WO2011113298A1 - 生活垃圾气化-液化处置的方法、系统及设备 - Google Patents

生活垃圾气化-液化处置的方法、系统及设备 Download PDF

Info

Publication number
WO2011113298A1
WO2011113298A1 PCT/CN2011/000363 CN2011000363W WO2011113298A1 WO 2011113298 A1 WO2011113298 A1 WO 2011113298A1 CN 2011000363 W CN2011000363 W CN 2011000363W WO 2011113298 A1 WO2011113298 A1 WO 2011113298A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gasification
port
plasma
syngas
Prior art date
Application number
PCT/CN2011/000363
Other languages
English (en)
French (fr)
Inventor
周开根
Original Assignee
Zhou Kaigen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010201600397U external-priority patent/CN201659136U/zh
Priority claimed from CN2010101734042A external-priority patent/CN101823073B/zh
Application filed by Zhou Kaigen filed Critical Zhou Kaigen
Priority to US13/634,787 priority Critical patent/US8969422B2/en
Publication of WO2011113298A1 publication Critical patent/WO2011113298A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/50Treatments combining two or more different biological or biochemical treatments, e.g. anaerobic and aerobic treatment or vermicomposting and aerobic treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F9/00Fertilisers from household or town refuse
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/18Continuous processes using electricity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/30Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/12Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors
    • C10K1/122Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors containing only carbonates, bicarbonates, hydroxides or oxides of alkali-metals (including Mg)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • C10J2300/1634Ash vitrification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1665Conversion of synthesis gas to chemicals to alcohols, e.g. methanol or ethanol
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1668Conversion of synthesis gas to chemicals to urea; to ammonia
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present invention relates to solid waste disposal technology, and more particularly to a method and equipment for disposal of domestic or organic waste.
  • Dioxin is a highly toxic organic chemical containing chlorine. It is very stable, insoluble in water, and is a colorless and odorless fat-soluble substance. Therefore, it is very easy to accumulate in living organisms. The molecular structure of dioxin is less affected, so it is difficult for natural dioxin to be eliminated by natural degradation. Dioxin is known as the "drug of the century" and has been listed as a human primary carcinogen by the International Cancer Research Center. Domestic waste, industrial organic waste and medical waste will produce dioxins during incineration. The formation of dioxins in the incineration process is as follows: a.
  • Chlorine-containing plastics chlorine-containing pesticides in the combustion process / Herbicides/wood preservatives/bleaches/foods, chlorine-containing precursors such as polychlorinated biphenyls form dioxins by molecular rearrangement, free radical condensation, dechlorination or other molecular reactions; b. when combustion is insufficient, Chlorine-containing waste is not completely burned, excessive unburned ruthenium is produced in the flue gas, and dioxins are synthesized in the presence of strong catalytic substances such as copper chloride, ferric chloride, nickel oxide, alumina, etc.; c.
  • the dioxins contained in the dioxin contained in the combustion are not destroyed in the combustion, and exist in the flue gas after combustion; d.
  • the residual carbon, oxygen, hydrogen, chlorine, etc. in the solid fly ash catalyze the synthesis of intermediates or dioxins on the fly ash surface. , or the precursor in the gas phase catalyzes the formation of dioxins on the surface of the fly ash; e.
  • Other unexplained reasons Generate dioxin. Chlorine, organic and heavy metals are commonly found in domestic waste.
  • dioxin is often contained in flue gas, fly ash and slag produced by incinerators.
  • precursor concentration, chlorine concentration, temperature, oxygen content, sulfur content and the presence of heavy metals as unintentional catalysts have an important impact on the generation and emission of dioxins during domestic waste incineration.
  • waste incineration will inevitably lead to dioxin-contaminated environments, because incineration can treat domestic waste in conditions of over 6% of peroxygen to fully burn, otherwise the pollution will be even more Severe, and peroxidation is one of the conditions for the formation of dioxins.
  • the concentration of dioxins in the peroxic environment is greatly increased, the concentration of dioxins in the anoxic environment is reduced, and there is no dioxin synthesis without oxygen;
  • the flue gas must be in contact with the metal heating surface of the superheater, boiler, heat exchanger, air preheater, etc. These metal heating surfaces will become the catalytic medium for the formation of dioxins; it is difficult to achieve complete acid removal during the incineration process.
  • dioxin is difficult to degrade, its half-life can reach 273 years. It is basically regarded as non-degradation. It will accumulate more and more in people's living environment and in the human body. Many burning countries have serious dioxins. The British pollution problem should cause sufficient urgency.
  • the object of the present invention is to overcome the problem of destroying human living environment and dioxin pollution caused by landfill method and incineration method, and to provide a technology for treating domestic garbage and organic waste by gasification-liquefaction, and effectively suppressing Contaminants, including dioxins, do not emit pollutants and greenhouse gases throughout the disposal process, eliminate dioxin pollution, protect the ecological environment, and convert domestic waste and organic waste into a chemical raw material or clean energy.
  • the invention relates to a method for gasification-liquefaction disposal of domestic garbage, comprising a calcium oxide synergistic plasma gasification technology, characterized in that domestic garbage or organic waste is subjected to pretreatment for dehydration and sorting, thereby reducing moisture and inorganic matter content, In order to reduce the useless components of the raw materials and increase the calorific value, the electric energy consumption of the plasma gasifier can be reduced and the quality of the syngas can be improved.
  • the pretreated domestic garbage or organic waste is fed through the C0 2 gas seal feeding device.
  • Plasma gasifier, C0 2 gas seal can effectively isolate the air, prevent air from entering the gasifier from the feed inlet and prevent the synthesis gas in the furnace from leaking out of the furnace through the feed port without obstructing the feed; plasma
  • the drying section, the pyrolysis section and the gasification section are arranged in the gasification furnace in the order of upper, middle and lower, and the domestic garbage or organic waste is dried and pyrolyzed in the furnace, and then becomes garbage char into the gasification section, and
  • the plasma spray gun sprays the water vapor decomposition product into the gasification section to carry out a gasification reaction to generate a hydrogen-rich synthesis gas containing CO and a main component; and a plasma spray gun is disposed in the gasification section Water vapor is used as the gasifier and the working gas of the plasma spray gun.
  • the water vapor is heated to above 420 CTC by the plasma spray gun to completely decompose the water molecules to form ⁇ *, ⁇ H0', 0*, 0 and 3 ⁇ 40'.
  • the waste charcoal is used as the hydrogen absorption and oxygen absorption component to generate CO and the ash is melted into liquid slag in the environment of the slag zone of the furnace at 1300 ⁇ 1600 °C, and passed through the water seal.
  • Discharge into the slag pool use calcium oxide in combination with plasma gasification to set up a carbonation reaction chamber in the gasification system, and use the exotherm of calcium carbonate to absorb carbon dioxide to form calcium carbonate to provide an auxiliary heat source for gasification, which is a new incoming garbage material.
  • the drying and preheating provide thermal energy to reduce the energy consumption of the plasma spray gun, and introduce the pyrolysis gas generated in the pyrolysis section of the plasma gasifier into the carbonation reaction chamber, and then use the pyrolysis gas as a carrier gas to carry the oxidation. Calcium, calcium carbonate mixture and heat enter the drying section of the plasma gasifier. Calcium oxide also acts as a dechlorination or desulfurizer.
  • the dioxin precursor is removed. Chloride and sulfide, then introduce the pyrolysis gas into the gas-solid separator, separate the calcium oxide and calcium carbonate, and then send the pyrolysis gas into the gasification section of the plasma gasifier at 1000 ⁇ 1300 °C
  • the pyrolysis gas such as formazan, gaseous tar, ethylene, ethane, water vapor, etc., are cracked and chemically reacted, and the dioxins are completely disintegrated, and the waste gas is completely decomposed by circulating gasification.
  • the separation is carried out through a distillation column, the methanol is separated, the unreacted gas is sent back to the methanol synthesis reactor for recycling reaction, and the lime water is passed through the decontamination and sent back to the mixing absorber by the circulation pump for recycling; the exhaust gas is returned to the plasma.
  • the gasifier is reheated to form a closed loop production system.
  • the operating temperature of the drying section is controlled between 120 and 300 ° C
  • the operating temperature of the pyrolysis section is controlled between 300 and 100 (TC)
  • the operating temperature of the gasification section is controlled at 1000 to 1300 ° C.
  • the operating pressure in the gasifier is controlled between -30Pa and +5kPa.
  • a slag zone is set between the gasification section and the slag outlet, and is set in the slag zone.
  • the operating temperature of the slag zone is controlled between 1300 and 1600 ° C; the leachate generated during the pretreatment of the domestic waste is sent to the digester to produce biogas by anaerobic fermentation, and the biogas is sent to the plasma gas.
  • the chemical furnace is decomposed and the biogas residue is used as a fertilizer.
  • the inorganic materials sorted in the pretreatment process are further sorted, the scrap metal is recovered, and the non-metallic inorganic matter is pulverized and separated from the gasification system.
  • the plasma gasifier is discharged into the slag of the water sealing slag pool to become vitreous granules, which can be directly used as building materials, and the fly ash collected from the bag filter is passed. Melting furnace Process, the slag can be made directly using building materials.
  • the amount of calcium oxide input to the carbonation reaction chamber is determined according to the total amount of carbon dioxide, chloride, sulfide, and fluoride in the reaction chamber, 1. 2 ⁇ 1. 5 times, wherein the number of moles of carbon dioxide is actually
  • the amount of detection in the input heating degassing determines that the number of moles of chloride, sulfide and fluoride is determined by elemental analysis of the sampled waste organic waste.
  • domestic garbage is disposed by steam plasma gasification, and oxygen or air is not supplied to the gasifier, and domestic garbage is collected.
  • Gasification in anoxic environment the peroxidation rate in the syngas is zero, can effectively inhibit the synthesis of dioxins;
  • mixing the calcium oxide powder directly into the pyrolysis gas in the carbonation reaction chamber can effectively remove the dioxin precursor and chlorine Organic matter and desulfurization, and solidified in the absorbent to reduce the probability of dioxin formation; in the plasma gasifier, the pyrolysis gas is cycled, and the pyrolysis gas is recycled to the gasification section at 1000 ⁇ 1300 °C.
  • the dioxin will be completely disintegrated; in the plasma gasification furnace, the waste material is first subjected to pyrolysis to escape the volatile matter, and then the gas is activated by using the steam active material at a temperature of 4200 ° C or higher and the fixed carbon.
  • the reaction in the gasification section 1000 ⁇ 1600 ⁇ environment, the fixed carbon will be completely gasified; using closed-loop production process, using lime water in the end purification operation to absorb and send the tail gas back to the plasma gasifier for recycling
  • Treatment to eliminate dioxin pollution unidentified organic gases in the exhaust gas are further decomposed and gasified, and nitrogen in the exhaust gas is consumed by producing synthetic ammonia, thereby achieving zero emissions and no pollution. Dyeing and disposing of domestic and organic waste, while converting domestic and organic waste into methanol products that humans need.
  • a system for domestication gasification-liquefaction disposal of the present invention comprising a plasma gasification device, comprising a pretreatment device, a CO 2 gas seal feeding device (13), a plasma gasification furnace (23), a plasma spray gun (24), gas-solid separator (17), circulation fan (18), heat exchanger a (20), carbonation reaction chamber (2007), waste heat boiler (27), absorption reactor (32), cyclone dust collector (31), bag filter (38), C0 2 absorption tower (42), regeneration tower (46), methanol synthesis reactor (52), mixing absorber (55), distillation column (62), decontamination device ( 58), a circulation pump (60), a methanol storage tank (65) and a connecting pipe, wherein: the pretreatment equipment comprises a garbage storage pit (2) and a sorting machine (3); inside the plasma gasification furnace (23) The space is divided into a drying section, a pyrolysis section and a gasification section.
  • the drying section has a garbage material inlet, a heat carrier gas inlet and a pyrolysis gas outlet, and a pyrolysis section has a hot gas output interface, and the gasification section has a pyrolysis gas.
  • the heat exchanger a (20) is composed of a gas separation chamber, a heat exchange chamber and a gas collection chamber, and the gas separation chamber has a pyrolysis gas input interface, a heat exchange chamber On-load hot gas output interface, there is a pyrolysis gas output interface on the gas collection chamber;
  • the carbonation reaction chamber (2007) is directly connected to the heat exchange chamber in the heat exchanger a (20), and the carbonation reaction chamber (2007) has The hot gas input interface, the calcium oxide input device and the carbon dioxide input interface;
  • the C0 2 absorption tower (42) has a syngas
  • the solids outlet of the cyclone (31) is connected to the connecting pipe of the syngas input port of the absorption reactor (32), and the gaseous outlet of the cyclone (31) even Connected to the bag filter (38) input interfaces synthesis gas, bag filter (38) to the output interface syngas C0 2 absorber (42) an input interface synthesis gas, C0 2 absorber (42) the output of KHC0 3
  • the interface is connected to the KHC0 3 input interface of the regeneration tower (46), the C0 2 output interface of the regeneration tower (46) is connected to the carbon dioxide input port of the carbonation reaction chamber (2007), and the K 2 C0 3 solution output of the regeneration tower (46) an interface connected to the C0 2 absorber (42) of K 2 C0 3 solution input interface;
  • C0 2 absorber (42) is connected to the output interface syngas compressor i (51) of the intake port, the compressor I ( 51)
  • the exhaust port is connected to the feed gas inlet of the methanol synthesis reactor (52), the methanol gas
  • the methanol product outlet of the distillation column (62) is connected to the methanol storage tank (65); the lime water outlet of the distillation column (62) is connected to the decontamination unit ( 58)
  • the input port, the lime water outlet of the decontaminator (58) is connected to the suction port of the circulation pump (60), and the outlet of the circulation pump (60) is connected to the lime water inlet of the mixing absorber (55).
  • the pretreatment equipment further comprises a screw squeezing/feeder (10) and a digester (9), and the screw squeezing/feeder (10) has the dual function of squeezing and feeding during work, and the screw squeezing water / Feeder (10) is set between the sorting machine (3) and the C0 2 gas seal feeding device (13), and the waste material outlet of the sorting machine (3) is connected to the spiral through the belt conveyor (8)
  • the hopper of the water squeezing/feeder (10), the screw squeezing/feeder (10) discharge port is connected to the feed port of the C0 2 gas seal feeding device (13) through the conveying pipe a (12), C0 2 gas Sealing feeding device ( 13)
  • the discharge port is connected to the feed port of the plasma gasifier (23) through the delivery pipe b (14); the leaching water interface of the garbage storage pit (2), the leaching water interface of the sorting machine (3), and the screw extrusion
  • the leachate port of the water/feeder (10) is connected
  • an air inlet fan (40) and a carbon monoxide shift reactor (41) are disposed between the bag filter (38) and the CO 2 absorption tower (42), and the syngas output interface of the bag filter (38) is provided.
  • the air outlet of the bleed air blower (40) is connected to the syngas input port of the carbon monoxide shift reactor (41), and the syngas output port of the carbon monoxide shift reactor (41) is connected to C0 2 absorber (42) an input interface syngas;
  • C0 2 absorber is also provided in the compressor a (44) and synthesis gas storage tank (48) between (42) and the compressor i (51), C0 2 absorption
  • the syngas output port of the tower (42) is connected to the suction port of the compressor a (44), and the exhaust port of the compressor a (44) is connected to the input port of the syngas storage tank (48), and the syngas is stored.
  • the output port of the tank (48) is connected to the suction port of
  • an exhaust gas interface and an ammonia plant are disposed in the unreacted gas line (61) at the end of the methanol synthesis system, and a tail gas feedback line (30) is provided between the plasma gasifier (23) and the end purification device.
  • the exhaust gas port in the unreacted gas line (61) is respectively connected to the exhaust gas feedback line (30) of the plasma gasification furnace (23) and the feed interface of the ammonia ammonia device through a control valve, and the exhaust gas outlet of the ammonia synthesis device is connected to the plasma.
  • Another life refuse gasification invention - liquefaction disposal system comprising a plasma gasification plant, a pretreatment equipment, C0 2 feed gas sealing means (13), plasma gasifier (23), plasma Spray gun (24), circulation fan (18) and heat exchanger b (21), waste heat boiler (27), absorption reactor (32), cyclone (31), bag filter (38), hydrogenation mixer (49), a methanol synthesis reactor (52), a mixing absorber (55), a distillation column (62), a decontaminator (58), a circulation pump (60), a methanol storage tank (65), and a connecting pipe, wherein
  • the pretreatment equipment includes a garbage storage pit (2) and a sorting machine (3); the inner space of the plasma gasification furnace (23) is divided into a drying section, a pyrolysis section and a gasification section, and the drying section has garbage materials.
  • Import and pyrolysis gas outlet there is a pyrolysis gas input interface on the gasification section, and a synthesis gas output interface is provided at a combination of the pyrolysis section and the gasification section;
  • the plasma spray gun (24) is disposed in the plasma gasification furnace (23) Lower gasification section;
  • heat exchanger b (21) consists of a gas separation chamber, a heat exchange chamber and a gas collection chamber The gas separation chamber has a pyrolysis gas input interface, the heat exchange chamber has a syngas input interface and a syngas output interface, and the gas collection chamber has a pyrolysis gas output interface;
  • the garbage storage pit (2) and the sorting machine (3) Between the crane grab (1), the sorting machine (3) is connected to the C0 2 gas seal feeding device (13) of the plasma gasification equipment through a belt conveyor or a screw feeder.
  • the feed port, the discharge port of the C0 2 gas seal feeding device (13) is connected to the feed port of the plasma gasifier (23), and the pyrolysis gas outlet of the plasma gasifier (23) passes through the circulation fan ( 18) connected to the pyrolysis gas input port of the heat exchanger b (21), the pyrolysis gas output port of the heat exchanger b (21) is connected to the pyrolysis gas input port of the gasification section of the plasma gasifier (23)
  • the syngas output port of the plasma gasifier (23) is connected to the syngas input port of the heat exchanger b (21), and the syngas output port of the heat exchanger b (21) is connected to the synthesis of the waste heat boiler (27)
  • the gas input interface, the syngas output port of the waste heat boiler (27) is connected to the syngas of the absorption reactor (32)
  • the input interface, the syngas output port of the absorption reactor (32) is connected to the mixture input port of the cyclone (31), and the solids outlet of the cyclone (31) is connected
  • the input interface, the syngas output port of the hydro-hydromixer (49) is connected to the suction port of the compressor i (51), and the exhaust port of the compressor i (51) is connected to the feed gas of the methanol synthesis reactor (52)
  • the methanol gas outlet of the methanol synthesis reactor (52) is connected to the methanol gas inlet of the mixing absorber (55), and the mixture outlet of the mixing absorber (55) is connected to the mixture input port of the distillation column (62), the distillation column ( 62) unreacted
  • the outlet is connected to the return gas port of the methanol synthesis reactor (52) through the unreacted gas line (61) and the compressor b (56), and the methanol product outlet of the distillation column (62) is connected to the methanol storage tank (65);
  • the lime water outlet of the tower (62) is connected to the input port of the decontaminator (58), the lime water outlet of the decontaminator (58) is connected to the suction port of the circulation pump (60), and the outlet of the
  • the pretreatment equipment further comprises a screw squeezing/feeder (10) and a digester (9), and the screw squeezing/feeder (10) is arranged in the sorting machine (3) and the C0 2 gas seal feeding device. (13) Between the waste material outlet of the sorting machine (3), the hopper of the screw squeezing/feeder (10) is circulated by the belt conveyor (8), and the screw squeezing/feeder (10) is discharged.
  • C0 2 feed gas sealing means (13) is connected to the plasma discharge opening through a delivery pipe b (14) Feeding port of gasifier (23); garbage storage pit (2), sorting machine (3) and screw squeezing/feeder
  • the garbage leachate port is connected to the feed port of the digester (9), and the biogas outlet of the digester (9) is connected to the plasma gasifier (23) Gasification section.
  • the system also has an air inlet fan (40) between the waste heat boiler (27) and the absorption reactor (32), and the syngas outlet of the waste heat boiler (27) is connected to the air inlet of the air induction fan (40), and the air inlet fan
  • the outlet of (40) is connected to the syngas input port of the absorption reactor (32);
  • An exhaust gas interface and an ammonia plant are provided in the unreacted gas line (61) at the end of the methanol synthesis system, while in the plasma gasifier (23)
  • An exhaust gas feedback line (30) is provided between the equipment at the end of the methanol synthesis system, and the exhaust gas interface in the unreacted gas line (61) is respectively connected to the exhaust gas feedback line of the plasma gasification furnace (23) through a control valve ( 30) With the feed interface of the ammonia plant, the tail gas outlet of the
  • waste heat boiler (27), absorption reactor (32), cyclone (31), bag filter (38), C0 2 absorption tower (42), regeneration tower (46), methanol storage tank (65), the distillation column (62) and the decontaminator (58) are manufactured by a conventional technique, and the methanol synthesis reactor (52) is manufactured by a known technique or by the electrocatalytic synthesis reactor technology of the Chinese patent ZL 200710166618.
  • An apparatus in a domestic waste gasification-liquefaction disposal system of the present invention characterized in that the gasification apparatus comprises a plasma gasification furnace (23), a plasma spray gun (24), a circulation fan (18), a heat exchanger b (21) and the connecting pipe composition, wherein: the plasma gasification furnace (23) has a drying section (23-I), a pyrolysis section (23-11) and a gasification section (23-111) from top to bottom.
  • the drying section (23-I), the pyrolysis section (23- 11) and the gasification section (23- ⁇ ) are directly connected, and the plasma spray gun (24) is disposed in the gasification section (23- ⁇ )
  • the plasma spray gun (24) is disposed in the gasification section (23- ⁇ )
  • the upper part of the drying section (23-I) there is a garbage material inlet (2302) inlet and a pyrolysis gas outlet (2303), and a gasification section (23-III) has a pyrolysis gas input interface a ( 2309) Access
  • the lower part of the gasification section (23-III) has a slag outlet (2307), and there is a syngas output interface at the junction of the pyrolysis section (23-11) and the gasification section (23- ⁇ ).
  • the heat exchanger b (21) is composed of a gas distribution chamber (2102), a heat exchange chamber (2104), a heat exchange tube bundle (2105), and a gas collection chamber (2107), and a gas distribution chamber (2102), Heat exchange room (2104),
  • the air chamber (2107) is in the upper, middle and lower layout, the heat exchange chamber (2104) is in the middle, the distribution chamber (2102), the heat exchange chamber (2104) and the plenum (2107) are in the steel shell, the steel shell
  • the outer wall is provided with insulation material, and the partition chamber (2102) and the heat exchange chamber (2104) are separated by the upper partition plate, and the heat exchange chamber (2104) and the gas collection chamber (2107) are separated by the lower partition plate, and the heat exchange tube bundle is separated.
  • the circuit channel constituting the pyrolysis gas is connected to the pyrolysis gas input port b (2101) in the gas distribution chamber (2102), and has a syngas input port (2108) in the heat exchange chamber (2104).
  • the air inlet, the air outlet of the circulation fan (18) is connected to the pyrolysis gas input port b (2101) of the heat exchanger b (21)
  • the pyrolysis gas output port (2109) of the exchanger b (21) plenum is connected to the pyrolysis gas input port a (2309) of the gasification section of the plasma gasifier (23); the plasma gasifier (23)
  • the syngas output port a (2304) is connected to the syngas input port (2108) of the heat exchanger b (21) heat exchange chamber, and the syngas output port b (2103) of the heat exchanger b (21) heat exchange chamber is connected To the subsequent equipment; the ash outlet (2110) of the heat exchanger b (21) is connected to the fly ash return furnace interface (2306) of the plasma gasifier (23).
  • 3 ⁇ 4 spray gun (79) has C0 2 input interface (7901) and calcium oxide input interface (7902); at the same time in the plasma gasifier (23) drying section of the pyrolysis gas outlet ( 2303) A gas-solid separator (17) is disposed between the air inlet of the circulation fan (18), and the pyrolysis gas outlet (2303) of the drying section of the plasma gasification furnace (23) is connected to the gas-solid separator (17)
  • the mixture inlet (1702), the gaseous outlet (1703) of the gas-solid separator (17) is connected to the inlet of the circulation fan (18), and the solid outlet (1701) of the gas-solid separator (17) is connected to the calcium oxide.
  • the calcium oxide input port (7902) of the spray gun (79), the C0 2 input port (7901) of the oxidation spray gun (79) is connected to the C0 2 gas supply line; in the gasification section of the plasma gasifier (23) (23) - ⁇ ) There is also fly ash return furnace interface (2306), biogas input interface (2308) and exhaust gas input interface (2305) access;
  • the heat exchange chamber (2104) of the device b (21) also has a ash port (2106) access port and a ash port (2110), and the ash port (2110) of the heat exchanger b (21) is connected to the plasma.
  • the fly ash returning furnace port (2306) of the gasification furnace (23) and the soot blowing fan (2106) of the heat exchanger b (21) are connected with a soot blowing fan, and the air inlet of the soot blowing fan is connected to the syngas conveying pipe.
  • the air outlet of the soot blower is connected to the blow port (2106) of the heat exchanger b (21).
  • the invention has the beneficial effects of: disposing domestic garbage or organic waste through gasification-liquefaction to achieve zero discharge, avoiding dioxin pollution problem, not discharging pollutants during the whole disposal process, and producing methanol products for chemical industry
  • the economic benefits of raw materials or industrial fuels are much higher than those of incineration.
  • the incineration method has a large amount of carbon dioxide gas and other pollutants discharged, and damages the environment.
  • the invention does not emit smoke and does not pollute the environment; the incineration method inevitably forms a highly toxic dioxin.
  • the present invention can suppress the formation of dioxins, and even if a very small amount of dioxins appear, it is easy to be removed in the terminal purification apparatus.
  • the invention has no pollutants and greenhouse gas emissions; the landfill method transfers the pollution to the underground, and discharges A large amount of greenhouse gases, polluting soil and groundwater endanger human health, and there are still problems affecting the next generation.
  • the present invention uses waste as a resource to produce clean energy, reduce energy pressure, and generate economic benefits.
  • the landfill method After commercialization, the government does not need to bear the processing costs; the landfill method not only wastes resources, but also the cost of the landfill is a bottomless pit, and the financial pressure on the government is very large; the project of the invention occupies less land, and the landfill method needs to be used. A lot of land. This is suitable for the decontamination and resource disposal of municipal solid waste, rural domestic waste, medical waste, industrial polymer waste, agricultural and forestry waste, composting residues, and garbage sorting yard waste.
  • FIG. 1 is a block diagram showing a process flow of a domestic garbage gasification-liquefaction treatment according to the present invention
  • FIG. 2 is a general system diagram of a calcium oxide synergistic living gasification-liquefaction treatment of the present invention
  • Figure 3 is a general view of a system for gasification-liquefaction of domestic waste in a hydrogenation process of the present invention
  • FIG 4 is a detailed view of Zone I in Figure 2 or a detailed view of Zone I in Figure 3;
  • Figure 5 is a detailed view of the ⁇ -a area of Figure 2;
  • Figure 6 is a detailed view of the Ill-a area of Figure 2;
  • Figure 7 is a detailed view of the IV region of Figure 2 or a detailed view of the IV region of Figure 3.
  • Figure 8 is a detailed view of the II-b zone of Figure 3, which is also a structural view of a gasification apparatus in a domestic waste disposal system of the present invention
  • Figure 9 is a gasification apparatus of another domestic waste disposal system of the present invention.
  • Figure 10 is a detailed view of the ⁇ -b region of Figure 3.
  • Precipitation Pool 54. 7 pump, 55. mixing absorber, 56. compressor b, 57. cooler, 58. hydraulic decontamination, 59. solidification slag, 60. lime water circulation pump, 61. unreacted gas delivery pipe 62. Distillation column, 63. Ammonia reactor, 64. Compressor c, 65. Methanol product storage tank, 66. Cooler, 67. Ammonia separator, 68. Liquid ammonia storage tank, 69. Air pump, 70. Garbage sink tank, 71. Water pump, 72. Air curtain, 73. Discharge platform, 74. Exhaust fan, 75. Control valve, 76. Wide control, 77. Control valve, 78. Control valve, 79.
  • Oxidation 3 ⁇ 4 spray gun 301 Hopper, 302. Inorganic outlet, 303. Garbage outlet 901. Slag outlet, 902. Biogas outlet, 903. Feed inlet; 1001. Drive shaft, 1002. Hopper, 1003. Screw shaft, 1004. 1301. Feed inlet, 1302. Carbon dioxide supplement interface, 1303. Carbon dioxide gas seal, 1304. Silo, 1305. Spiral housing, 1306. Screw shaft, 1307. Drive shaft; 1701. Solid state Export, 1702. Mixture import, 1703. Gaseous material export; 2001. Pyrolysis gas input interface, 2002. Gas distribution chamber, 2003. Heat transfer gas output interface, 2004. Pyrolysis gas output interface, 2005. Gas collection chamber, 2006. Heat Exchange Room, 2007. Carbonation Reaction Chamber, 2008. Carbon Dioxide Input Interface, 2009.
  • K 2 C0 3 solution Liquid output interface 4603. Carbon dioxide output interface; 4801. Syngas input interface, 4802. Syngas output interface; 4901. Hydrogen input interface, 4902. Syngas output interface, 4903. Syngas input interface; 5201. 5202. Return air interface, 5203. Methanol gas output interface; 5301. Sewage inlet, 5302. Suction pipe, 5203. Slag discharge; 5501. Methanol gas import, 5502. Lime water import, 5503. Mixture outlet; 5701. Lime water outlet 5702. Lime water inlet; 5801. Lime water outlet, 5802. Sewage outlet, 5803. Lime water input interface; 6201. Mixture input port, 6202. Lime water outlet, 6203. Methanol product outlet, 6204. Unreacted gas outlet; 6301.
  • Feed inlet 6302. Ammonia outlet; 6601. Ammonia input interface, 6602. Ammonia mixture output interface; 6701. Ammonia mixture input interface, 6702. Liquid ammonia output interface, 6703. Exhaust gas outlet; 7901. C0 2 input Interface, 7902. Calcium oxide input interface.
  • Embodiment 1 In the embodiment shown in FIG. 1 , domestic garbage or organic waste is partially dehydrated in a garbage storage pit, and then the sorted organic waste materials are sent to a screw feeder through sorting. During the conveying process of the screw feeder, part of the moisture is removed again by extrusion, and then the garbage material is sent to the plasma gasification furnace through the co 2 gas sealing feeding device; the garbage material passes through the drying section in the plasma gasification furnace in turn. After the pyrolysis section is dried and pyrolyzed, it becomes garbage char into the gasification section, and gasification reaction is carried out with the steam decomposition product injected from the plasma spray gun into the gasification section to complete gasification, and generate CO and H.
  • the operating temperature of the control drying section is between 120 ⁇ 300 °C
  • the operating temperature of the pyrolysis section is between 300 ⁇ 100
  • the operating temperature of the gasification section is 1000 ⁇
  • the operating pressure in the gasifier is controlled between 0 and 5 kPa
  • the plasma spray gun is set in the gasification section, and the gasification in the furnace
  • the heat required is mainly by isolation
  • the daughter spray gun provides an exothermic reaction with the plasma active chemical and the waste carbon.
  • the steam is used as the gasification agent and the working gas of the plasma spray gun.
  • the water vapor is heated to above 420 CTC by the plasma spray gun to completely decompose the water molecules.
  • spray directly on the waste charcoal in the gasification section and use the waste charcoal as hydrogen absorption and oxygen absorption components to generate CO and 3 ⁇ 4, ash
  • the slag is melted into the liquid slag in the slag zone of the furnace 1300 ⁇ 160 (the environment of TC is melted into liquid slag, discharged into the slag pool through the water seal to become vitreous particles; the exothermic heat of calcium carbonate is used to absorb carbon dioxide to provide gasification Heat source, synergistic plasma gasification, set up a carbonation reaction chamber in the gasification system, input calcium oxide and carbon dioxide into the carbonation reaction chamber, perform carbonation reaction, and simultaneously use calcium oxide as dechlorination or desulfurization agent, and plasma gas
  • the pyrolysis gas generated in the pyrolysis section of the furnace is introduced
  • the synthesis gas cooled by the waste heat boiler is sent to the absorption reactor for deacidification treatment, and calcium oxide or calcium hydroxide is used as an absorbent to remove the synthesis gas.
  • Acidic contaminants such as chlorides, sulfides, fluorides, etc., then separated by a cyclone, sent back to the absorption reactor for recycling, and then passed through the bag filter to remove fly ash;
  • the dust-removed synthesis gas is sent to the CO 2 absorption tower, the carbon dioxide in the synthesis gas is absorbed by the potassium carbonate solution, the potassium hydrogencarbonate formed by the absorption of carbon dioxide by the potassium carbonate solution is sent to the regeneration reactor, and the potassium hydrogencarbonate is decomposed into potassium carbonate by heating.
  • the synthesis gas is sent to the synthesis gas storage tank through the compressor a; the synthesis gas from the synthesis gas storage tank is sent to the methanol synthesis reactor through the compressor to produce methanol, and the hydrogen-rich synthesis gas is catalytically synthesized in the methanol synthesis reactor.
  • the methanol gas is sent to the mixing absorber to be miscible with lime water, so that the residual dirt including dioxins
  • the dyed material and carbon dioxide are absorbed by the lime water, then separated by distillation, the methanol is separated, the unreacted gas is sent back to the methanol synthesis reactor for recycling reaction, and the lime water is passed through the decontamination and sent back to the mixing absorber by the circulation pump for recycling.
  • the exhaust gas is sent back to the plasma gasifier through the control valve for reheating treatment or sent to the ammonia plant to produce liquid ammonia to eliminate nitrogen and form a closed loop production system.
  • the leaching water generated in the pretreatment process of the domestic waste is sent to the digester to produce biogas by anaerobic fermentation, and the biogas is sent to the plasma gasification furnace for decomposition treatment, and the biogas residue is used as a fertilizer;
  • the inorganic materials sorted during the process are further sorted, the scrap metal is recovered, and the non-metallic inorganic materials are pulverized, and then mixed with calcium carbonate and calcium oxide separated from the gasification system to produce the burn-free bricks;
  • Plasma gasification furnace The slag entering the water-sealing slag pool becomes a vitreous granule and can be directly used as a building material; the fly ash collected from the bag filter is processed through a melting furnace, and the slag can be directly used as a building material; the steam removed from the methanol synthesis reactor
  • the water mixture is sent to a waste heat boiler to produce steam, which is used for working gas and steam power generation of the plasma spray gun.
  • the carbon monoxide conversion operation is added in the front stage of the co 2 absorption tower to increase the proportion of the hydrogen fraction in the synthesis gas. Or take hydrogenation measures to meet the requirements of the syngas.
  • the methanol synthesis is carried out by a conventional synthesis reactor or by an electrocatalytic synthesis reactor of Chinese Patent No. 200710166618. 5, when a conventional synthesis reactor is used, a Cu/Zn/Al catalyst is used, and the operating pressure is 3 to 15 MPa, and the operating temperature is 210.
  • Methanol is synthesized in an environment of ⁇ 280 °C; when an electrocatalytic synthesis reactor is used, methanol is synthesized using an Cu/Zn/Al catalyst at an operating pressure of 0 to 1 Mpa and an operating temperature of 120 to 400 °C.
  • Embodiment 2 This embodiment is shown in the general diagram of the system of FIG. 2 and the detailed diagrams of FIGS. 4, 5, 6, and 7, and the disposal system of the domestic garbage gasification-liquefaction includes: the pretreatment part of the domestic garbage (I of FIG. 2) Zone), plasma gasification section (II-a zone of Figure 2), synthesis gas purification section (III-a zone of Figure 2), and methanol synthesis and terminal purification section (section IV of Figure 2), the system is mainly unloaded Material platform (73), garbage storage pit (2), crane grab (1), sorting machine (3), screw water/feeder (10), C0 2 gas seal feeding device (13), plasma Body gasifier (23), plasma spray gun (24), gas-solid separator (17), circulation fan (18), carbonation reaction chamber (2007), heat exchanger a (20), waste heat boiler (27) , absorption reactor (32), cyclone (31), baghouse (38), air entrainment fan (40), carbon monoxide shift reactor (41), C0 2 absorption tower (42), regeneration reactor (46) ), compressor a
  • the air outlet of the machine (74) is connected to the odor air input port (2501) of the temperature deodorizer (25) through the air duct (22), and the deodorizing air outlet (2503) of the high temperature deodorizer (25) is connected to the heat exchanger.
  • the discharge port of the screw squeezer/feeder (10) is at the front end of the spiral casing (1004); C0 2 gas seal feeding device (13) from the silo (1304), carbon dioxide gas seal (1303), spiral housing (1305), screw shaft (1306), drive shaft (1307), gearbox and motor, the silo (1304) above the spiral housing (1305)
  • the silo (1304) has a C0 2 gas seal material, and the discharge port of the silo (1304) communicates with the feed port of the spiral casing (1305), and the spiral casing (1305) has a screw shaft (1306) therein.
  • a screw shaft acts to push the material, sealing the front end of C0 2 gas feed means (13) of the discharge opening in the spiral housing (1305); the plasma gasifier (23) into the drying space Section (23-1), pyrolysis section (23- 11) and gasification section (23-111), drying section (23-1) with garbage material inlet (2302), heat carrier gas inlet (2301) and pyrolysis
  • the pyrolysis section (23- 11) has a hot gas output port (2310)
  • the gasification section (23- ⁇ ) has a pyrolysis gas input port a (2309).
  • the bottom side of the smelting section (23- ⁇ ) has a slag opening (2307), and there is a slag zone between the gasification section (23-III) and the slag opening (2307), in the pyrolysis section (23- ⁇ )
  • the junction with the gasification section (23-III) has a syngas output port a (2304); the plasma torch (24) is installed in the gasification section of the lower part of the plasma gasifier (23)
  • the heat exchanger a (20) is composed of a gas distribution chamber (2002), a heat exchange chamber (2006), and a gas collection chamber (2005), and the gas separation chamber (2002) has a pyrolysis gas input interface ( 2001), the hot-exchange chamber (2006) has a hot gas output interface (2003), the gas collection chamber (2005) has a pyrolysis gas output interface (2004); the carbonation reaction chamber (2007) is installed in the heat exchanger a ( 20) The carbonation reaction chamber (2007) is connected to the heat exchange chamber (2006) of the heat exchanger a (20), and the carbonation reaction chamber (2007) has a hot gas input interface (2010) and a calcium oxide spray gun (2009).
  • hybrid absorber (55) consists of a mixing absorption chamber, a venturi nozzle, a methanol gas nozzle, a methanol gas inlet (5501), a lime water inlet (5502), a mixture outlet (5503), and a shell Body composition, mixed absorption chamber, venturi water injection port and methanol gas nozzle in the casing, after the mixing chamber is in the venturi water injection port, the Venturi filling port is preceded by a methanol gas nozzle, and the inner diameter of the methanol gas nozzle is gradually enlarged from the nozzle to the inlet. 5 ⁇ , The length of the methanol gas nozzle is 2. 5 times the average diameter. The outer diameter of the nozzle of the ventilating nozzle is 0.
  • the methanol gas inlet (5501) is connected to the inlet of the methanol gas nozzle, the lime water inlet (5502) is placed on the shell between the venturi water inlet and the methanol gas inlet, and the mixture outlet (5503) is placed in the mixing chamber.
  • the garbage storage pit (2) is connected to the hopper (301) of the sorting machine (3) through the crane grab (1), and the garbage outlet (303) of the sorting machine (3) is passed through the belt conveyor (8).
  • the discharge port of the screw squeezing/feeder (10) is connected to the C0 2 gas seal feeding device through the conveying pipe a (12)
  • the feed port (1301) of the (13), the discharge port of the C0 2 gas seal feeding device (13) is connected to the waste material inlet (2302) of the plasma gasifier (23) through the transfer pipe b (14).
  • the heat carrier gas output port (2310) of the plasma gasifier (23) is connected to the heat carrier gas input port (2010) of the carbonation reaction chamber (2007), and the heat carrier gas output port of the heat exchanger a (20) (2003) a heat carrier gas inlet (2301) connected to the plasma gasifier (23); a pyrolysis gas outlet (2303) of the plasma gasifier (23) is connected to the mixture inlet (1702) of the gas-solid separator (17), The gaseous outlet (1703) of the gas-solid separator (17) is connected to the pyrolysis gas input port (2001) of the heat exchanger a (20) through the circulation fan (18), and the pyrolysis gas of the heat exchanger a (20)
  • the output interface (2004) is connected to the pyrolysis gas input port a (2309) of the plasma gasifier (23); the solids outlet (1701) of the gas-solid separator (17) is connected to the slag bin and connected to the pipe Calcium oxide spray gun (2009), also connected with calcium oxide supplement interface (19) and blowing fan (16) on the
  • the feed pipe of the agent input port (3202) is also connected to the air outlet of the blower fan (34), and the air inlet of the blower fan (34) is connected to the syngas delivery pipe (28); the absorption reactor (32)
  • the syngas output port (3201) is connected to the mixture input port (3102) of the cyclone (31), and the solids outlet (3103) of the cyclone (31) is connected to the input port (3203) of the absorption reactor (32).
  • the gas of the cyclone (31) The outlet (3101) is connected to the syngas input port (3803) of the bag filter (38), and the fly ash outlet (3802) of the bag filter (38) is connected to the melting furnace (35), the bag filter (38)
  • the syngas output port (3801) is connected to the air inlet of the bleed air fan (40), and the air outlet of the bleed air fan (40) is connected to the syngas input port (4101) of the carbon monoxide shift reactor (41), the carbon monoxide shift reactor (41) the synthesis gas output interface (4102) connected to the C0 2 absorber (42) of the synthesis gas input interface (4202), C0 2 absorber (42) KHC0 3 output interface (4204) connected to the regeneration tower (46
  • the KHC0 3 input interface (4601), the C0 2 output interface (4603) of the regeneration tower (46) is connected to the carbon dioxide input interface (2008) of the carbonation reaction chamber (2007), and the K 2 C0 3 of the regeneration tower (46) solution output interface (4602) connected to the C0 2
  • the unreacted gas outlet (6204) of the distillation column (62) is connected to the control enthalpy (76), the unreacted gas line (61), and the compressor b (56).
  • the input port (5803) of the decontaminator (58), the sewage outlet (5802) of the decontaminator (58) is connected to the sedimentation tank (53), and the lime water outlet (5801) of the decontamination unit (58) is connected to the circulation pump.
  • the suction port, the outlet of the circulation pump (60) is connected to the lime water inlet of the mixing absorber (55) (5502);
  • the filtered water side of the sedimentation tank (53) has a suction pipe (5302) connected to the suction port of the water pump (54), and the water outlet of the water pump (54) is connected to the lime water inlet (5502) of the mixing absorber (55).
  • the unreacted gas outlet (6204) of the distillation column (62) is also connected to the feed port (6301) of the ammonia synthesis reactor (63) through a control valve (75) and a compressor c (64) to synthesize an ammonia reactor ( 63)
  • the ammonia gas outlet (6302) is connected to the ammonia input port (6601) of the cooler (66), and the ammonia mixture output port (6602) of the cooler (66) is connected to the ammonia mixture input of the ammonia separator (67).
  • the interface (6701), the liquid ammonia output port (6702) of the ammonia separator (67) is connected to the liquid ammonia storage tank (68), and the exhaust gas outlet (6703) of the ammonia separator (67) is connected to the uncontrolled valve (78).
  • the unreacted gas line (61) is connected to the exhaust gas input port (2305) of the plasma gasifier (23) through the control valve (77), the air pump (69) and the exhaust gas return pipe (30).
  • the leaching water interface of the garbage storage pit (2), the sorting machine (3) and the screw squeezing/feeder (10) The pipe is connected to the feed port (903) of the digester (9), and the biogas outlet (902) of the digester (9) is connected to the plasma gasifier (23) through the biogas transfer pipe (11) and the air pump (15). Biogas input interface (2308).
  • Embodiment 3 This embodiment is shown in the general view of the system of FIG. 3 and the detailed diagrams of FIGS. 4, 7, 8, and 9, and the disposal system for the domestic waste gasification-liquefaction includes: the pretreatment portion of the domestic garbage (I of FIG. 3) Zone), plasma gasification section (II-b zone of Figure 3), synthesis gas purification section (III-b zone of Figure 3), and methanol synthesis and terminal purification section (section IV of Figure 3), the system is mainly unloaded Material platform (73), crane grab (1), garbage storage pit (2), sorting machine (3), digester (9), screw squeeze water / feeder (10), C0 2 gas seal feed Device (13), plasma gasification Furnace (23), plasma spray gun (24), circulation fan (18), heat exchanger b (21), waste heat boiler (27), air induction fan (40), absorption reactor (32), cyclone ( 31), bag filter (38), compressor a (44), syngas storage tank (48), hydrogenation mixer (49), compressor i (51), methanol synthesis reactor (52),
  • a gasification section (23- ⁇ ) has a pyrolysis gas input interface a (2309) in the gasification section ( 23- III) has a bottom side
  • the slag mouth (2307) has a slag zone between the gasification section (23-111) and the slag discharge port (2307), and the junction of the pyrolysis section (23- ⁇ ) and the gasification section (23- ⁇ ) has Syngas output port a (2304);
  • plasma torch (24) is installed in the gasification section of the lower part of the plasma gasifier (23) (23-IID; heat exchanger b (21) is divided by the gas distribution chamber (2102),
  • the heat exchange chamber (2104) and the plenum chamber (2107) are formed, and the gas distribution chamber (2102), the heat exchange chamber (2104), and the gas collection chamber (2107) are separated from each other by a partition, and the heat exchange tube bundle (2105) is set in the heat.
  • the gas distribution chamber (2102) is connected to the gas collection chamber (2107) through the heat exchange tube bundle (2105), and the gas distribution chamber (2102) There is a pyrolysis gas input interface b
  • the heat exchange chamber (2104) has a syngas input port (2108), a syngas output port b (2103), a ash port (2110), and a soot port (2106), on the plenum (2107)
  • a pyrolysis gas output interface (2109) Garbage storage pit (2) through the crane grab (1) to the hopper (301) of the sorting machine (3), the waste outlet (303) of the sorting machine (3) through the belt conveyor (8)
  • Receiving the hopper (1002) of the screw squeezing/feeder (10), the discharge port of the screw squeezing/feeder (10) is connected to the C0 2 gas seal feeding device through the conveying pipe a (12)
  • the pyrolysis gas outlet (2303) of the plasma gasifier (23) is connected to a pyrolysis gas input port b (2101) connected to the heat exchanger b (21) through a circulation fan (18), heat exchanger b (21)
  • the pyrolysis gas output port (2109) is connected to the pyrolysis gas input port a (2309) of the gasification section of the plasma gasifier (23);
  • the syngas output port a of the plasma gasifier (23) (2304) a syngas input port (2108) connected to the heat exchanger b (21), the ash outlet (2110) of the heat exchanger b (21) is connected to the fly ash of the plasma gasifier (23) through the ash discharge port
  • the regenerative port (2306); the syngas output port b (2103) of the heat exchanger b (21) is connected to the syngas in
  • the mixture input port (3102) of (31), the solids outlet (3103) of the cyclone (31) is connected to the input port (3203) of the absorption reactor (32), and the gaseous outlet of the cyclone (31) ( 3101) Syngas input port connected to the baghouse (38)
  • the fly ash outlet (3802) of the baghouse (38) is connected to the melting furnace (35), and the syngas output port (3801) of the baghouse (38) is connected to the syngas via compressor a (44)
  • the syngas input port (4801) of the tank (48), the syngas output port (4802) of the syngas tank (48) is connected to the syngas input port (4903) of the hydromixer (49), hydrogenation mixing
  • the hydrogen input port (4901) of the (49) is connected to the hydrogen supply device, and the syngas output port (4902) of the hydrogenation mixer (49) is connected to the suction port of the compressor i (51), the compressor i (51)
  • the exhaust port is connected to the feed gas inlet (5201) of the methanol synthesis reactor (52), and the methanol gas outlet (5203) of the methanol synthesis reactor (52) is connected to the mixing absorber (55) through a pressure reducing control valve.
  • Methanol gas inlet (5501), mixture absorber (55) mixture outlet (5503) is connected to the mixture input port (6201) of the distillation column (62), and the unreacted gas outlet (6204) of the distillation column (62) is passed through the control valve.
  • (76), unreacted gas line (61) and compressor b (56) connected to the methanol synthesis reactor (52) a return air port (5202), a methanol product outlet (6203) of the distillation column (62) is connected to the methanol storage tank (65); a lime water outlet (6202) of the distillation column (62) is connected to the decontamination unit ( 58)
  • the input port (5803), the sewage outlet (5802) of the decontaminator (58) is connected to the sedimentation tank (53), and the lime water outlet (5801) of the decontamination unit (58) is connected to the circulation pump (60).
  • the suction port, the outlet of the circulation pump (60) is connected to the lime water inlet of the mixing absorber (55) (5502); the unreacted gas outlet (6204) of the distillation column (62) is also passed through the control valve (75) and compression
  • the machine c (64) is connected to the feed port (6301) of the ammonia reactor (63), and the ammonia gas outlet (6302) of the ammonia reactor (63) is connected to the ammonia input port (6601) of the cooler (66).
  • the ammonia mixture output port (6602) of the cooler (66) is connected to the ammonia mixture input port (6701) of the ammonia separator (67), and the liquid ammonia output port (6702) of the ammonia separator (67) is connected to the liquid ammonia storage tank.
  • the exhaust gas outlet (6703) of the ammonia separator (67) is connected to the unreacted gas line (61)' through a control valve (78), and the unreacted gas line (61) passes through the control valve (77), the air pump (69) and the exhaust gas.
  • the feedback pipe (30) is connected to the exhaust gas input port (2305) of the plasma gas furnace, 23); the leaching water interface of the garbage storage pit (2), the sorting machine (3) and the screw squeezing/feeder (10) ⁇
  • the pipeline is connected to the feed port (903) of the digester (9), and the biogas outlet (902) of the digester (9) is connected to the plasma gasifier through the biogas delivery pipe (11.) 'Air pump (15) (23) ) biogas input interface (2308).
  • a gasification apparatus in a domestic waste gasification-liquefaction disposal system is mainly composed of a plasma gasification furnace (23), a plasma spray gun (24), and a circulation fan (18).
  • a heat exchanger b (21) and a connecting pipe wherein: the plasma gasifier (23) is a blast furnace structure, and the furnace wall (2311) of the plasma gasifier (23) is internally refractory , the insulation layer, the insulation layer and the steel shell, the refractory layer is made of high alumina refractory brick or bauxite concrete, the insulation layer is made of diatomaceous earth material, and the insulation layer is made of aluminum silicate refractory fiber material; The insulation layer of the chemical section is replaced by a cooling layer.
  • the cooling layer consists of a steel pipe, a steel plate, and a lower header pipe of the upper header pipe.
  • the water cooling wall structure is connected to the lower header pipe, and the water is connected to the upper header pipe.
  • the interface is connected, the cooling layer is connected to the circulating cooling water system through the cooling water interface and the return water interface (not shown);
  • the plasma gasifier (23) has a drying section from top to bottom (23- 1), pyrolysis section (23- 11) And the gasification section (23-111), the drying section (23-1), the pyrolysis section (23-11) and the gasification section (23- ⁇ ) are directly connected, in the upper part of the drying section (23-1)
  • the fire mirror, the level sensor is also installed on the furnace wall of the drying section (23-1);
  • the plasma spray gun (24) is arranged on the furnace wall of the gasification section (23-111) and the slag zone, and more plasma Body spray gun Multi-layer layout, the plasma spray gun (24) has a working gas input interface, a coolant input, a coolant output interface and a power interface, and the working gas input interface is connected to the steam pipe network through a control valve and a connecting pipe, and the coolant input and The output interface is respectively connected to the liquid supply and liquid return interface of the coolant device, and the power interface is connected to the power supply output end of the plasma controller;
  • the heat exchanger b (21) is divided by the gas distribution chamber (2102) and the heat exchange chamber (2104) ), heat exchange tube bundle (2105) and plenum (2107), distribution chamber (2102), heat exchange chamber (2104), plenum (2107) in upper, middle and lower layout, distribution chamber (2102) ), heat exchange chamber (2104) and plenum (2107) in the
  • Gas input port a (2309); syngas output port a (2304) of the plasma gasifier (23) is connected to the syngas input port (2108) of the heat exchanger b (21) heat exchange chamber, heat exchanger b (21)
  • the syngas output port b (2103) of the heat exchange chamber is connected to the downstream device; the heat exchanger b (21)
  • the ash port (2110) is connected to the fly ash returning furnace port (2306) of the plasma gasifier (23), and the soot blowing fan (2106) of the heat exchanger b (21) is connected with a soot blowing fan, and the soot blower is advanced.
  • the tuyere is connected to the syngas delivery line, and the outlet of the soot blower is connected to the soot port (2106) of the heat exchanger b (21).
  • Embodiment 5 is a method of changing a calcium oxide spray gun (79) on a furnace wall of a pyrolysis section (23-II) of a plasma gasification furnace (23), in addition to the above-described fourth embodiment.
  • the calcium oxide spray gun (79) has a C0 2 input interface (7901) and a calcium oxide input interface (7902), and a pyrolysis gas outlet (2303) and a circulating fan (18) in the drying section of the plasma gasification furnace (23).
  • the pyrolysis gas outlet (2303) of the drying section of the plasma gasifier (23) is connected to the mixture inlet (1702) of the gas-solid separator (17), gas-solid separation
  • the gas outlet (1703) of the (17) is connected to the air inlet of the circulation fan (18), and the solid outlet (1701) of the gas-solid separator (17) is connected to the oxidation!
  • the calcium oxide input port of the i-gun (79) (7902) there is a calcium oxide supplement interface (19) on the connecting pipe of the solid material outlet (1701) of the gas-solid separator (17) and the calcium oxide input port (7902) of the oxidation surface spray gun (79), and is oxidized.
  • the C0 2 input port (7901) of the calcium spray gun (79) is connected to the C0 2 gas line via a blower fan (16).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Description

生活垃圾气化 -液化处置的方法、 系统及设备 技术领域
本发明涉及固体废物处置技术, 特别是涉及到一种生活垃圾或有机废物处置的方法和装备。
背景技术
生活垃圾和有机废物随着经济的发展及城市规模的不断扩大而迅速增加, 致使垃圾泛滥成灾, 当前, 各国的许多城市都出现了垃圾围城现象, 已影响到经济的可持续发展和制约城市的发展。 生活垃圾和有机 废物含有许多有害成分, 如处理不好, 将会污染环境, 威胁人民的身体健康。 目前, 处理生活垃圾主要有 垃圾分类综合利用、 卫生填埋技术、 堆肥(生化)技术和焚烧技术, 其中, 垃圾分类需要公众参与和配合, 目前在很多国家还没有推行, 如果能达到垃圾分类收集、 综合利用的话, 仍还有 40〜50%的量需要焚烧处 理或填埋处理;世界各国的大部分地区采用卫生填埋法处理城市生活垃圾,这不但需占用大量的土地资源, 而且释放大量温室气体、污染土地及地下水, 破坏人类的生存环境; 采用堆肥法仅利用 40%左右的有机物, 其余的 60%还需作焚烧处理或填埋处理, 同样存在二次污染的问题; 采用焚烧法来处理生活垃圾, 从表面 看是做到了减量化、 资源化处理生活垃圾, 但实际上是把地面上的固态污染物以烟气的方式转移大气中, 这些转移到大气中的污染物随着空气对流、 地球引力回到地面上, 影响人类的生命健康, 有些污染物以制 造酸雨的方式回到地面上, 排放的二氧化碳则起温室效应破坏人们的生存环境。 焚烧法还容易生成致癌剧 毒物二噁英污染环境、 危害人的身体健康, 焚烧厂虽有烟气净化系统, 但目前在垃圾焚烧领域中还缺乏有 效可靠的末端净化工艺技术来消除二噁英污染问题。
二噁英是一种含氯的强毒性有机化学物质,这类物质非常稳定,不溶于水,是无色无味的脂溶性物质, 所以非常容易在生物体内积累, 自然界的微生物和水解作用对二噁英的分子结构影响较小, 因此, 环境中 的二噁英很难自然降解消除。 二噁英有 "世纪之毒"之称, 已被国际癌症研究中心列为人类一级致癌物。 生活垃圾、 工业有机废物和医疗垃圾在焚烧过程中都会产生二噁英, 垃圾在焚烧过程中二噁英的形成有以 下途径: a.在燃烧过程中由含氯塑料、 含氯杀虫剂 /除草剂 /木材防腐剂 /漂白剂 /食物、 多氯联苯等含氯前 驱物通过分子重排、 自由基縮合、 脱氯或其它分子反应而形成二噁英; b.当燃烧不充分时, 含氯垃圾不 完全燃烧, 烟气中产生过多的未燃烬物质, 遇强催化性的物质如氯化铜、 氯化铁、 氧化镍、 氧化铝等重金 属而合成二噁英; c.燃料中本身含有的二噁英在燃烧中未被破坏, 存在于燃烧后的烟气中; d. 固体飞灰中 残碳、 氧、 氢、 氯等在飞灰表面催化合成中间产物或二噁英, 或气相中的前驱物在飞灰表面催化生成二噁 英; e.烟气从高温降到低温在 250〜500°C之间时已分解的二噁英会再合成; f.其它不明原因生成二噁英。 生活垃圾中普遍含有氯源、 有机质和重金属, 因此, 在焚烧炉产生的烟气、 飞灰和炉渣中常含有二噁英。 有研究表明, 前驱物浓度、 氯的浓度、 温度、 含氧量、 含硫量及重金属作为无意识催化剂的存在对生活垃 圾焚烧过程中的二噁英的生成及排放有重要影响。 即使采用最先进的焚烧工艺和设备, 垃圾焚烧还是不可 避免地会产生二噁英污染环境, 因为焚烧法处理生活垃圾必须在过氧量超过 6%的条件下才能使充分燃烧, 否则污染将更严重, 而过氧是形成二噁英的条件之一, 过氧环境中二噁英的浓度大大增加, 缺氧环境中二 噁英的浓度会下降, 没有氧气则没有二噁英合成; 焚烧的烟气必定是要和过热器、 锅炉、 热交换器、 空预 器等设备的金属受热面接触, 这些金属受热面都会成为形成二噁英的催化介质; 焚烧过程中很难实现完全 除酸, 烟气中仍存在有残碳、 氧、 氢、 氯、 飞灰和一定量的二噁英前驱物, 不可避免的会在炉外低温再合 成二噁英。 焚烧垃圾的烟气中存在一定量的二噁英, 从烟气中把二噁英进行消除是难以达到的, 它将 随着烟气的排放而污染环境。 由于二噁英很难降解, 它的半衰期可以达到 273年, 基本视为不降解, 它 在人们的生存环境中及人体里的积累会越来越多, 许多焚烧大国都出现了严重的二噁英污染问题, 应引起 足够的倉视。
总之,焚烧法处置生活垃圾不是一个好的办法,卫生填埋又存在占用土地、释放温室气体及污染隐患, 垃圾分类、堆肥法也要面对不能利用部分的出路问题,而令人头痛的 "垃圾围城" 问题必须得解决, 因此, 人类迫切希望有一个完美处置生活垃圾的技术方案。 发明内容
本发明的目的是要克服解决填埋法、 焚烧法带来的破坏人类的生存环境和二噁英污染问题, 提出一种 把生活垃圾、 有机废物通过气化-液化进行处置的技术, 有效抑制包括二噁英在内的污染物形成, 在整个 处置过程中不排放污染物和温室气体, 消除二噁英污染问题, 保护生态环境, 同时把生活垃圾、 有机废物 转化为一种化工原料或清洁能源。
本发明的一种生活垃圾气化 -液化处置的方法, 包括氧化钙协同等离子体气化技术, 其特征是把生活 垃圾或有机废物经过预处理进行脱水和分选, 降低水分和无机物含量, 以减少入炉原料的无用成分, 提高 热值, 从而可以减少等离子体气化炉的电能消耗和提高合成气的品质, 经过预处理的生活垃圾或有机废物 通过 C02气封进料装置送入等离子体气化炉, C02气封可以有效隔离空气, 阻止空气从进料口进入气化炉以 及阻止炉内合成气通过进料口泄出炉外, 而不会对进料有阻碍; 等离子体气化炉内按上、 中、 下依次设置 烘干段、 热解段和气化段, 生活垃圾或有机废物在炉内进行烘干、 热解后, 变成垃圾炭进入气化段, 与从 等离子体喷枪喷入气化段的水蒸汽分解物进行气化反应, 生成以 CO和 为主要成分的富氢合成气; 在气 化段设置等离子体喷枪, 用水蒸汽作为气化剂和等离子体喷枪的工作气体, 水蒸汽通过等离子体喷枪被加 热到 420CTC以上, 使水分子全部分解, 生成 Η*、 ΗΛ H0'、 0*、 0 和 ¾0'后, 直接喷在气化段的垃圾炭上, 把垃圾炭作为吸氢和吸氧元件, 生成 CO和 ,灰渣在炉内熔渣区 1300〜1600°C的环境中熔融为液态炉渣, 通过水封排入渣池; 采用氧化钙协同等离子体气化方式, 在气化系统设置碳酸化反应室, 用氧化钙吸收二 氧化碳生成碳酸钙时的放热来为气化提供辅助热源, 为新入炉垃圾物料的烘干和预热提供热能, 以减少等 离子体喷枪的能耗, 把等离子体气化炉热解段产生的热解气引入到碳酸化反应室, 再把热解气作为载气, 携氧化钙、 碳酸钙混合物和热量进入等离子体气化炉内的烘干段, 氧化钙还兼作脱氯或脱硫剂, 在过量的 氧化钙存在的环境中, 脱去二噁英前驱物、 氯化物和硫化物, 然后把热解气引入气固分离器, 把氧化钙和 碳酸钙分离出来, 再把热解气送入等离子体气化炉的气化段内, 在 1000〜1300°C的环境中, 使热解气中的 甲垸、 气态焦油、 乙烯、 乙烷、 水蒸汽等物进行裂解和化学反应, 同时彻底瓦解二噁英, 通过循环气化, 使入炉垃圾得到完全分解, 生成高品质的以氢气和一氧化碳为主要成分的富氢合成气; 把富氢合成气从等 离子体气化炉内引出, 通过余热锅炉降温后, 再在由吸收反应器、 旋风除尘器和布袋除尘器组成的气体净 化设备中进行脱酸和除尘, 然后在 C02吸收塔中用碳酸钾溶液吸收合成气中的二氧化碳, 生成碳酸氢钾, 把脱去二氧化碳的合成气送入甲醇合成反应器生产甲醇, 把碳酸氢钾送入再生反应器, 通过加热把碳酸氢 钾分解为碳酸钾溶液和二氧化碳, 把分解出的碳酸钾溶液送回 C02吸收塔进行循环利用, 把分解出的二氧 化碳送入气化系统的碳酸化反应室,与氧化钙进行碳酸化反应, 为垃圾气化助热, 同时避免排放温室气体; 富氢合成气在甲醇合成反应器内被催化合成甲醇产物, 再把甲醇产物在末端净化设备的混合吸收器中与石 灰水混溶, 使残余的包括二噁英在内的污染物、 二氧化碳被石灰水吸收, 然后通过蒸馏塔进行分离, 把甲 醇分离出来, 把未反应气送回甲醇合成反应器进行循环反应, 把石灰水通过除污后由循环泵送回混合吸收 器进行循环利用; 把尾气返回等离子体气化炉进行回炉处理, 形成一个闭路循环生产系统。 本方法中, 烘 干段的操作温度控制在 120〜300°C之间, 热解段的操作温度控制在 300〜100(TC之间, 气化段的操作温度 控制在 1000〜1300°C之间, 气化炉内的操作压力控制在 - 30Pa〜+5kPa之间, 当把灰渣熔融为液态炉渣排 出时,在气化段和出渣口之间设置熔渣区,在熔渣区设置等离子体喷枪,熔渣区的操作温度控制在 1300〜 1600°C之间; 把生活垃圾预处理过程中产生的渗沥水送入消化器通过厌氧发酵进行生产沼气, 把沼气送入 等离子体气化炉进行分解处理, 把沼渣用作肥料。 把预处理过程中分选出的无机物再进行分拣, 回收废金 属, 再把非金属无机物通过粉碎后, 与气化系统分离出的碳酸钙、 氧化钙进行混合, 用来生产免烧砖。 等 离子体气化炉排入水封渣池的炉渣, 成为玻璃体颗粒, 可直接作建材利用, 把从布袋除尘器收集的飞灰, 通过熔融炉进行处理, 熔渣可直接作建材利用。
上述方法中, 输入到碳酸化反应室的氧化钙用量按反应室内二氧化碳、 氯化物、 硫化物和氟化物摩尔 数总量的 1. 2〜1. 5倍确定, 其中, 二氧化碳的摩尔数按实际输入量加热解气中的检测含量确定, 氯化物、 硫化物和氟化物的摩尔数按取样垃圾有机废物的元素分析确定。
上述方法中, 以水蒸汽等离子体气化方式进行生活垃圾处置, 不向气化炉输入氧气或空气, 生活垃圾 在缺氧环境中气化, 合成气中过氧率为零, 可以有效抑制二噁英合成; 在碳酸化反应室内直接向热解气混 合氧化钙粉可以有效除去二噁英前驱物、含氯有机物及脱硫, 并固化在吸收剂中,减少二噁英形成的概率; 在等离子体气化炉内, 热解气循环运行, 当热解气循环到气化段的 1000〜1300°C环境中时, 二噁英会被彻 底瓦解; 在等离子体气化炉内, 把垃圾物料先通过热解, 逸出挥发分后, 然后用等离子体 4200°C以上的水 蒸汽活性物与固定炭进行气化反应, 在气化段 1000〜1600Ό环境中, 固定炭将进行完全气化; 采用封闭循 环的生产工艺, 在末端净化操作中用石灰水进行吸收和把尾气送回等离子体气化炉进行回炉处理来消除二 噁英污染, 尾气中不明有机气体得到进一步分解和气化, 尾气中的氮气通过生产合成氨来进行消耗, 从而 实现零排放、无污染处置生活垃圾和有机废弃物,同时把生活垃圾和有机废物转化为人类需要的甲醇产品。
本发明的一种生活垃圾气化 -液化处置的系统, 包括等离子体气化设备, 由预处理设备、 C02气封进 料装置 (13)、 等离子体气化炉 (23)、 等离子体喷枪 (24)、 气固分离器 (17)、 循环风机 (18)、 热交换 器 a (20)、碳酸化反应室(2007)、余热锅炉(27)、吸收反应器(32)、旋风除尘器(31)、布袋除尘器(38)、 C02吸收塔 (42)、 再生塔 (46)、 甲醇合成反应器 (52)、 混合吸收器 (55)、 蒸馏塔 (62)、 除污器 (58)、 循环泵 (60)、 甲醇贮罐 (65) 和连接管道组成, 其中: 预处理设备包括垃圾贮坑 (2) 和分选机 (3); 等 离子体气化炉 (23) 的内空间分为烘干段、 热解段和气化段, 烘干段上有垃圾物料进口、 载热气进口和热 解气出口, 热解段上有载热气输出接口, 气化段上有热解气输入接口, 热解段与气化段的结合部位有合成 气输出接口; 等离子体喷枪 (24) 设置在等离子体气化炉 (23) 下部的气化区; 热交换器 a (20) 由分气 室、 热交换室和集气室构成, 分气室上有热解气输入接口, 热交换室上有载热气输出接口, 集气室上有热 解气输出接口; 碳酸化反应室 (2007)与热交换器 a (20) 内的热交换室直接相通, 碳酸化反应室 (2007) 上有载热气输入接口、 氧化钙输入装置和二氧化碳输入接口; C02吸收塔 (42) 上有合成气输入接口、 合 成气输出接口、 KHC03输出接口和 K2C03溶液输入接口, 再生塔 (46) 上有 KHC03输入接口、 C02输出接口和 K2C03溶液输出接口; - 垃圾贮坑 (2) 和分选机 (3) 之间通过吊机抓斗 (1)进行衡接, 分选机 (3)通过带式输送器或螺旋 送料器衡接到等离子体气化设备的 C02气封进料装置 (13) 的进料口, C02气封进料装置 (13) 的出料口连 接到等离子体气化炉 (23) 的垃圾物料进口, 等离子体气化炉 (23) 的载热气输出接口连接到碳酸化反应 室 (2007) 的载热气输入接口, 热交换器 a (20) 的载热气输出接口连接到等离子体气化炉 (23) 的载热 气进口; 等离子体气化炉 (23) 的热解气出口连接到气固分离器 (17) 的混合物进口, 气固分离器 (17) 的气态物出口通过循环风机 (18) 连接到热交换器 a (20) 的热解气输入接口, 热交换器 a (20) 的热解 气输出接口连接到等离子体气化炉 (23) 的热解气输入接口; 等离子体气化炉 (23) 的合成气输出接口连 接到余热锅炉 (27) 的合成气输入接口, 余热锅炉 (27) 的合成气输出接口连接到吸收反应器 (32) 的合 成气输入接口, 吸收反应器 (32) 的合成气输出接口连接到旋风除尘器 (31) 的混合物输入接口, 旋风除 尘器 (31) 的固态物出口连接到吸收反应器 (32) 的合成气输入接口的连接管道上, 旋风除尘器 (31) 的 气态物出口连接到布袋除尘器 (38) 的合成气输入接口, 布袋除尘器 (38) 的合成气输出接口连接到 C02 吸收塔(42) 的合成气输入接口, C02吸收塔 (42) 的 KHC03输出接口连接到再生塔(46) 的 KHC03输入接 口, 再生塔(46)的 C02输出接口连接到碳酸化反应室(2007)的二氧化碳输入接口, 再生塔(46)的 K2C03 溶液输出接口连接到 C02吸收塔 (42) 的 K2C03溶液输入接口; C02吸收塔 (42) 的合成气输出接口连接到 压縮机 i (51) 的吸气口, 压縮机 i (51) 的排气口连接到甲醇合成反应器 (52) 的原料气进口, 甲醇合 成反应器 (52) 的甲醇气出口连接到混合吸收器 (55) 的甲醇气进口, 混合吸收器 (55) 的混合物出口连 接到蒸馏塔 (62) 的混合物输入接口, 蒸馏塔 (62) 的未反应气出口通过未反应气管路 (61) 和压縮机 b
(56) 连接到甲醇合成反应器 (52) 的回气接口, 蒸馏塔 (62) 的甲醇产物出口连接到甲醇贮罐 (65); 蒸馏塔(62)的石灰水出口连接到除污器(58)的输入接口, 除污器(58)的石灰水出口连接到循环泵(60) 的吸水口, 循环泵 (60) 的出水口连接到混合吸收器 (55) 的石灰水进口。
上述的系统中, 预处理设备还包括螺旋挤水 /送料器 (10) 和消化器 (9), 螺旋挤水 /送料器 (10) 在 工作时具有挤水和送料的双重功能, 螺旋挤水 /送料器(10) 设置在分选机(3) 与 C02气封进料装置 (13) 之间, 分选机 (3) 的垃圾物料出口通过带式输送机 (8) 衡接到螺旋挤水 /送料器 (10) 的料斗, 螺旋挤 水 /送料器(10)出料口通过输送管 a (12)连接到 C02气封进料装置(13)的进料口, C02气封进料装置( 13) 的出料口通过输送管 b ( 14) 连接到等离子体气化炉 (23) 的进料口; 垃圾贮坑 (2 ) 的渗沥水接口、 分 选机(3)的渗沥水接口和螺旋挤水 /送料器(10)的渗沥水接口连接到消化器(9)的进料口, 消化器(9) 的沼气出口连接到等离子体气化炉 (23 ) 的气化区。
上述的系统中, 在布袋除尘器 (38 ) 与 C02吸收塔 (42) 之间还设置引气风机 (40) 和一氧化碳变换 反应器 (41 ), 布袋除尘器 (38) 的合成气输出接口连接到引气风机 (40) 的吸风口, 引气风机 (40 ) 的 出风口连接到一氧化碳变换反应器 (41 ) 的合成气输入接口, 一氧化碳变换反应器 (41 ) 的合成气输出接 口连接到 C02吸收塔 (42) 的合成气输入接口; 在 C02吸收塔 (42) 与压缩机 i ( 51 ) 之间还设置压缩机 a (44) 和合成气贮罐 (48), C02吸收塔 (42 ) 的合成气输出接口连接到压縮机 a (44) 的吸气口, 压縮机 a (44)的排气口连接到合成气贮罐(48)的输入接口, 合成气贮罐(48)的输出接口连接到压缩机 i ( 51 ) 的吸气口。
上述的系统中, 在甲醇合成系统末端的未反应气管路 (61 ) 中设置尾气接口和合成氨装置, 同时在等 离子体气化炉 (23 ) 与末端净化设备之间设置尾气反馈管路 (30), 未反应气管路 (61 ) 中的尾气接口通 过控制阀分别连接到等离子体气化炉 (23) 的尾气反馈管路 (30)和合成氨装置的进料接口, 合成氨装置 的尾气出口连接到等离子体气化炉 (23) 的尾气反馈管路 (30)。
本发明的另一种生活垃圾气化-液化处置的系统, 包括等离子体气化设备, 由预处理设备、 C02气封进 料装置 (13 )、 离子体气化炉 (23 )、 等离子体喷枪 (24)、 循环风机 (18) 和热交换器 b (21 )、 余热锅 炉 (27 )、 吸收反应器 (32 )、 旋风除尘器 (31 )、 布袋除尘器 (38)、 加氢混合器 (49 )、 甲醇合成反应 器 (52)、 混合吸收器 (55)、 蒸馏塔 (62)、 除污器 (58)、 循环泵 (60)、 甲醇贮罐 (65) 和连接管道组 成, 其中: 预处理设备包括垃圾贮坑 (2) 和分选机 (3); 等离子体气化炉 (23 ) 的内空间分为烘干段、 热解段和气化段, 烘干段上有垃圾物料进口和热解气出口, 气化段上有热解气输入接口, 热解段与气化段 的结合部位有合成气输出接口; 等离子体喷枪 (24) 设置在等离子体气化炉 (23 ) 下部的气化段; 热交换 器 b (21 ) 由分气室、 热交换室和集气室构成, 分气室上有热解气输入接口, 热交换室上有合成气输入接 口和合成气输出接口, 集气室上有热解气输出接口; 垃圾贮坑 (2)和分选机 (3) 之间通过吊机抓斗 (1) 进行衡接, 分选机 (3) 通过带式输送器或螺旋送料器衡接到等离子体气化设备的 C02气封进料装置 (13) 的进料口, C02气封进料装置(13)的出料口连接到等离子体气化炉(23 )的进料口, 等离子体气化炉(23) 的热解气出口通过循环风机 (18) 连接到热交换器 b (21 ) 的热解气输入接口, 热交换器 b (21 ) 的热解 气输出接口连接到等离子体气化炉 (23 )气化段的热解气输入接口; 等离子体气化炉 (23) 的合成气输出 接口连接到热交换器 b (21 )的合成气输入接口,热交换器 b (21 )的合成气输出接口连接到余热锅炉(27) 的合成气输入接口, 余热锅炉 (27) 的合成气输出接口连接到吸收反应器 (32) 的合成气输入接口, 吸收 反应器 (32) 的合成气输出接口连接到旋风除尘器 (31 ) 的混合物输入接口, 旋风除尘器 (31 ) 的固态物 出口连接到吸收反应器 (32 ) 的合成气输入接口的连接管道上; 旋风除尘器 (31 ) 的气态物出口连接到布 袋除尘器(38) 的合成气输入接口, 布袋除尘器(38) 的合成气输出接口连接到压縮机 a (44) 的吸气口, 压縮机 a (44) 的排气口连接到合成气贮罐 (48) 的输入接口, 合成气贮罐 (48) 的输出接口连接到加氢 混合器 (49) 的合成气输入接口, 加氢混合器 (49) 的合成气输出接口连接到压缩机 i (51 ) 的吸气口, 压缩机 i ( 51 ) 的排气口连接到甲醇合成反应器 (52) 的原料气进口, 甲醇合成反应器 (52) 的甲醇气出 口连接到混合吸收器 (55) 的甲醇气进口, 混合吸收器 (55) 的混合物出口连接到蒸馏塔 (62) 的混合物 输入接口, 蒸馏塔 (62) 的未反应气出口通过未反应气管路 (61 ) 和压縮机 b (56) 连接到甲醇合成反应 器 (52) 的回气接口, 蒸馏塔 (62) 的甲醇产物出口连接到甲醇贮罐 (65); 蒸馏塔 (62) 的石灰水出口 连接到除污器(58) 的输入接口, 除污器(58) 的石灰水出口连接到循环泵(60) 的吸水口, 循环泵(60) 的出水口连接到混合吸收器 (55) 的石灰水进口。 本系统中, 预处理设备还包括螺旋挤水 /送料器 (10) 和消化器 (9), 螺旋挤水 /送料器 (10) 设置在分选机 (3 ) 与 C02气封进料装置 (13) 之间, 分选机 (3) 的垃圾物料出口通过带式输送机 (8 ) 衡接到螺旋挤水 /送料器 (10) 的料斗, 螺旋挤水 /送料器 (10) 出 料口通过输送管 a ( 12) 连接到 C02气封进料装置 (13) 的进料口, C02气封进料装置 (13) 的出料口通过 输送管 b ( 14) 连接到等离子体气化炉 (23) 的进料口; 垃圾贮坑 (2 )、 分选机 (3) 和螺旋挤水 /送料器
( 10)的垃圾渗沥水接口连接到消化器(9)的进料口,消化器(9)的沼气出口连接到等离子体气化炉(23) 的气化段。 本系统在余热锅炉 (27) 和吸收反应器 (32 ) 之间还有引气风机 (40), 余热锅炉 (27) 的合 成气出口连接到引气风机 (40) 的进风口, 引气风机 (40) 的出风口连接到吸收反应器 (32 ) 的合成气输 入接口; 在甲醇合成系统末端的未反应气管路 (61 ) 中设置尾气接口和合成氨装置, 同时在等离子体气化 炉 (23 ) 与甲醇合成系统末端的设备之间设置尾气反馈管路 (30 ), 未反应气管路 (61 ) 中的尾气接口通 过控制阀分别连接到等离子体气化炉 (23 ) 的尾气反馈管路 (30) 和合成氨装置的进料接口, 合成氨装置 的尾气出口连接到等离子体气化炉 (23) 的尾气反馈管路 (30)。
上述系统中的设备, 余热锅炉 (27 )、 吸收反应器 (32)、 旋风除尘器 (31 )、 布袋除尘器 (38)、 C02 吸收塔 (42 )、 再生塔 (46)、 甲醇贮罐 (65 )、 蒸馏塔 (62) 和除污器 (58 ) 采用常规技术制造, 甲醇合 成反应器 (52) 采用公知技术制造或采用中国专利 ZL 200710166618. 5的电催化合成反应器技术制造。
本发明的一种生活垃圾气化 -液化处置系统中的设备, 其特征是气化设备由等离子体气化炉(23 )、 等离 子体喷枪 (24)、 循环风机 (18)、 热交换器 b (21)和连接管道组成, 其中: 等离子体气化炉 (23) 内自上 而下依次有烘干段 (23- I )、 热解段 (23- 11 )和气化段 (23-111), 烘干段 (23- I )、 热解段 (23- 11 )和气 化段 (23-ΠΙ) 之间直接相通, 等离子体喷枪 (24) 设置在气化段 (23-ΙΠ) 的炉墙上, 在烘干段 (23- I ) 的上部有垃圾物料进口(2302)接入和热解气出口(2303)接出,在气化段(23- III)有热解气输入接口 a (2309) 接入, 气化段 (23- III) 的下部有出渣口 (2307 ), 在热解段 (23- 11 ) 与气化段(23-ΠΙ) 的结合部位有合 成气输出接口 a (2304)接出; 热交换器 b (21 ) 由分气室(2102)、 热交换室(2104)、热交换管束(2105) 和集气室 (2107) 构成, 分气室 (2102 )、 热交换室 (2104)、 集气室 (2107)呈上、 中、 下布局, 热交换 室 (2104) 在中间, 分气室 (2102)、 热交换室 (2104) 和集气室 (2107) 在钢壳内, 钢壳的外壁安装保 温材料, 分气室 (2102 ) 和热交换室 (2104) 之间由上隔板隔离, 热交换室 (2104) 和集气室 (2107) 之 间由下隔板隔离,热交换管束(2105 )设置在热交换室(2104)且两端贯穿至分气室(2102)和集气室(2107 ), 分气室 (2102)、 热交换管束 (2105 ) 和集气室 (2107 ) 构成热解气的回路通道, 在分气室 (2102) 有热 解气输入接口 b (2101 ) 接入, 在热交换室 (2104) 有合成气输入接口 (2108) 接入和合成气输出接口 b (2103)接出, 在集气室 (2107) 有热解气输出接口 (2109) 接出; 等离子体气化炉 (23) 烘干段的热解 气出口 (2303 ) 连接到循环风机 (18) 的进风口, 循环风机 (18) 的出风口连接到热交换器 b (21 ) 分气 室的热解气输入接口 b (2101 ), 热交换器 b (21 )集气室的热解气输出接口 (2109) 连接到等离子体气化 炉 (23 )气化段的热解气输入接口 a (2309); 等离子体气化炉 (23 ) 的合成气输出接口 a (2304)连接到 热交换器 b (21 )热交换室的合成气输入接口(2108),热交换器 b (21 )热交换室的合成气输出接口 b (2103) 接至后续设备; 热交换器 b (21 )的出灰口 (2110)连接到等离子体气化炉(23)的飞灰回炉接口 (2306 )。 本设备中: 当在等离子体气化炉 (23) 的炉墙上设置氧化钙喷枪 (79) 时, 氧化钙喷枪 (79) 设置在等离子 体气化炉 (23) 的热解段 (23- 11 ) 炉墙上, 氧化! ¾喷枪 (79)上有 C02输入接口 (7901 ) 和氧化钙输入接 口 (7902); 同时在等离子体气化炉(23)烘干段的热解气出口 (2303)与循环风机(18) 的进风口之间设 置气固分离器 (17) , 等离子体气化炉 (23) 烘干段的热解气出口 (2303 ) 连接到气固分离器 (17) 的混 合物进口 (1702 ), 气固分离器 (17) 的气态物出口 (1703 ) 连接到循环风机 (18) 的进风口, 气固分离 器 (17) 的固态物出口 (1701 ) 连接到氧化钙喷枪 (79) 的氧化钙输入接口 (7902 ), 氧化 喷枪 (79) 的 C02输入接口 (7901 ) 连接到 C02输气管道上; 在等离子体气化炉 (23 ) 的气化段 (23-ΠΙ) 还有飞灰回炉 接口(2306)、沼气输入接口(2308)和尾气输入接口(2305)接入; 在热交换器 b (21 )的热交换室(2104) 还有吹灰口 (2106)接入和出灰口 (2110)接出, 热交换器 b ( 21 ) 的出灰口 (2110)连接到等离子体气 化炉 (23) 的飞灰回炉接口 (2306), 热交换器 b (21 ) 的吹灰口 (2106) 上连接有吹灰风机, 吹灰风机 的进风口连接在合成气输送管道上, 吹灰风机的出风口连接到热交换器 b (21 ) 的吹灰口 (2106)。
本发明的有益效果是: 把生活垃圾或有机废物通过气化-液化进行处置, 实现零排放, 可以避免二噁英 污染问题, 整个处置过程中不排放污染物, 所生产的甲醇产品可作化工原料或工业燃料, 获取的经济效益 大大高于焚烧发电。本发明与焚烧设备相比:焚烧法有大量的二氧化碳气体及其它污染物排放,破坏环境, 本发明不排放烟气, 不会污染环境; 焚烧法不可避免地会形成剧毒物二噁英, 并且难以消除, 随烟气排入 大气, 危害人类的健康, 本发明可以抑制形成二噁英, 即使有极少量的二噁英出现, 也容易在末端净化设 备中清除。 本发明与填埋法相比: 本发明没有无污染物和温室气体排放; 填埋法把污染转移到地下, 排放 大量温室气体, 污染土壤和地下水, 危及人类的身体健康, 还存在影响下一代人的后患; 本发明把垃圾废 物当作一种资源来利用, 生产清洁能源, 减轻能源压力, 同时产生经济效益, 商业化后不需政府承担处理 费用; 而填埋法不仅浪费资源, 而且填埋场的费用则是个无底洞, 对政府的财政压力很大; 本发明的项目 占用土地少, 而填埋法需用大量的土地。 本^:明适合城市生活垃圾、 农村生活垃圾、 医疗垃圾、 工业高分 子废弃物、 农林废弃物、 堆肥法剩余物、 垃圾分拣场废弃物的无害化和资源化处置。
附图说明
图 1是本发明的一种生活垃圾气化-液化处置的工艺流程方框图;
图 2是本发明的一种氧化钙协同的生活垃圾气化-液化处置的系统总图;
图 3是本发明的一种加氢法的生活垃圾气化-液化处置的系统总图;
图 4是图 2中 I区的详图或图 3中 I区的详图;
图 5是图 2中 Π-a区的详图;
图 6是图 2中 Ill-a区的详图;
图 7是图 2中 IV区的详图或图 3中 IV区的详图。
图 8是图 3中 II - b区的详图, 也是本发明的一种生活垃圾处置系统中的气化设备结构图; 图 9是本发明的另一种生活垃圾处置系统中的气化设备结构图;
图 10是图 3中 ΙΠ-b区的详图。
图中: 1.吊机抓斗, 2.垃圾贮坑, 3.分选机, 4.无机物贮仓, 5.带式输送机, 6.磁选机, 7.废金属 贮仓, 8.带式输送机, 9.消化器, 10.螺旋挤水 /送料器, 11.沼气输送管, 12.垃圾输送管 a, 13. C02气封 进料装置, 14.垃圾输送管 b, 15.气泵, 16.吹料风机, 17.气固分离器, 18.循环风机, 19.氧化钙补充接 口, 20.热交换器&, 21.热交换器 b, 22.风管, 23.等离子体气化炉, 24.等离子体喷枪, 25.高温脱臭器, 25 ' . 空气脱臭净化装置, 2,6.热交换器 c, 27.余热锅炉, 28.合成气输送管, 29.飞灰输送管, 30.尾气回馈管, 31.旋风除尘器, 32.吸收反应器, 33.吸收剂仓, 34.吹料风机, 35.熔融炉, 36.吸收剂循环管, 37.吸收 剂反馈管, 38.布袋除尘器, 39.吹料风机, 40.引气风机, 41.一氧化碳变换反应器, 42. C02吸收塔, 43. 吸收液补充管, 44.压縮机 a, 45.吸收液循环管, 46.再生反应器, 47.吸收液循环泵, 48.合成气贮罐, 49. 加氢混合器, 50.氢气补充接口, 51.压缩机 i, 52.甲醇合成反应器, 53.沉淀池, 54. 7 泵, 55.混合吸收器, 56.压縮机 b, 57.冷却器, 58.水力除污器, 59.固化渣, 60.石灰水循环泵, 61.未反应气输送管, 62.蒸馏 塔, 63.合成氨反应器, 64.压縮机 c, 65.甲醇产品贮罐, 66.冷却器, 67.氨分离器, 68.液氨贮罐, 69. 气泵, 70.垃圾参沥水池, 71.水泵, 72.风幕, 73.卸料平台, 74.抽风机, 75.控制阀, 76.控制阔, 77.控 制阀, 78.控制阀, 79.氧化¾喷枪; 301.料斗, 302.无机物出口, 303.垃圾出口 901.出渣口, 902.沼气出口, 903.进料口; 1001.驱动轴, 1002.料斗, 1003.螺旋轴, 1004.螺旋壳体; 1301.进料口, 1302.二氧化碳补 充接口, 1303.二氧化碳气封, 1304.料仓, 1305.螺旋壳体, 1306.螺旋轴, 1307.驱动轴; 1701.固态物出 口, 1702.混合物进口, 1703.气态物出口; 2001.热解气输入接口, 2002.分气室, 2003.载热气输出接口, 2004.热解气输出接口, 2005.集气室, 2006.热交换室, 2007.碳酸化反应室, 2008.二氧化碳输入接口, 2009. 氧化钙喷枪, 2010.载热气输入接口; 2101.热解气输入接口 b, 2102.分气室, 2103.合成气输出接口, 2104. 热交换室, 2105.热交换管束, 2106.吹灰口, 2107.集气室, 2108.合成气输入接口, 2109. 热解气输出接 口, 2110.出灰口; 2301.载热气进口, 2302.垃圾物料进口, 2303.热解气出口, 2304.合成气输出接口, 2305.尾气输入接口, 2306.飞灰回炉接口, 2307.出渣口, 2308.沼气输入接口, 2309.热解气输入接口 a, 2310.载热气输出接口, 2311.炉墙, 23- 1 .烘干段, 23- Π .热解段, 23- III.气化段; 2501.臭气空气输入 接口, 2502.合成气出口, 2503.脱臭空气出口, 2504.合成输入接口; 2601.空气出口, 2602.热空气进口; 2701.合成气进口, 2702.合成气出口; 3101.气态物出口, 3102.混合物输入接口, 3103.固态物出口; 3201. 合成气出口, 3202.吸收剂输入接口, 3203.合成气输入接口; 3801.合成气输出接口, 3802.飞灰出口, 3803. 合成气输入接口; 4101.合成气输入接口, 4102.合成气输出接口; 4201.合成气输出接口, 4202.合成气输 入接口, 4203. K2C03溶液输入接口, 4204. KHC03输出接口; 4601. KHC03输入接口, 4602. K2C03溶 液输出接口, 4603.二氧化碳输出接口; 4801.合成气输入接口, 4802.合成气输出接口; 4901.氢气输入接 口, 4902.合成气输出接口, 4903.合成气输入接口; 5201.原料气进口, 5202.回气接口, 5203.甲醇气输出接 口; 5301.污水进口, 5302.吸水管, 5203.出渣; 5501.甲醇气进口, 5502.石灰水进口, 5503.混合物出口; 5701.石灰水出口, 5702.石灰水进口; 5801.石灰水出口, 5802.污水出口, 5803.石灰水输入接口; 6201. 混合物输入接口, 6202.石灰水出口, 6203.甲醇产物出口, 6204.未反应气出口; 6301.进料口, 6302.氨 气出口; 6601.氨气输入接口, 6602.氨混合物输出接口; 6701.氨混合物输入接口, 6702.液氨输出接口, 6703.尾气出口; 7901. C02输入接口, 7902.氧化钙输入接口。
附图 4、 5、 6、 7、 8、 9、 10中: A对应连接到 ® ; B对应连接到 ® ; C对应连接到 © ; D对应连接到 ® ; E对应连接到 © ; F对应连接到 © ; H对应连接到 ® ; J对应连接到①。
具体实施方式
实施例 1 图 1所示的实施方式中, 把生活垃圾或有机废物在垃圾贮坑内以发酵方式脱去部分水分, 然后通过分选, 把分选出的有机质垃圾物料送入螺旋送料器, 在螺旋送料器的输送过程中, 通过挤压再次 除去部分水分, 然后把垃圾物料通过 co2气封进料装置送入等离子体气化炉; 垃圾物料在等离子体气化炉 内依次通过烘干段、 热解段进行烘干、 热解后, 变成垃圾炭进入气化段, 与从等离子体喷枪喷入气化段的 水蒸汽分解物进行气化反应, 完成气化, 生成以 CO和 H2为主要成分的富氢合成气; 控制烘干段的操作温 度在 120〜300°C之间, 热解段的操作温度在 300〜100(TC之间, 气化段的操作温度在 1000〜1300°C之间, 熔渣区的操作温度在 1300〜1600°C之间,气化炉内的操作压力控制在 0〜5kPa之间; 在气化段设置等离子 体喷枪, 炉内气化所需的热量主要由等离子体喷枪提供和等离子体活性化学物与垃圾炭的放热反应提供, 用水蒸汽作为气化剂和等离子体喷枪的工作气体,水蒸汽通过等离子体喷枪被加热到 420CTC以上, 使水分 子全部分解, 生成 H'、 ¾*、 UO 0'、 02'和 Η20'后, 直接喷在气化段的垃圾炭上, 把垃圾炭作为吸氢和 吸氧元件, 生成 CO和 ¾, 灰渣在炉内熔渣区 1300〜160(TC的环境中熔融为液态炉渣, 通过水封排入渣 池, 成为玻璃体颗粒; 用氧化钙吸收二氧化碳生成碳酸钙时的放热来为气化提供辅助热源, 协同等离子体 气化, 在气化系统设置碳酸化反应室, 把氧化钙和二氧化碳输入到碳酸化反应室, 进行碳酸化反应, 同时 氧化钙还兼作脱氯或脱硫剂, 把等离子体气化炉内热解段产生的热解气引入到碳酸化反应室, 在过量 1.2 倍氧化钙存在的环境中, 脱去二噁英前驱物、 氯化物和硫化物, 再把热解气作为载气, 携氧化钙、 碳酸钙 混合物和热量进入等离子体气化炉内的烘干段, 为新入炉垃圾物料的烘干和预热提供热能, 然后把热解气 引出炉外送入气固分离器, 把氧化钙和碳酸钙分离出来, 再把热解气通过循环风机送入热交换器, 在热交 换器通过间接受热升温后,送入等离子体气化炉的气化段内,在 1000〜1300°C的环境中,热解气中的甲烷、 气态焦油、 乙烯、 乙垸、 水蒸汽等物进行裂解和化学反应, 同时彻底瓦解二噁英, 通过循环气化, 使入炉 垃圾得到完全分解, 生成以氢气和一氧化碳为主要成分的富氢合成气; 把富氢合成气从等离子体气化炉内 引出, 送入余热锅炉回收余热生产蒸汽, 同时使合成气降温至 232°C左右, 把通过余热锅炉降温后的合成 气送入吸收反应器进行脱酸处理, 用氧化钙或氢氧化钙作吸收剂, 除去合成气中的氯化物、 硫化物、 氟化 物等酸性污染物, 然后通过旋风除尘器, 把吸收剂分离出来送回吸收反应器进行循环利用, 再把合成气通 过布袋除尘器除去飞灰; 把经过脱酸和除尘处理的合成气送入 C02吸收塔, 用碳酸钾溶液吸收合成气中的 二氧化碳, 把碳酸钾溶液吸收二氧化碳生成的碳酸氢钾送入再生反应器, 通过加热把碳酸氢钾分解为碳酸 钾溶液和二氧化碳,' 把分解出的碳酸钾溶液送回 C02吸收塔进行循环利用, 把分解出的二氧化碳送入气化 系统的碳酸化反应室,与氧化钙进行碳酸化反应;把脱去二氧化碳的合成气通过压縮机 a送入合成气贮罐; 把从合成气贮罐出来的合成气通过压缩机送入甲醇合成反应器生产甲醇, 富氢合成气在甲醇合成反应器内 被催化合成甲醇产物, 再把甲醇气送入混合吸收器中与石灰水混溶, 使残余的包括二噁英在内的污染物、 二氧化碳被石灰水吸收, 然后通过蒸馏分离, 把甲醇分离出来, 把未反应气送回甲醇合成反应器进行循环 反应, 把石灰水通过除污后由循环泵送回混合吸收器进行循环利用; 把尾气通过控制阀送回等离子体气化 炉进行回炉处理或送入合成氨装置生产液氨, 以消除氮气, 形成一个闭路循环生产系统。 本实施例中, 把 生活垃圾预处理过程中产生的渗沥水送入消化器通过厌氧发酵进行生产沼气, 把沼气送入等离子体气化炉 进行分解处理, 把沼渣用作肥料; 把预处理过程中分选出的无机物再进行分拣, 回收废金属, 再把非金属 无机物通过粉碎后, 与气化系统分离出的碳酸钙、 氧化钙进行混合, 用来生产免烧砖; 等离子体气化炉排 入水封渣池的炉渣, 成为玻璃体颗粒, 可直接作建材利用; 把从布袋除尘器收集的飞灰, 通过熔融炉进行 处理, 熔渣可直接作建材利用; 把从甲醇合成反应器移出的汽、 水混合物送入余热锅炉生产蒸汽, 蒸汽用于 等离子体喷枪的工作气和蒸汽发电。本实施中, 当等离子体气化炉生产的合成气中氢气的分数比达不到合成 甲醇的要求时,采取在 co2吸收塔的前级增加一氧化碳变换操作来提高合成气中的氢气分数比例或采取加氢 措施来使合成气达到要求。 甲醇合成采用常规的合成反应器或采用中国专利号为 200710166618. 5的电催化 合成反应器, 当采用常规合成反应器时, 应用 Cu/Zn/Al催化剂, 在操作压力 3〜15Mpa、操作温度 210〜280 °C的环境中合成甲醇; 当采用电催化合成反应器时, 应用 Cu/Zn/Al催化剂, 在操作压力 0〜lMpa、 操作温 度 120〜400°C的环境中合成甲醇。
实施例 2 本实施例如图 2的系统总图所示和图 4、 5、 6、 7的详图所示, 生活垃圾气化 -液化的处置 系统包括: 生活垃圾预处理部分(图 2的 I区)、 等离子体气化部分(图 2的 II -a区)、 合成气净化部分(图 2 的 III-a区)和甲醇合成及末端净化部分(图 2的 IV区), 系统主要由卸料平台 (73)、 垃圾贮坑(2)、 吊机 抓斗 (1 )、 分选机 (3)、 螺旋挤水 /送料器 (10)、 C02气封进料装置 (13)、 等离子体气化炉 (23 )、 等 离子体喷枪 (24)、 气固分离器 (17)、 循环风机 (18)、 碳酸化反应室 (2007)、 热交换器 a ( 20)、 余 热锅炉 (27)、 吸收反应器 (32 )、 旋风除尘器 (31 )、 布袋除尘器 (38)、 引气风机 (40)、 一氧化碳变换 反应器 (41 )、 C02吸收塔 (42)、 再生反应器 (46)、 压缩机 a (44)、 合成气贮罐 (48)、 压缩机 i (51 )、 甲醇合成反应器(52)、 混合吸收器 (55)、 蒸 塔 (62 )、 压縮机 b (56)、 甲醇产品贮罐 (65)、 合成氨反 应器 (63) 和连接管道组成, 其中: 卸料平台 (73 ) 包括卸料车道和车辆指挥室, 卸料车道、 车辆指挥 室、 垃圾贮坑 (2) 和吊机抓斗 (1 ) 在钢混结构的建筑物内, 建筑物的垃圾车进口处设置风幕 (72 ), 屋顶有抽风机 (74), 抽风机 (74) 的出风口通过风管 (22 ) 连接到髙温脱臭器 (25 ) 的臭气空气输入接 口 (2501 ), 高温脱臭器 (25) 的脱臭空气出口 (2503) 连接到热交换器 c (26) 的热空气进口 (2602); 螺旋挤水 /送料器 (10) 由料斗 (1002 )、 驱动轴 (1001 )、 螺旋轴 (1003 ) 和螺旋壳体 (1004) 组成, 料 斗 (1002 ) 在螺旋壳体 (1004) 之上, 螺旋壳体 (1004) 内有螺旋轴 (1003 ), 螺旋轴 (1003 ) 由驱动轴
( 1001 ) 带动旋转, 起挤水和推送物料作用, 螺旋挤水 /送料器 (10) 的出料口在螺旋壳体 (1004) 的前 端; C02气封进料装置 (13) 由料仓 (1304)、 二氧化碳气封 (1303)、 螺旋壳体 (1305)、 螺旋轴 (1306 )、 驱动轴 (1307)、 变速箱和电机组成, 料仓 (1304) 在螺旋壳体 (1305) 之上, 料仓 (1304) 内有 C02气封 材料, 料仓 (1304) 的出料口与螺旋壳体 (1305) 的进料口相通, 螺旋壳体 (1305 ) 内有螺旋轴 (1306), 螺旋轴 (1306)起推送物料的作用, C02气封进料装置 (13) 的出料口在螺旋壳体 (1305 ) 的前端; 等离 子体气化炉 (23 ) 的内空间分为烘干段 (23- 1 )、 热解段 (23- 11 ) 和气化段 (23-111), 烘干段 (23- 1 ) 上有垃圾物料进口 (2302 )、 载热气进口 (2301 ) 和热解气出口 (2303), 热解段 (23- 11 ) 上有载热气输 出接口 (2310 ), 气化段 (23-ΙΠ) 上有热解气输入接口 a (2309), 在气化段 (23-ΠΙ) 的底部一侧有出渣 口 (2307), 在气化段 (23- III) 与出渣口 (2307) 之间有熔渣区, 在热解段 (23- Π ) 与气化段 (23- III) 的结合部位有合成气输出接口 a (2304); 等离子体喷枪(24)安装在等离子体气化炉 (23)下部的气化段
(23-111); 热交换器 a (20) 由分气室 (2002 )、 热交换室 (2006)和集气室 (2005 )构成, 分气室 (2002) 上有热解气输入接口 (2001 ), 热交换室 (2006) 上有载热气输出接口 (2003 ), 集气室 (2005) 上有热解 气输出接口 (2004); 碳酸化反应室 (2007) 安装在热交换器 a (20) 上, 碳酸化反应室 (2007) 与热交换 器 a (20)的热交换室(2006)相通,碳酸化反应室(2007)上有载热气输入接口(2010)、氧化钙喷枪(2009) 和二氧化碳输入接口 (2008 ); 混合吸收器 (55) 由混合吸收室、 文丘里注水嘴、 甲醇气喷嘴、 甲醇气进 口 (5501 )、 石灰水进口 (5502 )、 混合物出口 (5503) 和壳体组成, 混合吸收室、 文丘里注水口和甲醇气 喷嘴在壳体内, 混合吸收室在文丘里注水口之后, 文丘里注水口之前为甲醇气喷嘴, 甲醇气喷嘴的内径由 喷口到进口逐渐扩大, 甲醇气喷嘴的长度为平均直径的 2. 5倍, 甲醇气喷嘴喷口的外径为文丘里注水口内 径的 0. 7〜0. 8倍, 甲醇气喷嘴和文丘里注水口同轴设计, 甲醇气喷嘴伸入到壳体内的文丘里注水口 1/3, 甲醇气进口 (5501 )连接在甲醇气喷嘴的进口, 石灰水进口 (5502) 设置在文丘里注水口与甲醇气输入端 之间的壳体上, 混合物出口 (5503 ) 设置在混合吸收室的壳体上。 垃圾贮坑 (2)通过吊机抓斗 (1 )衡接 到分选机 (3) 的料斗 (301 ), 分选机 (3 ) 的垃圾出口 (303) 通过带式输送器 (8 ) 衡接到螺旋挤水 /送 料器 (10) 的料斗 (1002), 螺旋挤水 /送料器 (10) 的出料口通过输送管 a ( 12) 衡接到 C02气封进料装 置 (13) 的进料口 (1301), C02气封进料装置 (13) 的出料口通过输送管 b (14) 连接到等离子体气化炉 (23) 的垃圾物料进口 (2302), 等离子体气化炉 (23) 的载热气输出接口 (2310) 连接到碳酸化反应室 (2007) 的载热气输入接口 (2010), 热交换器 a (20) 的载热气输出接口 (2003)连接到等离子体气化炉 (23) 的载热气进口 (2301); 等离子体气化炉 (23) 的热解气出口 (2303) 连接到气固分离器 (17) 的 混合物进口 (1702), 气固分离器 (17) 的气态物出口 ( 1703) 通过循环风机 (18) 连接到热交换器 a (20) 的热解气输入接口 (2001), 热交换器 a (20) 的热解气输出接口 (2004) 连接到等离子体气化炉 (23) 的热解气输入接口 a (2309); 气固分离器(17) 的固态物出口 (1701)分别连接到渣仓和通过管道 连接到氧化钙喷枪 (2009), 在连接管道上还接有氧化钙补充接口 (19) 和吹料风机 (16); 等离子体气化 炉 (23) 的合成气输出接口 a (2304)连接到余热锅炉 (27) 的合成气进口 (2701), 余热锅炉 (27) 的补 水接口连接到供水设备, 余热锅炉 (27) 的蒸汽输出接口连接到供蒸汽管网上, 余热锅炉 (27) 的排灰口 通过飞灰输送管 (29) 连接到等离子体气化炉 (23) 的飞灰回炉接口 (2306); 余热锅炉 (27) 的合成气 出口 (2702) 连接到吸收反应器 (32) 的合成气输入接口 (3203), 吸收剂仓 (33) 的出料口连接吸收反 应器 (32) 的吸收剂输入接口 (3202), 吸收剂输入接口 (3202) 的输料管还连接到吹料风机 (34) 的出 风口, 吹料风机(34)的进风口连接到合成气输送管(28)上; 吸收反应器(32)的合成气输出接口(3201) 连接到旋风除尘器 (31) 的混合物输入接口 (3102), 旋风除尘器 (31) 的固态物出口 (3103) 连接到吸 收反应器 (32) 的输入接口 (3203) 的连接管上, 旋风除尘器 (31) 的气态物出口 (3101) 连接到布袋除 尘器 (38) 的合成气输入接口 (3803), 布袋除尘器 (38) 的飞灰出口 (3802) 连接到熔融炉 (35), 布袋 除尘器 (38) 的合成气输出接口 (3801)连接到引气风机 (40) 的进风口, 引气风机 (40) 的出风口连接 到一氧化碳变换反应器 (41) 的合成气输入接口 (4101), 一氧化碳变换反应器 (41) 的合成气输出接口 (4102) 连接到 C02吸收塔 (42) 的合成气输入接口 (4202), C02吸收塔 (42) 的 KHC03输出接口 (4204) 连接到再生塔(46) 的 KHC03输入接口 (4601), 再生塔 (46) 的 C02输出接口 (4603)连接到碳酸化反应 室 (2007) 的二氧化碳输入接口 (2008), 再生塔 (46) 的 K2C03溶液输出接口 (4602) 连接到 C02吸收 塔 (42) 的 K2C03溶液输入接口 (4203), C02吸收塔 (42) 的合成气输出接口 (4201) 通过压缩机 a (44) 连接到合成气贮罐 (48) 的合成气输入接口 (4801), 合成气贮罐 (48) 的合成气输出接口 (4802) 连接 到压缩机 i (51)的吸气口, 压缩机 i (51)的排气口连接到甲醇合成反应器(52)的原料气进口 (5201), 甲醇合成反应器(52)的甲醇气出口(5203)通过减压控制阀连接到混合吸收器(55)的甲醇气进口(5501), 混合吸收器 (55) 的混合物出口 (5503) 连接到蒸馏塔 (62) 的混合物输入接口 (6201), 蒸馏塔 (62) 的未反应气出口 (6204)通过控制闽 (76)、 未反应气管路(61)和压缩机 b (56)连接到甲醇合成反应器 (52) 的回气接口 (5202), 蒸馏塔 (62) 的甲醇产物出口 (6203) 连接到甲醇贮罐 (65); 蒸馏塔 (62) 的石灰水出口 (6202) 连接到除污器 (58) 的输入接口 (5803), 除污器 (58) 的污水出口 (5802) 连接 到沉淀池 (53), 除污器 (58) 的石灰水出口 (5801) 连接到循环泵 (60) 的吸水口, 循环泵 (60) 的出 水口连接到混合吸收器 (55) 的石灰水进口 (5502); 沉淀池 (53) 的过滤水一侧有吸水管 (5302) 连接 到水泵 (54) 的吸水口, 水泵 (54) 的出水口连接到混合吸收器 (55) 的石灰水进口 (5502) 的连接管道 上; 蒸馏塔(62)的未反应气出口(6204)还通过控制阀(75)和压缩机 c (64)连接到合成氨反应器(63) 的进料口 (6301), 合成氨反应器(63)的氨气出口 (6302)连接到冷却器(66)的氨气输入接口 (6601), 冷却器 (66) 的氨混合物输出接口 (6602) 连接到氨分离器 (67) 的氨混合物输入接口 (6701), 氨分离 器 (67) 的液氨输出接口 (6702) 连接到液氨贮罐 (68), 氨分离器 (67) 的尾气出口 (6703) 通过控制 阀 (78) 连接到未反应气管路 (61) 上, 未反应气管路 (61) 通过控制阀 (77)、 气泵 (69) 和尾气回馈 管 (30) 连接到等离子体气化炉 (23) 的尾气输入接口 (2305); 垃圾贮坑 (2)、 分选机 (3) 和螺旋挤水 /送料器(10) 的渗沥水接口通过管道连接到消化器(9) 的进料口 (903), 消化器(9) 的沼气出口 (902) 通过沼气输送管 (11) 和气泵 (15) 连接到等离子体气化炉 (23) 的沼气输入接口 (2308)。
实施例 3 本实施例如图 3的系统总图所示和图 4、 7、 8、 9的详图所示, 生活垃圾气化 -液化的处置 系统包括: 生活垃圾预处理部分(图 3的 I区)、 等离子体气化部分(图 3的 II-b区)、 合成气净化部分(图 3 的 III- b区)和甲醇合成及末端净化部分(图 3的 IV区), 系统主要由卸料平台 (73)、 吊机抓斗 (1), 垃圾 贮坑 (2)、 分选机 (3)、 消化器 (9)、 螺旋挤水 /送料器 (10)、 C02气封进料装置 (13)、 等离子体气化 炉 (23)、 等离子体喷枪 (24)、 循环风机 (18)、 热交换器 b (21)、 余热锅炉 (27)、 引气风机 (40)、 吸 收反应器(32)、旋风除尘器(31)、袋式除尘器(38)、压缩机 a (44)、合成气贮罐(48)、加氢混合器(49)、 压縮机 i (51)、 甲醇合成反应器(52)、 混合吸收器(55)、 压缩机 b (56)、 水力除污器 (58)、 石灰水循 环泵 (60)、 蒸馏塔 (62)、 合成氨反应器 (63)、 压缩机 c (64)、 甲醇产品贮罐 (65) 和连接管道组成, 其中: 垃圾贮坑 (2) 和分选机 (3) 的上方有抽风机 (74), 抽风机 (74) 的出风口通过风管 (22) 连接 到空气脱臭净化装置 (25'); 等离子体气化炉 (23) 的内空间分为烘干段 (23-1 )、 热解段 (23-11)、 气 化段 (23-111), 烘干段上 (23-1 ) 有垃圾物料进口 (2302) 和热解气出口 (2303), 气化段 (23-ΠΙ) 上 有热解气输入接口 a (2309), 在气化段 (23- III) 的底部一侧有出渣口 (2307), 在气化段 (23-111)与出 渣口 (2307)之间有熔渣区, 热解段(23-Π)与气化段(23-ΠΙ)的结合部位有合成气输出接口 a (2304); 等离子体喷枪(24)安装在等离子体气化炉(23)下部的气化段(23-IID;热交换器 b (21)由分气室(2102)、 热交换室 (2104) 和集气室 (2107) 构成, 分气室 (2102)、 热交换室 (2104)、 集气室 (2107) 相互用隔 板隔离, 热交换管束 (2105) 设置在热交换室 (2104) 内, 置于分气室 (2102) 和集气室 (2107) 之间, 分气室 (2102) 通过热交换管束 (2105) 连通到集气室 (2107), 分气室 (2102) 上有热解气输入接口 b
(2101), 热交换室 (2104)上有合成气输入接口 (2108)、 合成气输出接口 b (2103)、 出灰口 (2110)和 吹灰口 (2106), 集气室 (2107)上有热解气输出接口 (2109)。 垃圾贮坑 (2)通过吊机抓斗 (1) 衡接到 分选机 (3) 的料斗 (301), 分选机 (3) 的垃圾出口 (303) 通过带式输送器 (8) 衡接到螺旋挤水 /送料 器 (10) 的料斗 (1002), 螺旋挤水 /送料器 (10) 的出料口通过输送管 a (12) 衡接到 C02气封进料装置
(13)的进料口(1301), C02气封进料装置(13)的出料口通过输送管 b (14)连接到等离子体气化炉(23) 的垃圾物料进口 (2302); 等离子体气化炉 (23) 的热解气出口 (2303) 连接到通过循环风机 (18) 连接 到热交换器 b (21) 的热解气输入接口 b (2101), 热交换器 b (21) 的热解气输出接口 (2109) 连接到等 离子体气化炉(23)气化段的热解气输入接口 a (2309);等离子体气化炉(23)的合成气输出接口 a (2304) 连接到热交换器 b (21) 的合成气输入接口 (2108), 热交换器 b (21) 的出灰口 (2110)通过排灰闽连接 到等离子体气化炉 (23) 的飞灰回炉接口 (2306); 热交换器 b (21) 的合成气输出接口 b (2103) 连接到 余热锅炉 (27) 的合成气进口 (2701), 余热锅炉 (27) 的排灰口通过飞灰输送管 (29) 连接到等离子体 气化炉 (23) 的飞灰回炉接口 (2306); 余热锅炉 (27) 的合成气出口 (2702)通过引气风机 (40) 连接 到吸收反应器 (32) 的合成气输入接口 (3203), 吸收剂仓 (33) 的出料口连接吸收反应器 (32) 的吸收 剂输入接口 (3202), 吸收剂输入接口 (3202)的输料管还连接到吹料风机(34)的出风口, 吹料风机(34) 的进风口连接到合成气输送管 (28)上; 吸收反应器 (32) 的合成气输出接口 (3201)连接到旋风除尘器
(31) 的混合物输入接口 (3102), 旋风除尘器 (31) 的固态物出口 (3103) 连接到吸收反应器 (32) 的 输入接口 (3203), 旋风除尘器 (31) 的气态物出口 (3101) 连接到布袋除尘器 (38) 的合成气输入接口
(3803), 布袋除尘器 (38) 的飞灰出口 (3802) 连接到熔融炉 (35), 布袋除尘器 (38) 的合成气输出 接口 (3801)通过压缩机 a (44) 连接到合成气贮罐 (48) 的合成气输入接口 (4801), 合成气贮罐 (48) 的合成气输出接口 (4802) 连接到加氢混合器 (49) 的合成气输入接口 (4903), 加氢混合器 (49) 的氢 气输入接口 (4901)连接到供氢设备, 加氢混合器(49)的合成气输出接口 (4902)连接到压缩机 i (51) 的吸气口, 压缩机 i (51) 的排气口连接到甲醇合成反应器 (52) 的原料气进口 (5201), 甲醇合成反应 器 (52) 的甲醇气出口 (5203) 通过减压控制阀连接到混合吸收器 (55) 的甲醇气进口 (5501), 混合吸 收器 (55) 的混合物出口 (5503) 连接到蒸馏塔 (62) 的混合物输入接口 (6201), 蒸馏塔 (62) 的未反 应气出口 (6204) 通过控制阀 (76)、 未反应气管路 (61) 和压缩机 b (56) 连接到甲醇合成反应器 (52) 的回气接口 (5202), 蒸馏塔 (62) 的甲醇产物出口 (6203) 连接到甲醇贮罐 (65); 蒸馏塔 (62) 的石灰 水出口 (6202) 连接到除污器 (58) 的输入接口 (5803), 除污器 (58) 的污水出口 (5802) 连接到沉淀 池 (53), 除污器 (58) 的石灰水出口 (5801) 连接到循环泵 (60) 的吸水口, 循环泵 (60) 的出水口 连接到混合吸收器(55)的石灰水进口 (5502); 蒸馏塔(62)的未反应气出口 (6204)还通过控制阀(75) 和压縮机 c (64) 连接到合成氨反应器 (63) 的进料口 (6301), 合成氨反应器 (63) 的氨气出口 (6302) 连接到冷却器 (66) 的氨气输入接口 (6601), 冷却器 (66) 的氨混合物输出接口 (6602) 连接到氨分离 器 (67) 的氨混合物输入接口 (6701), 氨分离器 (67) 的液氨输出接口 (6702)连接到液氨贮罐 (68), 氨分离器(67) 的尾气出口 (6703)通过控制阀 (78)连接到未反应气管路 (61)'上, 未反应气管路(61 ) 通过控制阀(77)、 气泵(69)和尾气回馈管(30)连接到等离子体气 炉、23) 的尾气输入接口 (2305); 垃圾贮坑 (2)、 分选机 (3 ) 和螺旋挤水 /送料器 (10 ) 的渗沥水接口 ΐί过管道连接到消化器 (9) 的进料 口 (903 ), 消化器(9)的沼气出口 (902 )通过沼气输送管(11.) ' 气泵(15 )连接到等离子体气化炉(23) 的沼气输入接口 (2308)。
实施例 4 图 8所示的实施例中, 生活垃圾气化-液化处置系统中的一种气化设备, 主要由等离子体气 化炉 (23 )、 等离子体喷枪 (24)、 循环风机(18 )、 热交换器 b (21 )和连接管道组成, 其中: 等离子体气 化炉 (23 ) 为高炉式结构, 等离子体气化炉 (23 ) 的炉墙 (2311 ) 自内而外由耐火层、 隔热层、 保温层和 钢壳体组成, 耐火层用高铝耐火砖砌筑或矾土水泥混凝土浇筑, 隔热层选用硅藻土材料, 保温层选用硅酸 铝耐火纤维材料; 在气化段的隔热层由冷却层替代, 冷却层由钢管、 钢板、 上联箱管的下联箱管构成水冷 壁结构, 在下联箱管有冷却水接口接入, 在上联箱管有回水接口接出, 冷却层通过冷却水接口和回水接口 与循环冷却水系统进行连接(图中未示出); 等离子体气化炉(23 ) 内自上而下依次有烘干段(23- 1 )、 热 解段 (23- 11 ) 和气化段 (23-111), 烘干段 (23- 1 )、 热解段 (23- 11 ) 和气化段 (23-ΠΙ) 之间直接相通, 在烘干段 (23- 1 ) 的上部有垃圾物料进口 (2302) 接入和热解气出口 (2303)接出, 在气化段 (23-111) 有热解气输入接口 a (2309) 接入、 飞灰回炉接口 (2306) 接入、 沼气输入接口 (2308) 接入和尾气输入 接口 (2305) 接入, 气化段 (23-ΠΙ) 的下部侧边有出渣口 (2307), 在气化段 (23-ΙΠ) 与出渣口 (2307) 之间有熔渣区, 在热解段(23- 11 )与气化段(23-ΠΙ) 的结合部位有合成气输出接口 a (2304)接出, 在烘 干段(23- 1 )、 热解段(23- 11 )、 气化段(23-111) 的炉墙上各安装有温度传感器, 在气化段(23-ΙΠ) 的炉 墙上还安装有观火镜, 在烘干段(23- 1 ) 的炉墙上还安装有料位传感器; 等离子体喷枪 (24) 设置在气 化段(23-111)和熔渣区的炉墙上, 多只等离子体喷枪呈环形多层布局, 等离子体喷枪(24)上有工作气输 入接口、 冷却剂输入、 冷却剂输出接口和电源接口, 工作气输入接口通过控制阀和连接管连接到蒸汽管网 上, 冷却剂输入及输出接口分别连接到冷却液装置的供液及回液接口, 电源接口连接到等离子体控制器的 供电输出端上;热交换器 b (21 )由分气室(2102)、热交换室(2104)、热交换管束(2105 )和集气室(2107) 构成, 分气室 (2102)、 热交换室 (2104)、 集气室 (2107) 呈上、 中、 下布局, 分气室 (2102)、 热交换 室 (2104) 和集气室 (2107) 在钢壳内, 钢壳的外壁安装保温材料, 分气室 (2102) 和热交换室 (2104) 之间由上隔板隔离, 热交换室 (2104)和集气室 (2107)之间由下隔板隔离, 热交换管束 (2105) 设置在 热交换室 (2104) 且两端贯穿至分气室 (2102) 和集气室 (2107), 分气室 (2102)、 热交换管束 (2105 ) 和集气室 (2107) 构成热解气的回路通道, 在分气室 (2102) 有热解气输入接口 b (2101 )接入, 在热交 换室 (2104) 有合成气输入接口 (2108 ) 接入、 合成气输出接口 b (2103 ) 接出、 吹灰口 (2106) 接入和 出灰口 (2110) 接出, 在集气室 (2107) 有热解气输出接口 (2109)接出; 等离子体气化炉 (23 )烘干段 的热解气出口 (2303)连接到循环风机(18 ) 的进风口, 循环风机(18) 的出风口连接到热交换器 b (21 ) 分气室的热解气输入接口 b (2101 ), 热交换器 b (21 ) 集气室的热解气输出接口 (2109) 连接到等离子体 气化炉 (23) 气化段的热解气输入接口 a (2309); 等离子体气化炉 (23) 的合成气输出接口 a (2304) 连 接到热交换器 b (21 ) 热交换室的合成气输入接口 (2108), 热交换器 b (21 ) 热交换室的合成气输出接口 b (2103 )连接到后级设备; 热交换器 b (21 ) 的出灰口 (2110) 连接到等离子体气化炉 (23) 的飞灰回炉 接口 (2306), 热交换器 b (21 ) 的吹灰口 (2106)上连接有吹灰风机, 吹灰风机的进风口连接在合成气输 送管道上, 吹灰风机的出风口连接到热交换器 b (21 ) 的吹灰口 (2106)。
实施例 5 本实施例如图 9所示,是在上述第 4实施例基础上改变在等离子体气化炉 (23)的热解段 (23- II )炉墙上设置氧化钙喷枪(79), 氧化钙喷枪 (79)上有 C02输入接口 (7901 )和氧化钙输入接口 (7902), 同时在等离子体气化炉(23 )烘干段的热解气出口 (2303)与循环风机(18)之间设置气固分离器(17) , 等离子体气化炉 (23 ) 烘干段的热解气出口 (2303) 连接到气固分离器 (17) 的混合物进口 (1702 ), 气 固分离器 (17) 的气态物出口 (1703 ) 连接到循环风机 (18) 的进风口, 气固分离器 (17) 的固态物出口 ( 1701 ) 连接到氧化! i喷枪 (79) 的氧化钙输入接口 (7902 ), 在气固分离器 (17) 的固态物出口 (1701 ) 与氧化麪喷枪 (79)的氧化钙输入接口(7902)的连接管道上有氧化钙补充接口(19)接入,氧化钙喷枪 (79) 的 C02输入接口 (7901 ) 通过吹料风机 (16) 连接到 C02输气管道上。

Claims

1. 一种生活垃圾气化-液化处置的方法, 包括氧化钙协同等离子体气化技术, 其特征是把生活垃圾或 有机废物经过预处理进行脱水和分选, 降低水分和无机物含量, 然后通过 co2气封进料装置送入等离子体 气化炉; 等离子体气化炉内按上、 中、 下依次设置烘干段、 热解段、 气化段, 生活垃圾或有机废物在炉内 进行烘干、 热解和气化, 生成以 CO和 ¾为主要成分的富氢合成气; 在气化段设置等离子体喷枪, 用水蒸 汽作为气化剂和等离子体喷枪的工作气体, 水蒸汽通过等离子体喷枪被加热到 420CTC以上,使水分子全部 分解, 生成 Η'、 *、 Η0'、 0 02'禾卩 H20*后, 直接喷在气化段的垃圾炭上, 把垃圾炭作为吸氢和吸氧元件, 生成 CO和 ; 采用氧化钙协同等离子体气化方式, 在气化系统设置碳酸化反应室, 用氧化钙吸收二氧化 碳生成碳酸钙时的放热来为气化提供辅助热源, 为新入炉垃圾物料的烘干和预热提供热能, 以减少等离子 体喷枪的能耗, 把等离子体气化炉热解段产生的热解气引入到碳酸化反应室, 再把热解气作为载气, 携氧 化钙、 碳酸钙混合物和热量进入等离子体气化炉内的烘干段, 氧化钙还兼作脱氯或脱硫剂, 在过量的氧化 钙存在的环境中, 脱去二噁英前驱物、 氯化物和硫化物, 然后把热解气引入气固分离器, 把氧化钙和碳酸 钙分离出来, 再把热解气送入等离子体气化炉的气化段内, 使热解气中的甲垸、 气态焦油、 乙烯、 乙垸、 水蒸汽等物进行裂解和化学反应, 生成以 CO和 ¾为主要成分的富氢合成气, 同时彻底瓦解二噁英; 把富 氢合成气从等离子体气化炉内引出, 通过余热锅炉降温后, 再在由吸收反应器、 旋风除尘器和布袋除尘器 组成的气体净化设备中进行脱酸和除尘, 然后在∞2吸收塔中用碳酸钾溶液吸收合成气中的二氧化碳, 生 成碳酸氢钾, 把脱去二氧化碳的合成气送入甲醇合成反应器生产甲醇, 把碳酸氢钾送入再生反应器, 通过 加热把碳酸氢钾分解为碳酸钾溶液和二氧化碳, 把分解出的碳酸钾溶液送回∞2吸收塔进行循环利用, 把 分解出的二氧化碳送入气化系统的碳酸化反应室, 与氧化钙进行碳酸化反应; 富氢合成气在甲醇合成反应 器内被催化合成甲醇产物,再把甲醇产物在末端净化设备的混合吸收器中与石灰水混溶,使残余的污染物、 二氧化碳被石灰水吸收, 然后通过蒸馏分离, 把甲醇分离出来, 把未反应气送回甲醇合成反应器进行循环 反应, 把石灰水通过除污后送回混合吸收器进行循环利用; 把尾气返回等离子体气化炉进行回炉处理, 形 成一个闭路循环生产系统。
2. 根据权利要求 1所述的一种生活垃圾气化-液化处置的方法, 其特征是烘干段的操作温度控制在 120〜300°C之间,热解段的操作温度控制在 300〜1000°C之间,气化段的操作温度控制在 1000〜1300°C之间, 气化炉内的操作压力控制在 - 30Pa〜+5kPa之间; 当把灰渣熔融为液态炉渣排出时, 在气化段和出渣口之 间设置熔渣区, 在熔渣区设置等离子体喷枪, 熔渣区的操作温度控制在 1300〜1600°C之间。
3. 一种生活垃圾气化 -液化处置的系统, 包括等离子体气化设备, 其特征是系统由预处理设备、 C02 气封进料装置 (13 )、 等离子体气化炉 (23 )、 等离子体喷枪 (24)、 气固分离器 (17)、 循环风机 (18)、 热交换器 a ( 20)、 碳酸化反应室 (2007)、 余热锅炉 (27)、 吸收反应器 (32)、 旋风除尘器 (31 )、 布袋除 尘器 (38 )、 C02吸收塔 (42)、 再生塔 (46)、 甲醇合成反应器 (52 )、 混合吸收器 (55)、 蒸馏塔 (62 )、 除污器 (58 )、 循环泵 (60)、 甲醇贮罐 (65 ) 和连接管道组成, 其中: 预处理设备包括垃圾贮坑 (2 ) 和 分选机 (3 ); 等离子体气化炉 (23 ) 的内空间分为烘干段、 热解段和气化段, 烘干段上有垃圾物料进口、 载热气进口和热解气出口, 热解段上有载热气输出接口, 气化段上有热解气输入接口, 热解段与气化段的 结合部位有合成气输出接口; 等离子体喷枪 (24) 设置在等离子体气化炉 (23) 下部的气化区; 热交换 器 a ( 20 ) 由分气室、 热交换室和集气室构成, 分气室上有热解气输入接口, 热交换室上有载热气输出接 口, 集气室上有热解气输出接口; 碳酸化反应室 (2007) 与热交换器 a (20 ) 内的热交换室直接相通, 碳 酸化反应室(2007)上有载热气输入接口、 氧化钙输入装置和二氧化碳输入接口; ∞2吸收塔(42 )上有合 成气输入接口、 合成气输出接口、 KHC03输出接口和 K2C03溶液输入接口, 再生塔 (46) 上有 KHC03输入接 口、 C02输出接口和 K2C03溶液输出接口;
垃圾贮坑 (2 ) 和分选机 (3 )之间通过吊机抓斗 (1 )进行衡接, 分选机 ( 3 )通过带式输送器或螺旋 送料器衡接到等离子体气化设备的 C02气封进料装置 (13 ) 的进料口, C02气封进料装置 (13 ) 的出料口连 接到等离子体气化炉 (23 ) 的垃圾物料进口; 等离子体气化炉 (23 ) 的载热气输出接口连接到碳酸化反应 室 (2007) 的载热气输入接口, 热交换器 a (20 ) 的载热气输出接口连接到等离子体气化炉 (23 ) 的载热 气进口; 等离子体气化炉 (23 ) 的热解气出口连接到气固分离器 (17) 的混合物进口, 气固分离器 (17) 的气态物出口通过循环风机 (18) 连接到热交换器 a (20) 的热解气输入接口, 热交换器 a (20) 的热解 气输出接口连接到等离子体气化炉 (23 ) 的热解气输入接口; 等离子体气化炉 (23) 的合成气输出接口连 接到余热锅炉 (27) 的合成气输入接口, 余热锅炉 (27) 的合成气输出接口连接到吸收反应器 (32) 的合 .成气输入接口, 吸收反应器 (32) 的合成气输出接口连接到旋风除尘器(31 ) 的混合物输入接口, 旋风除 尘器 (31 ) 的固态物出口连接到吸收反应器 (32) 的合成气输入接口的连接管道上, 旋风除尘器 (31 ) 的 气态物出口连接到布袋除尘器 (38) 的合成气输入接口, 布袋除尘器 (38) 的合成气输出接口连接到 C02 吸收塔 (42) 的合成气输入接口, C02吸收塔 (42 ) 的 KHC03输出接口连接到再生塔 (46) 的 KHC03输入接 口, 再生塔(46)的 C02输出接口连接到碳酸化反应室(2007)的二氧化碳输入接口, 再生塔(46)的 K2C03 溶液输出接口连接到 C02吸收塔 (42) 的 K2C03溶液输入接口; C02吸收塔 (42) 的合成气输出接口连接到 压缩 * (51 ) 的吸气口, 压縮机 i (51 ) 的排气口连接到甲醇合成反应器 (52) 的原料气进口, 甲醇合 成反应器 (52) 的甲醇气出口连接到混合吸收器 (55) 的甲醇气进口, 混合吸收器 (55 ) 的混合物出口连 接到蒸馏塔 (62 ) 的混合物输入接口, 蒸馏塔 (62 ) 的未反应气出口通过未反应气管路 (61 ) 和压缩 机 b (56)连接到甲醇合成反应器(52)的回气接口, 蒸馏塔(62)的甲醇产物出口连接到甲醇贮罐(65); 蒸馏塔(62)的石灰水出口连接到除污器(58)的输入接口, 除污器(58)的石灰水出口连接到循环泵(60) 的吸水口, 循环泵 (60) 的出水口连接到混合吸收器 (55) 的石灰水进口。
4.根据权利要求 3所述的一种生活垃圾气化 -液化处置的系统,其特征是预处理设备包括螺旋挤水 / 送料器 (10)和消化器 (9), 螺旋挤水 /送料器 (10) 设置在分选机 (3 ) 与 C02气封进料装置 (13 ) 之间, 分选机 (3 ) 的垃圾物料出口通过带式输送机 (8) 衡接到螺旋挤水 /送料器 (10) 的料斗, 螺旋挤水 /送料 器 (10) 出料口通过输送管 a ( 12) 连接到 C02气封进料装置 (13) 的进料口, C02气封进料装置 (13) 的 出料口通过输送管 b ( 14)连接到等离子体气化炉 (23) 的进料口; 垃圾贮坑(2 )、 分选机(3)和螺旋挤 水 /送料器 (10) 的渗沥水接口连接到消化器 (9) 的进料口, 消化器 (9) 的沼气出口连接到等离子体气 化炉 (23 ) 的气化区。
5. 根据权利要求 3所述的一种生活垃圾气化 -液化处置的系统, 其特征是在布袋除尘器 (38) 与 C02 吸收塔 (42) 之间设置引气风机 (40) 和一氧化碳变换反应器 (41 ), 布袋除尘器 (38) 的合成气输出接 口连接到引气风机 (40) 的吸风口, 引气风机 (40) 的出风口连接到一氧化碳变换反应器 (41 ) 的合成气 输入接口, 一氧化碳变换反应器 (41 ) 的合成气输出接口连接到 C02吸收塔 (42) 的合成气输入接口; 在 C02吸收塔 (42) 与压缩机 i (51 ) 之间设置压缩机 a (44) 和合成气贮罐 (48), C02吸收塔 (42) 的合成气输出接口连接到压缩机 a (44) 的吸气口, 压縮机 a (44) 的排气口连接到合成气贮罐 (48) 的 输入接口, 合成气贮罐 (48) 的输出接口连接到压缩机 i (51 ) 的吸气口;
在甲醇合成系统末端的未反应气管路(61 )中设置尾气接口和合成氨装置,同时在等离子体气化炉( 23 ) 与末端净化设备之间设置尾气反馈管路 (30 ), 未反应气管路 (61 ) 中的尾气接口通过控制阔分别连接到 等离子体气化炉 (23) 的尾气反馈管路 (30)和合成氨装置的进料接口, 合成氨装置的尾气出口连接到等 离子体气化炉 (23 ) 的尾气反馈管路 (30)。
6. 一种生活垃圾气化 -液化处置的系统, 包括等离子体气化设备, 其特征是系统由预处理设备、 C02 气封进料装置 (13 )、 等离子体气化炉 (23)、 等离子体喷枪(24)、 循环风机(18)、 热交换器 b (21 )、 余 热锅炉 (27)、 吸收反应器 (32 )、 旋风除尘器 (31 )、 布袋除尘器 (38)、 加氢混合器 (49)、 甲醇合成反 应器 (52 )、 混合吸收器 (55 )、 蒸馏塔 (62 )、 除污器 (58)、 循环泵 (60)、 甲醇贮罐 (65 ) 和连接管道 组成, 其中: 预处理设备包括垃圾贮坑 (2) 和分选机 (3); 等离子体气化炉 (23) 的内空间分为烘干段、 热解段和气化段, 烘干段上有垃圾物料进口和热解气出口, 气化段上有热解气输入接口, 热解段与气化段 的结合部位有合成气输出接口; 等离子体喷枪 (24) 设置在等离子体气化炉 (23) 下部的气化段; 热交换 器 b (21 ) 由分气室、 热交换室和集气室构成, 分气室上有热解气输入接口, 热交换室上有合成气输入接 口和合成气输出接口, 集气室上有热解气输出接口;
垃圾贮坑 (2) 和分选机 (3 ) 之间通过吊机抓斗 (1 ) 进行衡接, 分选机 (3)通过带式输送器或螺旋 送料器衡接到等离子体气化设备的 C02气封进料装置 (13 ) 的进料口, ∞2气封进料装置 (13) 的出料口连 接到等离子体气化炉 (23) 的进料口, 等离子体气化炉 (23) 的热解气出口通过循环风机 (18) 连接到热 交换器 b (21 ) 的热解气输入接口, 热交换器 b (21 ) 的热解气输出接口连接到等离子体气化炉 (23 )气 化段的热解气输入接口; 等离子体气化炉 (23) 的合成气输出接口连接到热交换器 b (21 ) 的合成气输入 接口, 热交换器 b (21 ) 的合成气输出接口连接到余热锅炉 (27) 的合成气输入接口, 余热锅炉 (27) 的 合成气输出接口连接到吸收反应器 (32) 的合成气输入接口, 吸收反应器 (32) 的合成气输出接口连接到 旋风除尘器 (31 ) 的混合物输入接口, 旋风除尘器 (31 ) 的固态物出口连接到吸收反应器 (32) 的合成气 输入接口的连接管道上; 旋风除尘器 (31 ) 的气态物出口连接到布袋除尘器 (38) 的合成气输入接口, 布 袋除尘器 (38) 的合成气输出接口连接到压缩机 a (44) 的吸气口, 压缩机 a (44) 的排气口连接到合成 气贮罐 (48) 的输入接口, 合成气贮罐 (48) 的输出接口连接到加氢混合器 (49) 的合成气输入接口, 加 氢混合器 (49) 的合成气输出接口连接到压缩机 i (51 ) 的吸气口; 压缩机 i ( 51 ) 的排气口连接到甲醇 合成反应器 (52) 的原料气进口, 甲醇合成反应器 (52) 的甲醇气出口连接到混合吸收器 (55) 的甲醇气 进口, 混合吸收器 (55) 的混合物出口连接到蒸馏塔 (62) 的混合物输入接口, 蒸馏塔 (62) 的未反应气 出口通过未反应气管路 (61 ) 和压缩机 b (56) 连接到甲醇合成反应器 (52 ) 的回气接口, 蒸馏塔 (62) 的甲醇产物出口连接到甲醇贮罐 (65 ); 蒸馏塔 (62 ) 的石灰水出口连接到除污器 (58) 的输入接口, 除 污器 (58) 的石灰水出口连接到循环泵 (60) 的吸水口, 循环泵 (60) 的出水口连接到混合吸收器 (55) 的石灰水进口。
7. 根据权利要求 6所述的一种生活垃圾气化 -液化处置的系统, 其特征是预处理设备包括螺旋挤 水 /送料器 (10)和消化器 (9), 螺旋挤水 /送料器 (10) 设置在分选机(3) 与 C02气封进料装置 (13)之 间, 分选机 (3 ) 的垃圾物料出口通过带式输送机 (8) 衡接到螺旋挤水 /送料器 (10) 的料斗, 螺旋挤水 / 送料器(10) 出料口通过输送管 a ( 12)连接到 C02气封进料装置(13) 的进料口, C02气封进料装置 (13) 的出料口通过输送管 b ( 14)连接到等离子体气化炉 (23 ) 的进料口; 垃圾贮坑(2 )、 分选机(3) 和螺旋 挤水 /送料器 (10 ) 的垃圾渗沥水接口连接到消化器 (9) 的进料口, 消化器 (9) 的沼气出口连接到等离 子体气化炉 (23) 的气化段;
在余热锅炉 (27) 和吸收反应器 (32) 之间有引气风机 (40), 余热锅炉 (27) 的合成气出口连接到 引气风机 (40) 的进风口, 引气风机 (40) 的出风口连接到吸收反应器 (32) 的合成气输入接口;
在甲醇合成系统末端的未反应气管路(61 )中设置尾气接口和合成氨装置,同时在等离子体气化炉(23) 与甲醇合成系统末端的设备之间设置尾气反馈管路 (30), 未反应气管路 (61 ) 中的尾气接口通过控制阔 分别连接到等离子体气化炉 (23) 的尾气反馈管路 (30)和合成氨装置的进料接口, 合成氨装置的尾气出 口连接到等离子体气化炉 (23 ) 的尾气反馈管路 (30)。
8. 一种生活垃圾气化 -液化处置系统中的设备, 其特征是气化设备由等离子体气化炉 (23)、 等离子 体喷枪 (24)、 循环风机 (18)、 热交换器 b (21 ) 和连接管道组成, 其中: 等离子体气化炉 (23 ) 内自上 而下依次有烘干段 (23- I )、 热解段 (23- 11 )和气化段 (23- III), 烘干段 (23- 1 )、 热解段 (23- 11 ) 和 气化段 (23- III ) 之间直接相通, 等离子体喷枪 (24 ) 设置在气化段 (23-ΙΠ ) 的炉墙上, 在烘干 段 (23- 1 ) 的上部有垃圾物料进口 (2302)接入和热解气出口 (2303)接出, 在气化段(23-ΠΙ)有热解 气输入接口 a ( 2309 ) 接入, 气化段 (23-111 ) 的下部有出渣口 (2307 ), 在热解段 (23- 11 ) 与气 化段 (23- III ) 的结合部位有合成气输出接口 a ( 2304) 接出; 热交换器 b ( 21 ) 由分气室 (2102 )、 热 交换室 (2104)、 热交换管束 (2105) 和集气室 (2107) 构成, 分气室 (2102)、 热交换室 (2104)、 集气 室 (2107) 呈上、 中、 下布局, 热交换室 (2104) 在中间, 分气室 (2102)、 热交换室 (2104) 和集气室
(2107) 在钢壳内, 钢壳的外壁安装保温材料, 分气室 (2102 ) 和热交换室 (2104) 之间由上隔板隔离, 热交换室 (2104) 和集气室 (2107) 之间由下隔板隔离, 热交换管束 (2105) 设置在热交换室 (2104) 且两端贯穿至分气室 (2102) 和集气室 (2107), 分气室 (2102)、 热交换管束 (2105) 和集气室 (2107) 构成热解气的回路通道, 在分气室 (2102) 有热解气输入接口 b (2101 ) 接入, 在热交换室 (2104) 有合 成气输入接口(2108)接入和合成气输出接口 b (2103)接出, 在集气室(2107)有热解气输出接口(2109) 接出;
等离子体气化炉(23)烘干段的热解气出口 (2303)连接到循环风机(18)的进风口, 循环风机(18) 的出风口连接到热交换器 b (21) 分气室的热解气输入接口 b (2101), 热交换器 b (21) 集气室的热解气 输出接口 (2109)连接到等离子体气化炉(23)气化段的热解气输入接口 a (2309); 等离子体气化炉(23) 的合成气输出接口 a (2304) 连接到热交换器 b (21) 热交换室的合成气输入接口 (2108)。
9.根据权利要求 8所述的一种生活垃圾气化 -液化处置系统中的设备,其特征是在等离子体气化炉 (23) 的热解段 (23-11) 炉墙上有氧化钙喷枪 (79)接入, 氧化钙喷枪(79)上有 C02输入接口 (7901)和 氧化钙输入接口 (7902); 在等离子体气化炉 (23) 烘干段的热解气出口 (2303) 与循环风机 (18) 的进 风口之间有气固分离器(17) , 等离子体气化炉(23)烘干段的热解气出口(2303)连接到气固分离器(17) 的混合物进口 (1702), 气固分离器 (17) 的气态物出口 (1703) 连接到循环风机 (18) 的进风口, 气固 分离器 (17) 的固态物出口 (1701) 连接到氧化钙喷枪 (79) 的氧化钙输入接口 (7902), 氧化钙喷枪 (79) 的 C02输入接口 (7901) 连接到 C02输气管道上。
10. 根据权利要求 8所述的一种生活垃圾气化 -液化处置系统中的设备, 其特征是在等离子体气化 炉 (23) 的气化段 (23-ΠΙ) 还有飞灰回炉接口 (2306)、 沼气输入接口 (2308) 和尾气输入接口 (2305) 接入; 在热交换器 b (21) 的热交换室 (2104) 还有吹灰口 (2106) 接入和出灰口 (2110) 接出, 热交换 器 b (21) 的出灰口 (2110) 连接到等离子体气化炉 (23) 的飞灰回炉接口 (2306), 热交换器 b (21) 的 吹灰口 (2106)上连接有吹灰风机, 吹灰风机的进风口连接在合成气输送管道上, 吹灰风机的出风口连接 到热交换器 b (21) 的吹灰口 (2106)。
PCT/CN2011/000363 2010-03-13 2011-03-07 生活垃圾气化-液化处置的方法、系统及设备 WO2011113298A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/634,787 US8969422B2 (en) 2010-03-13 2011-03-07 Method, system and equipment for gasification-liquefaction disposal of municipal solid waste

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2010201600397U CN201659136U (zh) 2010-03-13 2010-03-13 生活垃圾、有机废物气化-液化处置的系统
CN201020160039.7 2010-03-13
CN201010173404.2 2010-04-28
CN2010101734042A CN101823073B (zh) 2010-03-13 2010-04-28 生活垃圾气化-液化处置的方法、系统及设备

Publications (1)

Publication Number Publication Date
WO2011113298A1 true WO2011113298A1 (zh) 2011-09-22

Family

ID=44648437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000363 WO2011113298A1 (zh) 2010-03-13 2011-03-07 生活垃圾气化-液化处置的方法、系统及设备

Country Status (2)

Country Link
US (1) US8969422B2 (zh)
WO (1) WO2011113298A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266395A (zh) * 2018-11-06 2019-01-25 河南科技学院 一种人造板废弃物同步产出合成气与氨气的系统及方法
CN114225665A (zh) * 2021-11-22 2022-03-25 武汉钢铁有限公司 废氧化铁脱硫剂的处置方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2753043A1 (en) 2011-03-18 2012-09-18 Pyrogenesis Canada Inc. Steam plasma arc hydrolysis of ozone depleting substances
CN105584991B (zh) 2011-09-27 2019-05-14 国际热化学恢复股份有限公司 合成气净化系统和方法
TWI381143B (zh) * 2012-03-02 2013-01-01 Taiwan Clean Energy Technology Co Ltd Material Heat Treatment Separation and Energy Recovery System
CN104974795A (zh) * 2015-08-05 2015-10-14 中国东方电气集团有限公司 蓄热式高温空气气化、等离子熔融的生活垃圾气化炉
ES2923073T3 (es) * 2016-03-25 2022-09-22 Thermochem Recovery Int Inc Sistema de generación de producto gaseoso integrada en energía de tres fases
CN105945050A (zh) * 2016-05-30 2016-09-21 青岛理工大学 一种基于沼渣的六价铬重污染场地原位解毒方法
CN107446584B (zh) * 2016-05-30 2021-06-25 青岛理工大学 一种基于沼渣的六价铬场地原位及异位耦合解毒方法
US10364398B2 (en) 2016-08-30 2019-07-30 Thermochem Recovery International, Inc. Method of producing product gas from multiple carbonaceous feedstock streams mixed with a reduced-pressure mixing gas
IL249923B (en) * 2017-01-03 2018-03-29 Shohat Tsachi Smart trash can
CN107824602B (zh) * 2017-11-21 2023-10-31 清华大学 一种生活垃圾微波等离子气化和回收一体化系统
CN109127685B (zh) * 2018-09-21 2024-03-05 北京振环环境工程有限公司 基于全生命周期的城市固体废弃物处理系统及方法
US11097967B2 (en) * 2018-11-19 2021-08-24 Lanzatech, Inc. Integration of fermentation and gasification
CN109529851B (zh) * 2018-12-26 2021-10-01 大连海事大学 一种镍基负载型催化剂及利用其等离子体催化co2加氢制甲醇方法
CN109701996A (zh) * 2019-01-29 2019-05-03 北京云水浩瑞环境科技有限公司 处理生活垃圾的系统和方法
CN111389201A (zh) * 2020-03-30 2020-07-10 杭州中荷环保科技有限公司 一种脱除垃圾焚烧飞灰中二噁英的装置及方法
CN112441890A (zh) * 2020-11-25 2021-03-05 武汉理工大学 一种垃圾气化制二甲醚的方法及系统
CN113522933A (zh) * 2021-07-12 2021-10-22 深圳市深能环保东部有限公司 一种城市静脉产业园废弃物强耦合协同处理方法
CN116105492B (zh) * 2023-04-12 2023-06-16 中材建设有限公司 水泥生产线用碳捕集辅助系统及co2密封方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041974A1 (de) * 2002-11-04 2004-05-21 New Plasma Gmbh Verfahren zum vergasen von kohlenstoff enthaltenden substanzen durch ein plasma
WO2004044492A1 (en) * 2002-11-14 2004-05-27 David Systems Technology, S.L. Method and device for integrated plasma-melt treatment of wastes
US20070289509A1 (en) * 2006-06-16 2007-12-20 Plasma Waste Recycling, Inc. Method and apparatus for plasma gasification of waste materials
WO2008044216A1 (en) * 2006-10-13 2008-04-17 Proterrgo, Inc. Method and apparatus for gasification of organic waste in batches
CN101440971A (zh) * 2007-11-24 2009-05-27 刘伟奇 生物质即时气化燃用方法及装置
CN101468788A (zh) * 2008-04-25 2009-07-01 周开根 垃圾、生物质原料生产合成气的系统及设备
CN101565629A (zh) * 2007-08-24 2009-10-28 周开根 垃圾生物质多联产处理的工艺、系统及设备
WO2010019662A1 (en) * 2008-08-12 2010-02-18 4A Technologies, Llc Modularized system and method for urea production using a bio-mass feedstock
CN101823073A (zh) * 2010-03-13 2010-09-08 周开根 生活垃圾气化-液化处置的方法、系统及设备
CN201659136U (zh) * 2010-03-13 2010-12-01 周开根 生活垃圾、有机废物气化-液化处置的系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041974A1 (de) * 2002-11-04 2004-05-21 New Plasma Gmbh Verfahren zum vergasen von kohlenstoff enthaltenden substanzen durch ein plasma
WO2004044492A1 (en) * 2002-11-14 2004-05-27 David Systems Technology, S.L. Method and device for integrated plasma-melt treatment of wastes
US20070289509A1 (en) * 2006-06-16 2007-12-20 Plasma Waste Recycling, Inc. Method and apparatus for plasma gasification of waste materials
WO2008044216A1 (en) * 2006-10-13 2008-04-17 Proterrgo, Inc. Method and apparatus for gasification of organic waste in batches
CN101565629A (zh) * 2007-08-24 2009-10-28 周开根 垃圾生物质多联产处理的工艺、系统及设备
CN101440971A (zh) * 2007-11-24 2009-05-27 刘伟奇 生物质即时气化燃用方法及装置
CN101468788A (zh) * 2008-04-25 2009-07-01 周开根 垃圾、生物质原料生产合成气的系统及设备
WO2010019662A1 (en) * 2008-08-12 2010-02-18 4A Technologies, Llc Modularized system and method for urea production using a bio-mass feedstock
CN101823073A (zh) * 2010-03-13 2010-09-08 周开根 生活垃圾气化-液化处置的方法、系统及设备
CN201659136U (zh) * 2010-03-13 2010-12-01 周开根 生活垃圾、有机废物气化-液化处置的系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266395A (zh) * 2018-11-06 2019-01-25 河南科技学院 一种人造板废弃物同步产出合成气与氨气的系统及方法
CN109266395B (zh) * 2018-11-06 2024-04-26 河南科技学院 一种人造板废弃物同步产出合成气与氨气的系统及方法
CN114225665A (zh) * 2021-11-22 2022-03-25 武汉钢铁有限公司 废氧化铁脱硫剂的处置方法
CN114225665B (zh) * 2021-11-22 2023-08-18 武汉钢铁有限公司 废氧化铁脱硫剂的处置方法

Also Published As

Publication number Publication date
US20130012605A1 (en) 2013-01-10
US8969422B2 (en) 2015-03-03

Similar Documents

Publication Publication Date Title
WO2011113298A1 (zh) 生活垃圾气化-液化处置的方法、系统及设备
CN201659136U (zh) 生活垃圾、有机废物气化-液化处置的系统
CN101735011B (zh) 生活垃圾、有机废物气化-液化处置的工艺
CN101823073B (zh) 生活垃圾气化-液化处置的方法、系统及设备
CN109679672B (zh) 一种催化热解有机固体废弃物制取气体燃料的反应系统及其方法
CN100381352C (zh) 用垃圾、生物质和水为原料的等离子体制氢方法及设备
CN111234880A (zh) 一种固废危废清洁资源化处置方法
EP3492558B1 (en) Method and system for preparing fuel gas by utilizing organic waste with high water content
CN108176703B (zh) 多元废弃物无害化处理方法及其系统
CN114106858B (zh) 一种有机固体废弃物复合热化学处置和利用方法
CN106765142B (zh) 固体废弃物分级气化系统
CN106398771A (zh) 减少二恶英排量的固体有机废弃物气化工艺
CN201748434U (zh) 垃圾焚烧处理装置
CN106833690A (zh) 一种移动床固体废物分段式热解气化工艺及其系统
CN108426250B (zh) 一种生活垃圾气化熔融发电系统
CN201109766Y (zh) 用垃圾、生物质原料生产二甲醚的设备系统
CN108397777B (zh) 一种生活垃圾气化发电系统
CN104531183B (zh) 一种建筑垃圾回收的废弃可燃物清洁燃气转化系统
CN111704931B (zh) 一种可燃固废分段富氧气化协同处理系统
CN110699124A (zh) 一种有机固废气化熔融无害化处理的方法和系统
CN214289960U (zh) 一种有机固废气化熔融处理的系统
CN214147895U (zh) 一种连续稳定的全密封无氧式垃圾处理系统
CN104593023B (zh) 将从建筑垃圾回收的生物质进行气化能源转化的工艺与装置
CN115215527A (zh) 一种污泥低温干化和气化熔融耦合处置工艺及系统
CN112303631A (zh) 一种生活垃圾热解气化协同化学链式燃烧的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13634787

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11755615

Country of ref document: EP

Kind code of ref document: A1