WO2012089083A1 - 用双效反应器处理焚烧产生的烟气的方法及其系统 - Google Patents

用双效反应器处理焚烧产生的烟气的方法及其系统 Download PDF

Info

Publication number
WO2012089083A1
WO2012089083A1 PCT/CN2011/084665 CN2011084665W WO2012089083A1 WO 2012089083 A1 WO2012089083 A1 WO 2012089083A1 CN 2011084665 W CN2011084665 W CN 2011084665W WO 2012089083 A1 WO2012089083 A1 WO 2012089083A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
incineration
flue gas
reaction chamber
temperature
Prior art date
Application number
PCT/CN2011/084665
Other languages
English (en)
French (fr)
Inventor
梁青照
Original Assignee
圣达瀚科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 圣达瀚科技有限公司 filed Critical 圣达瀚科技有限公司
Publication of WO2012089083A1 publication Critical patent/WO2012089083A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • B01D2258/0291Flue gases from waste incineration plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/70Blending
    • F23G2201/701Blending with additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/104High temperature resistant (ceramic) type

Definitions

  • the present invention relates to a method for treating flue gas generated by incineration using a Dual Purposes Reactor (DPR), and more particularly to using a high temperature and alkaline material to remove acid gases from high temperature incineration flue gas and A method of completely removing dioxin precursors in incineration flue gas while achieving thermal energy recovery.
  • DPR Dual Purposes Reactor
  • Dioxins which is a kind of highly toxic and harmful substance, which is carcinogenic, teratogenic and immunotoxic to humans. Therefore, the dioxins produced in industrial processing must be strictly treated. .
  • the mechanism of dioxin formation in the process of incineration has become an important part of the research content of dioxin.
  • Dioxins can be formed either from hydrocarbon organics and inorganic chlorides in the presence of a catalyst, or from precursor organic chlorides of dioxins. It is widely believed that hydrocarbons and organic chlorides react chemically to form dioxins during incineration. From the current research, there are several reasons for the formation of dioxins in waste incineration:
  • the dioxin precursor materials include hydrocarbon organics, organic chlorides, inorganic chlorides, and the like. A large amount of dioxin precursor material is present in the incineration flue gas.
  • acid gases generated by the incineration process include hydrogen chloride gas (HC1), hydrogen fluoride gas (HF), ammonia (NH 3 ), sulfuric acid (H 2 S0 4 ), hydrogen cyanide gas (HCN), hydrogen sulfide gas. (H 2 S ) and so on.
  • Acidic gases can cause extensive environmental damage, causing huge economic losses, such as: corrosion of buildings and industrial equipment; destruction of open-air cultural relics; damage to plant foliage, leading to forest death; death of fish and shrimp in lakes; destruction of soil Ingredients that reduce or even kill crops; drinking groundwater caused by acidification is harmful to humans.
  • the exhaust gas treatment technology generated by high-temperature incineration mostly uses rapid cooling, spray lye, and activated carbon adsorption system.
  • the activated carbon adsorption system since the activated carbon is adsorbed, the dioxins are only present in the activated carbon, and are not fundamentally removed, requiring further treatment and being expensive.
  • the electron beam irradiation delay method is used to destroy the dioxins in the flue gas.
  • the voltage for generating the electron beam is high, the processing capacity is small, and the energy consumption is large.
  • An object of the present invention is to provide a method and system for removing acid gas in high-temperature incineration flue gas by using high-temperature and alkaline materials, completely removing dioxin precursor substances in incineration flue gas, and recovering heat energy at the same time.
  • the present invention provides a method for treating a high temperature incineration exhaust gas using a double effect reactor, the double effect reactor comprising a combined incineration reaction chamber and a gas-solid suspension mixing chamber, the method comprising the following steps of an exhaust gas treatment method, It includes the following steps:
  • the gas powder mixture enters the high temperature dust collector, gas-solid separation, and gas discharge;
  • the remaining unreacted alkaline material can be recycled to the incineration reaction chamber for recycling or collected in an ash storage tank for use as a raw material for other industries.
  • a method of treating high temperature incineration flue gas using a double effect reactor comprising a combined incineration reaction chamber and a gas-solid suspension mixing chamber, the method comprising The following steps:
  • the gas-powder mixture leaves the double-effect reactor and enters the high-temperature dust collector.
  • the gas-solid separation after the gas is recovered by the heat energy recovery and dedusting system, is discharged through a separate chimney and the non-toxic gas maintained at a temperature above 120 ⁇ 150 °C;
  • steps 850 to 950 are maintained in steps (b) through (d) of the method.
  • the temperature of C is maintained in steps (b) through (d) of the method.
  • a solid alkali stock such as lime (including quicklime and slaked lime), limestone, silica sand, alumina and clay, or combinations thereof, are used.
  • the solid is used in a powder form.
  • the main component of limestone is calcium carbonate.
  • Lime has quicklime and slaked lime.
  • the main component of quicklime is calcium oxide, which is generally in the form of a block, pure white, and pale gray or yellowish when containing impurities.
  • the main component of slaked lime is calcium hydroxide.
  • the slaked lime is formulated into a lime slurry, a stone paste, a lime mortar, and the like.
  • Clay is a mineral raw material consisting of a variety of hydrated silicates and a certain amount of alumina, alkali metal oxides and alkaline earth metal oxides, and contains quartz, feldspar, mica and sulfates, sulfides, carbonates. And other impurities. Clay with a high silicon content is more suitable for flue gas treatment.
