料与有害气体混合高温煅烧的处理方式, 在整个烟气处理过 程和系统的初始阶段就进行有害气体处理, 从而省去了后续烟气 处理中常用的石灰喷洒装置, 同时, 由于将处理步骤提前, 有效 地大大减小了酸性气体对设备的腐蚀。
第二, 焚烧反应室排出的净化烟气, 其热能的可利用空间 为约 850〜950。C到约 120。C, 从而对比现有的有害气体净化一热 回收系统有着更高的热能回收效率。
第三, 有害气体在焚烧反应室被加热至约 850至 950。C, 在高度保温条件下进入气固悬浮混合室, 整个过程停留时间达 6 至 10秒。 因此焚烧反应室对二噁英及形成二噁英的烃类有机物、 有机氯化物和无机氯化物等的去除极为彻底, 其效果远超过现有 的方法。
第四, 在本发明的一个方面, 在通过将足量的尿素和氨气 等还原剂通入气固悬浮混合室, 从而将氮氧化物 (NOx)的产生控 制为低于 100mg/Nm3
第五, 碱性物料可在本发明的烟气处理系统中循环使用, 减少了碱性物料的投入。
[0015]本发明提供的烟气处理方法及其系统具有能在高温条件下 连续运行、 吸收酸性气体和消除二噁英和 /或其前体物质, 包括烃 类有机物、 有机氯化物和无机氯化物等的功能。 该系统既能高度 消除含有机质、毒性及酸性气体中的有机物颗粒、 CO、 S02、 HC1、 HF 酸性气体及二噁英等有害物质, 同时又能保持或提高处理气 体的温度, 使之成为可供利用的稳定热源。 在高度净化烟气的毒 性及酸性气体的同时, 实现原有害气体资源化。 附图说明
[0016]通过阅读参照以下附图所作的对非限制性实施例所作的详 细描述, 本发明的其它特征、 目的和优点将会变得更明显: [0017]图 1 为是根据本发明的解决由垃圾焚烧工艺所引起的环境 污染的方法的一种具体实施方式的流程图;
[0018]图 2是使用图 1 示出的解决由垃圾焚烧工艺所引起的环境 污染的方法的系统的一种具体实施方式的结构示意图; 具体实施方式
[0019]使用了带有双效反应器( Dual Purposes Reactor, DPR )的本 发明的方法和系统在产业中进行了小试和中试。
[0020]下面结合附图对本发明作进一步详细描述。
[0021]请参考图 1 ,图 1是根据本发明的烟气处理方法的一种具体 实施方式的流程图, 该方法包括:
[0022]如图 1所示, 步骤 S 101为对垃圾焚化炉产生的焚烧烟气的 温度进行监视, 目的是让其温度不能过高, 特别是不超过在后续 反应步骤中保持的高温。 一般来说垃圾焚化炉产生的焚烧烟气都 比较高,超过 1200。C。如果焚烧烟气的温度高于所述高温的上限, 则对其进行降温处理, 使得温度接近所述温度的上限。 一旦温度 超过所述温度上限, 就先进入降温系统进行降温处理。 在本发明 中, 降温系统可采用自动调节冷空气阀。
[0023] S 102为将保持在上述温度范围的焚烧烟气输入到双效反应 器的焚烧反应室。 由于焚烧烟气属于高温烟气, 可以使用专门的 高温烟气通道进行传输, 高温烟气通道与焚烧反应室可以通过液 压阀门相连。
[0024]如果温度高达 1400〜1600 °C时,对燃烧反应室管壁材料的要 求很高, 需要 A1203含量为 90%的刚玉砖。 而当温度在 850〜950 °( 区间时, 只需采用 A1203含量为 60〜75%的 Π等高铝砖。 本发明 的焚烧反应室可采用 A1203含量为 60〜75%的 Π等高铝砖。
[0025] S 103将碱性物料输入到焚烧反应室进行加热。 所述碱性物 料为粉状固体, 其选自石灰、 石灰石、 硅沙、 氧化铝和黏土, 或 其组合。 含硅量高的粘土更适合用于烟气处理。 为了使碱性物料 在焚烧反应室内充分反应,碱性物料可通过喷嘴喷入焚烧反应室。 为了方便、 筒洁, 也可以采用组合式喷嘴, 该喷嘴的特点是, 在 必要时, 还可以喷入燃料。
