WO2012098581A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2012098581A1
WO2012098581A1 PCT/JP2011/000280 JP2011000280W WO2012098581A1 WO 2012098581 A1 WO2012098581 A1 WO 2012098581A1 JP 2011000280 W JP2011000280 W JP 2011000280W WO 2012098581 A1 WO2012098581 A1 WO 2012098581A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
heat medium
pump
heat
heat exchanger
Prior art date
Application number
PCT/JP2011/000280
Other languages
English (en)
French (fr)
Inventor
裕之 森本
山下 浩司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP11856402.0A priority Critical patent/EP2667107B1/en
Priority to JP2012553459A priority patent/JP5570618B2/ja
Priority to PCT/JP2011/000280 priority patent/WO2012098581A1/ja
Priority to AU2011356121A priority patent/AU2011356121B2/en
Priority to US13/879,653 priority patent/US9829205B2/en
Publication of WO2012098581A1 publication Critical patent/WO2012098581A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/00077Indoor units, e.g. fan coil units receiving heat exchange fluid entering and leaving the unit as a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi-air conditioner.
  • an air conditioner such as a multi air conditioner for buildings
  • a refrigerant is circulated between an outdoor unit that is a heat source unit arranged outdoors and an indoor unit arranged indoors.
  • the refrigerant coolant thermally radiated or absorbed heat, and air-conditioning object space was cooled or heated with the air heated or cooled.
  • a plurality of indoor units are connected, and the stopped indoor units and the operating indoor units are often mixed.
  • the pipe connecting the outdoor unit and the indoor unit may be up to 100 m. The longer the pipe, the more refrigerant will be filled into the system.
  • Such indoor units of multi air conditioners for buildings are usually arranged in indoor spaces used by people (for example, office spaces, living rooms, stores, etc.).
  • people for example, office spaces, living rooms, stores, etc.
  • a secondary loop system is adopted as an air conditioner, a refrigerant is used for the primary loop, and water or brine is used for the secondary loop corresponding to the indoor space.
  • a transport device such as a pump is required.
  • Patent Document 1 an air release type tank having an atmospheric pressure equalizing valve is provided on the pump suction side to prevent pump suction from becoming negative pressure. Further, as in Patent Document 2, a water level tank is provided and the water level in the water level tank is kept constant, thereby preventing negative pressure.
  • Patent Document 1 and Patent Document 2 increase the number of parts, increase the cost, and limit the installation position of the tank. Therefore, various installation scenes are assumed and it is not suitable for multi-purpose buildings. .
  • JP 2006-36171 A (paragraph [0134], FIG. 1, etc.)
  • JP 2003-106985 A (paragraph [0034], FIG. 3 etc.)
  • the present invention has been made in order to solve the above-mentioned problems, and while ensuring safety, does not reduce the degree of freedom of system installation, and prevents air from entering the secondary circuit through which water and the like flow.
  • the present invention provides an air conditioner that suppresses pump failure and improves reliability.
  • the air conditioner according to the present invention includes a compressor and a heat source side heat exchanger in an outdoor unit, and the heat exchanger related to heat medium, a throttling device, a pump, and a heat medium flow control device as a heat medium converter.
  • the use side heat exchanger is provided in the indoor unit, and the refrigerant side flow path of the compressor, the heat source side heat exchanger, the expansion device, and the heat exchanger related to heat medium is connected in series, and the heat source side
  • the refrigerant circulation circuit in which the refrigerant circulates, the heat medium side flow path of the inter-heat medium heat exchanger, the pump, the use side heat exchanger, and the heat medium flow control device are connected to circulate the heat medium.
  • the heat medium circulation circuit is a sealed circuit
  • the maximum lift Pp of the pump is 150 kPa or more
  • at least the pressure near the suction side of the pump Set to a sealed pressure that maintains atmospheric pressure or higher during operation.
  • the heat medium circulation circuit through which water or the like flows is always maintained at atmospheric pressure or higher, and air intrusion into the heat medium circuit is prevented, thereby improving the reliability of the air conditioner.
  • FIG. 1 is a schematic view showing an installation example of the air conditioner of the present invention. Based on FIG. 1, the installation example of an air conditioning apparatus is demonstrated.
  • This air conditioner is arranged in the secondary circuit by using a refrigeration cycle circuit (refrigerant circulation circuit A) for circulating the refrigerant and a secondary circuit (heat medium circulation circuit B) for circulating the heat medium.
  • refrigerant circulation circuit A refrigerant circulation circuit
  • heat medium circulation circuit B heat medium circulation circuit for circulating the heat medium.
  • Each indoor unit can freely select a cooling mode or a heating mode as an operation mode.
  • a method of indirectly using a refrigerant is adopted. That is, the cold or warm heat stored in the refrigerant is transmitted to a heat medium different from the refrigerant, and the air-conditioning target space is cooled or heated with the cold or warm heat stored in the heat medium.
  • the air conditioner according to the present embodiment includes one outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, and heat that is interposed between the outdoor unit 1 and the indoor unit 2. And a medium converter 3.
  • the heat medium converter 3 performs heat exchange between the refrigerant and the heat medium.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected by a pipe (refrigerant pipe) 4 that conducts the refrigerant.
  • the heat medium relay unit 3 and the indoor unit 2 are connected by a pipe (heat medium pipe) 5 that conducts the heat medium.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the heat medium converter 3.
  • the outdoor unit 1 is normally disposed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 2 via the heat medium converter 3. It is.
  • the indoor unit 2 is arranged at a position where cooling air or heating air can be supplied to the indoor space 7 which is a space (for example, a living room or the like) inside the building 9, and the cooling air is supplied to the indoor space 7 which is the air-conditioning target space. Alternatively, heating air is supplied.
  • the heat medium relay unit 3 is configured as a separate housing from the outdoor unit 1 and the indoor unit 2 and is configured to be installed at a position different from the outdoor space 6 and the indoor space 7. Is connected to each other via a pipe 4 and a pipe 5, and transmits cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 2.
  • the outdoor unit 1 and the heat medium converter 3 use two pipes 4, and the heat medium converter 3 and each indoor unit 2 are two.
  • the pipes 5 are connected to each other.
  • the construction is facilitated by connecting each unit (the outdoor unit 1, the indoor unit 2, and the heat medium relay unit 3) using two pipes. ing.
  • the heat medium converter 3 is inside the building 9 but is a space such as the back of the ceiling that is different from the indoor space 7 (for example, the space such as the back of the ceiling in the building 9, An example of a state where it is installed in the space 8) is shown.
  • the heat medium relay 3 can also be installed in a common space where there is an elevator or the like.
  • the indoor unit 2 is a ceiling cassette type
  • mold is shown as an example, it is not limited to this, It is directly or directly in the indoor space 7, such as a ceiling embedded type and a ceiling suspended type. Any type of air can be used as long as heating air or cooling air can be blown out by a duct or the like.
  • FIG. 1 shows an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the waste heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. It may be installed, or may be installed inside the building 9 when the water-cooled outdoor unit 1 is used. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
  • the heat medium converter 3 can also be installed in the vicinity of the outdoor unit 1. However, it should be noted that if the distance from the heat medium relay unit 3 to the indoor unit 2 is too long, the power for transporting the heat medium becomes considerably large, and the energy saving effect is diminished. Furthermore, the number of connected outdoor units 1, indoor units 2 and heat medium converters 3 is not limited to the number shown in FIG. 1, but according to the building 9 in which the air conditioner according to the present invention is installed. What is necessary is just to determine the number.
  • FIG. 2 is a schematic circuit configuration diagram showing an example of a circuit configuration of an air-conditioning apparatus (hereinafter referred to as 100) according to the second embodiment. Based on FIG. 2, the detailed structure of the air conditioning apparatus 100 is demonstrated. As shown in FIG. 2, the outdoor unit 1 and the heat medium relay unit 3 are connected to each other through a pipe 4 via a heat medium heat exchanger 15 a and a heat medium heat exchanger 15 b provided in the heat medium converter 3. It is connected. Moreover, the heat medium converter 3 and the indoor unit 2 are connected by the pipe 5 through the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected to each other through a pipe 4 via a heat medium heat exchanger 15 a and a heat medium heat exchanger 15 b provided in the heat medium converter 3. It is connected.
  • the heat medium converter 3 and the indoor unit 2 are connected by the pipe 5 through the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium
  • Outdoor unit 1 In the outdoor unit 1, a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected in series through a pipe 4. . Further, the outdoor unit 1 is provided with a first connection pipe 4a, a second connection pipe 4b, and check valves 13a to 13d. By providing the first connection pipe 4a, the second connection pipe 4b, and the check valves 13a to 13d, the flow of the refrigerant flowing into the heat medium relay unit 3 is set to a constant direction regardless of the operation required by the indoor unit 2. be able to.
  • the compressor 10 sucks refrigerant and compresses the refrigerant to bring it into a high temperature / high pressure state, and is composed of, for example, an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 has a refrigerant flow in the heating operation mode (in the heating only operation mode and in the heating main operation mode) and in the cooling operation mode (in the cooling only operation mode and the cooling main operation mode). The flow of the refrigerant is switched.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a radiator (gas cooler) during cooling operation, and exchanges heat between air and refrigerant supplied from a blower such as a fan (not shown). Is to do.
  • the accumulator 19 is provided on the suction side of the compressor 10, and surplus refrigerant due to a difference between the heating operation mode and the cooling operation mode, a change in transient operation (for example, a change in the number of operating indoor units 2). The excess refrigerant is stored.
  • Each indoor unit 2 is equipped with a use side heat exchanger 26 (26a to 26d).
  • the use side heat exchanger 26 is connected to the heat medium flow control device 25 (25a to 25d) and the second heat medium flow switching device 23 (23a to 23d) of the heat medium converter 3 by the pipe 5. ing.
  • the use-side heat exchanger 26 performs heat exchange between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7. To do.