  • the present invention also provides a flue gas treatment system comprising: a double effect reactor (10), a high temperature dust collector (20), a heat recovery and dedusting system (30), An ash storage silo (40) and an independent cigarette it (50), wherein the double-effect reactor consists of a connected incineration reaction chamber (11) and a gas-solid suspension mixing chamber (12).
  • the present invention includes the following advantages:
  • the hazardous gas treatment is carried out in the initial stage of the process and the system, thereby eliminating the lime spraying device commonly used in the subsequent flue gas treatment, and at the same time, the corrosion of the acid gas to the equipment is effectively reduced due to the advancement of the treatment step.
  • the purification gas discharged from the incineration reaction chamber has a heat available space of about 850 to 950. C to about 120. C, thus comparing the existing harmful gas purification-heat recovery system with higher heat recovery efficiency.
  • the harmful gases are heated to about 850 to 950 in the incineration reaction chamber.
  • C enter the gas-solid suspension mixing chamber under high heat preservation conditions, and the whole process stays for 6 to 10 seconds. Therefore, the incineration reaction chamber is extremely thorough in the removal of dioxins and dioxin-forming hydrocarbon organic compounds, organic chlorides and inorganic chlorides, and the effect is far more than the existing methods.
  • the generation of nitrogen oxides (NO x ) is controlled to be less than 100 mg/Nm 3 by introducing a sufficient amount of a reducing agent such as urea and ammonia into the gas-solid suspension mixing chamber. .
  • the alkaline material can be recycled in the flue gas treatment system of the present invention, reducing the input of the alkaline material.
  • the method and system for treating flue gas provided by the present invention have the ability to continuously operate under high temperature conditions, absorb acid gases and eliminate dioxins and/or their precursors, including hydrocarbon organics, organic chlorides and inorganic chlorides. And other functions.
  • the system can highly eliminate organic matter particles, CO, S0 2 , HC1, HF acid gases and dioxins in organic matter, toxicity and acid gases, while maintaining or increasing the temperature of the processing gas, making it a A stable source of heat available. At the same time as the toxicity of the gas and the acid gas are highly purified, the original harmful gas resources are realized.
  • FIG. 1 is a flow chart of a specific embodiment of a flue gas treatment method in accordance with the present invention
  • 2 is a schematic structural view of a specific embodiment of a processing system using the flue gas treatment method illustrated in FIG. 1. detailed description
  • DPR Dual Purposes Reactor
  • FIG. 1 is a flow chart of a specific embodiment of a method for treating flue gas according to the present invention, the method comprising:
  • Step S101 inputting incineration flue gas into an incineration reaction chamber of a double-effect reactor;
  • the flue gas may be derived from cement manufacturing, steel making, thermal power generation, medical waste incineration, urban and domestic waste combustion, etc. .
  • the flue gas may enter the incineration reaction chamber through the flue gas passage, and if the temperature of the waste is high, a high temperature flue gas passage made of a high temperature resistant material may also be used.
  • the passage and the incineration reaction chamber can be connected by a hydraulic valve.
  • step S102 the fuel is injected into the incineration reaction chamber for combustion.
  • the fuel nozzle can be used to inject the fuel into the incineration reaction chamber, so that the combustion is more sufficient.
  • Step S103 the alkaline material is input to the incineration reaction chamber for heating;
  • the alkaline material is a powdery solid selected from the group consisting of lime, limestone, silica sand, alumina, and clay, or a combination thereof.
  • Clay with a high silicon content is more suitable for flue gas treatment.
  • the reaction for eliminating acid gases in the present invention includes, but is not limited to:
  • the amount of the alkaline material in the incineration reaction chamber is required for the chemical reaction.
  • the molar mass is 20 to 85 times, far exceeding the effect of the double acid removal and detoxification required for absorbing harmful substances such as acid gas.
  • the gas-solid suspension mixing chamber may adopt a squirting type, a swirling type, or a combination of a squirting and swirling type, so that an alkaline material forms a vortex in the flue gas flow to achieve an alkaline material in the gas. It is uniformly distributed in the solid suspension mixing chamber and is intimately mixed with hot gas.
  • the gas-solid suspension mixing chamber employs a mode of squirting and swirling composite.
  • Step S104 at a high temperature, the flue gas reacts with the alkaline material into the gas-solid suspension mixing chamber, and the acid gas, the persistent organic pollutants and the dioxin-forming component in the flue gas are removed;
  • sufficient reducing agents such as urea and ammonia may be added to the gas-solid suspension mixing chamber to reduce the production of nitrogen oxides (NO x ) to less than 100 mg/Nm 3 .
  • Steps S102 to S104 are both maintained between 850 and 950 °C.
  • 850 to 920 are maintained in steps S102 to S104.
  • the temperature of C most preferably, maintains a temperature of 860 to 890 ° C in steps S102 to S104 in the method.
  • the residence time of the flue gas in the double effect reactor is from 6 to 10 seconds, preferably from 8 to 10 seconds.
  • Step S105 the gas powder mixture enters the high temperature dust collector, the gas and solid separation, and the gas is discharged.
  • the gas treated by the method and system of the present invention is discharged using a separate chimney.
  • An independent chimney refers to a gas or flue gas that is not used to discharge from other systems, equipment, methods, that is, the chimney used in the system of the present invention is separated from other systems or equipment.
  • the gas after gas-solid separation is passed through a heat recovery and dust removal system, and then the non-toxic gas is discharged from the system.
  • the method of the present invention stabilizes the discharge temperature to a non-toxic gas of 120 to 150 ° C or higher by independent smoke.
  • Step S106 the remaining unreacted alkaline material can be recycled to the incineration reaction chamber through the high temperature solid pipe through the high temperature three-way valve and returned to the incineration reaction chamber through the high temperature three-way valve, or through the high temperature three
  • the valve is collected in the ash storage bin for other industrial applications through the pipe discharge system.
  • FIG. 2 is a schematic structural view of a specific embodiment of a flue gas treatment system using the flue gas treatment method shown in FIG. 1, the system comprising: a double-effect reactor 10, high-temperature dust collection The heat recovery and dedusting system 30, the ash storage silo 40 and the individual chimney 50, wherein the double effect reactor consists of a connected incineration reaction chamber 11 and a gas-solid suspension mixing chamber 12.
  • powdered alkaline material is added to the incineration reaction chamber 11 of the double-effect reactor 10, and the oxygen content of the exhaust gas is 8 to 11%.
  • the scrubbing temperature is 850 to 950.
  • residence time is 6 to 10 seconds.
  • fuel is introduced into the incineration reaction chamber 11 of the double-effect reactor 10, preferably, in order to effectively mix the fuel with oxygen, fuel can be injected into the fuel reaction chamber 11 by means of a fuel nozzle. .
  • a powdery alkaline material is added to the incineration reaction chamber 11.
  • the powdered alkaline material is preheated to the desired temperature, which does not exceed 950 °C.
  • the combustion temperature is maintained at 850 to 950 by combustion.
  • C is preferably 850 to 920.
  • C most preferably a temperature of 860 to 890 °C.
  • the gas-powder mixture is discharged from the incineration reaction chamber 11, and the gas-powder mixture is introduced into the gas-solid suspension mixing chamber 12 of the double-effect reactor 10.
  • the gas-solid suspension mixing chamber 12 adopts a combination mode of pulsing and swirling, so that the high-temperature powdery alkaline material and the high-temperature flue gas in the gas powder mixture are sufficiently homogenized, mixed, contacted and reacted in the reaction chamber; Achieve the effect of gas purification.
  • the fully reacted gas-powder mixture is introduced into the high-temperature dust collector 20 from the gas-solid suspension mixing chamber 12.
  • the gas-solid suspension mixing chamber 12 and the high-temperature dust collector 20 may be connected by a gas-solid mixing pipe.
  • the dust in the gas-powder mixture is separated from the gas, and after the dust in the gas-powder mixture is purified, the remaining high-temperature gas is subjected to the next treatment.
  • the high-temperature dust collector used in the invention has a dust collecting efficiency of ⁇ 92%.
  • the high temperature gas enters the heat recovery and dedusting system 30 after the gas-solid separation, Eventually discharged into the atmosphere, the heat recovery and dedusting system 30 can be coupled to other systems to re-use the exhaust gases.
  • the high temperature gas is directly connected to the discharge means after the gas-solid separation, and the treated gas is discharged to the atmosphere.
  • a separate chimney 50 can be used.
  • the alkaline material is returned to the incineration reaction chamber 11 for recycling.
  • the method of the present invention maintains a non-toxic gas having a discharge temperature of 120 to 150 ° C or more by independent smoke.
  • the alkaline material coming out of the high-temperature dust collector can also directly enter the ash storage silo 40, and at the same time increase the alkaline material of the incineration reaction chamber 11.
  • the amount of input is increased and the amount of fuel is increased until the specific gravity of the alkaline material reaches the reaction requirement and the temperature returns to normal.
  • the fuel reaction chamber 11, the high temperature dust collector 20, and the ash storage chamber 40 may be connected by a high temperature three-way valve for recycling the recovered alkaline powder and heat.
  • the entire process in the double effect reactor of the present invention maintains a temperature between 850 and 950.
  • C preferably maintained at 850 to 920.
  • the temperature of C is most preferably maintained at 860 to 890.
  • the gas residence time is 6 to 10 seconds and the optimization process is 8 to 10 seconds.
  • the system using the Dual Purposes Reactor (DPR) system of the present invention finally releases a gas having a dioxin of less than 0.018 ng TEQ/m 3 , total volatile organic carbon. less than 3mg / m 3, hydrogen chloride gas (HC1 is) less than 3 mg / m 3, hydrogen fluoride gas (HF) is less than 0.03 mg / m 3, S0 2 is less than 20 mg / m 3 (at 11% under the standard condition containing The dry flue gas of 0 2 is converted to the reference value).
  • the indicators of the emitted gases comply with the comprehensive emission standards for atmospheric pollutants in the EU and China.
  • the method and system for treating flue gas of the present invention entails the steps and equipment of the conventional method, and thoroughly suppresses and burns off the dioxin precursor substance while removing the acid gas, so that the dioxin is It is difficult to reform during the cooling process.

Description

用双效反应器处理焚烧产生的烟气的方法及其系统 技术领域
[0001]本发明涉及一种用双效反应器 ( Dual Purposes Reactor, DPR ) 处理由焚烧产生的烟气的方法, 尤其涉及一种利用高温和 碱性物料去除高温焚烧烟气中的酸性气体和完全去除在焚烧烟气 中二噁英前体物质, 同时能够实现热能回收利用的方法。 背景技术
[0002]在工业生产中, 高温焚烧法的应用广泛, 包括水泥制造、 炼钢、 火力发电和废物焚烧等。 焚烧过程中普遍会产生大量有毒 有害气体废物, 特别是酸性气体和二噁英等有毒物。
[0003]其中二噁英的英文名称为 Dioxins, 它是一类毒性极强的有 害物质, 对人类有致癌性、 致畸性和免疫毒性, 因此工业处理中 产生的二噁英必须进行严格处理。 二噁英在焚烧过程中的生成机 理, 已成为二噁英研究内容中的重要组成部分。 二噁英既可由烃 类有机物和无机氯化物在催化剂存在的条件下生成, 也可由二噁 英的前体有机氯化物产生。 人们普遍认为在焚烧过程中, 烃类有 机物与有机氯化物会经化学反应生成二噁英。从目前的研究来看, 在废物焚烧过程中二噁英的生成有以下几种原因:
1. 在有两种或多种有机氯化物 (如氯酚) 存在的情况下, 由于二聚作用, 在适当的温度和氧气条件下就会结合成二噁英。
2. 多氯化二酚、多氯联苯等一类化合物的不完全燃烧生成二 噁英。
3. 由于氯及氯化物的存在, 破坏了碳氢化合物(芳香族)的 基本结构, 而与木质素, 如木材、 蔬菜等废弃物相结合, 促使生 成二噁英的化合物。
[0004]可见, 二噁英前体物质包括烃类有机物、 有机氯化物和无 机氯化物等。 在焚烧烟气中存在大量的二噁英前体物质。 [0005]另外, 焚烧过程产生的酸性气体包括氯化氢气体 (HC1 )、 氟化氢气体( HF )、氨气( NH3 )、硫酸( H2S04 )、氰氢酸气体( HCN ), 硫化氢气体 (H2S ) 等。 酸性气体会对环境带来广泛的危害, 造 成巨大的经济损失, 如: 腐蚀建筑物和工业设备; 破坏露天的文 物古迹; 损坏植物叶面, 导致森林死亡; 使湖泊中鱼虾死亡; 破 坏土壤成分,使农作物减产甚至死亡; 饮用酸化物造成的地下水, 对人体有害。
[0006]因此, 高温焚烧后的废气在排放前必须进行除酸除毒处理。 经济有效的处理技术可大大减轻焚烧废气对环境和生产成本的负 担。
[0007]目前, 高温焚烧产生的废气处理技术多采用急速冷却, 喷 淋碱液, 活性炭吸附系统。
[0008]如中国专利申诗号 200610154696.9"危险废物垃圾回转窑 焚烧设备系统"和中国专利号 02238510.X"医疗垃圾气控式热解焚 烧无害化集成处理装置" 。 上述两项申请中防止二噁英生成装置 都是采用急冷方式, 将烟气从 1100。C高温瞬间降至 200。C以下, 这样虽然清除了二噁英, 但是却造成了热能的浪费, 而且水耗量 大, 加大了处理成本。
[0009]中国专利申诗号 200610154695.4"垃圾回转窑焚烧设备中 的烟气净化塔"采用净化塔喷碱液装置处理酸性尾气,烟气中的酸 性气体处理前容易引起烟道和急冷换热设备的高温腐蚀和低温腐 蚀, 且设备体积庞大。
[0010]在活性炭吸附系统中, 由于活性炭吸附后, 二噁英只是存 在于活性炭之中, 并没有从根本上去除, 需要进一步处理, 价格 昂贵。 还有采用电子束照射延期的方法破坏烟气中的二噁英, 然 而, 用于产生电子束的电压很高, 处理容量不大, 能耗大。
[001 1]因此, 目前急需一种筒单、 廉价、 能够有效去除高温焚烧 烟气中的酸性气体和完全去除在焚烧烟气中二噁英前体物质的废 气处理方法。 发明内容
[0012]本发明的目的是提供一种利用高温和碱性物料去除高温焚 烧烟气中的酸性气体, 完全去除在焚烧烟气中二噁英前体物质, 同时能够回收热能的方法及其系统。
[0013]本发明提供了一种利用双效反应器处理高温焚烧废气的方 法, 所述双效反应器由相连的焚烧反应室和气固悬浮混合室所组 成, 该方法包括以下步骤废气处理方法, 其包括以下步骤:
(a) 将高温焚烧烟气输入到双效反应器的焚烧反应室;
(b) 将燃料注入到所述焚烧反应室进行燃烧;
(c) 将碱性物料输入到所述焚烧反应室;
(d) 在高温下, 所述废气与所述碱性物料进入气固悬浮混合 室充分反应, 废气中的酸性气体、 持久性有机污染物和 二噁英前体物质被清除;
(e) 气粉混合物进入高温收尘器, 气固分离, 气体排出;
(f) 剩余未反应的碱性物料可回入焚烧反应室循环再用, 或 收集于储灰仓, 用作其他工业的原材料。
[0014]在本发明的一个方面,提供了一种利用双效反应器处理高温 焚烧烟气的方法, 所述双效反应器由相连的焚烧反应室和气固悬 浮混合室所组成, 该方法包括以下步骤:
(a) 高温焚烧产生的烟气经过高温烟气通道输入到双效反应 器的焚烧反应室;
(b) 将燃料注入到所述焚烧反应室进行燃烧, 把焚烧反应室 力口^ 高^;
(c) 碱性物料经碱性物料入料口输入到所述焚烧反应室进 行力口热;
(d) 在保持所述高温的条件下, 所述烟气与所述碱性物料的 混合物切向进入双效反应器的气固悬浮混合室并螺旋 前进, 在气气固悬浮混合室充分混合反应, 所述烟气中 的酸性气体和二噁英前体物质被清除;
(e) 气粉混合物离开双效反应器进入高温收尘器, 气固分 离, 气体经热能回收及除尘系统后, 通过独立烟囱排出 温度保持在 120〜150°C以上的无毒气体;
(f) 剩余未反应的碱性物料通过三通阀回入焚烧反应室循 环再用, 或收集于储灰仓。
[0015]在本发明的又一个方面, 所述方法中步骤 (b) 至 (d) 中 保持 850至 950。C的温度。 优选的, 所述方法中, 步骤 (b) 至
(d) 中保持 850至 920。C的温度, 最优选的, 所述方法中步骤
(b) 至 (d) 中保持 860至 890。C的温度。 物质。 在本发明的一个方面', ;吏用的是固体的碱 料,'例如石 灰(包括生石灰和熟石灰)、 石灰石、 硅沙、 氧化铝和粘土, 或其 组合等。 在本发明的方法中, 所述固体以粉状方式使用。 石灰石 主要成分是碳酸钙。 石灰有生石灰和熟石灰。 生石灰的主要成分 是氧化钙, 一般呈块状, 纯的为白色, 含有杂质时为淡灰色或淡 黄色。 熟石灰主要成分是氢氧化钙。 熟石灰经调配成石灰浆、 石 灰膏、 石灰砂浆等。 粘土是一种矿物原料, 由多种水合硅酸盐和 一定量的氧化铝、 碱金属氧化物和碱土金属氧化物组成, 并含有 石英、 长石、 云母及硫酸盐、 硫化物、 碳酸盐等杂质。 含硅量高 的粘土更适合用于烟气处理。
[0017]相应地, 本发明还提供了一种烟气处理系统, 该烟气处理 统包括: 双效反应器 ( 10)、 高温收尘器 (20)、 热能回收及除尘 系统 (30)、 储灰仓 (40) 和独立烟 it] (50), 其中所述双效反应 器由相连的焚烧反应室 ( 11 ) 和气固悬浮混合室 ( 12) 组成。
[0018]本发明包括以下优点:
第一, 通过在本发明烟气处理系统的双效反应器中采用碱 性物料与有害气体混合高温煅烧的处理方式, 在整个烟气处理过 程和系统的初始阶段就进行有害气体处理, 从而省去了后续烟气 处理中常用的石灰喷洒装置, 同时, 由于将处理步骤提前, 有效 地大大减小了酸性气体对设备的腐蚀。
第二, 焚烧反应室排出的净化气体,其热能的可利用空间为 约 850〜950。C到约 120。C, 从而对比现有的有害气体净化一热回 收系统有着更高的热能回收效率。
第三, 有害气体在焚烧反应室被加热至约 850至 950。C, 在 高度保温条件下进入气固悬浮混合室, 整个过程停留时间达 6至 10秒。 因此焚烧反应室对二噁英及形成二噁英的烃类有机物、 有 机氯化物和无机氯化物等的去除极为彻底, 其效果远超过现有的 方法。
第四, 在本发明的一个方面,在通过将足量的尿素和氨气等 还原剂通入气固悬浮混合室, 从而将氮氧化物 (N Ox)的产生控制 为低于 100mg/Nm3
第五, 碱性物料可在本发明的烟气处理系统中循环使用,减 少了碱性物料的投入。
[ 0019 ]本发明提供的烟气处理方法及其系统具有能在高温条件下 连续运行、 吸收酸性气体和消除二噁英和 /或其前体物质, 包括烃 类有机物、 有机氯化物和无机氯化物等的功能。 该系统既能高度 消除含有机质、毒性及酸性气体中的有机物颗粒、 CO、 S02、 HC1、 HF 酸性气体及二噁英等有害物质, 同时又能保持或提高处理气 体的温度, 使之成为可供利用的稳定热源。 在高度净化气体的毒 性及酸性气体的同时, 实现原有害气体资源化。 附图说明
[0020]通过阅读参照以下附图所作的对非限制性实施例所作的详 细描述, 本发明的其它特征、 目的和优点将会变得更明显:
[0021]图 1 是根据本发明的烟气处理方法的一种具体实施方式的 流程图; [0022]图 2是使用图 1 示出的烟气处理方法的处理系统的一种具 体实施方式的结构示意图。 具体实施方式
[0023]使用了带有双效反应器( Dual Purposes Reactor, DPR )的本 发明的方法和系统在产业中进行了小试和中试。
[0024]下面结合附图对本发明作进一步详细描述。
[0025]请参考图 1 ,图 1是根据本发明的烟气处理方法的一种具体 实施方式的流程图, 该方法包括:
[0026]步骤 S101 , 将焚烧烟气输入到双效反应器的焚烧反应室; [0027]所述烟气可能来自于水泥制造、 炼钢、 火力发电、 医疗垃 圾焚烧、 城市及生活废物燃烧等。 所述烟气可以经过烟气通道进 入焚烧反应室, 如果所述废物的温度很高时, 还可以采用由耐高 温材料制成的高温烟气通道。 所述通道与焚烧反应室可通过液压 阀门连接。
[0028]步骤 S102, 将燃料注入到焚烧反应室进行燃烧, 为了使燃 料与氧气充分接触, 可采用燃料喷嘴将燃料喷入焚烧反应室, 以 便燃烧更加充分。
[0029]步骤 S103 , 将碱性物料输入到焚烧反应室进行加热;
[0030] 其中, 碱性物料为粉状固体, 其选自石灰、 石灰石、 硅沙、 氧化铝和黏土, 或其组合。 含硅量高的粘土更适合用于烟气处理。
[0031]本发明中消除酸性气体的反应包括但不限于:
[0032] HCI + NaOH NaCI + H2O
[0033] 2HCI + Ca(OH)2 CaCI2+ 2 H2O
[0034] HF + NaOH NaF + H2O
[0035] 2HF + Ca(OH)2 CaF2 + 2 H2O
[0036] SO2 + 2NaOH Na2SO3 + H2O
[0037] SO2 + Ca(OH)2 CaSO3 + H2O
[0038]为了能够达到本发明充分去除烟气中酸性气体和二噁英前 体物质的目的, 焚烧反应室中的碱性物料的用量为其化学反应所需 摩尔质量的 20至 85倍, 远超过吸收酸性气体等有害物质所需的用 附的双重除酸除毒效果。
[0039]所述气固悬浮混合室可采用喷腾型、 旋流型、 或喷腾和旋流 复合型的模式, 令碱性物料在烟气流中形成涡流, 以达到碱性物料 在气固悬浮混合室中均匀分布, 并与热气体充分混合接触的效果。 在本发明的一个方面, 气固悬浮混合室采用喷腾和旋流复合型的模 式。
[0040]步骤 S104, 在高温下, 所述烟气与所述碱性物料进入气固悬 浮混合室反应, 烟气中的酸性气体、 持久性有机污染物和二噁英生 成组分被清除;
[0041]优选的, 还可以将足够的尿素和氨气等还原剂加入气固悬浮 混合室, 可将氮氧化物 (NOx)的产生减至低于 100mg/Nm3
[0042]步骤 S102至 S104均保持在摄氏 850-950°C之间发生。 优选 的所述方法中, 步骤 S102至 S104中保持 850至 920。 C的温度, 最优选的, 所述方法中步骤 S102至 S104 中保持 860至 890° C 的温度。 所述烟气在双效反应器中停留时间合共为 6至 10秒, 优 选 8至 10秒。
[0043]步骤 S 105 , 气粉混合物进入高温收尘器, 气固分离, 气体排 出。 在本发明的一个方面, 使用独立烟囱将经过本发明的方法和系 统处理后的气体排出。 独立烟囱是指不用于排出来自其它系统、设 备、 方法的气体或烟气, 也就是说, 本发明的系统使用的烟囱与其 它系统或设备的分开。
[0044]优选的, 气固分离后, 为了更好地利用热能资源, 减少污染, 要使气固分离后的气体再通过热能回收及除尘系统, 之后将无毒气 体排出系统。 本发明的方法经独立烟 It]稳定排出温度保持在 120〜150 °C以上的无毒气体。
[0045]步骤 S106, 剩余未反应的碱性物料可经高温固料管道通过高 温三通阀随物料循环管道回入焚烧反应室循环再用, 或通过高温三 通阀经管道排出系统收集于储灰仓作其他工业应用。
[0046]结合图 2进行参考, 图 2是使用图 1示出的烟气处理方法 的烟气处理系统的一种具体实施方式的结构示意图,该系统包括: 双效反应器 10、 高温收尘器 20、 热能回收及除尘系统 30、 储灰仓 40和独立烟囱 50, 其中双效反应器由相连的焚烧反应室 11和气固 悬浮混合室 12组成。
[0047]下面结合图 1示出的方法对该系统的各部分进行说明。
[0048]本实施例中, 在该系统独立运行的情况下, 在双效反应器 10的焚烧反应室 11 内加入粉状碱性物料, 排出气体的除水含氧 率为 8至 11%,涤气温度 850至 950。C ,停留时间时间 6至 10秒。
[0049]如图 1所示, 首先, 将燃料通入双效反应器 10的焚烧反应 室 11 , 优选地, 为使燃料与氧气有效混合燃烧, 可以利用燃料喷 嘴将燃料喷入燃料反应室 11。
[0050]其次, 将粉状碱性物料加入焚烧反应室 11。 粉状碱性物料 先行预热至所需温度, 所述温度不超过 950°C。 通过燃烧加热, 使涤气温度保持 850至 950。C , 优选 850至 920。C , 最优选 860 至 890°C的温度。
[0051]再次, 经过煅烧后, 由焚烧反应室 11排出气粉混合物, 将 该气粉混合物通入双效反应器 10的气固悬浮混合室 12。 气固悬 浮混合室 12中采用喷腾和旋流复合式的模式,令前述气粉混合物 中的高温粉状碱性物料和高温烟气在反应室中充分均化、 混合、 接触和反应; 最终达到气体净化的效果。
[0052]之后, 充分反应后的气粉混合物由气固悬浮混合室 12内进 入高温收尘器 20。通常气固悬浮混合室 12和高温收尘器 20可以 通过气固混合管道连接。在该高温收尘器 20中所述气粉混合物中 的粉尘与气体分离, 将所述气粉混合物中的粉尘净化后, 余下高 温气体进行下一步处理。 本发明使用的高温收尘器收尘效率≥92 %。
[0053]最后, 气固分离后高温气体进入热能回收及除尘系统 30, 最终排入大气, 在热能回收及除尘系统 30 可以与其他系统相连 接, 对排出的气体进行再利用。 在本发明的一个方面, 气固分离 后高温气体直接与排出装置相连, 将处理后的气体排入大气, 例 如, 可以使用独立烟囱 50。 碱性物料则回到焚烧反应室 11循环 使用。本发明的方法经独立烟 it] 50 稳定排出温度保持在 120〜150 °C以上的无毒气体。
[0054]当在实际操作中发现碱性物料性能不良、 需要快速更换时, 从高温收尘器出来的碱性物料也可以直接进入储灰仓 40, 同时加 大焚烧反应室 11的碱性物料投入量并增加燃料用量,直至碱性物 料的比重达到反应要求且温度恢复正常。
[0055]通常燃料反应室 11、 高温收尘器 20和储灰仓 40之间可以 通过一高温三通阀进行连接, 用于循环使用回收的碱性粉末和热 匕
[0056]本发明的双效反应器内整个过程保持温度在 850至 950。C, 优选保持 850至 920。C的温度,最优选保持 860至 890。C的温度。 另外, 气体停留时间为 6至 10秒, 优化工艺选择为 8至 10秒。
[0057]经过六个月的中试,使用本发明双效反应器(Dual Purposes Reactor, DPR ) 的系统最后释放出的气体的二噁英低于 0.018ng TEQ/m3, 总挥发性有机碳低于 3mg/m3 , 氯化氢气体(HC1 )低于 3 mg/m3 , 氟化氢气体(HF )低于 0.03 mg/m3 , S02低于 20 mg/m3 (以标准状态下含 11%02的干烟气为参考值转换)。 排出的气体 的各项指标符合欧盟和中国的大气污染物综合排放标准。
[0058]本发明处理烟气的方法和系统筒化了传统方法的步骤和设 备, 并在去除了酸性气体的同时, 彻底的抑制和焚尽了二噁英前 体物质, 使二噁英在降温过程中难以重新形成。
[0059]对于本领域技术人员而言, 显然本发明不限于上述示范性 实施例的细节,而且在不背离本发明的精神或基本特征的情况下, 能够以其他的具体形式实现本发明。 因此, 无论从哪一点来看, 均应将实施例看作是示范性的, 而且是非限制性的, 本发明的范 围由所附权利要求而不是上述说明限定, 因此旨在将落在权利要 求的等同要件的含义和范围内的所有变化涵括在本发明内。 不应 将权利要求中的任何附图标记视为限制所涉及的权利要求。此外, 显然"包括"一词不排除其他单元或步骤, 单数不排除复数。 系统 权利要求中陈述的多个单元或装置也可以由一个单元或装置通过 软件或者硬件来实现。

