WO2012098340A1 - Poudre fine de polyester aliphatique bioressource et procede de fabrication d'une telle poudre - Google Patents

Poudre fine de polyester aliphatique bioressource et procede de fabrication d'une telle poudre Download PDF

Info

Publication number
WO2012098340A1
WO2012098340A1 PCT/FR2012/050130 FR2012050130W WO2012098340A1 WO 2012098340 A1 WO2012098340 A1 WO 2012098340A1 FR 2012050130 W FR2012050130 W FR 2012050130W WO 2012098340 A1 WO2012098340 A1 WO 2012098340A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
acid
less
powder
aliphatic polyester
Prior art date
Application number
PCT/FR2012/050130
Other languages
English (en)
Inventor
Guillaume Le
Cyrille Mathieu
Karine Loyen
Jean-Laurent Pradel
Jean-Jacques Flat
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to JP2013549870A priority Critical patent/JP5961190B2/ja
Priority to MX2013008402A priority patent/MX346803B/es
Priority to EP12705350.2A priority patent/EP2665765A1/fr
Priority to CN201280005845.9A priority patent/CN103328545B/zh
Priority to KR1020137021812A priority patent/KR101966617B1/ko
Priority to US13/980,073 priority patent/US8802814B2/en
Publication of WO2012098340A1 publication Critical patent/WO2012098340A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to fine powders, such as those used in cosmetics, pharmacy or perfumery.
  • the present invention relates more particularly to a process for producing a fine aliphatic polyester powder from renewable materials, that is to say bioressourcé.
  • fine powder is intended to mean a powder of particles having a median diameter by volume of less than 30 ⁇ according to the ISO 13319 standard.
  • polyester powders there are grinding processes or solvent processes such as the dissolution of the polyester in a solvent followed by spray drying, the precipitation in a non-solvent, the emulsion polymerization or the dispersion, in Molten, polyester in the form of nodules in a water-soluble polymer. Grinding is generally preferred because of its low cost, simplicity, and ease of large scale transfer.
  • the other processes require the use of sometimes harmful solvents which can leave traces of solvent in the powders obtained.
  • the emulsion polymerization and the molten polymer dispersion require meticulous control of the process, they can be very energy consuming and generate effluents.
  • dispersion methods can leave high concentrations of surfactant in the product.
  • the mixture is produced at a temperature close to the glass transition temperature of the polymer, and then cooled to obtain a brittle material capable of being ground to obtain particles of volume median diameter included in the range. from 4 to 500 ⁇ .
  • the hard, brittle, highly sheared polymer can be ground more easily, and then dried in the case of ice, to obtain the polymer powder.
  • These grinding processes have several disadvantages: they require an additional step to separate the abrasive from the polymer, and it is difficult, if not impossible, to separate the abrasives from the polyester. Traces of abrasives can hinder the use of these powders, for example in cosmetics. Similarly, when using ice, an additional step of drying the product obtained is necessary.
  • Biomass renewable feedstocks do not require all the energy-intensive refining steps of petroleum products and generally have a reduced impact on the environment. CO2 production is reduced so that they contribute less to global warming.
  • consumers are increasingly attracted to plant-based products that are known to be safer and more compatible for the skin. It therefore appears necessary to have synthetic processes that are not dependent on fossil-based raw materials, but instead using raw materials of renewable origin.
  • a material of renewable origin also called biomaterial, or bioressourcé or bio-sourced material, is a material derived from raw materials of renewable origin.
  • the biomaterial content or biocarbon content of a material is determined according to ASTM D 6866 (ASTM D 6866-06) and ASTM D 7026 (ASTM D 7026-04).
  • the ready-to-use raw materials particularly with regard to powders and / or active agents, which are easy to incorporate into the cosmetic formulations, are particularly sought after by the formulators.
  • the Applicant has now found a process capable of producing such a fine aliphatic polyester powder, including from high molecular weight commercial polyesters, said powder may comprise a variable impregnation rate of certain compounds, its impregnation rate. being easily adjustable according to the conditions of the process.
  • the subject of the present invention is therefore a process for producing bioressourced aliphatic polyester powder having a median diameter in volume of less than 30 ⁇ , preferably less than 20 ⁇ , or better still less than 10 ⁇ .
  • the subject of the present invention is in particular a process for the production of bioressourced aliphatic polyester powder impregnated with at least one compound chosen from polyols and / or carboxylic acids, said powder having a median diameter by volume of less than 30 ⁇ .
  • the method according to the invention comprises: a - a step of providing an aliphatic polyester of inherent viscosity (vinh) less than 0.5 dl /; then
  • aliphatic polyester is understood to mean any bioressourced aliphatic polyester or copolyester in which the ester functions are separated by linear or branched hydrocarbon groups containing at least 1 carbon atom. Methods for obtaining polyesters are well known. In particular, it is possible to mention the polycondensation of at least one diacid with one or more diol (s), the polycondensation of hydroxyacid (s), or the ring-opening polymerization of at least one cyclic ester or diester.
  • the aliphatic polyester is chosen from:
  • PL A poly lactic acid obtained by polycondensation of lactic acid or by ring opening of lactides (different isomers) whose poly (D-lactic acid) and poly (L-lactic acid) stereocomplexes obtained by mixing or under form of block polymers;
  • poly (hydroxycarboxylic) acids comprising polymerized units of one or more hydroxycarboxylic acids chosen from: 6-hydroxyhexanoic acid, 3-hydroxyhexanoic acid, 4-hydroxyhexanoic acid, 3-hydroxyheptanoic acid, 3-hydroxypropionic acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid;
  • the number-average molecular weight (Mn) of the starting aliphatic polyesters used in the process of the invention, that is to say before grinding, is less than 30000 g / mol, preferably included in the range. from 10,000 to 30,000 g / mol, preferably from 10,000 to 25,000 g / mol, preferably from 10,000 to 20,000 g / mol.
  • Mn The number average molecular weight (Mn) is measured by GPC "Gel Permeation Chromatography", under the following conditions and device: THF: 40 ° C, 1 ml / min, concentration lg / 1, Device: Set of 2 columns PI gel MIXED B (30 cm). CAP-LCS-14, Refractometric and UV detector, Results (RI) given in PS eq / Results (V) given in PLA eq, Standard calculated in PS eq - Universal: calculated in PLA eq.
  • the powders must have an Mn of at least 10,000 g / mol to be considered as a polymeric additive, for example in cosmetics; and if these polymer powders have an Mn of between 1000 and 10,000 g / mol, they must contain less than 1% by weight of Mn oligomers of less than 1000 g / mol. Conversely, Mn polyesters greater than 30000 g / mol are difficult to grind or impossible to grind into fine powders.
  • step a of the process according to the invention comprises a step of depolymerization of an aliphatic polyester of Mn greater than 30000 g / mol to obtain an aliphatic polyester of inherent viscosity (vinh) of less than 0.5 dl / g and / or Mn less than 30000 g / mol.
  • the method of the invention may further comprise a step prior to grinding, comprising depolymerizing the aliphatic polyester of Mn greater than 30000 g / mol to obtain an aliphatic polyester of inherent viscosity (vinh) of less than 0.5 dl / g and / or Mn less than 30000 g / mol.
  • depolymerization is meant the process of decreasing the molecular weight of the polyester to a value for grinding the polyester to obtain a powder with an average diameter of less than or equal to 30 microns.
  • the polyester is preferably subjected to melting and / or kneading, so as to obtain a lower molecular weight polyester oligomer of less than 30000 g / mol.
  • the melting and kneading are preferably carried out successively in this order but can also be performed simultaneously. The more the kneaded product becomes fluid, the lower its number-average molecular weight.
  • this depolymerization step was indispensable in the case of high Mn polyesters (greater than 30000) in order to reach an optimum viscosity of less than 0.5 dl / g, a value not to be exceeded in order to obtain at least result of the process according to the invention, particles of average diameter by volume less than 30 ⁇ .
  • the depolymerization step according to the process of the invention is carried out by kneading a mixture comprising the polyester and 0.1 to 20% by weight, preferably 1 to 15% by weight, of a compound chosen from alcohols, preferably polyols, and / or carboxylic acids, based on the total weight of the mixture.
  • the depolymerization step is carried out at a temperature in the range: in the case of a semicrystalline polyester, at a temperature in the range from Tf to Tf + 150 ° C., and preferably from Tf to Tf + 100 ° C., Tf being the melting point of the polyester, measured according to DSC method of ISO 11357;
  • Tg being the glass transition temperature of the polyester, measured according to the DSC method of ISO 11357
  • Td being the decomposition temperature of the polyester measured by thermogravimetric analysis under nitrogen and corresponding to the temperature for which the loss of mass of the polyester is greater than 50% under a temperature increase of 10 ° C per minute .
  • the kneading temperature is in the range of 200 to 260 ° C in the case of a semicrystalline polyester, and 100 ° C to 300 ° C in the case of an amorphous polymer.
  • the kneading is carried out for a time sufficient for the inherent viscosity of the kneaded polyester to be less than 0.5 dl / g.
  • alcohol is intended to mean a linear or branched, saturated or unsaturated alkyl compound bearing at least one -OH function, such as ethanol, methanol, n-butanol or heptanol (derived from castor), and preferably bioressourced.
  • the alcohol is a polyol, that is to say a linear, branched or cyclic, saturated or unsaturated alkyl-containing compound bearing at least two -OH functions on the alkyl chain, as well as polymers (polyethers). of these polyhydroxyalkyl compounds.
  • it is an alkyl compound having 2 to 12 carbon atoms, and even more preferably 2 to 8 carbon atoms.
  • this alkyl compound has 2 or 3 carbon atoms.
  • the polyols have a higher boiling point than the monoalcohols and can be used in the devices extrusion, they have the advantage of not requiring to work at low temperature under pressure (autoclave). In addition, they are classic ingredients of cosmetics.
  • the polyols used according to the invention are chosen in particular from: glycerol, ethylene glycol, propylene glycol, butanediol, hexaglycerol, dipropylene glycol, isosorbide, sorbitol, the polymers comprising them, and their mixtures.
  • glycerol ethylene glycol
  • propylene glycol propylene glycol
  • butanediol hexaglycerol
  • dipropylene glycol isosorbide
  • sorbitol the polymers comprising them, and their mixtures.
  • said polyols are selected from glycerol, sorbitol, and mixtures thereof.
  • carboxylic acid means a linear, branched or cyclic, saturated or unsaturated C 4 -C 50 compound comprising at least one acid function.
  • polycarboxylic acid means a linear, branched or cyclic, saturated or unsaturated C4-C50 compound comprising at least two acid functions.
  • the carboxylic acids are chosen from hydroxy acids, such as glycolic acid, lactic acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid, 3-hydroxyisovaleric acid, citric acid, and their mixtures.
  • hydroxy acids such as glycolic acid, lactic acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid, 3-hydroxyisovaleric acid, citric acid, and their mixtures.
  • said compound used in the process of the invention is selected from glycerol, sorbitol, lactic acid, and mixtures thereof.
  • Said compound is advantageously a mixture of glycerol and lactic acid, in mass quantity substantially equal preferably.
  • said compound is derived from renewable resources and produced if possible according to the principles of green chemistry, known to those skilled in the art. Said compound must also be thermally stable under the conditions of mixing and grinding of the process. It is preferably chosen from products having an INCI name (International Nomenclature Cosmetic Ingredient) that can enter the composition of cosmetics. The INCI name is assigned by the Personal Care Products Council. INCI names are published in the International Cosmetic Ingredient Dictionary and Handbook and should be used to list ingredients on cosmetic packaging in the United States, the European Union and other countries.
  • any device for mixing, kneading or extruding molten plastics known to those skilled in the art can be used.
  • internal mixers cylinder mixers, single-screw extruders, twin-screw contra or corotative extruders, continuous comixers, or stirred reactors.
  • the kneading device may be one of the above-mentioned tools or their combination, such as for example a co-catalyst associated with a recovery monovalve, a co-rotating twin-screw associated with a gear pump, a reactor connected to an extruder, etc.
  • the extrusion tool is generally configured to identify a melting zone of the polymer, a mixing and reaction zone between the species present, and an expansion / degassing zone to remove the volatile compounds. These different zones can be materialized by the configuration of the screw of the tool, the use of restriction zone or the coupling of tools between them.
  • the device may also be equipped with a filtration system, preferably continuous and a rod or underwater granulation system adapted to the rheology of the aliphatic polyester by its geometry and its thermal characteristics or a spraying system. molten polymer, such as cooling spray.
  • a filtration system preferably continuous and a rod or underwater granulation system adapted to the rheology of the aliphatic polyester by its geometry and its thermal characteristics or a spraying system.
  • molten polymer such as cooling spray.
  • any suitable mixer such as a Brabender or Plastograph W50EHT mixer, consisting of a motor, a mixing chamber, two rotating rotors in direction reverse at different speeds to melt material, thermocouple, and data acquisition.
  • a Brabender or Plastograph W50EHT mixer consisting of a motor, a mixing chamber, two rotating rotors in direction reverse at different speeds to melt material, thermocouple, and data acquisition.
  • the kneading step of the process according to the invention is carried out in an intermeshing twin-screw extruder. Indeed, it is a continuous process that allows greater productivity than batch process.
  • the residence times being lower in an extruder than in mixers (eg Brabender type), the products are less subject to thermo-oxidation, and in particular are less likely to undergo yellowing.
  • the inherent viscosity of the polyester is measured at a polyester concentration of 0.5% by weight in solution in metacresol over the total weight of the solution, at 20 ° C. by means of a Ubbelohde viscometer.
  • the inherent viscosity of the polyester after kneading is less than 0.5 dl / g, preferably less than 0.4 dl / g, preferably less than 0.3 dl / g, preferably in the range of 0.10 to 0.30 dl / g, preferably from 0.15 to 0.25 dl / g, or better still substantially equal to 0.2 dl / g.
  • the kneading step is therefore maintained for a time sufficient for the inherent viscosity of the kneaded polyester to be less than 0.5, preferably sufficient for the viscosity to be in the range from , 10 to 0.30, or better from 0.15 to 0.25.
  • a mixing time of 30 to 1800 seconds is generally sufficient.
  • the duration of the kneading step is in the range of 30 seconds to 20 minutes, preferably 30 seconds to 15 minutes.
  • the mixing time depends on the starting polyester, the level of polyol (s) and / or carboxylic acid (s), the mixtures, the temperature and the kneading tool used.
  • said mixture during the kneading step further comprises from 0.005 to 0.2% by weight of catalyst comprising at least one group IVB or IVA element, such as Ti, Zr, Sn.
  • said mixture can also be produced in the presence of additives making it possible to modify the characteristics of the powders, such as plasticizers (less than 20% by weight relative to the weight of the mixture), nucleating agents (less than 5%), waxes (less than 50%), fillers (less than 50%), stabilizers (less than 5%), organic compounds, or oligomers (less than 50%) , in particular silicones, polyolefins, fluorinated polymers, such as PVDF, preferably having an inherent viscosity of less than 0.5.
  • additives making it possible to modify the characteristics of the powders, such as plasticizers (less than 20% by weight relative to the weight of the mixture), nucleating agents (less than 5%), waxes (less than 50%), fillers (less than 50%), stabilizers (less than 5%), organic compounds, or oligomers (less than 50%) , in particular silicones, polyolefins, fluorinated polymers, such as PVDF, preferably having an inherent viscosity of less than 0.5.
  • the various steps of the process of the invention do not involve a solvent.
  • the method of the invention may optionally comprise:
  • an intermediate drying step in order to adjust the amount of organic impregnating agent (s), in particular the amount of additive (s) or compound (s), which corresponds (ent) preferably to x) compound (s) used in the depolymerization step: alcohol, especially polyol, and / or acid.
  • the crystallization step is carried out by heating the polymer to a temperature between its Tg and before the beginning of the melting of the polymer observed in DSC according to the ISOH357 standard.
  • Any type of device suitable for developing the crystallinity of a polyester may be used, such as a dryer, a reactor, etc.
  • the drying step is carried out by heating the polymer to a temperature between its Tg and the beginning of the melting of the polymer observed in DSC according to the ISOH357 standard at atmospheric pressure, or under vacuum.
  • Any type of device suitable for drying a polymer may be used, such as a dryer, a reactor, an oven, a fluidized bed, etc.
  • the process of the invention comprises a step of grinding the aliphatic polyester of inherent viscosity less than 0.5 dl / g so that a fine powder of aliphatic polyester, the powder thus obtained being of median diameter (d50) in volume less than 30 ⁇ .
  • the powder thus obtained is optionally impregnated with the compound as defined above in the case where a kneading step has been carried out before grinding.
  • the average diameters are determined from the particle size distribution measured using a Coulter Multisizer 3 or Coulter (R) LS230, version 2.11a granulometer of the software. and according to ISO 13319.
  • the grinding step according to the invention is carried out at ambient temperature (that is to say between about 15 ° C. and 25 ° C.).
  • the grinding makes it possible to obtain fine powder particles of irregular rounded shape and makes it possible to avoid the formation of sharp edges on the surface of the powder particles, which has an influence on the sensory properties, in particular of touch, the powder obtained.
  • the grinding device used in the process of the invention may be of any type suitable for the manufacture of powders.
  • grinding is effected solely by shocks between the kneaded polyester grains, preferably by means of an opposed jet mill, by means of two opposite nozzles fed by the compressed air, usually at a pressure of 6 at 9 bar, preferably at 7 bar (7.10 5 Pa).
  • the air used preferably is filtered and dried, so it does not bring any contaminant.
  • any other suitable gas could replace the air supplying the nozzles.
  • the polymer is conveyed and carried directly by the air coming out of the nozzles. Under the effect of the opposing air jets, the polymer particles collide against each other, reducing their particle size and leading to their characteristic irregular and sharp edge-free final shape.
  • the dimensions of the grinding system and the gas inlet flow rates used are adapted to obtain good fluidization and the desired particle size. For example, the power consumed for grinding is about 1 to 2 kW.h / kg of powder.
  • the opposing jet mill is particularly well suited for producing very fine powders and having narrow particle size distribution curves.
  • opposed jet mills used in the process of the invention allow much higher grinding speeds, greater than 400 m / s.
  • the opposed air jet mill comprises an integrated classifier or selector, capable of directly adjusting the milling speed to obtain the desired particle size, unlike other systems which generally require the provision of the addition in series. an adjunct adjustment device.
  • the selector returns particles of non-conforming diameter to the feed system of the grinding chamber while the particles of the grain size conforming to the setting are collected in an air filter.
  • the powder can be collected directly at the bottom of this filter, bagged for example.
  • the only adjustments to be made according to the method of the invention are the milling speed to obtain the desired particle size, and the flow rate. feed to maintain a constant amount of product in the grinding chamber.
  • the milling speed can be set directly at the selector and the transitions to change the particle size of the powder during the process of the invention are extremely fast. The use of such an opposed jet mill improves the productivity of the process of the invention.
  • the final particle size of the polyester powder is adjusted directly by adjusting the milling speed of the process.
  • the adjustment of the milling speed is done by means of a selector integrated in the mill.
  • the process of the invention may optionally further comprise an optional step of crystallization and / or drying, of the powder obtained by grinding.
  • the optional drying step makes it possible to precisely control the content (percentage by weight) of the compound impregnated in the powder obtained as well as the properties of the powder, in particular its oil uptake.
  • compound impregnated within the meaning of the invention means the result of the mixture in the melting of said compound with the polyester during the depolymerization step.
  • the compound is in fact "impregnated" in the matrix itself of the polymer, in particular in the heart of the powder particle obtained according to the method of the invention.
  • the drying causes an increase in the crystallinity of the powder obtained.
  • crystallization for example at temperatures close to Tg does not necessarily result in loss of mass (that is to say no loss of impregnated compound).
  • the advantage of an intermediate crystallization or an intermediate drying, that is to say before grinding, is to facilitate the grinding step, and to obtain a median diameter still lower, for example less than 20 ⁇ , or even less than 10 ⁇ .
  • the advantage of drying after grinding is to modulate the properties of the powder obtained, such as its impregnation rate of compound, its oil absorption properties, and water absorption.
  • the advantage of a crystallization after grinding is to modulate the properties of the powder, in particular chemical resistance, oil uptake, its mechanical properties, for example its compaction power; without changing its rate of impregnation.
  • the crystallization step is carried out at a temperature between the Tg glass transition temperature and the crystallization temperature of the polyester, and not under vacuum.
  • the impregnation rate of the powder, and the oil absorption properties of the powder are adjusted during the depolymerization and / or during the drying of the polyester.
  • the subject of the present invention is also a bioressourced aliphatic polyester powder capable of being obtained according to the process of the invention as described above, in which the particles have a median diameter by volume of less than 30 ⁇ , and are impregnated with preferably from 0.1 to 20%, based on the weight of the powder, of a compound chosen from alcohols (preferably polyols) and / or carboxylic acids, especially hydroxy acids.
  • the powder particles according to the invention have a median diameter by volume of less than 20 ⁇ , preferably less than 10 ⁇ .
  • the oil intake (measured according to DIN ISO 787-5) of the powder according to the invention is in the range of 0.5 to 1 g / g of powder.
  • the powder according to the invention meets the guidelines of the Cosmebio charter.
  • the subject of the present invention is also the use of powder according to the invention for the manufacture of cosmetic, pharmaceutical or perfume compositions or products.
  • a product comprising the powder according to the invention is in particular a colored, non-colored or transparent product chosen from the following products:
  • - make-up products for the face and body such as foundation, tinted cream, loose or compact powder, eyeshadow, mascara, eye liner, lipstick;
  • - care products for the face and the human body such as cream, milk, lotion, mask, scrubbing product, cleansing and / or makeup remover, deodorant, antiperspirant, antiperspirant, shaving products, hair removal products;
  • - hair products such as shampoos, hair shaping products, hair styling products, anti-dandruff products, anti-hair loss products, hair dry products, hair dyes, bleaching products;
  • perfumery products such as perfume, milk, cream, loose powder or compact scented.
  • the aliphatic polyesters used herein are lactic acid polyacids (PLA), the characteristics of which are given in Table 1.
  • PLA viscosity greater than 0.5 dl / g are not grindable directly into powders of median diameter by volume less than 30 ⁇ .
  • PLA were depolymerized so as to have an inherent viscosity of 0.5 dl /, but also did not allow to obtain by simple grinding (without drying step) powders of median diameter by volume less than 30 ⁇ .
  • Tests 1 to 10 are conducted in a Coperion ZSK30 extruder at a screw speed of 300 rpm and a flow rate of 15 Kg / h.
  • the kneaded product is recovered at the outlet of the die, by means of a rolling mill, which cools the product and crushes it into granules or "chips" of polymer of size of the order of a millimeter, which can easily be handled.
  • any other device for example spray cooling, can be used to make granules from the kneaded product.
  • the samples obtained are analyzed for their inherent viscosity.
  • the following table indicates the inherent viscosity obtained by varying the temperature, the nature of the PLA, and the alcohol content during the mixing step.
  • a viscosity of less than 0.5 and even less than 0.30 is obtained on most kneaded products.
  • Tests no. 1 make it possible to observe the influence of temperature on the degradation. For an equal kneading time, the higher the kneading temperature, the greater the depolymerization, and the viscosity of the PLA decreases.
  • the amount of compound (glycerol) introduced also plays on the depolymerization of the polymer. The greater the amount of glycerol, the lower the viscosity of the PLA.
  • the temperature conditions and the amount of compound used in the process of the invention make it possible to arrive quickly at the desired viscosity (that is to say a viscosity of less than 0.50, or even less than 0.3), while avoiding significant thermo-oxidation (causing the yellowing of the polyester) can be generated by too high temperatures.
  • the product is introduced into the mill using a Venturi air jet tube.
  • the product is subjected to a violent and rapid effect of compressed air turbulence at 7 bar caused by the distribution ring pierced with tangential holes (Vortex effects). Grinding is done only by shocks between the grains of the product.
  • the venturi supply nozzle of the mill here having a diameter of 2.5 mm; if the polyester obtained after depolymerization or if the polyester of inherent viscosity less than 0.5 dl / g is not in the form of granules or chips of the order of a millimeter, before grinding the polyester with Jet Mill air, it is best to crush it, after solidification (cooling) if necessary, for example using a Retch mill equipped with a 2 mm grid. Alternatively, one could use any device, including spray cooling to make granules or coarse powder of about 1 millimeter.
  • the particle size is evaluated with the Coulter Multisizer 3 particle size analyzer.
  • the counting of the particles one by one and their volumetric detection are obtained by the Coulter principle.
  • This technique is based on a measurement of the resistance variation induced by the passage through a calibrated orifice of particles suspended in an electrolyte.
  • Each insulating particle passing through the detection orifice displaces an electrolyte volume equal to its own volume and causes a decrease in the volume of electrolyte present in the orifice. This decrease causes a sharp increase in the electrical resistance.
  • the variation in resistance is proportional to the displaced electrolyte volume and, consequently, to the volume of the particle.
  • the resistance variations are transformed into voltage pulses whose height is proportional to the volume of the particle. These pulses are amplified and classified according to their height in the different channels of the analyzer.
  • Case A The samples (here No. 401 and 405) are milled directly, that is to say without crystallization step or intermediate drying.
  • This embodiment of the process of the invention shows the influence of the intermediate drying step, between the kneading step and the grinding step, on the particle size of the powders obtained after grinding.
  • the drying is carried out by steaming the kneaded polymers at a temperature of 100 ° C. for 24 hours under vacuum.
  • the kneaded and dried polymers are then milled.
  • the inventors believe that the increase in the crystallinity of the polyesters could act on their grindability, that is to say their ability to be ground into the finest possible particles.
  • the method of the invention makes it possible to grind PLA to obtain PLA powder particles having a median diameter by volume of less than 30 ⁇ , or even less than 20 ⁇ , and even less than 10 ⁇ , as in the case of the 401 tests, 404 and 405.
  • the following table 6 indicates the rate of impregnation with a compound (glycerol or glycerol / lactic acid mixture) measured on the powders obtained according to the process of the invention, by the mass loss at 290 ° C. by thermogravimetric analysis (TGA). under nitrogen, increasing the temperature by 10 ° C per minute, using a Netzsch TG 209F1: Table 6
  • the oil uptake (g / g) of test 400 is 0.55 g / g.
  • the oil uptake (g / g) of test 405 is 0.80 g / g.
  • bio-resourced fine powders according to the invention have the advantage of being dispersed both in the oily phases and in the aqueous phases. The formulation of cosmetics with these powders is thus facilitated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Fats And Perfumes (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention concerne un procédé de fabrication de poudre de polyester aliphatique bioressourcé de diamètre médian en volume inférieur à 30 m, comprenant une étape de fourniture d'un polyester aliphatique de viscosité inhérente inférieure à 0,5 dl/g; et une étape de broyage dudit polyester de sorte qu'on obtient une poudre de polyester de diamètre médian en volume inférieur à 30 m. La présente invention concerne également une poudre dans laquelle les particules sont de diamètre médian en volume inférieur à 30 m, et sont imprégnées d'un composé choisi parmi les polyols et/ou les acides carboxyliques; et concerne également l'utilisation de la poudre pour la fabrication de produits cosmétiques, pharmaceutiques ou de parfumerie.

