WO2012099169A1 - 非接触給電システム - Google Patents

非接触給電システム Download PDF

Info

Publication number
WO2012099169A1
WO2012099169A1 PCT/JP2012/050968 JP2012050968W WO2012099169A1 WO 2012099169 A1 WO2012099169 A1 WO 2012099169A1 JP 2012050968 W JP2012050968 W JP 2012050968W WO 2012099169 A1 WO2012099169 A1 WO 2012099169A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
rectifier
power
power supply
output
Prior art date
Application number
PCT/JP2012/050968
Other languages
English (en)
French (fr)
Inventor
阿部 茂
富夫 保田
良一 山之内
鈴木 明
Original Assignee
株式会社 テクノバ
国立大学法人 埼玉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011009299A external-priority patent/JP5780765B2/ja
Priority claimed from JP2011261614A external-priority patent/JP5947528B2/ja
Application filed by 株式会社 テクノバ, 国立大学法人 埼玉大学 filed Critical 株式会社 テクノバ
Priority to US13/980,001 priority Critical patent/US9266441B2/en
Priority to EP12736602.9A priority patent/EP2667481A4/en
Priority to CN201280005638.3A priority patent/CN103339822B/zh
Publication of WO2012099169A1 publication Critical patent/WO2012099169A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/54Windings for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • B60M7/003Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a non-contact power feeding system for non-contact power feeding to a movable body such as an electric vehicle, and aims to improve the overall efficiency in power supply.
  • a non-contact electric power supply supplies electric power to a receiving coil from a power transmission coil using the electromagnetic induction between a primary coil (power transmission coil) and a secondary coil (power receiving coil).
  • This noncontact power feeding device can be used to charge a secondary battery mounted on an electric car or a plug-in hybrid car, and the demand for a noncontact power feeding device for vehicle charging is expected to expand in the future. ing.
  • a non-contact power feeding device for charging a vehicle an automobile equipped with a power receiving coil on the lower surface of the floor stops so that the power receiving coil comes directly above the power transmission coil installed on the ground, and non-contact power feeding is performed.
  • the coupling coefficient between the power transmission coil and the power reception coil changes due to the positional deviation between the power transmission coil and the power reception coil in the horizontal direction and the gap length fluctuation in the vertical direction.
  • Patent Document 1 proposes a non-contact power feeding system in which a change in feeding efficiency of the non-contact power feeding transformer (power transmission coil + power receiving coil) is reduced even when the coupling coefficient changes.
  • This system includes a full-wave rectifier 161 for converting commercial alternating current 164 (AC) to direct current, a full bridge inverter 163 for generating high frequency alternating current from direct current, and a noncontact power feeding transformer for noncontact power feeding. 110, a full-wave rectifier 171 that converts secondary side AC output into direct current, and a load 172 that is a secondary battery.
  • alternating current 164 is converted to direct current by full wave rectifier 161
  • high frequency alternating current is generated from this direct current by full bridge inverter 163
  • power is supplied to non-contact power feeding transformer 110
  • secondary side AC output is full wave rectifier It converts into direct current at 171 and supplies power to the load 172 (secondary battery).
  • the contactless power supply system is a system that supplies power, a high overall efficiency in power supply is particularly required.
  • a full bridge inverter is used as a high frequency power supply on the primary side, and a full wave rectifier is used as a rectifier on the secondary side. Therefore, the number of semiconductor elements present in the current flow path is large. Not desirable for improvement.
  • cost reduction is essential to promote the non-contact power supply system for vehicle charging.
  • the ratio of the primary voltage to the secondary voltage changes due to a change in coupling coefficient of the non-contact power supply transformer caused by gap length fluctuation or positional deviation, and therefore the DC output of the secondary side rectifier Although it is necessary to control the voltage, it is difficult to control the DC output voltage of the secondary side rectifier in the conventional noncontact power feeding system.
  • the output AC voltage of the full bridge inverter can be made variable by performing the pulse width control of the full bridge inverter, but this method makes soft switching of the inverter impossible and There is a problem that the switching loss increases and the efficiency decreases.
  • the conventional non-contact power feeding system since commercial alternating current is rectified by a full-wave rectifier, harmonic current causing induction failure is generated, and it is not possible to meet harmonic suppression required by the power company. There is.
  • the present invention has been made in consideration of these circumstances, and provides a noncontact power feeding system which has a high overall power feeding efficiency, can be reduced in cost, and can easily control a secondary DC output voltage.
  • the purpose is to
  • the noncontact power feeding system of the present invention uses a half bridge inverter as a high frequency AC power supply connected to the primary side of the noncontact power feeding transformer and uses a voltage doubler rectifier for DC conversion of the secondary side AC output of the noncontact power feeding transformer. It features.
  • the output voltage of the secondary side voltage doubler rectifier is the output voltage of the conventional full wave rectifier
  • the voltage ratio between the inverter input voltage and the secondary side DC voltage is almost the same as a whole.
  • the voltage of the noncontact power feeding transformer is reduced to about half that of the conventional one, which is advantageous in terms of insulation and ferrite loss reduction.
  • there is one semiconductor element present in the path through which current flows in the half bridge inverter (the current always flows), and also in the path along which the current flows in the voltage doubler Since there is one semiconductor element through which current flows, the feeding efficiency is improved as compared to the conventional system in which power is supplied by the combination of the full bridge inverter and the full wave rectifier.
  • the noncontact power feeding system of the present invention is characterized in that a high power factor boost type rectifier is used as a DC power supply of a half bridge inverter.
  • the high power factor step-up type rectifier can convert an AC input voltage into a DC output voltage and can shape an AC input current into a sine waveform, thereby avoiding the problem of harmonics.
  • a bridgeless high power factor boost rectifier without a bridge may be used as the high power factor boost rectifier.
  • the output voltage of the voltage doubler rectifier can be adjusted by adjusting the output voltage of the high power factor boost type rectifier. That is, the input DC voltage of the half bridge inverter used as the high frequency AC power supply is changed to adjust the output voltage of the voltage doubler rectifier.
  • constant voltage control of the high power factor boost type rectifier is performed using the output voltage of the half bridge inverter or the voltage doubler as feedback input.
  • a constant voltage control circuit is provided to control the duty ratio of the high power factor step-up rectifier based on the output voltage of the constant voltage control circuit.
  • constant current control of the high power factor boost type rectifier is performed using the output current of the half bridge inverter or the voltage doubler as feedback input.
  • a constant current control circuit is provided to control the conduction rate of the high power factor step-up rectifier based on the output voltage of the constant current control circuit. In this way, the output voltage of the high power factor boost rectifier can be controlled to adjust the output voltage of the voltage doubler rectifier.
  • a series capacitor is connected to the primary side of the noncontact power feeding transformer, and a parallel capacitor is connected between the secondary side and the voltage doubler rectifier.
  • the primary side of the noncontact power feeding transformer is installed on the ground, and the secondary side is installed on a mobile body such as a car, a transport vehicle, or a mobile robot. Even if the electric wire is not connected to the moving body, power can be supplied to the moving body.
  • the output of the voltage doubler rectifier is connected to the secondary battery, and a series of control necessary to charge the secondary battery controls the conduction ratio of the high power factor boost rectifier. It takes place in Voltage control at the time of charging the secondary battery mounted on the mobile object is performed by controlling the high power factor boost type rectifier on the ground side.
  • the first power converter having a function of converting direct current to alternating current and a function of converting alternating current to direct current is provided by a mobile body on which the secondary side of the noncontact power feeding transformer is installed.
  • a secondary battery charged by direct current converted by the first power converter, two capacitors interposed between the secondary battery and the first power converter, and a first power converter A rotating electric machine driven by the converted alternating current, wherein the first power converter has at least one switching unit arm in which two of the switching units consisting of the semiconductor switching element and the free wheeling diode are connected in series ing.
  • the semiconductor switching elements of all the switching units constituting the first power converter are turned off and connected in series.
  • a voltage doubler rectifier is formed by the freewheeling diodes of the two switching units and the two capacitors.
  • the voltage doubler rectifier can be configured by using the power converter that drives the rotating electrical machine of the vehicle, and the cost can be reduced.
  • a second power converter capable of boosting and stepping down a DC voltage is provided between the secondary battery and the two capacitors, and the first power conversion is performed.
  • the second power converter boosts the direct current voltage of the secondary battery and outputs it to the first power converter.
  • the second power converter may be configured to step down the DC voltage output from the voltage doubler rectifier in accordance with the remaining battery capacity of the secondary battery and output it to the secondary battery. it can. This makes it possible to control the charge of the secondary battery mounted on the vehicle.
  • the contactless power supply system of the present invention can increase the overall efficiency of power supply as compared to the conventional system. In addition, the cost can be reduced. Moreover, since a high power factor boost type rectifier is used, harmonics are not generated, and the connectivity with a commercial power supply is excellent. In addition, voltage control when charging the secondary battery on the secondary side is easy.
  • FIG. 2 The figure which shows the form which charges the secondary battery of a vehicle by the non-contact electric power feeding system of this invention.
  • Basic circuit diagram of the noncontact power feeding system according to the first embodiment of the present invention First modified circuit diagram of the non-contact power feeding system of FIG. 2
  • Second modified circuit diagram of the non-contact power feeding system of FIG. 2 The figure which shows the 1st control circuit configuration of the non-contact electric supply system of FIG.
  • FIG. 1 schematically shows a form in which the non-contact power feeding system of the present invention is used for charging a plug-in hybrid vehicle.
  • a plug-in hybrid vehicle that receives charging includes a motor 153 as a drive source together with an engine 154, and a secondary battery 151 that is a power source for the motor and an inverter 152 that converts direct current of the secondary battery into alternating current and supplies it to the motor. And have.