Claims

权 利 要 求
1.一种利用双效反应器处理高温焚烧烟气的方法, 所述双效反 应器由相连的焚烧反应室和气固悬浮混合室所组成, 该方法包括以 下步骤:
(a) 高温焚烧产生的烟气经过高温烟气通道输入到双效反应器 的焚烧反应室;
(b) 将燃料注入到所述焚烧反应室进行燃烧,把焚烧反应室加热 到面温;
(c) 将碱性物料输入到焚烧反应室;
(d) 在保持所述高温的条件下,所述烟气与所述碱性物料的混合 物切向进入双效反应器的气固悬浮混合室并螺旋前进,在气 固悬浮混合室充分混合反应,所述烟气中的酸性气体和二噁 英前体物质被清除;
(e) 气粉混合物离开双效反应器进入高温收尘器, 气固分离, 气 体经热能回收及除尘系统后, 经独立烟 It]排出温度保持在 120〜150 °C以上的无毒气体;
(f) 剩余未反应的碱性物料通过三通阀回入焚烧反应室循环再 用, 或收集于储灰仓。
2. 根据权利要求 1 所述的方法, 所述碱性物料为粉状固体, 其 选自石灰、 石灰石、 硅沙、 氧化铝和粘土, 或其组合。
3. 根据权利要求 1所述的方法, 其中步骤(b ) 至 (d ) 中保持 850至 950。C的温度, 优选的, 保持 850至 920。 C的温度, 最优 选的, 保持 860至 890° C。
4. 根据权利要求 1所述的方法, 其中步骤(c )中碱性物料输入 到焚烧反应室前预热到接近到步骤(b ) 中所述焚烧反应室的高温。
5. 根据权利要求 1所述的方法, 其中气固悬浮混合室采用喷腾 和旋流复合模式, 碱性物料在气流中反复翻腾, 碱性物料在气固悬
11 Attorney No. : P1C100443PCT 浮混合室中均匀分布, 并与气体充分混合接触。
6. 根据权利要求 5所述的方法, 所述碱性物料的用量为其化学 反应所需摩尔质量的 20至 85倍。
7. 根据权利要求 1所述的方法, 其中所述烟气在双效反应器中 停留时间为 6至 10秒, 优选 8至 10秒。
8. 根据权利要求 1所述的方法, 其中步骤(d)中在气固悬浮混 合室还加入尿素和氨气等还原剂, P争低氮氧化物 (NOx)的产生。
9. 一种用于如权利要求 1-8 中任一项定义的烟气处理方法的系 统, 其包括: 双效反应器 ( 10) 、 高温收尘器 (20) 、 热能回收及 除尘系统 (30) 、 储灰仓(40) 和独立烟 it] (50) , 其中所述双效 反应器由相连的焚烧反应室 ( 11) 和气固悬浮混合室 ( 12) 组成。
12 Attorney No.: P1C100443PCT
PCT/CN2011/084665 2010-12-30 2011-12-26 用双效反应器处理焚烧产生的烟气的方法及其系统 WO2012089083A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010612185 CN102302891B (zh) 2010-12-30 2010-12-30 用双效反应器处理焚烧产生的烟气的方法及其系统
CN201010612185.3 2010-12-30

Publications (1)

Publication Number Publication Date
WO2012089083A1 true WO2012089083A1 (zh) 2012-07-05

Family

ID=45376861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084665 WO2012089083A1 (zh) 2010-12-30 2011-12-26 用双效反应器处理焚烧产生的烟气的方法及其系统

Country Status (2)

Country Link
CN (1) CN102302891B (zh)
WO (1) WO2012089083A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103432876B (zh) * 2013-08-21 2016-06-29 潘广松 一种窑炉尾气处理方法
CN108452663B (zh) * 2017-12-29 2021-12-31 成都易态科技有限公司 固废物焚烧烟气净化处理方法
CN110354663A (zh) * 2018-04-11 2019-10-22 杨晓袆 一种阻止二噁英生成和烟气超净排放的方法和设备
CN113731136A (zh) * 2020-05-28 2021-12-03 兰州大学 一种避免二噁英生成的炉内控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780799A (zh) * 2003-10-29 2006-05-31 F.L.施米思公司 用于预热颗粒或粉末材料的方法和设备
CN1778752A (zh) * 2004-11-20 2006-05-31 张相红 城市生活垃圾烧制水泥的方法
CN101761928A (zh) * 2010-01-11 2010-06-30 中信重工机械股份有限公司 一种生活垃圾的焚烧处理方法
CN101776269A (zh) * 2010-01-11 2010-07-14 中信重工机械股份有限公司 生活垃圾的n级焚烧处理技术

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780799A (zh) * 2003-10-29 2006-05-31 F.L.施米思公司 用于预热颗粒或粉末材料的方法和设备
CN1778752A (zh) * 2004-11-20 2006-05-31 张相红 城市生活垃圾烧制水泥的方法
CN101761928A (zh) * 2010-01-11 2010-06-30 中信重工机械股份有限公司 一种生活垃圾的焚烧处理方法
CN101776269A (zh) * 2010-01-11 2010-07-14 中信重工机械股份有限公司 生活垃圾的n级焚烧处理技术

Also Published As

Publication number Publication date
CN102302891B (zh) 2013-08-14
CN102302891A (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
CN206444401U (zh) 一种用于城市生活垃圾焚烧的飞灰烟气组合净化系统
WO2012089089A1 (zh) 用双效反应器处理高温废物焚化炉产生的烟气的方法和系统
CN110357578A (zh) 利用陶粒窑处置固体废弃物的方法及处置固体废弃物的陶粒窑
CN111068612B (zh) 利用固体废弃物制备类沸石型多孔材料的方法、类沸石型多孔材料及其应用
CN101249378A (zh) 一种消除烟气中二噁英的方法
WO2012089083A1 (zh) 用双效反应器处理焚烧产生的烟气的方法及其系统
JP3417398B2 (ja) 排ガス処理剤及び排ガス処理方法
WO2012100618A1 (zh) 利用双效反应器结合水泥生产处理废气的方法及其系统
CN215523303U (zh) 等离子危险废物处理系统
CN107262031A (zh) 一种氯化锌活化改性污泥‑秸秆脱汞吸附剂及制备方法
CN1556349A (zh) 生活垃圾处理与水泥回转窑联合生产工艺
US7955417B2 (en) Method for reducing organic chlorine compounds in cement production facility, and cement production facility
CN108273371A (zh) 一种双气路的工业燃烧过程烟气净化方法及系统
Liang et al. The Resource Utilization and Environmental Assessment of MSWI Fly Ash with Solidification and Stabilization: A Review
CN104975179A (zh) 一种金属镁冶炼白云石焙烧和垃圾焚烧联合运行的方法
CN108499309A (zh) 一种工业烟气二噁英类前驱物去除剂
WO2001032324A1 (fr) Procede de traitement des cendres de combustion de charbon et procede de desulfuration
JP2017087099A (ja) 廃棄物焼却における排ガス処理装置および排ガス処理方法
KR102522077B1 (ko) 음식 폐기물을 에너지원으로 사용하는 친환경적 음식 폐기물 처리시스템
JP2004269304A (ja) 赤泥の処理方法およびセメントクリンカの製造方法
JP7056792B1 (ja) 廃棄物処理装置及び廃棄物処理方法
JP4107056B2 (ja) ハロゲン化有機化合物の分解方法及び分解剤
CN212673222U (zh) 一种废弃物的处理设备
CN217220893U (zh) 危废焚烧烟气全流程超低排放净化系统
TW201742663A (zh) 利用鹼性廢棄物聯合處理多種空氣污染物之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854097

Country of ref document: EP

Kind code of ref document: A1