[0026]由于本发明中的烟气属高温气体, 一般情况下无需燃料, 但是在少数烟气温度不高的情况下, 需要向焚烧反应室内补充燃 料, 通过燃烧维持焚烧反应室的温度在要求的温度范围。 此时, 可以采用单独的燃料添加装置, 如煤气燃料喷嘴、燃料油喷嘴等, 也可以采用上述提到的组合式喷嘴。 这样不但结构更为紧凑, 可 以有效减小系统占用空间, 也可以改善烟气与高温气流的接触状 况。
[0027]碱性物料的用量为其化学反应所需摩尔质量的 20至 85倍。 碱性物料的用量是其反应所需的量的 20〜85倍时,反应更加充分, 能够彻底消除废气中的酸性气体及二噁英。 小于 20倍,反应不够 充分, 会导致少量废气清除不够彻底; 大于 85倍, 会增加燃烧炉 负担。 另外, 由于本发明中的碱性物料可以循环利用, 因此虽然 用量很大, 但并不会造成材料浪费。
[0028]S104在高温下, 所述烟气与所述碱性物料组成的气粉混合 物进入双效反应器的气固悬浮混合室反应, 烟气中的酸性气体、 持久性有机污染物和二噁英生成组分被清除。
[0029]所述气固悬浮混合室采用喷腾和旋流复合的模式, 令碱性 物料在烟气流中形成涡流, 以达到碱性物料在气固悬浮混合室中 均匀分布, 并与热气体充分混合接触的效果。
[0030]在需要时, 还可以将足够的尿素和氨气等还原剂加入气固 悬浮混合室, 可将氮氧化物 (NOx)的产生减至低于 100mg/Nm3
[0031]步骤 S102至 S104均保持在 850-950°C的高温之间。优选的 所述方法中, 步骤 (b ) 至 (d ) 中保持 850至 920。C的高温, 最 优选的, 所述方法中步骤 (b ) 至 (d ) 中保持 860至 890。C的高 [0032]为了使反应更加充分, 处理烟气的时间也很重要, 时间太 短, 会导致反应不够充分; 时间过长会造成资源浪费, 效率降低。 本发明中, 所述烟气在焚烧反应室和气固悬浮混合室中停留时间 合共为 6至 10秒, 优选 8至 10秒。
[0033] S 105所述气粉混合物进入高温收尘器, 气固分离, 气体进 入热能回收及除尘系统进行处理, 处理后的气体是温度在 120〜150 °C的无害气体, 可以直接排入大气, 例如可以在热能回 收及除尘系统上设置一独立烟囱。 在本发明的方法和系统中, 使 用独立的烟 It]将经过本发明的方法和系统处理的气体排出。 独立 的烟囱是指不用于排出来自其它系统、设备、 方法的气体或烟气, 也就是说, 本发明的系统使用的烟 it]与其它系统或设备的分开。
[0034]如果该气体需要被加以利用, 那么可以不直接排入大气, 而是通入其他系统, 可以通过烟气管道将热能回收及除尘系统与 其他系统相连接。
[0035J S 106经高温收尘器进行气固分离后的固体残渣是剩余未反 应的碱性物料, 这些固体物料回入焚烧反应室循环再用, 或收集 于储灰仓。 所述高温收尘器、 焚烧反应室和储灰仓可以通过一高 温三通阀进行连接。 当从高温收尘器中经过气固分离的固体碱性 物料出来后, 可以通过高温固料管道直接返回焚烧反应室; 而当 所述固体碱性物料质量降低, 或者其他原因不适宜再次利用时, 可以直接通入储灰仓储存, 或转作其他工业应用。
[0036]结合图 2进行参考, 图 2是使用图 1示出的解决由垃圾焚 烧工艺所引起的环境污染的方法的系统的一种具体实施方式的结 构示意图, 该系统包括:
[0037]焚化炉 10、 温度监控系统 20、 降温系统 30、 双效反应器 40、 高温收尘器 50、 热能回收及除尘系统 60、 储灰仓 70和独立烟 囱 80, 其中, 双效反应器 40由相连的焚烧反应室 41和气固悬浮混 合室 42组成。下面结合图 1示出的方法对该系统的各部分进行说明。
[0038]本实施例中, 在该系统独立运行的情况下, 在双效反应器 40的焚烧反应室 41 内加入粉状固体碱性物料, 排出气体的除水 含氧率为 8至 11%, 涤气温度 850至 950。C, 停留时间时间 6至 10秒。
[0039]如图 1和图 2所示, 首先, 垃圾焚化 10产生的烟气进入温 度监控系统 20 , 该系统对烟气温度进行监控。 为了充分去除烟气 中的酸性气体和二噁英及其前体物质, 同时, 控制反应成本, 要 始终将双效反应器 40的焚烧反应室 41的温度保持在 850〜950°C。 一旦垃圾焚化 10产生的烟气温度超过 950°C , 就要将烟气输入到 降温系统 30进行降温处理,使温度居于 850〜950°C。在本发明中, 可采用自动调节冷空气阀实现降低温度。 温度低于 950°C时, 则 将烟气直接输入到焚烧反应室 41 , 若温度低于 850°C之间, 要在 焚烧反应室中加入燃料燃烧, 以便将温度升至 850〜950°C , 若温 度处于 850〜950°C , 则省去了燃料注入步骤。
[0040]本发明的双效反应器采用 A1203含量为 60〜75%的 Π等高铝 砖。
[0041]在焚烧烟气输入到焚烧反应室 1 ,并控制好焚烧反应室温度 之后, 将碱性物料输入到焚烧反应室 1进行加热。
[0042]所述碱性物料可以是石灰、 石灰石、 硅沙、 氧化铝和粘土, 或其组合。
[0043]经过煅烧后, 由焚烧反应室 41排出气粉混合物, 将该气粉 混合物通入双效反应器 40的气固悬浮混合室 42, 该气粉混合物 中的高温粉状碱性物料和高温烟气在气固悬浮混合室 42 中充分 均化、 混合、 接触和反应; 最终达气体净化的效果。
[0044]本发明的气固悬浮混合室 42 采用喷腾和旋流复合式的模 式, 使涤气温度达到 850。C至 950。C , 在去除了酸性气体的同时, 彻底抑制和焚尽了二噁英的组成元素和有机物, 使二噁英在降温 过程中难以重新形成。
[0045]之后, 充分反应后的气粉混合物由气固悬浮混合室 42内进 入高温收尘器 50, 通常气固悬浮混合室 42和高温收尘器 50可以 通过气固混合管道连接。在该高温收尘器 50中所述气粉混合物中 的粉尘与气体分离, 将所述气粉混合物中的粉尘净化后, 余下高 温气体进行下一步处理。
[0046]气固分离后高温气体进入热能回收及除尘系统 60, 经过热 能回收和收尘处理后的气体是温度在 120〜150°C的无害气体, 可 以直接排入大气,例如可以在热能回收及除尘系统 60上设置一独 立烟囱 80, 或者通过烟气管道将热能回收及除尘系统 60与独立 烟囱 80相连接。如果该气体需要被加以利用, 那么可以不直接排 入大气, 而是通入其他系统, 可以通过烟气管道将热能回收及除 尘系统 60与其他系统相连接。
[0047]剩余未反应的碱性物料回入焚烧反应室 41循环再用, 或收 集于储灰仓 70。 所述高温收尘器 50、 焚烧反应室 41和储灰仓 70 可以通过一高温三通阀进行连接。
[0048]当从高温收尘器 50 中经过气固分离的固体碱性物料出来 后, 可以通过高温固料管道直接返回焚烧反应室 41 ; 当在实际操 作中发现碱性物料性能不良、 需要快速更换时, 从高温收尘器 50 出来的碱性物料也可以直接进入储灰仓 70, 同时加大焚烧反应室 41的碱性物料投入量并增加燃料用量, 直至碱性物料的比重达到 反应要求且温度恢复正常。
[0049]经初步测量和估算,使用本发明双效反应器( Dual Purposes Reactor, DPR ) 的系统最后释放出的气体的二噁英低于 0.018ng TEQ/m3, 总挥发性有机碳低于 3mg/m3 , 氯化氢气体(HC1 )低于 3 mg/m3 , 氟化氢气体(HF )低于 0.03 mg/m3 , S02低于 20 mg/m3 (以标准状态下含 11%02的干烟气为参考值换算)。 排出的气体 的各项指标符合欧盟和中国的大气污染物综合排放标准。 [0050]对于本领域技术人员而言, 显然本发明不限于上述示范性 实施例的细节,而且在不背离本发明的精神或基本特征的情况下, 能够以其他的具体形式实现本发明。 因此, 无论从哪一点来看, 均应将实施例看作是示范性的, 而且是非限制性的, 本发明的范 围由所附权利要求而不是上述说明限定, 因此旨在将落在权利要 求的等同要件的含义和范围内的所有变化涵括在本发明内。 不应 将权利要求中的任何附图标记视为限制所涉及的权利要求。此外, 显然"包括"一词不排除其他单元或步骤, 单数不排除复数。

