WO2012098680A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2012098680A1
WO2012098680A1 PCT/JP2011/051110 JP2011051110W WO2012098680A1 WO 2012098680 A1 WO2012098680 A1 WO 2012098680A1 JP 2011051110 W JP2011051110 W JP 2011051110W WO 2012098680 A1 WO2012098680 A1 WO 2012098680A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
engine
deceleration
braking
mechanical
Prior art date
Application number
PCT/JP2011/051110
Other languages
English (en)
French (fr)
Inventor
恭一 阿部
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/051110 priority Critical patent/WO2012098680A1/ja
Priority to US13/980,397 priority patent/US9669808B2/en
Priority to CN201180065455.6A priority patent/CN103313887B/zh
Priority to JP2012553534A priority patent/JP5720701B2/ja
Publication of WO2012098680A1 publication Critical patent/WO2012098680A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18136Engine braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle control device, and more particularly to a vehicle control device that controls deceleration of a vehicle.
  • Patent Document 1 discloses a vehicle travel control device that appropriately controls a distance from a preceding vehicle ahead of a vehicle by performing shift control of the transmission of the vehicle to a relatively low speed gear stage or gear ratio. Is disclosed.
  • a preceding vehicle deceleration detection / estimation unit that detects or estimates the deceleration of the preceding vehicle, and a shift that selects a gear stage or a gear ratio of the transmission at the time of shift control based on the deceleration of the preceding vehicle.
  • a stage / transmission ratio selection unit is disclosed.
  • the present invention has been made in consideration of such circumstances, and its purpose is to reduce the cost by preventing the consumption of the mechanical brake and the regenerative brake while improving the followability to the desired deceleration.
  • An object of the present invention is to provide a vehicle control device that can be used.
  • the present invention is a machine that converts the kinetic energy of rotation of a drive wheel into heat energy by friction after engine braking that changes the reduction ratio, which is the ratio of the rotation speed of the drive wheel to the rotation speed of the drive source, during vehicle deceleration. It is a vehicle control apparatus provided with the deceleration control unit which performs either the regenerative brake which converts the kinetic energy of rotation of a dynamic brake and a driving wheel into electric energy by regeneration.
  • the deceleration control unit rubs the kinetic energy of the rotation of the drive wheels after the engine brake that changes the reduction ratio that is the ratio of the rotation speed of the drive wheels to the rotation speed of the drive source.
  • the mechanical brake that converts the heat energy into heat energy by the regenerative brake and the regenerative brake that converts the kinetic energy of the rotation of the drive wheels to the electric energy by regeneration are performed. For this reason, it is possible to reduce the cost by preventing the mechanical brake and the regenerative brake from being consumed while improving the followability to the desired deceleration.
  • the deceleration control unit can perform either mechanical braking or regenerative braking on the condition that the rotational speed of the drive source has reached an allowable upper rotational speed during engine braking.
  • the deceleration control unit performs either mechanical braking or regenerative braking on condition that the rotational speed of the drive source has reached an allowable upper rotational speed during engine braking. For this reason, it is possible to reduce the cost by preventing the mechanical brake and the regenerative brake from being consumed while suppressing the noise caused by the engine brake within an allowable limit.
  • the deceleration control unit continues engine braking without performing mechanical braking and regenerative braking after the rotational speed of the drive source reaches the upper limit rotational speed, and then mechanical braking and regenerative braking. It can be any one of the brakes.
  • the deceleration control unit continues the engine brake without performing the mechanical brake and the regenerative brake after the rotational speed of the drive source reaches the upper limit rotational speed during engine braking, and then mechanically Perform either braking or regenerative braking. For this reason, it is possible to further reduce wear of the mechanical brake or the regenerative brake by further reducing the use time of the mechanical brake or the regenerative brake while suppressing noise caused by the engine brake.
  • the deceleration control unit continues the engine braking while maintaining the reduction ratio after the rotational speed of the drive source reaches the upper limit rotational speed during engine braking.
  • the deceleration control unit continues engine braking while maintaining the reduction ratio after the rotational speed of the drive source reaches the upper limit rotational speed during engine braking. For this reason, after the rotational speed of the drive source reaches the upper limit rotational speed, the rotational speed of the drive source remains in the vicinity of the allowable upper limit rotational speed even during the time when engine braking is continued without performing mechanical braking and regenerative braking. The noise caused by engine braking can be further suppressed.
  • the deceleration control unit performs engine braking so that the rotational speed of the drive source is within the upper limit rotational speed according to the required deceleration, and when the rotational speed of the drive source is the upper limit rotational speed, When the obtained deceleration is insufficient for the required deceleration, either mechanical braking or regenerative braking can be performed.
  • the deceleration control unit performs engine braking so that the rotational speed of the drive source is within the upper limit rotational speed in accordance with the required deceleration, so the engine brake is obtained while obtaining the required deceleration.
  • the noise due to can be suppressed within the allowable limit.
  • the deceleration control unit performs either mechanical braking or regenerative braking when the deceleration obtained by the engine brake is insufficient for the required deceleration when the rotational speed of the drive source is the upper limit rotational speed. Therefore, the required deceleration can be obtained by reducing the use time of the mechanical brake and the regenerative brake while suppressing the noise caused by the engine brake within the allowable limit.
  • the deceleration control unit can control the deceleration so that the change in the rate of change per unit time of the deceleration is within a predetermined value when performing either mechanical braking or regenerative braking from the engine brake. .
  • the deceleration control unit when the deceleration control unit performs either mechanical braking or regenerative braking from the engine brake, the deceleration control unit reduces the deceleration so that the variation in the rate of change per unit time of the deceleration is less than a predetermined value. Control. For this reason, the change of the deceleration at the time of switching from the engine brake to the mechanical brake or the regenerative brake is smoothly performed, and passenger comfort can be improved.
  • the deceleration control unit can change the gear ratio steplessly.
  • the speed reduction control unit can change the gear ratio steplessly, and therefore can perform engine braking more effectively.
  • the vehicle control device of the present invention it is possible to reduce the cost by preventing the mechanical brake and the regenerative brake from being consumed while improving the followability to a desired deceleration.
  • FIG. 5 is a graph showing deceleration control in which the start of brake control is delayed in FIG. 4.
  • FIG. 5 is a graph showing the deceleration control using the CVT engine brake in FIG. 4 until the engine speed becomes higher. It is a graph which shows the relationship between the required deceleration (minus driving force) and engine speed.
  • the vehicle control device 10 of the present embodiment includes a driver support system ECU 20, an engine ECU 30, and a brake ECU 40.
  • the vehicle control apparatus 10 of this embodiment performs deceleration control in ACC or the like in a vehicle equipped with a continuously variable transmission (CVT).
  • CVT continuously variable transmission
  • the driver support system ECU 20 is an ACC application 21 that makes the host vehicle follow the preceding vehicle at a predetermined inter-vehicle distance, and a PCS (Pre-Crash) that detects a vehicle or an obstacle on the course and reduces collision damage.
  • Safety application 22
  • ASL Auto Speed Limit
  • Target G ACC , G PCS, and G ASL which are accelerations and decelerations respectively requested by the ACC application 21, the PCS application 22, and the ASL application 23, are adjusted as a target G to the engine ECU 30 by the target G arbitration unit 24.
  • the ACC application 21 and the ASL application 23 output target G ACC and G ASL, and also output a command signal for an engine brake increase request. This is because there may be situations where you want to use the engine brake and other situations where you do not want to use it.
  • engine braking is performed by changing the gear ratio of the continuously variable transmission (hereinafter sometimes referred to as CVT engine brake), but when the engine brake increase request is OFF
  • the CVT engine brake is not performed, and only the deceleration (hereinafter sometimes referred to as the D range engine brake) is performed by turning the throttle off at the gear ratio (D range) during normal driving.
  • the ACC application 21 and the ASL application 23 output the upper limit engine speed at the time of CVT engine braking.
  • the ACC application 21 and the ASL application 23 send a command signal for (mechanical) brake permission indicating whether to permit the use of a mechanical brake such as a disk brake or a drum brake of the vehicle.
  • the target G is converted into a target driving force (required driving force) compensated for the influence of disturbance by performing feedback control so that the target G and the actual vehicle G coincide with each other at the target driving force request unit 25.
  • a command signal for requesting driving force whether or not the brake is permitted, an upper limit engine speed at the time of CVT engine braking, and a command for requesting an increase in engine brake amount in some cases A signal is sent out.
  • the driver support system ECU 20 does not perform control of the gear ratio, and outputs only the required driving force and the upper limit engine speed.
  • the engine ECU 30 calculates the engine output in the target torque calculation unit 31 according to the required driving force from the driver support system ECU 20 and the upper limit engine speed, and outputs an engine command value to the engine.
  • the engine ECU 30 calculates the target gear ratio of the continuously variable transmission in the target gear ratio calculating unit 32 as will be described later according to the required driving force from the driver support system ECU 20 and the upper limit engine rotational speed. Output transmission command value.
  • the required driving force is transmitted from the ACC application 21 of the driver support system ECU 20, and the engine ECU 30 performs throttle control so as to realize this required driving force, and when deceleration is necessary, the throttle is fully closed.
  • the speed ratio of the continuously variable transmission is increased, the engine speed is increased, and the friction loss in the engine is increased to create the deceleration.
  • the engine ECU 30 performs control within the upper limit engine speed transmitted from the ACC application 21 of the driver support system ECU 20 or the like.
  • the engine ECU 30 determines the friction torque obtained by the engine brake (D range engine brake and CVT engine brake) at the upper limit engine speed based on the upper limit engine speed from the driver support system ECU 20, as will be described later, In the case of an electric vehicle, the sum of the auxiliary machine torque obtained by the auxiliary machine is calculated.
  • the engine brake D range engine brake and CVT engine brake
  • D range the minimum availability (D-range) that is the minimum driving force (deceleration) that can be obtained with the D-range engine brake and what is the minimum availability (CVT) that is the minimum driving force (deceleration) that can be obtained with the CVT engine brake?
  • CVT the minimum availability
  • the driver support system ECU 20 performs feedback control on the target driving force, the engine brake permission command, and the engine brake increase request according to the availability lower limit (D range) and the availability lower limit (CVT).
  • the brake ECU 40 determines whether or not the required driving force (deceleration) can be realized only by the engine brake, based on the availability lower limit (D range) and the availability lower limit (CVT). When the brake ECU 40 determines that the required driving force cannot be achieved only by the engine brake, and the brake permission command is ON, the brake ECU 40 operates the mechanical brake or the regenerative brake as much as necessary to perform deceleration.
  • the amount of mechanical brake and regenerative brake used is changed depending on whether or not CVT engine braking is performed on the engine ECU 30 side. If the engine brake increase request from the driver support system ECU 20 is OFF, the brake ECU 40 generates a driving force (deceleration) of only the required driving force-availability lower limit (D range) by mechanical braking or regenerative braking. Let On the other hand, when the engine brake increase request from the driver support system ECU 20 is ON, the driving force by the mechanical brake or the regenerative brake is too large as it is, so that the brake ECU 40 has only the required driving force-availability lower limit (CVT). Driving force (deceleration) is generated by mechanical braking or regenerative braking.
  • CVT driving force-availability lower limit
  • FIG. 2 a situation is assumed in which the preceding vehicle VP that the host vehicle VM followed is decelerated when the host vehicle VM is following the preceding vehicle VP according to the ACC application 21.
  • the engine brake increase request from the driver support system ECU 20 is OFF, as shown in FIG. 3, only the D range engine brake is performed, and when the required driving force cannot be realized by the D range engine brake, Deceleration is performed by braking or regenerative braking. In this case, the amount of mechanical brakes used is large.
  • the CVT engine brake is performed after the D range engine brake as shown in FIG.
  • the rotational speed reaches the upper limit engine rotational speed and the required driving force cannot be realized by the CVT engine brake
  • deceleration by mechanical braking or regenerative braking is performed.
  • the amount of mechanical brakes used is small.
  • the difference in the rate of change in deceleration in the D-range engine brake, the rate of change in deceleration in the CVT engine brake, and the rate of change in deceleration in the mechanical brake are within predetermined values. The slope of deceleration during deceleration by each method in the figure is connected smoothly.
  • CVT engine braking is performed after D range engine braking, and the engine speed is set to the upper limit engine speed. Even after reaching the required drive force by the CVT engine brake, the CVT engine brake is continued depending on the situation, and the start of using the mechanical brake is delayed. In this case, it is possible to greatly reduce the amount of use of the mechanical brake, but the preceding vehicle VP and the host vehicle VM approach each other in the portion indicated by the dashed ellipse in the drawing. Therefore, in the present embodiment, it is possible to determine the deceleration method depending on the noise due to the increase in the engine speed and the extent to which the vehicle approaches the preceding vehicle VP.
  • the mechanical brake is immediately used.
  • the mechanical brake and the regenerative brake are not used when the required driving force can be realized without using the mechanical brake or the regenerative brake.
  • the upper limit engine speed was further increased as shown in FIG. 6, and deceleration by mechanical brakes etc. was performed in FIG. Even in the part, CVT engine braking is performed.
  • the amount of mechanical brake and the like used is reduced, but the engine noise is increased due to the increase in the upper limit engine speed. Therefore, in this embodiment, it is possible to perform deceleration in a state where the balance between the noise and the frequency of use of the mechanical brake can be achieved.
  • the lower limit of availability (D range) is the minimum driving force that can be produced in the D range of the transmission, and can be calculated from the engine friction torque and the auxiliary torque at the minimum engine speed.
  • the lower limit of availability (CVT) is the minimum driving force that can be generated when the engine speed is increased with the CVT engine brake. From the engine friction torque and auxiliary machine torque at the specified upper engine speed, It can be calculated.
  • the engine ECU 30 performs control to increase the throttle opening.
  • the required driving force is equal to the availability lower limit (D range)
  • engine ECU 30 fully closes the throttle.
  • the engine ECU 30 has a linear characteristic of the engine speed with respect to the engine driving force. Assume. If the required driving force from the ACC application 21 is, for example, an intermediate value between the availability lower limit (D range) and the availability lower limit (CVT), the target engine speed suitable for the required driving force is the availability lower limit. It can be estimated that it is an intermediate value between the engine speed in the (D range) and the upper limit engine speed of the CVT engine brake.
  • the gear ratio of the continuously variable transmission can be determined from the target engine speed. If the required driving force is smaller than the availability lower limit (CVT) (the deceleration is large), the engine ECU 30 determines the gear ratio so as to be the upper limit engine speed. In the present embodiment, in order to obtain the desired deceleration by operating the speed ratio of the continuously variable transmission on the engine ECU 30 side, the control is performed more efficiently than calculating the speed ratio etc. on the ACC application side. Can do.
  • the engine ECU 30 and the brake ECU 40 of the vehicle control device 10 drive the drive wheel after the engine brake that changes the reduction ratio that is the ratio of the rotation speed of the drive wheel to the rotation speed of the engine when the vehicle decelerates.
  • the mechanical brake that converts the rotational kinetic energy into thermal energy by friction and the regenerative brake that converts the rotational kinetic energy of the drive wheels into electrical energy through regeneration are performed. For this reason, it is possible to reduce the cost by preventing the mechanical brake and the regenerative brake from being consumed while improving the followability to the desired deceleration. In addition, fuel consumption can be improved by increasing the deceleration by the engine brake that preserves the kinetic energy by the movement of the piston.
  • the engine ECU 30 and the brake ECU 40 are either mechanical brakes or regenerative brakes on condition that the upper limit engine rotational speed has reached an allowable rotational speed at the time of engine braking. I do. For this reason, it is possible to reduce the cost by preventing the mechanical brake and the regenerative brake from being consumed while suppressing the noise caused by the engine brake within an allowable limit.
  • the engine ECU 30 and the brake ECU 40 do not perform the mechanical brake or the regenerative brake immediately after the engine speed reaches the upper limit engine speed at the time of engine braking. Continue, and then perform either mechanical braking or regenerative braking. For this reason, it is possible to further reduce wear of the mechanical brake or the regenerative brake by further reducing the use time of the mechanical brake or the regenerative brake while suppressing noise caused by the engine brake.
  • the engine ECU 30 and the brake ECU 40 continue the engine brake without performing the mechanical brake or the regenerative brake after the engine speed reaches the upper limit engine speed during engine braking.
  • the engine brake continues, maintain the reduction ratio. For this reason, the engine speed remains within the allowable upper limit even within a predetermined time, and noise caused by engine braking can be further suppressed.
  • the engine ECU 30 performs engine braking so that the engine speed is within the upper limit engine speed in accordance with the required deceleration, so that while obtaining the required deceleration, Noise caused by engine braking can be kept within the allowable limits.
  • the brake ECU 40 performs either mechanical braking or regenerative braking when the deceleration obtained by the engine brake is insufficient when the engine speed is the upper limit engine speed and the required deceleration is insufficient.
  • the required deceleration can be obtained by reducing the use time of the mechanical brake and the regenerative brake while suppressing the noise caused by the engine brake within an allowable limit.
  • the change in the rate of change per unit time of the deceleration is reduced to within a predetermined value. To control the deceleration. For this reason, the change of the deceleration at the time of switching from the engine brake to the mechanical brake or the regenerative brake is smoothly performed, and passenger comfort can be improved.
  • the engine ECU 30 can change the gear ratio steplessly, and therefore can perform engine braking more effectively.
  • the vehicle control device of the present invention it is possible to reduce the cost by preventing the mechanical brake and the regenerative brake from being consumed while improving the followability to a desired deceleration.
  • Vehicle Control Device 20
  • Driver Support System ECU
  • ACC application 22
  • PCS application 23
  • ASL application 24
  • Target G arbitration unit 25
  • Target driving force request unit 30
  • Engine ECU 31
  • Target torque calculator 32
  • Target gear ratio calculator 33
  • Availability lower limit calculator 40

Abstract

 車両制御装置10のエンジンECU30及びブレーキECU40は、車両の減速時に、エンジンの回転数に対する駆動輪の回転数の比である減速比を変更するエンジンブレーキの後に、駆動輪の回転の運動エネルギーを摩擦により熱エネルギーに変換する機械的ブレーキ及び駆動輪の回転の運動エネルギーを回生により電気エネルギーに変換する回生ブレーキのいずれかを行う。このため、所望の減速度への追従性を向上させつつ、機械的ブレーキや回生ブレーキの消耗を防止してコストを減少させることができる。

Description

車両制御装置
 本発明は、車両制御装置に関し、特に車両の減速を制御する車両制御装置に関する。
 自車両を先行車両に対して所定の車間距離をおいて追従走行させるACC(Adaptive Cruise Control)等の技術が提案されている。例えば、特許文献1には、車両の変速機を相対的に低速用の変速段又は変速比に変速制御することで、車両の前方の先行車との距離を適正に制御する車両用走行制御装置が開示されている。この装置では、先行車の減速度を検出又は推定する先行車減速度検出/推定部と、先行車の減速度に基づいて、変速制御の際の変速機の変速段又は変速比を選択する変速段/変速比選択部とを備えている。
特開2005-297814号公報
 しかしながら、上記の技術では、運転者のブレーキ又はアクセルの操作による車間距離調整の負荷を低減可能なものの、減速度の不足等により所望の減速度への追従性に問題がある。そのため、改善が望まれている。
 本発明は、このような事情を考慮してなされたものであり、その目的は、所望の減速度への追従性を向上させつつ、機械的ブレーキや回生ブレーキの消耗を防止してコストを減少させることができる車両制御装置を提供することにある。
 本発明は、車両の減速時に、駆動源の回転数に対する駆動輪の回転数の比である減速比を変更するエンジンブレーキの後に、駆動輪の回転の運動エネルギーを摩擦により熱エネルギーに変換する機械的ブレーキ及び駆動輪の回転の運動エネルギーを回生により電気エネルギーに変換する回生ブレーキのいずれかを行う減速制御ユニットを備えた車両制御装置である。
 この構成によれば、減速制御ユニットは、車両の減速時に、駆動源の回転数に対する駆動輪の回転数の比である減速比を変更するエンジンブレーキの後に、駆動輪の回転の運動エネルギーを摩擦により熱エネルギーに変換する機械的ブレーキ及び駆動輪の回転の運動エネルギーを回生により電気エネルギーに変換する回生ブレーキのいずれを行う。このため、所望の減速度への追従性を向上させつつ、機械的ブレーキや回生ブレーキの消耗を防止してコストを減少させることができる。
 この場合、減速制御ユニットは、エンジンブレーキの時に、駆動源の回転数が許容できる上限回転数に達したことを条件として、機械的ブレーキ及び回生ブレーキのいずれかを行うものとできる。
 この構成によれば、減速制御ユニットは、エンジンブレーキの時に、駆動源の回転数が許容できる上限回転数に達したことを条件として、機械的ブレーキ及び回生ブレーキのいずれかを行う。このため、エンジンブレーキによる騒音を許容限度内に抑えつつ、機械的ブレーキや回生ブレーキの消耗を防止してコストを減少させることができる。
 この場合、減速制御ユニットは、エンジンブレーキの時に、駆動源の回転数が上限回転数に達した後に、機械的ブレーキ及び回生ブレーキを行なわずにエンジンブレーキを続行し、その後に機械的ブレーキ及び回生ブレーキのいずれかを行うものとできる。
 この構成によれば、減速制御ユニットは、エンジンブレーキの時に、駆動源の回転数が上限回転数に達した後に、機械的ブレーキ及び回生ブレーキを行なわずにエンジンブレーキを続行し、その後に機械的ブレーキ及び回生ブレーキのいずれかを行う。このため、エンジンブレーキによる騒音を抑えつつ、機械的ブレーキ又は回生ブレーキの使用時間をより減少させて、機械的ブレーキや回生ブレーキの消耗をさらに防止することができる。
 この場合、減速制御ユニットは、エンジンブレーキの時に、駆動源の回転数が上限回転数に達した後に、減速比を維持しつつエンジンブレーキを続行することが好適である。
 この構成によれば、減速制御ユニットは、エンジンブレーキの時に、駆動源の回転数が上限回転数に達した後に、減速比を維持しつつエンジンブレーキを続行する。このため、駆動源の回転数が上限回転数に達した後に、機械的ブレーキ及び回生ブレーキを行なわずにエンジンブレーキを続行する時間内にも駆動源の回転数は許容できる上限回転数付近に止まり、エンジンブレーキによる騒音をさらに抑えることができる。
 また、減速制御ユニットは、要求される減速度に応じて駆動源の回転数が上限回転数以内となるようにエンジンブレーキを行い、駆動源の回転数が上限回転数であるときにエンジンブレーキにより得られる減速度が要求される減速度に足りないときは、機械的ブレーキ及び回生ブレーキのいずれかを行うものとできる。
 この構成によれば、減速制御ユニットは、要求される減速度に応じて駆動源の回転数が上限回転数以内となるようにエンジンブレーキを行うため、要求される減速度を得つつ、エンジンブレーキによる騒音を許容限度内に抑えることができる。また、減速制御ユニットは、駆動源の回転数が上限回転数であるときにエンジンブレーキにより得られる減速度が要求される減速度に足りないときは、機械的ブレーキ及び回生ブレーキのいずれかを行うため、エンジンブレーキによる騒音を許容限度内に抑えつつ、機械的ブレーキや回生ブレーキの使用時間を減少させて、要求される減速度を得ることができる。
 また、減速制御ユニットは、エンジンブレーキから機械的ブレーキ及び回生ブレーキのいずれかを行う時に、減速度の単位時間当たりの変化率の変動が所定値以内となるように減速度を制御するものとできる。
 この構成によれば、減速制御ユニットは、エンジンブレーキから機械的ブレーキ及び回生ブレーキのいずれかを行う時に、減速度の単位時間当たりの変化率の変動が所定値以内と少なくなるように減速度を制御する。このため、エンジンブレーキから機械的ブレーキ又は回生ブレーキへの切替時における減速度の変化が滑らかに行われることになり、乗員の快適さを向上させることができる。
 また、減速制御ユニットは、変速比を無段階で変更可能であるものとできる。
 この構成によれば、減速制御ユニットは、変速比を無段階で変更可能であるため、より効果的にエンジンブレーキを行うことができる。
 本発明の車両制御装置によれば、所望の減速度への追従性を向上させつつ、機械的ブレーキや回生ブレーキの消耗を防止してコストを減少させることができる。
実施形態に係る車両制御装置の構成を示すブロック図である。 先行車が減速した際の状況を示す図である。 従来のCVTエンジンブレーキを使わない減速度の制御を示すグラフ図である。 本実施形態のCVTエンジンブレーキを使用する減速度の制御を示すグラフ図である。 図4においてブレーキ制御の開始を遅延させた減速度の制御を示すグラフ図である。 図4においてCVTエンジンブレーキをエンジンの回転数がより高くなるまで使用した減速度の制御を示すグラフ図である。 要求される減速度(マイナス駆動力)とエンジン回転数との関係を示すグラフ図である。
 以下、図面を参照して本発明の実施形態に係る車両制御装置について説明する。図1に示すように、本実施形態の車両制御装置10は、ドライバーサポートシステムECU20、エンジンECU30及びブレーキECU40を備えている。本実施形態の車両制御装置10は、無段階変速機(CVT:Continuously Variable Transmission)を備えた車両において、ACC等における減速制御を行なう。
 ドライバーサポートシステムECU20は、自車両を先行車両に対して所定の車間距離をおいて追従走行させるACCアプリケーション21、進路上にある車両や障害物を検知して衝突被害軽減を図るPCS(Pre-Crash Safety)アプリケーション22及び車両が所定の上限車速を超えないように制御するASL(Auto Speed Limit)アプリケーション23のドライバーの運転操作を支援するアプリケーションプログラムを有している。
 ACCアプリケーション21、PCSアプリケーション22及びASLアプリケーション23によりそれぞれ要求される加速度又は減速度である目標GACC,GPCS及びGASLは、目標G調停部24によりエンジンECU30への目標Gとして調停される。
 なお、ACCアプリケーション21及びASLアプリケーション23は、それぞれの目標GACC及びGASLを出力する他、エンジンブレーキ増加要求についての指令信号を出力する。エンジンブレーキを使いたい状況と使いたくない状況とがあると考えられるからである。エンジンブレーキ増加要求がONのときは、無段階変速機の変速比を変更することによるエンジンブレーキ(以下、CVTエンジンブレーキと呼ぶことがある)が行なわれるが、エンジンブレーキ増加要求がOFFのときは、CVTエンジンブレーキを行なわず、通常走行時の変速比(Dレンジ)でスロットルをOFFにする減速(以下、Dレンジエンジンブレーキと呼ぶことがある)しか行なわれない。また、ACCアプリケーション21及びASLアプリケーション23は、CVTエンジンブレーキの際の上限エンジン回転数を出力する。また、ACCアプリケーション21及びASLアプリケーション23は、車両のディスクブレーキ及びドラムブレーキ等の機械的ブレーキの使用を許可するかを示す(機械的)ブレーキ許可についての指令信号を送出する。
 目標Gは目標駆動力要求部25で、目標Gと実際の車両のGとが一致するようにフィードバック制御を行ない、外乱の影響を補償した目標駆動力(要求駆動力)に変換される。以上より、ドライバーサポートシステムECU20からエンジンECU30及びブレーキECU40へは、要求駆動力、ブレーキ許可の有無についての指令信号、CVTエンジンブレーキ時の上限エンジン回転数及び場合によってはエンジンブレーキ量の増加要求の指令信号が送出される。ドライバーサポートシステムECU20においては、変速比の制御等は行なわず、要求駆動力や上限エンジン回転数のみが出力される。
 エンジンECU30は、ドライバーサポートシステムECU20からの要求駆動力や上限エンジン回転数に従って、目標トルク演算部31においてエンジンの出力を演算し、エンジンにエンジン指令値を出力する。
 また、エンジンECU30は、ドライバーサポートシステムECU20からの要求駆動力や上限エンジン回転数に従って、後述するように目標ギア比演算部32において無段階変速機の目標ギア比を演算し、無段階変速機にトランスミッション指令値を出力する。
 ドライバーサポートシステムECU20のACCアプリケーション21等からは、要求駆動力が送信され、エンジンECU30では、この要求駆動力を実現するようにスロットル制御を行ない、減速が必要な場合はスロットル全閉にする。それ以上に減速度が必要なときは、無段階変速機の変速比を大きくし、エンジン回転数を上げて、エンジンでのフリクションロスを増大させて減速度を作る。ただし、あまりエンジンの回転数が上がると騒音が増大する。そのため、エンジンECU30では、ドライバーサポートシステムECU20のACCアプリケーション21等から送信された上限エンジン回転数内で制御を行なう。
 また、エンジンECU30は、ドライバーサポートシステムECU20からの上限エンジン回転数に基づいて、後述するように上限エンジン回転数におけるエンジンブレーキ(Dレンジエンジンブレーキ及びCVTエンジンブレーキ)で得られるフリクショントルクと、車両が電気自動車のときは補機で得られる補機トルクとの和を演算する。
 Dレンジエンジンブレーキで得られる最小の駆動力(減速度)であるアベイラビリティー下限(Dレンジ)と、CVTエンジンブレーキで得られる最小の駆動力(減速度)であるアベイラビリティー下限(CVT)とは、ドライバーサポートシステムECU20とブレーキECU40とに送出される。ドライバーサポートシステムECU20では、アベイラビリティー下限(Dレンジ)及びアベイラビリティー下限(CVT)に従って目標駆動力や、エンジンブレーキ許可指令や、エンジンブレーキ増加要求について、フィードバック制御を行なう。
 ブレーキECU40では、アベイラビリティー下限(Dレンジ)及びアベイラビリティー下限(CVT)に基づいて、エンジンブレーキだけで要求駆動力(減速度)を実現できるか否かを判定する。ブレーキECU40は、エンジンブレーキだけでは要求駆動力を実現できないと判定したときであって、ブレーキ許可指令がONのときは、機械的ブレーキや回生ブレーキを必要なだけ動作させて減速を行う。
 機械的ブレーキや回生ブレーキの使用量は、エンジンECU30側でCVTエンジンブレーキを行なっているか否かで変更される。もし、ドライバーサポートシステムECU20からのエンジンブレーキ増加要求がOFFのときは、ブレーキECU40は、要求駆動力-アベイラビリティー下限(Dレンジ)だけの駆動力(減速度)を機械的ブレーキや回生ブレーキにより発生させる。一方、ドライバーサポートシステムECU20からのエンジンブレーキ増加要求がONのときは、そのままでは機械的ブレーキや回生ブレーキによる駆動力が大き過ぎるため、ブレーキECU40は、要求駆動力-アベイラビリティー下限(CVT)だけの駆動力(減速度)を機械的ブレーキや回生ブレーキにより発生させる。
 以下、本実施形態の車両制御装置10による追従走行について説明する。図2に示すように、ACCアプリケーション21に従って先行車VPに対して自車VMが追従走行を行なっている際に、自車VMが追従していた先行車VPが減速した状況を想定する。このとき、ドライバーサポートシステムECU20からのエンジンブレーキ増加要求がOFFのときは、図3に示すように、Dレンジエンジンブレーキしか行なわれず、Dレンジエンジンブレーキにより要求駆動力を実現できないときは、機械的ブレーキ又は回生ブレーキによる減速が行われる。この場合、機械的ブレーキ等の使用量は大きなものになる。
 一方、ドライバーサポートシステムECU20からのエンジンブレーキ増加要求がONのときであって、減速度等を変更しない場合は、図4に示すように、Dレンジエンジンブレーキの後にCVTエンジンブレーキが行なわれ、エンジン回転数が上限エンジン回転数に達し、CVTエンジンブレーキにより要求駆動力を実現できないときは、機械的ブレーキ又は回生ブレーキによる減速が行われる。この場合、機械的ブレーキ等の使用量は小さなものになる。なお、Dレンジエンジンブレーキにおける減速度の変化率、CVTエンジンブレーキにおける減速度の変化率及び機械的ブレーキにおける減速度の変化率の相違は所定値以内とされる。図中の各手法による減速時の減速度の傾きは滑らかにつながれる。
 さらに、機械的ブレーキ等の使用量を抑えたい等の要求が出た場合は、図5に示すように、Dレンジエンジンブレーキの後にCVTエンジンブレーキが行なわれ、エンジン回転数が上限エンジン回転数に達し、CVTエンジンブレーキにより要求駆動力を実現できなくなった後も、状況に応じてCVTエンジンブレーキは続行され、機械的ブレーキの使用開始が遅延される。この場合、機械的ブレーキの使用量を大きく減らすことは可能であるが、図中の破線の楕円で示す部分では、先行車VPと自車VMとが接近する。したがって、本実施形態では、エンジン回転数の増大による騒音や、先行車VPとの接近をどの程度まで許容するかで、減速の方法を決めることが可能となる。もし、先行車VPと自車VMとが接触する可能性があると判断されるときは、即時に機械的ブレーキが使用される。一方、機械的ブレーキや回生ブレーキを使用しなくとも、要求駆動力を実現可能なときは、機械的ブレーキ及び回生ブレーキは使用されない。
 減速度等を変更せずに機械的ブレーキ等の使用量を減らしたい場合は、図6に示すように、上限エンジン回転数をさらに大きくし、図4では機械的ブレーキ等による減速を行っていた部分でも、CVTエンジンブレーキを行なうようにする。これにより、機械的ブレーキ等の使用量は減少するが、上限エンジン回転数が大きくなったことにより、エンジン音は大きくなる。したがって、本実施形態では、騒音と機械的ブレーキの使用頻度とのバランスが取れる状態で減速を行うことが可能となる。
 なお、エンジンECU30において、要求駆動力に対して無段階変速機の変速比を決定する手法について説明する。ここで、図7に示すように、アベイラビリティー下限(Dレンジ)におけるエンジンの回転数と、アベイラビリティー下限(CVT)におけるCVTエンジンブレーキの上限エンジン回転数が得られているものとする。アベイラビリティー下限(Dレンジ)は、変速機のDレンジで出せる最小の駆動力であり、最小エンジン回転数のときのエンジンフリクショントルク及び補機のトルクから演算することができる。また、アベイラビリティー下限(CVT)は、CVTエンジンブレーキでエンジンの回転数を上げたときに出せる最小の駆動力であり、指定された上限エンジン回転数のときのエンジンフリクショントルク及び補機のトルクから演算することができる。
 もし、ACCアプリケーション21からの要求駆動力がアベイラビリティ下限(Dレンジ)よりも大きいときは(減速度が小さい)、エンジンECU30はスロットル開度を増大させる制御を行なう。要求駆動力がアベイラビリティー下限(Dレンジ)と等しいときは、エンジンECU30はスロットルを全閉する。
 ここで、ACCアプリケーション21からの要求駆動力がアベイラビリティ下限値(Dレンジ)よりも小さいときは(減速度が大きい)、エンジンECU30は、エンジンの駆動力にたいするエンジン回転数の特性が線形であると仮定する。ACCアプリケーション21からの要求駆動力が、例えば、アベイラビリティー下限(Dレンジ)とアベイラビリティー下限(CVT)との中間値であるとすると、要求駆動力に適合した目標エンジン回転数は、アベイラビリティー下限(Dレンジ)におけるエンジンの回転数とCVTエンジンブレーキの上限エンジン回転数との中間値であると推定することができる。
 これにより計算コストを削減することができる。目標エンジン回転数より、無段階変速機の変速比を決定することができる。もし、要求駆動力がアベイラビリティー下限(CVT)よりも小さいときは(減速度が大きい)、エンジンECU30は、上限エンジン回転数となるように変速比を決定する。本実施形態では、エンジンECU30の側で、無段階変速機の変速比を操作し、所望の減速度を得るため、ACCアプリケーションの側で変速比等を計算するよりも、効率良く制御を行なうことができる。
 本実施形態によれば、車両制御装置10のエンジンECU30及びブレーキECU40は、車両の減速時に、エンジンの回転数に対する駆動輪の回転数の比である減速比を変更するエンジンブレーキの後に、駆動輪の回転の運動エネルギーを摩擦により熱エネルギーに変換する機械的ブレーキ及び駆動輪の回転の運動エネルギーを回生により電気エネルギーに変換する回生ブレーキのいずれかを行う。このため、所望の減速度への追従性を向上させつつ、機械的ブレーキや回生ブレーキの消耗を防止してコストを減少させることができる。また、ピストンの運動で運動エネルギーを保存するエンジンブレーキによる減速を多くすることにより、燃費を良くすることが可能となる。
 また、本実施形態によれば、エンジンECU30及びブレーキECU40は、エンジンブレーキの時に、駆動源の回転数が許容できる上限エンジン回転数に達したことを条件として、機械的ブレーキ及び回生ブレーキのいずれかを行う。このため、エンジンブレーキによる騒音を許容限度内に抑えつつ、機械的ブレーキや回生ブレーキの消耗を防止してコストを減少させることができる。
 また、本実施形態によれば、エンジンECU30及びブレーキECU40は、エンジンブレーキの時に、エンジンの回転数が上限エンジン回転数に達した後に、すぐに機械的ブレーキ又は回生ブレーキを行わず、エンジンブレーキを続行し、その後に機械的ブレーキ及び回生ブレーキのいずれかを行う。このため、エンジンブレーキによる騒音を抑えつつ、機械的ブレーキ又は回生ブレーキの使用時間をより減少させて、機械的ブレーキや回生ブレーキの消耗をさらに防止することができる。
 また、本実施形態によれば、エンジンECU30及びブレーキECU40は、エンジンブレーキの時に、エンジンの回転数が上限エンジン回転数に達した後に、機械的ブレーキ又は回生ブレーキを行わずにエンジンブレーキを続行するときは、減速比を維持しつつエンジンブレーキを続行する。このため、所定時間内にもエンジンの回転数は許容できる上限回転数付近に止まり、エンジンブレーキによる騒音をさらに抑えることができる。
 また、本実施形態によれば、エンジンECU30は、要求される減速度に応じてエンジンの回転数が上限エンジン回転数以内となるようにエンジンブレーキを行うため、要求される減速度を得つつ、エンジンブレーキによる騒音を許容限度内に抑えることができる。また、ブレーキECU40は、エンジンの回転数が上限エンジン回転数であるときにエンジンブレーキにより得られる減速度が要求される減速度に足りないときは、機械的ブレーキ及び回生ブレーキのいずれかを行うため、エンジンブレーキによる騒音を許容限度内に抑えつつ、機械的ブレーキや回生ブレーキの使用時間を減少させて、要求される減速度を得ることができる。
 また、本実施形態によれば、エンジンECU30及びブレーキECU40は、エンジンブレーキから機械的ブレーキ及び回生ブレーキのいずれかを行う時に、減速度の単位時間当たりの変化率の変動が所定値以内と少なくなるように減速度を制御する。このため、エンジンブレーキから機械的ブレーキ又は回生ブレーキへの切替時における減速度の変化が滑らかに行われることになり、乗員の快適さを向上させることができる。
 また、本実施形態によれば、エンジンECU30は、変速比を無段階で変更可能であるため、より効果的にエンジンブレーキを行うことができる。
 以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。
 本発明の車両制御装置によれば、所望の減速度への追従性を向上させつつ、機械的ブレーキや回生ブレーキの消耗を防止してコストを減少させることができる。
10 車両制御装置
20 ドライバーサポートシステムECU
21 ACCアプリケーション
22 PCSアプリケーション
23 ASLアプリケーション
24 目標G調停部
25 目標駆動力要求部
30 エンジンECU
31 目標トルク演算部
32 目標ギア比演算部
33 アベイラビリティー下限演算部
40 ブレーキECU

Claims (7)

  1.  車両の減速時に、駆動源の回転数に対する駆動輪の回転数の比である減速比を変更するエンジンブレーキの後に、前記駆動輪の回転の運動エネルギーを摩擦により熱エネルギーに変換する機械的ブレーキ及び前記駆動輪の回転の運動エネルギーを回生により電気エネルギーに変換する回生ブレーキのいずれかを行う減速制御ユニットを備えた車両制御装置。
  2.  前記減速制御ユニットは、前記エンジンブレーキの時に、前記駆動源の回転数が許容できる上限回転数に達したことを条件として、前記機械的ブレーキ及び前記回生ブレーキのいずれかを行う、請求項1に記載の車両制御装置。
  3.  前記減速制御ユニットは、前記エンジンブレーキの時に、前記駆動源の回転数が前記上限回転数に達した後に、前記機械的ブレーキ及び前記回生ブレーキを行なわずに前記エンジンブレーキを続行し、その後に前記機械的ブレーキ及び前記回生ブレーキのいずれかを行う、請求項2に記載の車両制御装置。
  4.  前記減速制御ユニットは、前記エンジンブレーキの時に、前記駆動源の回転数が前記上限回転数に達した後に、前記減速比を維持しつつ前記エンジンブレーキを続行する、請求項3に記載の車両制御装置。
  5.  前記減速制御ユニットは、要求される減速度に応じて前記駆動源の回転数が前記上限回転数以内となるように前記エンジンブレーキを行い、前記駆動源の回転数が前記上限回転数であるときに前記エンジンブレーキにより得られる減速度が要求される前記減速度に足りないときは、前記機械的ブレーキ及び前記回生ブレーキのいずれかを行う、請求項2~4のいずれか1項に記載の車両制御装置。
  6.  前記減速制御ユニットは、前記エンジンブレーキから前記機械的ブレーキ及び前記回生ブレーキのいずれかを行う時に、減速度の単位時間当たりの変化率の変動が所定値以内となるように減速度を制御する、請求項1~5のいずれか1項に記載の車両制御装置。
  7.  前記減速制御ユニットは、前記変速比を無段階で変更可能である、請求項1~6のいずれか1項に記載の車両制御装置。
PCT/JP2011/051110 2011-01-21 2011-01-21 車両制御装置 WO2012098680A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/051110 WO2012098680A1 (ja) 2011-01-21 2011-01-21 車両制御装置
US13/980,397 US9669808B2 (en) 2011-01-21 2011-01-21 Vehicle engine brake control apparatus
CN201180065455.6A CN103313887B (zh) 2011-01-21 2011-01-21 车辆控制装置
JP2012553534A JP5720701B2 (ja) 2011-01-21 2011-01-21 車両制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/051110 WO2012098680A1 (ja) 2011-01-21 2011-01-21 車両制御装置

Publications (1)

Publication Number Publication Date
WO2012098680A1 true WO2012098680A1 (ja) 2012-07-26

Family

ID=46515331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051110 WO2012098680A1 (ja) 2011-01-21 2011-01-21 車両制御装置

Country Status (4)

Country Link
US (1) US9669808B2 (ja)
JP (1) JP5720701B2 (ja)
CN (1) CN103313887B (ja)
WO (1) WO2012098680A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2511604A (en) * 2012-12-10 2014-09-10 Jaguar Land Rover Ltd Vehicle and method of control thereof
CN104918834A (zh) * 2013-01-24 2015-09-16 丰田自动车株式会社 混合动力车辆的控制装置
WO2017159717A1 (ja) * 2016-03-18 2017-09-21 株式会社アドヴィックス 車両の制御装置
JP2020011582A (ja) * 2018-07-17 2020-01-23 トヨタ自動車株式会社 駆動力制御装置
JP2020032894A (ja) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 情報処理装置
JP2020183130A (ja) * 2019-04-26 2020-11-12 トヨタ自動車株式会社 車両の制御装置
JP2021049989A (ja) * 2020-12-25 2021-04-01 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP2021049990A (ja) * 2020-12-25 2021-04-01 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP2021049988A (ja) * 2020-12-25 2021-04-01 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP2022009422A (ja) * 2020-12-25 2022-01-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022009421A (ja) * 2020-12-25 2022-01-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022009425A (ja) * 2020-12-25 2022-01-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022009423A (ja) * 2020-12-25 2022-01-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022009424A (ja) * 2020-12-25 2022-01-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022009420A (ja) * 2020-12-25 2022-01-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022105527A (ja) * 2018-08-30 2022-07-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP2022105528A (ja) * 2018-08-30 2022-07-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130061652A1 (en) * 2011-09-13 2013-03-14 Seattle Safety Llc Crash test method and apparatus including pitch simulation
US9347532B2 (en) 2012-01-19 2016-05-24 Dana Limited Tilting ball variator continuously variable transmission torque vectoring device
WO2013123117A1 (en) 2012-02-15 2013-08-22 Dana Limited Transmission and driveline having a tilting ball variator continuously variable transmission
US9556941B2 (en) 2012-09-06 2017-01-31 Dana Limited Transmission having a continuously or infinitely variable variator drive
WO2014039713A1 (en) 2012-09-07 2014-03-13 Dana Limited Ivt based on a ball type cvp including powersplit paths
JP6293148B2 (ja) 2012-09-07 2018-03-14 デーナ リミテッド 直接駆動モードを含むボール式cvt
WO2014039901A1 (en) 2012-09-07 2014-03-13 Dana Limited Ball type continuously variable transmission/ infinitely variable transmission
WO2014039900A1 (en) 2012-09-07 2014-03-13 Dana Limited Ball type cvt with powersplit paths
JP6247690B2 (ja) 2012-09-07 2017-12-13 デーナ リミテッド 出力連結動力経路を有するボール式cvt
US8868311B2 (en) * 2012-10-04 2014-10-21 Robert Bosch Gmbh Method to deal with slow initial brake response for adaptive cruise control
WO2014078583A1 (en) 2012-11-17 2014-05-22 Dana Limited Continuously variable transmission
WO2014124063A1 (en) 2013-02-08 2014-08-14 Microsoft Corporation Pervasive service providing device-specific updates
US9689482B2 (en) 2013-03-14 2017-06-27 Dana Limited Ball type continuously variable transmission
US9551404B2 (en) 2013-03-14 2017-01-24 Dana Limited Continuously variable transmission and an infinitely variable transmission variator drive
US20140358343A1 (en) * 2013-05-28 2014-12-04 Raymond Louis Chastang, JR. Vehicle tire frictional drive rotational power and energy source
EP3004686B1 (en) 2013-06-06 2018-08-08 Dana Limited 3-mode front wheel drive and rear wheel drive continuously variable planetary transmission
US10030751B2 (en) 2013-11-18 2018-07-24 Dana Limited Infinite variable transmission with planetary gear set
WO2015073948A2 (en) 2013-11-18 2015-05-21 Dana Limited Torque peak detection and control mechanism for cvp
US20150142281A1 (en) * 2013-11-18 2015-05-21 Dana Limited Braking management system for a transmission incorporating a cvp
US9238412B2 (en) * 2014-03-18 2016-01-19 GM Global Technology Operations LLC Normalizing deceleration of a vehicle having a regenerative braking system
JP5810232B1 (ja) * 2014-03-28 2015-11-11 富士重工業株式会社 車両用制御装置
KR101628148B1 (ko) * 2014-08-27 2016-06-08 현대자동차 주식회사 하이브리드 차량의 회생 제동 장치 및 방법
CN107000607B (zh) * 2014-12-08 2018-04-27 日产自动车株式会社 制动力驱动力控制装置以及制动力驱动力控制方法
US9327732B1 (en) 2015-06-15 2016-05-03 Ford Global Technologies, Llc Method and assembly for changing thermal energy levels in a vehicle by adjusting engine braking
US10030594B2 (en) 2015-09-18 2018-07-24 Dana Limited Abuse mode torque limiting control method for a ball-type continuously variable transmission
JP6730020B2 (ja) * 2015-11-25 2020-07-29 三菱重工エンジニアリング株式会社 ブレーキ制御装置、ブレーキ制御方法、列車、及びプログラム
JP6793759B2 (ja) * 2017-02-13 2020-12-02 日立オートモティブシステムズ株式会社 自動車の走行制御装置、及び自動車の走行制御システム
US10407069B2 (en) * 2017-04-21 2019-09-10 Ford Global Technologies, Llc Methods and system for controlling engine braking
US11420629B2 (en) * 2020-05-29 2022-08-23 Cummins Inc. Engine brake ramping
KR20220047467A (ko) * 2020-10-08 2022-04-18 현대자동차주식회사 자동차 타력 주행시 기준 감속도를 이용한 회생제동 시스템 및 그 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011801A (ja) * 2001-06-28 2003-01-15 Toyota Motor Corp 車両の運転操作支援装置
JP3858952B2 (ja) * 1997-08-13 2006-12-20 日産自動車株式会社 車両用制動力制御装置
JP2007118791A (ja) * 2005-10-28 2007-05-17 Advics:Kk 車両用自動制動装置
JP2007204004A (ja) * 2006-02-06 2007-08-16 Toyota Motor Corp 車両の減速制御装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2961920B2 (ja) * 1991-03-26 1999-10-12 トヨタ自動車株式会社 シリーズ、パラレル複合ハイブリッドカーシステム
DE4120589A1 (de) * 1991-06-21 1993-01-07 Porsche Ag Verfahren zur steuerung eines stufenlosen getriebes eines kraftfahrzeugs
US5839534A (en) * 1995-03-01 1998-11-24 Eaton Vorad Technologies, Llc System and method for intelligent cruise control using standard engine control modes
US6054844A (en) * 1998-04-21 2000-04-25 The Regents Of The University Of California Control method and apparatus for internal combustion engine electric hybrid vehicles
JP3414059B2 (ja) * 1995-07-19 2003-06-09 アイシン・エィ・ダブリュ株式会社 車輌用駆動装置
JP3861321B2 (ja) * 1996-05-02 2006-12-20 トヨタ自動車株式会社 ハイブリッド車
JPH1127802A (ja) * 1997-07-03 1999-01-29 Toyota Motor Corp 電気自動車の制動制御装置
US6554088B2 (en) * 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
JP2000110925A (ja) 1998-10-02 2000-04-18 Denso Corp 無段変速機の変速比制御装置及び記録媒体
JP3712910B2 (ja) * 2000-03-23 2005-11-02 トヨタ自動車株式会社 車両の変速機制御装置
JP2002286125A (ja) * 2001-03-26 2002-10-03 Koyo Seiko Co Ltd 制動力制御方法
US20050017580A1 (en) * 2003-07-23 2005-01-27 Ford Global Technologies, Llc. Hill holding brake system for hybrid electric vehicles
JP4214943B2 (ja) 2004-04-13 2009-01-28 トヨタ自動車株式会社 車両用走行制御装置
JP4371099B2 (ja) * 2005-10-26 2009-11-25 トヨタ自動車株式会社 動力伝達装置の制御装置
JP4862036B2 (ja) * 2006-03-06 2012-01-25 日立オートモティブシステムズ株式会社 自動車の制御装置及び制御方法
US8565969B2 (en) * 2007-04-03 2013-10-22 Clean Emissions Technologies, Inc. Over the road/traction/cabin comfort retrofit
US20070222287A1 (en) * 2006-03-22 2007-09-27 Ford Global Technologies, Llc Automotive regenerative and friction braking system and control method
JP2007284001A (ja) * 2006-04-20 2007-11-01 Toyota Motor Corp 車両およびその制御方法
US8594867B2 (en) * 2007-11-04 2013-11-26 GM Global Technology Operations LLC System architecture for a blended braking system in a hybrid powertrain system
US8596390B2 (en) * 2007-12-05 2013-12-03 Ford Global Technologies, Llc Torque control for hybrid electric vehicle speed control operation
CN101337499A (zh) * 2008-08-08 2009-01-07 哈尔滨工业大学 车辆制动动能再生装置
JP2010158973A (ja) 2009-01-08 2010-07-22 Mazda Motor Corp 車両用駆動装置の制御方法および制御装置
US8315775B2 (en) * 2009-02-06 2012-11-20 GM Global Technology Operations LLC Cruise control systems and methods with adaptive speed adjustment rates
US8630759B2 (en) * 2009-11-20 2014-01-14 GM Global Technology Operations LLC Control of regenerative braking in a hybrid vehicle
JP5222329B2 (ja) * 2010-08-05 2013-06-26 本田技研工業株式会社 車両用制動装置
US9862371B2 (en) * 2010-11-01 2018-01-09 GM Global Technology Operations LLC System and method for controlling an engine in a hybrid vehicle
US8467923B2 (en) * 2010-11-19 2013-06-18 Delphi Technologies, Inc. Vehicle deceleration rate control during deceleration fuel cutoff by varying generation electric load

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858952B2 (ja) * 1997-08-13 2006-12-20 日産自動車株式会社 車両用制動力制御装置
JP2003011801A (ja) * 2001-06-28 2003-01-15 Toyota Motor Corp 車両の運転操作支援装置
JP2007118791A (ja) * 2005-10-28 2007-05-17 Advics:Kk 車両用自動制動装置
JP2007204004A (ja) * 2006-02-06 2007-08-16 Toyota Motor Corp 車両の減速制御装置

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2511604B (en) * 2012-12-10 2015-11-25 Jaguar Land Rover Ltd Vehicle and method of control thereof
GB2511604A (en) * 2012-12-10 2014-09-10 Jaguar Land Rover Ltd Vehicle and method of control thereof
CN104918834A (zh) * 2013-01-24 2015-09-16 丰田自动车株式会社 混合动力车辆的控制装置
US10836364B2 (en) 2016-03-18 2020-11-17 Advics Co., Ltd. Vehicle control device
WO2017159717A1 (ja) * 2016-03-18 2017-09-21 株式会社アドヴィックス 車両の制御装置
JP2017170929A (ja) * 2016-03-18 2017-09-28 株式会社アドヴィックス 車両の制御装置
CN110789525B (zh) * 2018-07-17 2023-01-10 丰田自动车株式会社 驱动力控制装置
JP2020011582A (ja) * 2018-07-17 2020-01-23 トヨタ自動車株式会社 駆動力制御装置
US11225227B2 (en) 2018-07-17 2022-01-18 Toyota Jidosha Kabushiki Kaisha Driving force control device
CN110789525A (zh) * 2018-07-17 2020-02-14 丰田自动车株式会社 驱动力控制装置
JP2021107225A (ja) * 2018-08-30 2021-07-29 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP7243895B2 (ja) 2018-08-30 2023-03-22 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP7243894B2 (ja) 2018-08-30 2023-03-22 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP7056474B2 (ja) 2018-08-30 2022-04-19 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
US11608075B2 (en) 2018-08-30 2023-03-21 Toyota Jidosha Kabushiki Kaisha Information processing apparatus
JP2020032894A (ja) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 情報処理装置
JP7230945B2 (ja) 2018-08-30 2023-03-01 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
US11897492B2 (en) 2018-08-30 2024-02-13 Toyota Jidosha Kabushiki Kaisha Information processing apparatus
JP2022105528A (ja) * 2018-08-30 2022-07-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP2022105527A (ja) * 2018-08-30 2022-07-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP2020183130A (ja) * 2019-04-26 2020-11-12 トヨタ自動車株式会社 車両の制御装置
JP2022009421A (ja) * 2020-12-25 2022-01-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP7243789B2 (ja) 2020-12-25 2023-03-22 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022009420A (ja) * 2020-12-25 2022-01-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022009424A (ja) * 2020-12-25 2022-01-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP7107358B2 (ja) 2020-12-25 2022-07-27 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP7107359B2 (ja) 2020-12-25 2022-07-27 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP2022009423A (ja) * 2020-12-25 2022-01-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022009425A (ja) * 2020-12-25 2022-01-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022009422A (ja) * 2020-12-25 2022-01-14 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP7024851B2 (ja) 2020-12-25 2022-02-24 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP7243790B2 (ja) 2020-12-25 2023-03-22 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP7243788B2 (ja) 2020-12-25 2023-03-22 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP7243787B2 (ja) 2020-12-25 2023-03-22 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP7243786B2 (ja) 2020-12-25 2023-03-22 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2021049988A (ja) * 2020-12-25 2021-04-01 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP2021049990A (ja) * 2020-12-25 2021-04-01 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP7314980B2 (ja) 2020-12-25 2023-07-26 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2021049989A (ja) * 2020-12-25 2021-04-01 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両

Also Published As

Publication number Publication date
CN103313887B (zh) 2016-03-23
JP5720701B2 (ja) 2015-05-20
US20130304344A1 (en) 2013-11-14
JPWO2012098680A1 (ja) 2014-06-09
CN103313887A (zh) 2013-09-18
US9669808B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
JP5720701B2 (ja) 車両制御装置
KR101694074B1 (ko) 하이브리드 dct 차량의 변속 제어방법
US7291090B2 (en) Motor torque control system for vehicle
JP6094681B2 (ja) 車両の制御装置
JP6048457B2 (ja) 車両走行制御装置
WO2011145641A1 (ja) 制動制御装置
WO2011111489A1 (ja) アクセルペダル装置
JP6553469B2 (ja) 車両制御装置
JP5472028B2 (ja) モータトルク制御装置
KR101618453B1 (ko) 전기동력자동차의 원-페달 운전제어방법
KR20200064189A (ko) 차량의 크루즈 제어 장치 및 제어 방법
JP2022518472A (ja) ワンペダルフィーリング機能及び/又はクリープ機能を提供する制御ユニット
JP2020059367A (ja) 車両の制御装置
JP5309720B2 (ja) 電動車両の制駆動制御装置及び制駆動制御方法
JP6219242B2 (ja) 車両用走行制御装置
JP2020516214A (ja) 許容可能な回生トルクに応じて電気自動車またはハイブリッド車の車輪に伝達されるトルクを制御するための方法
JP6508346B2 (ja) 回生ブレーキ制御装置
JP2010241245A (ja) 車両用駆動力制御装置
WO2015004699A1 (ja) 車間保持制御装置
CN110775058B (zh) 车辆控制装置
JP4797466B2 (ja) 先行車追従制御装置
JPWO2019142357A1 (ja) 車両制御方法及び車両制御装置
JP5958649B2 (ja) ハイブリッド車両の制御装置
JP2012239329A (ja) 車両の回生トルク制御装置
JP2008260528A (ja) 車両の車速制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180065455.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553534

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13980397

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856271

Country of ref document: EP

Kind code of ref document: A1