WO2012097688A1 - 一种二氧化钒粉体及其制备方法和应用 - Google Patents

一种二氧化钒粉体及其制备方法和应用 Download PDF

Info

Publication number
WO2012097688A1
WO2012097688A1 PCT/CN2012/070026 CN2012070026W WO2012097688A1 WO 2012097688 A1 WO2012097688 A1 WO 2012097688A1 CN 2012070026 W CN2012070026 W CN 2012070026W WO 2012097688 A1 WO2012097688 A1 WO 2012097688A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
vanadium dioxide
dioxide powder
phase
hydrothermal reaction
Prior art date
Application number
PCT/CN2012/070026
Other languages
English (en)
French (fr)
Inventor
高彦峰
戴雷
曹传祥
罗宏杰
金平实
陈长
Original Assignee
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110024231A external-priority patent/CN102115167B/zh
Priority claimed from CN201110108381.1A external-priority patent/CN102757094B/zh
Application filed by 中国科学院上海硅酸盐研究所 filed Critical 中国科学院上海硅酸盐研究所
Publication of WO2012097688A1 publication Critical patent/WO2012097688A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the preparation of vanadium dioxide powder in the chemical field and the material field, in particular to the preparation and application of the phase A vanadium dioxide powder.
  • Vanadium oxide is a complex system of multivalent and polycrystalline phases with more than 10 crystal structures, including B phase, phase A, phase M and R. Equal. At present, the most researched is M/R phase vanadium dioxide with thermochromic properties, which can be widely used in smart window coating, photoelectric switch, thermistor and optical information storage. B Phase vanadium dioxide has also received much attention because it can be used as a negative electrode material for batteries. However, the phase A vanadium dioxide has not caused sufficient attention and attention to those skilled in the art because of its difficulty in preparation.
  • phase A vanadium dioxide of phase A was originally hydrothermally synthesized by the system of V 2 O 3 -V 2 O 5 -H 2 O by Th é obald ( F. Th é obald, J. Less-Common Met., 1977. Vanadium oxide is found in which phase A vanadium dioxide is used as a mesophase in the conversion of phase B vanadium dioxide to phase R vanadium dioxide. Twenty years later, Y. Oka (Y. Oka, J. Solid State Chem., 1998.) first discovered that phase A vanadium dioxide also has phase transition properties, and firstly analyzed the crystal structure changes before and after the phase transition.
  • phase A vanadium dioxide appears as a mesophase, while the mesophase is often unstable, and the study of crystal structure changes before and after the phase transition lasts for 20 years. It can be seen that the research on phase A vanadium dioxide is slow, and the preparation of phase A vanadium dioxide itself is a technical difficulty.
  • phase vanadium dioxide powder reports on vanadium dioxide powder are mostly concentrated on phase B, phase M and phase R vanadium dioxide powders, which have not been reported yet.
  • Phase vanadium dioxide powder The existing M/R phase vanadium dioxide powder is mostly subjected to high-temperature sintering method, and the Chinese patent CN 10164900A discloses a preparation method of doping tungsten vanadium dioxide: first preparation B The vanadium dioxide powder is then heat treated at a high temperature of 350 to 800 ° C to obtain a phase V vanadium dioxide powder.
  • phase A vanadium dioxide has a layered structure similar to phase B vanadium dioxide, so it is speculated that it can also be used in the preparation of electrode materials for batteries like phase B vanadium dioxide (Solid State Ionics, 2003). .;LQ Mai, Nano Lett., 2010. ).
  • Jin et al. synthesized a phase A vanadium dioxide at 270 °C by hydrothermal method, and studied the effect of doping on its reversible phase transition, but phase A is an unstable phase, which is difficult to synthesize.
  • the thermal method has problems such as a relatively high synthesis temperature and a low filling ratio (about 20%) (Journal of the Ceramic Society of Japan 118 [10] 867-871 2010).
  • CN101880060A discloses a process for the rapid preparation of monoclinic phase VO 2 wherein the disclosed phase A vanadium dioxide is also used as a metastable vanadium dioxide intermediate for the preparation of oblique phase VO 2 .
  • phase A vanadium dioxide powder will have broad application prospects while providing a simple preparation A.
  • the method of phase vanadium dioxide powder is also very meaningful.
  • the invention provides a vanadium dioxide powder, wherein the crystal phase is mainly phase A, and the proportion of phase A vanadium dioxide in the powder is 80%. the above.
  • the invention breaks through the inherent knowledge that the phase A vanadium dioxide is often the intermediate phase of other crystal phase transformation, and prepares the vanadium dioxide powder with the crystal phase A phase, the A
  • the phase vanadium dioxide powder can be used in the fields of batteries, catalysis, hydrogen storage and the like.
  • the vanadium dioxide powder is in the form of a rod, a ribbon, a wire, a fiber or a sheet.
  • the aspect ratio of grains is mainly concentrated from 1:1 to 2000:1. Preferably, it is from 100:1 to 2000:1, more preferably from 100:1 to 1000:1.
  • the size of the grains is no more than 1 ⁇ m in at least one dimension, preferably no more than at least one dimension 500 nm, more preferably not more than 500 nm in at least one dimension.
  • the phase A vanadium dioxide may have a diameter of 45 nm to 1 ⁇ m and a length of 1 to 50 ⁇ m phase A vanadium dioxide nanorods.
  • the A The phase vanadium dioxide nanorods are preferably in a single crystal state.
  • the vanadium dioxide powder having the above size and morphology has better ductility, excellent mechanical properties and processability, and is advantageous for use in electrode materials for preparing batteries such as lithium batteries.
  • the proportion of vanadium phase A in the powder can be as high as 80%, or even 100%.
  • the vanadium dioxide powder of the invention also has phase transition properties, and the phase transition temperature is continuously adjustable between 100 and 200 °C.
  • the invention also provides a method for preparing vanadium dioxide powder, wherein the crystal phase of the vanadium dioxide powder is mainly A Phase.
  • the method comprises the step of treating a precursor of a suspension by treating an aqueous solution of tetravalent vanadium ions with an alkaline reagent.
  • the method of the present invention uses an alkaline reagent to treat the precursor (tetravalent vanadium ion aqueous solution), and can obtain a size and shape controllable vanadium dioxide powder size (not more than 1 ⁇ m in at least one dimension) ) and morphology (rod, strip, line, fiber or sheet, length to diameter ratio mainly concentrated in 1:1 ⁇ 2000:1, preferably 100:1 ⁇ 2000:1
  • the prepared vanadium dioxide powder has small grain size, uniform particle size, stable crystal form and good ductility, and is suitable as a novel material for preparing electrode materials for batteries.
  • the preparation method of the invention is simple in operation, low in cost, easy to control, has good crystallinity and high yield, and is suitable for scale production.
  • the molar ratio of the aqueous solution of tetravalent vanadium ions to the alkaline agent is from 50:1 to 1:10, preferably from 10:1 to 1:5. More preferably, it is 5:1 ⁇ 1:2.
  • the precursor treatment step may be a titration method in which an aqueous solution of tetravalent vanadium ions is titrated with an alkaline reagent until a suspension is formed, and the pH of the end point of the titration is 2 to 12, preferably 5 to 10. .
  • the method is easy to operate and control and requires no special equipment.
  • the alkaline reagent used in the present invention may be ammonia water, aqueous sodium hydroxide solution, potassium hydroxide aqueous solution, sodium carbonate aqueous solution, sodium hydrogencarbonate aqueous solution, potassium carbonate aqueous solution, potassium hydrogencarbonate aqueous solution or the like or any combination thereof; preferably ammonia water or hydroxide
  • a sodium aqueous solution or an aqueous potassium hydroxide solution is more preferably an aqueous sodium hydroxide solution.
  • concentration of the alkaline reagent used 0.5 to 5 mol/L, preferably 0.5 to 2 mol/L.
  • the suspension obtained by the above alkali treatment is then subjected to a hydrothermal reaction to obtain a desired vanadium dioxide powder.
  • Hydrothermal reaction temperature can be 200 ⁇ 400 °C, preferably 200 to 350, more preferably 250 to 300 °C.
  • the hydrothermal reaction time is from 1 to 240 hours, preferably from 2 to 120 hours, more preferably from 4 to 60 Hours.
  • the hydrothermal reaction filling ratio may be from 20 to 90%, preferably from 30 to 80%, more preferably from 50 to 80%.
  • the precursor of the hydrothermal reaction is pretreated with a base, and the reaction temperature of the subsequent hydrothermal reaction is low, and the reaction can be completed in one step, and the yield is high. Moreover, the size and morphology of the obtained vanadium dioxide grains can be controlled within a prescribed range.
  • the inventors herein provide another preparation for steady state A.
  • the method for phase-changing vanadium oxide powder comprises: directly adding an aqueous solution containing tetravalent vanadium ions to a hydrothermal kettle for hydrothermal reaction, wherein the filling ratio of the hydrothermal kettle in the hydrothermal reaction process is 50 to 90%;
  • the hydrothermal reaction temperature is 180 ⁇ 220 °C, hydrothermal reaction holding time is 0 ⁇ 720 hours.
  • phase vanadium dioxide can be stably existed; and the method directly adds the aqueous solution of tetravalent vanadium ions to the hydrothermal kettle for hydrothermal reaction, that is, the precursor treatment step of forming the suspension without alkali treatment of the vanadium ion aqueous solution, the preparation method Simple, and the yield is high 100%.
  • the aqueous solution containing tetravalent vanadium ions used in the present invention may be an acidic aqueous solution, preferably pH 1 to 3.
  • the preparation method of the invention adopts a high filling ratio (50 to 90%), has high reaction efficiency, and can synthesize powder in a large amount at a time, and the preferred filling ratio can be 60 to 80%.
  • the method provided by the present invention can carry out a hydrothermal reaction at a relatively low temperature (180 to 220 ° C), and more preferably at a temperature of 190 to 210 °C.
  • the hydrothermal reaction holding time is preferably from 12 to 240 hours, more preferably from 12 to 50 hours.
  • the process of the present invention may further comprise the step of preparing an aqueous solution of a tetravalent vanadium ion from a vanadium source, which may comprise a vanadium salt, a metal vanadium, a vanadium oxide or a mixture thereof.
  • a vanadium source which may comprise a vanadium salt, a metal vanadium, a vanadium oxide or a mixture thereof.
  • Exemplary vanadium source materials include, but are not limited to, vanadyl sulfate, vanadium oxychloride, vanadyl oxalate, vanadium pentoxide or sodium metavanadate.
  • soluble vanadium material such as a trivalent, tetravalent or pentavalent vanadium salt and/or a hydrate thereof
  • the soluble vanadium material can be dissolved in water to prepare an aqueous solution of tetravalent vanadium ions.
  • Preferred soluble vanadium raw materials may be tetravalent soluble vanadium salts and hydrates thereof, such as vanadyl sulfate (VOSO 4 ), vanadium oxychloride (VOCl 2 ) and vanadyl oxalate anhydrate (VOC 2 O 4 .5H 2 O). ).
  • a trivalent or pentavalent vanadium salt and/or a hydrate thereof when used as a vanadium raw material, it may be pretreated by oxidation or reduction to form a tetravalent vanadium salt and then dissolved in water, or firstly trivalent or pentavalent.
  • the vanadium salt and/or its hydrate is dissolved in water and then oxidized or reduced to obtain an aqueous solution of tetravalent vanadium ions.
  • a pentavalent vanadium salt such as sodium metavanadate is used, and a tetravalent vanadium ion is obtained by reduction with a reducing agent such as ammonium citrate.
  • a reducing agent such as ammonium citrate.
  • Insoluble vanadium raw materials such as metal vanadium, vanadium oxide or mixtures thereof, may also be employed, in which case the insoluble vanadium material is subjected to oxidation, reduction or dissolution pretreatment.
  • the concentration of the aqueous solution of tetravalent vanadium ions used in the present invention may be 0.005 to 0.5 mol/L, and usually can be selected. 0.01 mol/L.
  • the preparation method of the invention can obtain small grain size, uniform particle size, stable crystal form and good ductility.
  • Phase vanadium dioxide nanorods The phase A vanadium dioxide nanorods prepared by the invention may have a diameter of 45 nm to 1 ⁇ m and a length of 1 to 50 ⁇ m. It is suitable as a new material for preparing electrode materials for batteries. Further, the aspect ratio of the phase A vanadium dioxide nanorods prepared by the present invention may be in a single crystal state.
  • the above vanadium dioxide powder has good ductility, mechanical properties and processability, and can be used as a material for preparing an electrode of a lithium battery, for example, A prepared.
  • the vanadium dichloride powder and the acetylene black polyvinylidene fluoride are mixed to form a slurry, coated on the surface of the aluminum foil or the like, and can be used as an electrode sheet of the battery, and the lithium battery thus prepared has a high level of charge and discharge capacity. .
  • Example 1 is an X-ray diffraction pattern of vanadium dioxide powder corresponding to Example 1;
  • Figure 2 is a transmission electron micrograph of the vanadium dioxide powder corresponding to Example 1;
  • Figure 3 is a transmission electron micrograph of a single rod-shaped vanadium dioxide powder in Example 1;
  • Figure 4 is an electron diffraction pattern of a single rod-shaped vanadium dioxide powder in Example 1;
  • Figure 5 is an X-ray diffraction pattern of the vanadium dioxide powder corresponding to Example 3.
  • Figure 6 is a transmission electron micrograph of the vanadium dioxide powder corresponding to Example 3.
  • Figure 7 is a transmission electron micrograph of a single strip of vanadium dioxide powder in Example 3.
  • Figure 8 is an electron diffraction pattern of a single strip of vanadium dioxide powder in Example 3.
  • Figure 10 is a transmission electron micrograph of the vanadium dioxide powder corresponding to Example 5.
  • Figure 11 is a transmission electron micrograph of a single fibrous vanadium dioxide powder in Example 5.
  • Figure 12 is an electron diffraction pattern of a single fibrous vanadium dioxide powder in Example 5.
  • Figure 13 is an X-ray diffraction diagram of the vanadium dioxide powder corresponding to Example 7.
  • Figure 14 is a high-power transmission electron micrograph of the vanadium dioxide powder corresponding to Example 7.
  • Figure 15 is a high-power transmission electron micrograph of the vanadium dioxide powder corresponding to Example 10.
  • Figure 16 is a high-power transmission electron micrograph of the vanadium dioxide powder corresponding to Example 11.
  • Figure 18 shows an example of a differential scanning calorimetry curve for the temperature rise process of the vanadium dioxide powder corresponding to Example 8.
  • Figure 19 is the embodiment 5 The first charge and discharge curve of the experimental battery of the lithium ion battery cathode material prepared by the corresponding vanadium dioxide powder;
  • Figure 20 is a graph showing the X-ray diffraction pattern of the solid in the suspension of the intermediate product in the method for producing vanadium dioxide powder of the present invention.
  • a phase-doped vanadium dioxide powder is prepared by a hydrothermal method as an example.
  • the vanadium dioxide powder of the present invention can be prepared by using a tetravalent vanadium ion aqueous solution as a reaction precursor.
  • the configuration of the aqueous solution of tetravalent vanadium ions can be prepared by a method commonly used in the art: the tetravalent soluble vanadium raw material is dissolved in an appropriate amount of water, preferably deionized water, and the suitable concentration can be 0.005 to 0.5 mol/L, and usually 0.01 can be selected. Mol/LL.
  • the tetravalent soluble vanadium salt can be a commonly used vanadium salt which is inexpensive and readily available, such as vanadyl sulfate (VOSO 4 ) and vanadium oxychloride (VOCl 2 ). It is of course also possible to use hydrates of vanadium salts, such as vanadium oxalate anhydrate (VOC 2 O 4 .5H 2 O ).
  • the configuration of the tetravalent vanadium ion solution is usually carried out at room temperature, but it is also understood that it may be slightly heated to promote dissolution or assisted by ultrasonic or the like.
  • the vanadium raw material as an aqueous solution of tetravalent vanadium ions may also include other soluble or insoluble vanadium raw materials, for example, trivalent or pentavalent soluble vanadium salts and / Or its hydrate is used as a vanadium raw material, which is dissolved in water and oxidized or reduced to an aqueous tetravalent vanadium ion solution. It should be understood that if insoluble matter is precipitated during the redox process, an appropriate amount of water may be added to dissolve it, or it may be slightly heated to dissolve.
  • An insoluble vanadium material can also be used to prepare an aqueous solution of tetravalent vanadium ions: an insoluble vanadium material, such as a metal vanadium, a vanadium oxide or a combination thereof, which is solubilized by oxidation, reduction or dissolution, and then dissolved in water. The desired aqueous solution of tetravalent vanadium ions is obtained.
  • the present invention provides a first method herein using an aqueous solution of tetravalent vanadium ions as a reaction precursor and treating the reaction precursor with an alkaline reagent.
  • aqueous solution of tetravalent vanadium ions was titrated with an alkaline reagent until a suspension was formed.
  • an alkaline reagent for titration ammonia water, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, sodium carbonate aqueous solution, sodium hydrogencarbonate aqueous solution, potassium carbonate aqueous solution, potassium hydrogencarbonate aqueous solution, or the like, or any combination thereof may be used; preferably, ammonia water or hydroxide
  • a sodium aqueous solution or an aqueous potassium hydroxide solution is more preferably an aqueous sodium hydroxide solution.
  • the inventors have found through repeated experiments that controlling the concentration of the aqueous solution of tetravalent vanadium ions and the alkaline reagent used is advantageous for the formation of the suspension to determine the end point of the titration, wherein An alkaline reagent of 0.5 to 2 mol/L is advantageous.
  • the pH of the suspension is usually 2 to 12
  • the molar ratio of the alkaline reagent to the tetravalent vanadium ion aqueous solution is usually 1:50 to 10:1, the amount of alkaline reagent used should be at least the minimum amount that can form a suspension.
  • a molar ratio of the alkaline agent to the tetravalent vanadium ion aqueous solution of more than 1:10 is preferable, and more preferably 1:5 ⁇ 2:1.
  • the alkaline reagent should not be excessively large, and the molar ratio of the alkaline reagent to the tetravalent vanadium ion aqueous solution should preferably not exceed 5:1.
  • Titration takes the presence of a suspension as the endpoint of the titration, making it easy to observe and control, without the need for additional equipment.
  • the solid obtained by filtering the above-mentioned suspension obtained by alkali treatment was dried, and the X-ray diffraction pattern thereof was measured, as shown in Fig. 20, and it was found that the chemical composition of the suspension intermediate obtained by the alkali treatment of the method of the present invention was V 4 . H 6 O 10 .
  • the suspension obtained by the above alkali treatment is transferred to a hydrothermal reaction vessel, and the desired vanadium dioxide powder can be obtained by hydrothermal reaction and drying.
  • the hydrothermal reaction temperature may be from 200 to 400 ° C, preferably from 200 to 350, more preferably from 250 to 300 °C.
  • the hydrothermal reaction time may be from 1 to 240 hours, and may be adjusted according to the reaction temperature, preferably from 2 to 120 hours, more preferably from 4 to 60. Hours.
  • a suitable reaction kettle can be selected according to the amount of feed, and the hydrothermal reaction filling ratio can be generally 20 to 90%, preferably 30 to 80%, more preferably 50 to 80%. .
  • the present invention provides a second method for preparing vanadium dioxide powder by hydrothermal reaction using an aqueous solution containing tetravalent vanadium ions as a direct raw material, especially A. Phase vanadium dioxide nanorods.
  • oxalic acid may be added to the aqueous tetravalent vanadium ion solution; in another embodiment, the tetravalent vanadium salt may be dissolved in the aqueous oxalic acid; in yet another embodiment, the oxalic acid may be added.
  • An aqueous solution such as sodium metavanadate is dissolved; in still another embodiment, vanadium pentoxide or the like can be dissolved in an aqueous oxalic acid solution.
  • the content of oxalic acid is preferably 0.05 ⁇ 2mol / L.
  • the prepared aqueous solution containing tetravalent vanadium ions is transferred to a hydrothermal kettle, heated at a temperature, and then subjected to a hydrothermal reaction.
  • the filling ratio of hydrothermal reaction is 50% to 90% , preferably 60 to 80%;
  • hydrothermal reaction temperature is 180 to 220 ° C, preferably 190 to 210 ° C;
  • hydrothermal reaction holding time is 0 to 720
  • the hour may be adjusted depending on the reaction temperature, and is preferably from 12 to 240 hours, more preferably from 12 to 50 hours.
  • the reaction was removed from the hydrothermal kettle and slowly cooled to room temperature.
  • the cooled product is separated by centrifugation, washed and dried to obtain a steady state A. Phase vanadium dioxide.
  • the hydrothermal reaction product can be separated and dried by centrifugal drying, but it should be understood that other methods of drying the powder such as freeze drying can also be employed.
  • the vanadium dioxide powder produced by the present invention has a single chemical composition.
  • the shape and particle diameter of the vanadium dioxide powder prepared by the present embodiment are observed by transmission electron microscopy (TEM), and A prepared in the present embodiment
  • the vanadium dioxide powder is in the form of a rod, a ribbon, a wire, a fiber or a sheet.
  • the crystallinity is obtained by changing the vanadium ion compound and its concentration, and controlling the reaction temperature, time, and filling ratio.
  • the prepared vanadium dioxide powder has small grain size, uniform particle size, stable crystal form and good ductility, and is suitable as a novel material for preparing electrode materials for batteries.
  • TEM uses Japan Tokyo The model JEM2010 JEOL is manufactured by the company.
  • FIG. 1 there is shown an X-ray diffraction pattern of an embodiment of the vanadium dioxide powder of the present invention (the abscissa is an angle of 2 ⁇ and the ordinate is a diffraction peak intensity) which is a phase A VO 2 .
  • the vanadium dioxide powder is a long rod shape, and each vanadium dioxide long rod is a single crystal.
  • the vanadium dioxide powder prepared by the invention has small grain size, uniform particle size and stable crystal form.
  • FIG. 4 an electron diffraction pattern of a single rod-shaped vanadium dioxide powder is shown, which further confirms that the crystal form of the rod-shaped vanadium dioxide is the phase A structure of vanadium dioxide.
  • 17 and 18 show a differential scanning calorimetry curve (50 to 200 ° C, 10 ° C / min) of an exemplary temperature rising process of the vanadium dioxide powder of the present invention, which shows that the vanadium dioxide powder of the present invention has Phase change properties.
  • the prepared phase A vanadium dioxide powder, a conductive agent (such as acetylene black), and dissolved in N-methylpyrrolidone (NMP) a polymer material having a high dielectric constant in a solvent such as polyvinylidene fluoride (PVDF) in proportion (for example, 80:10:10) (mass ratio)) mixed into a uniform slurry.
  • NMP N-methylpyrrolidone
  • PVDF polyvinylidene fluoride
  • the slurry is then applied to a surface such as aluminum foil, dried, and then sized to a suitable size (for example, a diameter of 15 mm and a thickness of 1 mm).
  • the pole piece can be used as the positive electrode of a lithium battery.
  • a lithium sheet is used as a negative electrode
  • a separator is a polypropylene porous film (model: Cegard 2400)
  • an electrolyte solution is 1 mol/L.
  • LiPF6/EC+DEC assembles the button battery in the glove box.
  • the obtained battery has good charge and discharge performance.
  • the battery charge and discharge current is 30mA/g
  • the charge termination voltage is 4.5V
  • the discharge termination voltage is 1.5V
  • the first charge-discharge efficiency coulomb efficiency
  • the first charge specific capacity is 320.9mAh/g
  • the first discharge specific capacity is 318.8 mAh/g.
  • the vanadium dioxide powder obtained is a long rod shape, and each vanadium dioxide vane is a single crystal, and its length is It reaches hundreds of nm ⁇ tens of ⁇ m, width is several hundred nm, and aspect ratio is between 1:1 and 50:1 (as shown in Figure 2). Electron micrographs and electron diffraction patterns of single phase A VO 2 nanorods are shown in Figures 3 and 4, respectively.
  • Each vanadium dioxide vane is a single crystal with a length of several tens of ⁇ m, a width of several hundred nm, and a length to diameter ratio of 1:1 to 100:1.
  • the proportion of phase A is more than 80%
  • the strip grain length is several tens ⁇ m
  • the width is about 100 nm
  • the thickness is about 10 nm
  • the aspect ratio is Between 100:1 ⁇ 1000:1 (as shown in Figure 6).
  • Single-phase A-phase VO 2 nano-charged photographs and electron diffraction patterns are shown in Figures 7 and 8, respectively.
  • Each vanadium dioxide rod is a single crystal with a length of several tens of ⁇ m, a width of several hundred nm, a thickness of about 50 nm, and a aspect ratio. 100:1 ⁇ 500:1.
  • Each vanadium dioxide belt is a single crystal with a length of several ⁇ m, a width of several tens of nm, and a length to diameter ratio of 200:1 to 2000:1.
  • the crystal phase is pure phase A, as shown in Figure 14 TEM.
  • the prepared vanadium dioxide powder is rod-shaped, each vanadium dioxide rod is single crystal, and has a certain length and thickness.
  • the obtained phase A vanadium dioxide nanorod has a diameter of 100 nm. , length is 1 ⁇ 4 ⁇ m.
  • the aspect ratio is: 10:1 to 40:1.
  • phase vanadium dioxide nanorods 0.8g, yield 98%. After testing, the obtained phase A vanadium dioxide nanorods have a diameter of 500 nm and a length of 1 to 6 ⁇ m. The aspect ratio is: 1:1 ⁇ 12:1.
  • phase A vanadium dioxide nanorod 2.2g was obtained with a yield of 98%. After testing, the obtained phase A vanadium dioxide nanorods have a diameter of 1 ⁇ m and a length of 30 to 50 ⁇ m. The aspect ratio is: 30:1 to 50:1.
  • 0.126 g (0.005 M) of oxalic acid was added to 200 ml of a molar concentration of 0.05 mol/L.
  • the sodium metavanadate aqueous solution was stirred vigorously for 10 minutes, and a certain amount of ammonium citrate was added to the above solution, so that the molar ratio of ammonium citrate to vanadium ion was 3:100, and the molar concentration was 0.015 mol/L.
  • phase A vanadium dioxide nanorods After hourly, it was synthesized by hydrothermal reaction, then slowly cooled to room temperature, centrifuged, and dried in an oven at 70 ° C for 24 hours to obtain 4.45 g of phase A vanadium dioxide nanorods with a yield of 99%.
  • Figure 15 shows a transmission electron micrograph of the phase A vanadium dioxide obtained in this embodiment, which is rod-shaped and has a certain length and thickness; after detection, the obtained phase A vanadium dioxide nanorod has a diameter of 200 nm. Length is 5 ⁇ 10 ⁇ m aspect ratio: 250:1 ⁇ 500:1.
  • oxalic acid 0.8 g was added to 150 ml of an aqueous solution of vanadyl sulfate having a molar concentration of 0.05 mol/L, and vigorously stirred. In minutes, an aqueous solution of vanadium ions having a molar concentration of 0.03 mol/L was obtained, and the pH was 2 .
  • the above solution was added to a 250 ml hydrothermal kettle at a filling ratio of 60%, and the temperature was raised to 190 ° C.
  • phase A vanadium dioxide nanorods After 48 hours, it was synthesized by hydrothermal reaction, then slowly cooled to room temperature, centrifuged, and dried in an oven at 70 °C for 24 hours to obtain 2.38 g of phase A vanadium dioxide nanorods with a yield of 99%.
  • picture 16 shows a transmission electron micrograph of the phase A vanadium dioxide obtained in this embodiment, which is rod-shaped and has a certain length and thickness; after detection, the obtained phase A vanadium dioxide nanorod has a diameter of 45 nm. Long The aspect ratio of 40 to 45 ⁇ m is: 800:1 to 1000:1.
  • phase A vanadium dioxide nanorod 5.2 g was obtained with a yield of 98%.
  • the obtained phase A vanadium dioxide nanorods have a diameter of 400 nm and a length of 15 to 28 ⁇ m.
  • the aspect ratio is: 40:1 to 70:1.
  • VO 2 powder prepared in Example 5 acetylene black and polyvinylidene fluoride (PVDF) dissolved in N-methylpyrrolidone (NMP) were mixed and stirred at 80:10:10 (mass ratio) for 4 hours. A uniform slurry. The slurry was coated on the surface of the aluminum foil, dried at 60 ° C, and then punched into a pole piece having a diameter of 15 mm and a thickness of 1 mm as a positive electrode sheet of a lithium battery.
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the negative electrode is lithium
  • the diaphragm is polypropylene porous film (model: Cegard 2400)
  • the electrolyte is 1 mol/L of LiPF6/EC+DEC.
  • the test temperature is 5 ⁇ 15 °C
  • the charge and discharge current is 30mA/g
  • the charge termination voltage is 4.5V
  • the discharge termination voltage is 1.5V.
  • the first charge specific capacity is 320.9 mAh/g.
  • the first discharge specific capacity was 318.8 mAh/g and the Coulomb efficiency was 99%.
  • the phase A vanadium dioxide powder of the present invention is suitable for use as a novel material for preparing electrodes, and can be applied to fields such as batteries, catalysis, and hydrogen storage.
  • the method for preparing vanadium dioxide powder of the invention has the advantages of simple process, low cost and high yield, and is suitable for scale production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

一种二氧化钒粉体及其制备方法和应用 技术领域
本发明涉及化工领域及材料领域中的二氧化钒粉体制备,特别涉及 A 相二氧化钒粉体的制备和应用 。
背景技术
钒的氧化物是多价态、多晶相的复杂体系,其晶体结构多达 10 余种,主要包括 B 相、 A 相、 M 相和 R 相等。目前,研究最多的是具有热致变色性能的 M/R 相二氧化钒,其可以广泛应用于智能窗户涂层、光电开关、热敏电阻和光信息存储等领域。 B 相二氧化钒由于可以作为电池的负极材料,因此也受到了很大的关注。而 A 相二氧化钒由于在制备方面有难度,一直以来没有引起本领域技术人员的足够关注和重视。
A 相的二氧化钒最初是由 Th é obald ( F. Th é obald, J. Less-Common Met., 1977. )以 V2O3-V2O5-H 2O 体系来水热合成二氧化钒时发现的,其中 A 相二氧化钒是作为 B 相二氧化钒向 R 相二氧化钒转的化过程中出现的中间相。 20 年后, Y. Oka ( Y. Oka, J. Solid State Chem., 1998. )首次发现了 A 相二氧化钒也具有相变性质,并第一次解析了相变前后的晶体结构变化。然而,由于长期研究表明 A 相二氧化钒作为中间相出现,而中间相往往不稳定,对其相变前后晶体结构的变化研究就持续了 20 年之久。可见关于 A 相二氧化钒的研究是缓慢的,而且制备 A 相二氧化钒本身是一个技术难点。
关于二氧化钒粉体的报道多集中于 B 相、 M 相和 R 相二氧化钒粉体,目前还没有报道 A 相二氧化钒粉体。已有的 M/R 相二氧化钒粉体多采用高温烧结法,中国专利 CN 10164900A 公开一种掺杂钨二氧化钒的制备方法:先制备 B 相二氧化钒粉体,然后经 350 ~ 800 ℃高温热处理得到 R 相二氧化钒粉体。现有 M/R 相二氧化钒粉体还有喷雾热分解法(美国专利 US5427763 )、热分解法(中国专利 CN 1321067C )、溶胶凝胶法(美国专利 US6682596 )和反微乳液法( WO 2008/011198 A2 )等。本申请人之前的中国专利申请 CN 101391814A 还公开一种一步水热法制备 R 相二氧化钒粉体的方法。
A.M. Kannan 最近报道了 A 相二氧化钒具有类似于 B 相二氧化钒的层状结构,因此推测其也可以如 B 相二氧化钒一样用于电池的电极材料的制备( ,Solid State Ionics, 2003.;L.Q. Mai , Nano Lett., 2010. )。最近, Jin 等人利用水热法在 270 ℃合成出了 A 相二氧化钒,并研究了掺杂对其可逆相变的影响,但 A 相为不稳定相,合成难度较大,现有水热方法存在合成温度比较高,填充比小( 20% 左右)产率低等问题( Journal of the Ceramic Society of Japan 118 [10] 867-871 2010 )。 CN101880060A 公开了一种快速制备单斜相 VO2 的方法,其中公开的 A 相二氧化钒也是作为亚稳态二氧化钒中间体用于制备斜相 VO2
发明内容
本发明人认识到开发 A 相二氧化钒粉体将有广阔的应用前景,同时提供一种简便的制备 A 相二氧化钒粉体的方法也是非常有意义的。
本发明提供一种二氧化钒粉体,其晶相主要为 A 相, A 相二氧化钒在粉体中所占的比例为 80% 以上。本发明突破了 A 相二氧化钒常为其他晶相转变的中间相的固有认识,制备出晶相为 A 相的二氧化钒粉体,该 A 相二氧化钒粉体可以应用于电池、催化、储氢等领域。
在本发明中,二氧化钒粉体为棒状、带状、线状、纤维状或片状。晶粒的长径比主要集中在 1:1 ~ 2000:1 ,优选 100:1 ~ 2000:1 ,更优选 100:1 ~ 1000:1 。晶粒的尺寸在至少一个维度上不大于 1 μ m ,优选在至少一个维度上不大于 500nm ,更优选在在至少一个维度上不大于 500nm 。在一个优选的实施例中,所述 A 相二氧化钒可为直径为 45nm ~ 1µm ,长度为 1 ~ 50µm 的 A 相二氧化钒纳米棒。所述 A 相二氧化钒纳米棒优选为单晶状态。具有上述尺寸和形貌的二氧化钒粉体的延展性更好,具有优良的机械性能和加工性,有利于用于制备电池(例如锂电池)的电极材料。
在本发明中, A 相二氧化钒在粉体中所占的比例可以高达 80% ,甚至可以达到 100% 。本发明的二氧化钒粉体也具有相转变性质,相转变温度在 100 ~ 200 ℃之间连续可调。
本发明还提供一种制备二氧化钒粉体的方法,该二氧化钒粉体的结晶相主要为 A 相。所述方法包括采用碱性试剂处理四价钒离子水溶液得到悬浊液的前驱体处理工序。
本发明的方法采用碱性试剂处理前驱体(四价钒离子水溶液),可以得到尺寸和形貌可控的二氧化钒粉体尺寸(在至少一个维度上不大于 1 μ m )和形貌(棒状、带状、线状、纤维状或片状,长径比主要集中在 1:1 ~ 2000:1 ,优选 100:1 ~ 2000:1 ),制备的二氧化钒粉体晶粒尺寸小、粒径均一,且晶型稳定、延展性好,适合作为制备电池的电极材料的新型材料。而且,本发明的制备方法操作简便、成本低、容易控制,产物结晶性好、收率高,适合规模生产。
在本发明中,四价钒离子水溶液和碱性试剂的摩尔比为 50:1~1:10 ,优选为 10:1~1:5 ,更优选为 5:1~1:2 。
在本发明中,前驱体处理工序可以采用滴定的方法,即、采用碱性试剂滴定四价钒离子水溶液直至生成悬浊液,滴定的终点的 pH 为 2~12 ,优选为 5~10 。该方法容易操作和控制,且无需特殊设备。
本发明采用的碱性试剂可以为氨水、氢氧化钠水溶液、氢氧化钾水溶液、碳酸钠水溶液、碳酸氢钠水溶液、碳酸钾水溶液、碳酸氢钾水溶液等或其任意组合;优选为氨水、氢氧化钠水溶液、氢氧化钾水溶液,更优选为氢氧化钠水溶液。所用碱性试剂的浓度 0.5 ~ 5mol/L ,优选为 0.5 ~ 2mol/L 。
上述经碱处理得到的悬浊液随后,经水热反应可制得所需的二氧化钒粉体。水热反应温度可以为 200 ~ 400 ℃,优选为 200 ~ 350 ,更优选为 250 ~ 300 ℃。水热反应时间为 1 ~ 240 小时,优选为 2 ~ 120 小时,更优选为 4 ~ 60 小时。水热反应填充比可以为 20 ~ 90% ,优选 30 ~ 80% ,更优选 50 ~ 80% 。
在水热反应前,用碱预处理水热反应的前驱体,随后的水热反应的反应温度低、反应可以一步完成,收率高。而且得到的二氧化钒晶粒的尺寸和形貌可以控制在规定范围内。
本发明人在此提供另一种制备稳态 A 相二氧化钒粉体的方法,包括:将含四价钒离子的水溶液直接加入水热釜中进行水热反应,水热反应过程中水热釜的填充比为 50 ~ 90% ;升温并控制水热反应温度为 180 ~ 220 ℃,水热反应保温时间为 0 ~ 720 小时。
本发明的方法制得的 A 相二氧化钒能够稳定存在;且该方法将四价钒离子水溶液直接加入水热釜中进行水热反应,即、无需对钒离子水溶液进行碱处理形成悬浊液的前驱体处理步骤,制备方法简单,而收率高达 100% 。
本发明采用的含四价钒离子的水溶液可为酸性的水溶液,优选为 pH1 ~ 3 。
本发明的制备方法采用较高的填充比( 50 ~ 90% ),反应效率高,可一次大量合成粉体,优选的填充比可为 60 ~ 80% 。本发明提供的方法可以在较低温度( 180 ~ 220 ℃)下进行水热反应,更优选的温度为 190 ~ 210 ℃。
在本发明中,水热反应保温时间优选 12 ~ 240 小时,更优选 12 ~ 50 小时。
本发明的方法还可包括从钒原料制备四价钒离子水溶液的工序,所述钒源可包括钒盐、金属钒、钒氧化物或其混合物。示例的钒源料包括但不限定于硫酸氧钒、二氯氧钒、草酸氧钒、五氧化二钒或偏钒酸纳。
当采用可溶性钒原料,例如三价、四价或五价的钒盐和 / 或其水合物,可将可溶性钒原料溶于水中制得四价钒离子水溶液。优选的可溶性钒原料可为四价可溶性钒盐及其水合物,例如硫酸氧钒( VOSO4 )、二氯氧钒( VOCl2 )和草酸氧钒无水合物( VOC2O4.5H2O )。应理解,在采用三价或五价钒盐和 / 或其水合物作为钒原料时,可以先经氧化或还原等预处理形成四价钒盐再溶于水,或者先将三价或五价钒盐和 / 或其水合物溶于水后再经氧化或还原制得四价钒离子水溶液,例如采用偏钒酸钠等五价钒盐,采用铌酸铵等还原剂还原得到四价钒离子水溶液。
还可采用不可溶性钒原料,例如金属钒、钒氧化物或其混合物,此时对不可溶性钒原料进行氧化、还原或溶解预处理。
本发明所用的四价钒离子水溶液的浓度可以为 0.005 ~ 0.5mol/L ,通常可以选择 0.01mol/L 。
本发明的制备方法可以得到晶粒尺寸小、粒径均一,且晶型稳定、延展性好的 A 相二氧化钒纳米棒。本发明制备得到的 A 相二氧化钒纳米棒的的直径可为 45nm ~ 1µm ,长度可为 1 ~ 50µm ,适合作为制备电池的电极材料的新型材料。此外,本发明制备得到的 A 相二氧化钒纳米棒的长径比可为单晶状态。
上述二氧化钒粉体具有良好的延展性、机械性能和可加工性,可以用作制备锂电池电极的材料,例如制得的 A 相二氧化钒粉体和乙炔黑聚偏二氟乙烯等混合制成浆料,涂覆于铝箔等表面,可作为电池的电极片,并且由此制备的锂电池具有较高水平的充放电容量。
附图说明
图 1 为实施例 1 所对应的二氧化钒粉体的 X 射线衍射图;
图 2 实施例 1 所对应的二氧化钒粉体的透射电镜图;
图 3 实施例 1 中的单根棒状二氧化钒粉体的透射电镜图;
图 4 实施例 1 中的单根棒状二氧化钒粉体的电子衍射花样;
图 5 实施例 3 所对应的二氧化钒粉体的 X 射线衍射图;
图 6 实施例 3 所对应的二氧化钒粉体的透射电镜图;
图 7 实施例 3 中的单根带状二氧化钒粉体的透射电镜图;
图 8 实施例 3 中的单根带状二氧化钒粉体的电子衍射花样;
图 9 实施例 5 所对应的二氧化钒粉体的 X 射线衍射图;
图 10 实施例 5 所对应的二氧化钒粉体的透射电镜图;
图 11 实施例 5 中的单根纤维状二氧化钒粉体的透射电镜图;
图 12 实施例 5 中的单根纤维状二氧化钒粉体的电子衍射花样;
图 13 为实施例 7 所对应的二氧化钒粉体的 X 射线衍射图;
图 14 实施例 7 所对应的二氧化钒粉体的高倍透射电镜图;
图 15 实施例为实施例 10 所对应的二氧化钒粉体的高倍透射电镜图;
图 16 实施例为实施例 11 所对应的二氧化钒粉体的高倍透射电镜图;
图 17 实施例 5 所对应的二氧化钒粉体升温过程的差式扫描量热曲线;
图 18 实施例为实施例 8 所对应的二氧化钒粉体升温过程的差式扫描量热曲线。
图 19 为由实施例 5 所对应的二氧化钒粉体制备的锂离子电池正极材料的实验电池的首次充放电曲线图;
图 20 示出本发明制备二氧化钒粉体的方法中中间产物悬浊液中的固体的 X 射线衍射图。
具体实施方式
以下,参照附图,并结合下属实施方式进一步说明本发明。
本实施方式以水热法制备 A 相掺杂二氧化钒粉体为例进行说明。
本发明的二氧化钒粉体的制备可以采用四价钒离子水溶液作为反应前驱体。四价钒离子水溶液的配置可以采用本领域常用的方法来制备:将四价可溶性钒原料溶于适量水,优选为去离子水,合适的浓度可以为 0.005 ~ 0.5mol/L ,通常可以选择 0.01mol/L L 。四价可溶性钒盐可以采用廉价易得的常用钒盐,例如硫酸氧钒( VOSO4 )和二氯氧钒( VOCl2 )。当然也可采用钒盐的水合物,例如草酸氧钒无水合物( VOC2O4.5H2O )。四价钒离子溶液的配置通常在常温下进行,但也可理解,可稍微加热助溶或采用超声等方法助溶。
作为四价钒离子水溶液的钒原料还可以包括其他可溶性或不溶性的钒原料,例如可采用在三价或五价可溶性钒盐和 / 或其水合物作为钒原料,将其溶于水中,经氧化或还原成四价钒离子水溶液。应理解,若氧化还原过程中有不溶物析出时,可以再加适量水使其溶解,也可稍加热使其溶解。还应理解,在在三价或五价钒盐和 / 或其水合物作为钒原料时,也可以先经氧化或还原等预处理形成四价钒盐再溶于水。
还可采用不可溶性钒原料来制备四价钒离子水溶液:不可溶性钒原料,例如金属钒、钒氧化物或其组合经氧化、还原或溶解等预处理使其可溶化,然后再溶于水制得所需的四价钒离子水溶液。
本发明在此提供第一种方法:采用四价钒离子水溶液作为反应前驱体,并用碱性试剂处理该反应前驱体。
采用碱性试剂来滴定配置好的四价钒离子水溶液直至生成悬浊液。作为滴定用的碱性试剂可以采用氨水、氢氧化钠水溶液、氢氧化钾水溶液、碳酸钠水溶液、碳酸氢钠水溶液、碳酸钾水溶液、碳酸氢钾水溶液等或其任意组合;优选为氨水、氢氧化钠水溶液、氢氧化钾水溶液,更优选为氢氧化钠水溶液。本发明人经多次试验研究后发现,控制四价钒离子水溶液和所用碱性试剂的浓度,有利于悬浊液的形成以确定滴定终点,其中 0.5 ~ 2mol/L 的碱性试剂是有利的。滴定完成时,悬浊液的 pH 值通常为 2 ~ 12 ,此时所用的碱性试剂和四价钒离子水溶液的摩尔比通常为 1:50 ~ 10:1 ,所用的碱性试剂的量应至少为能形成悬浊液的最少量。即因此,碱性试剂和四价钒离子水溶液的摩尔比大于 1:10 是优选的,更优选为 1:5~2:1 。然而也应理解,碱性试剂也不能过量很多,碱性试剂和四价钒离子水溶液的摩尔比也最好不要超过 5:1 。滴定以出现悬浊液作为滴定终点,容易观察和控制,无需额外设备。
过滤上述经碱处理得到的悬浊液得到的固体,干燥,测得其 X 衍射图谱,如图 20 所示,由此可知本发明方法碱处理得到的悬浊液中间体的化学组成为 V4H6O10 。上述经碱处理得到的悬浊液转移至水热反应釜,经水热反应、干燥分离可制得所需的二氧化钒粉体。
水热反应温度可以为 200 ~ 400 ℃,优选为 200 ~ 350 ,更优选为 250 ~ 300 ℃。水热反应时间可以为 1 ~ 240 小时,可以随着反应温度进行调整,优选为 2 ~ 120 小时,更优选为 4 ~ 60 小时。本领域技术人员可以理解可以根据投料量来选择合适的反应釜,通常水热反应填充比可以为 20 ~ 90% ,优选 30 ~ 80% ,更优选 50 ~ 80% 。
本发明在此提供第二种方法:以含四价钒离子的水溶液作为直接原料通过水热反应制备二氧化钒粉体,尤其是 A 相二氧化钒纳米棒。
应理解,形成的含四价钒离子的水溶液为酸性是有利的,优选 pH1 ~ 3 。在一个实施例中,可将草酸加至四价钒离子水溶液溶于中;在另外一个实施例中,可将四价钒盐溶于草酸水溶液中;在又一个实施例中,可将草酸加至偏钒酸钠等水溶液溶于中;在再一个实施例中,可将五氧化二钒等溶于草酸水溶液中。形成的含四价钒离子的草酸水溶液中,草酸的含量优选为 0.05 ~ 2mol/L 。
将制得的含四价钒离子的水溶液转移水热釜中,升温后保温,进行水热反应。水热反应的填充比为 50% ~ 90% ,优选为 60 ~ 80% ;水热反应温度为 180 ~ 220 ℃,优选为 190 ~ 210 ℃;水热反应保温时间为 0 ~ 720 小时,可以随着反应温度进行调整,优选为 12 ~ 240 小时,更优选 12 ~ 50 小时。
水热反应结束后,将反应物从水热釜中移出,缓慢冷却至室温。冷却后的产物经离心分离,洗涤、干燥得到稳态的 A 相二氧化钒。水热反应产物分离和干燥可采用离心干燥,但应理解也可采用冷冻干燥等其他可以干燥粉体的方法。
本发明制得的二氧化钒粉体具有单一的化学组成。通过 X 射线衍射 (XRD) 确定其晶型主要为二氧化钒 A 相结构; XRD 实验条件为:型号 D/max 2550V ,日本 Rigaku 公司,采用 Cu K α射线 , λ = 0.15406 nm 4 度 /min 。通过透射电镜 (TEM) 观测本实施方式制备所得二氧化钒粉体的形状和粒径,本实施方式制备的 A 相二氧化钒粉体为棒状、带状、线状、纤维状或片状,通过改变钒离子化合物及其浓度,并控制反应温度及时间、填充比等条件得到结晶性好的 A 相二氧化钒纳米棒。制备的二氧化钒粉体晶粒尺寸小、粒径均一,且晶型稳定、延展性好,适合作为制备电池的电极材料的新型材料。 TEM 采用日本 Tokyo 公司制造的型号 JEM2010 JEOL 。
参见图 1 ,其示出了本发明的二氧化钒粉体的一个实施例的 X 射线衍射图(横坐标为角度 2 θ,纵坐标表示衍射峰强度),其为 A 相 VO2 。又参见图 2 、 3 (本发明的二氧化钒粉体的一个实施例的透射电镜图),可以看到,该二氧化钒粉体为长棒状,每个二氧化钒长棒均为单晶,其长度达到数百 nm~ 数十μ m ,宽度达数百 nm ,长径比为 1:1 ~ 2000:1 ,比较集中在 100:1 ~ 2000:1 ,更集中在 100:1 ~ 1000:1 。又参见图 13-16 (本发明的 A 相二氧化钒纳米棒的透射电镜图),可以看到,该二氧化钒粉体为棒状,每个二氧化钒长棒均为单晶,直径为 45nm ≤Φ≤ 1µm ,长度为 45nm ≤Φ≤ 1µm ,长径比为 1:1 ~ 1000:1 。本发明制备的二氧化钒粉体晶粒尺寸小,粒径均一,且晶型稳定。又参见图 4 ,其示出了单根棒状二氧化钒粉体的电子衍射花样,进一步证实了此棒状二氧化钒的晶型为二氧化钒的 A 相结构。图 17 、 18 示出了本发明的二氧化钒粉体的示例的升温过程的差式扫描量热曲线( 50~200 ℃, 10 ℃ /min ),其表明本发明的二氧化钒粉体具有相变性质。
将所制备的 A 相二氧化钒粉体、导电剂(例如乙炔黑)和溶解于 N- 甲基吡咯烷酮( NMP )等溶剂中的具有高介电常数的聚合物材料,例如聚偏二氟乙烯( PVDF )按比例(例如 80:10:10 (质量比))混合成均匀的浆料。然后将浆料涂在铝箔等表面上,烘干,再冲制成合适大小(例如直径为 15mm 、厚度 1mm )的极片,可以作为锂电池的正极。进一步采用锂片作为负极、隔膜为聚丙烯多孔膜(型号: Cegard 2400 ),电解液为 1mol/L 的 LiPF6/EC+DEC 在手套箱中组装扣式电池。制得的电池具有良好的充放电性能,在 5~15 ℃下,制得的电池充放电电流为 30mA/g ,充电终止电压为 4.5V ,放电终止电压为 1.5V ,首次充放电效率(库仑效率)可达 99% ,在一个例子中,首次充电比容量为 320.9mAh/g ,首次放电比容量为 318.8mAh/g 。
应理解,本发明详述的上述实施方式,及以下实施例仅用于说明本发明而不用于限制本发明的范围。采用的原料、试剂可以通过购买市售原料或传统化学转化方式合成制得。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如是《贝尔斯坦有机化学手册》 ( 化学工业出版社, 1996 年 ) 中的条件,或按照制造厂商所建议的条件。比例和百分比基于摩尔质量,除非特别说明。除非另有定义或说明,本文中所使用的所有专业与科学用语与本领域技术熟练人员所熟悉的意义相同。此外任何与所记载内容相似或等同的方法及材料皆可应用于本发明方法中。本发明的其他方面由于本文的公开内容,对本领域的技术人员而言是容易理解的。
以下,通过实施例对本发明进行更加详细的说明。
实施例 1
将 1g VOSO4 粉体溶解于 50ml 去离子水中,用 1 mol/L 的 NaOH 溶液滴定,并不断搅拌,待滴定完全后将悬浊液装入盛有 45ml 去离子水的 50ml 水热釜中, 250 ℃水热反应 12 小时,离心干燥得到二氧化钒粉体,其化学式为 VO2 , 收率 90% 。如图 1 XRD 谱图所示其晶相为纯 A 相,如图 2 TEM 照片所示,制得的二氧化钒粉体为长棒状,每个二氧化钒长棒均为单晶,其长度达到数百 nm~ 数十μ m ,宽度达数百 nm ,长径比在 1:1 ~ 50:1 之间(如图 2 所示)。单根 A 相 VO2 纳米棒电镜照片和电子衍射花样分别见图 3 和图 4 。
实施例 2
用 300 ℃替换实施例中 250 ℃重复实施 1 的实验,最终得到的二氧化钒粉体,收率 95% 。其结晶型依然为纯的 A 相,每个二氧化钒长棒均为单晶,其长度达到数十μ m ,宽数百 nm ,长径比在 1:1 ~ 100:1 之间。
实施例 3
将 5g VOC2O4.5H2O 粉体溶解于 50ml 去离子水中,用 2mol/L 的 NaOH 溶液滴定,并不断搅拌,待滴定完全后将悬浊液装入盛有 40ml 去离子水的 50ml 水热釜中, 260 ℃水热 8 小时,离心干燥得到二氧化钒粉体,其化学式为 VO2 , 收率 85% 。其晶相依然主要为二氧化钒的 A 相(如图 5 所示), A 相所占比例大于 80% ,带状晶粒长数十μ m ,宽约 100nm ,厚度约 10nm ,长径比在 100:1 ~ 1000:1 之间(如图 6 所示)。单根 A 相 VO2 纳米带电镜照片和电子衍射花样分别见图 7 和图 8 。
实施例 4
用 24h 替换实施例中 8h 重复实施 1 的实验,最终得到的二氧化钒粉体,收率 90% 。其结晶型依然主要为 A 相,, A 相所占比例大于 90% ,每个二氧化钒棒均为单晶,其长度达到数十μ m ,宽数百 nm ,厚度约 50nm ,长径比 100:1 ~ 500:1 。
实施例 5
将 0.5g VOCl2 粉体溶解于 50ml 去离子水中,用 0.5 mol/L 的 NaOH 溶液滴定,并不断搅拌,待滴定完全后将悬浊液装入盛有 40ml 去离子水的 50ml 水热釜中, 260 ℃水热 12 小时,离心干燥得到二氧化钒粉体,收率 90% 。其晶相为纯 A 相(如图 9 所示),纤维状晶粒长数十μ m ,宽数十 nm ,长径比在 100:1 ~ 2000:1 之间(如图 10 所示)。单根 A 相 VO2 纳米纤维电镜照片和电子衍射花样分别见图 11 和图 12 , A 相 VO2 纳米粉体的 DSC 热学性能见图 13 。
实施例 6
用 25ml 去离子水替换实施例中 40ml 去离子水重复实施 1 的实验,最终得到的二氧化钒粉体,收率 85% 。其结晶型依然为纯的 A 相,每个二氧化钒带均为单晶,其长度达到数μ m ,宽数十 nm ,长径比 200:1 ~ 2000:1 。
实施例 7
将 3.64g 五氧化二钒粉体分散于 200g 浓度为 0.1M 的草酸水溶液中,剧烈搅拌 10 分钟,得到摩尔浓度为 0.2mol/L 的钒离子水溶液, pH 为 2.1 。将上述溶液加入 250ml 水热釜中,填充比为 80% ,升温至 200 ℃,保温 24 小时,经水热反应合成,缓慢冷至室温后,离心分离,在烘箱内 70 ℃干燥 24 小时,得到 A 相二氧化钒纳米棒 2.97g ,收率 99% 。如图 13 XRD 谱图所示其晶相为纯 A 相,如图 14 TEM 照片所示,制得的二氧化钒粉体为棒状,每个二氧化钒棒均为单晶,并具有一定长度和粗度,经检测,所得的 A 相二氧化钒纳米棒的直径为 100nm, 长度为 1 ~ 4µm 。长径比为: 10:1 ~ 40:1 。
实施例 8
将 4.5 g 草酸( 2M )加入 125ml 浓度为 0.005mol/L 的二氯氧钒水溶液中,剧烈搅拌 10 分钟,得到摩尔浓度为 0.005mol/L 的钒离子水溶液, pH 为 1.5 。将上述溶液加入 250ml 水热釜中,填充比为 50% ,升温至 219 ℃,保温 0 小时,经水热反应合成,然后慢冷至室温后,离心分离,在烘箱内 70 ℃干燥 24 小时,得到 A 相二氧化钒纳米棒 0.8g ,收率 98% 。经检测,所得的 A 相二氧化钒纳米棒的直径为 500nm ,长度为 1 ~ 6µm 。长径比为: 1:1 ~ 12:1 。
实施例 9
配制 150ml 摩尔浓度为 0.1mol/L 的草酸氧钒水溶液,剧烈搅拌 10 分钟, pH 为 2.6 。将上述溶液加入到 250ml 水热釜中,填充比为 60% ,升温至 200 ℃,保温 1 小时,经水热反应合成,然后慢冷至室温后,离心分离,在烘箱内 70 ℃干燥 24 小时,得到 A 相二氧化钒纳米棒 2.2g ,收率 98% 。经检测,所得的 A 相二氧化钒纳米棒的直径为 1µm ,长度为 30 ~ 50µm ,长径比为: 30:1 ~ 50:1 。
实施例 10
将 0.126g ( 0.005M )草酸加入到 200ml 摩尔浓度为 0.05mol/L 的偏钒酸钠水溶液中,剧烈搅拌 10 分钟,称取一定量的铌酸铵加入上述溶液,使得铌酸铵与钒离子的摩尔比为 3 : 100 ,得到摩尔浓度为 0.015mol/L 的钒离子水溶液, pH 为 3 。将上述溶液加入 250ml 水热釜中,填充比为 80% ,升温至 210 ℃,保温 20 小时,经水热反应合成,然后慢冷至室温后,离心分离,在烘箱内 70 ℃干燥 24 小时,得到 A 相二氧化钒纳米棒 4.45g ,收率 99% 。参见图 15 ,其示出该实施例所得的 A 相二氧化钒的透射电镜照片,其为棒形,并具有一定的长度和粗度;经检测,所得的 A 相二氧化钒纳米棒的直径为 200nm ,长为 5 ~ 10µm 长径比为: 250:1 ~ 500:1 。
实施例 11
将 0.8g 草酸加入到 150ml 摩尔浓度为 0.05mol/L 的硫酸氧钒水溶液中,剧烈搅拌 10 分钟,得到摩尔浓度为 0.03mol/L 的钒离子水溶液, pH 为 2 。将上述溶液加入 250ml 水热釜中,填充比为 60% ,升温至 190 ℃,保温 48 小时,经水热反应合成,然后慢冷至室温后,离心分离,在烘箱内 70 ℃干燥 24 小时,得到 A 相二氧化钒纳米棒 2.38g ,收率 99% 。参见图 16 ,其示出该实施例所得的 A 相二氧化钒的透射电镜照片,其为棒形,并具有一定的长度和粗度;经检测,所得的 A 相二氧化钒纳米棒的直径为 45nm ,长为 40 ~ 45µm 长径比为: 800:1 ~ 1000:1 。
实施例 11
将 0.35g ( 0.2M )草酸加入到 225ml 摩尔浓度为 0.015mol/L 的硫酸氧钒水溶液中,剧烈搅拌 10 分钟,得到摩尔浓度为 0.015mol/L 的钒离子水溶液, pH 为 1.8 。将上述溶液加入 250ml 水热釜中,填充比为 90% ,升温至 180 ℃,保温 30 小时,经水热反应合成,然后将水热釜拿出,慢冷至室温后,离心分离,在烘箱内 70 ℃干燥 24 小时,得到 A 相二氧化钒纳米棒 5.2g ,收率 98% 。经检测,所得的 A 相二氧化钒纳米棒的直径为 400nm ,长度为 15 ~ 28µm ,长径比为: 40:1 ~ 70:1 。
将实施例 5 所制备的 VO2 粉体、乙炔黑和溶解于 N- 甲基吡咯烷酮 (NMP) 中的聚偏二氟乙烯( PVDF )按 80:10:10 (质量比)混合搅拌 4h ,成均匀的浆料。将浆料涂在铝箔表面,于 60 ℃烘干,再冲制成直径为 15mm 、厚度 1mm 的极片,作为锂电池的正极片。
在手套箱中组装扣式电池:负极为锂片,隔膜为聚丙烯多孔膜(型号: Cegard 2400 ),电解液为 1mol/L 的 LiPF6/EC+DEC 。
测试温度为 5~15 ℃,充放电电流为 30mA/g ,充电终止电压为 4.5V ,放电终止电压为 1.5V 。
从制备的锂离子电池的首次充放电曲线(如图 19 所示),可见其首次充电比容量为 320.9mAh/g ,首次放电比容量为 318.8mAh/g ,库伦效率达到 99% 。
产业应用性本发明的 A 相二氧化钒粉体适合用作制备电极的一种新型材料,可应用于电池、催化和储氢等领域。本发明的制备二氧化钒粉体的方法,工艺简单、成本低、收率高,适合规模生产。

Claims (34)

  1. 一种二氧化钒粉体,其中,所述二氧化钒粉体的晶相包括 A 相,且 A 相二氧化钒在粉体中所占的比例为 80% 以上。
  2. 根据权利要求 1 所述的二氧化钒粉体,其特征在于,所述二氧化钒粉体晶粒的长径比为 1:1 ~ 2000:1 。
  3. 根据权利要求 2 所述的二氧化钒粉体,其特征在于,所述二氧化钒粉体晶粒的长径比为 100:1 ~ 2000:1 。
  4. 根据权利要求 3 所述的二氧化钒粉体,其特征在于,所述二氧化钒粉体晶粒的长径比为 100:1 ~ 1000:1 。
  5. 根据权利要求 1 所述的粉体,其特征在于,所述二氧化钒粉体为棒状、带状、线状、纤维状或片状。
  6. 根据权利要求 1 所述的二氧化钒粉体,其特征在于,所述二氧化钒粉体晶粒在至少一个维度上不大于 1 μ m 。
  7. 根据权利要求 6 所述的二氧化钒粉体,其特征在于,所述二氧化钒粉体晶粒在至少一个维度上不大于 500nm 。
  8. 根据权利要求 7 所述的二氧化钒粉体,其特征在于,所述二氧化钒粉体晶粒在至少一个维度上不大于 100nm 。
  9. 根据权利要求 1 所述的二氧化钒粉体,其特征在于,所述 A 相二氧化钒为直径为 45nm ~ 1µm ,长度为 1 ~ 50µm 的 A 相二氧化钒纳米棒。
  10. 根据权利要求 9 所述的二氧化钒粉体,其特征在于,所述 A 相二氧化钒纳米棒为单晶状态。
  11. 根据权利要求 1 ~ 10 中任一项所述的二氧化钒粉体,其特征在于,所述二氧化钒粉体具有相转变性质,相转变温度在 100 ~ 200 ℃之间连续可调。
  12. 一种制备权利要求 1 ~ 11 中任一项所述的二氧化钒粉体的方法,包括采用碱性试剂处理四价钒离子水溶液得到悬浊液的前驱体处理工序,所述前驱体处理工序包括采用碱性试剂滴定所述四价钒离子水溶液直至生成悬浊液。
  13. [根据细则91更正 06.03.2012] 
    根据权利要求12 所述的方法,其特征在于,所述四价钒离子水溶液和所述碱性试剂的摩尔比为 50:1 ~ 1:10。
  14. 根据权利要求 13 所述的方法,其特征在于,所述四价钒离子水溶液和所述碱性试剂的摩尔比为 5:1 ~ 1:2 。
  15. 根据权利要求 12 所述的方法,其特征在于,所述碱性试剂为氨水、氢氧化钠水溶液、氢氧化钾水溶液或其混合溶液。
  16. 根据权利要求 12 ~ 15 中任一项所述的方法,其特征在于,还包括将经碱试剂处理的四价钒离子的水溶液加入水热釜中进行水热反应,水热反应过程中水热釜的填充比为 20 ~ 90% ;升温并控制水热反应温度为 200 ~ 400 ℃,水热反应保温时间为 1 ~ 240 小时。
  17. 根据权利要求 16 所述的方法,其特征在于,所述水热反应温度为 200 ~ 350 ℃。
  18. 根据权利要求 17 所述的方法,其特征在于,所述水热反应温度为 250 ~ 300 ℃。
  19. 根据权利要求 16 所述的方法,其特征在于,所述填充比为 30 ~ 80% 。
  20. 根据权利要求 19 所述的方法,其特征在于,所述填充比为 50 ~ 80% 。
  21. 根据权利要求 16 所述的方法,其特征在于,所述水热反应保温时间为 2 ~ 120 小时。
  22. 根据权利要求 21 所述的方法,其特征在于,所述水热反应保温时间为 4 ~ 60 小时。
  23. 一种制备权利要求 1 ~ 11 中任一项所述的二氧化钒粉体的方法,其特征在于,包括:将四价钒离子水溶液直接加入水热釜中进行水热反应,水热反应过程中水热釜的填充比为 50 ~ 90% ;升温并控制水热反应温度为 180 ~ 220 ℃,水热反应保温时间为 0 ~ 720 小时。
  24. 根据权利要求 23 所述的方法,其特征在于,所述四价钒离子水溶液的 pH 值为 1 ~ 3 。
  25. 根据权利要求 23 所述的方法,其特征在于,所述水热反应温度为 190 ~ 210 ℃。
  26. 根据权利要求 23 所述的方法,其特征在于,所述填充比为 60 ~ 80% 。
  27. 根据权利要求 23 所述的方法,其特征在于,所述水热反应保温时间为 12 ~ 240 小时。
  28. 根据权利要求 27 所述的方法,其特征在于,所述水热反应保温时间为 12 ~ 50 小时。
  29. 根据权利要求 12 ~ 28 中任一项所述的方法,其特征在于,还包括从钒原料制备四价钒离子水溶液的工序,所述钒源料包括钒盐、金属钒、钒氧化物或其混合物。
  30. 根据权利要求 29 所述的方法,其特征在于,所述钒源为硫酸氧钒、二氯氧钒、草酸氧钒、五氧化二钒或偏钒酸纳。
  31. 根据权利要求 29 所述的方法,其特征在于,包括将可溶性钒原料溶于水中,所述可溶性钒原料包括三价、四价或五价的钒盐。
  32. 根据权利要求 29 所述的方法,其特征在于,包括对不可溶性钒原料进行氧化、还原或溶解预处理,所述不可溶性钒原料包括金属钒、钒氧化物或其混合物。
  33. [根据细则91更正 06.03.2012] 
    根据权利要求 12 ~ 32 中任一项所述的方法,其特征在于,所述四价钒离子水溶液中四价钒离子浓度为 0.005 ~0.5mol/L 。
  34. [根据细则91更正 06.03.2012] 
    一种如权利要求 1 ~ 11 中任一项所述的二氧化钒粉体在制备锂电池中的应用。
PCT/CN2012/070026 2011-01-21 2012-01-04 一种二氧化钒粉体及其制备方法和应用 WO2012097688A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110024231.2 2011-01-21
CN201110024231A CN102115167B (zh) 2011-01-21 2011-01-21 一种二氧化钒粉体及其制备方法和应用
CN201110108381.1A CN102757094B (zh) 2011-04-28 2011-04-28 一种稳态a相二氧化钒纳米棒的制备方法
CN201110108381.1 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012097688A1 true WO2012097688A1 (zh) 2012-07-26

Family

ID=46515145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070026 WO2012097688A1 (zh) 2011-01-21 2012-01-04 一种二氧化钒粉体及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2012097688A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10479900B2 (en) 2014-08-26 2019-11-19 The Research Foundation For The State University Of New York VO2 and V2O5 nano- and micro-materials and processes of making and uses of same
CN112174207A (zh) * 2020-10-16 2021-01-05 成都先进金属材料产业技术研究院有限公司 超声喷雾热解直接制备m相二氧化钒纳米粉体的方法
CN112266019A (zh) * 2020-10-16 2021-01-26 成都先进金属材料产业技术研究院有限公司 单超声雾化均相沉淀法制备m相二氧化钒的方法
CN114647123A (zh) * 2020-12-17 2022-06-21 中国科学院上海硅酸盐研究所 一种柔性电致变色器件及其制备方法和应用
CN114656024A (zh) * 2022-02-15 2022-06-24 鞍钢集团北京研究院有限公司 有机废水的处理方法
CN115650292A (zh) * 2022-11-07 2023-01-31 江苏集萃工业过程模拟与优化研究所有限公司 一种金红石相二氧化钒纳米粉体的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279211A (zh) * 2000-08-04 2001-01-10 中山大学 二氧化钒纳米粉体和纳米陶瓷的制备方法
WO2010090274A1 (ja) * 2009-02-09 2010-08-12 独立行政法人産業技術総合研究所 微粒子、その製造方法、ならびにそのような微粒子を含む塗料、フィルムおよびインク
CN101863511A (zh) * 2010-07-05 2010-10-20 中国科学技术大学 制备单斜相二氧化钒及其掺杂纳米粉的方法
CN101920996A (zh) * 2010-06-30 2010-12-22 华东师范大学 一种交叉棒状vo2纳米结构的相变材料及其制备方法
CN102115167A (zh) * 2011-01-21 2011-07-06 中国科学院上海硅酸盐研究所 一种二氧化钒粉体及其制备方法和应用
CN102120614A (zh) * 2011-01-21 2011-07-13 中国科学院上海硅酸盐研究所 一种制备二氧化钒粉体的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279211A (zh) * 2000-08-04 2001-01-10 中山大学 二氧化钒纳米粉体和纳米陶瓷的制备方法
WO2010090274A1 (ja) * 2009-02-09 2010-08-12 独立行政法人産業技術総合研究所 微粒子、その製造方法、ならびにそのような微粒子を含む塗料、フィルムおよびインク
CN101920996A (zh) * 2010-06-30 2010-12-22 华东师范大学 一种交叉棒状vo2纳米结构的相变材料及其制备方法
CN101863511A (zh) * 2010-07-05 2010-10-20 中国科学技术大学 制备单斜相二氧化钒及其掺杂纳米粉的方法
CN102115167A (zh) * 2011-01-21 2011-07-06 中国科学院上海硅酸盐研究所 一种二氧化钒粉体及其制备方法和应用
CN102120614A (zh) * 2011-01-21 2011-07-13 中国科学院上海硅酸盐研究所 一种制备二氧化钒粉体的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JI, SHIDONG ET AL.: "Synthesis and phase transition behavior of w-doped VO2(A) nanorods", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 118, no. 10, October 2010 (2010-10-01), pages 867 - 871 *
OKA, YOSHIO ET AL.: "Powder X-Ray Crystal Structure of VO2(A)", JOURNAL OF SOLID STATE CHEMISTRY, vol. 86, May 1990 (1990-05-01), pages 116 - 124 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10479900B2 (en) 2014-08-26 2019-11-19 The Research Foundation For The State University Of New York VO2 and V2O5 nano- and micro-materials and processes of making and uses of same
CN112174207A (zh) * 2020-10-16 2021-01-05 成都先进金属材料产业技术研究院有限公司 超声喷雾热解直接制备m相二氧化钒纳米粉体的方法
CN112266019A (zh) * 2020-10-16 2021-01-26 成都先进金属材料产业技术研究院有限公司 单超声雾化均相沉淀法制备m相二氧化钒的方法
CN114647123A (zh) * 2020-12-17 2022-06-21 中国科学院上海硅酸盐研究所 一种柔性电致变色器件及其制备方法和应用
CN114647123B (zh) * 2020-12-17 2023-12-26 中国科学院上海硅酸盐研究所 一种柔性电致变色器件及其制备方法和应用
CN114656024A (zh) * 2022-02-15 2022-06-24 鞍钢集团北京研究院有限公司 有机废水的处理方法
CN114656024B (zh) * 2022-02-15 2023-08-18 鞍钢集团北京研究院有限公司 有机废水的处理方法
CN115650292A (zh) * 2022-11-07 2023-01-31 江苏集萃工业过程模拟与优化研究所有限公司 一种金红石相二氧化钒纳米粉体的制备方法
CN115650292B (zh) * 2022-11-07 2023-10-31 江苏集萃工业过程模拟与优化研究所有限公司 一种金红石相二氧化钒纳米粉体的制备方法

Similar Documents

Publication Publication Date Title
US11554966B2 (en) Nanostructured titanic acid salts and preparation process and use thereof
WO2012097688A1 (zh) 一种二氧化钒粉体及其制备方法和应用
CN108123115B (zh) O2构型锂电池正极材料及其制备方法
JP3894614B2 (ja) チタン酸リチウムの製造方法
CN110294466B (zh) 一种纳米片状磷酸铁的制备方法
KR101856994B1 (ko) 리튬 이온 전지 음극 소재용 리튬 티타늄 산화물 제조방법
JP6937804B2 (ja) 線状分画構造チタン酸リチウム材料の調製方法
CN104781186A (zh) 层状和尖晶石钛酸锂以及其制备方法
CN114927681B (zh) 一种p2型五元高熵钠层状正极材料及其制备方法和应用
CN102115167B (zh) 一种二氧化钒粉体及其制备方法和应用
CN108288703A (zh) 一种石墨烯包覆掺氟钛酸锂纳米线的制备方法及其应用
JPH10251020A (ja) 金属置換チタン酸リチウムおよびその製造方法ならびにそれを用いてなるリチウム電池
CN111785956B (zh) 一种锂离子电池用柔性电极材料及其制备方法
JP7094927B2 (ja) 線状多孔チタン酸リチウム材料及びその調製並びに製品
Hashem et al. Blend formed by oxygen deficient MoO3− δ oxides as lithium-insertion compounds
Inagaki et al. Synthesis of MnV2O6 under autogenous hydrothermal conditions and its anodic performance
Bayoudh et al. Hydrothermal synthesis, characterization and electrochemical properties of γ-MnOOH nanobelts
CN113023772A (zh) 一种可控长径比的SnO2多孔纳米棒的制备方法及应用
Wang et al. Mesocrystalline effect in a NiTiO 3/TiO 2 nanocomposite for enhanced capacity of lithium-ion battery anodes
CN116565182A (zh) 钠离子电池复合正极材料及其制备方法、正极极片和钠离子电池
Monti et al. Microwaves as a synthetic route for preparing electrochemically active TiO2 nanoparticles
RU2703629C1 (ru) Анодный материал для литий-ионного аккумулятора и способ его получения
Chen et al. Spinel Li 4 Ti 5 O 12 hollow nanospheres prepared with colloid carbon spheres as templates for high power Li-ion battery anodes
WO2010087649A2 (ko) 나노 튜브 형태의 리튬 티탄 산화물
CN113381004A (zh) 一种五氧化二钒原位包覆ncm111三元正极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736482

Country of ref document: EP

Kind code of ref document: A1