WO2012099128A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2012099128A1
WO2012099128A1 PCT/JP2012/050871 JP2012050871W WO2012099128A1 WO 2012099128 A1 WO2012099128 A1 WO 2012099128A1 JP 2012050871 W JP2012050871 W JP 2012050871W WO 2012099128 A1 WO2012099128 A1 WO 2012099128A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
panel
temperature
abnormality
heat exchanger
Prior art date
Application number
PCT/JP2012/050871
Other languages
English (en)
French (fr)
Inventor
裕記 藤岡
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to AU2012207956A priority Critical patent/AU2012207956B2/en
Priority to ES12736171T priority patent/ES2806647T3/es
Priority to CN201280005265.XA priority patent/CN103314261B/zh
Priority to EP12736171.5A priority patent/EP2667109B1/en
Publication of WO2012099128A1 publication Critical patent/WO2012099128A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0213Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being only used during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger

Definitions

  • the present invention relates to an air conditioner including an indoor unit having an indoor heat exchanger and a radiation panel.
  • an air conditioner that is connected to an outdoor unit via a refrigerant circuit and includes an indoor unit having an indoor heat exchanger disposed inside the outdoor unit and a radiation panel provided on the surface thereof is known.
  • an indoor heat exchanger disposed inside the outdoor unit and a radiation panel provided on the surface thereof.
  • Patent Document 1 In the refrigerant circuit of the air conditioner disclosed in Patent Document 1, the indoor heat exchanger and the radiant panel are connected in parallel.
  • valve mechanism for adjusting the flow rate of the refrigerant supplied to the radiation panel on the downstream side of the radiation panel during the heating operation.
  • the valve mechanism is closed, so that the refrigerant does not flow through the radiation panel and the refrigerant flows only through the indoor heat exchanger.
  • the valve mechanism is closed, so that the refrigerant does not flow through the radiation panel and the refrigerant flows only through the indoor heat exchanger.
  • the valve mechanism is opened, and the refrigerant flows into both the radiant panel and the indoor heat exchanger.
  • an object of the present invention is to provide an air conditioner that can detect that an abnormality has occurred in a valve mechanism.
  • An air conditioner is an air conditioner including a refrigerant circuit that connects an indoor unit and an outdoor unit, wherein the indoor unit is provided so as to face a fan inside the air conditioner.
  • An abnormality detecting means for detecting that an abnormality has occurred in the valve mechanism.
  • the abnormality detection means it is possible to detect that an abnormality has occurred in the valve mechanism by the abnormality detection means based on the temperature of the radiation panel. Accordingly, it is possible to suppress the occurrence of problems such as condensation of the radiant panel during the cooling operation and the radiant panel temperature during the warm air heating operation and the radiant heating operation being not at an appropriate temperature due to an abnormality in the valve mechanism.
  • An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the refrigerant circuit includes a main flow path in which a decompression mechanism, an outdoor heat exchanger, and a compressor are sequentially provided, and during heating operation.
  • the refrigerant circuit includes a main flow path in which a decompression mechanism, an outdoor heat exchanger, and a compressor are sequentially provided, and during heating operation.
  • the branch portion and the junction portion are connected in parallel with the first flow path, and have a second flow path provided with the radiation panel, and the valve mechanism is configured to emit the radiation in the refrigerant circuit. It is provided between the panel and the junction.
  • valve mechanism is provided between the radiation panel and the junction in the refrigerant circuit” includes the case where the valve mechanism is provided in the junction.
  • An air conditioner according to a third aspect of the present invention is the air conditioner according to the first or second aspect, wherein the abnormality detection means is configured such that the valve mechanism is switched to a state in which no refrigerant flows through the radiation panel. In addition, when the refrigerant flows through the radiation panel, it is detected that an abnormality has occurred in the valve mechanism.
  • An air conditioner according to a fourth aspect of the present invention is the air conditioner according to any of the first to third aspects of the invention, an indoor heat exchanger temperature sensor provided in the indoor heat exchanger, a radiant portion of the radiant panel, and the valve A panel temperature sensor provided between the mechanism and the abnormality detection means, based on the temperature detected by the panel temperature sensor and the temperature detected by the indoor heat exchange temperature sensor, It is detected that an abnormality has occurred in the valve mechanism.
  • the open / close state of the valve mechanism can be detected by comparing the temperature detected by the panel temperature sensor with the temperature detected by the indoor heat exchange temperature sensor. Therefore, when the valve mechanism should be in a state in which refrigerant does not flow to the radiant panel, it is detected that the valve mechanism is open and refrigerant is flowing to the radiant panel, or the valve mechanism is refrigerated to the radiant panel. When it is detected that the valve mechanism is closed and no refrigerant is flowing through the radiation panel, it can be detected that an abnormality has occurred in the valve mechanism.
  • the air conditioner according to a fifth aspect of the present invention in the air conditioner according to the fourth aspect of the present invention, when the abnormality detecting means is in a cooling operation, and the pressure in the indoor heat exchanger is equal to or lower than a predetermined value, It is detected that an abnormality has occurred in the valve mechanism.
  • the difference between the indoor temperature and the temperature detected by the indoor heat exchanger temperature sensor is small under the condition that the pressure (low pressure) in the indoor heat exchanger does not drop sufficiently during the cooling operation.
  • the temperature detected by the panel temperature sensor and the indoor heat exchange temperature sensor are detected. The temperature gets closer. Therefore, although there is no abnormality in the valve mechanism, it may be erroneously detected that an abnormality has occurred in the valve mechanism and the refrigerant is flowing through the radiation panel. Therefore, by excluding such a case, erroneous detection of abnormality of the valve mechanism can be suppressed.
  • An air conditioner according to a sixth aspect of the present invention is the air conditioner according to the fourth or fifth aspect of the present invention, further comprising an indoor temperature sensor for detecting an indoor temperature, wherein the abnormality detecting means is the indoor temperature sensor.
  • the difference between the temperature detected by the above and the temperature detected by the indoor heat exchange temperature sensor is equal to or greater than a predetermined value, it is detected that an abnormality has occurred in the valve mechanism.
  • the abnormality detection means it is possible to detect that an abnormality has occurred in the valve mechanism by the abnormality detection means based on the temperature of the radiation panel. Accordingly, it is possible to suppress the occurrence of problems such as condensation of the radiant panel during the cooling operation and the radiant panel temperature during the warm air heating operation and the radiant heating operation being not at an appropriate temperature due to an abnormality in the valve mechanism.
  • the valve mechanism when the valve mechanism is switched to a state in which the refrigerant does not flow through the radiation panel by the abnormality detection means, it is possible to detect that an abnormality has occurred in the valve mechanism when the refrigerant flows through the radiation panel. .
  • the open / close state of the valve mechanism can be detected by comparing the temperature detected by the panel temperature sensor with the temperature detected by the indoor heat exchange temperature sensor. Therefore, when the valve mechanism should be in a state in which refrigerant does not flow to the radiant panel, it is detected that the valve mechanism is open and refrigerant is flowing to the radiant panel, or the valve mechanism is refrigerated to the radiant panel. When it is detected that the valve mechanism is closed and no refrigerant is flowing through the radiation panel, it can be detected that an abnormality has occurred in the valve mechanism.
  • the difference between the indoor temperature and the temperature detected by the indoor heat exchanger temperature sensor is small under conditions where the pressure (low pressure) in the indoor heat exchanger does not drop sufficiently during cooling operation.
  • the pressure (low pressure) in the indoor heat exchanger does not drop sufficiently during cooling operation.
  • the temperature detected by the panel temperature sensor and the indoor heat exchange temperature sensor are detected. The temperature gets closer. Therefore, although there is no abnormality in the valve mechanism, it may be erroneously detected that an abnormality has occurred in the valve mechanism and the refrigerant is flowing through the radiation panel. Therefore, by excluding such a case, erroneous detection of abnormality of the valve mechanism can be suppressed.
  • the sixth invention it is possible to suppress erroneous detection of abnormality of the valve mechanism by excluding the case where the difference between the temperature detected by the indoor temperature sensor and the temperature detected by the indoor heat exchange temperature sensor is small.
  • FIG. 1 It is a circuit diagram showing the schematic structure of the air conditioner concerning the embodiment of the present invention, and is a figure showing the flow of the refrigerant at the time of cooling operation and hot air heating operation. It is a circuit diagram showing the schematic structure of the air harmony machine concerning the embodiment of the present invention, and is a figure showing the flow of the refrigerant at the time of radiation heating operation. It is a perspective view of the indoor unit shown in FIG.1 and FIG.2. Fig. 4 is a cross-sectional view taken along line IV-IV of the indoor unit shown in Fig. 3. It is a block diagram which shows schematic structure of the control part which controls an air conditioner. It is a graph for demonstrating the conditions which prevent the misdetection at the time of the abnormality detection part shown in FIG.
  • the air conditioner 1 of the present embodiment includes an indoor unit 2 installed indoors, an outdoor unit 6 installed outdoor, and a remote controller 9 (see FIG. 5).
  • the indoor unit 2 includes an indoor heat exchanger 20 provided so as to face the indoor fan 21, a radiation panel 30, an indoor motor operated valve 23, and an indoor temperature sensor 24 for detecting the indoor air temperature.
  • the outdoor unit 6 includes a compressor 60, a four-way switching valve 61, an outdoor heat exchanger 62, an outdoor fan 63 disposed in the vicinity of the outdoor heat exchanger 62, and an outdoor electric valve 64 (pressure reduction mechanism). And.
  • the air conditioner 1 also includes a refrigerant circuit 10 that connects the indoor unit 2 and the outdoor unit 6.
  • the refrigerant circuit 10 has the main flow path 11 in which the outdoor motor operated valve 64, the outdoor heat exchanger 62, and the compressor 60 are provided in order.
  • the suction side piping and the discharge side piping of the compressor 60 are connected to a four-way switching valve 61.
  • the branch portion 10a is provided at the downstream portion of the compressor 60 in the main flow path 11.
  • the junction part 10b is provided in the part which becomes the upstream of the outdoor motor operated valve 64, and is provided.
  • the refrigerant circuit 10 connects the branch portion 10a and the merging portion 10b, and connects the first flow path 12 provided with the indoor heat exchanger 20, and the branch section 10a and the merging section 10b to the first flow path 12. And a second flow path 13 provided with a radiation panel 30.
  • An indoor electric valve (valve mechanism) 23 is provided between the radiation panel 30 and the merging portion 10b in the second flow path 13. Further, a panel entry temperature sensor 25 and a panel exit temperature sensor 26 are attached to both sides of the radiation panel 30 in the second flow path 13. More specifically, the panel temperature sensor 25 is provided in a pipe upstream of a radiation unit 35 (see FIG. 4) described later of the radiation panel 30 during heating operation. The panel temperature sensor 26 is provided in a pipe on the downstream side of the radiation portion 35 of the radiation panel 30 and on the upstream side of the indoor motor-operated valve 23 during the heating operation.
  • An accumulator 65 is interposed between the suction side of the compressor 60 and the four-way switching valve 61 in the refrigerant circuit 10, and the discharge side of the compressor 60 and the four-way switching valve 61 in the refrigerant circuit 10 are interposed.
  • a discharge temperature sensor 66 is attached between them.
  • an outdoor heat exchanger temperature sensor 68 is attached to the outdoor heat exchanger 62.
  • the indoor heat exchanger 20 has a pipe that constitutes a part of the refrigerant circuit 10 and is provided with an indoor heat exchange temperature sensor 27.
  • the indoor heat exchanger 20 is disposed on the windward side of the indoor fan 21. The air heated or cooled by heat exchange with the indoor heat exchanger 20 is blown into the room as warm air or cold air by the indoor fan 21, whereby hot air heating or cooling is performed.
  • the radiation panel 30 is disposed on the surface side of the indoor unit 2 and has a panel pipe 36 that is a pipe constituting a part of the refrigerant circuit 10. Radiant heating is performed by radiating the heat of the refrigerant flowing through the panel pipe 36 into the room.
  • the indoor motor operated valve 23 is provided to adjust the flow rate of the refrigerant supplied to the radiation panel 30. By controlling the opening and closing of the indoor electric valve 23, it is possible to switch between a state in which the refrigerant flows through the panel piping 36 of the radiation panel 30 and a state in which the refrigerant does not flow.
  • the air conditioner 1 of the present embodiment can perform a cooling operation, a hot air heating operation, and a radiant heating operation.
  • the cooling operation is an operation in which the refrigerant is allowed to flow through the indoor heat exchanger 20 without flowing the refrigerant through the radiant panel 30, and the hot air heating operation is the indoor heat exchanger without flowing the refrigerant through the radiant panel 30.
  • 20 is an operation in which a refrigerant is passed through to perform hot air heating.
  • the radiant heating operation is an operation in which the refrigerant is supplied to the indoor heat exchanger 20 to perform hot air heating, and the refrigerant is supplied to the radiant panel 30 to perform radiant heating.
  • the refrigerant evaporated in the indoor heat exchanger 20 flows into the compressor 60 via the four-way switching valve 61 and the accumulator 65. Note that the refrigerant that has been decompressed by the outdoor motor-operated valve 64 by the closed indoor motor-operated valve 23 does not flow into the radiation panel 30 side of the indoor motor-operated valve 23 in the second flow path 13.
  • the indoor motor-operated valve 23 is closed and the four-way switching valve 61 is switched to the state shown by the solid line in FIG. Therefore, as indicated by solid arrows in FIG. 1, the high-temperature and high-pressure refrigerant discharged from the compressor 60 flows into the indoor heat exchanger 20 through the four-way switching valve 61. Then, the refrigerant condensed in the indoor heat exchanger 20 is decompressed by the outdoor electric valve 64 and then flows into the outdoor heat exchanger 62. Then, the refrigerant evaporated in the outdoor heat exchanger 62 flows into the compressor 60 via the four-way switching valve 61 and the accumulator 65.
  • the refrigerant discharged from the compressor 60 is prevented from flowing to the joining portion 10b side from the indoor electric valve 23 in the second flow path 13 by the closed indoor electric valve 23. That is, in the second flow path 13, the refrigerant is accumulated upstream of the indoor motor operated valve 23.
  • the indoor motor-operated valve 23 is opened, and the four-way switching valve 61 is switched to the state indicated by the solid line in FIG. Therefore, as indicated by the solid arrows in FIG. 2, the high-temperature and high-pressure refrigerant discharged from the compressor 60 passes through the four-way switching valve 61 and flows into the indoor heat exchanger 20 and the radiation panel 30. Then, the refrigerant condensed in the indoor heat exchanger 20 and the radiation panel 30 is decompressed by the outdoor electric valve 64 and then flows into the outdoor heat exchanger 62. Then, the refrigerant evaporated in the outdoor heat exchanger 62 flows into the compressor 60 via the four-way switching valve 61 and the accumulator 65.
  • the indoor unit 2 of the present embodiment has a rectangular parallelepiped shape as a whole, and is installed near the indoor floor surface.
  • the indoor unit 2 is attached to the wall surface in a state of floating about 10 cm from the floor surface.
  • the direction protruding from the wall to which the indoor unit 2 is attached is referred to as “front”, and the opposite direction is referred to as “rear”. 3 is simply referred to as “left-right direction”, and the up-down direction is simply referred to as “up-down direction”.
  • the indoor unit 2 includes a casing 4, internal devices such as the indoor fan 21, the indoor heat exchanger 20, the air outlet unit 46, and the electrical component unit 47 housed in the casing 4, and the front surface.
  • a grill 42 is mainly provided.
  • the casing 4 has a main suction port 4a formed in its lower wall and auxiliary suction ports 4b and 4c formed in its front wall. Further, an air outlet 4 d is formed on the upper wall of the casing 4.
  • the indoor fan 21 is driven to suck air from the auxiliary suction ports 4 b and 4 c while sucking air in the vicinity of the floor surface from the main suction port 4 a.
  • the indoor heat exchanger 20 it heats or cools with respect to the sucked air, and is harmonized. Thereafter, the conditioned air is blown out from the outlet 4d and returned to the room.
  • the casing 4 is composed of a main body frame 41, an outlet cover 51, a radiation panel 30 and an opening / closing panel 52.
  • the air outlet cover 51 has a front panel portion 51 a
  • the radiation panel 30 has a radiation plate 31.
  • the front panel portion 51 a of the blower outlet cover 51, the radiation plate 31 of the radiation panel 30, and the open / close panel 52 are arranged so as to be flush with each other on the front surface of the casing 4, thereby constituting the front panel 5.
  • a power button 48 and a light-emitting display portion 49 that indicates the operation status are provided at the upper right end portion of the front panel 5, that is, the right end portion of the front panel portion 51 a of the outlet cover 51. .
  • the main body frame 41 is attached to the wall surface and supports the various internal devices described above. And the front grille 42, the blower outlet cover 51, the radiation panel 30, and the open / close panel 52 are attached to the front surface of the main body frame 41 in a state of supporting internal devices.
  • the blower outlet cover 51 is attached to the upper end part of the main body frame 41, and the blower outlet 4d which is a rectangular-shaped opening long in the left-right direction is formed in the upper wall.
  • the radiation panel 30 is attached below the blowout outlet cover 51, and the open / close panel 52 is attached below the radiation panel 30. Between the lower front end of the main body frame 41 and the lower end of the open / close panel 52 is a main suction port 4a which is an opening long in the left-right direction.
  • the indoor fan 21 is disposed slightly above the central portion of the casing 4 in the height direction so that its axial direction is along the left-right direction.
  • the indoor fan 21 sucks air from the lower front and blows it upward and rearward.
  • the indoor heat exchanger 20 is arranged substantially in parallel with the front panel 5, and faces upward as the front heat exchanger 20a faces the rear surface of the front panel 5 and from the vicinity of the lower end portion of the front heat exchanger 20a toward the rear surface. It is comprised with the back surface heat exchanger 20b which inclines.
  • the front heat exchanger 20 a is disposed in front of the indoor fan 21, and its upper half faces the indoor fan 21.
  • the rear heat exchanger 20 b is disposed below the indoor fan 21 and faces the indoor fan 21. That is, the indoor heat exchanger 20 has a substantially V shape as a whole, and is disposed so as to surround the front and the lower side of the indoor fan 21.
  • a drain pan 22 extending in the left-right direction is disposed below the indoor heat exchanger 20.
  • An electrical component unit 47 is disposed below the drain pan 22.
  • the air outlet unit 46 is disposed above the indoor fan 21 and guides the air blown from the indoor fan 21 to the air outlet 4d formed on the upper wall of the casing 4.
  • the blower outlet unit 46 includes a horizontal flap 46a disposed in the vicinity of the blower outlet 4d.
  • the horizontal flap 46a changes the airflow direction of the airflow blown from the air outlet 4d and opens and closes the air outlet 4d.
  • the front grille 42 covers the main body frame 41 so as to cover the main body frame 41 to which internal devices such as the indoor heat exchanger 20, the indoor fan 21, the outlet unit 46, and the electrical component unit 47 are attached. Attached to. More specifically, the front grille 42 is attached to the main body frame 41 so as to cover from the substantially central portion in the vertical direction of the front heat exchanger 20a to the lower end of the main body frame 41.
  • the front grill 42 has a filter holding portion 42a and a suction port grill 42b disposed in the main suction port 4a.
  • the lower filter 43 and the upper filter 44 are attached to the filter holding part 42a. As shown in FIG. 4, the lower filter 43 held by the filter holding portion 42a extends downward from a substantially central portion in the vertical direction of the front heat exchanger 20a, and its lower end portion is inclined obliquely in the rear oblique direction. is doing. The lower end of the lower filter 43 is located in the vicinity of the rear edge of the main suction port 4a.
  • the upper filter 44 extends upward from a substantially central portion in the vertical direction of the front heat exchanger 20a. The lower filter 43 and the upper filter 44 divide the space between the front heat exchanger 20a and the front panel 5 in the front-rear direction.
  • the air outlet cover 51 covers the air outlet unit 46. As described above, the air outlet 4d is formed on the upper wall of the air outlet cover 51. Further, a front panel portion 51 a is provided on the front surface of the outlet cover 51.
  • the front panel 51a has a rectangular shape that is long in the left-right direction.
  • the radiation panel 30 has a substantially rectangular shape that is long on the left and right.
  • the radiation panel 30 is mainly configured by an aluminum radiation plate 31 and a resin heat insulating cover 32 attached to the back surface of the radiation plate 31.
  • the radiation plate 31 is located below the front panel portion 51 a of the outlet cover 51.
  • a panel pipe 36 which is a part of the pipe constituting the refrigerant circuit 10, is attached to the back surface of the radiation plate 31.
  • the portion where the radiation plate 31 and the panel pipe 36 are in contact is the radiation portion 35.
  • the open / close panel 52 is detachably attached below the radiation plate 31 of the radiation panel 30.
  • the open / close panel 52 has a rectangular shape that is long in the left-right direction. As shown in FIG. 4, the vertical position of the upper end of the open / close panel 52 is substantially the same as the upper end of the front grill 42. As described above, the lower end of the open / close panel 52 constitutes a part of the main suction port 4a. Therefore, by removing the open / close panel 52, the front grill 42 is exposed, and the lower filter 43 and the upper filter 44 attached to the filter holding portion 42a of the front grill 42 can be attached and detached.
  • ⁇ Remote control 9> In the remote controller 9, the user starts / stops the operation, sets the operation mode, sets the indoor temperature target temperature (indoor set temperature), and sets the blowout air volume for the air conditioner 1 configured as described above. Settings are made.
  • control unit 7 includes a storage unit 70, an indoor electric valve control unit 72, an abnormality detection unit 73, an indoor fan control unit 74, a compressor control unit 75, and an outdoor electric valve control unit. 76.
  • the storage unit 70 stores various operation settings related to the air conditioner 1, control programs, data tables necessary for executing the control programs, and the like.
  • the operation setting includes one set by operating the remote controller 9 by the user, such as a target temperature (room setting temperature) of the room temperature, and one set in advance for the air conditioner 1. .
  • the target temperature range of the radiation panel 30 is set in advance to a predetermined temperature range (for example, 50 to 55 ° C.).
  • the target temperature range of the radiation panel 30 may be set by operating the remote controller 9.
  • the indoor electric valve control unit 72 controls the opening degree of the indoor electric valve 23. During the cooling operation or the warm air heating operation, the indoor motor operated valve control unit 72 closes the indoor motor operated valve 23. Further, during the radiant heating operation, the indoor motor operated valve control unit 72 controls the opening degree of the indoor motor operated valve 23 based on the temperature of the radiant panel 30. Specifically, the surface temperature (predicted value) of the radiation panel 30 is calculated based on the calculated values of the temperatures detected by the panel entry temperature sensor 25 and the panel exit temperature sensor 26, respectively, and the surface temperature of the radiation panel 30 is calculated. Of the indoor motor-operated valve 23 is controlled so that the predicted value (hereinafter simply referred to as the radiant panel temperature) falls within the panel target temperature range (for example, 50 to 55 ° C.). In addition, when the detected value by the panel temperature sensor 25 is a predetermined value (for example, 80 ° C.) or more, the indoor motor-operated valve 23 is closed.
  • the predicted value hereinafter simply referred to as the radiant panel temperature
  • the abnormality detection unit 73 detects that an abnormality has occurred in the indoor motor-operated valve 23 based on the temperature of the radiation panel 30. That is, during the cooling operation and the hot air heating operation, when the refrigerant leaks from the indoor motor-operated valve 23 that should have been closed and the refrigerant flows into the panel pipe 36 of the radiation panel 30, the indoor motor-operated valve 23 Detect that an abnormality has occurred. Further, during the radiant heating operation, when the indoor motor-operated valve 23 is completely closed and no refrigerant is flowing through the panel piping 36 of the radiant panel 30, it is detected that an abnormality has occurred in the indoor motor-operated valve 23. .
  • the abnormality detection unit 73 detects the temperature detected by the indoor temperature sensor 24 (hereinafter simply referred to as the indoor temperature Ta) and the temperature detected by the panel temperature sensor 26 (hereinafter referred to as the following). Based on the panel piping temperature TP) and the temperature detected by the indoor heat exchanger temperature sensor 27 (hereinafter simply referred to as the indoor heat exchanger temperature Te), it is detected that an abnormality has occurred in the indoor electric valve 23. Further, during the hot air heating operation or the radiant heating operation, it is detected that an abnormality has occurred in the indoor motor operated valve 23 based on the panel piping temperature TP and the indoor heat exchange temperature Te.
  • the indoor motor-operated valve is used only when the temperature of the refrigerant flowing out of the outdoor motor-operated valve 64 is sufficiently low and the radiation panel 30 may be condensed when the refrigerant flows into the piping in the radiation panel 30. 23 abnormalities are detected. Therefore, the condition for detecting the abnormality of the indoor motor operated valve 23 by the abnormality detection unit 73 satisfies the following (Expression 2) and (Expression 3) in addition to the above (Expression 1). TP ⁇ 32 ° C (Formula 2) Te ⁇ 32 ° C. (Formula 3)
  • the indoor heat exchange is performed.
  • the pressure (low pressure) in the vessel 20 may not be sufficiently reduced.
  • the indoor temperature Ta, the panel piping temperature TP, and the indoor heat exchange temperature Te become substantially the same temperature, so that the above-described (Equation 1) is satisfied even though the indoor motor-operated valve 23 is not abnormal. May be satisfied.
  • the abnormality detection unit 73 detects the abnormality of the indoor electric valve 23 to satisfy the following (Expression 4)
  • the conditions are as follows. Ta-Te ⁇ 5deg (Formula 4)
  • the difference between the indoor temperature Ta and the indoor heat exchange temperature Te is smaller than 5 deg, even if the refrigerant is leaking due to an abnormality in the indoor motor-operated valve 23, if the relative humidity is 80% or less, the radiation panel No condensation occurs on 30.
  • the indoor heat exchange temperature Te is higher than the indoor temperature Ta (that is, Ta ⁇ Te ⁇ 0 deg), the region in which the abnormality of the indoor motor operated valve 23 does not need to be detected (the region indicated by (II) in the figure), and the indoor temperature
  • the difference between Ta and the indoor heat exchange temperature Te is relatively small (that is, 0 deg ⁇ Ta ⁇ Te ⁇ 5 deg), and there is a possibility that an abnormality of the indoor motor-operated valve 23 may be erroneously detected (region indicated by (III) in the figure). Then, the abnormality detection of the indoor motor operated valve 23 is not performed.
  • the abnormality detection unit 73 is detected by the indoor temperature sensor 24 detected by the indoor temperature sensor 24, the panel piping temperature TP detected by the panel temperature sensor 26, and the indoor heat exchanger temperature sensor 27 during the cooling operation.
  • the indoor heat exchange temperature Te satisfies all of the above (Expression 1) to (Expression 4), it is detected that the indoor motor operated valve 23 is abnormal.
  • the indoor electric motor is used only when the temperature of the refrigerant discharged from the compressor 60 is relatively high and the radiation panel 30 becomes somewhat hot when the refrigerant passes through the piping in the radiation panel 30.
  • An abnormality of the valve 23 is detected. Therefore, the condition for detecting the abnormality of the indoor motor operated valve 23 by the abnormality detection unit 73 satisfies the following (Expression 6) and (Expression 7) in addition to the above (Expression 5).
  • TP ⁇ 43 ° C (Formula 6) Te ⁇ 43 ° C. (Formula 7)
  • the panel temperature TP0 is 40 ° C. or higher and the indoor heat exchange temperature Te. Only the region where the temperature is 43 ° C. or more (the region indicated by (I) in the figure) is the region where the abnormality of the indoor motor-operated valve 23 can be detected. That is, a region where the panel temperature TP0 is 40 ° C.
  • the indoor heat exchange temperature Te is lower than 43 ° C., which cannot occur in actual operation (region indicated by (II) in the figure), and the panel temperature In a region where TP0 is lower than 40 ° C., there is no need to detect an abnormality of the indoor motor-operated valve 23, and there is a possibility of detecting an abnormality of the indoor motor-operated valve 23 by mistake (region indicated by (III) in the figure) The abnormality detection of the electric valve 23 is not performed.
  • the abnormality detection unit 73 determines that the panel piping temperature TP detected by the panel temperature sensor 26 and the indoor heat exchange temperature Te detected by the indoor heat exchange temperature sensor 27 during the warm air heating operation are as described above. When all of (Expression 5) to (Expression 7) are satisfied, it is detected that the indoor motor operated valve 23 is abnormal.
  • the difference between the indoor heat exchange temperature Te and the panel piping temperature TP is 35 deg.
  • the condition for detecting the abnormality of the indoor motor operated valve 23 by the abnormality detection unit 73 satisfies the following (Expression 9) and (Expression 10) in addition to the above (Expression 8).
  • the abnormality detection unit 73 determines that the panel piping temperature TP detected by the panel temperature sensor 26 and the indoor heat exchange temperature Te detected by the indoor heat exchange temperature sensor 27 are the above ( When all of the equations (8) to (10) are satisfied, it is detected that the indoor motor operated valve 23 is abnormal.
  • the indoor fan control unit 74 controls the number of revolutions of the indoor fan 21 according to the operation mode set by the remote controller 9, the indoor set temperature, the amount of blown air, and the indoor temperature detected by the indoor temperature sensor 24.
  • the compressor control unit 75 controls the operating frequency of the compressor 60 based on the indoor temperature, the indoor set temperature, the heat exchange temperature detected by the indoor heat exchange temperature sensor 27, and the like.
  • the outdoor electric valve control unit 76 controls the opening degree of the outdoor electric valve 64. Specifically, the opening degree of the outdoor motor operated valve 64 is controlled so that the temperature detected by the discharge temperature sensor 66 becomes the optimum temperature in the operating state. The optimum temperature is determined based on a calculated value using the indoor heat exchange temperature, the outdoor heat exchange temperature, or the like.
  • step S11 the room temperature Ta detected by the room temperature sensor 24, the panel pipe temperature TP detected by the panel temperature sensor 26, and the room heat exchange temperature sensor 27 are detected. Obtained Te is acquired (step S11). Subsequently, it is determined whether or not the difference between the room temperature Ta and the room heat exchange temperature Te is 5 degrees or more (step S12). If the difference between the room temperature Ta and the room heat exchange temperature Te is smaller than 5 deg (step S12: NO), there is a possibility that the indoor motor-operated valve 23 is erroneously detected, so that the next step The process returns to the above-described step S11 without proceeding.
  • step S12 YES
  • step S12 YES
  • step S13 whether or not the difference between the panel piping temperature TP and the room heat exchange temperature Te is 0 deg or less. Is determined (step S13).
  • step S13 NO
  • step S13: NO when the difference between the panel piping temperature TP and the indoor heat exchange temperature Te is larger than 0 deg (step S13: NO), it is considered that the indoor electric valve 23 is normally closed and there is no refrigerant leakage. Therefore, the process returns to the above-described step S11 without proceeding to the next step.
  • step S14 it is determined whether or not the panel piping temperature TP is 32 ° C. or lower, and in step S15, whether or not the indoor heat exchange temperature Te is 32 ° C. or lower.
  • step S14 it is determined whether or not the panel piping temperature TP is higher than 32 ° C. at step S14 (step S14: NO), or when the indoor heat exchange temperature Te is higher than 32 ° C. at step S15 (step S15: NO)
  • the radiation panel 30 Since it is considered that there is no risk of condensation, the process returns to step S11 without proceeding to the next step.
  • step S16 when the panel piping temperature TP is 32 ° C. or lower in step S14 (step S14: YES) and the indoor heat exchanger temperature Te is 32 ° C. or lower in step S15 (step S15: YES), the indoor motor operated valve 23 It is detected that an abnormality has occurred (step S16).
  • step S21 the panel piping temperature TP detected by the panel temperature sensor 26 and the Te detected by the indoor heat exchanger temperature sensor 27 are acquired (step S21). . Subsequently, it is determined whether or not the difference between the indoor heat exchange temperature Te and the panel piping temperature TP is 0 deg or less (step S22).
  • step S22 when the difference between the indoor heat exchange temperature Te and the panel piping temperature TP is larger than 0 deg (step S22: NO), it is considered that the indoor motor-operated valve 23 is normally closed and there is no refrigerant leakage. Therefore, the process returns to the above step S21 without proceeding to the next step.
  • step S23 it is determined whether or not the panel piping temperature TP is 43 ° C. or higher, and in step S24, whether or not the indoor heat exchange temperature Te is 43 ° C. or higher. If the panel piping temperature TP is lower than 43 ° C. in step S23 (step S23: NO), or if the indoor heat exchange temperature Te is lower than 43 ° C. in step S24 (step S24: NO), the temperature of the radiation panel 30 Is not so high (so as to detect abnormality of the indoor motor-operated valve 23), the process does not proceed to the next step but returns to the above-described step S21.
  • step S23 YES
  • step S24 YES
  • step S31 the panel piping temperature TP detected by the panel temperature sensor 26 and the Te detected by the indoor heat exchanger temperature sensor 27 are acquired (step S31). Subsequently, it is determined whether or not the difference between the indoor heat exchange temperature Te and the panel piping temperature TP is 35 deg or more (step S32). Here, when the difference between the indoor heat exchange temperature Te and the panel piping temperature TP is smaller than 35 deg (step S22: NO), it is considered that the indoor motor-operated valve 23 is opened. Does not proceed and returns to step S31 described above.
  • step S33 it is determined whether or not the panel piping temperature TP is 60 ° C. or lower, and in step S34, whether or not the indoor heat exchange temperature Te is 60 ° C. or lower. If the panel piping temperature TP is higher than 60 ° C. in step S33 (step S33: NO), or if the indoor heat exchange temperature Te is higher than 60 ° C. in step S34 (step S34: NO), the next step is The process returns to step S31 without proceeding. *
  • step S35 when the panel piping temperature TP is 60 ° C. or lower in step S33 (step S33: YES) and the indoor heat exchange temperature Te is 60 ° C. or lower in step S34 (step S34: YES), the indoor motor operated valve 23 It is detected that an abnormality has occurred (step S35).
  • the occurrence of the abnormality is notified to the user by, for example, display on the light emission display unit 49 or the like.
  • the control unit 7 detects an abnormality in the indoor motor-operated valve 23 that switches between a state in which the refrigerant flows through the panel pipe 36 of the radiation panel 30 and a state in which the refrigerant does not flow.
  • 73 is provided. Therefore, the abnormality detection unit 73 can detect that an abnormality has occurred in the indoor electric valve 23. Therefore, the dew condensation of the radiation panel 30 at the time of the cooling operation and the abnormality of the surface temperature of the radiation panel 30 at the time of the hot air heating operation and the radiation heating operation caused by the abnormality of the indoor motor operated valve 23 can be suppressed.
  • the refrigerant circuit 10 of the air conditioner 1 of the present embodiment includes a main flow path 11 in which an outdoor electric valve 64, an outdoor heat exchanger 62, and a compressor 60 are provided in order, and a compressor of the main flow path 11 during heating operation.
  • the first flow path 12 provided with the indoor heat exchanger 20 is connected to the branch section 10a provided on the downstream side of the 60 and the junction section 10b provided on the upstream side of the outdoor electric valve 64, and the branch section. 10a and the confluence
  • merging part 10b are connected in parallel with the 1st flow path 12, and it has the 2nd flow path 13 in which the radiation panel 30 was provided.
  • the indoor motor operated valve 23 is provided between the radiation panel 30 and the junction part 10b in the refrigerant circuit 10.
  • the abnormality detection part 73 is the panel piping temperature TP detected by the panel temperature sensor 26 provided between the radiation part 35 of the radiation panel 30 and the indoor motor operated valve 23.
  • the indoor heat exchanger temperature Te detected by the indoor heat exchanger temperature sensor 27 provided in the indoor heat exchanger 20 it is detected that an abnormality has occurred in the indoor motor operated valve 23. Therefore, the panel piping temperature TP and the indoor heat exchange temperature Te can be compared, and the open / closed state of the indoor motor-operated valve 23 can be detected.
  • the abnormality detection unit 73 has a case where the difference between the indoor temperature Ta detected by the indoor temperature sensor 24 and the indoor heat exchange temperature Te is 5 degrees or more during cooling operation. However, it is detected that an abnormality has occurred in the indoor electric valve 23. Therefore, by removing the case where the difference between the room temperature Ta and the room heat exchange temperature Te is small, it is possible to suppress erroneous detection of the abnormality of the indoor motor operated valve 23.
  • the refrigerant circuit 10 that connects the indoor unit 2 and the outdoor unit 6 has the second flow path 13 that is connected in parallel to the first flow path 12 in which the indoor heat exchanger 20 is provided.
  • the present invention is not limited thereto, and the indoor heat exchanger 20 and the radiation panel 30 may be connected in series.
  • the refrigerant circuit 110 of the air conditioner 101 includes an outdoor motor operated valve 64, an outdoor heat exchanger 62, a compressor 60, a radiation panel 30, and an indoor heat exchanger.
  • 20 has an annular main channel 111 connected in order.
  • a discharge side pipe and a suction side pipe of the compressor 60 are connected to a four-way switching valve 61.
  • Branch portions 101a and 101b are respectively provided on both sides of the radiation panel 30, and both ends of the branch flow path 112 are connected to the branch portions 101a and 101b.
  • the branch part 101a is located between the indoor heat exchanger 20 and the radiation panel 30, and the branch part 101b is located on the opposite side to the branch part 101a with respect to the radiation panel 30.
  • the three-way valve 123 is provided in the branch part 101a.
  • a panel entry temperature sensor 25 is provided between the branch portion 101 b and the radiation portion 35 of the radiation panel 30, and a panel output temperature sensor 26 is provided between the branch portion 101 a and the radiation portion 35 of the radiation panel 30. Is provided.
  • the four-way switching valve 61 is switched to a state indicated by a broken line in FIG. Further, the three-way valve 123 is in a state where the refrigerant from the indoor heat exchanger 20 flows into the branch flow path 112 and does not flow into the radiation panel 30. Therefore, as indicated by the dashed arrows in FIG. 12, the high-temperature and high-pressure refrigerant discharged from the compressor 60 flows into the outdoor heat exchanger 62 through the four-way switching valve 61. Then, the refrigerant condensed in the outdoor heat exchanger 62 is decompressed by the outdoor electric valve 64 and then flows into the indoor heat exchanger 20. Further, the refrigerant evaporated in the indoor heat exchanger 20 flows into the compressor 60 through the branch flow path 112, the four-way switching valve 61, and the accumulator 65.
  • the four-way switching valve 61 is switched to the state shown by the solid line in FIG. Further, the three-way valve 123 is in a state in which the refrigerant discharged from the compressor 60 does not flow through the radiation panel 30 and flows through the branch flow path 112. Therefore, as indicated by the solid arrows in FIG. 12, the high-temperature and high-pressure refrigerant discharged from the compressor 60 flows into the indoor heat exchanger 20 through the four-way switching valve 61 and the branch flow path 112. Then, the refrigerant condensed in the indoor heat exchanger 20 is decompressed by the outdoor electric valve 64 and then flows into the outdoor heat exchanger 62. Then, the refrigerant evaporated in the outdoor heat exchanger 62 flows into the compressor 60 via the four-way switching valve 61 and the accumulator 65.
  • the four-way selector valve 61 is switched to the state indicated by the solid line in FIG. Further, the three-way valve 123 is in a state where the refrigerant discharged from the compressor 60 flows through the radiation panel 30 and does not flow through the branch flow path 112. Therefore, as indicated by a thick arrow in FIG. 12, the high-temperature and high-pressure refrigerant discharged from the compressor 60 passes through the four-way switching valve 61 and flows into the radiation panel 30 and then flows into the indoor heat exchanger 20. The refrigerant condensed in the radiant panel 30 and the indoor heat exchanger 20 is decompressed by the outdoor electric valve 64 and then flows into the outdoor heat exchanger 62. Then, the refrigerant evaporated in the outdoor heat exchanger 62 flows into the compressor 60 via the four-way switching valve 61 and the accumulator 65.
  • the three-way switching between the state in which the refrigerant flows and the state in which the refrigerant does not flow in the panel pipe 36 of the radiation panel 30 is performed by the abnormality detection unit 73 of the control unit 7 as in the above-described embodiment. It can be detected that an abnormality has occurred in the valve 123.
  • the outdoor electric valve 64, the outdoor heat exchanger 62, the compressor 60, the radiation panel 30, and the indoor heat exchanger 20 are connected in order to the annular main flow path 111 of the refrigerant circuit 110.
  • the positions of the radiant panel 30 and the indoor heat exchanger 20 are reversed, and the outdoor electric valve 64, the outdoor heat exchanger 62, the compressor 60, the indoor heat exchanger 20 and the radiant panel 30 are connected in order. May be.
  • both ends of the branch flow path 112 are connected to branch portions respectively provided on both sides of the radiation panel 30.
  • the three-way valve 123 that switches between the state in which the refrigerant flows and the state in which the refrigerant does not flow in the panel pipe 36 of the radiant panel 30 is provided at a branch portion that is located on the opposite side of the radiant panel 30 from the indoor heat exchanger 20 side. .
  • the indoor motor-operated valve 23 is provided between the radiation panel 30 and the junction 10b in the refrigerant circuit 10
  • the present invention is not limited thereto.
  • a three-way valve may be provided at the junction 10b, and this three-way valve may be used as the indoor electric valve 23.
  • the abnormality detection part 73 is the panel piping temperature TP detected by the panel temperature sensor 26 provided between the radiation part 35 of the radiation panel 30 and the indoor motor operated valve 23, and the indoor heat.
  • the present invention is not limited to this. That is, for example, based on the temperature detected by the panel entry temperature sensor 25 provided on the side opposite to the indoor motor-operated valve 23 with respect to the radiation portion 35 of the radiation panel 30 and the indoor heat exchange temperature Te, It may be detected that an abnormality has occurred in the valve 23.
  • the abnormality detection unit 73 causes an abnormality in the indoor motor-operated valve 23 when the difference between the indoor temperature Ta and the indoor heat exchange temperature Te is equal to or greater than a predetermined value during the cooling operation.
  • the abnormality detection unit 73 can prevent erroneous detection by detecting an abnormality of the indoor motor operated valve 23 when the pressure (low pressure) in the indoor heat exchanger 20 is equal to or less than a predetermined value. Therefore, when the difference between the room temperature Ta and the panel piping temperature TP is equal to or greater than a predetermined value, it may be detected that an abnormality has occurred in the indoor motor operated valve 23.
  • the abnormality detection part 73 demonstrates the case where it detects that abnormality has arisen in the indoor motor operated valve 23, when the indoor motor operated valve 23 is completely closed at the time of radiation heating operation.
  • it is not limited to this. That is, not only when the indoor motor-operated valve 23 is completely closed, but also the opening of the indoor motor-operated valve 23 that requires the opening (the opening that allows the surface temperature of the radiation panel 30 to be within the panel target temperature range). If it is smaller than that, it may be detected that an abnormality has occurred in the indoor electric valve 23.
  • an abnormality of the valve mechanism can be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

 弁機構の異常を検知する。 室内機は、その内部に設けられた室内熱交換器と、その表面に設けられた輻射パネルとを有する。室内機と室外機とを接続する冷媒回路は、室外電動弁64、室外熱交換器、圧縮機60が順に設けられた主流路と、室内熱交換器が設けられた第1流路と、輻射パネルが設けられた第2流路とを有している。第1流路は、暖房運転時、主流路の圧縮機60の下流側に設けられた分岐部と室外電動弁64の上流側に設けられた合流部とを接続する。第2流路は、分岐部と合流部とを第1流路と並列に接続する。第2流路において輻射パネルと合流部との間には、室内電動弁23が設けられている。そして、室内電動弁23に異常が生じたことを検知する異常検知部73を備える。

Description

空気調和機
 本発明は、室内熱交換器と輻射パネルとを有する室内機を備えた空気調和機に関するものである。
 空気調和機として、冷媒回路を介して室外機と接続されていると共に、その内部に配置された室内熱交換器と、その表面に設けられた輻射パネルとを有する室内機を備えたものが知られている(例えば、特許文献1参照)。特許文献1に開示されている空気調和機の冷媒回路においては、室内熱交換器と輻射パネルとは並列に接続されている。
特開平5-280762号公報
 上述のような空気調和機において、暖房運転時における輻射パネルの下流側に、輻射パネルに供給される冷媒の流量を調整するための弁機構を設けることが考えられる。かかる空気調和機では、冷房運転時には、弁機構は閉弁され、輻射パネルに冷媒が流れず室内熱交換器のみに冷媒が流れる状態となる。温風暖房運転時には、弁機構は閉弁され、輻射パネルに冷媒が流れず室内熱交換器のみに冷媒が流れる状態となる。輻射暖房運転時には、弁機構が開弁され、輻射パネル及び室内熱交換器の両方に冷媒が流れる状態となる。
 上述の冷媒回路において、弁機構に異常が生じた場合には、様々な問題が起こる。例えば、冷房運転時に、閉弁されているはずの弁機構から冷媒が漏れた場合には、低温の冷媒が輻射パネルの配管内に流れ込み、輻射パネルに結露が生じる。また、温風暖房運転時に、閉弁されているはずの弁機構から冷媒が漏れた場合には、高温の冷媒が輻射パネルの配管内を通過するので、本来上昇しないはずの輻射パネルの温度が上昇する。さらに、輻射暖房運転時に、弁機構が閉弁している場合や、開度が必要な開度よりも小さい場合には、本来上昇するはずの輻射パネルの温度が上昇しない。このような弁機構の異常に起因する問題は、室内熱交換器と輻射パネルとが直列に接続された回路においても同様に生じる。
 そこで、本発明の目的は、弁機構に異常が生じたことを検知できる空気調和機を提供することである。
 第1の発明に係る空気調和機は、室内機と室外機とを接続する冷媒回路を備えた空気調和機であって、前記室内機が、その内部においてファンに対向するように設けられた室内熱交換器と、その表面に設けられた輻射パネルとを有し、前記冷媒回路が、前記輻射パネルに冷媒が流れる状態と流れない状態とを切り換える弁機構と、前記輻射パネルの温度に基づいて前記弁機構に異常が生じたことを検知する異常検知手段とを備える。
 この空気調和機では、輻射パネルの温度に基づいて、異常検知手段により弁機構に異常が生じたことを検知できる。したがって、弁機構の異常に起因して、冷房運転時の輻射パネルの結露や、温風暖房運転時及び輻射暖房運転時の輻射パネル温度が適正温度でない等の問題が生じるのを抑制できる。
 第2の発明に係る空気調和機は、第1の発明に係る空気調和機において、前記冷媒回路が、減圧機構、室外熱交換器及び圧縮機が順に設けられた主流路と、暖房運転時、前記主流路の前記圧縮機の下流側に設けられた分岐部と前記減圧機構の上流側に設けられた合流部とを接続すると共に、前記室内熱交換器が設けられた第1流路と、前記分岐部と前記合流部とを前記第1流路と並列に接続すると共に、前記輻射パネルが設けられた第2流路とを有しており、前記弁機構が、前記冷媒回路における前記輻射パネルから前記合流部までの間に設けられている。
 なお、「弁機構が、冷媒回路における輻射パネルから合流部までの間に設けられる」とは、弁機構が合流部に設けられる場合も含む。
 この空気調和機では、室内熱交換器が設けられた第1流路と輻射パネルが設けられた第2流路とが並列に接続された空気調和機において、弁機構に異常が生じたことを検知できる。
 第3の発明に係る空気調和機は、第1または第2の発明に係る空気調和機において、前記異常検知手段は、前記弁機構が前記輻射パネルに冷媒が流れない状態に切り換えられているときに、前記輻射パネルに冷媒が流れた場合に、前記弁機構に異常が生じたことを検知する。
 この空気調和機では、異常検知手段により弁機構が輻射パネルに冷媒が流れない状態に切り換えられているときに、輻射パネルに冷媒が流れた場合に、弁機構に異常が生じたことを検知できる。
 第4の発明に係る空気調和機は、第1~第3の発明に係る空気調和機において、前記室内熱交換器に設けられた室内熱交温度センサと、前記輻射パネルの輻射部と前記弁機構との間に設けられたパネル温度センサとを有しており、前記異常検知手段が、前記パネル温度センサで検出された温度と、前記室内熱交温度センサで検出された温度に基づいて、前記弁機構に異常が生じたことを検知する。
 この空気調和機では、パネル温度センサで検出された温度と室内熱交温度センサで検出された温度とを比較し、弁機構の開閉状態を検知できる。したがって、弁機構が輻射パネルに冷媒が流れない状態となっているべきときに、弁機構が開いており輻射パネルに冷媒が流れていることが検知された場合や、弁機構が輻射パネルに冷媒が流れる状態となっているべきときに、弁機構が閉じており輻射パネルに冷媒が流れていないことが検知された場合に、弁機構に異常が生じたことを検知できる。
 第5の発明に係る空気調和機では、第4の発明に係る空気調和機において、前記異常検知手段が、冷房運転時において、前記室内熱交換器内の圧力が所定値以下である場合に、前記弁機構に異常が生じたことを検知する。
 この空気調和機では、冷房運転時に、室内熱交換器内の圧力(低圧)が十分に下がらない条件においては、室内の温度と室内熱交温度センサで検出された温度との差が小さい。このような場合には、弁機構が正常に閉弁しており輻射パネルに冷媒が流れない状態となっているときでも、パネル温度センサで検出された温度と室内熱交温度センサで検出された温度とが近くなる。したがって、弁機構に異常がないにも拘らず、弁機構に異常が生じて輻射パネルに冷媒が流れていると誤って検知される虞がある。よって、このような場合を除くことで、弁機構の異常の誤検知を抑制できる。
 第6の発明に係る空気調和機では、第4または第5の発明に係る空気調和機において、室内の温度を検知する室内温度センサをさらに備えており、前記異常検知手段が、前記室内温度センサで検出された温度と、前記室内熱交換温度センサで検出された温度との差が所定値以上である場合に、前記弁機構に異常が生じたこと検知する。
 この空気調和機では、室内温度センサで検出された温度と室内熱交換温度センサで検出された温度との差が小さい場合を除くことで、弁機構の異常の誤検知を抑制できる。
 以上の説明に述べたように、本発明によれば、以下の効果が得られる。
 第1の発明では、輻射パネルの温度に基づいて、異常検知手段により弁機構に異常が生じたことを検知できる。したがって、弁機構の異常に起因して、冷房運転時の輻射パネルの結露や、温風暖房運転時及び輻射暖房運転時の輻射パネル温度が適正温度でない等の問題が生じるのを抑制できる。
 第2の発明では、室内熱交換器が設けられた第1流路と輻射パネルが設けられた第2流路とが並列に接続された空気調和機において、弁機構に異常が生じたことを検知できる。
 第3の発明では、異常検知手段により弁機構が輻射パネルに冷媒が流れない状態に切り換えられているときに、輻射パネルに冷媒が流れた場合に、弁機構に異常が生じたことを検知できる。
 第4の発明では、パネル温度センサで検出された温度と室内熱交温度センサで検出された温度とを比較し、弁機構の開閉状態を検知できる。したがって、弁機構が輻射パネルに冷媒が流れない状態となっているべきときに、弁機構が開いており輻射パネルに冷媒が流れていることが検知された場合や、弁機構が輻射パネルに冷媒が流れる状態となっているべきときに、弁機構が閉じており輻射パネルに冷媒が流れていないことが検知された場合に、弁機構に異常が生じたことを検知できる。
 第5の発明では、冷房運転時に、室内熱交換器内の圧力(低圧)が十分に下がらない条件においては、室内の温度と室内熱交温度センサで検出された温度との差が小さい。このような場合には、弁機構が正常に閉弁しており輻射パネルに冷媒が流れない状態となっているときでも、パネル温度センサで検出された温度と室内熱交温度センサで検出された温度とが近くなる。したがって、弁機構に異常がないにも拘らず、弁機構に異常が生じて輻射パネルに冷媒が流れていると誤って検知される虞がある。よって、このような場合を除くことで、弁機構の異常の誤検知を抑制できる。
 第6の発明では、室内温度センサで検出された温度と室内熱交換温度センサで検出された温度との差が小さい場合を除くことで、弁機構の異常の誤検知を抑制できる。
本発明の実施形態に係る空気調和機の概略構成を示す回路図であって、冷房運転時と温風暖房運転時の冷媒の流れを示す図である。 本発明の実施形態に係る空気調和機の概略構成を示す回路図であって、輻射暖房運転時の冷媒の流れを示す図である。 図1及び図2に示す室内機の斜視図である。 図3に示す室内機のIV-IV線に沿う断面図である。 空気調和機を制御する制御部の概略構成を示すブロック図である。 図5に示す異常検知部が冷房運転時に異常を検知する際の誤検知を防止する条件を説明するためのグラフである。 図5に示す異常検知部が温風暖房運転時に異常を検知する際の条件を説明するためのグラフである。 図5に示す異常検知部が輻射暖房運転時に異常を検知する際の条件を説明するためのグラフである。 図5に示す異常検知部で行われる冷房運転時の異常検知処理の手順を示すフローチャートである。 図5に示す異常検知部で行われる温風暖房運転時の異常検知処理の手順を示すフローチャートである。 図5に示す異常検知部で行われる輻射暖房運転時の異常検知処理の手順を示すフローチャートである。 本実施形態の変形例に係る空気調和機の概略構成を示す回路図である。
 以下、本発明に係る空気調和機1の実施の形態について説明する。
<空気調和機1の全体構成>
 図1及び図2に示すように、本実施形態の空気調和機1は、室内に設置される室内機2と、室外に設置される室外機6と、リモコン9(図5参照)とを備えている。室内機2は、室内ファン21と対向するように設けられた室内熱交換器20と、輻射パネル30と、室内電動弁23と、室内の気温を検出するための室内温度センサ24と、を備えている。また、室外機6は、圧縮機60と、四路切換弁61と、室外熱交換器62と、室外熱交換器62の近傍に配置された室外ファン63と、室外電動弁64(減圧機構)とを備えている。
 また、空気調和機1は、室内機2と室外機6とを接続する冷媒回路10を備えている。冷媒回路10は、室外電動弁64、室外熱交換器62及び圧縮機60が順に設けられた主流路11を有している。圧縮機60の吸入側配管及び吐出側配管は、四路切換弁61に接続されている。暖房運転時(後で詳述するように、冷媒回路10において図1中実線の矢印で示す方向に冷媒が流れる時)、主流路11の圧縮機60の下流側となる部分に分岐部10aが設けられており、室外電動弁64の上流側となる部分に合流部10bが設けられている。そして、冷媒回路10は、分岐部10aと合流部10bとを接続すると共に、室内熱交換器20が設けられた第1流路12と、分岐部10aと合流部10bとを第1流路12と並列に接続すると共に、輻射パネル30が設けられた第2流路13とをさらに有している。
 第2流路13における輻射パネル30と合流部10bとの間には、室内電動弁(弁機構)23が設けられている。また、第2流路13における輻射パネル30の両側には、パネル入温度センサ25とパネル出温度センサ26とが付設されている。より具体的には、パネル入温度センサ25は、暖房運転時において、輻射パネル30の後述する輻射部35(図4参照)よりも上流側の配管に設けられている。パネル出温度センサ26は、暖房運転時において、輻射パネル30の輻射部35よりも下流側であって且つ室内電動弁23よりも上流側の配管に設けられている。
 また、冷媒回路10における圧縮機60の吸入側と四路切換弁61との間にはアキュムレータ65が介設されており、冷媒回路10における圧縮機60の吐出側と四路切換弁61との間には、吐出温度センサ66が付設されている。さらに、室外熱交換器62には、室外熱交温度センサ68が付設されている。
 室内熱交換器20は、冷媒回路10の一部を構成する配管を有しており、室内熱交温度センサ27が付設されている。室内熱交換器20は、室内ファン21の風上側に配置されている。室内熱交換器20との熱交換により加熱または冷却された空気が、室内ファン21によって温風または冷風として室内に吹き出されることで、温風暖房または冷房が行われる。
 輻射パネル30は、室内機2の表面側に配置されており、冷媒回路10の一部を構成する配管であるパネル配管36を有している。パネル配管36を流れる冷媒の熱が室内に輻射されることで輻射暖房が行われる。室内電動弁23は、輻射パネル30に供給される冷媒の流量を調整するために設けられている。室内電動弁23の開閉を制御することで、輻射パネル30のパネル配管36に冷媒が流れる状態と流れない状態とを切り換えることができる。
 本実施形態の空気調和機1は、冷房運転、温風暖房運転、及び輻射暖房運転を行うことができる。冷房運転は、輻射パネル30に冷媒を流さないで室内熱交換器20に冷媒を流して冷房を行う運転であって、温風暖房運転は、輻射パネル30に冷媒を流さないで室内熱交換器20に冷媒を流して温風暖房を行う運転である。輻射暖房運転は、室内熱交換器20に冷媒を流して温風暖房を行うと共に、輻射パネル30に冷媒を流して輻射暖房を行う運転である。
 各運転時における冷媒回路10の冷媒の流れについて図1及び図2を用いて説明する。
 冷房運転時には、室内電動弁23が閉弁されると共に、四路切換弁61が図1中破線で示す状態に切り換えられる。そのため、図1中破線の矢印で示すように、圧縮機60から吐出された高温高圧冷媒は、四路切換弁61を通って、室外熱交換器62に流入する。そして、室外熱交換器62において凝縮した冷媒は、室外電動弁64で減圧された後、室内熱交換器20に流入する。そして、室内熱交換器20において蒸発した冷媒は、四路切換弁61及びアキュムレータ65を介して、圧縮機60に流入する。なお、閉弁された室内電動弁23により、室外電動弁64で減圧された冷媒が、第2流路13における室内電動弁23よりも輻射パネル30側に流入しないようになっている。
 温風暖房運転時には、室内電動弁23が閉弁されると共に、四路切換弁61が図1中実線で示す状態に切り換えられる。そのため、図1中実線の矢印で示すように、圧縮機60から吐出された高温高圧冷媒は、四路切換弁61を通って、室内熱交換器20に流入する。そして、室内熱交換器20において凝縮した冷媒は、室外電動弁64で減圧された後、室外熱交換器62に流入する。そして、室外熱交換器62において蒸発した冷媒は、四路切換弁61及びアキュムレータ65を介して、圧縮機60に流入する。なお、閉弁された室内電動弁23により、圧縮機60から吐出された冷媒が、第2流路13における室内電動弁23よりも合流部10b側に流れないようになっている。すなわち、第2流路13においては、室内電動弁23よりも上流側に冷媒が溜まった状態となっている。
 輻射暖房運転時には、室内電動弁23が開弁されると共に、四路切換弁61が図2中実線で示す状態に切り換えられる。そのため、図2中実線の矢印で示すように、圧縮機60から吐出された高温高圧冷媒は、四路切換弁61を通って、室内熱交換器20と輻射パネル30に流入する。そして、室内熱交換器20と輻射パネル30において凝縮した冷媒は、室外電動弁64で減圧された後、室外熱交換器62に流入する。そして、室外熱交換器62において蒸発した冷媒は、四路切換弁61及びアキュムレータ65を介して、圧縮機60に流入する。
<室内機2の構成>
 次に、室内機2の構成について説明する。
 図3に示すように、本実施形態の室内機2は、全体として直方体形状を有しており、室内の床面近傍に据え付けるものである。本実施形態においては、室内機2は、床面から10cm程度浮かした状態で、壁面に取り付けられている。なお、以下の説明において、室内機2が取り付けられる壁から突出する方向を「前方」と称し、その反対の方向を「後方」と称する。また、図3に示す左右方向を単に「左右方向」と称し、上下方向を単に「上下方向」と称する。
 図4に示すように、室内機2は、ケーシング4と、ケーシング4内に収容された室内ファン21、室内熱交換器20、吹出口ユニット46、および電装品ユニット47などの内部機器と、前面グリル42とを主に備えている。後で詳述するように、ケーシング4は、その下壁に形成された主吸込口4aと、その前壁に形成された補助吸込口4b、4cとを有している。さらに、ケーシング4の上壁には、吹出口4dが形成されている。室内機2においては、室内ファン21の駆動により、主吸込口4aから床面近傍にある空気を吸い込みつつ、補助吸込口4b、4cからも空気を吸い込む。そして、室内熱交換器20において、吸い込んだ空気に対して加熱または冷却などを行い調和する。その後、調和後の空気を吹出口4dから吹き出し、室内へと返流させる。
 ケーシング4は、本体フレーム41、吹出口カバー51、輻射パネル30及び開閉パネル52で構成されている。なお、後述するように、吹出口カバー51は前面パネル部51aを有しており、輻射パネル30は輻射板31を有している。吹出口カバー51の前面パネル部51a、輻射パネル30の輻射板31及び開閉パネル52は、ケーシング4の前面において面一となるように配置され、前面パネル5を構成する。図3に示すように、前面パネル5の右上端部、すなわち吹出口カバー51の前面パネル部51aの右端部には、電源ボタン48と、運転状況を示す発光表示部49とが設けられている。
 本体フレーム41は、壁面に取り付けられるものであり、上述の各種内部機器を支持している。そして、前面グリル42、吹出口カバー51、輻射パネル30及び開閉パネル52は、内部機器を支持している状態の本体フレーム41の前面に取り付けられている。吹出口カバー51は、本体フレーム41の上端部に取り付けられており、その上壁に左右方向に長い矩形状の開口である吹出口4dが形成されている。輻射パネル30は吹出口カバー51の下方に、開閉パネル52は輻射パネル30の下方にそれぞれ取り付けられている。本体フレーム41の下前端と開閉パネル52の下端との間は、左右方向に長い開口である主吸込口4aとなっている。
 ここで、ケーシング4内に収容される各内部機器について説明する。
 室内ファン21は、ケーシング4の高さ方向中央部分のやや上方において、その軸方向が左右方向に沿うように配置されている。室内ファン21は、下前方から空気を吸い込んで、上後方に吹き出すようになっている。
 室内熱交換器20は、前面パネル5と略平行に配置されており、前面パネル5の背面と対向する前面熱交換器20aと、前面熱交換器20aの下端部近傍から背面に近付くにつれて上方に傾斜する背面熱交換器20bとで構成されている。前面熱交換器20aは、室内ファン21の前方に配置されており、その上半分が室内ファン21と対向している。背面熱交換器20bは、室内ファン21の下方に配置されており、室内ファン21と対向している。すなわち、室内熱交換器20は、全体として略V字の形状を有しており、室内ファン21の前方と下方とを取り囲むように配置されている。
 室内熱交換器20の下方には、左右方向に延在するドレンパン22が配置されている。また、ドレンパン22の下方には、電装品ユニット47が配置されている。
 吹出口ユニット46は、室内ファン21の上方に配置されており、室内ファン21から吹き出された空気をケーシング4の上壁に形成された吹出口4dへと導くものである。吹出口ユニット46は、吹出口4dの近傍に配置される水平フラップ46aを備えている。水平フラップ46aは、吹出口4dから吹き出される空気流の上下方向の風向きを変更すると共に、吹出口4dの開閉を行う。
 前面グリル42は、上述のように、室内熱交換器20、室内ファン21、吹出口ユニット46及び電装品ユニット47などの内部機器が取り付けられた状態の本体フレーム41を覆うように、本体フレーム41に取り付けられる。より具体的には、前面グリル42は、前面熱交換器20aの上下方向略中央部分から、本体フレーム41の下端までを覆うように、本体フレーム41に取り付けられている。前面グリル42は、フィルタ保持部42aと、主吸込口4aに配置される吸込口グリル42bとを有している。
 フィルタ保持部42aには、下部フィルタ43と上部フィルタ44とが取り付けられる。図4に示すように、フィルタ保持部42aに保持された下部フィルタ43は、前面熱交換器20aの上下方向略中央部分から下方に延在していると共に、その下端部が後斜め方向に傾斜している。下部フィルタ43の下端は、主吸込口4aの後端縁近傍に位置している。また、上部フィルタ44は、前面熱交換器20aの上下方向略中央部分から上方に延在している。そして、これら下部フィルタ43と上部フィルタ44とによって、前面熱交換器20aと前面パネル5との間の空間が、前後方向に関して分割されている。
 吹出口カバー51は、吹出口ユニット46を覆っている。そして、上述のように、吹出口カバー51の上壁には吹出口4dが形成されている。また、吹出口カバー51の前面には、前面パネル部51aが設けられている。前面パネル部51aは、左右方向に長い矩形形状を有している。
 輻射パネル30は、左右に長い略矩形形状を有している。輻射パネル30は、アルミ製の輻射板31と、輻射板31の背面に取り付けられた樹脂製の断熱カバー32とで主に構成されている。輻射板31は、吹出口カバー51の前面パネル部51aの下方に位置している。図4に示すように、輻射板31の背面には、冷媒回路10を構成する配管の一部であるパネル配管36が取り付けられている。なお、輻射パネル30において、輻射板31とパネル配管36とが接触している部分が、輻射部35である。
 開閉パネル52は、輻射パネル30の輻射板31の下方に着脱可能に取り付けられている。開閉パネル52は、左右方向に長い矩形形状を有している。図4に示すように、開閉パネル52の上端の上下方向位置は、前面グリル42の上端とほぼ同じである。上述のように、開閉パネル52の下端は、主吸込口4aの一部を構成している。したがって、開閉パネル52を取り外すことにより、前面グリル42を露出させ、前面グリル42のフィルタ保持部42aに取り付けられている下部フィルタ43及び上部フィルタ44の着脱を行うことができる。
<リモコン9>
 リモコン9では、上述のような構成の空気調和機1に対して、ユーザによって、運転の開始/停止の操作、運転モードの設定、室内温度の目標温度(室内設定温度)の設定、吹出風量の設定などが行われる。
<制御部7>
 次に、空気調和機1を制御する制御部7について図5を参照しつつ説明する。
 図5に示すように、制御部7は、記憶部70と、室内電動弁制御部72と、異常検知部73と、室内ファン制御部74と、圧縮機制御部75と、室外電動弁制御部76とを有している。
 記憶部70には、空気調和機1に関する種々の運転設定や、制御プログラムや、その制御プログラムの実行に必要なデータテーブルなどが記憶されている。運転設定には、室内温度の目標温度(室内設定温度)のように、ユーザによってリモコン9が操作されることで設定されるものと、空気調和機1に対して予め設定されたものとがある。本実施形態の空気調和機1では、輻射パネル30の目標温度範囲は、予め所定の温度範囲(例えば50~55℃)に設定されている。なお、リモコン9の操作によって輻射パネル30の目標温度範囲を設定できるようになっていてもよい。
 室内電動弁制御部72は、室内電動弁23の開度を制御する。冷房運転時または温風暖房運転時には、室内電動弁制御部72は、室内電動弁23を閉弁する。また、輻射暖房運転時には、室内電動弁制御部72は、輻射パネル30の温度に基づいて室内電動弁23の開度を制御する。具体的には、パネル入温度センサ25及びパネル出温度センサ26でそれぞれ検出された温度の演算値に基づいて、輻射パネル30の表面温度(予測値)を算出し、この輻射パネル30の表面温度の予測値(以下、単に輻射パネル温度という)が、パネル目標温度範囲(例えば50~55℃)となるように、室内電動弁23の開度を制御する。なお、パネル入温度センサ25での検出値が所定値(例えば80℃)以上である場合には、室内電動弁23を閉弁する。
 異常検知部73は、輻射パネル30の温度に基づいて、室内電動弁23に異常が生じたことを検知する。すなわち、冷房運転時及び温風暖房運転時は、閉弁しているはずの室内電動弁23から冷媒が漏れており、輻射パネル30のパネル配管36に冷媒が流れている場合に室内電動弁23に異常が生じたことを検知する。また、輻射暖房運転時は、室内電動弁23が完全に閉弁しており、輻射パネル30のパネル配管36に冷媒が流れていない場合に、室内電動弁23に異常が生じたことを検知する。具体的には、異常検知部73は、冷房運転時においては、室内温度センサ24で検出された温度(以下、単に室内温度Taという)と、パネル出温度センサ26で検出された温度(以下、単にパネル配管温度TPという)と、室内熱交温度センサ27で検出された温度(以下、単に室内熱交温度Teという)とに基づいて、室内電動弁23に異常が生じたことを検知する。また、温風暖房運転時や輻射暖房運転時においては、パネル配管温度TPと、室内熱交温度Teとに基づいて、室内電動弁23に異常が生じたことを検知する。
 冷房運転時に室内電動弁23に異常が生じ、閉弁されているはずの室内電動弁23から冷媒が漏れると、合流部10bから第2流路13に流れ込んだ低温の冷媒が、室内電動弁23よりも下流側(輻射パネル30側)の配管に流れ込む。したがって、パネル出温度センサ26で検出されるパネル配管温度TPが低下して、熱交換が行われている室内熱交換器20に設けられた室内熱交温度センサ27で検出された室内熱交温度Te以下となる。すなわち、異常検知部73による室内電動弁23の異常検知の条件は、以下の(式1)を満たすこととなる。
 TP-Te≦0deg(式1)
 また、本実施形態においては、室外電動弁64から流れ出る冷媒の温度が十分低く、輻射パネル30内の配管に冷媒が流れ込んだ場合に輻射パネル30が結露する虞がある場合にのみ、室内電動弁23の異常を検出することとする。したがって、異常検知部73による室内電動弁23の異常検知の条件は、上述の(式1)に加えて、以下の(式2)、(式3)を満たすこととなる。
 TP≦32℃(式2)
 Te≦32℃(式3)
 加えて、例えば、室外機6が複数の室内機を接続可能なマルチ接続の室外機であり、室外機6に接続された複数の室内機が同時に運転されている場合等には、室内熱交換器20内の圧力(低圧)が十分に低下しないことがある。このような場合には、室内温度Ta、パネル配管温度TP、及び室内熱交温度Teがほぼ同じ温度となるので、室内電動弁23に異常が生じていないにも拘らず上述の(式1)を満たしてしまう虞がある。したがって、このような誤検出を防止するために、上述の(式1)~(式3)に加えて、以下の(式4)を満たすことを異常検知部73による室内電動弁23の異常検知の条件とする。
 Ta-Te≧5deg(式4)
 なお、室内温度Taと室内熱交温度Teとの差が5degよりも小さい場合には、室内電動弁23に異常が生じて冷媒が漏れていたとしても、相対湿度80%以下であれば輻射パネル30に結露が生じることはない。
 上述の(式4)により、図6に示す領域(I)のみが室内電動弁23の異常検知可能領域となる。すなわち、室内熱交温度Teが室内温度Taよりも高く(すなわち、Ta-Te<0deg)室内電動弁23の異常を検知する必要のない領域(図中(II)で示す領域)、及び室内温度Taと室内熱交温度Teとの差が比較的小さく(すなわち、0deg≦Ta-Te<5deg)誤って室内電動弁23の異常を検知する虞がある領域(図中(III)で示す領域)では、室内電動弁23の異常検知は行われない。
 すなわち、異常検知部73は、冷房運転時において、室内温度センサ24で検出された室内温度Taと、パネル出温度センサ26で検出されたパネル配管温度TPと、室内熱交温度センサ27で検出された室内熱交温度Teとが、上記の(式1)~(式4)を全て満たす場合に、室内電動弁23が異常であることを検知する。
 温風暖房運転時に室内電動弁23に異常が生じ、閉弁されているはずの室内電動弁23から冷媒が漏れると、分岐部10aから第2流路13に流れ込んだ高温の冷媒が、輻射パネル30の配管および室内電動弁23を通過して、第2流路13から流れ出る。したがって、パネル出温度センサ26で検出されるパネル配管温度TPが上昇して、熱交換が行われている室内熱交換器20に設けられた室内熱交温度センサ27で検出された室内熱交温度Te以上となる。すなわち、異常検知部73による室内電動弁23の異常検知の条件は、以下の(式5)を満たすこととなる。
 Te-TP≦0deg(式5)
 また、本実施形態においては、圧縮機60から吐出される冷媒の温度が比較的高く、輻射パネル30内の配管を冷媒が通過する場合に輻射パネル30がある程度高温になる場合にのみ、室内電動弁23の異常を検出することとする。したがって、異常検知部73による室内電動弁23の異常検知の条件は、上述の(式5)に加えて、以下の(式6)、(式7)を満たすこととなる。
 TP≧43℃(式6)
 Te≧43℃(式7)
 つまり、輻射パネル30の表面温度(以下、単にパネル温度TP0という)と室内熱交温度Teとの関係で考えると、図7に示すように、パネル温度TP0が40℃以上且つ室内熱交温度Teが43℃以上の領域(図中(I)で示す領域)のみが室内電動弁23の異常検知可能領域となる。すなわち、パネル温度TP0が40℃以上であり且つ室内熱交温度Teが43℃よりも低いような、実際の運転では起こり得ない状態の領域(図中(II)で示す領域)、及びパネル温度TP0が40℃よりも低く、室内電動弁23の異常を検知する必要がなく、また誤って室内電動弁23の異常を検出する虞がある領域(図中(III)で示す領域)では、室内電動弁23の異常検知は行われない。
 すなわち、異常検知部73は、温風暖房運転時において、パネル出温度センサ26で検出されたパネル配管温度TPと、室内熱交温度センサ27で検出された室内熱交温度Teとが、上記の(式5)~(式7)を全て満たす場合に、室内電動弁23が異常であることを検知する。
 輻射暖房運転時に室内電動弁23に異常が生じ、室内電動弁23が閉弁されている場合には、分岐部10aから第2流路13に流れ込んだ高温の冷媒は、室内電動弁23よりも上流側(輻射パネル30側)の配管内に溜まる。したがって、パネル出温度センサ26で検出されるパネル配管温度TPが上昇せず、室内熱交温度Teとパネル配管温度TPとの差が大きくなる。すなわち、異常検知部73による室内電動弁23の異常検知の条件は、以下の(式8)を満たすこととなる。
 Te-TP≧35deg(式8)
 なお、室内電動弁23が完全に閉弁しており、室内温度10℃、室内熱交温度55℃である場合に、室内熱交温度Teとパネル配管温度TPとの差が35degとなる。
 また、本実施形態においては、室内電動弁23が閉弁していたとしても、輻射パネル30の温度がある程度上昇する場合には室内電動弁23の異常を検知せず、輻射パネル30の温度の上昇が望めない場合にのみ、室内電動弁23の異常を検知することとする。したがって、異常検知部73による室内電動弁23の異常検知の条件は、上述の(式8)に加えて、以下の(式9)、(式10)を満たすこととなる。
 TP≦60℃(式9)
 Te≦60℃(式10)
 つまり、パネル温度TP0と室内熱交温度Teとの関係を考えると、図8に示す領域(I)のみが室内電動弁23の異常検知可能領域となる。すなわち、パネル温度TP0が室内熱交温度Teよりも高く(すなわち、Te-TP0<0deg)、実際の運転時には起こり得ない状態の領域(図中(II)で示す領域)、及び室内熱交温度Teとパネル温度TP0との差が比較的小さく(すなわち、0deg≦Te-TP0<35deg)室内電動弁23の異常検知を行うことができない領域(図中(III)で示す領域)では、室内電動弁23の異常検知は行われない。
 すなわち、異常検知部73は、輻射暖房運転時において、パネル出温度センサ26で検出されたパネル配管温度TPと、室内熱交温度センサ27で検出された室内熱交温度Teとが、上記の(式8)~(式10)を全て満たす場合に、室内電動弁23が異常であることを検知する。
 室内ファン制御部74は、リモコン9により設定される運転モード、室内設定温度、及び吹出風量や、室内温度センサ24で検出される室内温度に応じて室内ファン21の回転数を制御する。
 圧縮機制御部75は、室内温度や室内設定温度、室内熱交温度センサ27で検出される熱交温度等に基づいて、圧縮機60の運転周波数を制御する。
 室外電動弁制御部76は、室外電動弁64の開度を制御する。詳細には、吐出温度センサ66で検出される温度が、その運転状態での最適温度となるように、室外電動弁64の開度を制御する。最適温度は、室内熱交温度や室外熱交温度などを用いた演算値に基づいて決定される。
<異常検知部73での異常検知処理>
 ここで、異常検知部73で行われる室内電動弁23の異常を検知する異常検知処理の手順について説明する。
 冷房運転時においては、まず、図9に示すように、室内温度センサ24で検出された室内温度Ta、パネル出温度センサ26で検出されたパネル配管温度TP、及び室内熱交温度センサ27で検出されたTeを取得する(ステップS11)。続いて、室内温度Taと室内熱交温度Teとの差が5deg以上であるか否かを判断する(ステップS12)。そして、室内温度Taと室内熱交温度Teとの差が5degよりも小さい場合には(ステップS12:NO)、誤って室内電動弁23が異常であると検知する虞があるので、次のステップには進まずに上述のステップS11に戻る。
 一方、室内温度Taと室内熱交温度Teとの差が5deg以上である場合には(ステップS12:YES)、パネル配管温度TPと室内熱交温度Teとの差が0deg以下であるか否かを判断する(ステップS13)。ここで、パネル配管温度TPと室内熱交温度Teとの差が0degよりも大きい場合には(ステップS13:NO)、室内電動弁23が正常に閉弁されており冷媒の漏れがないと考えられるので、次のステップには進まずに上述のステップS11に戻る。
 また、パネル配管温度TPと室内熱交温度Teとの差が0deg以下である場合には(ステップS13:YES)、閉弁しているはずの室内電動弁23から冷媒が漏れていると考えられる。続いて、ステップS14においてパネル配管温度TPが32℃以下であるか否かを、ステップS15において室内熱交温度Teが32℃以下であるか否かをそれぞれ判断する。ステップS14においてパネル配管温度TPが32℃よりも大きい場合(ステップS14:NO)や、ステップS15において室内熱交温度Teが32℃よりも大きい場合(ステップS15:NO)には、輻射パネル30に結露が生じる虞がないと考えられるので、次のステップには進まずに上述のステップS11に戻る。
 一方、ステップS14においてパネル配管温度TPが32℃以下であり(ステップS14:YES)、ステップS15において室内熱交温度Teが32℃以下である場合(ステップS15:YES)には、室内電動弁23に異常が生じていることを検知する(ステップS16)。
 温風暖房運転時においては、まず、図10に示すように、パネル出温度センサ26で検出されたパネル配管温度TP、及び室内熱交温度センサ27で検出されたTeを取得する(ステップS21)。続いて、室内熱交温度Teとパネル配管温度TPとの差が0deg以下であるか否かを判断する(ステップS22)。ここで、室内熱交温度Teとパネル配管温度TPとの差が0degよりも大きい場合には(ステップS22:NO)、室内電動弁23が正常に閉弁されており冷媒の漏れがないと考えられるので、次のステップには進まずに上述のステップS21に戻る。
 また、室内熱交温度Teとパネル配管温度TPとの差が0deg以下である場合には(ステップS22:YES)、閉弁しているはずの室内電動弁23から冷媒が漏れていると考えられる。続いて、ステップS23においてパネル配管温度TPが43℃以上であるか否かを、ステップS24において室内熱交温度Teが43℃以上であるか否かをそれぞれ判断する。ステップS23においてパネル配管温度TPが43℃よりも小さい場合(ステップS23:NO)や、ステップS24において室内熱交温度Teが43℃より小さい場合(ステップS24:NO)には、輻射パネル30の温度はそれほど(室内電動弁23の異常検知が必要なほど)上昇しないと考えられるので、次のステップには進まずに上述のステップS21に戻る。
 一方、ステップS23においてパネル配管温度TPが43℃以上であり(ステップS23:YES)、ステップS24において室内熱交温度Teが43℃以上である場合(ステップS24:YES)には、室内電動弁23に異常が生じていることを検知する(ステップS25)。
 輻射暖房運転時においては、まず、図11に示すように、パネル出温度センサ26で検出されたパネル配管温度TP、及び室内熱交温度センサ27で検出されたTeを取得する(ステップS31)。続いて、室内熱交温度Teとパネル配管温度TPとの差が35deg以上であるか否かを判断する(ステップS32)。ここで、室内熱交温度Teとパネル配管温度TPとの差が35degよりも小さい場合には(ステップS22:NO)、室内電動弁23が開弁されていると考えられるので、次のステップには進まずに上述のステップS31に戻る。
 また、室内熱交温度Teとパネル配管温度TPとの差が35deg以上である場合には(ステップS32:YES)、開弁しているはずの室内電動弁23が閉弁していると考えられる。続いて、ステップS33においてパネル配管温度TPが60℃以下であるか否かを、ステップS34において室内熱交温度Teが60℃以下であるか否かをそれぞれ判断する。ステップS33においてパネル配管温度TPが60℃よりも大きい場合(ステップS33:NO)や、ステップS34において室内熱交温度Teが60℃より大きい場合(ステップS34:NO)には、次のステップには進まずに上述のステップS31に戻る。 
 一方、ステップS33においてパネル配管温度TPが60℃以下であり(ステップS33:YES)、ステップS34において室内熱交温度Teが60℃以下である場合(ステップS34:YES)には、室内電動弁23に異常が生じていることを検知する(ステップS35)。
 なお、上述の各異常検知処理で室内電動弁23に異常が生じていると検知された場合には、例えば発光表示部49の表示等によってユーザに異常の発生を報知する。
<本実施形態の空気調和機1の特徴>
 本実施形態の空気調和機1では、制御部7が、輻射パネル30のパネル配管36に冷媒が流れる状態と流れない状態とを切り換える室内電動弁23に異常が生じたことを検知する異常検知部73を備えている。したがって、異常検知部73により室内電動弁23に異常が生じたことを検知できる。よって、室内電動弁23の異常に起因して生じる、冷房運転時の輻射パネル30の結露や、温風暖房運転時及び輻射暖房運転時の輻射パネル30の表面温度の異常を抑制できる。
 また、本実施形態の空気調和機1の冷媒回路10は、室外電動弁64、室外熱交換器62及び圧縮機60が順に設けられた主流路11と、暖房運転時、主流路11の圧縮機60の下流側に設けられた分岐部10aと室外電動弁64の上流側に設けられた合流部10bとを接続すると共に、室内熱交換器20が設けられた第1流路12と、分岐部10aと合流部10bとを第1流路12と並列に接続すると共に、輻射パネル30が設けられた第2流路13とを有している。そして、室内電動弁23は、冷媒回路10における輻射パネル30と合流部10bとの間に設けられている。したがって、室内熱交換器20が設けられた第1流路12と輻射パネル30が設けられた第2流路13とが並列に接続された空気調和機1において、室内電動弁23に異常が生じたことを検知できる。
 また、本実施形態の空気調和機1では、異常検知部73は、輻射パネル30の輻射部35と室内電動弁23との間に設けられたパネル出温度センサ26で検知されたパネル配管温度TPと、室内熱交換器20に設けられた室内熱交温度センサ27で検知された室内熱交温度Teとに基づいて、室内電動弁23に異常が生じたことを検知する。したがって、パネル配管温度TPと室内熱交温度Teとを比較し、室内電動弁23の開閉状態を検知できる。よって、室内電動弁23が閉じているべきときに、室内電動弁23から冷媒が漏れていることが検知された場合や、室内電動弁23が開いているべきときに、室内電動弁23が閉じていることが検知された場合に、弁機構に異常が生じたことを検知できる。
 さらに、本実施形態の空気調和機1では、異常検知部73は、冷房運転時において、室内温度センサ24で検知された室内温度Taと、室内熱交温度Teとの差が5deg以上である場合に限って、室内電動弁23に異常が生じたことを検知する。したがって、室内温度Taと室内熱交温度Teとの差が小さい場合を除くことで、室内電動弁23の異常の誤検知を抑制できる。
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
 上述の実施形態では、室内機2と室外機6とを接続する冷媒回路10が、室内熱交換器20が設けられた第1流路12と並列に接続された第2流路13を有しており、第2流路13に輻射パネル30が設けられている場合について説明したが、これに限らず、室内熱交換器20と輻射パネル30とは直列に接続されていてもよい。
 すなわち、図12に示すように、本実施形態の変形例に係る空気調和機101の冷媒回路110は、室外電動弁64、室外熱交換器62、圧縮機60、輻射パネル30及び室内熱交換器20が順に接続された環状の主流路111を有している。圧縮機60の吐出側配管及び吸入側配管は、四路切換弁61に接続されている。輻射パネル30の両側に分岐部101a、101bがそれぞれ設けられており、分岐部101a、101bには、分岐流路112の両端が接続されている。なお、分岐部101aは、室内熱交換器20と輻射パネル30との間に位置しており、分岐部101bは、輻射パネル30に関して分岐部101aとは反対側に位置している。また、分岐部101aには、三方弁123が設けられている。
 分岐部101bと輻射パネル30の輻射部35との間には、パネル入温度センサ25が設けられており、分岐部101aと輻射パネル30の輻射部35との間には、パネル出温度センサ26が設けられている。
 冷媒回路110においては、冷房運転時には、四路切換弁61が図12中破線で示す状態に切り換えられる。さらに、三方弁123は、室内熱交換器20からの冷媒が分岐流路112に流れ且つ輻射パネル30に流れない状態とされる。そのため、図12中破線の矢印で示すように、圧縮機60から吐出された高温高圧冷媒は、四路切換弁61を通って、室外熱交換器62に流入する。そして、室外熱交換器62において凝縮した冷媒は、室外電動弁64で減圧された後、室内熱交換器20に流入する。さらに、室内熱交換器20において蒸発した冷媒は、分岐流路112、四路切換弁61及びアキュムレータ65を介して、圧縮機60に流入する。
 温風暖房運転時には、四路切換弁61が図12中実線で示す状態に切り換えられる。さらに、三方弁123は、圧縮機60から吐出された冷媒が、輻射パネル30を流れず且つ分岐流路112を流れる状態とされる。そのため、図12中実線の矢印で示すように、圧縮機60から吐出された高温高圧冷媒は、四路切換弁61及び分岐流路112を通って、室内熱交換器20に流入する。そして、室内熱交換器20において凝縮した冷媒は、室外電動弁64で減圧された後、室外熱交換器62に流入する。そして、室外熱交換器62において蒸発した冷媒は、四路切換弁61及びアキュムレータ65を介して、圧縮機60に流入する。
 輻射暖房運転時には、四路切換弁61が図12中実線で示す状態に切り換えられる。さらに、三方弁123は、圧縮機60から吐出された冷媒が、輻射パネル30を流れ且つ分岐流路112を流れない状態とされる。そのため、図12中太線の矢印で示すように、圧縮機60から吐出された高温高圧冷媒は、四路切換弁61を通って、輻射パネル30に流入した後に室内熱交換器20に流入する。そして、輻射パネル30と室内熱交換器20とにおいて凝縮した冷媒は、室外電動弁64で減圧された後、室外熱交換器62に流入する。そして、室外熱交換器62において蒸発した冷媒は、四路切換弁61及びアキュムレータ65を介して、圧縮機60に流入する。
 本変形例に係る空気調和機101においても、上述の実施形態と同様に、制御部7の異常検知部73により、輻射パネル30のパネル配管36に冷媒が流れる状態と流れない状態とを切り換える三方弁123に異常が生じたことを検知できる。
 なお、上述の変形例においては、冷媒回路110の環状の主流路111に、室外電動弁64、室外熱交換器62、圧縮機60、輻射パネル30及び室内熱交換器20が順に接続されているが、これには限定されない。すなわち、輻射パネル30と室内熱交換器20との位置が逆になっており、室外電動弁64、室外熱交換器62、圧縮機60、室内熱交換器20及び輻射パネル30が順に接続されていてもよい。この場合も、分岐流路112の両端は、輻射パネル30の両側にそれぞれ設けられた分岐部に接続される。また、輻射パネル30のパネル配管36に冷媒が流れる状態と流れない状態とを切り換える三方弁123は、輻射パネル30を挟んで室内熱交換器20側とは反対側に位置する分岐部に設けられる。
 また、上述の実施形態では、室内電動弁23が、冷媒回路10における輻射パネル30と合流部10bとの間に設けられている場合について説明したが、これには限定されない。例えば、合流部10bに三方弁が設けられており、この三方弁を室内電動弁23として用いるようにしてもよい。
 また、上述の実施形態では、異常検知部73は、輻射パネル30の輻射部35と室内電動弁23との間に設けられたパネル出温度センサ26で検知されたパネル配管温度TPと、室内熱交温度Teとに基づいて、室内電動弁23に異常が生じたことを検知する場合について説明したがこれには限定されない。すなわち、例えば、輻射パネル30の輻射部35に対して室内電動弁23とは反対側に設けられたパネル入温度センサ25で検知された温度と、室内熱交温度Teとに基づいて、室内電動弁23に異常が生じたことを検知するようにしてもよい。
 加えて、上述の実施形態では、異常検知部73は、冷房運転時において、室内温度Taと室内熱交温度Teとの差が所定値以上である場合に、室内電動弁23に異常が生じたことを検知する場合について説明したが、これには限定されない。異常検知部73は、室内熱交換器20内の圧力(低圧)が所定値以下である場合に室内電動弁23の異常を検知することで、誤検知を防止できる。したがって、室内温度Taとパネル配管温度TPとの差が所定以上である場合に、室内電動弁23に異常が生じたことを検知するようにしてもよい。
 また、上述の実施形態では、異常検知部73は、輻射暖房運転時に、室内電動弁23が完全に閉弁している場合に、室内電動弁23に異常が生じたことを検知する場合について説明したが、これには限定されない。すなわち、室内電動弁23が完全に閉弁している場合だけでなく、室内電動弁23の開度が必要な開度(輻射パネル30の表面温度がパネル目標温度範囲となるような開度)よりも小さい場合に、室内電動弁23に異常が生じたことを検知するようにしてもよい。
 さらに、上述の実施形態では、冷房運転時には(式1)~(式4)を全て満たす場合に、温風暖房運転時には(式5)~(式7)を全て満たす場合に、輻射暖房運転時には(式8)~(式10)を全て満たす場合に、室内電動弁23に異常が生じたことを検知する場合について説明したが、これには限定されない。すなわち、冷房運転時には少なくとも(式1)を満たす場合に、温風暖房運転時には少なくとも(式5)を満たす場合に、輻射暖房運転時には少なくとも(式8)を満たす場合に、室内電動弁23に異常が生じたことを検知すればよい。また、(式1)~(式8)で具体的に挙げた数値は一例であり、適宜変更可能である。
 本発明を利用すれば、弁機構の異常を検知できる。
1 空気調和機
2 室内機
6 室外機
10 冷媒回路
10a 分岐部
10b 合流部
11 主流路
12 第1流路
13 第2流路
20 室内熱交換器
21 室内ファン
23 室内電動弁(弁機構)
24 室内温度センサ
26 パネル出温度センサ(パネル温度センサ)
27 室内熱交温度センサ
30 輻射パネル
35 輻射部
60 圧縮機
62 室外熱交換器
64 室外電動弁(減圧機構)
73 異常検知部(異常検知手段)
123 三方弁(弁機構)

Claims (6)

  1.  室内機と室外機とを接続する冷媒回路を備えた空気調和機であって、
     前記室内機が、その内部においてファンに対向するように設けられた室内熱交換器と、その表面に設けられた輻射パネルとを有し、
     前記冷媒回路が、
     前記輻射パネルに冷媒が流れる状態と流れない状態とを切り換える弁機構と、
     前記輻射パネルの温度に基づいて前記弁機構に異常が生じたことを検知する異常検知手段とを備えたことを特徴とする空気調和機。
  2.  前記冷媒回路が、
     減圧機構、室外熱交換器及び圧縮機が順に設けられた主流路と、
     暖房運転時、前記主流路の前記圧縮機の下流側に設けられた分岐部と前記減圧機構の上流側に設けられた合流部とを接続すると共に、前記室内熱交換器が設けられた第1流路と、
     前記分岐部と前記合流部とを前記第1流路と並列に接続すると共に、前記輻射パネルが設けられた第2流路とを有しており、
     前記弁機構が、前記冷媒回路における前記輻射パネルから前記合流部までの間に設けられていることを特徴とする請求項1に記載の空気調和機。
  3.  前記異常検知手段は、前記弁機構が前記輻射パネルに冷媒が流れない状態に切り換えられているときに、前記輻射パネルに冷媒が流れた場合に、前記弁機構に異常が生じたことを検知することを特徴とする請求項1または2に記載の空気調和機。
  4.  前記室内熱交換器に設けられた室内熱交温度センサと、
     前記輻射パネルの輻射部と前記弁機構との間に設けられたパネル温度センサとを有しており、
     前記異常検知手段が、前記パネル温度センサで検出された温度と、前記室内熱交温度センサで検出された温度に基づいて、前記弁機構に異常が生じたことを検知することを特徴とする請求項1~3のいずれかに記載の空気調和機。
  5.  前記異常検知手段が、冷房運転時において、前記室内熱交換器内の圧力が所定値以下である場合に、前記弁機構に異常が生じたことを検知することを特徴とする請求項4に記載の空気調和機。
  6.  室内の温度を検知する室内温度センサをさらに備えており、
     前記異常検知手段が、前記室内温度センサで検出された温度と、前記室内熱交換温度センサで検出された温度との差が所定値以上である場合に、前記弁機構に異常が生じたこと検知することを特徴とする請求項4または5に記載の空気調和機。
PCT/JP2012/050871 2011-01-17 2012-01-17 空気調和機 WO2012099128A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2012207956A AU2012207956B2 (en) 2011-01-17 2012-01-17 Air conditioner
ES12736171T ES2806647T3 (es) 2011-01-17 2012-01-17 Acondicionador de aire
CN201280005265.XA CN103314261B (zh) 2011-01-17 2012-01-17 空调机
EP12736171.5A EP2667109B1 (en) 2011-01-17 2012-01-17 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-006806 2011-01-17
JP2011006806 2011-01-17

Publications (1)

Publication Number Publication Date
WO2012099128A1 true WO2012099128A1 (ja) 2012-07-26

Family

ID=46515751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050871 WO2012099128A1 (ja) 2011-01-17 2012-01-17 空気調和機

Country Status (6)

Country Link
EP (1) EP2667109B1 (ja)
JP (1) JP5115667B2 (ja)
CN (1) CN103314261B (ja)
AU (1) AU2012207956B2 (ja)
ES (1) ES2806647T3 (ja)
WO (1) WO2012099128A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927500B2 (ja) * 2012-10-02 2016-06-01 パナソニックIpマネジメント株式会社 冷凍サイクル装置およびそれを備えた空気調和機
JP5927502B2 (ja) * 2012-10-10 2016-06-01 パナソニックIpマネジメント株式会社 冷凍サイクル装置およびそれを備えた空気調和機
JP6604051B2 (ja) * 2015-06-26 2019-11-13 ダイキン工業株式会社 空気調和システム
CN110226070B (zh) * 2017-04-26 2020-12-04 松下知识产权经营株式会社 空气调节机
CN107894121A (zh) * 2017-10-27 2018-04-10 广东美的暖通设备有限公司 压缩机温度传感器的检测方法、压缩机和电器设备
EP3712533B1 (en) * 2017-11-16 2023-09-20 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner
CN111473487B (zh) * 2020-04-07 2021-07-23 广东美的制冷设备有限公司 空调器及其空调控制方法、控制装置和可读存储介质
FR3116594B1 (fr) * 2020-11-26 2022-12-30 Muller Et Cie Appareil monobloc de traitement climatique à panneau rayonnant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280762A (ja) 1992-03-30 1993-10-26 Toshiba Corp 輻射パネル付室内ユニット
JP2001090977A (ja) * 1999-09-24 2001-04-03 Mitsubishi Electric Corp 空気調和機
JP2002071188A (ja) * 2000-08-30 2002-03-08 Mitsubishi Electric Building Techno Service Co Ltd 熱媒供給異常検出装置
JP2003322388A (ja) * 2002-05-02 2003-11-14 Toshiba Kyaria Kk 空気調和機
JP2007333219A (ja) * 2006-06-12 2007-12-27 Mitsubishi Electric Building Techno Service Co Ltd マルチ式空気調和システム
JP2010216767A (ja) * 2009-03-18 2010-09-30 Daikin Ind Ltd 空調機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87101888A (zh) * 1987-02-10 1988-08-24 密西西比电力公司 三部分组合的热泵系统
KR100546616B1 (ko) * 2004-01-19 2006-01-26 엘지전자 주식회사 멀티공기조화기의 제어방법
JP4959800B2 (ja) * 2007-07-18 2012-06-27 三菱電機株式会社 冷凍サイクル装置の運転制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280762A (ja) 1992-03-30 1993-10-26 Toshiba Corp 輻射パネル付室内ユニット
JP2001090977A (ja) * 1999-09-24 2001-04-03 Mitsubishi Electric Corp 空気調和機
JP2002071188A (ja) * 2000-08-30 2002-03-08 Mitsubishi Electric Building Techno Service Co Ltd 熱媒供給異常検出装置
JP2003322388A (ja) * 2002-05-02 2003-11-14 Toshiba Kyaria Kk 空気調和機
JP2007333219A (ja) * 2006-06-12 2007-12-27 Mitsubishi Electric Building Techno Service Co Ltd マルチ式空気調和システム
JP2010216767A (ja) * 2009-03-18 2010-09-30 Daikin Ind Ltd 空調機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2667109A4

Also Published As

Publication number Publication date
CN103314261B (zh) 2015-12-09
ES2806647T3 (es) 2021-02-18
EP2667109A1 (en) 2013-11-27
JP2012163314A (ja) 2012-08-30
EP2667109B1 (en) 2020-05-06
AU2012207956A1 (en) 2013-09-05
EP2667109A4 (en) 2017-09-27
AU2012207956B2 (en) 2015-04-30
JP5115667B2 (ja) 2013-01-09
CN103314261A (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5115667B2 (ja) 空気調和機
JP6336121B2 (ja) 冷凍サイクル装置
US10126012B2 (en) Air conditioner
JP5088520B2 (ja) 空気調和機
JP5131359B2 (ja) 空気調和機
JP5003829B2 (ja) 空気調和機
US20120000224A1 (en) Air conditioner
JP2009257709A (ja) 空気調和機
JP5892199B2 (ja) 空調室内機
AU2014341390A1 (en) Air conditioning apparatus
WO2021010212A1 (ja) 冷凍装置の室内機
JP2011174639A (ja) 空気調和機
WO2012099062A1 (ja) 空気調和機
JP2013203196A (ja) 車両用空調装置
JP2008144999A (ja) 空気調和機
JP2016020784A (ja) 空気調和装置
JP5316508B2 (ja) 空気調和機の床置き室内機
JP2009270732A (ja) 空気調和装置の室外ユニット
JP2016038184A (ja) 空気調和機
JP2012172849A (ja) 空気調和機
JP2010054068A (ja) 暖房システム
JP2012172848A (ja) 室内機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012736171

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012207956

Country of ref document: AU

Date of ref document: 20120117

Kind code of ref document: A