Claims

权 利 要 求
1. 一种利用双效反应器处理垃圾焚化炉幹放的烟气的方法, 所述双 效反应器由相连的焚烧反应室和气固悬浮混合室所组成, 该方法包括以 下步骤:
(1)对垃圾焚化炉产生的焚烧烟气的温度进行监控, 令其保持在高 温, 所述高温为 850〜950°C ; 如果焚烧烟气的温度高于所述高温的上限, 则对其进行降温处理, 使得温度接近所述温度的上限;
(2)将焚烧烟气输入到双效反应器的焚烧反应室;
(3)将碱性物料输入到所述焚烧反应室;
(4) 在维持所述高温的条件下, 所述烟气与所述碱性物料组成的气 粉混合物进入双效反应器的气固悬浮混合室, 在气固悬浮混合室充分混 合反应, 所述烟气中的酸性气体和二噁英前体物质被清除;
(5) 所述气粉混合物进入高温收尘器, 气固分离, 气体进入热能回 收及除尘系统, 最后通过独立烟自排出;
(6) 剩余未反应的碱性物料回入焚烧反应室循环再用, 或收集于储 灰仓。
2.根据权利要求 1 所述的方法, 其中在步骤(1 ) 中, 当所述焚化 炉产生的焚烧烟气的温度高于所述温度的上限, 通过自动调节冷空气 阀进行降温。
3.根据权利要求 1所述的方法, 所述碱性物料为粉状固体, 其选自 石灰、 石灰石、 硅沙、 氧化铝和粘土, 或其组合。
4.根据权利要求 1所述的方法, 其中焚烧反应室具有燃料喷嘴, 燃 料经燃料喷嘴注入到焚烧反应室进行燃烧, 维持焚烧反应室的温度在所 述高温; 优选所述燃料喷嘴为复合式燃料喷嘴, 其可作为燃料喷嘴和碱 性物料的喷嘴。
5.根据权利要求 1 所述的方法, 其中步骤(1 )至(4 ) 中所述高 温为 850至 920° C的温度, 优选的, 所述高温为 860至 890° C。
6.根据权利要求 1 所述的方法, 其中步骤(4 ) , 气固悬浮混合室 采用喷腾和旋流复合式的模式, 令碱性物料在烟气流中反复翻腾, 以达 到碱性物料在气固悬浮混合室中均匀分布, 并与热气体充分混合接触的 效果。
7.根据权利要求 1所述的方法, 所述碱性物料的用量为其化学反应 所需摩尔质量的 20至 85倍。
8.根据权利要求 1所述的方法, 其中所述烟气在焚烧反应室和气固 悬浮混合室中停留时间总共为 6至 10秒, 优选 8至 10秒。
9. 根据权利要求 1所述的方法, 其中在步骤(4 )将足够的尿素和 氨气等还原剂加入气固悬浮混合室, 将氮氧化物 (ΝΟχ)的产生减至低于 lOOmg/Nm3
10. 一种用于如权利要求 1-9中任一项定义的烟气处理方法的系统, 其包括: 焚化炉 10、 温度监控系统 20、 降温系统 30、 双效反应器 40、 高温收尘器 50、 热能回收及除尘系统 60、 储灰仓 70和独立烟囱 80, 其 中, 双效反应器 40由相连的焚烧反应室 41和气固悬浮混合室 42组成。
PCT/CN2011/084693 2010-12-30 2011-12-26 用双效反应器处理高温废物焚化炉产生的烟气的方法和系统 WO2012089089A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/977,218 US8728421B2 (en) 2010-12-30 2011-12-26 Method for the treatment of exhaust gas produced by high-temperature waste incinerator with a dual-purpose reactor and the system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010106121872A CN102302892B (zh) 2010-12-30 2010-12-30 用双效反应器处理高温废物焚化炉产生的烟气的方法和系统
CN201010612187.2 2010-12-30

Publications (1)

Publication Number Publication Date
WO2012089089A1 true WO2012089089A1 (zh) 2012-07-05

Family

ID=45376862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084693 WO2012089089A1 (zh) 2010-12-30 2011-12-26 用双效反应器处理高温废物焚化炉产生的烟气的方法和系统

Country Status (3)

Country Link
US (1) US8728421B2 (zh)
CN (1) CN102302892B (zh)
WO (1) WO2012089089A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104566386A (zh) * 2014-12-23 2015-04-29 福寿园环保机械制造有限公司 环保节能全自动火化机烟气净化装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10035126B2 (en) 2013-12-31 2018-07-31 Ada Carbon Solutions, Llc Sorbent compositions having pneumatic conveyance capabilities
US9468904B2 (en) 2013-12-31 2016-10-18 Ada Carbon Solutions, Llc Sorbent compositions having pneumatic conveyance capabilities
US9314767B2 (en) 2014-03-07 2016-04-19 Ada Carbon Solutions, Llc Sorbent compositions having pneumatic conveyance capabilities
CN107051192A (zh) * 2017-03-29 2017-08-18 甘肃中天兰洁节能环保科技发展有限公司 复合互补式光解催化氧化废臭气净化处理系统
CA3102921A1 (en) * 2018-09-14 2020-03-19 Minplus B.V. A method of operating an incinerator comprising a device for capturing ash entrained by flue gas
CN113731136A (zh) * 2020-05-28 2021-12-03 兰州大学 一种避免二噁英生成的炉内控制方法
CN113041806B (zh) * 2021-03-17 2021-11-30 江苏峰业科技环保集团股份有限公司 一种sda半干法脱硫塔
CN113739185A (zh) * 2021-09-03 2021-12-03 北京蓝天晨曦环境科技有限公司 一种垃圾焚烧发电厂高温烟气中二恶英的处理系统
CN113713601A (zh) * 2021-09-07 2021-11-30 山东省环境保护科学研究设计院有限公司 一种基于炉内喷钙的危废焚烧烟气脱硫方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780799A (zh) * 2003-10-29 2006-05-31 F.L.施米思公司 用于预热颗粒或粉末材料的方法和设备
CN1778752A (zh) * 2004-11-20 2006-05-31 张相红 城市生活垃圾烧制水泥的方法
CN101761928A (zh) * 2010-01-11 2010-06-30 中信重工机械股份有限公司 一种生活垃圾的焚烧处理方法
CN101776269A (zh) * 2010-01-11 2010-07-14 中信重工机械股份有限公司 生活垃圾的n级焚烧处理技术

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1084961A (en) * 1965-03-30 1967-09-27 Foseco Int Improvements in or relating to the production of iron alloys
US5238665A (en) * 1991-06-10 1993-08-24 Beco Engineering Company Method for minimizing environmental release of toxic compounds in the incineration of wastes
CN100494780C (zh) * 2003-02-20 2009-06-03 北京环能海臣科技有限公司 一种煅烧清除垃圾焚烧锅炉含二恶英飞灰的系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780799A (zh) * 2003-10-29 2006-05-31 F.L.施米思公司 用于预热颗粒或粉末材料的方法和设备
CN1778752A (zh) * 2004-11-20 2006-05-31 张相红 城市生活垃圾烧制水泥的方法
CN101761928A (zh) * 2010-01-11 2010-06-30 中信重工机械股份有限公司 一种生活垃圾的焚烧处理方法
CN101776269A (zh) * 2010-01-11 2010-07-14 中信重工机械股份有限公司 生活垃圾的n级焚烧处理技术

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104566386A (zh) * 2014-12-23 2015-04-29 福寿园环保机械制造有限公司 环保节能全自动火化机烟气净化装置

Also Published As

Publication number Publication date
US8728421B2 (en) 2014-05-20
US20130272941A1 (en) 2013-10-17
CN102302892A (zh) 2012-01-04
CN102302892B (zh) 2013-05-22

Similar Documents

Publication Publication Date Title
WO2012089089A1 (zh) 用双效反应器处理高温废物焚化炉产生的烟气的方法和系统
CN109539272A (zh) 含氯废物高温等离子体资源化回收工艺及系统
CN202141056U (zh) 一种危险废物焚烧及焚烧飞灰熔融固化一体化系统
CN105444582B (zh) 一种水泥窑旁路放风联合分级燃烧窑尾烟气处理装置及工艺方法
CN101822942B (zh) 一种固体废物焚烧烟气中二噁英、重金属湿法净化方法
CN110513693B (zh) 一种污泥焚烧方法
CN110186056A (zh) 一种化工企业危险废物焚烧处理方法
CN113310056A (zh) 危险废物焚烧处理系统及方法
CN205425856U (zh) 一种水泥窑旁路放风联合分级燃烧窑尾烟气处理装置
CN111729490A (zh) 一种活性炭再生过程中废气处理工艺
CN107485999A (zh) 垃圾焚烧烟气的处理方法
CN110360575A (zh) 一种危废处置中心的焚烧系统
CN102303957B (zh) 利用双效反应器结合水泥生产处理废气的方法及其系统
CN215523303U (zh) 等离子危险废物处理系统
CN106925106A (zh) 一种cfb锅炉炉内湿法脱硫方法
CN103599691A (zh) 一种利用粉煤灰除尘脱硫工艺及其系统
CN101725988B (zh) 一种垃圾处理及利用的综合方法
CN1556349A (zh) 生活垃圾处理与水泥回转窑联合生产工艺
WO2012089083A1 (zh) 用双效反应器处理焚烧产生的烟气的方法及其系统
CN107551779A (zh) 垃圾焚烧烟气的处理装置
CN104390220B (zh) 一种化工污泥处理方法及设备系统
CN104975179A (zh) 一种金属镁冶炼白云石焙烧和垃圾焚烧联合运行的方法
CN106118803B (zh) 生活垃圾低温热解炉内二噁英抑制剂及其制备方法与应用
CN211232880U (zh) 一种高、低热值危险废弃物协同焚烧熔融无害化处理系统
CN209309994U (zh) 含氯废物高温等离子体资源化回收系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13977218

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852823

Country of ref document: EP

Kind code of ref document: A1