  • the heat medium relay 3 includes two heat medium heat exchangers 15, two expansion devices 16, two opening / closing devices 17 a and 17 b, two second refrigerant flow switching devices 18, and two pumps. 21, four first heat medium flow switching devices 22, four second heat medium flow switching devices 23, and four heat medium flow control devices 25 are installed.
  • the two heat exchangers 15 function as a condenser (heat radiator) or an evaporator, exchange heat between the refrigerant and the heat medium, and are generated by the outdoor unit 1 and stored in the refrigerant. It transmits the cold or warm heat to the heat medium.
  • the heat exchanger related to heat medium 15a is provided between the expansion device 16a and the second refrigerant flow switching device 18a in the refrigerant circuit A and serves to cool the heat medium in the cooling / heating mixed operation mode. is there.
  • the heat exchanger related to heat medium 15b is provided between the expansion device 16b and the second refrigerant flow switching device 18b in the refrigerant circuit A and serves to heat the heat medium in the cooling / heating mixed operation mode. is there.
  • the two expansion devices 16 (16a, 16b) have functions as pressure reducing valves and expansion valves, and expand the refrigerant by decompressing it.
  • the expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the refrigerant flow in the cooling only operation mode.
  • the expansion device 16b is provided on the upstream side of the heat exchanger related to heat medium 15b in the flow of the refrigerant in the cooling only operation mode.
  • the two throttling devices 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the two opening / closing devices 17 (17a, 17b) are configured by two-way valves or the like, and open / close the pipe 4.
  • the two second refrigerant flow switching devices 18 (18a, 18b) are configured by four-way valves or the like, and switch the refrigerant flow according to the operation mode.
  • the second refrigerant flow switching device 18a is provided on the downstream side of the heat exchanger related to heat medium 15a in the refrigerant flow in the cooling only operation mode.
  • the second refrigerant flow switching device 18b is provided on the downstream side of the heat exchanger related to heat medium 15b in the refrigerant flow in the cooling only operation mode.
  • the two pumps 21 (21a, 21b) circulate a heat medium that conducts the pipe 5.
  • the pump 21 a is provided in the pipe 5 between the heat exchanger related to heat medium 15 a and the second heat medium flow switching device 23.
  • the pump 21 b is provided in the pipe 5 between the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23.
  • the two pumps 21 may be constituted by, for example, pumps capable of capacity control.
  • the pump 21a may be provided in the pipe 5 between the heat exchanger related to heat medium 15a and the first heat medium flow switching device 22.
  • the pump 21b may be provided in the pipe 5 between the heat exchanger related to heat medium 15b and the first heat medium flow switching device 22.
  • the four first heat medium flow switching devices 22 are configured by three-way valves or the like, and switch the heat medium flow paths.
  • the first heat medium flow switching device 22 is provided in a number (here, four) according to the number of indoor units 2 installed.
  • one of the three sides is in the heat exchanger 15a
  • one of the three is in the heat exchanger 15b
  • one of the three is in the heat medium flow rate.
  • Each is connected to the adjusting device 25 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 26.
  • the four second heat medium flow switching devices 23 are constituted by three-way valves or the like, and switch the heat medium flow paths.
  • the number of the second heat medium flow switching devices 23 is set according to the number of installed indoor units 2 (here, four).
  • the second heat medium flow switching device 23 one of the three heat transfer medium heat exchangers 15a, one of the three heat transfer medium heat exchangers 15b, and one of the three heat transfer side heats.
  • the heat exchanger is connected to the exchanger 26 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • the second heat medium flow switching device 23a, the second heat medium flow switching device 23b, the second heat medium flow switching device 23c, and the second heat medium flow from the lower side of the drawing. This is illustrated as a switching device 23d.
  • the four heat medium flow control devices 25 are configured by two-way valves or the like that can control the opening area, and adjust the flow rate of the heat medium flowing through the indoor unit 2.
  • the number of the heat medium flow control devices 25 is set according to the number of indoor units 2 installed (four in this case).
  • One of the heat medium flow control devices 25 is connected to the use side heat exchanger 26 and the other is connected to the first heat medium flow switching device 22, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 26. Is provided.
  • the heat medium flow adjustment device 25 a, the heat medium flow adjustment device 25 b, the heat medium flow adjustment device 25 c, and the heat medium flow adjustment device 25 d are illustrated from the lower side of the drawing. Further, the heat medium flow control device 25 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • the heat medium converter 3 is provided with various detection means (two first temperature sensors 31, four second temperature sensors 34, four third temperature sensors 35, and one pressure sensor 36). Information detected by these detection means (for example, temperature information, pressure information, and refrigerant concentration information) is sent to a control device (not shown) that performs overall control of the operation of the air conditioner 100 to drive the compressor 10. Frequency, rotation speed of a blower (not shown) provided near the heat source side heat exchanger 12 and the use side heat exchanger 26, switching of the first refrigerant flow switching device 11, driving frequency of the pump 21, switching of the second refrigerant flow path This is used for control such as switching of the device 18 and switching of the flow path of the heat medium.
  • a control device not shown
  • the two first temperature sensors 31 detect the temperature of the heat medium flowing out from the intermediate heat exchanger 15, that is, the temperature of the heat medium at the outlet of the intermediate heat exchangers 15a, 15b.
  • a thermistor may be used.
  • the first temperature sensor 31a is provided in the pipe 5 on the inlet side of the pump 21a.
  • the first temperature sensor 31b is provided in the pipe 5 on the inlet side of the pump 21b.
  • the four second temperature sensors 34 are provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and the temperature of the heat medium flowing out from the use side heat exchanger 26. It may be configured by a thermistor or the like.
  • the number of the second temperature sensors 34 (four here) according to the number of installed indoor units 2 is provided. In correspondence with the indoor unit 2, the second temperature sensor 34a, the second temperature sensor 34b, the second temperature sensor 34c, and the second temperature sensor 34d are illustrated from the lower side of the drawing.
  • the four third temperature sensors 35 are provided on the refrigerant inlet side or the outlet side of the heat exchanger related to heat medium 15, and the temperature of the refrigerant flowing into the heat exchanger related to heat medium 15 or between the heat medium.
  • the temperature of the refrigerant flowing out from the heat exchanger 15 is detected, and it may be configured with a thermistor or the like.
  • the third temperature sensor 35a is provided between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a.
  • the third temperature sensor 35b is provided between the heat exchanger related to heat medium 15a and the expansion device 16a.
  • the third temperature sensor 35c is provided between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18b.
  • the third temperature sensor 35d is provided between the heat exchanger related to heat medium 15b and the expansion device 16b.
  • the pressure sensor 36 is provided between the heat exchanger related to heat medium 15b and the expansion device 16b, and between the heat exchanger related to heat medium 15b and the expansion device 16b. The pressure of the flowing refrigerant is detected.
  • the pipe 5 that conducts the heat medium is composed of one connected to the heat exchanger related to heat medium 15a and one connected to the heat exchanger related to heat medium 15b.
  • the piping 5 is branched according to the number of indoor units 2 connected to the heat medium relay unit 3.
  • the pipe 5 is connected by a first heat medium flow switching device 22 and a second heat medium flow switching device 23.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 By controlling the first heat medium flow switching device 22 and the second heat medium flow switching device 23, the heat medium from the heat exchanger related to heat medium 15a flows into the use-side heat exchanger 26, or the heat medium Whether the heat medium from the intermediate heat exchanger 15b flows into the use side heat exchanger 26 is determined.
  • the refrigerant flow path of the compressor 10 the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switching device 17, the second refrigerant flow switching device 18, and the heat exchanger related to heat medium 15.
  • the expansion device 16 and the accumulator 19 are connected to constitute the refrigerant circuit A.
  • the switching device 23 is connected to configure the heat medium circulation circuit B. That is, a plurality of usage-side heat exchangers 26 are connected in parallel to each of the heat exchangers between heat media 15, and the heat medium circulation circuit B has a plurality of systems.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b provided in the heat medium converter 3.
  • the heat medium relay unit 3 and the indoor unit 2 are connected to each other via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. That is, in the air conditioner 100, the refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 15a and the intermediate heat exchanger 15b. It has become.
  • the air conditioning apparatus 100 is provided with a control device (not shown).
  • the control device is constituted by a microcomputer or the like, and based on detection information from various detection means and instructions from a remote controller, the driving frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the first refrigerant flow Switching of the path switching device 11, driving of the pump 21, opening of the expansion device 16, opening and closing of the switching device 17, switching of the second refrigerant flow switching device 18, switching of the first heat medium flow switching device 22, second The switching of the heat medium flow switching device 23, the opening degree of the heat medium flow control device 25, and the like are controlled, and each operation mode described later is executed.
  • the control device may be provided for each unit, or may be provided in the outdoor unit 1 or the heat medium relay unit 3.
  • the air conditioner 100 is provided with a pressure reducing valve 38 for reducing the original pressure of the water pipe and the like, and a check valve 39 for preventing a back flow from the heat medium circulation circuit to the heat medium supply source (for example, the water pipe 42). Yes. These will be described in detail later.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioning apparatus 100 can perform the same operation for all the indoor units 2 and can perform different operations for each of the indoor units 2.
  • the operation mode executed by the air conditioner 100 includes a cooling only operation mode in which all the driven indoor units 2 execute a cooling operation, and a heating only operation in which all the driven indoor units 2 execute a heating operation.
  • each operation mode will be described together with the flow of the refrigerant and the heat medium. 3 to 6, the pressure reducing valve 38, the check valve 39, and the pressure sensors 40a and 40b are omitted.
  • FIG. 3 is a refrigerant circuit diagram illustrating the flow of the refrigerant and the heat medium when the air-conditioning apparatus 100 is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the piping represented by the thick line has shown the piping through which a refrigerant
  • the flow direction of the refrigerant is indicated by a solid line arrow
  • the flow direction of the heat medium is indicated by a broken line arrow.
  • the first refrigerant flow switching device 11 is switched so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a high-pressure liquid refrigerant, radiating heat to outdoor air with the heat source side heat exchanger 12.
  • the high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a, and flows into the heat medium relay unit 3 through the pipe 4.
  • the high-pressure refrigerant flowing into the heat medium relay unit 3 is branched after passing through the opening / closing device 17a and expanded by the expansion device 16a and the expansion device 16b to become a low-temperature / low-pressure two-phase refrigerant.
  • the opening / closing device 17b is closed.
  • This two-phase refrigerant flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b acting as an evaporator, and absorbs heat from the heat medium circulating in the heat medium circulation circuit B. It becomes a low-temperature, low-pressure gas refrigerant while cooling.
  • the gas refrigerant that has flowed out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b. Then, it flows into the outdoor unit 1 again through the pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b are communicated with the low pressure pipe. Further, the opening degree of the expansion device 16a is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant. Similarly, the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d is constant.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the cold heat of the refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the cooled heat medium passes through the pipe 5 by the pump 21a and the pump 21b. It will be allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby cooling the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. By controlling so as to keep the difference between the two as a target value, it can be covered.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • pipes represented by thick lines indicate pipes through which the refrigerant and the heat medium flow.
  • the flow direction of the refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
  • the first refrigerant flow switching device 11 is used as the heat medium converter without passing the refrigerant discharged from the compressor 10 through the heat source side heat exchanger 12.
  • Switch to 3 In the heat medium converter 3, the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the check valve 13b.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 is branched and passes through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, and the heat exchanger related to heat medium 15a and the heat medium. It flows into each of the intermediate heat exchangers 15b.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b becomes a high-pressure liquid refrigerant while dissipating heat to the heat medium circulating in the heat medium circuit B.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is expanded by the expansion device 16a and the expansion device 16b to become a low-temperature, low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b, and flows into the outdoor unit 1 through the pipe 4 again.
  • the opening / closing device 17a is closed.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13c and flows into the heat source side heat exchanger 12 that functions as an evaporator. And the refrigerant
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b are in communication with the high-pressure pipe. Further, the opening of the expansion device 16a is controlled so that the subcool obtained as the difference between the value detected by the pressure sensor 36 converted to the saturation temperature and the temperature detected by the third temperature sensor 35b is constant. Is done. Similarly, the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. Be controlled. When the temperature at the intermediate position of the heat exchanger related to heat medium 15 can be measured, the temperature at the intermediate position may be used instead of the pressure sensor 36, and the system can be configured at low cost.
  • the heat of the refrigerant is transmitted to the heat medium in both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b, and the heated heat medium passes through the pipe 5 by the pump 21a and the pump 21b. It will be allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby heating the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required in the room by the action of the heat medium flow control devices 25a and 25b, and the use side heat exchanger 26a and the use side heat are controlled. It flows into the exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. By controlling so as to keep the difference between the two as a target value, it can be covered.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • the usage-side heat exchanger 26 should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 26 is detected by the first temperature sensor 31. By using the first temperature sensor 31, the number of temperature sensors can be reduced and the system can be configured at low cost.
  • FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling main operation mode.
  • the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b.
  • the pipes represented by the thick lines indicate the pipes through which the refrigerant and the heat medium circulate.
  • the flow direction of the refrigerant is indicated by a solid line arrow
  • the flow direction of the heat medium is indicated by a broken line arrow.
  • the first refrigerant flow switching device 11 is switched so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium is circulated between the heat exchanger related to heat medium 15a and the use side heat exchanger 26a, and between the heat exchanger related to heat medium 15b and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a liquid refrigerant, dissipating heat to outdoor air with the heat source side heat exchanger 12.
  • the refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 and flows into the heat medium relay unit 3 through the check valve 13 a and the pipe 4.
  • the refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the refrigerant that has flowed into the heat exchanger related to heat medium 15b becomes a refrigerant whose temperature is further lowered while radiating heat to the heat medium circulating in the heat medium circuit B.
  • the refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant while cooling the heat medium.
  • This gas refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 through the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again through the pipe 4.
  • the refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the check valve 13d, the first refrigerant flow switching device 11, and the accumulator 19.
  • the second refrigerant flow switching device 18a is in communication with the low pressure pipe, while the second refrigerant flow switching device 18b is in communication with the high pressure side piping.
  • the opening of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b is constant. Further, the expansion device 16a is fully opened and the opening / closing device 17b is closed.
  • the expansion device 16b controls the opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. May be. Alternatively, the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the heat of the refrigerant is transmitted to the heat medium in the intermediate heat exchanger 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b.
  • the cold heat of the refrigerant is transmitted to the heat medium in the intermediate heat exchanger 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the indoor space 7 is cooled by the heat medium absorbing heat from the indoor air.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21a.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the heat medium is flowing in the direction to
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side. This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a as a target value.
  • FIG. 6 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus 100 is in the heating main operation mode.
  • the heating main operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b.
  • tube represented by the thick line has shown the piping through which a refrigerant
  • the flow direction of the refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
  • the first refrigerant flow switching device 11 is used as the heat medium converter without causing the refrigerant discharged from the compressor 10 to pass through the heat source side heat exchanger 12.
  • Switch to 3 In the heat medium converter 3, the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the use-side heat exchanger 26b, and between the heat exchanger related to heat medium 15b and the use-side heat exchanger 26a.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the check valve 13b.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the gas refrigerant flowing into the heat exchanger related to heat medium 15b becomes liquid refrigerant while dissipating heat to the heat medium circulating in the heat medium circuit B.
  • the refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium.
  • the low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 through the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13c and flows into the heat source side heat exchanger 12 acting as an evaporator. And the refrigerant
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the second refrigerant flow switching device 18a is in communication with the low pressure side piping, while the second refrigerant flow switching device 18b is in communication with the high pressure side piping. Further, the opening of the expansion device 16b is controlled so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b is constant. Is done. Further, the expansion device 16a is fully opened, and the opening / closing device 17a is closed. Note that the expansion device 16b may be fully opened, and the subcooling may be controlled by the expansion device 16a.
  • the heat of the refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b.
  • the cold heat of the refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. Moreover, in the use side heat exchanger 26a, the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21b.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the heat medium is flowing in the direction to
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side. This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a as a target value.
  • FIG. 7 is a configuration diagram corresponding to FIG. 2, and is a diagram showing a relationship (height difference h) between the automatic air vent valve 37 as the automatic air discharge means and the installation position of the pump 21.
  • FIG. 8 is a performance curve (flow rate VS head) of the pump used in the present invention. In the following description, it is assumed that water is used as the heat medium, and the heat medium circulation circuit B is described as a water circuit.
  • the method of supplying water to the water circuit of the air conditioner includes the heat medium converter 3 and the water pipe 42, the pressure reducing valve 38 and the check valve. Connected via valve 39.
  • the original pressure of the water supply is about 400 [kPa G] in the present embodiment.
  • the pressure on the secondary side of the pressure reducing valve 38 is 250 [kPa G]. That is, the water pressure is reduced from 400 [kPa G] to 250 [kPa G] by the pressure reducing valve 38, and water is supplied to the water circuit of the heat medium relay unit 3.
  • the height difference between the heat medium relay unit 3 and the indoor unit 2 is about 8 m.
  • the automatic air vent valve 37 is provided in the highest place of an air conditioning apparatus system, the position about 8 m higher than the pump 21 here. Therefore, the automatic air vent valve 37 has a height difference of about 8 m from the suction side of the pump 21, and the head pressure difference is 80 [kPa]. If the enclosed pressure in the water circuit is set to about 250 [kPa G], for example, when operating with a pump with a head of 30 m (300 [kPa]), the pressure on the suction side of the pump is 100 [kPa G] 250-300 / 2).
  • the heat medium relay unit 3 is provided with an air vent valve.
  • the air vent valve When water is injected into the heat medium relay unit 3, the air vent valve is opened to open the water circuit. Supply water while removing the air inside.
  • the air vent valve When air is no longer exhausted from the air vent valve, the air vent valve is closed and the pump 21 is operated in a state where the water pipe 42 and the water circuit of the heat medium relay unit 3 are in communication with each other. To expel air in the water circuit. Note that the air venting operation may be carried out while normally cooling or heating.
  • the air conditioner 100 is configured such that the water pressure on the pump suction side is always kept higher than the atmospheric pressure, and a specific method thereof will be described in detail below.
  • This air conditioner 100 has a plurality of indoor units 2 unlike a domestic water heater, and may have a pipe length of 100 m. Therefore, the high-lift pump 21 is mounted so as to withstand such an installation situation.
  • the required head of the pump is about 15m (150kPa) to 30m (300kPa) depending on the installation conditions.
  • the maximum lift Pp of the air conditioner 100 is set to 30 m (300 kPa).
  • a pump 21 having a performance of “maximum head 17.5 m (175 kPa)” as shown in FIG. 8 is used.
  • the rated operating point of the pump 21 is a head of 15 m (150 kPa) ”.
  • the following two cases can be considered as positions where the pressure is considered to be lowest in the water circuit.
  • the pressure loss depends only on the head pressure, so the pressure near the highest position of the water circuit of the air conditioner is the lowest.
  • the pressure drop due to friction loss in the piping from the highest position of the water circuit of the air conditioner to the suction of the pump when the pump is located below the highest position of the water circuit of the air conditioner
  • the pressure at these two positions must not be negative.
  • the suction side pressure of the pump 21 is -75 [kPa G] (0 kPa-150 kPa (15 m ) / 2)
  • the pressure on the discharge side of the pump 21 is 75 [kPa G] (0 [kPa G] +150 kPa / 2 (15 m))
  • the pressure on the suction side of the pump 21 is negative.
  • the automatic air vent valve 37 also sucks air when the water pressure in the water circuit becomes lower than the atmospheric pressure.
  • the sealing pressure Pb can be obtained by Expression (1). Pb-Pp / 2> 0 ⁇ Pb [kPa G] ⁇ (Pp / 2) [kPa] (1)
  • an automatic air vent valve 37 is generally attached, but the automatic air vent valve 37 is generally installed at the highest position of the system because of its nature. is there. Because air is lighter than water, it gathers at the highest point.
  • an automatic air vent valve 37 is installed at h [m] from the suction side of the pump 21.
  • the pressure on the pump suction side is Ps [kPa G].
  • the pressure of the automatic air vent valve 37 is reduced by the amount corresponding to the liquid head. This pressure Ph can be obtained from equation (2).
  • Ph [kPa] ⁇ ⁇ g ⁇ h / 1000 (2) ⁇ : density of water [kg / m 3 ], g: acceleration of gravity [m / s 2 ], h: height [m]
  • the pressure Pav [kPa G] at the position of the automatic air vent valve 37 is expressed by equation (3).
  • Ps - ⁇ ⁇ g ⁇ h / 1000 ⁇ 0 ⁇ Ps ⁇ ⁇ ⁇ g ⁇ h / 1000 Must be met.
  • the secondary pressure of the pressure reducing valve 38 is set to be equal to or higher than Pb [kPa ⁇ G] in the equation (4), the pressure of the water circuit can always be set to the atmospheric pressure or higher. Air can be prevented from being mixed into the circuit, and the failure of the pump 21 can be avoided and the air conditioning apparatus 100 with improved reliability can be provided.
  • the pressure sensor 40a is provided on the suction side of the pump 21a
  • the pressure sensor 40b is provided on the suction side of the pump 21b.
  • the two pressure sensors detect that the water circuit has reached a predetermined pressure as a predetermined limit value, and are provided to prevent air from entering the water circuit.
  • the air conditioner 100 is stopped.
  • the variation of the pressure sensors 40a and 40b is set in consideration of a margin for the predetermined pressure at which the air conditioner is stopped based on the response speed.
  • the predetermined pressure is affected by the vertical positional relationship between the pump 21 and the automatic air vent valve 37.
  • the predetermined pressure may be set to 80 [kPa G].
  • the predetermined pressure may be 0 [kPa G].
  • the predetermined pressure depends on the allowable value of the height difference between the pump and the automatic air vent valve.
  • a safety valve 41 is usually attached to the water circuit so that the pressure in the water circuit does not exceed a certain safety valve set pressure Pmax.
  • the safety valve 41 discharges water in the circuit out of the system so that the pressure in the circuit does not exceed Pmax.
  • the sealed pressure Pb [kPa G] can also be set from the safety valve set pressure Pmax. The case where the safety valve 41 having a safety valve set pressure Pmax of 430 kPa [kPa G] is used will be described.
  • the safety valve 41 There are individual differences (variations) in the safety valve 41, and the lower limit Pmaxl of the safety valve set pressure is 380 kPa [kPa G], and the upper limit Pmaxh is 480 kPa [kPa G]. Further, if the height difference between the heat medium converter 3 and the automatic air vent valve 37 is allowed to 6 m, the head pressure Pl due to the height difference becomes 60 [kPa]. The pump head is 300 kPa.
  • the safety valve set pressure Pmaxl (380 [kPaG]) has a tolerance of 10 kPa, and the pump suction side also has a tolerance [beta] of 10 [kPaG] with respect to the lower limit pressure (60 kPaG). From the equation (6) including the tolerance ⁇ , the sealing pressure can be obtained. (Pmax + Pl) / 2 ⁇ 10kPa ⁇ Filling pressure ⁇ (Pmax + Pl) / 2 + 10kPa (6)
  • the height difference between the automatic air vent valve 37 and the pump 21 is 6 m.
  • the head pressure is 60 [kPa]
  • the pump head shall be 300 [kPa].
  • the safety valve set pressure Pmax (430 [kPaG]) has a tolerance of 35 kPa, and the pump suction side also has a tolerance ⁇ of 35 [kPaG] with respect to the lower limit pressure (60 kPaG).
  • the equation (6) is as follows. (Pmax + Pl) / 2-35kPa ⁇ Filling pressure ⁇ (Pmax + Pl) / 2 + 35kPa (7)
  • the pump head shall be 300 [kPa].
  • the safety valve set pressure Pmax (430 [kPaG]) has a tolerance of 65 kPa, and the pump suction side also has a tolerance ⁇ of 65 [kPaG] with respect to the lower limit pressure (0 kPaG).
  • the equation (6) is as follows. (Pmax + Pl) / 2-65kPa ⁇ Filling pressure ⁇ (Pmax + Pl) / 2 + 65kPa (8)
  • the enclosed pressure When the enclosed pressure is expressed in a numerical range, it is within the range of the safety valve set pressure from the system maximum height difference. In such a system, the minimum value of the maximum height difference is about 8 m, so the minimum value of the enclosed pressure is about 80 kPaG.
  • the main part of the water circuit In order to reduce the weight of the product and further reduce the cost, the main part of the water circuit is often made of plastic.
  • the design pressure of these parts is about 1000 kPaG, and considering the margin, the maximum pressure of the safety valve is often about 500 kPaG. That is, the upper limit value of the sealing pressure is about 500 kPaG. From the above, the range of the enclosed pressure can be regarded as a range of about 80 kPaG to 500 kPaG.
  • the pump 21 When the suction pressure P of the pump 21 is detected and an abnormality (suction pressure P ⁇ predetermined pressure P * ) is detected, the pump 21 is decreased by reducing the number of rotations of the pump 21 and reducing the head of the pump 21. The pressure on the suction side can be increased.
  • the predetermined pressure P * is a value larger than 0 [kPa G], which is predetermined as a prevention limit value.
  • FIG. 10 shows the control flow.
  • FIG. 11 shows the control flow.
  • the air conditioner 100 is stopped and the abnormality is reported, so that the abnormality is discovered early and before the air conditioner 100 breaks down.
  • the system can be repaired and improved.
  • FIG. 11 when an abnormality in the suction pressure P of the pump 21 is detected, the rotation speed of the pump 21 is reduced, and when the rotation speed is equal to or lower than the minimum rotation speed, the air conditioner 100 is stopped and an abnormality is reported. It is an example.
  • FIG. 12 when an abnormality in the suction pressure P of the pump 21 is detected, the opening area of the heat medium flow control device 25 is increased, and when the opening area is equal to or larger than the maximum opening area, the air conditioner 100 is stopped and the abnormality is detected. Is an example in which
  • refrigerant As the refrigerant, the case where R410A is used has been described as an example, but refrigerants such as R404A, R407C, CO2, HFO-1234yf, and HFO-1234ze may be used.
  • Heat medium for example, brine (antifreeze), water, a mixed solution of brine and water, a mixed solution of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the air conditioning apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, a highly safe heat medium is used, which contributes to an improvement in safety. Become.
  • the air conditioner 100 is configured such that the heat exchanger related to heat medium 15b is always on the heating side and the heat exchanger related to heat medium 15a is on the cooling side in both the cooling main operation mode and the heating main operation mode. is doing.
  • the first heat medium flow switching device corresponding to the use side heat exchanger 26 performing the heating operation. 22 and the second heat medium flow switching device 23 are switched to the flow path connected to the heat exchanger related to heat medium 15b for heating, and the first heat medium corresponding to the use side heat exchanger 26 performing the cooling operation.
  • each indoor unit 2 performs heating operation and cooling operation. It can be done freely.
  • the air conditioner 100 has been described as being capable of mixed cooling and heating operation, but is not limited thereto.
  • the above-described aspect can be applied in order to always maintain the water pressure on the pump suction side higher than the atmospheric pressure.
  • the heat source side heat exchanger 12 and the use side heat exchanger 26 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but this is not restrictive.
  • a panel heater using radiation can be used as the use side heat exchanger 26, and the heat source side heat exchanger 12 is of a water cooling type that moves heat by water or antifreeze. Can also be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 26 can be used regardless of the type as long as they have a structure capable of radiating heat or absorbing heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 冷媒循環回路Aと、冷媒循環回路Aとの間で熱の受け渡しを行う熱媒体循環回路Bとを有した空気調和装置において、熱媒体循環回路は密閉回路であり、熱媒体循環回路のポンプ21の最大揚程Ppは150kPa以上であり、少なくともポンプ21の吸入側近辺の圧力が、ポンプ21の作動中に大気圧以上を維持する封入圧力に設定されている空気調和装置。

Description

空気調和装置
 本発明は、例えばビル用マルチエアコン等に適用される空気調和装置に関するものである。
 従来から、ビル用マルチエアコンなどの空気調和装置においては、室外に配置した熱源機である室外機と室内に配置した室内機との間に冷媒を循環させる。そして、冷媒が放熱または吸熱して、加熱または冷却された空気により空調対象空間の冷房または暖房を行なっていた。このようなビル用マルチエアコンでは、複数の室内機が接続されており、停止している室内機と運転している室内機が混在していることも多い。また、室外機と室内機とを接続する配管が最大100mになることもある。配管が長くなるほど、多くの冷媒がシステム内に充填されることになる。
 このようなビル用マルチエアコンの室内機は、人が利用する室内空間(例えば、オフィス空間や居室、店舗等)に配置されることが通常である。何らかの原因によって、室内空間に配置された室内機から冷媒が漏れた場合、冷媒の種類によっては人体への影響及び安全性の観点から大きな問題となる。このような課題に対応するため、空気調和装置として2次ループ方式を採用し、1次側ループには冷媒を使用し、室内空間に対応する2次側ループには水やブラインを用いて空調する方法がある。この方式の場合、二次側に水やブライン等を用いるため、ポンプなどの搬送装置が必要となる。二次側回路の負圧等が原因で、該二次側回路中に空気が進入した場合、ポンプで空気噛み運転が発生し、水が流れなくなることがあった。また、ポンプが空回り運転を行って、ポンプの故障に至ることもあった。そこで二次側回路が負圧にならず、空気が混入しないようにするための技術が開示されている。
 例えば、特許文献1では、大気均圧弁を有する大気開放型のタンクをポンプ吸込み側に設けることで、ポンプ吸入が負圧になることを防止している。
また、特許文献2のように、水位タンクを設け、その水位タンクでの水位が一定になるようにすることで、負圧になることを防いでいる。
しかし、特許文献1、特許文献2ともに、部品点数が増え、コストアップに繋がり、タンクの設置位置が制限されるため、色々な設置シーンが想定され汎用性の高いビル用マルチには不向きである。
特開2006-36171号公報(段落[0134]、図1等) 特開2003-106985号公報(段落[0034]、図3等)
 本発明は、上記の課題を解決するためになされたもので、安全性を確保しつつ、システムの設置の自由度を狭めることなく、水等が流れる二次側回路に空気が混入しないようにし、ポンプの故障を抑え、信頼性を向上させた空気調和装置を提供するものである。
 本発明に係る空気調和装置は、圧縮機、及び、熱源側熱交換器を室外機に備え、熱媒体間熱交換器、絞り装置、ポンプ、及び、熱媒体流量調整装置を熱媒体変換機に備え、利用側熱交換器を室内機に備え、前記圧縮機、前記熱源側熱交換器、前記絞り装置、及び、前記熱媒体間熱交換器の冷媒側流路が直列に接続され、熱源側冷媒が循環する冷媒循環回路と、前記熱媒体間熱交換器の熱媒体側流路、前記ポンプ、前記利用側熱交換器、及び、前記熱媒体流量調整装置が接続され、熱媒体が循環する熱媒体循環回路と、を有した空気調和装置において、前記熱媒体循環回路は密閉回路であり、前記ポンプの最大揚程Ppは150kPa以上であり、少なくとも前記ポンプの吸入側近辺の圧力が、前記ポンプの作動中に大気圧以上を維持する封入圧力に設定されているものである。
 本発明に係る空気調和装置によれば、水等が流れる熱媒体循環回路が常に大気圧以上に保たれ、熱媒体循環回路への空気浸入が防止されて空気調和装置の信頼性が向上する。
本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態に係る空気調和装置の回路構成の一例を示す概略回路構成図である。 本発明の実施の形態に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。 自動空気抜き弁と室内機の設置位置(高さ)の関係を示す図である。 本発明の実施の形態に係わるポンプの性能曲線の一例を示す参考図である。 異常検知時の制御フローの一例を示すフローチャートである。 異常検知時の制御フローの一例を示すフローチャートである。 異常検知時の制御フローの一例を示すフローチャートである。 異常検知時の制御フローの一例を示すフローチャートである。
 以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
 図1は、本発明の空気調和装置の設置例を示す概略図である。図1に基づいて、空気調和装置の設置例について説明する。この空気調和装置は、冷媒を循環させる冷凍サイクル回路(冷媒循環回路A)と、熱媒体を循環させる二次側回路(熱媒体循環回路B)を利用することで、二次側回路に配置された各室内機が運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。
 本発明に係る空気調和装置では、冷媒を間接的に利用する方式(間接方式)を採用している。すなわち、冷媒に貯えた冷熱または温熱を、冷媒とは異なる熱媒体に伝達し、熱媒体に貯えた冷熱または温熱で空調対象空間を冷房または暖房するようになっている。
 図1においては、本実施の形態に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する熱媒体変換機3と、を有している。熱媒体変換機3は、冷媒と熱媒体とで熱交換を行なうものである。室外機1と熱媒体変換機3とは、冷媒を導通する配管(冷媒配管)4で接続されている。熱媒体変換機3と室内機2とは、熱媒体を導通する配管(熱媒体配管)5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、熱媒体変換機3を介して室内機2に配送されるようになっている。
 室外機1は、通常、ビル等の建物9の外の空間(例えば、屋上等)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱又は温熱を供給するものである。室内機2は、建物9の内部の空間(例えば、居室等)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。熱媒体変換機3は、室外機1及び室内機2とは別筐体として、室外空間6及び室内空間7とは別の位置に設置できるように構成されており、室外機1及び室内機2とは配管4及び配管5を介してそれぞれ接続され、室外機1から供給される冷熱あるいは温熱を室内機2に伝達するものである。
 図1に示すように、本発明に係る空気調和装置においては、室外機1と熱媒体変換機3とが2本の配管4を用いて、熱媒体変換機3と各室内機2とが2本の配管5を用いて、それぞれ接続されている。このように、実施の形態2に係る空気調和装置では、2本の配管を用いて各ユニット(室外機1、室内機2及び熱媒体変換機3)を接続することにより、施工が容易となっている。
 なお、図1においては、熱媒体変換機3が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(例えば、建物9における天井裏などのスペース、以下、単に空間8と称する)に設置されている状態を例に示している。熱媒体変換機3は、その他、エレベーター等がある共用空間等に設置することも可能である。また、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型や天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
 図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。例えば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、あるいは、水冷式の室外機1を用いる場合にも建物9の内部に設置するようにしてもよい。このような場所に室外機1を設置するとしても、特段の問題が発生することはない。
 また、熱媒体変換機3は、室外機1の近傍に設置することもできる。ただし、熱媒体変換機3から室内機2までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネの効果は薄れることに留意が必要である。さらに、室外機1、室内機2及び熱媒体変換機3の接続台数を図1に図示してある台数に限定するものではなく、本発明に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。
 図2は、実施の形態2に係る空気調和装置(以下、100と称する)の回路構成の一例を示す概略回路構成図である。図2に基づいて、空気調和装置100の詳しい構成について説明する。図2に示すように、室外機1と熱媒体変換機3とが、熱媒体変換機3に備えられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して配管4で接続されている。また、熱媒体変換機3と室内機2とが、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して配管5で接続されている。
[室外機1]
 室外機1には、圧縮機10と、四方弁等の第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが配管4で直列に接続されて搭載されている。
また、室外機1には、第1接続配管4a、第2接続配管4b、逆止弁13a~13dが設けられている。第1接続配管4a、第2接続配管4b、逆止弁13a~13dを設けることで、室内機2の要求する運転に関わらず、熱媒体変換機3に流入させる冷媒の流れを一定方向にすることができる。
 圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものであり、例えば容量制御可能なインバータ圧縮機等で構成される。第1冷媒流路切替装置11は、暖房運転モード時(全暖房運転モード時及び暖房主体運転モード時)における冷媒の流れと冷房運転モード時(全冷房運転モード時及び冷房主体運転モード時)における冷媒の流れとを切替えるものである。
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には放熱器(ガスクーラー)として機能し、図示省略のファン等の送風機から供給される空気と冷媒との間で熱交換を行なうものである。アキュムレーター19は、圧縮機10の吸入側に設けられており、暖房運転モード時と冷房運転モード時の違いによる余剰冷媒、過渡的な運転の変化(例えば、室内機2の運転台数の変化)に対する余剰冷媒を蓄えるものである。
[室内機2]
 室内機2には、それぞれ利用側熱交換器26(26a~26d)が搭載されている。この利用側熱交換器26は、配管5によって熱媒体変換機3の熱媒体流量調整装置25(25a~25d)と第2熱媒体流路切替装置23(23a~23d)に接続するようになっている。この利用側熱交換器26は、図示省略のファン等の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
[熱媒体変換機3]
 熱媒体変換機3には、2つの熱媒体間熱交換器15と、2つの絞り装置16と、2つの開閉装置17a、17bと、2つの第2冷媒流路切替装置18と、2つのポンプ21と、4つの第1熱媒体流路切替装置22と、4つの第2熱媒体流路切替装置23と、4つの熱媒体流量調整装置25と、が設置されている。
 2つの熱媒体間熱交換器15(15a、15b)は、凝縮器(放熱器)又は蒸発器として機能し、冷媒と熱媒体とで熱交換を行ない、室外機1で生成され冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと第2冷媒流路切替装置18aとの間に設けられており、冷房暖房混在運転モード時において熱媒体の冷却に供するものである。熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと第2冷媒流路切替装置18bとの間に設けられており、冷房暖房混在運転モード時において熱媒体の加熱に供するものである。
 2つの絞り装置16(16a、16b)は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。絞り装置16aは、全冷房運転モード時の冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、全冷房運転モード時の冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。2つの絞り装置16は、開度が可変に制御可能なもの、例えば電子式膨張弁等で構成するとよい。
 2つの開閉装置17(17a、17b)は、二方弁等で構成されており、配管4を開閉するものである。
 2つの第2冷媒流路切替装置18(18a、18b)は、四方弁等で構成され、運転モードに応じて冷媒の流れを切替えるものである。第2冷媒流路切替装置18aは、全冷房運転モード時の冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられている。第2冷媒流路切替装置18bは、全冷房運転モード時の冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられている。
 2つのポンプ21(21a、21b)は、配管5を導通する熱媒体を循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23との間における配管5に設けられている。ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23との間における配管5に設けられている。2つのポンプ21は、例えば容量制御可能なポンプ等で構成するとよい。なお、ポンプ21aを、熱媒体間熱交換器15aと第1熱媒体流路切替装置22との間における配管5に設けてもよい。また、ポンプ21bを、熱媒体間熱交換器15bと第1熱媒体流路切替装置22との間における配管5に設けてもよい。
 4つの第1熱媒体流路切替装置22(22a~22d)は、三方弁等で構成されており、熱媒体の流路を切替えるものである。第1熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置22は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが熱媒体流量調整装置25に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22b、第1熱媒体流路切替装置22c、第1熱媒体流路切替装置22dとして図示している。
 4つの第2熱媒体流路切替装置23(23a~23d)は、三方弁等で構成されており、熱媒体の流路を切替えるものである。第2熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置23は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが利用側熱交換器26に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23b、第2熱媒体流路切替装置23c、第2熱媒体流路切替装置23dとして図示している。
 4つの熱媒体流量調整装置25(25a~25d)は、開口面積を制御できる二方弁等で構成されており、室内機2を流れる熱媒体の流量を調整するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第1熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から熱媒体流量調整装置25a、熱媒体流量調整装置25b、熱媒体流量調整装置25c、熱媒体流量調整装置25dとして図示している。また、熱媒体流量調整装置25を利用側熱交換器26の熱媒体流路の入口側に設けてもよい。
 また、熱媒体変換機3には、各種検出手段(2つの第1温度センサ31、4つの第2温度センサ34、4つの第3温度センサ35、1つの圧力センサ36)が設けられている。これらの検出手段で検出された情報(例えば、温度情報や圧力情報、冷媒の濃度情報)は、空気調和装置100の動作を統括制御する制御装置(図示省略)に送られ、圧縮機10の駆動周波数、熱源側熱交換器12及び利用側熱交換器26近傍に設けられる図示省略の送風機の回転数、第1冷媒流路切替装置11の切替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切替え、熱媒体の流路の切替え等の制御に利用されることになる。
 2つの第1温度センサ31(31a、31b)は、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15a、15bの出口における熱媒体の温度を検出するものであり、例えばサーミスター等で構成するとよい。第1温度センサ31aは、ポンプ21aの入口側における配管5に設けられている。第1温度センサ31bは、ポンプ21bの入口側における配管5に設けられている。
 4つの第2温度センサ34(34a~34d)は、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検出するものであり、サーミスター等で構成するとよい。第2温度センサ34は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。なお、室内機2に対応させて、紙面下側から第2温度センサ34a、第2温度センサ34b、第2温度センサ34c、第2温度センサ34dとして図示している。
 4つの第3温度センサ35(35a~35d)は、熱媒体間熱交換器15の冷媒の入口側または出口側に設けられ、熱媒体間熱交換器15に流入する冷媒の温度または熱媒体間熱交換器15から流出した冷媒の温度を検出するものであり、サーミスター等で構成するとよい。第3温度センサ35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサ35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサ35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサ35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。
 圧力センサ36は、第3温度センサ35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる冷媒の圧力を検出するものである。
 熱媒体を導通する配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものとで構成されている。配管5は、熱媒体変換機3に接続される室内機2の台数に応じて分岐されている。そして、配管5は、第1熱媒体流路切替装置22、及び、第2熱媒体流路切替装置23で接続されている。第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるかが決定されるようになっている。
空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第2冷媒流路切替装置18、熱媒体間熱交換器15の冷媒流路、絞り装置16、及び、アキュムレーター19を接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器15の熱媒体流路、ポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び、第2熱媒体流路切替装置23を接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続され、熱媒体循環回路Bを複数系統としているのである。
 よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続され、熱媒体変換機3と室内機2とが、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15a及び熱媒体間熱交換器15bで冷媒循環回路Aを循環する冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。
 また、空気調和装置100には、図示省略の制御装置が設けられている。その制御装置はマイコン等で構成されており、各種検出手段での検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切替え、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切替え、第1熱媒体流路切替装置22の切替え、第2熱媒体流路切替装置23の切替え、及び、熱媒体流量調整装置25の開度等を制御し、後述する各運転モードを実行するようになっている。なお、制御装置は、ユニット毎に設けてもよく、室外機1または熱媒体変換機3に設けてもよい。
さらに空気調和装置100には、水道管等の元圧を減圧する減圧弁38、熱媒体循環回路から熱媒体供給源(例えば水道管42)への逆流を防止する逆止弁39が備えられている。これらについては後で詳しく説明する。
 次に、空気調和装置100が実行する各運転モードについて説明する。空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。
 空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房暖房混在運転モードとしての冷房主体運転モード、及び、暖房負荷の方が大きい冷房暖房混在運転モードとしての暖房主体運転モードがある。以下において、図3~図6を基に、各運転モードを冷媒及び熱媒体の流れとともに説明する。なお、図3~図6では、減圧弁38、逆止弁39、圧力センサ40a、40bを省略している。
[全冷房運転モード]
 図3は、空気調和装置100の全冷房運転モード時における冷媒及び熱媒体の流れを示す冷媒回路図である。この図3では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図3では、太線で表された配管が冷媒及び熱媒体の流れる配管を示している。また、図3では、冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図3に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された冷媒を熱源側熱交換器12へ流入させるように切替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら高圧の液冷媒となる。熱源側熱交換器12から流出した高圧冷媒は、逆止弁13aを通って、室外機1から流出し、配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧冷媒は、開閉装置17aを経由した後に分岐されて絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。なお、開閉装置17bは閉となっている。
 この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18a、第2冷媒流路切替装置18bを介し、熱媒体変換機3から流出し、配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
 このとき、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bは低圧配管と連通されている。また、絞り装置16aは、第3温度センサ35aで検出された温度と第3温度センサ35bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサ35cで検出された温度と第3温度センサ35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全冷房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサ31aで検出された温度、あるいは、第1温度センサ31bで検出された温度と第2温度センサ34で検出された温度との差を目標値として保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサ31aまたは第1温度センサ31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。
 全冷房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図3においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。この態様は他の運転モードでも同様である。
[全暖房運転モード]
 図4は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒及び熱媒体の流れる配管を示している。また、図4では、冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図4に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11、逆止弁13bを通り、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、分岐されて第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
 熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら高圧の液冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、配管4を通って再び室外機1へ流入する。なお、開閉装置17aは閉となっている。
 室外機1に流入した冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bは高圧配管と連通されている。また、絞り装置16aは、圧力センサ36で検出された圧力を飽和温度に換算した値と第3温度センサ35bで検出された温度との差として得られるサブクールが一定になるように開度が制御される。同様に、絞り装置16bは、圧力センサ36で検出された圧力を飽和温度に換算した値と第3温度センサ35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を圧力センサ36の代わりに用いてもよく、安価にシステムを構成できる。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a、25bの作用によって、熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサ31aで検出された温度、あるいは、第1温度センサ31bで検出された温度と第2温度センサ34で検出された温度との差を目標値として保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサ31aまたは第1温度センサ31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。
 このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26は、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサ31で検出された温度とほとんど同じ温度であり、第1温度センサ31を使用することにより温度センサの数を減らすことができ、安価にシステムを構成できる。
[冷房主体運転モード]
 図5は、空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図5では、太線で表された配管が冷媒及び熱媒体の循環する配管を示している。また、図5では、冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図5に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された冷媒を熱源側熱交換器12へ流入させるように切替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら液冷媒となる。熱源側熱交換器12から流出した冷媒は、室外機1から流出し、逆止弁13a、配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入した冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら、さらに温度が低下した冷媒となる。熱媒体間熱交換器15bから流出した冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13d、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
 このとき、第2冷媒流路切替装置18aは低圧配管と連通されており、一方、第2冷媒流路切替装置18bは高圧側配管と連通されている。また、絞り装置16bは、第3温度センサ35aで検出された温度と第3温度センサ35bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17bは閉となっている。なお、絞り装置16bは、圧力センサ36で検出された圧力を飽和温度に換算した値と第3温度センサ35dで検出された温度との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒートまたはサブクールを制御するようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 冷房主体運転モードでは、熱媒体間熱交換器15bで冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサ31bで検出された温度と第2温度センサ34で検出された温度との差を、冷房側においては第2温度センサ34で検出された温度と第1温度センサ31aで検出された温度との差を目標値として保つように制御することにより、賄うことができる。
[暖房主体運転モード]
 図6は、空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図6では、太線で表された配管が冷媒及び熱媒体の循環する配管を示している。また、図6では、冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図6に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26bとの間を、熱媒体間熱交換器15bと利用側熱交換器26aとの間を、それぞれ熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11、逆止弁13bを通り、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら液冷媒となる。熱媒体間熱交換器15bから流出した冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介し、熱媒体変換機3から流出し、再び室外機1へ流入する。
 室外機1に流入した冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、第2冷媒流路切替装置18aは低圧側配管と連通されており、一方、第2冷媒流路切替装置18bは高圧側配管と連通されている。また、絞り装置16bは、圧力センサ36で検出された圧力を飽和温度に換算した値と第3温度センサ35bで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器15bで冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。利用側熱交換器26aを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサ31bで検出された温度と第2温度センサ34で検出された温度との差を、冷房側においては第2温度センサ34で検出された温度と第1温度センサ31aで検出された温度との差を目標値として保つように制御することにより、賄うことができる。
次に、熱媒体循環回路Bが負圧にならないようにする方法を、図2、図7~図8を用いて説明する。図7は図2に対応する構成図であり、自動空気排出手段としての自動空気抜き弁37とポンプ21の設置位置の関係(高低差h)を示す図である。図8は本発明に用いられているポンプの性能曲線(流量VSヘッド)である。なお、以下では熱媒体に水を利用するものとし、熱媒体循環回路Bを水回路として説明する。
 空気調和装置の水回路(熱媒体循環回路Bに対応)に水を供給する方法は、図2及び図7に示すように、熱媒体変換機3と水道管42を、減圧弁38及び逆止弁39を介して接続して行う。水道の元圧は、本実施の形態では400[kPa G]程度である。減圧弁38の二次側の圧力は250[kPa G]である。すなわち、減圧弁38によって、水道圧が400[kPa G]から250[kPa G]に減圧されて、熱媒体変換機3の水回路に水が供給される。この空気調和装置100において、熱媒体変換機3と室内機2との高低差は8m程度である。また、水回路中の空気を自動的に排出するために、自動空気抜き弁37が空気調和装置システムの一番高いところ、ここではポンプ21より8m程度高い位置に設けられている。従って、自動空気抜き弁37はポンプ21の吸込み側から高さ8m程度の高低差となり、ヘッド圧差は80[kPa]となる。水回路内の封入圧力を250[kPa G]程度に設定しておき、例えば揚程30m(300[kPa])のポンプで運転した場合、ポンプの吸込側の圧力は、100[kPa G](=250-300/2)となる。また、ヘッド差圧が80[kPa]なので、自動空気抜き弁37での圧力は、20[kPa]程度(=100-80)になり、自動空気抜き弁37が負圧になることはない。すなわち、すべての水回路中において、負圧になるところは存在しない封入圧となる。
なお、図7には図示していないが、熱媒体変換機3には空気抜き弁が備えられており、水を熱媒体変換機3に注入する際は、その空気抜き弁を開にして、水回路中の空気を抜きながら水を供給する。この空気抜き弁から空気が排出されなくなった時点で、空気抜き弁を閉状態にし、水道管42と熱媒体変換機3の水回路を連通させた状態で、ポンプ21を運転させて、自動空気抜き弁37から水回路中の空気を追い出す。なお、普通に冷房や暖房を行いながら、空気抜き運転を実施しても良い。
 自動空気抜き弁37やポンプ吸引側の第1熱媒体流路切替装置22や熱媒体流量調整装置25に漏れがあり、水圧が大気圧以下(0[kPa G])でポンプ21を運転してしまった場合、水回路中に空気が進入する。進入した空気は、水回路中のどこかで滞留し、最終的には水が流れなくなる。このような状態に陥った時、ポンプ21は水が流れない状態で運転を継続してしまうため、最終的にはポンプ21が故障してしまう。これに対応するため、この空気調和装置100は、ポンプ吸引側の水圧を常に大気圧より高い状態に維持するようにしたものであり、以下においてその具体的な方法を詳述する。
 この空気調和装置100は家庭用給湯器などと違い室内機2が複数台設置され、しかも配管長が100mにもなる場合がある。したがってそのような設置状況にも耐えられるように、高揚程のポンプ21が搭載されている。ポンプの必要な揚程は、設置される条件にもよるが、15m(150kPa)~30m(300kPa)程度である。揚程が30m(300kPa)以上のポンプを用いると、設計圧力を高くしなければならないので、空気調和装置100の最大揚程Ppは30m(300kPa)に設定する。ここでは、一例として、図8に示すような「最大揚程17.5m(175kPa)」の性能を有するポンプ21を用いている。なお、ポンプ21の定格運転ポイントは揚程15m(150kPa)」である。
上記水回路で圧力が最も低くなることが考えられる位置としては、次の二つの場合が考えられる。まず、配管での摩擦損失が無視できるような空気調和装置においては、圧力損失はヘッド圧のみに依存するため、空気調和装置の水回路の最も高い位置付近の圧力が最も低くなる。一方、ポンプが空気調和装置の水回路の最も高い位置よりも下方に位置していて、かつ空気調和装置の水回路の最も高い位置からポンプの吸込みまでの配管での摩擦損失による圧力の低下量が、ポンプの吸込みのヘッド圧よりも大きい空気調和装置においては、ポンプの吸込み付近の圧力が最も低くなる。すなわち、これらの二つの位置の圧力を負圧にしてはならない。
上記性能のポンプ21を用い、停止時の水回路の水圧が大気圧と同じ場合は、ポンプ21の定格運転時は、ポンプ21の吸込み側圧力は-75[kPa G](0kPa-150kPa(15m)/2)、ポンプ21の吐出側の圧力は75[kPa G](0[kPa G]+150kPa/2(15m))になり、ポンプ21の吸込み側の圧力は負圧になってしまう。その結果、熱媒体流路切替装置22や熱媒体流量調整装置25に漏れがあった場合は、水回路中に空気を吸込んでしまう。また、自動空気抜き弁37も水回路の水圧が大気圧より低くなった場合、空気を吸込んでしまう。したがって、それらに対応する水回路の領域は絶対に負圧にしてはならない。
 水回路の水圧を負圧にしない封入圧力は、ポンプのヘッド差圧を考慮して決定しなければならい。封入圧力Pbは、式(1)で求めることができる。
   Pb - Pp/2 >0  ⇒ Pb[kPa G] ≧ (Pp / 2)[kPa]   …(1)
また、このような空気調和装置システムでは自動空気抜き弁37が取り付けられているのが一般的であるが、自動空気抜き弁37はその性格から、システムの一番高いところに設置するのが一般的である。空気は水より軽いので、一番高いところに集まってくるためである。
 例えば、図7に示すように、ポンプ21の吸引側からh[m]のところに、自動空気抜き弁37が設置されていたとする。ここで、ポンプ吸入側の圧力をPs[kPa G]とする。自動空気抜き弁37の圧力は、液ヘッド分だけの圧力が下がる。この圧力Phは(2)式から求めることができる。
  Ph[kPa] = ρ×g×h / 1000    …(2)
   ρ:水の密度[kg/m3]、g:重力加速度[m/s2]、h:高さ[m]
自動空気抜き弁37の位置での圧力Pav[kPa G]は、(3)式のようになる。
   Pav = Ps ・ Ph = Ps -ρ×g×h / 1000   …(3)
 また、ポンプ21の吸引側の圧力は、大気圧より高くする必要があるため、
   Ps -ρ×g×h / 1000 ≧ 0 ⇒ Ps ≧ ρ×g×h / 1000
 を満たさなければならない。
封入圧力Pbで考える場合は、ポンプ21の差圧も考慮する必要があるため、以下の(4)式を満たす封入圧力にすれば、運転時も常に水回路内の圧力は大気圧以上になり、空気を吸込むことはなくなる。
Pb- Pp/2 -ρ×g×h / 1000 ≧ 0 ⇒ Pb ≧ Pp/2 -ρ×g×h / 1000  …(4) 
水の密度は、1000[kg/m3]、g=9.8[m/s2]なので、(4)式にこの値を入れて整理すると、
Pb[kPa G] > Pp/2[kPa] -9.8×h[m]
となる。
すなわち、減圧弁38の二次圧力を式(4)のPb[kPa G]以上に設定しておけば、常に水回路の圧力を大気圧以上にすることが可能となり、空気調和装置100の水回路に空気が混入することはなくなり、ポンプ21の故障を回避して、信頼性を向上させた空気調和装置100を提供することができる。
また、場合によっては、水道管42に減圧弁38と逆止弁39を介して、連通することが出来ない場合がある。その時は、ハンドポンプや一時的にホースで水道管と連通させる。この時も前述したように、水回路の封入圧力をPb[kPa G]以上にすることで空気の混入を防止することができる。
図2に示したように、ポンプ21aの吸引側に圧力センサ40a、ポンプ21bの吸引側に圧力センサ40bが設けられている。この二つの圧力センサは、水回路が予め定めた限界値としての所定圧力になったことを検知するものであり、水回路への空気混入を防止するために設けている。
圧力センサ40a、40bのどちらかが所定圧力を検知した際は、空気調和装置100を停止させる。実際には、圧力センサ40a、40bのばらつきは、応答速度などから空気調和装置を停止させる所定圧力は、マージンを考慮して設定するのが好ましい。
 上記所定圧力は、ポンプ21と自動空気抜き弁37の上下位置関係により影響される。8m程度までの高低差(自動空気抜き弁37をポンプ21より高い位置に設置)を許容するためには、上記所定圧力を80[kPa G]に設定すれば良い。自動空気抜き弁37がポンプ21より、下に位置する時や自動空気抜き弁が設けられていない時は、高低差の影響を考慮する必要はなく、所定圧力は0[kPa G]で良い。このように、所定圧力はポンプと自動空気抜き弁の高低差の許容値に依存するのである。
 図7に示すように、水回路には、通常、水回路内の圧力がある安全弁設定圧Pmax以上にならないように、安全弁41が取り付けられている。安全弁41は、安全弁設定圧力がPmaxを超えると、回路内の水を系外に放出し、回路内の圧力がPmaxを上回らないようにしている。この安全弁設定圧力Pmaxからも、封入圧力Pb[kPa G]を設定することができる。
 安全弁41に安全弁設定圧Pmaxが430kPa[kPa G]のものを使用した場合について説明する。安全弁41には個体差(バラツキ)があり、安全弁設定圧の下限Pmaxlは380kPa[kPa G]、上限Pmaxhは480kPa[kPa G]である。また、熱媒体変換機3と自動空気抜き弁37との高低差を6mまで許容すると、高低差によるヘッド圧Plは60[kPa]とななる。また、ポンプの揚程は300kPaとする。この場合、水回路の封入圧力を、Pb = 380-((380-60)/2) = 220[kPa G]に設定すれば、ポンプ吸引側の圧力は、70[kPaG]となり、6m上の自動空気抜き弁37も負圧にならず、水回路が負圧にならない。また、ポンプ吐出側の圧力は370[kPa G]となり、安全弁41が作動せずに空気調和装置100を運転することができる。封入圧力の算出式を一般化すると(5)式となる。
 封入圧力 = (Pmax+Pl)/2    (5)
しかし、実際にはいろいろな変動要因(ポンプのバラツキ等)がある。安全弁設定圧力Pmaxl(380[kPaG])に対して、10kPaの裕度があり、ポンプ吸引側も下限圧力(60kPaG)に対して、10[kPaG]の裕度βがあり、最終的には、裕度βを含めた(6)式から、封入圧力を求めることができる。
(Pmax+Pl)/2 ・ 10kPa < 封入圧力 < (Pmax+Pl)/2 + 10kPa   (6)
 上記ではバラツキの大きな安全弁を用いたが、バラツキがなく、安全弁設定圧Pmaxで作動する場合について説明する。自動空気抜き弁37とポンプ21との高低差は、6mとする。ヘッド圧は60[kPa]となり、(5)式から、基準の封入圧力は245[kPaG](=(430+60)/2)になる。ポンプの揚程は300[kPa]とする。ポンプの吐出側の圧力は、395[kPaG](=245+150)であり、一方、ポンプ吸引側の圧力は95[kPaG]である。安全弁設定圧力Pmax(430[kPaG])に対して、35kPaの裕度があり、ポンプ吸引側も下限圧力(60kPaG)に対して、35[kPaG]の裕度βがある。この場合、封入圧力は、(6)式は次のようになる。
(Pmax+Pl)/2 - 35kPa < 封入圧力 < (Pmax+Pl)/2 + 35kPa   (7)
 自動空気抜き弁がない場合やポンプが自動空気抜き弁に対して、高い位置にあるときは
Pl=0となり、基準の封入圧力は215[kPaG](=430/2)になる。ポンプの揚程は300[kPa]とする。ポンプの吐出側の圧力は、365[kPaG](=215+150)であり、一方、ポンプ吸引側の圧力は0[kPaG]である。安全弁設定圧力Pmax(430[kPaG])に対して、65kPaの裕度があり、ポンプ吸引側も下限圧力(0kPaG)に対して、65[kPaG]の裕度βがある。この場合、封入圧力は、(6)式は次のようになる。
(Pmax+Pl)/2 - 65kPa < 封入圧力 < (Pmax+Pl)/2 + 65kPa  (8)
封入圧力を数値範囲で表すと、システム最大高低差から安全弁設定圧力の範囲となる。このようなシステムでは、最大高低差の最小値は8m程度なので、封入圧力の最低値は80kPaG程度となる。また、一般にこのようなシステムでは、製品を軽量化し、さらにコストを抑えるために、水回路の主要部品がプラスチックで作られている物を使うことが多い。これらの部品の設計圧力は、1000kPaG程度であり、マージンをみて、安全弁の最高圧は500kPaG程度を採用することが多い。すなわち、封入圧力の上限値は500kPaG程度となる。以上から、封入圧力の範囲としては、約80kPaG~500kPaG程度の範囲とみなすことができる。
ポンプ21の吸入圧力Pを検知しておき、その異常(吸入圧力P≦所定圧力P*)を検知したときは、ポンプ21の回転数を減少させ、ポンプ21の揚程を小さくすることによって、ポンプ吸引側の圧力を増加させることができる。ここで、所定圧力P*は、予防限界値として予め定めた、0[kPa G]より大きな値である。図10はその制御のフローを示している。
また、ポンプ21の吸入圧力Pを検知しておき、その異常(吸入圧力P≦所定圧力P*)を検知したときは、熱媒体流量調整装置25の開口面積を大きくすることにより、圧力損失を低減させ、ポンプ21の吸引側の圧力低下を防止することができる。図11はその制御のフローを示している。
 さらに、異常を検知、または異常に陥ると予想される時は、空気調和装置100を停止させ、異常を発報することにより、異常の発見が早く行われ、空気調和装置100が故障する前に、システムを修理・改善することができる。
図11は、ポンプ21の吸入圧力Pの異常を検知した場合、ポンプ21の回転数を低減し、その回転数が最低回転数以下の時に、空気調和装置100を停止させ、異常を発報する例である。
図12は、ポンプ21の吸入圧力Pの異常を検知した場合、熱媒体流量調整装置25の開口面積を大きくし、その開口面積が最大開口面積以上の時に、空気調和装置100を停止させ、異常を発報する例である。
[冷媒]
 冷媒としては、R410Aを用いた場合を例に説明したが、R404A、R407C、CO2、HFO-1234yf、HFO-1234ze等の冷媒を用いても良い。
[熱媒体]
 熱媒体としては、例えばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、空気調和装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
 また、冷房主体運転モードと暖房主体運転モードにおいて、熱媒体間熱交換器15bと熱媒体間熱交換器15aの状態(加熱または冷却)が変化すると、今まで温水だったものが冷やされて冷水になり、冷水だったものが温められて温水になり、エネルギーの無駄が発生する。そこで、空気調和装置100では、冷房主体運転モード及び暖房主体運転モードのいずれにおいても、常に、熱媒体間熱交換器15bが暖房側、熱媒体間熱交換器15aが冷房側となるように構成している。
 さらに、利用側熱交換器26にて暖房負荷と冷房負荷とが混在して発生している場合は、暖房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を加熱用の熱媒体間熱交換器15bに接続される流路へ切替え、冷房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を冷却用の熱媒体間熱交換器15aに接続される流路へ切替えることにより、各室内機2にて、暖房運転、冷房運転を自由に行なうことができる。
 ここまで空気調和装置100は、冷房暖房混在運転ができるものとして説明をしてきたが、これに限定するものではない。例えば、熱媒体間熱交換器15及び絞り装置16がそれぞれ1つで、それらに複数の利用側熱交換器26と熱媒体流量調整装置25が並列に接続され、冷房運転又は暖房運転のいずれかしか行なえない構成であっても、ポンプ吸引側の水圧を常に大気圧より高い状態に維持するために、上記の態様が適用できる。
 また、利用側熱交換器26と熱媒体流量調整装置25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に熱媒体間熱交換器15及び絞り装置16として、同じ動きをするものが複数個設置されていても、当然問題ない。さらに、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。
 また、一般的に、熱源側熱交換器12及び利用側熱交換器26には、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。例えば、利用側熱交換器26としては放射を利用したパネルヒーターのようなものを用いることもできるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものを用いることもできる。つまり、熱源側熱交換器12及び利用側熱交換器26としては、放熱あるいは吸熱をできる構造のものであれば種類を問わず、用いることができる。
 1 室外機、2(2a~2d) 室内機、3 熱媒体変換機、4(4a、4b) 配管、5 配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a~13d 逆止弁、15(15a、15b) 熱媒体間熱交換器、16(16a、16b) 絞り装置、17a、17b 開閉装置、18(18a,18b) 第2冷媒流路切替装置、19 アキュムレーター、21(21a、21b) ポンプ、22(22a~22d) 第1熱媒体流路切替装置、23(23a~23d) 第2熱媒体流路切替装置、25(25a~25d) 熱媒体流量調整装置、26(26a~26d) 利用側熱交換器、31(31a、31b) 第1温度センサ、34(34a~34d) 第2温度センサ、35(35a~35d) 第3温度センサ、36 圧力センサ、37 自動空気抜き弁、38 減圧弁、39 逆止弁、40a 圧力センサ、40b 圧力センサ、41 安全弁、100 空気調和装置。

Claims (14)

  1.  圧縮機、及び、熱源側熱交換器を室外機に備え、
     熱媒体間熱交換器、絞り装置、ポンプ、及び、熱媒体流量調整装置を熱媒体変換機に備え、
     利用側熱交換器を室内機に備え、
     前記圧縮機、前記熱源側熱交換器、前記絞り装置、及び、前記熱媒体間熱交換器の冷媒側流路が直列に接続され、熱源側冷媒が循環する冷媒循環回路と、
     前記熱媒体間熱交換器の熱媒体側流路、前記ポンプ、前記利用側熱交換器、及び、前記熱媒体流量調整装置が接続され、熱媒体が循環する熱媒体循環回路と、を有した空気調和装置において、
     前記熱媒体循環回路は密閉回路であり、前記ポンプの最大揚程Ppは175kPa以上であり、少なくとも前記ポンプの吸入側近辺の圧力または前記熱媒体循環回路の高さが最も高い位置付近の圧力が、前記ポンプの作動中に大気圧以上を維持する封入圧力に設定されている空気調和装置。
  2.  熱媒体変換機の室内機からの戻り側接続口から前記ポンプの吸入側の吸込口までの圧力が、前記ポンプの作動中に大気圧以上を維持する封入圧力に設定されている請求項1に記載の空気調和装置。
  3.  前記封入圧力は、「封入圧力[kPa G] ≧ (ポンプ最大揚程Pp/ 2)[kPa]」を満たす請求項1または2に記載の空気調和装置。
  4. 前記熱媒体循環回路中の空気を自動的に排出させる自動空気排出手段が、前記ポンプよりもh[m]だけ高い位置に設置されており、前記封入圧力は、「封入圧力[kPa G] > (ポンプ最大揚程Pp/2)[kPa] -水密度ρ[kg/m3]×9.8[m/s2]×h[m] / 1000」を満たす請求項1または2に記載の空気調和装置。
  5. 前記封入圧力は、「封入圧力[kPa G] > (ポンプ最大揚程Pp/2)[kPa] ・9.8[m/s2]×h[m] 」を満たす請求項4に記載の空気調和装置。
  6. 前記熱媒体循環回路中の圧力がある設定圧力以上にならないようにする安全弁と、前記熱媒体循環回路中の空気を自動的に排出させる自動空気排出手段とを備え、
    前記自動空気排出手段が前記ポンプより高い位置に設置されているときは、前記自動空気排出手段と前記ポンプのヘッド差圧をPl[kPa]、前記安全弁の設定圧力の下限値をPmax[kPa G]とした場合に、前記封入圧力[kPa G]が「(Pmax+Pl)/2 - 65kPa < 封入圧力 < (Pmax+Pl)/2 + 65kPa 」を満たすようにし、
    前記自動空気排出手段が前記ポンプより低い位置に設置されているときは、前記安全弁の設定圧力の下限値をPmax[kPa G]とした場合に、前記封入圧力[kPa G]が「(Pmax/2) - 65kPa < 封入圧力 < (Pmax/2) + 65kPa 」を満たすようにした請求項1に記載の空気調和装置。
  7. 前記封入圧力を、前記ポンプと前記自動空気排出手段との高低差、及び前記安全弁の設定圧力を基に定めた約80~500[kPa G]の範囲としたことを特徴とする請求項6に記載の空気調和装置。
  8.  前記ポンプの吸入側付近に圧力検知装置を備え、前記圧力検知装置の検知圧力が常に0[kPa G]よりも大きい所定圧力以上を確保するように、運転を制御する請求項1~7のいずれか1項に記載の空気調和装置。
  9.  前記圧力検知装置の検知圧力が所定圧力以下を検知した時、または前記圧力検知装置の検知圧力が所定圧力以下に達すると予測された時、前記ポンプの回転数を減らすか、または、前記熱媒体流量調整装置の開口面積を増加させることを特徴とする請求項8に記載の空気調和装置。
  10. 前記圧力検知装置の検知圧力が所定圧力を検知した時、または前記圧力検知装置の検知圧力が所定圧力以下に達すると予測された時、前記空気調和装置の運転を停止し、異常を発報することを特徴とする請求項8または9に記載の空気調和装置。
  11. 前記所定圧力が前記ポンプと自動空気排出手段との高低差によるヘッド差圧であることを特徴とする請求項8~10のいずれか1項に記載の空気調和装置。
  12. 前記ヘッド差圧を約80kPaとする請求項11に記載の空気調和装置。
  13. 前記熱媒体循環回路中の空気を自動的に排出させる自動空気排出手段と、前記ポンプの吸入側付近に設けられた圧力検知装置とを備え、前記自動空気排出手段が前記ポンプより低い位置に設置されている場合、前記圧力検知装置の検知圧力が常に0[kPa G]より大きな圧力を維持するように運転を制御し、前記圧力検知装置の検知圧力が予め定めた所定圧力以下を検知した時、または前記圧力検知装置の検知圧力が前記所定圧力以下に達すると予測された時、前記ポンプの回転数を減らすか、または、前記熱媒体流量調整装置の開口面積を増加させることを特徴とする請求項1記載の空気調和装置。
  14. 前記圧力検知装置の検知圧力が前記所定圧力を検知した時、または前記圧力検知装置の検知圧力が前記所定圧力以下に達すると予測された時、前記空気調和装置の運転を停止し、異常を発報することを特徴とする請求項13に記載の空気調和装置。
PCT/JP2011/000280 2011-01-20 2011-01-20 空気調和装置 WO2012098581A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11856402.0A EP2667107B1 (en) 2011-01-20 2011-01-20 Air conditioner
JP2012553459A JP5570618B2 (ja) 2011-01-20 2011-01-20 空気調和装置
PCT/JP2011/000280 WO2012098581A1 (ja) 2011-01-20 2011-01-20 空気調和装置
AU2011356121A AU2011356121B2 (en) 2011-01-20 2011-01-20 Air conditioner
US13/879,653 US9829205B2 (en) 2011-01-20 2011-01-20 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000280 WO2012098581A1 (ja) 2011-01-20 2011-01-20 空気調和装置

Publications (1)

Publication Number Publication Date
WO2012098581A1 true WO2012098581A1 (ja) 2012-07-26

Family

ID=46515237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000280 WO2012098581A1 (ja) 2011-01-20 2011-01-20 空気調和装置

Country Status (5)

Country Link
US (1) US9829205B2 (ja)
EP (1) EP2667107B1 (ja)
JP (1) JP5570618B2 (ja)
AU (1) AU2011356121B2 (ja)
WO (1) WO2012098581A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927620A4 (en) * 2012-11-30 2016-08-10 Mitsubishi Electric Corp AIR CONDITIONING DEVICE

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6055754B2 (ja) * 2013-12-11 2016-12-27 ダイキン工業株式会社 冷媒流路切換ユニット及び冷媒流路切換ユニットを備える冷凍装置
US10852007B2 (en) * 2016-08-25 2020-12-01 Mitsubishi Electric Corporation Heat pump device
GB2562299B (en) * 2017-05-12 2019-10-23 Airsource Ventilation Ltd Remote heat transfer device
GB2578036B (en) * 2017-07-27 2021-05-19 Mitsubishi Electric Corp Air-conditioning system and method of sealing heat medium
EP3680583A4 (en) * 2017-09-05 2021-06-09 Daikin Industries, Ltd. AIR CONDITIONING SYSTEM AND REFRIGERANT CONNECTION UNIT
US11901537B2 (en) * 2021-12-21 2024-02-13 Caterpillar Inc. Systems and methods for purging air from battery cooling systems
EP4249814A1 (en) 2022-03-24 2023-09-27 Mitsubishi Electric Corporation System and method for heating and/or cooling at least one space

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104940A (ja) * 1998-09-28 2000-04-11 Kyushu Electric Power Co Inc ヒートポンプ式給湯システム
JP2000276985A (ja) * 1999-03-25 2000-10-06 Toshiba Corp ガス回収装置
JP2003106985A (ja) 2001-10-01 2003-04-09 Espec Corp 環境試験装置の水回路
JP2006036171A (ja) 2004-07-30 2006-02-09 Denso Corp ブライン式空調装置
WO2010049998A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置及び中継装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320016A (ja) * 1986-07-14 1988-01-27 Nippon Fuirukon Kk 循環濾過装置
JPH09229388A (ja) * 1996-02-22 1997-09-05 Nippon Yuuki Kk 空調配管システム
EP1354168A4 (en) * 2000-11-28 2007-03-07 Jung-Ro Park SYSTEM AND METHOD FOR PRESSURE DISTRIBUTION AND REGULATION FOR HEATING AND AIR CONDITIONING ASSEMBLY AND VERY HIGH CONSTRUCTION IMPLEMENTING THEM
KR100858991B1 (ko) * 2004-09-30 2008-09-18 마에카와 매뉴팩쳐링 캄파니 리미티드 암모니아/co2 냉동 시스템
US6973958B1 (en) * 2004-10-19 2005-12-13 Ching-Lung Chou Heat transfer apparatus having anti-oxidization device
CN101194129B (zh) * 2005-03-10 2010-10-06 艾尔库伊蒂公司 单通风险环境中的稀释通风的动态控制
US7874166B2 (en) * 2006-02-14 2011-01-25 Allen-Vanguard Technologies Inc. Cooling and climate conditioning system for a vehicle
JP5178842B2 (ja) * 2008-10-29 2013-04-10 三菱電機株式会社 空気調和装置
WO2010131335A1 (ja) * 2009-05-13 2010-11-18 三菱電機株式会社 空気調和装置
EP2472202B1 (en) * 2009-10-28 2019-03-20 Mitsubishi Electric Corporation Air conditioning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104940A (ja) * 1998-09-28 2000-04-11 Kyushu Electric Power Co Inc ヒートポンプ式給湯システム
JP2000276985A (ja) * 1999-03-25 2000-10-06 Toshiba Corp ガス回収装置
JP2003106985A (ja) 2001-10-01 2003-04-09 Espec Corp 環境試験装置の水回路
JP2006036171A (ja) 2004-07-30 2006-02-09 Denso Corp ブライン式空調装置
WO2010049998A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置及び中継装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2667107A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927620A4 (en) * 2012-11-30 2016-08-10 Mitsubishi Electric Corp AIR CONDITIONING DEVICE

Also Published As

Publication number Publication date
EP2667107A1 (en) 2013-11-27
EP2667107A4 (en) 2014-11-19
US20130205818A1 (en) 2013-08-15
AU2011356121A1 (en) 2013-05-02
JP5570618B2 (ja) 2014-08-13
JPWO2012098581A1 (ja) 2014-06-09
AU2011356121B2 (en) 2014-09-25
EP2667107B1 (en) 2020-08-19
US9829205B2 (en) 2017-11-28

Similar Documents

Publication Publication Date Title
JP5465338B2 (ja) 空気調和装置
JP5570618B2 (ja) 空気調和装置
JP5236008B2 (ja) 空気調和装置
JP5465333B2 (ja) 室外機および空気調和装置
JP5611376B2 (ja) 空気調和装置
JP5784117B2 (ja) 空気調和装置
WO2011099063A1 (ja) 空気調和装置
WO2013008278A1 (ja) 空気調和装置
US20150369498A1 (en) Air-conditioning apparatus
WO2013171781A1 (ja) 空気調和装置
WO2016194145A1 (ja) 空気調和装置
WO2011099058A1 (ja) 空気調和装置
JP5677461B2 (ja) 冷凍サイクル装置の部品交換方法および冷凍サイクル装置
JP5312616B2 (ja) 空気調和装置
WO2016113830A1 (ja) 空気調和装置
JP5791717B2 (ja) 空気調和装置
JP5642270B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553459

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13879653

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011356121

Country of ref document: AU

Date of ref document: 20110120

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011856402

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE