WO2012097673A1 - 独立封装的桥式磁场传感器 - Google Patents

独立封装的桥式磁场传感器 Download PDF

Info

Publication number
WO2012097673A1
WO2012097673A1 PCT/CN2011/085124 CN2011085124W WO2012097673A1 WO 2012097673 A1 WO2012097673 A1 WO 2012097673A1 CN 2011085124 W CN2011085124 W CN 2011085124W WO 2012097673 A1 WO2012097673 A1 WO 2012097673A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
magnetic field
bridge
mtj
magnetoresistive
Prior art date
Application number
PCT/CN2011/085124
Other languages
English (en)
French (fr)
Inventor
迪克•詹姆斯•G
沈卫锋
王建国
张小军
雷啸锋
金•英西
薛松生
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to JP2013549700A priority Critical patent/JP2014508286A/ja
Priority to US13/979,721 priority patent/US9234948B2/en
Priority to EP11856147.1A priority patent/EP2667213B1/en
Publication of WO2012097673A1 publication Critical patent/WO2012097673A1/zh
Priority to US14/968,300 priority patent/US20160097828A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors

Definitions

  • the present invention relates to the field of magnetic field measurement using magnetic tunnel junction (MTJ) or giant magnetoresistance (GMR) devices, and more particularly to a method of integrating an MTJ or GMR device into a magnetic sensor by standard semiconductor package technology.
  • MTJ magnetic tunnel junction
  • GMR giant magnetoresistance
  • Magnetic sensors are widely used in modern measurement systems to detect a variety of physical quantities, including but not limited to magnetic field strength, current, position, displacement, direction, and other physical quantities.
  • a variety of sensors have previously been available to measure magnetic fields and other physical quantities.
  • these technologies have their own limitations, for example, due to various factors such as excessive size, low sensitivity, small dynamic range, high cost, and stability. Therefore, development of a magnetic sensor, especially a magnetic sensor that can be easily integrated with a semiconductor device and an integrated circuit, and which is easy to manufacture, is still an urgent need.
  • Magnetic tunnel junction (MTJ) sensors are characterized by high sensitivity, small size, low cost, and low power consumption.
  • MTJ devices are well compatible with standard semiconductor fabrication processes, there is no effective way to manufacture high sensitivity, low cost MTJ magnetic sensors at low cost.
  • the magnetoresistance response of the matched MTJ sensor proves to be very difficult.
  • an aspect of the present invention provides an independently packaged bridge magnetic field sensor including one or more pairs of MTJ or GMR magnetoresistive sensor chips, which are fixed on a lead frame of a standard semiconductor package, each The sensor chip includes a reference resistor having a fixed resistance and an inductive resistor that changes resistance in response to an external magnetic field.
  • Each reference resistor and sense resistor includes a plurality of MTJ or GMR sensor elements that are connected to each other as an array of individual magnetoresistive elements, each reference resistor and sense resistor further comprising a strip-shaped permanent magnet, A bias field is provided between the columns of magnetoresistive elements for the magnetoresistive elements.
  • the resistance value of the sensing resistor is linear with the external magnetic field in some ranges of the magnetoresistance transmission curve; the lead pad of the sensor chip is arranged such that each pin of the magnetoresistive element can be connected with a plurality of bonding wires; the magnetoresistive sensor chip Wire bonding between each other and with the lead frame Connected to form a bridge sensor; the leadframe and sensor chip are sealed in plastic to form a standard semiconductor package.
  • Another aspect of the present invention provides a separately packaged bridge magnetic field sensor including one or more pairs of MTJ or GMR magnetoresistive sensor chips mounted on a lead frame of a standard semiconductor package; each sensor chip includes a fixed reference resistance and a sense resistor that changes resistance in response to an external magnetic field; each reference resistor and sense resistor includes a plurality of MTJ or GMR sensor elements, and the MTJ or GMR sensor elements are used as separate magnetoresistive elements in a matrix
  • the forms are connected to each other; the resistance value of the sensing resistor is linear with the external magnetic field in a range of the magnetoresistance transmission curve; the lead pad of the sensor chip is disposed such that each pin of the magnetoresistive element can be connected with a plurality of bonding wires;
  • the magnetoresistive sensor chips are connected to each other and to the lead frame by wire bonding to form a bridge sensor; the lead frame and the sensor chip are sealed in the plastic to form a standard semiconductor package.
  • a bridge type linear magnetoresistive sensor is fabricated by a standard semiconductor package, which is easy to manufacture, low in cost, and excellent in performance, and is suitable for mass production.
  • Figure 1 is a schematic diagram showing the magnetoresistance response of a spin valve (GMR and MTJ) sensing element with a reference layer magnetization direction pointing in a negative H direction;
  • GMR and MTJ spin valve
  • FIG. 2 is a schematic diagram of a TMR half bridge having a fixed reference resistance and a sense resistor
  • FIG. 3 is an embodiment of a half bridge of a magnetoresistive chip, wherein the reference resistor and the sense resistor are composed of a plurality of MTJ elements, and a strip-shaped sheet-shaped permanent magnet is used to provide a bias field to the MTJ element;
  • FIG. 4 is another embodiment of a half bridge of a magnetoresistive chip, wherein the reference resistor and the sense resistor are composed of a plurality of matrix-distributed MTJ elements;
  • FIG. 5 is a schematic view showing the arrangement of a half bridge magnetoresistive chip and a semiconductor package connected in a standard
  • FIG. 6 is a schematic diagram of a full bridge sensor
  • Figure 7 is a schematic illustration of a full bridge sensor with two half-bridge magnetoresistive sensor chips placed in a standard semiconductor package.
  • the sensing element is provided with a spin valve, wherein a magnetic layer has a magnetization direction fixed as a reference, and the magnetic layer fixed in the magnetization direction may be a single magnetic layer or a synthetic ferromagnetic structure, which is pinned.
  • the layer is pinned, and the other magnetic layer, called the magnetic free layer, is rotatable in the spin valve in response to the direction of the applied magnetic field.
  • the resistance of the spin valve changes with the direction of the free layer relative to the fixed layer (pinned), followed by As the magnetic field on the free layer changes.
  • the free layer and the fixed layer are separated by a barrier, and current flows through the barrier.
  • the free layer and the pinned layer are separated by a non-magnetic metal layer. Current can flow in or perpendicular to the face of the multilayer film.
  • Fig. 1 it is a schematic diagram of the magnetoresistance transmission characteristic curve of the usual GMR and MTJ magnetic sensing elements suitable for linear magnetic field measurement.
  • the transmission curve in the figure shows saturated low resistance 1 and high resistance 2, respectively.
  • the negative saturation field 4 and the forward saturation field 5 differ due to the interlayer coupling between the free layer and the pinned layer, and there is usually a certain output bias.
  • a major source of interlayer coupling is known as Neel coupling or "orange-peel" coupling, which is related to the roughness of ferromagnetic films in GMR and MTJ structures, primarily determined by materials and manufacturing processes.
  • the sensitivity of the MTJ component is mainly determined by the stiffness of the free layer in response to the external magnetic field.
  • the slope can be adjusted by changing the shape of the MTJ component.
  • the MTJ elements are formed into elongated shapes including, but not limited to, elliptical, rectangular, diamond shaped, which are positioned orthogonally relative to the pinned layer.
  • the free layer can be biased or stabilized by a permanent magnet to a direction perpendicular to the pinned layer.
  • flux concentrator or flux induction can be integrated into the magnetic field sensor to amplify the magnetic field on the free layer of the MTJ element for higher sensitivity.
  • FIG. 2 is a schematic diagram of a half-bridge configuration 10 in which a bias voltage 15 is applied to one end of a series consisting of a reference resistor 13 having a fixed resistance and a sense resistor 14 having a resistance value in response to an external magnetic field, and the other end 11 is grounded. (GND), the output voltage 12 is the potential difference across the sense resistor.
  • Figure 3 shows the design of a magnetoresistive chip half bridge 20.
  • the reference resistor 23 and the sense resistor 24 are respectively composed of a plurality of MTJ elements 231 and 241, which are arranged in several columns, respectively.
  • the MTJ elements are connected in series to form a reference resistor and a sense resistor.
  • Between each column of MTJ elements there is a strip of permanent magnets (PM) 26 that biases the MTJ free layer to a direction perpendicular to the pinned layer.
  • the strip PM should refer to the magnetization of the pinned layer. direction. In the absence of chip fabrication, the strip PM must be magnetized to a direction perpendicular to the pinned layer to provide a stable bias field for the free layer.
  • the strip PM does not need to be made in the same plane as the MTJ. However, the strip PM needs to be close to the MTJ to provide an effective bias field of sufficient strength. Since the reference resistor is insensitive to the external magnetic field, the reference MTJ element 231 can have different shapes and/or different scale coefficients relative to the sensed MTJ element 241 to obtain greater shape anisotropy and external magnetic The field remains unchanged.
  • a magnetic shield layer 27 shielding the external magnetic field/external magnetic flux may be integrated in the chip for the reference MTJ element. Typically, the shield is a piece of soft magnetic layer on top of the reference MTJ element and covers all components to shield the component from the external magnetic field so that the magnetic field outside the boundary does not affect the MTJ component.
  • Figure 4 is another design of the magnetoresistive chip half bridge 30.
  • the reference resistor 33 and the sense resistor 34 are respectively composed of a plurality of MTJ elements 331 and 341, which are usually arranged in a matrix form to obtain a large area.
  • the MTJ components form a reference resistor and a sense resistor in series. Since the reference resistor is insensitive to the external magnetic field, the reference MTJ element 331 can have different shapes and/or different scale factors relative to the sensed MTJ element 341 to obtain large shape anisotropy and remain unchanged under the action of an external magnetic field.
  • a magnetic shield layer 37 shielding the external magnetic field/external magnetic flux may be integrated in the chip for the reference MTJ element.
  • the shield is a piece of soft magnetic layer on top of the reference MTJ component and covers all components to shield the component from the external magnetic field so that the magnetic field outside the boundary does not affect the MTJ component.
  • Fig. 5 is a schematic view showing the arrangement of the magnetoresistive chip half bridges 43 and the semiconductor package connected in a standard.
  • the electrical connection is made by wire bonding.
  • the magnetoresistive sensor chips are connected to each other and to the lead frame by wire bonding.
  • the half bridge chip may be one of the embodiments shown in Figs. 3 and 4.
  • the chip's sensitive direction to the magnetic field 46 is relative to the original orientation of the package 47 as shown.
  • Figure 6 is a schematic illustration of a full bridge 50 consisting essentially of two half bridges.
  • One half bridge is composed of a reference resistor R refl 531 and a sense resistor R sl 541, and the other half bridge is composed of a reference resistor R ref2 532 and a sense resistor R s2 542 connected in parallel at the voltage bias terminal V bias 55 Between ground GND 51 and ground.
  • the output voltage is the potential difference between V+ and V-.
  • Figure 7 is a schematic illustration of a full bridge sensor connected to a standard semiconductor package using two magnetoresistive chips 631 and 632. Electrical connections are made by wire bonding.
  • the magnetoresistive sensor chips are connected to each other and to the lead frame by wire bonding.
  • Two of the magnetoresistive chips may be one of the embodiments shown in Figs. 3 and 4.
  • the chip's sensitive direction to the magnetic field 68 is relative to the original orientation of the package 67 as shown.
  • the two magnetoresistive chips are positioned in opposite directions, so that the two sensitive resistors respond to the applied magnetic field in opposite polarities, respectively.
  • the reference and sense resistors need to be well matched, so all MTJ components are fabricated in exactly the same process.
  • shape and/or shape ratio of the reference resistor and the sense resistor need to be adjusted under the constraints of resistor matching.
  • Push-pull full-bridge sensors provide higher sensitivity and greater losses than conventional full-bridge sensors Output voltage. Unlike a normal full bridge with two fixed resistance reference resistors, the four resistors of the push-pull full bridge respond to external magnetic fields and change with the external field.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

独立封装的桥式磁场传感器 技术领域
本发明涉及采用磁性隧道结 (MTJ, Magnetic Tunnel Junction) 或巨磁阻 (GMR, Giant Magnetoresitance)器件的磁场测量领域, 特别涉及通过标准半导 体封装技术将 MTJ或 GMR器件集成到磁性传感器的方法。
背景技术
磁性传感器广泛的用于现代测量系统,用来检测多种物理量,包括但不限于 磁场强度、 电流、 位置、 位移、 方向等各种物理量。 之前已有多种传感器可以用 来测量磁场及其它物理量。 但是, 这些技术都具有各自的局限性, 比如, 受到尺 寸过大, 灵敏度低, 动态范围小, 成本高, 稳定性等各种因素的限制。 因此, 发 展一种磁性传感器,尤其是能方便的与半导体器件和集成电路集成在一起, 并易 于制造的磁传感器仍然是一种非常迫切的需要。
磁隧道结 (MTJ) 传感器具有灵敏度高, 尺寸小, 低成本, 功耗低的特点。 虽然 MTJ器件可以很好的与标准的半导体制造工艺兼容, 但没有一种低成本量 产制造高灵敏度, 低成本的 MTJ磁传感器的有效方法。 尤其是, 量产时 MTJ工 艺和后端的封装工艺之间所存在的困难, 同时, 在将 MTJ元件组成全桥传感器 时, 匹配 MTJ传感器的磁电阻响应被证明存在很大困难。
发明内容
本发明的目的是提供一种可以利用标准的多芯片半导体封装工艺量产桥式 线性磁电阻传感器的方式, 以制造性能优良的 MTJ和 GMR传感器。
为达到上述目的,本发明一方面提供一种独立封装的桥式磁场传感器,包括 一对或多对 MTJ或 GMR磁电阻传感器芯片, 该传感器芯片被固定在标准半导 体封装的引线框上,每个传感器芯片包括一阻值固定的参考电阻和一响应于外磁 场改变阻值的感应电阻。 每个参考电阻和感应电阻包括多个 MTJ或 GMR传感 器元件, 这些 MTJ或 GMR传感器元件作为单独的磁电阻元件以阵列的形式相 互连接,每个参考电阻和感应电阻还包括条形永磁铁,在各列磁电阻元件中间为 磁电阻元件提供偏置场。感应电阻的电阻值与外磁场在磁电阻传输曲线的一些范 围内呈线性的关系;传感器芯片的引线焊盘设置为使磁电阻元件的每个引脚可以 连接多条接合线;磁电阻传感器芯片相互之间以及与引线框之间都通过引线接合 连接, 以构成一桥式传感器; 引线框和传感器芯片密封在塑料之中, 以形成一标 准的半导体封装。
本发明另一方面提供一种独立封装的桥式磁场传感器,该传感器包括一对或 多对 MTJ或 GMR磁电阻传感器芯片, 该传感器芯片固定在标准半导体封装的 引线框上;每个传感器芯片包括一阻值固定的参考电阻和一响应于外磁场改变阻 值的感应电阻; 每个参考电阻和感应电阻包括多个 MTJ或 GMR传感器元件, 这些 MTJ或 GMR传感器元件作为单独的磁电阻元件以矩阵形式相互连接; 感 应电阻的电阻值与外磁场在磁电阻传输曲线的一段范围内呈线性的关系;传感器 芯片的引线焊盘设置为使磁电阻元件的每个引脚可以连接多条接合线;磁电阻传 感器芯片相互之间以及与引线框之间都通过引线接合连接, 以构成一桥式传感 器; 引线框和传感器芯片密封在塑料之中, 以形成一标准的半导体封装。
与现有技术相比,本发明具有优点: 采用标准的半导体封装的方式制作桥式 线性磁电阻传感器, 其易于制造, 成本低, 且性能优良, 适合大批量生产。
附图说明
图 1是参考层磁化方向指向负 H方向的自旋阀(GMR和 MTJ)传感元件的 磁电阻响应示意图;
图 2是具有固定的参考电阻和感应电阻的 TMR半桥示意图;
图 3是磁电阻芯片的半桥的一种实施方式,其中参考电阻和感应电阻由多个 MTJ元件组成, 条形的片状永磁铁用来给 MTJ元件提供一个偏置场;
图 4是磁电阻芯片的半桥的另一种实施方式,其中参考电阻和感应电阻由多 个矩阵分布的 MTJ元件组成;
图 5是半桥磁电阻芯片的布置和连接成标准的半导体封装的示意图; 图 6是全桥传感器的示意图;
图 7 是具有两个置于标准的半导体封装中的半桥磁电阻传感器芯片的全桥 传感器的示意图。
具体实施方式
传感元件设置有自旋阀,其中有一个磁性层的磁化方向固定,以作为一参考, 该磁化方向固定的磁性层可以是一单一的磁性层或是合成的铁磁性结构,被一钉 扎层钉住, 另一磁性层, 称为磁性自由层, 在自旋阀中能够响应外加磁场的方向 而转动。 自旋阀的电阻随着自由层相对于固定层(被钉扎住) 的方向变化, 其次 随着自由层上的磁场变化。 在 MTJ元件中, 自由层和固定层由势垒分隔开来, 电流流过势垒。 在 GMR元件中, 自由层和钉扎层由非磁金属层分隔开来。 电流 可以在多层薄膜的面内流过或垂直于该面流向。
如图 1所示, 是通常的适合于线性磁场测量的 GMR和 MTJ磁性传感元件 的磁电阻传输特性曲线的示意图,图中的传输曲线显示饱和的低电阻 1和高电阻 2, 电阻值分别为 RL和 RH。在两饱和点之间, 传输曲线随外磁场 H而线性变化。 非理想情况下,传输曲线并不关于 H=0的点对称。负向饱和场 4和正向饱和场 5 由于自由层和钉扎层之间的层间耦合作用而不同, 通常会存在一定的输出偏置。 层间耦合的一个主要来源是称为奈尔 (Neel) 耦合或是 "orange-peel"耦合, 这 与 GMR和 MTJ结构中的铁磁薄膜的粗糙度有关, 主要由材料和制造工艺决定。
在位于负向饱和场 4和正向饱和场 5之间的工作区域, MTJ和 GMR的理想 响应是线性的。 MTJ元件的灵敏度, 即图 1中传输曲线中的斜线 3的斜率, 贝 IJ 主要由自由层响应于外磁场的刚度决定。 斜率可以通过改变 MTJ元件的形状来 调整。 通常 MTJ元件被成型为长条形状, 包括但不限于椭圆、 矩形、 菱形, 其 相对于钉扎层正交定位。有时候, 自由层可以通过永磁体偏置或稳定到与钉扎层 垂直的方向。有时候, 在高灵敏度场合, 磁通聚集器或磁通诱导能够集成到磁场 传感器中, 以使得在 MTJ元件的自由层上的磁场被放大, 从而实现更高的灵敏 度。
图 2 是半桥组态 10的示意图, 其中, 偏置电压 15施加于由具有固定电阻 的一参考电阻 13和一阻值响应于外磁场的感应电阻 14构成的串联的一端, 另 一端 11接地 (GND), 输出电压 12即是感应电阻两端的电势差。
图 3显示了一种磁电阻芯片半桥 20 的设计。 在这一设计中, 参考电阻 23 和感应电阻 24分别由多个 MTJ元件 231和 241构成, 分别被排成几列。 MTJ 元件串联在一起以构成参考电阻和感应电阻。 在各列 MTJ元件之间, 有条状的 永磁铁 (PM) 26, 使 MTJ自由层偏置到垂直于钉扎层的方向, 在这种情况下, 条状 PM应参照钉扎层的磁化方向。在芯片制备不中, 条状 PM必须磁化到垂直 于钉扎层的方向, 以为自由层提供稳定的偏置场。 条状 PM 并不需要制作在和 MTJ相同的平面内。 然而, 条状 PM需要靠近 MTJ, 以提供足够强度的有效偏 置场。由于参考电阻对外磁场不敏感,所以参考 MTJ元件 231可以相对感应 MTJ 元件 241 具有不同的形状和 /或不同比例系数以获得更大形状各向异性和在外磁 场的作用下保持不变。 可选地, 可以在芯片中为参考 MTJ元件集成一屏蔽外磁 场 /外磁通的磁屏蔽层 27。通常, 屏蔽层是位于参考 MTJ元件顶上的一片状软磁 层, 并覆盖遮住所有元件, 以将元件从外磁场屏蔽开来, 使得边界外部的磁场不 对 MTJ元件产生影响。
图 4是磁电阻芯片半桥 30的另一种设计。 参考电阻 33和感应电阻 34分别 由许多个 MTJ元件 331和 341组成, 这些 MTJ元件 331和 341通常都排列成矩 阵的形式以获得大面积利用。 MTJ 元件通过串联组成参考电阻和感应电阻。 由 于参考电阻对外磁场不敏感,所以参考 MTJ元件 331可以相对感应 MTJ元件 341 具有不同的形状和 /或不同比例系数以获得大的形状各向异性和在外磁场的作用 下保持不变。 可选地, 可以在芯片中为参考 MTJ元件集成一屏蔽外磁场 /外磁通 的磁屏蔽层 37。 通常, 屏蔽层是位于参考 MTJ元件顶上的一片状软磁层, 并覆 盖遮住所有元件, 以将元件从外磁场屏蔽开来, 使得边界外部的磁场不对 MTJ 元件产生影响。
图 5是磁电阻芯片半桥 43的布置和连接成标准的半导体封装的示意图。 电 气连接是通过引线接合实现的。磁电阻传感器芯片相互之间以及与引线框之间通 过引线接合连接。其中的半桥芯片可以是图 3和图 4所示实施例中的一种。芯片 对磁场的敏感方向 46相对于封装的原始方向 47如图所示。
图 6是主要由两个半桥组成的全桥 50的示意图。 一个半桥由参考电阻 Rrefl 531和感应电阻 Rsl 541组成,另一个半桥由参考电阻 Rref2 532和感应电阻 Rs2542 组成, 两半桥相并行地连接在电压偏置端 Vbias 55 和地 GND 51之间。 输出电压 是 V+和 V-的电势差。
图 7 是采用两个磁电阻芯片 631和 632连接成标准半导体封装的全桥传感 器的示意图。 电气连接是通过引线接合法实现的。磁电阻传感器芯片相互之间以 及与引线框之间通过引线接合连接。 其中的两个磁电阻芯片可以是图 3 和图 4 所示实施例中的一种。芯片对磁场的敏感方向 68相对于封装的原始方向 67如图 所示。在这一全桥传感器的实施方式中, 两个磁电阻芯片的定位方向相反, 因此 两个敏感电阻分别相反极性地响应外加磁场。在零场时,参考电阻和敏感电阻需 要很好的匹配, 故所有的 MTJ元件以完全相同的工艺制备。 此外, 参考电阻和 感应电阻的形状和 /或形状比例需要在电阻匹配的限制条件下进行调整。
推挽式的全桥传感器能提供比普通的全桥传感器更高的灵敏度和更大的输 出电压。和普通全桥具有两个固定阻值的参考电阻不同,推挽式全桥的四个电阻 都响应外磁场并随外场发生变化。
以上对本发明的特定实施例结合图示进行了说明,很明显,在不离开本发明 的范围和精神的基础上, 可以对现有技术和工艺进行很多修改。在本发明的所属 技术领域中, 只要掌握通常知识, 就可以在本发明的技术要旨范围内, 进行多种 多样的变更。

Claims

权利要求:
1. 一种独立封装的桥式磁场传感器, 其特征是: 该传感器包括一对或多对 MTJ或 GMR 磁电阻传感器芯片, 该传感器芯片被固定在标准半导体封装的引线框上, 每 个传感器芯片包括一阻值固定的参考电阻和一响应于外磁场改变阻值的感应电阻; 每个参考电阻和感应电阻包括多个 MTJ或 GMR传感器元件,这些 MTJ或 GMR传 感器元件作为单独的磁电阻元件以阵列的形式相互连接, 每个参考电阻和感应电阻 还包括条形永磁铁, 在各列磁电阻元件中间为磁电阻元件提供偏置场; 感应电阻的 电阻值与外磁场在磁电阻传输曲线的线性区间呈线性的关系; 传感器芯片的引线焊 盘设置为使磁电阻元件的每个引脚可以连接多条接合线; 磁电阻传感器芯片相互之 间以及与引线框之间都通过引线接合连接, 以构成一桥式传感器; 引线框和传感器 芯片密封在塑料之中, 以形成一标准的半导体封装。
2. 如权利要求 1所述的桥式磁场传感器, 其中, 该传感器为包含一个传感器芯片 的一半桥传感器。
3. 如权利要求 1所述的桥式磁场传感器, 该传感器为包含一对传感器芯片的一全 桥传感器, 一对传感器芯片为其中一个传感器芯片相对另一个传感器芯片旋转 180 度的排布。
4. 如权利要求 1所述的桥式磁场传感器, 其中, 磁电阻元件的形状是条状的, 包 括椭圆、 矩形、 菱形。
5. 如权利要求 1所述的桥式磁场传感器, 其中, 参考电阻的磁电阻元件与感应电 阻的磁电阻元件具有不同的形状比例。
6. 如权利要求 1所述的桥式磁场传感器, 其中, 参考电阻被一个或几个磁屏蔽层 从外磁场中隔离开来。
7. 如权利要求 2或 3所述的桥式磁场传感器, 其中, 传感器芯片是在装配之前进 行测试和分级的。
8. 一种独立封装的桥式磁场传感器, 其特征是: 该传感器包括一对或多对 MTJ 或 GMR磁电阻传感器芯片, 该传感器芯片固定在标准半导体封装的引线框上; 每 个传感器芯片包括一阻值固定的参考电阻和一响应于外磁场改变阻值的感应电阻; 每个参考电阻和感应电阻包括多个 MTJ或 GMR传感器元件, 这些 MTJ或 GMR 传感器元件作为单独的磁电阻元件以矩阵形式相互连接;感应电阻的电阻值与外磁 场在磁电阻传输曲线的线性区间呈线性的关系; 传感器芯片的引线焊盘设置为使磁 电阻元件的每个引脚可以连接多条接合线; 磁电阻传感器芯片相互之间以及与引线 框之间都通过引线接合连接, 以构成一桥式传感器; 引线框和传感器芯片密封在塑 料之中, 以形成一标准的半导体封装。
9. 如权利要求 8所述的桥式磁场传感器, 其中, 该传感器为包含一个传感器芯片 的一半桥传感器。
10. 如权利要求 8所述的桥式磁场传感器,该传感器为包含一对传感器芯片的一全 桥传感器, 一对传感器芯片为其中一个传感器芯片相对另一个传感器芯片旋转 180 度的排布。
11. 如权利要求 8所述的桥式磁场传感器, 其中, 磁电阻元件的形状是条状的, 包 括椭圆、 矩形、 菱形。
12. 如权利要求 8所述的桥式磁场传感器, 其中, 参考电阻的磁电阻元件与感应电 阻的磁电阻元件具有不同的形状比例。
13. 如权利要求 8所述的桥式磁场传感器, 其中, 参考电阻被一个或几个磁屏蔽层 从外磁场中隔离开来。
14. 如权利要求 9或 10所述的桥式磁场传感器, 其中, 传感器芯片是在装配之前 进行测试和分级的, 以使传输特性曲线更好地匹配。
PCT/CN2011/085124 2011-01-17 2011-12-31 独立封装的桥式磁场传感器 WO2012097673A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013549700A JP2014508286A (ja) 2011-01-17 2011-12-31 単一パッケージブリッジ型磁界センサ
US13/979,721 US9234948B2 (en) 2011-01-17 2011-12-31 Single-package bridge-type magnetic field sensor
EP11856147.1A EP2667213B1 (en) 2011-01-17 2011-12-31 A single-package bridge-type magnetic field sensor
US14/968,300 US20160097828A1 (en) 2011-01-17 2015-12-14 Single-package bridge-type magnetic field sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110008762 2011-01-17
CN201110008762.2 2011-01-17
CN201110141214.7 2011-05-27
CN2011101412147A CN102298126B (zh) 2011-01-17 2011-05-27 独立封装的桥式磁场传感器

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/979,721 A-371-Of-International US9234948B2 (en) 2011-01-17 2011-12-31 Single-package bridge-type magnetic field sensor
US14/968,300 Continuation US20160097828A1 (en) 2011-01-17 2015-12-14 Single-package bridge-type magnetic field sensor

Publications (1)

Publication Number Publication Date
WO2012097673A1 true WO2012097673A1 (zh) 2012-07-26

Family

ID=45358681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/085124 WO2012097673A1 (zh) 2011-01-17 2011-12-31 独立封装的桥式磁场传感器

Country Status (5)

Country Link
US (2) US9234948B2 (zh)
EP (1) EP2667213B1 (zh)
JP (1) JP2014508286A (zh)
CN (2) CN102298126B (zh)
WO (1) WO2012097673A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3029479A4 (en) * 2013-07-30 2017-03-15 Multidimension Technology Co., Ltd. Singlechip push-pull bridge type magnetic field sensor
EP3045926A4 (en) * 2013-09-10 2017-07-05 Multidimension Technology Co., Ltd. Single-chip z-axis linear magnetic resistance sensor

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298126B (zh) * 2011-01-17 2013-03-13 江苏多维科技有限公司 独立封装的桥式磁场传感器
CN202119391U (zh) * 2011-03-03 2012-01-18 江苏多维科技有限公司 一种独立封装的磁电阻角度传感器
US9411024B2 (en) 2012-04-20 2016-08-09 Infineon Technologies Ag Magnetic field sensor having XMR elements in a full bridge circuit having diagonal elements sharing a same shape anisotropy
CN102722932A (zh) * 2012-06-19 2012-10-10 兰州大学 一种验钞机磁头
US8860153B2 (en) * 2012-11-30 2014-10-14 Infineon Technologies Ag Semiconductor packages, systems, and methods of formation thereof
CN203551758U (zh) * 2013-07-26 2014-04-16 江苏多维科技有限公司 一种单磁阻tmr磁场传感器芯片及验钞机磁头
CN103592608B (zh) 2013-10-21 2015-12-23 江苏多维科技有限公司 一种用于高强度磁场的推挽桥式磁传感器
CN103630855B (zh) * 2013-12-24 2016-04-13 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
JP2015137892A (ja) * 2014-01-21 2015-07-30 日立金属株式会社 電流検出構造
EP3100312A1 (en) 2014-01-28 2016-12-07 Crocus Technology Inc. Mlu configured as analog circuit building blocks
BR112016016957A2 (pt) 2014-01-28 2018-05-08 Crocus Tech Inc circuitos analógicos incorporando unidades lógicas magnéticas
CZ305322B6 (cs) * 2014-01-30 2015-07-29 Vysoká Škola Báňská-Technická Univerzita Ostrava Magnetometr se zabezpečením proti vyhledání radioelektronickými prostředky
US9618588B2 (en) * 2014-04-25 2017-04-11 Infineon Technologies Ag Magnetic field current sensors, sensor systems and methods
CN103995240B (zh) * 2014-05-30 2017-11-10 江苏多维科技有限公司 一种磁电阻z轴梯度传感器芯片
CN104698409B (zh) * 2015-02-04 2017-11-10 江苏多维科技有限公司 一种单芯片具有校准线圈/重置线圈的高强度磁场x轴线性磁电阻传感器
CN104880682B (zh) * 2015-06-09 2018-01-26 江苏多维科技有限公司 一种交叉指状y轴磁电阻传感器
US9816838B2 (en) 2015-08-24 2017-11-14 Infineon Technologies Ag Magnetoresistive angle sensor with linear sensor elements
US10782153B2 (en) 2016-03-08 2020-09-22 Analog Devices Global Multiturn sensor arrangement and readout
JP6743770B2 (ja) * 2017-06-16 2020-08-19 株式会社デンソー ポジションセンサ
US10794968B2 (en) * 2017-08-24 2020-10-06 Everspin Technologies, Inc. Magnetic field sensor and method of manufacture
JP2019087688A (ja) * 2017-11-09 2019-06-06 Tdk株式会社 磁気センサ
JP7119695B2 (ja) * 2018-02-21 2022-08-17 Tdk株式会社 磁気センサ
CN108387852B (zh) * 2018-04-23 2024-07-19 北京航空航天大学青岛研究院 单、双轴磁场传感器及其制备方法
JP7119633B2 (ja) * 2018-06-20 2022-08-17 Tdk株式会社 磁気センサ
US11460521B2 (en) 2019-03-18 2022-10-04 Analog Devices International Unlimited Company Multiturn sensor arrangement
US11169228B2 (en) * 2019-08-27 2021-11-09 Western Digital Technologies, Inc. Magnetic sensor with serial resistor for asymmetric sensing field range
CN111277231B (zh) * 2020-02-18 2022-02-18 江苏多维科技有限公司 一种增益可控的磁阻模拟放大器
CN113030804B (zh) * 2021-03-01 2022-12-23 歌尔微电子股份有限公司 传感器和电子设备
CN113358137B (zh) * 2021-06-04 2023-03-03 蚌埠希磁科技有限公司 一种磁电阻模块及磁传感器
CN114089232B (zh) * 2021-11-25 2022-08-09 西安电子科技大学 一种磁场传感器及磁场测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297628B1 (en) * 1998-11-17 2001-10-02 Honeywell Inc Magnetoresistive bridge array
CN2657206Y (zh) * 2002-10-18 2004-11-17 雅马哈株式会社 磁感应器
CN101325210A (zh) * 2007-06-13 2008-12-17 株式会社理光 磁性传感器及其制作方法
US7592803B1 (en) * 2008-06-23 2009-09-22 Magic Technologies, Inc. Highly sensitive AMR bridge for gear tooth sensor
CN101672903A (zh) * 2009-09-23 2010-03-17 电子科技大学 一种惠斯通电桥式自旋阀磁传感器的制备方法
CN102298124A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 一种独立封装的桥式磁场角度传感器
CN102298126A (zh) * 2011-01-17 2011-12-28 江苏多维科技有限公司 独立封装的桥式磁场传感器

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264701A (ja) * 1992-01-23 1993-10-12 Fujitsu Ltd 磁気センサ
CN1185723C (zh) * 1998-08-07 2005-01-19 旭化成株式会社 磁传感器及其制造方法
JP2001102659A (ja) * 1999-01-04 2001-04-13 Yamaha Corp 磁気抵抗素子
JP3971934B2 (ja) * 2001-03-07 2007-09-05 ヤマハ株式会社 磁気センサとその製法
US6946834B2 (en) * 2001-06-01 2005-09-20 Koninklijke Philips Electronics N.V. Method of orienting an axis of magnetization of a first magnetic element with respect to a second magnetic element, semimanufacture for obtaining a sensor, sensor for measuring a magnetic field
DE10228662A1 (de) * 2002-06-27 2004-01-22 Philips Intellectual Property & Standards Gmbh Magnetoresistiver Sensor
JP2005147970A (ja) * 2003-11-19 2005-06-09 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai 回転検出装置
CN100442076C (zh) * 2005-05-27 2008-12-10 中国科学院物理研究所 线性磁场传感器及其制作方法
US7714591B2 (en) * 2005-12-20 2010-05-11 Kulite Semiconductor Products, Inc. Apparatus and methods for linearizing piezoresistive wheatstone bridges
JP4754985B2 (ja) * 2006-02-17 2011-08-24 旭化成エレクトロニクス株式会社 磁気センサモジュール
JP4977378B2 (ja) * 2006-02-23 2012-07-18 山梨日本電気株式会社 磁気センサ、回転検出装置及び位置検出装置
CN101389972B (zh) * 2006-02-23 2012-07-04 Nxp股份有限公司 磁致电阻传感器设备以及制造这样的磁致电阻传感器设备的方法
JP4890891B2 (ja) * 2006-03-10 2012-03-07 山梨日本電気株式会社 磁気センサ、その製造方法および電子機器
DE102006032277B4 (de) * 2006-07-12 2017-06-01 Infineon Technologies Ag Magnetfeldsensorbauelement
JP2008134181A (ja) * 2006-11-29 2008-06-12 Alps Electric Co Ltd 磁気検出装置及びその製造方法
EP2003462B1 (en) * 2007-06-13 2010-03-17 Ricoh Company, Ltd. Magnetic sensor and production method thereof
US7639005B2 (en) * 2007-06-15 2009-12-29 Advanced Microsensors, Inc. Giant magnetoresistive resistor and sensor apparatus and method
JP5165963B2 (ja) * 2007-08-14 2013-03-21 新科實業有限公司 磁気センサ及びその製造方法
US8587297B2 (en) * 2007-12-04 2013-11-19 Infineon Technologies Ag Integrated circuit including sensor having injection molded magnetic material
JP2009162540A (ja) * 2007-12-28 2009-07-23 Alps Electric Co Ltd 磁気センサ及びその製造方法
JP2009162499A (ja) * 2007-12-28 2009-07-23 Alps Electric Co Ltd 磁気センサ
JP5066579B2 (ja) * 2007-12-28 2012-11-07 アルプス電気株式会社 磁気センサ及び磁気センサモジュール
JP2009281784A (ja) * 2008-05-20 2009-12-03 Alps Electric Co Ltd 磁気センサ
US8283921B2 (en) * 2008-11-26 2012-10-09 General Electric Company Magnetoresistance sensors for position and orientation determination
CN201622299U (zh) * 2009-06-19 2010-11-03 钱正洪 新型巨磁阻集成电流传感器
US8451003B2 (en) * 2009-07-29 2013-05-28 Tdk Corporation Magnetic sensor having magneto-resistive elements on a substrate
CN101788596A (zh) * 2010-01-29 2010-07-28 王建国 Tmr电流传感器
US20120068698A1 (en) * 2010-09-17 2012-03-22 Industrial Technology Research Institute Structure of tmr and fabrication method of integrated 3-axis magnetic field sensor and sensing circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297628B1 (en) * 1998-11-17 2001-10-02 Honeywell Inc Magnetoresistive bridge array
CN2657206Y (zh) * 2002-10-18 2004-11-17 雅马哈株式会社 磁感应器
CN101325210A (zh) * 2007-06-13 2008-12-17 株式会社理光 磁性传感器及其制作方法
US7592803B1 (en) * 2008-06-23 2009-09-22 Magic Technologies, Inc. Highly sensitive AMR bridge for gear tooth sensor
CN101672903A (zh) * 2009-09-23 2010-03-17 电子科技大学 一种惠斯通电桥式自旋阀磁传感器的制备方法
CN102298126A (zh) * 2011-01-17 2011-12-28 江苏多维科技有限公司 独立封装的桥式磁场传感器
CN102298124A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 一种独立封装的桥式磁场角度传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2667213A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3029479A4 (en) * 2013-07-30 2017-03-15 Multidimension Technology Co., Ltd. Singlechip push-pull bridge type magnetic field sensor
EP3045926A4 (en) * 2013-09-10 2017-07-05 Multidimension Technology Co., Ltd. Single-chip z-axis linear magnetic resistance sensor

Also Published As

Publication number Publication date
JP2014508286A (ja) 2014-04-03
CN102298126B (zh) 2013-03-13
CN202433514U (zh) 2012-09-12
EP2667213A4 (en) 2017-12-06
EP2667213A1 (en) 2013-11-27
US9234948B2 (en) 2016-01-12
US20130300409A1 (en) 2013-11-14
US20160097828A1 (en) 2016-04-07
CN102298126A (zh) 2011-12-28
EP2667213B1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
US9234948B2 (en) Single-package bridge-type magnetic field sensor
EP2682773B1 (en) Separately packaged bridge magnetic-field angle sensor
US9722175B2 (en) Single-chip bridge-type magnetic field sensor and preparation method thereof
JP6247631B2 (ja) 単一チップ参照フルブリッジ磁場センサ
JP6420665B2 (ja) 磁場を測定する磁気抵抗センサ
JP6017461B2 (ja) 単一パッケージ磁気抵抗角度センサ
US9664754B2 (en) Single chip push-pull bridge-type magnetic field sensor
EP2827165B1 (en) Magnetoresistance magnetic field gradient sensor
JP6403326B2 (ja) 電流センサ
EP2752675B1 (en) Mtj three-axis magnetic field sensor and encapsulation method thereof
CN102298125B (zh) 推挽桥式磁电阻传感器
WO2015058632A1 (zh) 一种用于高强度磁场的推挽桥式磁传感器
JP2014515470A (ja) シングルチップ2軸ブリッジ型磁界センサ
US20180321334A1 (en) Tmr high-sensitivity single-chip push-pull bridge magnetic filed sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13979721

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013549700

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011856147

Country of ref document: EP