  • the non-contact power feeding system for feeding power to the secondary battery 151 on the ground side, the AC voltage of a commercial power source is converted to DC and a variable voltage rectifier 110 for varying the voltage and an inverter 120 for generating high frequency AC from DC.
  • a power transmission coil 131 which is one side of the non-contact power supply transformer 130, and a series capacitor 132 connected in series to the power transmission coil, and the power receiving coil 133 which is the other side of the non-contact power supply transformer 130 on the vehicle side.
  • a rectifier 140 for converting alternating current into direct current for the secondary battery 151 and a parallel capacitor 134 connected in parallel between the power receiving coil 133 and the rectifier 140 are provided.
  • FIG. 2 shows a circuit diagram of this noncontact power feeding system.
  • the variable voltage rectifier 110 is composed of bridgeless high power factor boost rectifiers 110 without a bridge.
  • This bridgeless high power factor step-up type rectifier is used as a rectifier of a home air conditioner, etc., semiconductor switching elements such as IGBT (Insulated Gate Bipolar Transistor) elements and flywheel diodes (semiconductor switching elements have a large reverse voltage It comprises two switching units (Q1, Q2) consisting of a feedback diode inserted to prevent destruction of the semiconductor switching element when added as a power semiconductor switch, and further two diodes (D1, D2) , Two reactors (L1, L2), and one smoothing capacitor (C).
  • Q1, Q2 Insulated Gate Bipolar Transistor
  • One arm in which switching unit Q1 and diode D1 are connected in series is connected in parallel with the other arm in which switching unit Q2 and diode D2 are connected in series, and smoothing capacitor C is connected in parallel to them.
  • the connection points of the switching units Q1 and Q2 and the diodes D1 and D2 of each arm are connected to a commercial AC power supply via reactors L1 and L2, respectively.
  • reactor L1, switching unit Q1, diode D1 and capacitor C constitute a first boost type chopper, and reactor L2, switching unit Q2, diode D2 and capacitor C are second
  • the boost type chopper is configured.
  • the switching elements of Q1 and Q2 are PWM (Pulse Width Modulation) controlled by a control unit (not shown), and by appropriately performing this PWM control, commercial alternating voltage is set to any DC output voltage with two sets of step-up choppers And can shape the ac input current into a sinusoidal waveform.
  • PWM Pulse Width Modulation
  • a bridgeless high power factor boost type rectifier 110 employs a half bridge inverter 120 having two switching units Q1 and Q2 as power semiconductor switches as an inverter 120 that generates high frequency alternating current from direct current output from the direct current output from the bridgeless high power factor boost type rectifier 110.
  • the half bridge inverter 120 both ends of the switching module arm in which two switching units Q1 and Q2 are connected in series are connected to the smoothing capacitor C of the bridgeless high power factor boost rectifier 110, and the middle point of the switching module arm And, the end of the switching unit Q2 of the lower arm thereof is connected to the primary side circuit of the noncontact power feeding transformer 130, respectively.
  • the switching elements of the switching units Q1 and Q2 perform on / off operation alternately in a high frequency cycle according to a control signal from a control unit (not shown).
  • a control unit not shown.
  • the DC output of bridgeless high power factor boost rectifier 10 passing Q1 is supplied to the primary circuit of non-contact power supply transformer 30, and a forward current flows in the primary circuit.
  • a reverse current flows in the closed circuit connecting the primary circuit of the noncontact power feeding transformer 130 and Q2. Therefore, high frequency alternating current is output from the half bridge inverter 120 to the non-contact power feeding transformer 130 by switching Q1 and Q2.
  • the output voltage of the half bridge inverter 120 is the voltage at the midpoint of the switching unit arm, it is about half of the voltage across the bridgeless high power factor boost rectifier 110 and a full bridge comprising four power semiconductor switches Approximately half the AC output voltage when using an inverter to generate AC.
  • the non-contact power feeding transformer 130 includes a power transmission coil on the primary side and a power receiving coil on the secondary side.
  • a series capacitor is connected to the power transmission coil, and a parallel capacitor is connected to the power receiving coil.
  • the capacity of each capacitor can be selected to make the non-contact power supply transformer equivalent to the ideal transformer. Becomes easier.
  • the voltage doubler rectifier 140 is used for the rectifier 140 which converts the alternating current received by the secondary side into a direct current.
  • the voltage doubler rectifier 140 has a capacitor arm in which two capacitors C1 and C2 are connected in series, and two diodes D1 and D2, and the diode D1 is one end of the secondary side circuit of the non-contact power supply transformer 130
  • the capacitor arm side is inserted in the forward direction between the upper arm end of the capacitor arm, and the diode D2 is one end of the secondary side circuit of the non-contact power supply transformer 130 and the lower arm end of the capacitor arm ,
  • the non-contact power supply transformer 130 side is inserted in the forward direction.
  • the middle point of the capacitor arm is connected to the other end of the secondary side circuit of the non-contact power supply transformer 130, and both ends of the capacitor arm are connected to both ends of the secondary battery.
  • this voltage doubler rectifier 140 when one end of the secondary side circuit connected to the diodes D1 and D2 of the non-contact power feeding transformer 130 is a positive voltage, one end of the secondary side circuit, the diode D1, the capacitor C1 and the secondary When the capacitor C1 is charged by the circuit connecting the other end of the side circuit and the other end of the secondary side circuit of the non-contact power feeding transformer 130 is a positive voltage, the other end of the secondary side circuit, the capacitor C2, the diode D1 The capacitor C2 is charged by the circuit connecting one end of the secondary side circuit. A direct current voltage obtained by adding charging voltages of C1 and C2 in series is applied to the secondary battery. Therefore, from the voltage doubler rectifier 140, a DC voltage close to twice the peak value of the AC voltage input from the non-contact power feeding transformer 130 is output.
  • the voltage doubler rectifier 140 pulls up the output voltage to twice the output of the full wave rectifier
  • the voltage supplied to the secondary battery is the same as that of a conventional noncontact power feeding system having a full bridge inverter and a full wave rectifier.
  • the number of power semiconductor switches used in half bridge inverter 120 is half the number used in full bridge inverters, and the number of diodes used in voltage doubler rectifier 140 is half the number used in full wave rectifiers. It is. Therefore, this noncontact power feeding system can be realized at low cost.
  • the voltage of the non-contact power supply transformer 130 drops to about half that of the conventional non-contact power supply transformer.
  • Ferrite is used for the core of the non-contact power supply transformer, and the magnetic flux density in the ferrite is proportional to the voltage, so that the iron loss of the ferrite decreases with the decrease in voltage. Also, the risk of dielectric breakdown is reduced.
  • this non-contact power feeding system is more efficient than the conventional non-contact power feeding system.
  • the feeding efficiency is improved by several percent.
  • a bridgeless high power factor boost type rectifier is used as the high power factor boost type rectifier, but as shown in FIG. 3, a high power factor boost type rectifier 160 including a bridge and a set of boost type choppers May be used.
  • a transformer 150 may be interposed between the half bridge inverter 120 and the non-contact power supply transformer 130. The transformer 150 insulates between the half bridge inverter 120 and the non-contact power feeding transformer 130 to allow change of voltage ratio or current ratio therebetween.
  • the output voltage of the half bridge inverter 120 can be controlled to adjust the output voltage of the voltage doubler rectifier 140 applied to the secondary battery.
  • the bridgeless high power factor boost type rectifier 110 is controlled to vary the DC voltage input to the half bridge inverter 120.
  • the configuration of the control circuit is shown in FIG.
  • the control circuit comprises a semiconductor switch drive means 171 for driving on / off of the power semiconductor switch of the bridgeless high power factor step-up rectifier 110, and a pulse width modulation bridgeless rectifier control means for controlling the operation of the semiconductor switch drive means.
  • the constant voltage control means 173 feedback-inputs the output voltage V IN of the half bridge inverter 120, compares the reference voltages V IN0 and V IN and controls the pulse width modulation bridgeless rectifier control means 172.
  • the pulse width modulation bridgeless rectifier control means 172 refers to the input voltage V AC , the input current I AC and the output voltage V DC of the bridgeless high power factor step-up type rectifier 110, and performs bridgeless according to the instructions of the constant voltage control means 173.
  • the operation of the semiconductor switch driving means 171 is controlled so as to change the duty ratio of the high power factor boost type rectifier 110.
  • the DC output voltage of the voltage doubler rectifier 140 can be adjusted by controlling the bridgeless high power factor step-up type rectifier 110 to vary the DC voltage input to the half bridge inverter 120.
  • control circuit shown in FIG. 6 includes a constant current control means 176 for constant current control of the bridgeless high power factor step-up type rectifier 110 in place of the constant voltage control means 173 of FIG.
  • a means 176 feedback-inputs the output current I IN of the half bridge inverter 120 to compare the reference currents I IN0 and I IN and controls the pulse width modulation bridgeless rectifier control means 172.
  • the other configuration is the same as in FIG.
  • the constant voltage control means 173 feedback-inputs the output voltage VL of the voltage doubler rectifier 140 and compares the reference voltages V L0 and V L to control pulse width modulation bridgeless rectifier control
  • the means 172 is controlled.
  • the other configuration is the same as in FIG.
  • the constant current control means 176 of FIG. 6 may control the pulse width modulation bridgeless rectifier control means 172 by feedback input of the output current of the voltage doubler rectifier 140 as in the control circuit of FIG. .
  • the control circuit shown in FIG. 8 feedback-inputs the output voltage V L and the output current I L of the voltage doubler rectifier 140 and outputs pulse width modulation bridgeless rectifier control means 172.
  • a secondary battery charge control means 177 for controlling is provided.
  • the other configuration is the same as in FIG.
  • the bridgeless high power factor boost type rectifier 110 is controlled to vary the DC voltage input to the half bridge inverter 120, thereby controlling the output voltage of the half bridge inverter 120. By doing this, the output voltage of the voltage doubler rectifier 140 can be adjusted.
  • FIG. 9 shows simulation waveforms of the input voltage V AC (1) and the input current I AC (2) of the bridgeless high power factor step-up type rectifier 110.
  • the power factor is 99% or more, and the input current I AC is substantially sinusoidal and has few harmonics.
  • FIG. 10 shows a range in which the output voltage of the bridgeless high power factor boost rectifier 110 can be varied by changing the duty ratio of the bridgeless high power factor boost rectifier 110.
  • (1) indicates the duty ratio
  • (2) indicates the power factor
  • (3) indicates the efficiency (%).