Description

Poudre fine de polyester aliphatique bioressourcé et procédé de fabrication d'une telle poudre
Description
La présente invention se rapporte aux poudres fines, telles que celles utilisées en cosmétique, pharmacie ou parfumerie. La présente invention concerne plus particulièrement un procédé de fabrication d'une poudre fine de polyester aliphatique issu de matières renouvelables, c'est-à-dire bioressourcé.
Par poudre fine au sens de l'invention, on entend une poudre de particules de diamètre médian en volume inférieur à 30 μιη selon la norme ISO 13319.
Pour fabriquer des poudres de polyester, il existe des procédés de broyage ou des procédés en solvant tels que la dissolution du polyester dans un solvant suivie de spray drying, la précipitation dans un non-solvant, la polymérisation en émulsion ou encore la dispersion, dans le fondu, du polyester sous forme de nodules dans un polymère hydrosoluble. Le broyage est généralement préféré en raison de son faible coût, de sa simplicité, et de la facilité de son transfert à grande échelle. Les autres procédés nécessitent l'utilisation de solvants parfois nocifs pouvant laisser des traces de solvant dans les poudres obtenues. La polymérisation en émulsion et la dispersion de polymère fondu nécessitent un contrôle méticuleux du procédé, elles peuvent s'avérer très consommatrices d'énergie et génèrent des effluents. De plus, les méthodes de dispersion peuvent laisser des fortes concentrations de surfactant dans le produit.
Les procédés de broyage existants ne permettent pas de broyer de manière simple des polyesters aliphatiques sous la forme de poudre fine, en particulier les polyesters de haut poids moléculaire (de masse moléculaire moyenne en nombre supérieure à 30000 g/ mol) qui sont les seuls actuellement disponibles à des volumes compatibles avec une application industrielle. Les documents US20090197780 et US20030176633 décrivent des procédés de broyage des polyesters aliphatiques, qui utilisent respectivement un additif plus dur (NaCl, quartz, KC1, CaC12, KOH), ou un abrasif à base de glace à 0°C, en mélange avec le polymère. Dans le cas de l'additif, le mélange est réalisé à une température proche de la température de transition vitreuse du polymère, puis refroidi pour obtenir un matériau fragile susceptible d'être broyé pour obtenir des particules de diamètre médian en volume compris dans la gamme de 4 à 500 μιη. Dans le cas du polymère mélangé à un abrasif, le polymère dur et fragile, soumis à un fort cisaillement peut être broyé plus facilement, puis séché dans le cas de la glace, afin d'obtenir la poudre de polymère. Ces procédés de broyage ont plusieurs inconvénients : ils nécessitent une étape supplémentaire pour séparer l'abrasif du polymère, et il est difficile, voire impossible, de séparer les abrasifs du polyester. Des traces d'abrasifs peuvent entraver l'utilisation de ces poudres, par exemple en cosmétique. De même, lors de l'utilisation de glace, une étape supplémentaire de séchage du produit obtenu est nécessaire.
Dans le domaine cosmétique, la fabrication de poudres fines issues de matières renouvelables, et de préférence biocompatibles et/ ou biodégradables, présente un intérêt majeur. Les matières premières de source renouvelable, issues de la biomasse, ne nécessitent pas toutes les étapes de raffinage coûteuses en énergie des produits issus du pétrole et ont généralement un impact réduit sur l'environnement. La production de CO2 est réduite de sorte qu'elles contribuent moins au réchauffement climatique. De plus, les consommateurs sont de plus en plus attirés par les produits d'origine végétale qui ont la réputation d'être plus sûrs et plus compatibles pour la peau. Il apparaît donc nécessaire de disposer de procédés de synthèse non dépendants de matière première d'origine fossile, mais utilisant plutôt des matières premières d'origine renouvelable. Un matériau d'origine renouvelable, appelé aussi biomatériau, ou encore matériau bioressourcé ou biosourcé, est un matériau issu de matières premières d'origine renouvelable. La teneur en biomatériau ou teneur en biocarbone d'un matériau est déterminée en application des normes ASTM D 6866 (ASTM D 6866-06) et ASTM D 7026 (ASTM D 7026-04).
Enfin, les matières premières prêtes à l'emploi, s' agissant notamment de poudres et/ ou d'agents actifs, faciles à incorporer dans les formulations cosmétiques, sont particulièrement recherchées par les formulateurs.
La présente invention a donc pour but de fournir un procédé simple (présentant le moins d'étapes possibles) de fabrication d'une poudre de polyester aliphatique qui répond aux différentes exigences énoncées ci- dessus.
La Demanderesse a maintenant trouvé un procédé capable de produire une telle poudre fine de polyester aliphatique, y-compris à partir de polyesters commerciaux de haut poids moléculaire, ladite poudre pouvant comprendre un taux d'imprégnation variable en certains composés, son taux d'imprégnation étant facilement réglable en fonction des conditions du procédé.
La présente invention a donc pour objet un procédé de fabrication de poudre de polyester aliphatique bioressourcé ayant un diamètre médian en volume inférieur à 30 μιτι, de préférence inférieur à 20 μιτι, ou mieux inférieur à 10 μιη.
La présente invention à notamment pour objet un procédé de fabrication de poudre de polyester aliphatique bioressourcé imprégnée avec au moins un composé choisi parmi les polyols et/ ou les acides carboxyliques, ladite poudre ayant un diamètre médian en volume inférieur à 30 μιη.
Le procédé selon l'invention comprend : a - une étape de fourniture d'un polyester aliphatique de viscosité inhérente (vinh) inférieure à 0,5 dl/ ; puis
b - une étape de broyage dudit polyester de sorte qu'on obtient une poudre de polyester de diamètre médian en volume inférieur à 30 μιη.
Au sens de l'invention, on entend par polyester aliphatique, tout polyester ou copolyester aliphatique bioressourcé, dans lequel les fonctions ester sont séparées par des groupes hydrocarbonés linéaires ou ramifiés comportant au moins 1 atome de carbone. Des procédés d'obtention de polyesters sont bien connus. On peut notamment citer la polycondensation d'au moins un diacide avec un plusieurs diol(s), la polycondensation d'hydroxyacide(s), ou encore la polymérisation par ouverture de cycle d'au moins un ester ou diester cyclique.
De préférence, le polyester aliphatique est choisi parmi :
- les PL A : poly acide lactique obtenus par polycondensation de l'acide lactique ou par ouverture de cycle des lactides (différents isomères) dont les stéréocomplexes poly(D-lactic acid) et poly(L-lactic acid) obtenus par mélange ou sous forme de polymères à blocs ;
- les copolymères de PLA avec l'acide glycolique (ou le glycolide) ; - les acides poly(hydroxycarboxyliques) comprenant des unités polymérisées d'un ou de plusieurs acides hydroxycarboxyliques choisis parmi : l'acide 6-hydroxyhexanoïque, l'acide 3-hydroxyhexanoïque, l'acide 4-hydroxyhexanoïque, l'acide 3-hydroxyheptanoïque, l'acide 3- hydroxyprop ionique, l'acide 2-hydroxybutyrique, l'acide 3- hydroxybutyrique, l'acide 4-hydroxybutyrique, l'acide 3- hydroxyvalérique, l'acide 4-hydroxyvalérique, l'acide 5- hydroxyvalérique ;
- le poly(s-caprolactone) ; - les polyesters aliphatiques obtenus par polycondensation de diols et de diacides tels que le poly(butylène adipate) et le poly(butylène adipate-co-succinate) ;
et leurs mélanges.
Des exemples de polyesters aliphatiques convenant pour l'invention sont par exemple commercialisés par Natureworks (PLA), Natureplast (PLA), par Mitsubishi Chemical (PBS et PBSA), Solvay et Dow (PCX), Telles (PHA). De préférence, la masse moléculaire moyenne en nombre (Mn) des polyesters aliphatiques de départ utilisés dans le procédé de l'invention, c'est-à-dire avant broyage, est inférieure à 30000 g/mol, de préférence comprise dans la gamme de 10000 à 30000 g/mol, de préférence de 10000 à 25000 g/mol, de préférence de 10000 à 20000 g/ mole. La masse moléculaire moyenne en nombre (Mn) est mesurée par GPC « Gel Permeation Chromatography », dans les conditions et dispositif suivants : THF : 40°C, lml/min, Concentration lg/1, Dispositif : Jeu de 2 colonnes PI gel MIXED B (30 cm). CAP-LCS-14, Détecteur réfractométrique et UV, Résultats (RI) donnés en éq PS / Résultats (V) donnés en eq PLA, Standard calculé en éq PS - Universal : calculé en éq PLA.
En effet, d'après la réglementation actuelle de certains pays comme le Japon, les poudres doivent présenter une Mn d'au moins 10000 g/ mol pour pouvoir être considérées comme additif polymère, par exemple en cosmétique; et si ces poudres polymères ont une Mn comprise entre 1000 et 10000g/mol, il faut qu'elles contiennent moins de 1% en poids d'oligomères de Mn inférieure à 1000 g/ mol. A l'inverse, les polyesters de Mn supérieure à 30000 g/ mol sont difficiles à broyer, voire impossibles à broyer en poudres fines. De préférence, l'étape a du procédé selon l'invention comprend une étape de dépolymérisation d'un polyester aliphatique de Mn supérieure à 30000 g/ mol pour obtenir un polyester aliphatique de viscosité inhérente (vinh) inférieure à 0,5 dl/g et/ ou de Mn inférieure à 30000 g/ mol. En effet, pour pouvoir broyer ce type de polyesters de haute Mn allant de 30000 à 200000 g/ mol, et arriver en particulier à obtenir des polyesters de viscosité inhérente inférieure à 0,5 ; le procédé de l'invention peut comprendre en outre une étape préalable au broyage, consistant à dépolymériser le polyester aliphatique de Mn supérieure à 30000 g/ mol afin d'obtenir un polyester aliphatique de viscosité inhérente (vinh) inférieure à 0,5 dl/ g et/ ou de Mn inférieure à 30000 g/ mol.
Par dépolymérisation, on entend le procédé qui consiste à diminuer la masse moléculaire du polyester à une valeur permettant de broyer le polyester afin d'obtenir une poudre de diamètre moyen inférieur ou égale à 30 microns. Pour dépolymériser le polyester, on le soumet de préférence à une fusion et/ ou un malaxage, de façon à obtenir un oligomère de polyester de masse moléculaire plus faible inférieure à 30000 g/mol. La fusion et le malaxage sont réalisées de préférence successivement dans cet ordre mais peuvent aussi être réalisées simultanément. Plus le produit malaxé devient fluide, plus sa masse moléculaire moyenne en nombre est faible. Il s'est avéré que cette étape de dépolymérisation était indispensable dans le cas des polyesters de Mn élevée (supérieure à 30000) pour atteindre une viscosité optimale inférieure à 0,5 dl/ g, valeur à ne pas dépasser pour pouvoir obtenir, à l'issue du procédé selon l'invention, des particules de diamètre moyen en volume inférieur à 30 μπι.
L'étape de dépolymérisation selon le procédé de l'invention est réalisée par malaxage d'un mélange comprenant le polyester et 0,1 à 20% en poids, de préférence de 1 à 15% en poids, d'un composé choisi parmi les alcools, de préférence les polyols, et/ ou les acides carboxyliques, sur le poids total du mélange.
L'étape de dépolymérisation est réalisée à une température comprise dans la gamme : - dans le cas d'un polyester semicristallin, à une température comprise dans la gamme de Tf à Tf+150°C, et de préférence de Tf à Tf+100°C, Tf étant la température de fusion du polyester, mesurée selon la méthode DSC de la norme ISO 11357 ;
- dans le cas d'un polyester amorphe, à une température comprise dans la gamme de Tg à Td, de préférence de Tg+50°C à 300°C, Tg étant la température de transition vitreuse du polyester, mesurée selon la méthode DSC de la norme ISO 11357, Td étant la température de décomposition du polyester mesurée en analyse thermogravimétrique sous azote et correspondant à la température pour laquelle la perte de masse du polyester est supérieure à 50%, sous une augmentation de température de 10°C par minute.
De préférence, la température du malaxage est comprise dans la gamme de 200 à 260°C dans le cas d'un polyester semicristallin, et de 100°C à 300°C dans le cas d'un polymère amorphe.
Le malaxage est effectué pendant une durée suffisante pour que la viscosité inhérente du polyester malaxé soit inférieure à 0,5 dl/ g.
Par alcool, on entend au sens de l'invention un composé de type alkyle linéaire ou ramifié, saturé ou insaturé portant au moins une fonction -OH, tel que l'éthanol, le méthanol, le n-butanol, l'heptanol (issu du ricin), et de préférence bioressourcé.
De préférence, l'alcool est un polyol, c'est-à-dire un composé de type alkyle, linéaire ramifié ou cyclique, saturé ou insaturé portant au moins deux fonctions -OH sur la chaîne alkyle, ainsi que les polymères (polyéthers) de ces composés alkyles polyhydroxylés. De préférence, il s'agit d'un composé alkyle ayant de 2 à 12 atomes de carbone, et encore plus préférentiellement de 2 à 8 atomes de carbone. Avantageusement, ce composé alkyle comporte 2 ou 3 atomes de carbone. Les polyols ont une température d'ébullition plus élevée que les mono-alcools et peuvent être utilisés dans les dispositifs d'extrusion, ils ont pour avantage de ne pas nécessiter de travailler à basse température sous pression (autoclave). De plus, ce sont des ingrédients classiques des cosmétiques.
Les polyols utilisés selon l'invention sont choisi(s) notamment parmi : le glycérol, l'éthylène glycol, le propylène glycol, le butanediol, l'hexaglycérol, le dipropylène glycol, l'isosorbide, le sorbitol, les polymères les comprenant, et leurs mélanges. Parmi les polyols utilisables selon l'invention, on peut citer également : le l'hexylène glycol, le butylène glycol, le pentylène glycol, le butyldiglycol, le 1,2,3-trihydroxyhexane, et leurs mélanges.
De préférence, lesdits polyols sont choisis parmi le glycérol, le sorbitol, et leurs mélanges.
Par acide carboxylique, on entend un composé linéaire, ramifié ou cyclique, saturé ou insaturé, en C4-C50, comprenant au moins une fonction acide. Par polyacide carboxylique, on entend un composé linéaire, ramifié ou cyclique, saturé ou insaturé, en C4-C50, comprenant au moins deux fonctions acides.
De préférence, les acides carboxyliques sont choisis parmi les hydroxyacides, tels que l'acide glycolique, l'acide lactique, l'acide 3-hydroxypropionique, l'acide 4-hydroxybutyrique, l'acide 3-hydroxyisovalérique, l'acide citrique, et leurs mélanges.
De préférence, ledit composé utilisé dans le procédé de l'invention est choisi parmi le glycérol, le sorbitol, l'acide lactique, et leurs mélanges. Ledit composé est avantageusement un mélange de glycérol et d'acide lactique, en quantité massique sensiblement égale de préférence.
De préférence, ledit composé est issu de ressources renouvelables et produit si possible selon les principes de la chimie verte, connus de l'homme du métier. Ledit composé doit en outre être stable thermiquement dans les conditions du malaxage et du broyage du procédé. Il est de préférence choisi parmi les produits ayant un nom INCI (International Nomenclature Cosmetic Ingrédient) pouvant entrer dans la composition de cosmétiques. Le nom INCI est attribué par le Personal Care Products Council. Les noms INCI sont publiés dans l'International Cosmetic Ingrédient Dictionary and Handbook et doivent être utilisés pour établir la liste des ingrédients indiqués sur les emballages des produits cosmétiques aux Etats-Unis, dans l'Union Européenne et d'autres pays.
Comme dispositif pour cette étape de dépolymérisation, on peut utiliser tout dispositif de mélangeage, de malaxage ou d' extrusion des matières plastiques à l'état fondu connu de l'homme du métier. A titre d'exemples on peut citer les mélangeurs internes, les mélangeurs à cylindre, les extrudeuses monovis, bi-vis contra ou corotatives, les comalaxeurs continus, ou les réacteurs agités. Le dispositif de malaxage peut être l'un des outils cités ci-dessus ou leur association, comme par exemple un comalaxeur associé à une monovis de reprise, une bi-vis corotative associée à une pompe à engrenage, un réacteur relié à une extrudeuse, etc. L'outil d' extrusion est en général configuré de manière à identifier une zone de fusion du polymère, une zone de mélange et réaction entre les espèces présentes et une zone de détente/ dégazage pour éliminer les composés volatils. Ces différentes zones peuvent être matérialisées par la configuration de la vis de l'outil, l'utilisation de zone de restriction ou l'accouplement d'outils entre eux. Le dispositif peut en outre être équipé d'un système de filtration, de préférence continu et d'un système de granulation à joncs ou sous eau adapté à la rhéologie du polyester aliphatique par sa géométrie et ses caractéristiques thermiques ou d'un système de pulvérisation du polymère fondu, tel que le spray cooling. A titre d'exemple, on peut citer l'extrudeuse WERNER 30 ou Coperion ZSK30. De manière alternative, on peut utiliser tout malaxeur adapté, tel qu'un malaxeur Brabender ou Plastograph W50EHT, composé d'un moteur, d'une chambre de malaxage, de deux rotors tournant en sens inverse à des vitesses différentes pour assurer le malaxage du matériau à l'état fondu, d'un thermocouple, et d'une acquisition de données.
De préférence, l'étape de malaxage du procédé selon l'invention est réalisée dans une extrudeuse bivis corotative engrenante. En effet, c'est un procédé continu qui permet une productivité plus importante qu'en procédé batch. De plus, les temps de séjour étant plus faibles dans une extrudeuse que dans les mélangeurs (par exemple de type Brabender), les produits sont moins soumis à la thermo-oxydation, et en particulier risquent moins de subir un jaunissement.
Dans la présente invention, et notamment dans les exemples ci-après, la viscosité inhérente du polyester est mesurée à une concentration en polyester de 0,5% en poids en solution dans du métacrésol sur le poids total de la solution, à 20°C, au moyen d'un viscosimètre Ubbelohde.
La viscosité inhérente du polyester après malaxage est inférieure à 0,5 dl/ g, de préférence inférieure à 0,4 dl/ g, de préférence inférieure à 0,3 dl/ g, de préférence comprise dans la gamme de 0,10 à 0,30 dl/ g, de préférence de 0,15 à 0,25 dl/ g, ou mieux sensiblement égale à 0,2 dl/ g.
Selon le procédé de l'invention, l'étape de malaxage est donc maintenue pendant une durée suffisante pour que la viscosité inhérente du polyester malaxé soit inférieure à 0,5, de préférence suffisante pour que la viscosité soit comprise dans la gamme allant de 0,10 à 0,30, ou mieux de 0,15 à 0,25.
Une durée de malaxage de 30 à 1800 secondes est généralement suffisante. De préférence, la durée de l'étape de malaxage est comprise dans la gamme de 30 secondes à 20 minutes, de préférence de 30 secondes à 15 minutes. La durée de malaxage dépend du polyester de départ, du taux de polyol(s) et/ ou d'acide(s) carboxylique(s), des mélanges, de la température et de l'outil de malaxage utilisés. Selon un mode de réalisation du procédé de l'invention, ledit mélange lors de l'étape de malaxage, comprend en outre de 0,005 à 0,2% en poids de catalyseur comprenant au moins un élément du groupe IVB ou IV A, tel que Ti, Zr, Sn.
Selon un autre mode de réalisation du procédé de l'invention, ledit mélange peut être aussi réalisé en présence d'additifs permettant de modifier les caractéristiques des poudres, tels que des plastifiants (moins de 20% en poids sur le poids du mélange), des agents nucléants (moins de 5%), des cires (moins de 50%), des charges (moins de 50%), des stabilisants (moins de 5%), des composés organiques, ou des oligomères (moins de 50%), notamment des silicones, des polyoléfines, des polymères fluorés, tels que le PVDF, de préférence de viscosité inhérente inférieure à 0.5.
Avantageusement, les différentes étapes du procédé de l'invention ne font pas intervenir de solvant.
Après ladite étape de malaxage, le procédé de l'invention peut éventuellement comprendre :
- une étape optionnelle intermédiaire de « cristallisation » pour développer la cristallinité dudit polyester pour faciliter encore son broyage ultérieur ; et/ ou
- une étape intermédiaire de séchage afin de régler la quantité d'agent(s) imprégnant(s) organique(s), notamment la quantité d'additif(s) ou de composé(s), qui correspond(ent) préférentiellement au(x) composé(s) utilisé(s) dans l'étape de dépolymérisation : alcool, notamment polyol, et/ ou acide.
L'étape de cristallisation est réalisée en chauffant le polymère à une température comprise entre sa Tg et avant le début de la fusion du polymère observée en DSC selon la norme ISOH357. Tout type de dispositif approprié pour développer la cristallinité d'un polyester peut être utilisé, tel qu'un sécheur, un réacteur, etc. L'étape de séchage est réalisée en chauffant le polymère à une température comprise entre sa Tg et le début de la fusion du polymère observée en DSC selon la norme ISOH357 à pression atmosphérique, ou sous vide. Tout type de dispositif approprié pour sécher un polymère peut être utilisé, tel qu'un sécheur, un réacteur, une étuve, un lit fluidisé, etc.
Après l'étape préalable optionnelle de malaxage (et éventuellement de cristallisation), le procédé de l'invention comprend une étape de broyage du polyester aliphatique de viscosité inhérente inférieure à 0,5 dl/g de sorte qu'on obtient une poudre fine de polyester aliphatique, la poudre ainsi obtenue étant de diamètre médian (d50) en volume inférieur à 30 μιη. La poudre ainsi obtenue est éventuellement imprégnée de composé tel que défini ci-dessus dans le cas où une étape de malaxage a été effectuée avant le broyage.
Dans la présente invention et la présente description, les diamètres moyens (en volume) sont déterminés à partir de la distribution granulométrique mesurée à l'aide d'un granulomètre de marque Coulter Multisizer 3 ou Coulter (R) LS230, version 2.11a du logiciel, et selon la norme ISO 13319. Avantageusement, l'étape de broyage selon l'invention est réalisée à température ambiante (c'est-à-dire entre 15°C et 25°C environ).
Le broyage permet d'obtenir des particules de poudre fines de forme irrégulière arrondie et permet d'éviter la formation d'arêtes vives à la surface des particules de poudre, ce qui a une influence sur les propriétés sensorielles, en particulier de toucher, de la poudre obtenue.
Le dispositif de broyage utilisé dans le procédé de l'invention peut être de tout type approprié pour la fabrication de poudres.
Selon un mode de réalisation préféré de l'invention, le broyage est effectué uniquement par chocs entre les grains de polyester malaxé, de préférence au moyen d'un broyeur à jets d'air opposés, grâce à deux buses opposées alimentées par de l'air comprimé, généralement à une pression de 6 à 9 bar, de préférence à 7 bar (7.105 Pa). L'air utilisé de préférence est filtré et séché, donc il n'apporte pas de contaminant. Bien entendu, tout autre gaz approprié pourrait remplacer l'air alimentant les buses. Le polymère est véhiculé et emporté directement par l'air qui sort des buses. Sous l'effet des jets d'air opposés, les particules de polymère entrent en collision l'une contre l'autre, ce qui réduit leur granulométrie et conduit à leur forme finale caractéristique irrégulière et sans arête vive. Les dimensions du système de broyage et les débits d'entrée de gaz utilisés sont adaptés pour obtenir une bonne fluidisation et la granulométrie désirée. A titre d'exemple, la puissance consommée pour le broyage est d'environ 1 à 2 kW.h/kg de poudre.
Ce type de broyeur est couramment utilisé et largement répandu dans l'industrie des polymères. Le broyeur à jets d'air opposés est particulièrement bien adapté pour la fabrication de poudres très fines et présentant des courbes de distribution de granulométrie étroites. En effet, comparés à la vitesse relative des broyeurs mécaniques (broyeurs à impact: jusqu'à 140 m/ s, broyeurs contra-rotatifs: jusqu'à 250 m/ s), les broyeurs à jets d'air opposés utilisés dans le procédé de l'invention permettent des vitesses relatives de broyage beaucoup plus élevées, supérieures à 400 m/ s.
De manière avantageuse, le broyeur à jets d'air opposés comporte un classificateur ou sélecteur intégré, capable de régler directement la vitesse de broyage pour obtenir la granulométrie désirée, à la différence d'autres systèmes qui nécessitent généralement de prévoir l'adjonction en série d'un dispositif de réglage annexe. Le sélecteur renvoie les particules de diamètre non conforme au système d'alimentation de la chambre de broyage tandis que les particules de granulométrie conforme au réglage sont collectées dans un filtre à air. La poudre peut être collectée directement au pied de ce filtre, en sac par exemple. Les seuls réglages à faire selon le procédé de l'invention sont la vitesse de broyage pour obtenir la granulométrie désirée, et le débit d'alimentation pour maintenir une certaine quantité de produit constante dans la chambre de broyage. La vitesse de broyage peut être réglée directement au niveau du sélecteur et les transitions pour changer la granulométrie de la poudre au cours du procédé de l'invention sont extrêmement rapides. L'utilisation d'un tel broyeur à jets d'air opposés améliore la productivité du procédé de l'invention.
De manière avantageuse, la granulométrie finale de la poudre de polyester est réglée directement en ajustant la vitesse de broyage du procédé. De préférence, l'ajustement de la vitesse de broyage est fait au moyen d'un sélecteur intégré au broyeur.
Après l'étape de broyage, le procédé de l'invention peut éventuellement comprendre en outre une étape optionnelle de cristallisation et/ ou de séchage, de la poudre obtenue par broyage.
L'étape optionnelle de séchage permet de contrôler précisément la teneur (pourcentage en poids) en composé imprégné dans la poudre obtenue ainsi que les propriétés de la poudre, en particulier sa prise d'huile.
Par composé imprégné au sens de l'invention, on entend le résultat du mélange dans le fondu dudit composé avec le polyester lors de l'étape de dépolymérisation. Le composé se trouve en fait « imprégné » dans la matrice même du polymère, notamment au cœur de la particule de poudre obtenue selon le procédé de l'invention.
Le séchage entraîne une augmentation de la cristallinité de la poudre obtenue. A l'inverse, la cristallisation, par exemple aux températures proches de la Tg n'entraîne pas forcément de perte de masse (c'est-à-dire pas de perte en composé imprégné).
L'intérêt d'une cristallisation intermédiaire ou d'un séchage intermédiaire, c'est-à-dire avant broyage, est de faciliter l'étape de broyage, et d'obtenir un diamètre médian encore inférieur, par exemple inférieur à 20 μιτι, voire inférieur à 10 μιη. L'intérêt d'un séchage après broyage est de moduler les propriétés de la poudre obtenue, telles que son taux d'imprégnation en composé, ses propriétés d'absorption d'huile, et d'absorption d'eau.
L'intérêt d'une cristallisation après broyage est de moduler les propriétés de la poudre, notamment de résistance chimique, de prise d'huile, ses propriétés mécaniques, par exemple son pouvoir de compaction ; sans pour autant modifier son taux d'imprégnation.
Pour augmenter le taux de cristallinité du polyester sans modifier son taux d'imprégnation, on réalise l'étape de cristallisation à une température comprise entre la Tg température de transition vitreuse et la Te température de cristallisation du polyester, et non sous vide.
Avantageusement, le taux d'imprégnation de la poudre , et les propriétés d'absorption d'huile de la poudre sont réglées lors de la dépolymérisation et / ou lors du séchage du polyester.
La présente invention a également pour objet une poudre de polyester aliphatique bioressourcée susceptible d'être obtenue selon le procédé de l'invention tel que décrit précédemment, dans laquelle les particules sont de diamètre médian en volume inférieur à 30 μιτι, et sont imprégnées, de préférence de 0,1 à 20% sur le poids de la poudre, d'un composé choisi parmi la alcools (de préférence les polyols) et/ou les acides carboxyliques, notamment hydroxyacides.
Ce « taux d'imprégnation » correspond au résultat du dosage du composé dans la poudre. Cette mesure du « taux d'imprégnation » est un moyen de déterminer la teneur de composé qui se trouve au cœur de la matrice polymérique de la poudre, et est aisément mesurée par ATG (Analyse thermogravimétrique) sous azote, au moyen d'un appareil TG209F1 Netszsch par exemple. De manière avantageuse, les particules de poudre selon l'invention sont de diamètre médian en volume inférieur à 20 μιη, de préférence inférieur à 10 μιη.
Avantageusement, la prise d'huile (mesurée selon la norme DIN ISO 787-5) de la poudre selon l'invention est comprise dans la gamme de 0,5 à 1 g/g de poudre.
Avantageusement, la poudre selon l'invention répond aux directives de la charte cosmébio.
La présente invention a également pour objet l'utilisation de poudre selon l'invention pour la fabrication de compositions ou produits cosmétiques, pharmaceutiques ou de parfumerie.
Un produit comprenant la poudre selon l'invention est notamment un produit coloré, non coloré ou transparent choisi parmi les produits suivants :
- produits de maquillage pour le visage et le corps humain, tels que fond de teint, crème teintée, poudre libre ou compacte, fard à paupières, mascara, eye liner, rouge à lèvre ;
- produits de soins pour le visage et le corps humain, tels que crème, lait, lotion, masque, produit de gommage, produits nettoyants et/ ou démaquillants, déodorants, antitranspirants, antiperspirants, produits de rasage, produits d'épilation ;
- produits capillaires, tels que shampooings, produits pour la mise en forme des cheveux, produits de maintien de la coiffure, produits antipelliculaires, produits antichute, produits contre la sécheresse des cheveux, teintures capillaires, produits de décoloration ;
- produits de parfumerie, tels que parfum, lait, crème, poudre libre ou compacte parfumée.
Exemples : Les polyesters aliphatiques utilisés ici sont des polyacides lactiques (PLA) dont les caractéristiques sont données dans le tableau 1.
Ces PLA de viscosité supérieure à 0,5 dl/g ne sont pas broyables directement en poudres de diamètre médian en volume inférieur à 30 μιη.
Des PLA ont été dépolymérisés de façon à présenter une viscosité inhérente de 0,5 dl/ , mais n'ont pas permis non plus d'obtenir par broyage simple (sans étape de séchage) des poudres de diamètre médian en volume inférieur à 30 μπι.
Les exemples ci-après, réalisés selon le procédé de l'invention, montrent qu'avec une viscosité inhérente inférieure à (en dessous de) 0,5 dl/ g, les mêmes polyesters deviennent broyables en poudres fines.
Tableau 1
Figure imgf000018_0001
1) Etape de malaxage :
Malaxage en extrudeuse :
Les essais 1 à 10 sont conduits dans une extrudeuse Coperion ZSK30, à une vitesse de vis de 300 rpm, et un débit de 15 Kg/ h. On récupère le produit malaxé à la sortie de la filière, au moyen d'un laminoir, qui refroidit le produit et le concasse en granulés ou "chips" de polymère de taille de l'ordre du millimètre, facilement manipulables. Bien entendu, tout autre dispositif, par exemple de spray cooling, peut être employé pour fabriquer des granulés à partir du produit malaxé.
A la suite de cette étape, les échantillons obtenus sont analysés pour connaître leur viscosité inhérente. Le tableau suivant indique la viscosité inhérente obtenue en faisant varier la température, la nature du PLA, et la teneur en alcool lors de l'étape de malaxage.
Tableau 2
Figure imgf000019_0001
* mélange : Acide lactique / Glycérol (50/50)
Une viscosité inférieure à 0,5, et même inférieure à 0,30 est obtenue sur la plupart des produits malaxés.
Les essais n°l permettent d'observer l'influence de la température sur la dégradation. Pour un temps de malaxage égal, plus la température de malaxage est élevée, plus la dépolymérisation est importante, et la viscosité du PLA diminue. La quantité de composé (glycérol) introduite joue aussi sur la dépolymérisation du polymère. Plus la quantité de glycérol est grande, plus la viscosité du PLA diminue.
Les essais de reproductibilité (essais n°2) montrent des résultats reproductibles (écart type = 0,03).
En comparant l'effet du glycérol avec l'effet du mélange acide lactique / glycérol sur la dépolymérisation en extrudeuse, on remarque que le glycérol seul permet une meilleure diminution de la viscosité du polymère (essais 2 comparés à l'essai 3) lors du malaxage. Les tests effectués sur le PLA 2002 D et le 4060 D (essais 4 et 5) montrent, que dans les mêmes conditions, ces polyesters aliphatiques se dégradent plus, leur viscosité obtenue après malaxage étant inférieure, par rapport au PLA PLE 005 (essai 3). De plus, le procédé selon l'invention permet de dépolymériser et de broyer aussi bien un polyester amorphe qu'un polyester semi-cristallin.
Les conditions de température et la quantité de composé utilisées dans le procédé de l'invention permettent d'arriver rapidement à la viscosité voulue (c'est-à-dire une viscosité inférieure à 0,50, voire inférieure à 0,3), tout en évitant une thermo-oxydation importante (à l'origine du jaunissement du polyester) pouvant être engendrée par des températures trop élevées.
2) Etape de broyage des échantillons dépolymérisés.
Le produit est introduit dans le broyeur grâce à un tube à jet d'air à effet Venturi. Dans la chambre de broyage, le produit est soumis à un violent et rapide effet de turbulence d'air comprimé à 7 bars provoqué par l'anneau de distribution percé de trous tangentiels (effets Vortex). Le broyage se fait uniquement par chocs entre les grains du produit.
La buse d'alimentation venturi du broyeur ayant ici un diamètre de 2,5 mm ; si le polyester obtenu après dépolymérisation ou si le polyester de viscosité inhérente inférieure à 0,5 dl/g n'est pas sous forme de granulés ou chips de l'ordre du millimètre, avant de broyer le polyester avec l'air Jet Mill, il est préférable de le concasser, après solidification (refroidissement) si nécessaire, par exemple à l'aide d'un broyeur Retch équipé d'une grille de 2 mm. De manière alternative, on pourrait utiliser tout dispositif, notamment de spray cooling pour fabriquer des granulés ou de la poudre grossière de 1 millimètre environ.
Une fois les produits broyés selon le procédé de l'invention, la granulométrie est évaluée avec le granulomètre Coulter Multisizer 3. Le comptage des particules une à une et leur détection volumétrique sont obtenus par le principe Coulter. Cette technique est basée sur une mesure de la variation de résistance induite par le passage à travers un orifice calibré de particules en suspension dans un électrolyte. Chaque particule isolante traversant l'orifice de détection déplace un volume d'électrolyte égal à son propre volume et provoque une diminution du volume d'électrolyte présent dans l'orifice. Cette diminution provoque une augmentation brutale de la résistance électrique. La variation de résistance est proportionnelle au volume d'électrolyte déplacé et, par conséquent, au volume de la particule. Les variations de résistance sont transformées en impulsions de tension dont la hauteur est proportionnelle au volume de la particule. Ces impulsions sont amplifiées et classées en fonction de leur hauteur dans les différents canaux de l'analyseur.
Définition des paramètres statistiques mesurés :
Figure imgf000021_0001
Cas A : Les échantillons (ici n° 401 et 405) sont broyés directement, c'est-à-dire sans étape de cristallisation ou séchage intermédiaire.
Les résultats de granulométrie présentés dans le tableau 3 suivant montrent que les échantillons de polyester aliphatique, issus de l'étape de malaxage selon l'invention, sont bien broyables en particules de diamètre médian inférieur à 30 μιτι.
Tableau 3
401 405
Mean: 25,0 μιη 27,0 μιη
Médian: 25,6 μιη 27,8 μιη
Mode: 30,3 μιη 45,4 μιη
C.V.: 61,4 % 60,3 % Cas B : : Les échantillons sont broyés après une étape de séchage intermédiaire.
Ce mode de réalisation du procédé de l'invention montre l'influence de l'étape de séchage intermédiaire, entre l'étape de malaxage et l'étape de broyage, sur la granulométrie des poudres obtenues après broyage.
Le séchage est réalisé par étuvage des polymères malaxés à une température de 100°C, pendant 24 heures, sous vide.
Les polymères malaxés et séchés sont ensuite broyés.
Les résultats de granulométrie mesurés sur plusieurs échantillons broyés à partir de polymères de viscosités différentes (tableau 1) puis séchés, sont représentés dans le tableau 4 suivant.
Tableau 4
Figure imgf000022_0001
Si on compare les essais 401 et 405 ayant subi une étape de séchage avant le broyage (cas 2) avec les essais n'ayant pas subi de séchage avant broyage (cas 1), on remarque que l'étuvage permet de diminuer encore la taille de particule de polyester, qui est passée d'une moyenne de 26 μιτι (sans étuvage) à 8 μιτι (avec étuvage).
Des mesures DSC, résumées dans le tableau 5 sont réalisées selon la norme ISO 11357, en utilisant l'appareil DSC TA Q2000 refroidissement Intracooler, avec les paramètres : V. Equilibrate at -20.00 °C, 2: Ramp 20.00 °C/min to 240.00 °C, 3: Ramp 20.00 °C/min to -20.00 °C, et 4: Ramp 20.00 °C/min to 240.00 °C. Tableau 5
Figure imgf000023_0001
L'enthalpie de fusion étant reliée au taux de cristallinité du polyester (plus l'enthalpie de fusion augmente, plus la cristallinité augmente), les données du tableau 5 montrent que le séchage à 100°C de l'essai 397 entraîne la cristallisation du PLA ainsi que l'élimination partielle du glycérol.
D'autres essais ont montré qu'il était possible de cristalliser à 60°C et sans vide, sans pour autant entraîner de « séchage », c'est-à-dire sans élimination du glycérol.
Sans vouloir être liés par une théorie, les inventeurs estiment que l'augmentation de la cristallinité des polyesters pourrait agir sur leur broyabilité, c'est-à-dire leur capacité à être broyés en particules les plus fines possibles.
Le procédé de l'invention permet de broyer du PLA pour obtenir des particules de poudre de PLA de diamètre médian en volume inférieur à 30 μπι, voire inférieur à 20 μιτι, et même inférieur à 10 μιτι, comme dans le cas des essais 401, 404 et 405.
Le tableau 6 suivant indique le taux d'imprégnation en composé (glycérol ou mélange glycérol/ acide lactique) mesuré sur des poudres obtenues selon le procédé de l'invention, par la perte de masse à 290°C par analyse thermogravimétrique (ATG), sous azote, en augmentant la température de 10°C par minute, au moyen d'un appareil TG 209F1 Netzsch : Tableau 6
Figure imgf000024_0001
On vérifie qu'il y a une corrélation entre la teneur en composé ajouté lors de l'étape de malaxage et le taux d'imprégnation en glycérol des poudres obtenues selon le procédé de l'invention.
Des mesures de prise d'huile suivant la norme NF ISO 787-5 ont été faites (échantillons obtenus selon le procédé de l'invention avec séchage intermédiaire, cas B) :
La prise d'huile (g/g) de l'essai 400 est de 0,55 g/g.
La prise d'huile (g/g) de l'essai 405 est de 0,80 g/g.
Les poudres fines bio-ressourcées selon l'invention présentent l'avantage de se disperser aussi bien dans les phases huileuses que dans les phases aqueuses. La formulation de cosmétiques avec ces poudres est donc facilitée.

Claims

Revendications
1- Procédé de fabrication de poudre de polyester aliphatique bioressourcé de diamètre médian en volume inférieur à 30 μιη selon la norme ISO 13319, comprenant :
a - une étape de fourniture d'un polyester aliphatique de viscosité inhérente inférieure à 0,5 dl/g mesurée à une concentration en polyester de 0,5% en poids en solution dans du métacrésol sur le poids total de la solution, à 20°C, au moyen d'un viscosimètre Ubbelohde ;
b - une étape de broyage dudit polyester de sorte qu'on obtient une poudre de polyester de diamètre médian en volume inférieur à 30 μιη.
2- Procédé selon la revendication 1, dans lequel l'étape a comprend :
- une étape de dépolymérisation d'un polyester aliphatique de Mn supérieure à 30000 g/ mol pour obtenir un polyester aliphatique de viscosité inhérente (vinh) inférieure à 0,5 dl/ g.
3- Procédé selon la revendication 2, dans lequel l'étape de dépolymérisation est réalisée par malaxage d'un mélange comprenant le polyester et 0,1 à 20% en poids d'un composé choisi parmi les alcools, de préférence les polyols, et/ ou les acides carboxyliques, sur le poids total du mélange,
ledit mélange étant soumis :
- dans le cas d'un polyester semicristallin, à une température comprise dans la gamme de Tf à Tf+150°C, Tf étant la température de fusion du polyester, mesurée selon la méthode DSC de la norme ISO 11357 ;
- dans le cas d'un polyester amorphe, à une température comprise dans la gamme de Tg à Td, de préférence de Tg+50°C à 300°C, Tg étant la température de transition vitreuse du polyester, mesurée selon la méthode DSC de la norme ISO 11357, Td étant la température de décomposition du polyester mesurée par analyse thermogravimétrique et correspondant à la température pour laquelle la perte de masse du polyester est supérieure à 50%, sous azote et sous une augmentation de température de 10°C par minute ;
et le malaxage étant effectué pendant une durée suffisante pour que la viscosité inhérente du polyester malaxé soit inférieure à 0,5 dl/ g.
4- Procédé selon la revendication 3, dans lequel l'étape de malaxage est effectuée pendant une durée suffisante pour que le polyester présente une viscosité inhérente comprise dans la gamme allant de 0,10 à 0,30 dl/g, de préférence de 0,15 à 0,25 dl/g.
5- Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend une étape i de cristallisation et / ou de séchage dudit polyester, ladite étape étant intermédiaire entre l'étape a et l'étape b et/ ou réalisée après l'étape b.
6- Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le polyester aliphatique bioressourcé est choisi parmi :
- les PLA : polyacide lactique obtenus par polycondensation de l'acide lactique ou par ouverture de cycle des lactides (différents isomères) dont les stéréocomplexes poly(D-lactic acid) et poly(L-lactic acid) obtenus par mélange ou sous forme de polymères à blocs ;
- les copolymères de PLA avec l'acide glycolique (ou le glycolide) ;
- les acides poly(hydroxycarboxyliques) comprenant des unités polymérisées d'un ou de plusieurs acides hydroxycarboxyliques choisis parmi : l'acide 6-hydroxyhexanoïque, l'acide 3-hydroxyhexanoïque, l'acide 4-hydroxyhexanoïque, l'acide 3-hydroxyheptanoïque, l'acide 3- hydroxyprop ionique, l'acide 2-hydroxybutyrique, l'acide 3- hydroxybutyrique, l'acide 4-hydroxybutyrique, l'acide 3- hydroxyvalérique, l'acide 4-hydroxyvalérique, l'acide 5- hydroxyvalérique ;
- le poly(s-caprolactone) ;
- les polyesters aliphatiques obtenus par polycondensation de diols et de diacides tels que le poly(butylène adipate) et le poly(butylène adipate-co-succinate) ;
et leurs mélanges.
7- Procédé selon l'une quelconque des revendications 3 à 6, dans lequel lesdits alcools sont choisis parmi : le glycérol, l'éthylène glycol, le propylène glycol, le butanediol, l'hexaglycérol, le dipropylène glycol, l'isosorbide, le sorbitol, les polymères les comprenant, l'hexylène glycol, le butylène glycol, le pentylène glycol, le butyldiglycol, le 1,2,3- trihydroxyhexane, et leurs mélanges ;
et/ ou les acides carboxyliques sont choisis parmi les hydroxy acides, tels que l'acide glycolique, l'acide lactique, l'acide 3- hydroxyprop ionique, l'acide 4-hydroxybutyrique, l'acide 3- hydroxyisovalérique, l'acide citrique, et leurs mélanges.
8- Procédé selon l'une quelconque des revendications 3 à 7, caractérisé en ce que ledit composé est choisi parmi le glycérol, le sorbitol, l'acide lactique, et leurs mélanges.
9- Procédé selon l'une quelconque des revendications 1 à 8, dans lequel le broyage est effectué au moyen d'un broyeur à jets d'air opposés. 10- Procédé selon l'une quelconque des revendications 3 à 9, caractérisé en ce que ledit mélange lors de l'étape de malaxage comprend en outre de 0,005 à 0,2% en poids de catalyseur comprenant au moins un élément du groupe IVB et IV A, tel que Ti, Zr, Sn.
11- Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que ses étapes ne font pas intervenir de solvant.
12- Poudre de polyester aliphatique bioressourcée et biodégradable susceptible d'être obtenue selon le procédé de l'une quelconque des revendications 1 à 11, dans laquelle les particules sont de diamètre médian en volume inférieur à 30 μιτι, et sont imprégnées d'un composé choisi parmi les polyols et/ ou les acides carboxyliques.
13- Poudre selon la revendication 12, caractérisée en ce que les particules sont de diamètre médian en volume inférieur à 20 μιτι, de préférence inférieur à 10 μιη. 14- Poudre selon la revendication 12 ou 13, caractérisée en ce que sa prise d'huile mesurée selon la norme DIN ISO 787-5 est comprise dans la gamme de 0,5 à 1 g/ g de poudre.
15- Utilisation de poudre selon l'une quelconque des revendications 12 à 14 pour la fabrication de produits cosmétiques, pharmaceutiques ou de parfumerie.
PCT/FR2012/050130 2011-01-20 2012-01-20 Poudre fine de polyester aliphatique bioressource et procede de fabrication d'une telle poudre WO2012098340A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013549870A JP5961190B2 (ja) 2011-01-20 2012-01-20 バイオ起源の脂肪族ポリエステルの微粉末と、その製造方法
MX2013008402A MX346803B (es) 2011-01-20 2012-01-20 Polvo fino de poliester alifatico de origen biologico y su metodo de preparacion.
EP12705350.2A EP2665765A1 (fr) 2011-01-20 2012-01-20 Poudre fine de polyester aliphatique bioressource et procede de fabrication d'une telle poudre
CN201280005845.9A CN103328545B (zh) 2011-01-20 2012-01-20 生物来源的脂肪族聚酯的细粉和其制造方法
KR1020137021812A KR101966617B1 (ko) 2011-01-20 2012-01-20 생원천의 지방족 폴리에스테르의 미세 분말 및 그의 제조 방법
US13/980,073 US8802814B2 (en) 2011-01-20 2012-01-20 Fine powder of biosourced aliphatic polyester and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1150438A FR2970713B1 (fr) 2011-01-20 2011-01-20 Poudre fine de polyester aliphatique bioressource et procede de fabrication d'une telle poudre
FR1150438 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012098340A1 true WO2012098340A1 (fr) 2012-07-26

Family

ID=44245689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050130 WO2012098340A1 (fr) 2011-01-20 2012-01-20 Poudre fine de polyester aliphatique bioressource et procede de fabrication d'une telle poudre

Country Status (8)

Country Link
US (1) US8802814B2 (fr)
EP (1) EP2665765A1 (fr)
JP (1) JP5961190B2 (fr)
KR (1) KR101966617B1 (fr)
CN (1) CN103328545B (fr)
FR (1) FR2970713B1 (fr)
MX (1) MX346803B (fr)
WO (1) WO2012098340A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102152A (ja) * 2014-11-28 2016-06-02 東レ株式会社 ポリマー微粒子
CN110267910A (zh) * 2016-12-14 2019-09-20 阿科玛法国公司 包含无定形嵌段的纳米结构化嵌段共聚物膜

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2848861B1 (fr) 2002-12-24 2005-09-30 Ela Medical Sa Dispositif medical actif, notamment dispositif implantable tel que stimulateur cardiaque, defibrillateur, cardioverteur ou dispositif multisite, comprenant des moyens de detection des troubles du sommeil
US11278488B2 (en) * 2016-05-10 2022-03-22 Sumitomo Seika Chemicals Co., Ltd. Cosmetic
JP2019137855A (ja) * 2018-02-14 2019-08-22 株式会社リコー 粒子の製造方法及びその製造装置、粒子及び組成物、並びに、粒子分散液及びその製造方法
WO2019159988A1 (fr) * 2018-02-14 2019-08-22 Ricoh Company, Ltd. Procédé et appareil de production de particules, particules, composition, liquide de dispersion de particules, et procédé de production du liquide de dispersion de particules
KR102519456B1 (ko) 2018-03-15 2023-04-06 주식회사 엘지화학 미생물을 이용한 폴리(3-하이드록시프로피오네이트-b-락테이트) 블록공중합체

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030176633A1 (en) 2002-03-18 2003-09-18 The Procter & Gamble Company Grinding process for plastic material and compositions therefrom
US20040118007A1 (en) * 2002-12-19 2004-06-24 Acusphere, Inc. Methods and apparatus for making particles using spray dryer and in-line jet mill
WO2007060470A1 (fr) * 2005-11-28 2007-05-31 Cleansorb Limited Polyesters reductibles en poudre
US20070126159A1 (en) * 2005-11-17 2007-06-07 Degussa Ag Use of polyester powder in a shaping process, and moldings produced from this polyester powder
JP2007197602A (ja) * 2006-01-27 2007-08-09 Asahi Kasei Chemicals Corp 生分解性樹脂粉体及びその製造方法
US20090197780A1 (en) 2008-02-01 2009-08-06 Weaver Jimmie D Ultrafine Grinding of Soft Materials

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241417A (ja) * 1996-03-14 1997-09-16 Dainippon Ink & Chem Inc 乳酸系ポリマーの原料回収方法
JP2008007611A (ja) * 2006-06-29 2008-01-17 Kumamoto Technology & Industry Foundation ポリ乳酸から乳酸、および/または水溶性オリゴマーを回収する方法
FR2927626B1 (fr) * 2008-02-15 2011-02-25 Arkema France Poudre fine de polyamide issu de matieres renouvelables et procede de fabrication d'une telle poudre.
JP2010066491A (ja) * 2008-09-10 2010-03-25 Casio Electronics Co Ltd 電子写真トナー用樹脂及び電子写真トナー
JP2010133994A (ja) * 2008-12-02 2010-06-17 Casio Electronics Co Ltd 電子写真トナー用樹脂及び電子写真トナー

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030176633A1 (en) 2002-03-18 2003-09-18 The Procter & Gamble Company Grinding process for plastic material and compositions therefrom
US20040118007A1 (en) * 2002-12-19 2004-06-24 Acusphere, Inc. Methods and apparatus for making particles using spray dryer and in-line jet mill
US20070126159A1 (en) * 2005-11-17 2007-06-07 Degussa Ag Use of polyester powder in a shaping process, and moldings produced from this polyester powder
WO2007060470A1 (fr) * 2005-11-28 2007-05-31 Cleansorb Limited Polyesters reductibles en poudre
JP2007197602A (ja) * 2006-01-27 2007-08-09 Asahi Kasei Chemicals Corp 生分解性樹脂粉体及びその製造方法
US20090197780A1 (en) 2008-02-01 2009-08-06 Weaver Jimmie D Ultrafine Grinding of Soft Materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200768, Derwent World Patents Index; AN 2007-722311, XP002651548 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102152A (ja) * 2014-11-28 2016-06-02 東レ株式会社 ポリマー微粒子
CN110267910A (zh) * 2016-12-14 2019-09-20 阿科玛法国公司 包含无定形嵌段的纳米结构化嵌段共聚物膜

Also Published As

Publication number Publication date
CN103328545B (zh) 2015-09-02
CN103328545A (zh) 2013-09-25
KR101966617B1 (ko) 2019-04-09
EP2665765A1 (fr) 2013-11-27
KR20140018244A (ko) 2014-02-12
JP5961190B2 (ja) 2016-08-02
FR2970713B1 (fr) 2014-04-25
US20130337025A1 (en) 2013-12-19
JP2014503025A (ja) 2014-02-06
MX2013008402A (es) 2013-10-17
FR2970713A1 (fr) 2012-07-27
MX346803B (es) 2017-03-31
US8802814B2 (en) 2014-08-12

Similar Documents

Publication Publication Date Title
WO2012098340A1 (fr) Poudre fine de polyester aliphatique bioressource et procede de fabrication d'une telle poudre
CA2715133C (fr) Poudre fine de polyamide issu de matieres renouvelables et procede de fabrication d'une telle poudre
TWI412559B (zh) 聚乳酸系樹脂微粒之製造方法、聚乳酸系樹脂微粒及使用其而成之化妝品
JP5093834B2 (ja) 生分解性樹脂粉体及びその製造方法
CN108137822B (zh) 多孔质树脂微粒子及其制造方法
JP2005520901A (ja) プラスチック材料の粉砕方法及びその組成物
JP6901740B2 (ja) ポリ乳酸粒子及びこの製造方法
EP3513779B1 (fr) Composition cosmétique comprenant des particules polymères thermoplastiques biodégradables, utilisation cosmétique de ces particules et procédé de traitement cosmétique
WO2012029448A1 (fr) Particules granulaires de polyester aliphatique et procédé de fabrication
Riedel et al. Production of PBT/PC multi-material particles via a combination of co-grinding and spray-agglomeration for powder bed fusion
CA2029645A1 (fr) Procede de preparation de poudres de polymere thermotrope par extrusion-granulation-broyage, les granules conduisant par broyage a ces poudres fines et coulables obtenues
TW202000788A (zh) 含有顏料之脂肪族聚酯微粒子、其製造方法及化妝品
FR3076744A1 (fr) Procede de fabrication de particules polymeres thermoplastiques biodegradables, et utilisations de ces particules
JP6133384B2 (ja) 寒天乾燥物、及びその製造方法
JP2009084157A (ja) 油脂被覆粉末の製造方法
KR101969723B1 (ko) 용융 전기분사 공정에 의한 생분해성 마이크로비드의 제조방법
JP2010018684A (ja) 複合型微粒子の製造方法
JP2019137855A (ja) 粒子の製造方法及びその製造装置、粒子及び組成物、並びに、粒子分散液及びその製造方法
Gatica et al. Blends of poly (n-vinyl-2-pyrrolidone) and Dihydric phenols: Thermal and infrared spectroscopic studies. part iv
JP2017094565A (ja) 粒状ポリグリコール酸系樹脂組成物の製造方法
CN116490543A (zh) 聚酰胺微粒及其制造方法
WO2024126967A1 (fr) Procede de fabrication de poudre de polyamide pour impression 3d
JP2006232964A (ja) 粉末状ポリグリセリン脂肪酸エステル組成物の製造方法
FR3067031A1 (fr) Procede de melange de polymeres
BE616795A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12705350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012705350

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013549870

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/008402

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137021812

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13980073

Country of ref document: US