  • the output voltage V D of the bridgeless high power factor boost rectifier 110 is 140 V to 140 V It changes in the range of 400V.
  • the output voltage of the bridgeless high power factor boost type rectifier 110 installed on the ground side is changed to facilitate the output voltage of the voltage doubler rectifier 140 applied to the secondary battery. Can be adjusted.
  • FIG. 11 schematically shows a drive system of this vehicle.
  • the vehicle 100 includes a battery 40 charged by the non-contact power feeding system, a voltage sensor 71 detecting a voltage of the battery 40, a current sensor 72 detecting a current of the battery 40, and a BMS monitoring a charge state of the battery 40.
  • Battery Management System 75 a vehicle drive device 10B for driving a rotary electric machine (motor generator MG) by the power of the battery 40, a cutoff circuit 30 interposed between the battery 40 and the vehicle drive device 10B, and A power receiving coil 73 receiving power from the power transmission coil 85 of the ground side apparatus 200 of the contact power feeding system, a capacitor 74 connected in parallel to the power receiving coil 73, and a switch circuit 61 for interrupting power feeding from the power receiving coil 73 .
  • the vehicle drive device 10B includes a capacitor arm 16 in which two smoothing capacitors C11 and C12 are connected in series, an inverter 17, and a motor generator MG.
  • the inverter 17 includes semiconductor switching elements (Tr1, Tr2, Tr3 , Tr4, Tr5, Tr6) and feedback diodes (D11, D12, D13, D14, D15, D16), each having three switching unit arms 21, 22, 23 in which two pairs of switching units are connected in series.
  • the three-phase stator coils Lu, Lv, Lw of the motor generator MG are connected between two switching units of the switching unit arms 21, 22, 23.
  • one end of the power receiving coil 73 is connected to the middle point of the capacitor arm 16 via the switch circuit 61 and the AC line 13, and the other end of the power receiving coil 73 is an inverter via the switch circuit 61 and the AC line 14.
  • the switching units of the seventeen switching unit arms 21 are connected to each other.
  • the blocking circuit 30 includes a relay 31 connected to the positive terminal 40 a of the battery 40, an auxiliary relay 32 and a resistor 33 connected in parallel to the relay 31, and a relay 34 connected to the negative terminal 40 b of the battery 40. And the relays 31, 32, 34 are operated by the drive circuit 51.
  • the ground-side device 200 of the non-contact power feeding system controls the power output from the power supply unit 83, the power supply unit 83 connected to the commercial power supply 90 to generate high frequency alternating current, the capacitor 86 connected in series to the power transmission coil 85 And a controller (power control unit) 84.
  • the power supply unit 83 includes the bridgeless high power factor boost rectifier 110 and the half bridge inverter 120 shown in FIG.
  • the vehicle When charging the battery 40 from the ground side apparatus 200 by non-contact power feeding, the vehicle is stopped so that the power transmission coil 85 and the power reception coil 73 face each other, and the drive circuit 57 is driven to connect the switch circuit 61, The drive circuit 51 is driven to connect the cutoff circuit 30, and the drive circuit 53 is driven to set the semiconductor switching elements of the switching units of the inverter 17 to OFF.
  • the inverter 17 In the inverter 17 in which the semiconductor switching element of each switching unit is turned off, only the feedback diodes D11 and D12 included in the two switching units of the switching unit arm 21 act on the alternating current input from the power receiving coil 73. Therefore, as shown in FIG. 12, a voltage doubler rectifier circuit is formed by the two capacitors C11 and C12 of the capacitor arm 16 and the two feedback diodes D11 and D12 of the inverter 17. Charging takes place.
  • the BMS 75 that monitors the state of charge of the battery 40 calculates the remaining battery level (SOC) of the battery 40 based on the voltage detected by the voltage sensor 71 and the current detected by the current sensor 72. Then, a charging current command value generated based on the battery remaining amount and a data signal indicating the current to the battery 40 detected by the current sensor 72 are transmitted to the controller 84 on the ground device 200 side.
  • the controller 84 having received these data signals adjusts the AC voltage output from the power supply unit 83 so as to compensate for the difference between the current supplied to the battery 40 and the charging current command value. Thereby, the current supplied to the battery 40 is brought close to the charging current command value, and the charging power to the battery 40 is adjusted.
  • drive circuit 57 sets switch circuit 61 to OFF, and drive circuit 51 connects cut-off circuit 30, so that the DC voltage of battery 40 becomes inverter 17.
  • Output to The drive circuit 53 performs PWM control of each semiconductor switching element of the inverter 17 so as to convert DC power input to the inverter 17 into three-phase AC power.
  • inverter 17 converts DC power into three-phase AC power and outputs it to motor generator MG, and motor generator MG performs power running to drive a driving wheel (not shown).
  • Three-phase AC power generated by motor generator MG at the time of regenerative braking is output to inverter 17.
  • the control unit 56 performs PWM control of each semiconductor switching element of the inverter 17 via the drive circuit 53 such that the inverter 17 converts three-phase AC power into DC power.
  • the inverter 17 converts three-phase AC power into DC power, and the converted DC power is output to the DC lines 11 and 12.
  • the converted DC power is smoothed by capacitors C11 and C12 and supplied to battery 40.
  • contactless power feeding is performed by the circuit of FIG.
  • the motor generator MG rotates with the power stored in the battery 40, and the AC power generated by the motor generator MG at the time of regenerative braking is converted to direct current and stored in the battery 40.
  • FIG. 13 shows a modification of FIG.
  • This vehicle has two motor generators MG and is provided with two inverters 18, 28 for driving them.
  • the first motor generator MG1 operates as a generator driven by an engine (not shown), which is an internal combustion engine, and also operates as a motor capable of starting the engine.
  • the second motor generator MG2 operates as a motor for driving driving wheels (not shown) of the vehicle, and also operates as a generator at the time of regenerative braking.
  • a switching unit arm in which two switching units consisting of semiconductor switching elements (Tr1, Tr2) and feedback diodes (D1, D2) are connected in series between the capacitor arm 16 and the battery 40, and one reactor L1. And a single capacitor C1.
  • the switching unit arm of the DC-DC converter 15 is connected in parallel with the capacitor arm 16, the capacitor C1 is connected in parallel with the battery 40, and the end of the capacitor C1 connected to the negative side of the battery 40 is below the switching unit arm
  • a reactor L1 is connected between the end of the capacitor C1 connected to the side arm end and connected to the positive electrode side of the battery 40 and the switching unit connection point of the switching unit arm.
  • the DC-DC converter 15 has a function of adjusting DC power charged to the battery 40. Therefore, the device shown in FIG. 13 does not require a charge control mechanism in the ground side device 200.
  • the drive circuit 57 connects the switch circuit 61, the drive circuit 51 connects the cutoff circuit 30, and the drive circuit 54 and the drive
  • the circuit 55 sets the semiconductor switching elements of the switching units of the inverters 18 and 28 to the off state. Therefore, as in the circuit of FIG. 11, a voltage doubler rectifier circuit is formed by the two capacitors C11 and C12 of the capacitor arm 16 and the two feedback diodes D21 and D22 of the inverter 18, and the AC power received by the power receiving coil 73 is The DC voltage is converted by this voltage doubler rectifier circuit and output.
  • the drive circuit 52 for driving the DC-DC converter 15 turns off the semiconductor switching element Tr2 of the lower arm of the switching unit arm, performs PWM control of the semiconductor switching element Tr1 of the upper arm, and switches the semiconductor switching element Tr1. Switch on / off.
  • the DC-DC converter 15 functions as a step-down chopper and outputs a step-down regulated DC voltage.
  • the battery 40 is charged by the DC voltage whose voltage is adjusted by the DC-DC converter 15.
  • the DC / DC converter 15 regulates the DC power (DC voltage and DC current) supplied to the battery 40 when the battery 40 is charged.
  • the control unit 56 calculates the battery remaining amount (SOC) of the battery 40 based on the voltage detection result of the voltage sensor 71 and the current detection result of the current sensor 72, and according to the battery remaining amount, the DC / DC converter The duty ratio of the semiconductor switching element Tr1 of 15 is controlled, and the charging power supplied to the battery 40 is adjusted. For example, when the battery remaining amount is lower than a predetermined value, the control unit 56 performs constant current control on the supply current to the battery 40, and rapidly charges the battery 40. In addition, when the battery remaining amount increases and becomes higher than a predetermined value, constant voltage control is performed to reduce charging power to prevent overcharging.
  • SOC battery remaining amount
  • the drive circuit 57 sets the switch circuit 61 to OFF, and the drive circuit 51 connects the cutoff circuit 30.
  • drive circuits 54 and 55 for driving the inverters 18 and 28 connected to the motor generator MG to be driven each convert the DC power input to the inverters 18 and 28 into three-phase AC power. PWM control of the semiconductor switching element is performed.
  • the drive circuit 52 driving the DC-DC converter 15 sets the semiconductor switching element Tr1 of the upper arm of the switching unit arm to the OFF state, performs PWM control of the semiconductor switching element Tr2 of the lower arm, and performs semiconductor switching.
  • the element Tr2 is switched on / off.
  • the DC-DC converter 15 functions as a step-up chopper, and boosts the DC voltage output from the battery 40.
  • the boosted DC voltage is smoothed by capacitors C11 and C12, input to inverters 18 and 28, converted into three-phase AC power by inverters 18 and 28, and output to motor generators MG1 and MG2.
  • the inverters 18, 28 connected to the motor generator MG are controlled to convert three-phase AC power into DC power,
  • the DC power thus obtained is smoothed by the capacitors C11 and C12 and input to the DC-DC converter 15.
  • the DC-DC converter 15 is controlled by the drive circuit 52 to function as a step-down chopper as in the case of charging the battery 40 from the ground side device 200C, and the step-down regulated DC voltage is a DC-DC converter 15, and the battery 40 is charged by this DC power.
  • inverters 18 and 28 capable of converting DC power into three-phase AC power are used, but in the present invention, semiconductor switching elements and a free wheeling diode are used. Any power converter having at least one switching unit arm in which two of the switching units are connected in series and having a function of converting direct current to alternating current and a function of converting alternating current to direct current can be used. .
  • the DC-DC converter 15 is used here to step down the battery charge voltage and boost the battery output voltage, in the present invention, it is a power converter that can boost and step down the DC voltage. , Is available.
  • the noncontact power feeding system of the present invention has high feeding efficiency, can reduce cost, is excellent in connectivity with a commercial power source, and can easily adjust the voltage applied to the secondary battery, It can be widely used for mobile bodies such as carriers and mobile robots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 非接触給電トランス30の一次側に接続する高周波交流電源にハーフブリッジインバータ20を用い、非接触給電トランス30の二次側交流出力の直流変換に倍電圧整流器40を用いる。ハーフブリッジインバータの交流出力電圧が、フルブリッジインバータの半分に下がるが、倍電圧整流器の出力電圧が全波整流器の2倍になるので、全体としてはインバータ入力電圧と二次側直流電圧との電圧比がほぼ同じとなる。非接触給電トランスの電圧が従来の約半分に下がるので、絶縁とフェライトの損失低減の面で有利である。

Description

非接触給電システム
 本発明は、電気自動車などの移動体に非接触で給電する非接触給電システムに関し、電力供給における総合効率の向上を図るものである。
 非接触給電装置は、一次コイル(送電コイル)と二次コイル(受電コイル)との間の電磁誘導を利用して送電コイルから受電コイルに電力を供給する。この非接触給電装置は、電気自動車やプラグインハイブリッド車に搭載された二次電池の充電に利用することができ、車両充電用の非接触給電装置に対する需要は、今後、拡大するものと見られている。
 車両充電用の非接触給電装置の場合、受電コイルを床の下面に搭載した自動車が、地面に設置された送電コイルの真上に受電コイルが来るように停車して非接触給電が行われるが、送電コイルと受電コイルとの水平方向の位置ずれや上下方向のギャップ長変動により、送電コイルと受電コイルとの間の結合係数が変化する。
 下記特許文献1には、結合係数が変化した場合でも、非接触給電トランス(送電コイル+受電コイル)の給電効率の変化を小さくした非接触給電システムが提案されている。
 このシステムは、図14に示すように、商用交流164(AC)を直流に変換する全波整流器161と、直流から高周波交流を発生するフルブリッジインバータ163と、非接触給電を行う非接触給電トランス110と、二次側交流出力を直流に変換する全波整流器171と、二次電池である負荷172とを備えている。
 このシステムでは、商用交流164を全波整流器161で直流に変換し、この直流からフルブリッジインバータ163で高周波交流を発生させて非接触給電トランス110に給電し、二次側交流出力を全波整流器171で直流に変換して、負荷172(二次電池)に電力を供給している。
特開2010-288441号公報
 非接触給電システムは、電力を供給するシステムであるため、給電における総合効率の高さが特に要求される。
 従来の非接触給電システムでは、一次側の高周波電源としてフルブリッジインバータを使用し、二次側の整流器として全波整流器を用いているため、電流が流れる経路に存在する半導体素子数が多く、効率改善を図る上で望ましくない。
 また、車両充電用の非接触給電システムの普及を図るには、低コスト化が欠かせない。
 また、自動車用非接触給電では、ギャップ長変動や位置ずれに起因する非接触給電トランスの結合係数の変化で、一次電圧と二次電圧との比が変化し、そのため二次側整流器の直流出力電圧を制御することが必要になるが、従来の非接触給電システムでは、二次側整流器の直流出力電圧を制御することが難しい。
 二次側整流器の直流出力電圧を制御するには、
(1)一次側のインバータに入力する直流電圧を可変にする、
(2)一次側のインバータで出力電圧を可変制御する、
(3)二次側に電圧を可変にする装置(例えばDC-DCコンバータ)を入れる、
の3つの方法がある。
 従来の非接触給電システムでも、フルブリッジインバータのパルス幅制御を行うことでフルブリッジインバータの出力交流電圧を可変にできるが、この方法を採ると、インバータのソフトスイッチングが不可能になり、インバータのスイッチング損失が増大して効率が低下するという問題がある。
 また、従来の非接触給電システムでは、商用交流を全波整流器で整流しているため、誘導障害をもたらす高調波電流が発生し、電力会社が求めている高調波抑制に沿うことができないという問題がある。
 本発明は、こうした事情を考慮して創案したものであり、給電の総合効率が高く、低コスト化が可能であり、また、二次直流出力電圧の制御が容易である非接触給電システムを提供することを目的としている。
 本発明の非接触給電システムは、非接触給電トランスの一次側に接続する高周波交流電源にハーフブリッジインバータを用い、非接触給電トランスの二次側交流出力の直流変換に倍電圧整流器を用いることを特徴とする。
 この非接触給電システムでは、ハーフブリッジインバータの交流出力電圧が、従来のフルブリッジインバータの交流出力電圧の半分に下がるが、二次側の倍電圧整流器の出力電圧が従来の全波整流器の出力電圧に比べて2倍になるので、全体としてはインバータ入力電圧と二次側直流電圧との電圧比がほぼ同じとなる。ハーフブリッジインバータや倍電圧整流器で使用されている半導体素子の数は、フルブリッジインバータや全波整流器での半導体素子数より少ないので、低コスト化が可能である。また、この非接触給電システムでは、非接触給電トランスの電圧が従来の約半分に下がるので、絶縁とフェライトの損失低減の面で有利である。また、この非接触給電システムでは、ハーフブリッジインバータにおいて電流が流れる経路に存在する(常時電流が流れる)半導体素子は1個であり、また、倍電圧整流器においても電流が流れる経路に存在する(常時電流が流れる)半導体素子が1個であるため、フルブリッジインバータ及び全波整流器の組合せで電力を供給する従来のシステムに比べて給電効率が向上する。
 また、本発明の非接触給電システムは、ハーフブリッジインバータの直流電源として、高力率昇圧型整流器を用いることを特徴とする。
 高力率昇圧型整流器は、交流入力電圧を直流出力電圧に変換するとともに、交流入力電流を正弦波形に整形できるため、高調波の問題が回避できる。
 なお、本発明の非接触給電システムでは、高力率昇圧型整流器として、ブリッジを持たないブリッジレス高力率昇圧型整流器を用いても良い。
 また、本発明の非接触給電システムでは、倍電圧整流器の出力電圧の調整を高力率昇圧型整流器の出力電圧調整で行うことができる。
 即ち、高周波交流電源として用いるハーフブリッジインバータの入力直流電圧を変えて倍電圧整流器の出力電圧を調整する。
 また、本発明の非接触給電システムでは、高力率昇圧型整流器の出力電圧を調整する場合、ハーフブリッジインバータまたは倍電圧整流器の出力電圧をフィードバック入力として高力率昇圧型整流器の定電圧制御を行う定電圧制御回路を設け、この定電圧制御回路の出力電圧に基づいて高力率昇圧型整流器の通流率(デューティ)を制御する。
 また、本発明の非接触給電システムでは、高力率昇圧型整流器の出力電圧を調整する場合、ハーフブリッジインバータまたは倍電圧整流器の出力電流をフィードバック入力として高力率昇圧型整流器の定電流制御を行う定電流制御回路を設け、この定電流制御回路の出力電圧に基づいて高力率昇圧型整流器の通流率を制御する。
 こうした方法で高力率昇圧型整流器の出力電圧を制御し、倍電圧整流器の出力電圧を調整することができる。
 また、本発明の非接触給電システムでは、非接触給電トランスの一次側には直列コンデンサを、二次側には倍電圧整流器との間に並列コンデンサを接続する。
 このようにコンデンサを接続することで非接触給電トランスを理想トランスと等価にすることができ、非接触給電トランスの設計が容易になる。
 また、本発明の非接触給電システムでは、非接触給電トランスの一次側が地上に設置され、二次側が自動車や搬送車や移動ロボットなどの移動体に設置される。
 移動体に電線を接続しなくても、移動体への給電が可能になる。
 また、本発明の非接触給電システムでは、倍電圧整流器の出力が二次電池に接続され、二次電池の充電に必要な一連の制御が高力率昇圧型整流器の通流率を制御することで行われる。
 移動体に搭載された二次電池を充電する際の電圧制御が、地上側の高力率昇圧型整流器を制御して行われる。
 また、本発明の非接触給電システムでは、非接触給電トランスの二次側が設置される移動体が、直流を交流に変換する機能と交流を直流に変換する機能とを備える第1の電力変換器と、第1の電力変換器で変換された直流により充電される二次電池と、二次電池と第1の電力変換器との間に介在する二つのコンデンサと、第1の電力変換器で変換された交流により駆動される回転電機と、を備え、第1の電力変換器が、半導体スイッチング素子及び還流ダイオードから成るスイッチングユニットの二つが直列に接続されたスイッチングユニットアームを少なくとも一つ有している。そして、非接触給電トランスの二次側交流出力により二次電池を充電するときは、第1の電力変換器を構成する全てのスイッチングユニットの半導体スイッチング素子がオフ状態にされ、直列に接続された二つのスイッチングユニットの還流ダイオードと二つのコンデンサとで倍電圧整流器が形成される。
 このように、車両の回転電機を駆動する電力変換器を利用して倍電圧整流器を構成することができ、コストの低減が可能になる。
 また、本発明の非接触給電システムでは、前記構成において、二次電池と二つのコンデンサとの間に、直流電圧の昇圧及び降圧が可能な第2の電力変換器を設け、第1の電力変換器が二次電池の直流出力を交流に変換して回転電機を駆動するときには、第2の電力変換器が、二次電池の直流電圧を昇圧して第1の電力変換器に出力し、二次電池を充電するときには、第2の電力変換器が、倍電圧整流器から出力される直流電圧を二次電池の電池残量に応じて降圧して二次電池に出力するように構成することもできる。
 こうすることで、車両に搭載された二次電池の充電制御が可能になる。
 本発明の非接触給電システムは、従来のシステムに比べて、給電の総合効率を高めることができる。また、コストの低減が可能である。また、高力率昇圧型整流器を用いているため、高調波が発生せず、商用電源との接続性に優れている。また、二次側の二次電池を充電する際の電圧制御が容易である。
本発明の非接触給電システムにより車両の二次電池を充電する形態を示す図 本発明の第1の実施形態に係る非接触給電システムの基本回路図 図2の非接触給電システムの第1の変形回路図 図2の非接触給電システムの第2の変形回路図 図2の非接触給電システムの第1の制御回路構成を示す図 図2の非接触給電システムの第2の制御回路構成を示す図 図2の非接触給電システムの第3の制御回路構成を示す図 図2の非接触給電システムの第4の制御回路構成を示す図 ブリッジレス高力率昇圧型整流器の入力電圧及び入力電流のシミュレーション波形を示す図 ブリッジレス高力率昇圧型整流器のデューティ比を変えたときの出力電圧可変範囲を示す図 本発明の第2の実施形態に係る非接触給電システムに対応する車両駆動装置を示す図 スイッチングユニットの半導体スイッチング素子がオフのときに実現される倍整流回路を示す図 図11の車両駆動装置の変形例を示す図 従来の非接触給電システムを示す図
 (第1の実施形態)
 図1は、本発明の非接触給電システムをプラグインハイブリッド車の充電に用いたときの形態を模式的に示している。
 充電を受けるプラグインハイブリッド車は、エンジン154とともにモータ153を駆動源として搭載し、モータ用の電源である二次電池151と、二次電池の直流を交流に変換してモータに供給するインバータ152とを備えている。
 二次電池151への給電を行う非接触給電システムは、地上側に、商用電源の交流を直流に変換するとともに、その電圧を可変する可変電圧整流器110と、直流から高周波交流を生成するインバータ120と、非接触給電トランス130の一方である送電コイル131と、送電コイルに直列接続された直列コンデンサ132とを備えており、車両側に、非接触給電トランス130の他方である受電コイル133と、二次電池151のために交流を直流に変換する整流器140と、受電コイル133と整流器140との間に並列接続された並列コンデンサ134とを備えている。
 図2は、この非接触給電システムの回路図を示している。
 可変電圧整流器110は、ブリッジを持たないブリッジレス高力率昇圧型整流器(Bridgeless pfc boost rectifiers)110で構成されている。このブリッジレス高力率昇圧型整流器は、家庭用エアコンの整流器などとして用いられており、IGBT(Insulated Gate Bipolar Transistor)素子などの半導体スイッチング素子と、フライホイールダイオード(半導体スイッチング素子に大きな逆電圧が加わったときに、半導体スイッチング素子の破壊を防ぐために挿入された帰還ダイオード)とから成る二つのスイッチングユニット(Q1、Q2)を電力用半導体スイッチとして具備し、さらに、二つのダイオード(D1、D2)と、二つのリアクトル(L1、L2)と、一つの平滑コンデンサ(C)とを有している。
 スイッチングユニットQ1及びダイオードD1が直列接続された一方のアームは、スイッチングユニットQ2及びダイオードD2が直列接続された他方のアームと並列に接続され、また、それらに対して平滑コンデンサCが並列接続されている。各アームのスイッチングユニットQ1、Q2とダイオードD1、D2との接続点は、それぞれ、リアクトルL1、L2を介して商用交流電源に接続されている。
 このブリッジレス高力率昇圧型整流器110では、リアクトルL1、スイッチングユニットQ1、ダイオードD1及びコンデンサCが第1の昇圧型チョッパを構成し、リアクトルL2、スイッチングユニットQ2、ダイオードD2及びコンデンサCが第2の昇圧型チョッパを構成している。Q1、Q2のスイッチング素子は、制御部(不図示)によりPWM(Pulse Width Modulation)制御され、このPWM制御を適切に行うことにより、二組の昇圧型チョッパで商用交流電圧を任意の直流出力電圧に変換することができ、また、交流入力電流を正弦波形に整形することができる。
 なお、ブリッジレス高力率昇圧型整流器110の制御回路については後述する。
 ブリッジレス高力率昇圧型整流器110が出力する直流から高周波交流を生成するインバータ120には、二つのスイッチングユニットQ1、Q2を電力用半導体スイッチとして有するハーフブリッジインバータ120を採用している。ハーフブリッジインバータ120では、二つのスイッチングユニットQ1、Q2が直列接続されたスイッチングモジュールアームの両端が、ブリッジレス高力率昇圧型整流器110の平滑コンデンサCに接続し、また、スイッチングモジュールアームの中点、及び、その下側アームのスイッチングユニットQ2の端部が、それぞれ非接触給電トランス130の一次側回路に接続している。
 スイッチングユニットQ1、Q2のスイッチング素子は、制御部(不図示)からの制御信号に応じて、高周波の周期で交互にオン・オフ動作を行う。Q1がオンでQ2がオフのときは、Q1を通過するブリッジレス高力率昇圧型整流器10の直流出力が非接触給電トランス30の一次回路に供給され、一次回路には順方向の電流が流れる。逆に、Q1がオフでQ2がオンのときは、非接触給電トランス130の一次回路とQ2とを繋ぐ閉回路に逆方向の電流が流れる。そのため、Q1、Q2のスイッチングにより、ハーフブリッジインバータ120から非接触給電トランス130に高周波交流が出力される。
 ハーフブリッジインバータ120の出力電圧は、スイッチングユニットアームの中点の電圧であるため、ブリッジレス高力率昇圧型整流器110の両端電圧の約半分であり、4個の電力用半導体スイッチを備えるフルブリッジインバータを用いて交流を生成するときの交流出力電圧の約半分になる。
 非接触給電トランス130は、一次側の送電コイルと二次側の受電コイルとから成り、送電コイルには直列コンデンサが接続し、受電コイルには並列コンデンサが接続している。このように送電コイルに直列コンデンサ、受電コイルに並列コンデンサを接続した場合は、各コンデンサの容量を選択して非接触給電トランスを理想トランスと等価にすることができるので、非接触給電トランスの設計が容易になる。
 二次側で受電した交流を直流に変換する整流器140には、倍電圧整流器140を用いている。倍電圧整流器140は、二つのコンデンサC1、C2が直列に接続されたコンデンサアームと、二つのダイオードD1、D2とを有し、ダイオードD1は、非接触給電トランス130の二次側回路の一端とコンデンサアームの上側アーム端部との間に、コンデンサアーム側が順方向となるように挿入され、ダイオードD2は、非接触給電トランス130の二次側回路の一端とコンデンサアームの下側アーム端部との間に、非接触給電トランス130側が順方向となるように挿入されている。また、コンデンサアームの中点は、非接触給電トランス130の二次側回路の他端に接続し、コンデンサアームの両端は、二次電池の両端に接続している。
 この倍電圧整流器140では、非接触給電トランス130のダイオードD1、D2が接続する二次側回路の一端が正電圧のときに、二次側回路の一端、ダイオードD1、コンデンサC1、及び、二次側回路の他端を繋ぐ回路によりコンデンサC1の充電が行われ、非接触給電トランス130の二次側回路の他端が正電圧のときに、二次側回路の他端、コンデンサC2、ダイオードD1、及び、二次側回路の一端を繋ぐ回路によりコンデンサC2の充電が行われる。
 二次電池には、C1とC2との充電電圧を直列に加えた直流電圧が印加される。
 そのため、倍電圧整流器140からは、非接触給電トランス130から入力する交流電圧の尖頭値の2倍近くの直流電圧が出力される。
 このように、この非接触給電システムでは、ハーフブリッジインバータ120の交流出力電圧がフルブリッジインバータの出力の半分に下がるが、倍電圧整流器140が、出力電圧を全波整流器の出力の2倍に引き上げるため、二次電池に供給される電圧は、フルブリッジインバータ及び全波整流器を有する従来の非接触給電システムと同じになる。
 ハーフブリッジインバータ120で使用されている電力用半導体スイッチの数は、フルブリッジインバータの使用数の半分であり、倍電圧整流器140で使用されているダイオードの数は、全波整流器の使用数の半分である。そのため、この非接触給電システムは、低コストで実現できる。
 また、この非接触給電システムでは、ハーフブリッジインバータ120の二つの電力用半導体スイッチに交互に電流が流れるため、電流が流れている電力用半導体スイッチは常に1個である。これに対し、フルブリッジインバータでは、常に二つの電力用半導体スイッチに電流が流れる。そのため、ハーフブリッジインバータの電力用半導体スイッチで消費される電力は、フルブリッジインバータに比べて少なく、その分、給電効率を高めることができる。
 また、倍電圧整流器140でも同様であり、倍電圧整流器の場合、電流が流れているダイオードは常に1個であり、常に二つのダイオードに電流が流れる全波整流器に比べて、消費電力が少なく、給電効率を高めることができる。
 また、ハーフブリッジインバータ120から出力された交流電圧が非接触給電トランス130に入力するので、非接触給電トランス130の電圧は、従来の非接触給電トランスの約半分に下がる。非接触給電トランスのコアにはフェライトが使用されており、このフェライト中の磁束密度は電圧に比例するため、電圧の低下でフェライトの鉄損が減少する。また、絶縁破壊の恐れも減る。
 このように、この非接触給電システムは、従来の非接触給電システムに比べて、
(1)給電効率が数%高くなる。
(2)コストの低減が可能である。
(3)商用交流電圧の直流への変換を、高調波を発生しない高力率昇圧型整流器で行っているため、商用電源との接続性に優れている。
という特長を備えている。
 なお、ここでは、高力率昇圧型整流器としてブリッジレス高力率昇圧型整流器を用いたが、図3に示すように、ブリッジと一組の昇圧型チョッパとを備える高力率昇圧型整流器160を用いても良い。
 また、図4に示すように、ハーフブリッジインバータ120と非接触給電トランス130との間にトランス150を介在させても良い。このトランス150は、ハーフブリッジインバータ120と非接触給電トランス130との間を絶縁して、この間での電圧比または電流比の変更を可能にしている。
 次に、ブリッジレス高力率昇圧型整流器110の制御回路について説明する。
 この非接触給電システムでは、ハーフブリッジインバータ120の出力電圧を制御して、二次電池に印加される倍電圧整流器140の出力電圧を調整することができる。ハーフブリッジインバータ120の出力電圧を制御するために、ブリッジレス高力率昇圧型整流器110を制御して、ハーフブリッジインバータ120に入力する直流電圧を可変する。
 その制御回路の構成を図5に示している。
 この制御回路は、ブリッジレス高力率昇圧型整流器110の電力用半導体スイッチのオン/オフを駆動する半導体スイッチ駆動手段171と、半導体スイッチ駆動手段の動作を制御するパルス幅変調ブリッジレス整流器制御手段172と、ブリッジレス高力率昇圧型整流器110を定電圧制御する定電圧制御手段173とを備えている。また、ハーフブリッジインバータ120の制御機構として、ハーフブリッジインバータ120の電力用半導体スイッチのオン/オフを駆動する半導体スイッチ駆動手段174と、周波数f0に基づいて半導体スイッチ駆動手段の動作を制御する方形波インバータ制御手段175とを備えている。
 定電圧制御手段173は、ハーフブリッジインバータ120の出力電圧VINをフィードバック入力し、基準電圧VIN0とVINとを比較してパルス幅変調ブリッジレス整流器制御手段172を制御する。パルス幅変調ブリッジレス整流器制御手段172は、ブリッジレス高力率昇圧型整流器110の入力電圧VAC、入力電流IAC及び出力電圧VDCを参照し、定電圧制御手段173の指示に従って、ブリッジレス高力率昇圧型整流器110の通流率(デューティ)を変えるように半導体スイッチ駆動手段171の動作を制御する。
 このように、ブリッジレス高力率昇圧型整流器110を制御して、ハーフブリッジインバータ120に入力する直流電圧を可変することにより、倍電圧整流器140の直流出力電圧を調整することができる。
 また、図6に示す制御回路は、図5の定電圧制御手段173に代えて、ブリッジレス高力率昇圧型整流器110を定電流制御する定電流制御手段176を備えており、この定電流制御手段176が、ハーフブリッジインバータ120の出力電流IINをフィードバック入力して基準電流IIN0とIINとを比較し、パルス幅変調ブリッジレス整流器制御手段172を制御する。その他の構成は、図5と変わりがない。
 また、図7に示す制御回路は、定電圧制御手段173が、倍電圧整流器140の出力電圧VLをフィードバック入力して基準電圧VL0とVLとを比較し、パルス幅変調ブリッジレス整流器制御手段172を制御する。その他の構成は、図5と変わりがない。
 なお、図6の定電流制御手段176が、図7の制御回路のように、倍電圧整流器140の出力電流をフィードバック入力してパルス幅変調ブリッジレス整流器制御手段172を制御するようにしても良い。
 また、図8に示す制御回路は、図5の定電圧制御手段173に代えて、倍電圧整流器140出力電圧VL及び出力電流ILをフィードバック入力してパルス幅変調ブリッジレス整流器制御手段172を制御する二次電池充電制御手段177を備えている。その他の構成は、図5と変わりがない。
 このように、この非接触給電システムでは、ブリッジレス高力率昇圧型整流器110を制御して、ハーフブリッジインバータ120に入力する直流電圧を可変し、それにより、ハーフブリッジインバータ120の出力電圧を制御することで、倍電圧整流器140の出力電圧を調整することができる。
 図9は、ブリッジレス高力率昇圧型整流器110の入力電圧VAC(1)と入力電流IAC(2)のシミュレーション波形を示している。力率は99%以上であり、入力電流IACはほぼ正弦波で高調波が少ない。
 また、図10は、ブリッジレス高力率昇圧型整流器110のデューティ比を変えることでブリッジレス高力率昇圧型整流器110の出力電圧が可変できる範囲を示している。図において(1)はデューティ比を示し、(2)は力率、(3)は効率(%)を示している。
 VAC=100Vとして、パルス幅変調の通流率(デューティ)dをd=0.9~0.34と変化させると、ブリッジレス高力率昇圧型整流器110の出力電圧VDは、140V~400Vの範囲で変化する。
 このように、この非接触給電システムでは、地上側に設置されるブリッジレス高力率昇圧型整流器110の出力電圧を変えることで、二次電池に印加される倍電圧整流器140の出力電圧を容易に調整できる。
 (第2の実施形態)
 第2の実施形態では、第1の実施形態の非接触給電システムを利用して給電を受ける車両の駆動装置について説明する。
 図11は、この車両の駆動装置を模式的に示している。
 この車両100は、非接触給電システムにより充電されるバッテリ40と、バッテリ40の電圧を検出する電圧センサ71と、バッテリ40の電流を検出する電流センサ72と、バッテリ40の充電状態を監視するBMS(Battery Management System)75と、バッテリ40の電力で回転電気(モータジェネレータMG)を駆動する車両用駆動装置10Bと、バッテリ40と車両用駆動装置10Bとの間に介在する遮断回路30と、非接触給電システムの地上側装置200の送電コイル85から受電する受電コイル73と、受電コイル73に並列接続されたコンデンサ74と、受電コイル73からの給電を遮断するスイッチ回路61と、を備えている。
 車両用駆動装置10Bは、二つの平滑用コンデンサC11、C12が直列接続されたコンデンサアーム16と、インバータ17と、モータジェネレータMGとを具備し、インバータ17は、半導体スイッチング素子(Tr1、Tr2、Tr3、Tr4、Tr5、Tr6)及び帰還ダイオード(D11、D12、D13、D14、D15、D16)から成るスイッチングユニットの二組ずつが直列接続された3本のスイッチングユニットアーム21、22、23を具備し、モータジェネレータMGの3相のステータコイルLu,Lv,Lwのそれぞれが、各スイッチングユニットアーム21、22、23の2つのスイッチングユニット間に接続されている。
 また、受電コイル73の一端は、スイッチ回路61及び交流ライン13を介して、コンデンサアーム16の中点に接続し、受電コイル73の他端は、スイッチ回路61及び交流ライン14を介して、インバータ17のスイッチングユニットアーム21のスイッチングユニット間に接続している。
 また、車両には、スイッチ回路61を駆動するドライブ回路57と、遮断回路30を駆動するドライブ回路51と、インバータ17の半導体スイッチング素子のスイッチングを行うドライブ回路53と、それらを制御する制御部56とが設置されている。
 なお、遮断回路30は、バッテリ40の正極端子40aに接続されたリレー31と、リレー31に並列接続された補助リレー32及び抵抗器33と、バッテリ40の負極端子40bに接続されたリレー34とを有し、各リレー31,32,34がドライブ回路51により操作される。
 非接触給電システムの地上側装置200は、商用電源90に接続して高周波交流を生成する電源部83と、送電コイル85に直列接続されたコンデンサ86と、電源部83から出力される電力を制御するコントローラ(電源制御部)84とを備えている。この電源部83は、図2のブリッジレス高力率昇圧整流器110及びハーフブリッジインバータ120を有している。
 バッテリ40の充電を地上側装置200から非接触給電で行う場合は、送電コイル85と受電コイル73とが対向するように車両を停止させ、ドライブ回路57を駆動してスイッチ回路61を接続し、ドライブ回路51を駆動して遮断回路30を接続し、さらに、ドライブ回路53を駆動して、インバータ17の各スイッチングユニットの半導体スイッチング素子をオフに設定する。
 各スイッチングユニットの半導体スイッチング素子がオフになったインバータ17では、受電コイル73から入力する交流に対して、スイッチングユニットアーム21の二つのスイッチングユニットに含まれる帰還ダイオードD11、D12だけが作用する。
 そのため、図12に示すように、コンデンサアーム16の二つのコンデンサC11、C12と、インバータ17の二つの帰還ダイオードD11、D12とにより、倍電圧整流回路が形成され、図2の回路によるバッテリ40の充電が行われる。
 バッテリ40の充電状態を監視するBMS75は、電圧センサ71により検出された電圧と電流センサ72により検出され電流とに基づいて、バッテリ40の電池残量(SOC)を算出する。そして、電池残量に基づいて生成した充電電流指令値と、電流センサ72により検出されたバッテリ40への電流を示すデータ信号とを地上装置200側のコントローラ84に送信する。これらのデータ信号を受信したコントローラ84は、バッテリ40に供給される電流と充電電流指令値との差を補償するように電源部83から出力される交流電圧を調整する。これにより、バッテリ40に供給される電流が充電電流指令値に近づけられ、バッテリ40への充電電力が調整される。
 また、バッテリ40の電力でモータジェネレータMGが力行する場合は、ドライブ回路57がスイッチ回路61をオフに設定し、ドライブ回路51が遮断回路30を接続することにより、バッテリ40の直流電圧がインバータ17に出力される。ドライブ回路53は、インバータ17に入力する直流電力を3相の交流電力に変換するようにインバータ17の各半導体スイッチング素子をPWM制御する。
 それにより、インバータ17が直流電力を3相の交流電力に変換してモータジェネレータMGに出力し、モータジェネレータMGが力行して不図示の駆動輪が駆動される。
 次に、モータジェネレータMGが回生する場合について説明する。回生制動時にモータジェネレータMGで発電された3相の交流電力は、インバータ17に出力される。
 制御部56は、インバータ17が3相の交流電力を直流電力に変換するように、インバータ17の各半導体スイッチング素子をドライブ回路53を介してPWM制御する。これにより、インバータ17は3相の交流電力を直流電力に変換し、その変換した直流電力が直流ライン11,12に出力される。変換された直流電力は、コンデンサC11、C12で平滑化されてバッテリ40に供給される。
 このように、この車両装置では、バッテリ40を充電するために、図2の回路による非接触給電が行われる。モータジェネレータMGは、バッテリ40に蓄えられた電力で回転し、また、回生制動時にモータジェネレータMGで発電された交流電力は、直流に変換されてバッテリ40に蓄えられる。
 図13は、図11の変形例を示している。この車両は、二つのモータジェネレータMGを有し、それらを駆動するための二つのインバータ18、28を備えている。第1のモータジェネレータMG1は、内燃機関である不図示のエンジンによって駆動される発電機として動作し、また、エンジン始動を行い得る電動機として動作する。第2のモータジェネレータMG2は、車両の不図示の駆動輪を駆動する電動機として動作し、また、回生制動時に発電機として動作する。
 また、コンデンサアーム16とバッテリ40との間には、半導体スイッチング素子(Tr1、Tr2)及び帰還ダイオード(D1、D2)から成る二つのスイッチングユニットが直列接続されたスイッチングユニットアームと、一つのリアクトルL1と、一つのコンデンサC1とから成るDC-DCコンバータ15を有している。DC-DCコンバータ15のスイッチングユニットアームは、コンデンサアーム16と並列に接続され、コンデンサC1はバッテリ40と並列に接続され、バッテリ40の負極側に接続するコンデンサC1の端部がスイッチングユニットアームの下側アーム端に接続され、バッテリ40の正極側に接続するコンデンサC1の端部とスイッチングユニットアームのスイッチングユニット接続点との間にリアクトルL1が接続されている。
 このDC-DCコンバータ15は、バッテリ40に充電される直流電力を調整する機能を有している。そのため、図13の装置では、地上側装置200における充電制御の機構を必要としない。
 この装置では、バッテリ40の充電を地上側装置200からの非接触給電で行う場合に、ドライブ回路57がスイッチ回路61を接続し、ドライブ回路51が遮断回路30を接続し、ドライブ回路54及びドライブ回路55がインバータ18、28の各スイッチングユニットの半導体スイッチング素子をオフ状態に設定する。そのため、図11の回路と同様に、コンデンサアーム16の二つのコンデンサC11、C12とインバータ18の二つの帰還ダイオードD21、D22により倍電圧整流回路が形成され、受電コイル73で受電された交流電力が、この倍電圧整流回路で直流に変換されて出力される。
 このとき、DC-DCコンバータ15を駆動するドライブ回路52は、スイッチングユニットアームの下側アームの半導体スイッチング素子Tr2をオフ状態にし、上側アームの半導体スイッチング素子Tr1をPWM制御して、半導体スイッチング素子Tr1のオン/オフを切り替える。このとき、DC-DCコンバータ15は、降圧チョッパとして機能し、降圧調整された直流電圧を出力する。バッテリ40は、DC-DCコンバータ15によって降圧調整された直流電圧により充電される。
 このように、DC/DCコンバータ15は、バッテリ40の充電時にバッテリ40に供給する直流電力(直流電圧及び直流電流)を調整する。
 このとき、制御部56は、電圧センサ71の電圧検出結果及び電流センサ72の電流検出結果に基づき、バッテリ40の電池残量(SOC)を算出し、電池残量に応じて、DC/DCコンバータ15の半導体スイッチング素子Tr1のデューティ比を制御し、バッテリ40に供給される充電電力を調整する。例えば、制御部56は、電池残量が所定値よりも低い場合に、バッテリ40への供給電流を定電流制御し、バッテリ40を急速に充電する。また、電池残量が増加して所定値よりも高くなった場合に、定電圧制御を行い、充電電力を小さくして過充電を防止する。
 また、バッテリ40の電力で第1のモータジェネレータMG1または第2のモータジェネレータMG2が力行する場合は、ドライブ回路57がスイッチ回路61をオフに設定し、ドライブ回路51が遮断回路30を接続する。また、力行するモータジェネレータMGに接続したインバータ18、28を駆動するドライブ回路54、55は、インバータ18、28に入力する直流電力を3相の交流電力に変換するようにインバータ18、28の各半導体スイッチング素子をPWM制御する。
 このとき、DC-DCコンバータ15を駆動するドライブ回路52は、スイッチングユニットアームの上側アームの半導体スイッチング素子Tr1をオフ状態に設定し、下側アームの半導体スイッチング素子Tr2をPWM制御して、半導体スイッチング素子Tr2のオン/オフを切り替える。そのため、DC-DCコンバータ15は、昇圧チョッパとして機能し、バッテリ40から出力された直流電圧を昇圧する。
 昇圧された直流電圧は、コンデンサC11、C12で平滑化されてインバータ18、28に入力し、インバータ18、28で3相の交流電力に変換されてモータジェネレータMG1、2に出力される。
 また、第1のモータジェネレータMG1または第2のモータジェネレータMG2が回生する場合は、そのモータジェネレータMGに接続するインバータ18、28が3相の交流電力を直流電力に変換するように制御され、変換された直流電力がコンデンサC11、C12で平滑化されてDC-DCコンバータ15に入力する。
 この場合、DC-DCコンバータ15は、地上側装置200Cからバッテリ40を充電するときと同様に、ドライブ回路52によって降圧チョッパとして機能するように制御され、降圧調整された直流電圧がDC-DCコンバータ15から出力され、この直流電力によりバッテリ40が充電される。
 なお、ここでは、モータジェネレータMGに交流電力を出力するために、直流電力を3相の交流電力に変換可能なインバータ18、28を用いているが、本発明では、半導体スイッチング素子及び還流ダイオードから成るスイッチングユニットの二つが直列に接続されたスイッチングユニットアームを少なくとも一つ有し、直流を交流に変換する機能と交流を直流に変換する機能とを備える電力変換器であれば、使用可能である。
 また、ここでは、DC-DCコンバータ15を用いて、バッテリ充電電圧の降圧やバッテリ出力電圧の昇圧を行っているが、本発明では、直流電圧の昇圧及び降圧が可能な電力変換器であれば、使用可能である。
 本発明の非接触給電システムは、給電効率が高く、コストの低減が可能であり、商用電源との接続性に優れ、また、二次電池に印加される電圧の調整が容易であり、自動車や搬送車や移動ロボットなどの移動体に広く利用することができる。
 10B 車両用駆動装置
 13,14  交流ライン
 15  DC-DCコンバータ
 16  コンデンサアーム
 17,18,19 インバータ
 21、22、23 スイッチングユニットアーム
 30  遮断回路
 31  リレー
 32  補助リレー
 33  抵抗器
 34  リレー
 40  バッテリ
 40a 正極端子
 40b 負極端子
 51、52、53,54、55、57ドライブ回路
 61  スイッチ回路
 71  電圧センサ
 72  電流センサ
 73  受電コイル
 74  並列コンデンサ
 75  BMS
 83  電源部
 84  コントローラ
 85  送電コイル
 86  コンデンサ
 90  商用電源
 100 車両
 110 可変電圧整流器(ブリッジレス高力率昇圧型整流器)
 120 インバータ(ハーフブリッジインバータ)
 130 非接触給電トランス
 131 送電コイル
 132 直列コンデンサ
 133 受電コイル
 134 並列コンデンサ
 140 整流器(倍電圧整流器)
 150 トランス
 151 二次電池
 152 インバータ
 153 モータ
 154 エンジン
 160 高力率昇圧型整流器
 171 半導体スイッチ駆動手段
 172 パルス幅変調ブリッジレス整流器制御手段
 173 定電圧制御手段
 174 半導体スイッチ駆動手段
 175 方形波インバータ制御手段
 176 定電流制御手段
 177 二次電池充電制御手段
 200 地上側装置

Claims (11)

  1.  非接触給電トランスの一次側に接続する高周波交流電源にハーフブリッジインバータを用い、非接触給電トランスの二次側交流出力の直流変換に倍電圧整流器を用いることを特徴とする非接触給電システム。
  2.  請求項1に記載の非接触給電システムであって、前記ハーフブリッジインバータの直流電源として、高力率昇圧型整流器を用いることを特徴とする非接触給電システム。
  3.  請求項2に記載の非接触給電システムであって、前記倍電圧整流器の出力電圧の調整を前記高力率昇圧型整流器の出力電圧調整で行うことを特徴とする非接触給電システム。
  4.  請求項3に記載の非接触給電システムであって、前記ハーフブリッジインバータまたは倍電圧整流器の出力電圧をフィードバック入力として前記高力率昇圧型整流器の定電圧制御を行う定電圧制御回路を設け、前記定電圧制御回路の出力電圧に基づいて前記高力率昇圧型整流器の通流率を制御することを特徴とする非接触給電システム。
  5.  請求項3に記載の非接触給電システムであって、前記ハーフブリッジインバータまたは倍電圧整流器の出力電流をフィードバック入力として前記高力率昇圧型整流器の定電流制御を行う定電流制御回路を設け、前記定電流制御回路の出力電圧に基づいて前記高力率昇圧型整流器の通流率を制御することを特徴とする非接触給電システム。
  6.  請求項1から5のいずれかに記載の非接触給電システムであって、前記非接触給電トランスの一次側には直列コンデンサが、二次側には前記倍電圧整流器との間に並列コンデンサが接続されていることを特徴とする非接触給電システム。
  7.  請求項1から6のいずれかに記載の非接触給電システムであって、前記非接触給電トランスの一次側が地上に設置され、二次側が自動車や搬送車や移動ロボットなどの移動体に設置されていることを特徴とする非接触給電システム。
  8.  請求項1から6のいずれかに記載の非接触給電システムであって、前記倍電圧整流器の出力が二次電池に接続され、前記二次電池の充電に必要な一連の制御が前記高力率昇圧型整流器の通流率を制御することで行われることを特徴とする非接触給電システム。
  9.  請求項2、3、4、5または8のいずれかに記載の非接触給電システムであって、前記高力率昇圧型整流器がブリッジを持たないブリッジレス高力率昇圧型整流器であることを特徴とする非接触給電システム。
  10.  請求項7に記載の非接触給電システムであって、前記非接触給電トランスの二次側が設置される移動体が、直流を交流に変換する機能と交流を直流に変換する機能とを備える第1の電力変換器と、前記第1の電力変換器で変換された直流により充電される二次電池と、前記二次電池と前記第1の電力変換器との間に介在する二つのコンデンサと、前記第1の電力変換器で変換された交流により駆動される回転電機と、を備え、
     前記第1の電力変換器は、半導体スイッチング素子及び還流ダイオードから成るスイッチングユニットの二つが直列に接続されたスイッチングユニットアームを少なくとも一つ有し、
     前記非接触給電トランスの二次側交流出力により前記二次電池を充電するとき、前記第1の電力変換器を構成する全てのスイッチングユニットの半導体スイッチング素子がオフ状態にされ、直列に接続された二つのスイッチングユニットの還流ダイオードと前記二つのコンデンサとで倍電圧整流器が形成されることを特徴とする非接触給電システム。
  11.  請求項10に記載の非接触給電システムであって、前記二次電池と前記二つのコンデンサとの間に、直流電圧の昇圧及び降圧が可能な第2の電力変換器を備え、前記第1の電力変換器が前記二次電池の直流出力を交流に変換して前記回転電機を駆動するとき、前記第2の電力変換器は、前記二次電池の直流電圧を昇圧して前記第1の電力変換器に出力し、前記二次電池を充電するとき、前記第2の電力変換器は、前記倍電圧整流器から出力される直流電圧を前記二次電池の電池残量に応じて降圧して前記二次電池に出力することを特徴とする非接触給電システム。
PCT/JP2012/050968 2011-01-19 2012-01-18 非接触給電システム WO2012099169A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/980,001 US9266441B2 (en) 2011-01-19 2012-01-18 Contactless power transfer system
EP12736602.9A EP2667481A4 (en) 2011-01-19 2012-01-18 SYSTEM FOR CONTACT-FREE ENERGY TRANSMISSION
CN201280005638.3A CN103339822B (zh) 2011-01-19 2012-01-18 非接触供电系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011009299A JP5780765B2 (ja) 2011-01-19 2011-01-19 非接触給電システム
JP2011-009299 2011-01-19
JP2011-261614 2011-11-30
JP2011261614A JP5947528B2 (ja) 2011-11-30 2011-11-30 車両用駆動装置、車両及び非接触充電システム

Publications (1)

Publication Number Publication Date
WO2012099169A1 true WO2012099169A1 (ja) 2012-07-26

Family

ID=46515791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050968 WO2012099169A1 (ja) 2011-01-19 2012-01-18 非接触給電システム

Country Status (4)

Country Link
US (1) US9266441B2 (ja)
EP (1) EP2667481A4 (ja)
CN (1) CN103339822B (ja)
WO (1) WO2012099169A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057577A1 (ja) * 2012-10-12 2014-04-17 三菱電機株式会社 電源装置およびバッテリ充電装置
JP2016140158A (ja) * 2015-01-26 2016-08-04 株式会社デンソー 非接触給電システムの送電装置
CN107914596A (zh) * 2017-12-15 2018-04-17 三峡大学 基于无线电能传输的电动汽车充电系统
CN108242895A (zh) * 2017-02-14 2018-07-03 陈扬 混合式全桥倍压整流器及其单级转换器
US10298063B2 (en) 2013-03-18 2019-05-21 Ihi Corporation Power-supplying device and wireless power supply system

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081625B (zh) * 2012-02-03 2017-09-22 株式会社村田制作所 开关电源装置
KR102040632B1 (ko) * 2012-05-11 2019-11-05 후지 덴키 가부시키가이샤 모터 구동 장치
JP2014011925A (ja) * 2012-07-02 2014-01-20 Omron Automotive Electronics Co Ltd 充電装置
US9722462B2 (en) * 2012-08-03 2017-08-01 Mediatek Singapore Pte. Ltd. System and method for controlling resonant wireless power source
KR20140097628A (ko) * 2013-01-28 2014-08-07 삼성에스디아이 주식회사 배터리 온도 제어 시스템 및 그 제어 방법
KR102044807B1 (ko) 2013-03-18 2019-11-15 삼성전자주식회사 무선 전력 전송 제어 장치 및 무선 전력 전송 제어 방법
JP6003853B2 (ja) * 2013-09-11 2016-10-05 トヨタ自動車株式会社 車両
US10236720B2 (en) * 2013-09-26 2019-03-19 Semiconductor Components Industries, Llc Wireless power transfer system and driving method thereof
JP5920437B2 (ja) * 2013-11-28 2016-05-18 Tdk株式会社 非接触電力伝送回路
CN104795987A (zh) * 2014-01-17 2015-07-22 雅达电子国际有限公司 多相dc-dc变换器
US20150229203A1 (en) * 2014-02-12 2015-08-13 Gholamreza Esmaili Smart Resistor-Less Pre-Charge Circuit For Power Converter
JP6160504B2 (ja) * 2014-02-20 2017-07-12 トヨタ自動車株式会社 受電装置
US9931951B2 (en) * 2014-06-13 2018-04-03 University Of Maryland Integrated dual-output grid-to-vehicle (G2V) and vehicle-to-grid (V2G) onboard charger for plug-in electric vehicles
KR102302783B1 (ko) * 2014-07-25 2021-09-16 현대모비스 주식회사 차량 구동 시스템 및 방법
WO2016036832A1 (en) * 2014-09-03 2016-03-10 Kettering University Wireless power transfer system
US10110071B2 (en) 2014-09-12 2018-10-23 Mitsubishi Electric Engineering Company, Limited Resonance-type power transmitter
KR102332172B1 (ko) * 2014-09-26 2021-11-29 삼성전자주식회사 무선 전력 송신기 및 무선 전력 수신기
CN104242405B (zh) * 2014-09-29 2017-02-15 山东大学 一种电动汽车动力电池快速充电系统及方法
KR102326065B1 (ko) * 2014-10-31 2021-11-12 현대모비스 주식회사 전기 자동차의 전력 변환 장치
JP6038386B1 (ja) * 2015-03-23 2016-12-07 三菱電機株式会社 双方向非接触給電装置および双方向非接触給電システム
MX361850B (es) * 2015-06-23 2018-12-18 Nissan Motor Inversor con capacidad de carga.
JP6481558B2 (ja) * 2015-08-06 2019-03-13 トヨタ自動車株式会社 非接触送電装置
WO2017047455A1 (ja) 2015-09-17 2017-03-23 株式会社Ihi 送電装置及び非接触給電システム
CN106560980B (zh) * 2015-10-02 2021-04-27 松下知识产权经营株式会社 无线电力传输系统
KR101764496B1 (ko) * 2015-11-02 2017-08-02 현대자동차주식회사 무선 전력 전송 시스템용 능동 정류기와 이를 이용하는 차량 어셈블리 및 그 작동 방법
WO2017188327A1 (ja) * 2016-04-27 2017-11-02 京セラ株式会社 フィルムコンデンサ、連結型コンデンサと、これを用いたインバータおよび電動車輌
CN105871244A (zh) * 2016-05-06 2016-08-17 钛白金科技(深圳)有限公司 一种单相ac-dc/ dc-ac双用电路及三相ac-dc/ dc-ac双用电路
KR20230107913A (ko) 2016-06-15 2023-07-18 와틀로 일렉트릭 매뉴팩츄어링 컴파니 열시스템용 전력 변환기
CN106253497A (zh) * 2016-08-17 2016-12-21 桐城市闲产网络服务有限公司 一种基于特斯拉线圈的微型无线电能传输系统
KR101961146B1 (ko) * 2016-11-18 2019-03-25 현대자동차주식회사 차량, 차량 충전 장치, 차량 충전 시스템 및 차량의 충전 방법
US10315526B2 (en) 2017-01-25 2019-06-11 Witricity Corporation Switched-capacitor power ramping for soft switching
US20180278181A1 (en) * 2017-03-21 2018-09-27 The Regents Of The University Of Colorado, A Body Control architecture for ac-dc and dc-ac conversion capable of bidirectional active and reactive power processing
US10661677B2 (en) * 2017-07-25 2020-05-26 Hamilton Sundstrand Corporation Electrical power system for hybrid or electric vehicle
EP3729603B1 (en) 2017-12-22 2023-09-13 Wireless Advanced Vehicle Electrification, Inc. Wireless power transfer pad with multiple windings
US11462943B2 (en) * 2018-01-30 2022-10-04 Wireless Advanced Vehicle Electrification, Llc DC link charging of capacitor in a wireless power transfer pad
CN108282035A (zh) * 2018-02-07 2018-07-13 山东大学 适用于抗系统参数宽范围波动的无线电能传输装置及方法
US11437854B2 (en) 2018-02-12 2022-09-06 Wireless Advanced Vehicle Electrification, Llc Variable wireless power transfer system
DE102018105608A1 (de) * 2018-03-12 2019-09-12 Zollner Elektronik Ag Ladeanordnung für Kraftfahrzeuge mit Schaltungssteuerung auf der Empfängerseite
KR102537368B1 (ko) * 2018-03-16 2023-05-25 현대자동차주식회사 전기차 무선 전력 전송 시스템에서의 브리지리스 정류기를 포함하는 전력 수신 장치
CN108448694B (zh) * 2018-03-29 2020-12-25 北京小米移动软件有限公司 无线充电设备、方法及装置、电子设备
US11211814B2 (en) * 2018-04-23 2021-12-28 Spiers New Technologies, Inc. Circuitry to prevent lithium plating within a lithium ion battery
US11292348B2 (en) * 2018-06-01 2022-04-05 Hyundai Motor Company Method and apparatus for performing switching synchronization for bridgeless rectifier in electric vehicle wireless power transfer system
EP3588736A1 (en) * 2018-06-29 2020-01-01 Koninklijke Philips N.V. Wireless power transfer
DE102018118573A1 (de) * 2018-07-31 2020-02-06 Zollner Elektronik Ag Induktive Ladeanordnung mit geteilter Litze
DE102018118572A1 (de) * 2018-07-31 2020-02-06 Zollner Elektronik Ag Induktive Ladeanordnung mit geteilter Litze
DE112019004409T5 (de) * 2018-09-03 2021-05-20 Mitsubishi Electric Corporation Energie-umwandlungseinrichtung
JP2020061893A (ja) * 2018-10-12 2020-04-16 パナソニックIpマネジメント株式会社 電力変換装置
JP7249164B2 (ja) * 2019-02-05 2023-03-30 株式会社Subaru 車両
CN110061570B (zh) * 2019-05-28 2020-10-02 浙江大学 通过副边调制实现pfc的无线电能传输系统
JP6612482B1 (ja) * 2019-07-29 2019-11-27 株式会社オリジン 交流出力電源
FR3123516A1 (fr) * 2021-05-26 2022-12-02 Smart Packaging Solutions Dispositif d’alimentation électrique sans fil
WO2023055996A1 (en) * 2021-09-30 2023-04-06 Zoox, Inc. Wireless power charger for vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125344U (ja) * 1990-03-30 1991-12-18
JP2000217277A (ja) * 1999-01-19 2000-08-04 Ishikawajima Harima Heavy Ind Co Ltd 非接触給電設備
JP2001136667A (ja) * 1999-11-02 2001-05-18 Densei Lambda Kk 非接触形の車載バッテリー用充電器の充電方法
JP2008104295A (ja) * 2006-10-19 2008-05-01 Voltex:Kk 非接触電源装置
JP2010197093A (ja) * 2009-02-23 2010-09-09 Hitachi Automotive Systems Ltd 状態判別装置
JP2010233364A (ja) * 2009-03-27 2010-10-14 Nissan Motor Co Ltd 給電装置
JP2010288441A (ja) 2009-05-14 2010-12-24 Nissan Motor Co Ltd 非接触給電装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4132382B2 (ja) 1999-04-09 2008-08-13 富士重工業株式会社 電気自動車のバッテリ充電装置
TW521481B (en) 2000-05-17 2003-02-21 Sony Corp Switching power supply apparatus with active clamp circuit
US6548985B1 (en) * 2002-03-22 2003-04-15 General Motors Corporation Multiple input single-stage inductive charger
KR20050084844A (ko) * 2002-10-09 2005-08-29 도요 세이칸 가부시키가이샤 금속 산화막의 형성 방법 및 해당 방법에 사용하는마이크로파 전원 장치
JP2006217747A (ja) * 2005-02-04 2006-08-17 Sony Corp スイッチング電源回路
TW200741404A (en) 2006-04-25 2007-11-01 Hipro Electronics Taiwan Co Ltd Bridgeless power factor correction circuit and control method thereof
JP4978062B2 (ja) 2006-06-02 2012-07-18 パナソニック株式会社 高周波誘電加熱用電力制御装置およびその制御方法
US9561730B2 (en) * 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125344U (ja) * 1990-03-30 1991-12-18
JP2000217277A (ja) * 1999-01-19 2000-08-04 Ishikawajima Harima Heavy Ind Co Ltd 非接触給電設備
JP2001136667A (ja) * 1999-11-02 2001-05-18 Densei Lambda Kk 非接触形の車載バッテリー用充電器の充電方法
JP2008104295A (ja) * 2006-10-19 2008-05-01 Voltex:Kk 非接触電源装置
JP2010197093A (ja) * 2009-02-23 2010-09-09 Hitachi Automotive Systems Ltd 状態判別装置
JP2010233364A (ja) * 2009-03-27 2010-10-14 Nissan Motor Co Ltd 給電装置
JP2010288441A (ja) 2009-05-14 2010-12-24 Nissan Motor Co Ltd 非接触給電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2667481A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057577A1 (ja) * 2012-10-12 2014-04-17 三菱電機株式会社 電源装置およびバッテリ充電装置
JP5911591B2 (ja) * 2012-10-12 2016-04-27 三菱電機株式会社 電源装置およびバッテリ充電装置
US10298063B2 (en) 2013-03-18 2019-05-21 Ihi Corporation Power-supplying device and wireless power supply system
JP2016140158A (ja) * 2015-01-26 2016-08-04 株式会社デンソー 非接触給電システムの送電装置
CN108242895A (zh) * 2017-02-14 2018-07-03 陈扬 混合式全桥倍压整流器及其单级转换器
CN108242895B (zh) * 2017-02-14 2019-12-17 陈扬 混合式全桥倍压整流器及其单级转换器
CN107914596A (zh) * 2017-12-15 2018-04-17 三峡大学 基于无线电能传输的电动汽车充电系统
CN107914596B (zh) * 2017-12-15 2023-08-25 三峡大学 基于无线电能传输的电动汽车充电系统

Also Published As

Publication number Publication date
EP2667481A1 (en) 2013-11-27
US9266441B2 (en) 2016-02-23
EP2667481A4 (en) 2015-12-02
CN103339822B (zh) 2016-05-18
CN103339822A (zh) 2013-10-02
US20130293192A1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
WO2012099169A1 (ja) 非接触給電システム
US10763690B2 (en) Vehicle-side charging circuit for a vehicle with electric drive, and method for operating a vehicle-side current converter, and use of at least one winding of a vehicle-side electric machine for intermediate storagectrical machine for buffer
US10454290B2 (en) Apparatus for transferring energy using onboard power electronics with high-frequency transformer isolation and method of manufacturing same
EP2814136B1 (en) Bidirectional contactless power supply system
JP5577986B2 (ja) 電源装置および車載用電源装置
JP5780765B2 (ja) 非接触給電システム
JP5645582B2 (ja) 共振形充電装置及びそれを用いた車両
JP5470965B2 (ja) 給電装置
US8587252B2 (en) System and method for digital control of a DC/DC power-converter device, in particular for automotive applications
WO2013136753A1 (ja) 非接触充電装置の給電装置
JP2015527048A (ja) 個々の位相の制御が行われる多相誘導電力伝達システム
US11552557B2 (en) System and method for enhanced single-stage onboard charger with integrated rectifier
US20220161673A1 (en) System and method for single-stage on-board charger power factor correction reactive control
US11699957B2 (en) Energy conversion system, energy conversion method, and power system
Lovison et al. Secondary-side-only simultaneous power and efficiency control for two converters in wireless power transfer system
AU2010269743A1 (en) Electric vehicle control device
CN115441741A (zh) 用于具有集成脉动缓冲控制的单级车载充电器的装置
JP2013212023A (ja) 双方向電力変換装置
JP6369509B2 (ja) 電力変換回路
JP6032002B2 (ja) 充電器
Maeda et al. Power Control Method of Wireless Power Transfer System Using Matrix Converter for Electric Vehicles
Zhou et al. Research on an integrated charging and drive system based on DAB converter
JP2014165947A (ja) 駆動装置
CN112440754A (zh) 一种电动汽车车载充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13980001

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012736602

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE