WO2012096371A1 - フッ素化合物の製造方法 - Google Patents

フッ素化合物の製造方法 Download PDF

Info

Publication number
WO2012096371A1
WO2012096371A1 PCT/JP2012/050577 JP2012050577W WO2012096371A1 WO 2012096371 A1 WO2012096371 A1 WO 2012096371A1 JP 2012050577 W JP2012050577 W JP 2012050577W WO 2012096371 A1 WO2012096371 A1 WO 2012096371A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali metal
fluorine
fluorine compound
fluoride
solvent
Prior art date
Application number
PCT/JP2012/050577
Other languages
English (en)
French (fr)
Inventor
篤史 福永
将一郎 酒井
新田 耕司
山口 篤
真嶋 正利
稲澤 信二
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to KR1020137017374A priority Critical patent/KR20140024841A/ko
Priority to CN201280005069.2A priority patent/CN103313933B/zh
Priority to US13/978,980 priority patent/US20130294997A1/en
Publication of WO2012096371A1 publication Critical patent/WO2012096371A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/086Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/093Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more sulfur atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

 KN(SOF)は、HN(SOCl)をKFに滴下して中間生成物を生成した後、中間生成物とKFとを水溶媒中で反応させることにより、合成される。

Description

フッ素化合物の製造方法
 本発明は、塩素化合物からフッ素化合物を合成するフッ素化合物の製造方法に関する。
 リチウムイオン2次電池は、電解液を使用する。近年、電解液の支持塩として、LiN(SOF)等のイミド塩が注目されている。また、溶融塩電池の溶融塩として、KN(SOF)、NaN(SOF)、又はこれらの混合物が採用されている。溶融塩電池を作動させるため、溶融塩が溶解する温度まで、溶融塩電池を加熱する必要がある。KN(SOF)、NaN(SOF)、又はこれらの混合物の溶融点は、従来の溶融塩の溶融点と比べて低いため、溶融塩電池の作動温度を低くする材料として注目されている。
 特許文献1は、触媒としてピリジンを用いると共に、反応原料をアセトニトリル溶媒中でフッ素化してKN(SOF)を生成する方法を開示する。特許文献2は、HN(SOCl)をニトロメタン溶媒中でフッ素化してKN(SOF)を生成する方法を開示する。非特許文献1は、ジクロロメタン溶媒中でHN(SOCl)とKFとを反応させてKN(SOF)を生成する方法を開示する。
 溶融塩電池の価格を低く抑えるため、溶融塩電池に用いられるKN(SOF)またはNaN(SOF)の製造コストを低く抑える必要がある。しかしながら、上記各文献に開示の製造方法によれば、HFSI(HN(SOCl))のフッ素化を完了させるまでに48~72時間を要する。このため、KN(SOF)またはNaN(SOF)の製造コストを低く抑えることができない。
特開2007-182410号公報 特表2004-522681号公報
Z.Anorg.Allg.Chem,2005,631,55-59
 本発明の目的は、短時間で、ハロゲン化物からフッ素化合物が得られるフッ素化合物の製造方法を提供することにある。
 上記課題を解決するため、本発明の第一の態様によれば、下記(1)式に示すハロゲン化合物のハロゲン元素をフッ素に置換することにより、下記(2)式に示すフッ素化合物を合成するフッ素化合物の製造方法が提供される。この製造方法では、ハロゲン化合物とアルカリ金属Mのフッ化物であるアルカリ金属フッ化物MFとを無溶媒で反応させて中間生成物を生成した後、中間生成物とアルカリ金属フッ化物MFとを極性溶媒中で反応させる。
 HN(SO)(SO)    ・・・ (1)
 MN(SOF)          ・・・ (2)
 X及びXは、それぞれ独立にCl、Br、Iのいずれかの元素を示す。アルカリ金属Mは、Li、Na、K、Rb、Csのいずれかを示す。
 従来、フッ素化合物を得るため、ジクロロメタン等の溶媒中でHN(SOCl)とアルカリ金属フッ化物とを反応させていた。しかしながら、HN(SOCl)とアルカリ金属フッ化物との反応速度は遅い。これは、フッ化物がジクロロメタンに溶解しないため、HN(SOCl)とアルカリ金属フッ化物とがフッ化物の表面上でしか反応できないことによる。一方、フッ化物が溶解する溶媒中でHN(SOCl)とアルカリ金属フッ化物とを反応させることも考えられる。しかしながら、アセトニトリル中でHN(SOCl)とアルカリ金属フッ化物とを反応させても、反応速度は速くならない。また、アルカリ金属フッ化物が溶解する水溶媒中で、HN(SOCl)とアルカリ金属フッ化物とを反応させることも考えられる。しかしながら、HN(SOCl)は、水と反応して加水分解してしまう。このため、目的物を合成することができない。
 発明者は、HN(SO)(SO)とアルカリ金属フッ化物MFとを無溶媒で反応させることで一方のハロゲン元素がフッ素に置換されること、及び上記の反応が短時間で完了することを見出した。また、発明者は、この反応により得られる生成物がMN(SOX)(SOF)であること、MN(SOX)(SOF)とアルカリ金属フッ化物MFとを極性溶媒中で反応させることにより目的物であるMN(SOF)が得られることを見出した。更に、発明者は、この合成方法が従来の合成方法と比べて短時間で完了することも見出した。
 従来、1つの工程で、所定条件下でHN(SOCl)とKFとを反応させて、KN(SOF)を生成していた。これに対し、本発明の方法によれば、第1工程で、HN(SO)(SO)の一方のハロゲン元素がフッ素に置換され、第2工程で、他方のハロゲン元素がフッ素に置換される。このような2段階の工程によれば、まず、第1工程で、HN(SO)(SO)をアルカリ金属塩に変換して、HN(SO)(SO)を消滅させる。これにより、第2工程において、アルカリ金属フッ化物MFを溶融し易い水を用いることが可能となる。
 上記のフッ素化合物の製造方法において、ハロゲン化合物とアルカリ金属フッ化物とを反応させる前に、アルカリ金属フッ化物から水分を除去することが好ましい。
 HN(SO)(SO)は水と反応して加水分解し、副生成物を生成する。上記発明によれば、アルカリ金属フッ化物から水分を除去するため、加水分解による副生成物の生成を抑制することができる。
 上記のフッ素化合物の製造方法において、極性溶媒は、プロトン性極性溶媒であることが好ましい。
 アルカリ金属フッ化物(MN(SO)(SOF))は、非プロトン性極性溶媒よりもプロトン性極性溶媒に多く溶解する。このため、上記発明によれば、MN(SO)(SOF)とアルカリ金属フッ化物MFとの反応を促進することができる。
 上記課題を解決するため、本発明の第二の態様によれば、下記(3)式に示すハロゲン化合物の一方のハロゲン元素をフッ素に置換することにより、下記(4)式に示すフッ素化合物を合成するフッ素化合物の製造方法が提供される。この製造方法では、ハロゲン化合物とアルカリ金属Mのフッ化物であるアルカリ金属フッ化物MFとを無溶媒で反応させる。
 HN(SOX)        ・・・ (3)
 MN(SOX)(SOF)   ・・・ (4)
 Xは、Cl、Br、Iのいずれかの元素を示す。アルカリ金属Mは、Li、Na、K、Rb、Csのいずれかを示す。
 この発明は、上記発明における第1工程の反応を行うことによって、HN(SOX)から、MN(SOX)(SOF)が得られる。この方法によれば、MN(SOX)(SOF)を、従来の方法に比べて短時間で合成することができる。
 上記課題を解決するため、本発明の第三の態様によれば、下記(4)式に示すハロゲン化合物のフッ素以外のハロゲン元素をフッ素に置換することにより、下記(5)式に示すフッ素化合物を合成するフッ素化合物の製造方法が提供される。この製造方法では、ハロゲン化合物とアルカリ金属Mのフッ化物であるアルカリ金属フッ化物MFとを極性溶媒中で反応させる。
 MN(SOX)(SOF)    ・・・ (4)
 MN(SOF)         ・・・ (5)
 Xは、Cl、Br、Iのいずれかの元素を示す。アルカリ金属Mは、Li、Na、K、Rb、Csのいずれかを示す。
 この発明は、上記発明における第2工程の反応を行うことにより、MN(SOF)が得られる。なお、原料であるMN(SOX)(SOF)の製造方法は、アルカリ金属フッ化物MFとHN(SOX)と反応させて生成する上記製造方法に限定されない。
(A)はKN(SOF)19F-NMRスペクトル図、(B)は、中間生成物Aに水を添加した直後の19F-NMRスペクトル図、(C)は、中間生成物Aに水を添加して8時間経過後の19F-NMRスペクトル図。
 式(A)を参照して、HN(SOCl)から合成されるKN(SOF)の製造方法の概略を説明する。
 HN(SOCl)は、従来の製造方法により生成する。次に、HN(SOCl)を、過剰の粉状のKFに滴下する。KFに水分が含まれていると、水とHN(SOCl)とが反応して加水分解を起こす虞がある。このため、KFにHN(SOCl)を滴下する前に、予めKFから水分を除去する。次に、HN(SOCl)とKFとを反応させて、KN(SOCl)(SOF)とHClとを生成する。この反応は、溶媒なしで行われるため、2~3分程度で完了する。粉状のKFにHN(SOCl)を滴下して形成されたもの、即ち、KN(SOCl)(SOF)とKFとを含むものを、中間生成物Aとする。
 次に、中間生成物Aに、溶媒としての水を添加する。KN(SOCl)(SOF)は、水と反応しないため、加水分解による生成物を生成しない。一方、KFは、水に溶解してイオン化する。このため、KN(SOCl)(SOF)のClがフッ素と置換する。これにより、KN(SOF)とKClが生成される。この反応は、6~7時間で概ね完了し、12時間経過後には殆ど完了する。その後、反応系を減圧して、反応物から水を蒸発させる。更に、反応物を蒸発させて、KN(SOF)を得る。
Figure JPOXMLDOC01-appb-C000001
 <HN(SOCl)の合成>
 次に、KN(SOF)の原料であるHN(SOCl)の合成方法を説明する。HN(SOCl)の合成方法は、以下の方法に限定されない。
 まず、スルファミン酸、クロロスルホン酸、塩化チオニルを、不活性雰囲気中で、モル比1.0:1.0:2.4となるように混合する。そして、この混合液を加熱すると共に、蒸留物の一部を還流する。すると、温度80℃に達した時点から塩化チオニルが沸騰し、反応が開始する。この反応を、温度130℃で約8時間継続する。8時間経過後、反応系に水分が浸入しないように、塩化カルシウム管を、反応系の蒸気排出口に取り付ける。そして、反応系を冷却することで、液状の中間生成物Bが得られる。中間生成物Bには、目的物であるHN(SOCl)が含まれている。
 次に、中間生成物BからHN(SOCl)を抽出するため、減圧下(650Pa以下)で、温度130℃で加熱して、残存する塩化チオニルを揮発させる。更に、塩化チオニルを揮発し終えた時点で、反応系を更に加熱し、温度約130度で蒸留する。これにより、目的物であるHN(SOCl)が抽出される。
 <KN(SOF)の合成>
 次に、KN(SOF)の合成方法を説明する。
 第1工程では、粉体のKFを予め乾燥して、KFから水分を除去する。そして、HN(SOCl)を、予め温度37℃以上に加熱して液体とし、KFに滴下する。KF2.5~3.0molに対するHN(SOCl)の滴下量は、1.0molである。この場合、KFは、HN(SOCl)に対して過剰量とする。即ち、HN(SOCl)の全てをKFと反応させるべく、HN(SOCl)及びKFの量が決められる。
 KF及びHN(SOCl)は、発熱して反応し、HClを発生する。HClが発生しなくなったとき、あるいは発熱しなくなったとき、反応が終了する。この反応により、KN(SOCl)(SOF)が生成される。この反応では、KN(SOF)は形成されない。反応は、2~3分で完了する。このように反応時間が短くなる理由は、KF及びHN(SOF)が溶媒中で接触するのではなく、KF及びHN(SOF)が直接接触するためであると考えられる。
 第2工程では、第1工程で得られた中間生成物Aに、水を添加する。水の量は、KFの容積の約3倍の量に設定される。そして、この水溶液を、室温下で12時間撹拌する。このとき、室温以上の温度にして、撹拌することもできる。
 次に、水溶液を減圧して乾燥することにより、KF、KCl、KN(SOF)の混合粉末を得る。KN(SOF)は、次の方法により分離される。例えば、KN(SOF)の融点がKF及びKClよりも低いことに基づいて、KN(SOF)を分離することができる。具体的には、混合粉末を、KN(SOF)が溶融する温度であってかつKF及びKClが溶融しない温度に加熱する。こうして、KN(SOF)を溶融すると共に、KF及びKClを固形物として残す。そして、遠心分離機又は濾過装置により、溶融物と固形物との混合物を、KN(SOF)と、KF及びKClとに分離する。
 また、KF、KCl、KN(SOF)の各種溶媒に対する溶解度の差に基づいて、KN(SOF)を分離することもできる。具体的には、KF及びKClが溶解しかつKN(SOF)が溶解し難い溶媒を選択し、この溶媒中でKN(SOF)を析出させる方法(再結晶法)を用いることができる。また、カラムクロマトグラフィ装置を用いて、KN(SOF)と、KF及びKClとを分離することもできる。
 図1の19F-NMRのスペクトルを参照し、KN(SOF)の生成について説明する。
 図1(A)に示すように、KN(SOF)単体の19F-NMRスペクトルは、77δ/ppmに1本のピークを有す。
 図1(B)に、第2工程における初期、即ち、第1工程の中間生成物Aに水を添加した直後の反応物及び生成物の19F-NMRスペクトルを示す。この時期には、KN(SOF)、KN(SOCl)(SOF)、KFのスペクトルが見られる。即ち、第2工程で水を添加した直後に、KN(SOF)が生成されることが分かる。
 図1(C)に、水の添加後、8時間経過したときの反応物の19F-NMRスペクトルを示す。この時期には、KN(SOCl)(SOF)の相当するスペクトルが殆ど消滅している。即ち、8時間経過後には、KN(SOCl)(SOF)のフッ素化の反応は、ほぼ完了している。
 本実施形態によれば、以下の作用効果を奏することができる。
 (1)HN(SOCl)をKFに滴下して中間生成物Aを生成した後、中間生成物AとKFとを水溶媒中で反応させて、KN(SOF)を合成する。この方法によれば、従来の方法に比べて、短時間で、KN(SOF)を合成することができる。
 (2)HN(SOCl)は、水と反応して加水分解し、副生成物を生成する。この点、本発明によれば、HN(SOCl)をKFに滴下する前に、KFから水分を除去するため、加水分解による副生成物の生成を抑制することができる。
 (3)第2工程では、溶媒として水を用いる。この方法によれば、溶媒として無極性溶媒を用いるときよりも多くのKFを、水に溶かすことができる。このため、KN(SOCl)(SOF)とフッ素との反応を促進することができる。
 なお、本発明の実施態様を、以下のように変更してもよい。
 ・上記実施形態において、第2工程では、中間生成物Aを溶解する溶媒として水を用いたが、任意の極性溶媒を用いてもよい。例えば、エタノール、アセトニトリル等を用いてもよい。
 ・上記実施形態において、HN(SOCl)を原料として、目的物であるKN(SOF)を合成したが、HN(SO)(SO)を原料としてもよい。ここで、X及びXはそれぞれ独立にCl、Br、Iのいずれかの元素を示す。
 また、KN(SOX)(SOF)を原料として、目的物であるKN(SOF)を合成してもよい。ここで、Xは、Cl、Br、Iのいずれかの元素を示す。この場合、第2工程と同様の合成方法が用いられる。KN(SOX)(SOF)の合成方法は、第1工程による合成方法に限定されない。
 ・上記実施形態において、KN(SOF)の合成方法を説明したが、同様の方法により、MN(SOF)を合成してもよい。ここで、Mは、アルカリ金属、即ち、Li、Na、K、Rb、Csのいずれかを示す。即ち、MN(SOF)は、HN(SOX)またはHN(SO)(SO)を原料として、第1工程及び第2工程に準じた工程により合成される。また、MN(SOF)は、MN(SOX)(SOF)を原料として、第2工程に準じた工程により、合成される。但し、フッ素源として、各工程におけるKFに代えて、目的物であるアルカリ金属塩に対応するアルカリ金属フッ化物が用いられる。
 ・上記実施形態において、KN(SOF)を目的物としたが、第1工程により形成されるアルカリ金属塩、即ち、KN(SOX)(SOF)を合成目的物としてもよい。ここで、Xは、Cl、Br、Iのいずれかの元素を示す。KN(SOX)(SOF)の製造方法は、第1工程と同様である。
 また、同様に、LiN(SOX)(SOF)、NaN(SOX)(SOF)、RbN(SOX)(SOF)、CsN(SOX)(SOF)を、第1工程に準じた方法により合成してもよい。但し、第1工程で使用されるKFに代えて、目的物であるアルカリ金属塩に対応するアルカリ金属フッ化物が用いられる。

Claims (5)

  1. 下記(1)式に示すハロゲン化合物のハロゲン元素をフッ素に置換することにより、下記(2)式に示すフッ素化合物を合成するフッ素化合物の製造方法であって、
     前記ハロゲン化合物とアルカリ金属Mのフッ化物であるアルカリ金属フッ化物MFとを無溶媒で反応させて中間生成物を生成した後、前記中間生成物と前記アルカリ金属フッ化物MFとを極性溶媒中で反応させることを特徴とするフッ素化合物の製造方法。
     HN(SO)(SO)    ・・・ (1)
     MN(SOF)          ・・・ (2)
     X及びXは、それぞれ独立にCl、Br、Iのいずれかの元素を示す。
     アルカリ金属Mは、Li、Na、K、Rb、Csのいずれかを示す。
  2. 請求項1に記載のフッ素化合物の製造方法において、
     前記ハロゲン化合物と前記アルカリ金属フッ化物とを反応させる前に、前記アルカリ金属フッ化物から水分を除去することを特徴とするフッ素化合物の製造方法。
  3. 請求項1又は2に記載のフッ素化合物の製造方法において、
     前記極性溶媒は、プロトン性極性溶媒であることを特徴とするフッ素化合物の製造方法。
  4. 下記(3)式に示すハロゲン化合物の一方のハロゲン元素をフッ素に置換することにより、下記(4)式に示すフッ素化合物を合成するフッ素化合物の製造方法であって、
     前記ハロゲン化合物とアルカリ金属Mのフッ化物であるアルカリ金属フッ化物MFとを無溶媒で反応させることを特徴とするフッ素化合物の製造方法。
     HN(SOX)        ・・・ (3)
     MN(SOX)(SOF)   ・・・ (4)
     Xは、Cl、Br、Iのいずれかの元素を示す。
     アルカリ金属Mは、Li、Na、K、Rb、Csのいずれかを示す。
  5. 下記(4)式に示すハロゲン化合物のフッ素以外のハロゲン元素をフッ素に置換することにより、下記(5)式に示すフッ素化合物を合成するフッ素化合物の製造方法であって、
     前記ハロゲン化合物とアルカリ金属Mのフッ化物であるアルカリ金属フッ化物MFとを極性溶媒中で反応させることを特徴とするフッ素化合物の製造方法。
     MN(SOX)(SOF)    ・・・ (4)
     MN(SOF)         ・・・ (5)
     Xは、Cl、Br、Iのいずれかの元素を示す。
     アルカリ金属Mは、Li、Na、K、Rb、Csのいずれかを示す。
PCT/JP2012/050577 2011-01-14 2012-01-13 フッ素化合物の製造方法 WO2012096371A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137017374A KR20140024841A (ko) 2011-01-14 2012-01-13 불소 화합물의 제조 방법
CN201280005069.2A CN103313933B (zh) 2011-01-14 2012-01-13 制造氟化合物的方法
US13/978,980 US20130294997A1 (en) 2011-01-14 2012-01-13 Method for producing fluorine compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-006215 2011-01-14
JP2011006215A JP5672016B2 (ja) 2011-01-14 2011-01-14 フッ素化合物の製造方法

Publications (1)

Publication Number Publication Date
WO2012096371A1 true WO2012096371A1 (ja) 2012-07-19

Family

ID=46507262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050577 WO2012096371A1 (ja) 2011-01-14 2012-01-13 フッ素化合物の製造方法

Country Status (5)

Country Link
US (1) US20130294997A1 (ja)
JP (1) JP5672016B2 (ja)
KR (1) KR20140024841A (ja)
CN (1) CN103313933B (ja)
WO (1) WO2012096371A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881365B1 (en) 2012-08-06 2018-11-28 Nippon Soda Co., Ltd. Method for producing bis(halosulfonyl)amine
WO2022258679A1 (en) 2021-06-10 2022-12-15 Rhodia Operations Solvent-free process for preparing a salt of bis(fluorosulfonyl)imide
EP4151592A1 (en) 2021-09-15 2023-03-22 Rhodia Operations Solvent-free process for preparing a salt of bis(fluorosulfonyl)imide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105523530B (zh) * 2014-10-23 2018-09-07 浙江蓝天环保高科技股份有限公司 一种双(氟磺酰)亚胺钾的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288193A (ja) * 2000-01-31 2001-10-16 Morita Kagaku Kogyo Kk スルホニルイミド化合物の製造方法
JP2004522681A (ja) * 2000-12-29 2004-07-29 ハイドロ−ケベック ハロスルホニル基、又はジハロホスホニル基を含む化合物をフッ素化するための方法
JP2007182410A (ja) * 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd フッ素化合物の製造方法及びそれにより得られるフッ素化合物
WO2010010613A1 (ja) * 2008-07-23 2010-01-28 第一工業製薬株式会社 ビス(フルオロスルホニル)イミドアニオン化合物の製造方法およびイオン対化合物
JP2010189372A (ja) * 2008-03-31 2010-09-02 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
WO2010140580A1 (ja) * 2009-06-03 2010-12-09 セントラル硝子株式会社 イミド酸塩の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504790A (ja) * 2005-08-22 2009-02-05 トランスファート プラス エスイーシー スルホニルイミド及びその誘導体を調製するための方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288193A (ja) * 2000-01-31 2001-10-16 Morita Kagaku Kogyo Kk スルホニルイミド化合物の製造方法
JP2004522681A (ja) * 2000-12-29 2004-07-29 ハイドロ−ケベック ハロスルホニル基、又はジハロホスホニル基を含む化合物をフッ素化するための方法
JP2007182410A (ja) * 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd フッ素化合物の製造方法及びそれにより得られるフッ素化合物
JP2010189372A (ja) * 2008-03-31 2010-09-02 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
WO2010010613A1 (ja) * 2008-07-23 2010-01-28 第一工業製薬株式会社 ビス(フルオロスルホニル)イミドアニオン化合物の製造方法およびイオン対化合物
WO2010140580A1 (ja) * 2009-06-03 2010-12-09 セントラル硝子株式会社 イミド酸塩の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881365B1 (en) 2012-08-06 2018-11-28 Nippon Soda Co., Ltd. Method for producing bis(halosulfonyl)amine
WO2022258679A1 (en) 2021-06-10 2022-12-15 Rhodia Operations Solvent-free process for preparing a salt of bis(fluorosulfonyl)imide
EP4151592A1 (en) 2021-09-15 2023-03-22 Rhodia Operations Solvent-free process for preparing a salt of bis(fluorosulfonyl)imide
WO2023041519A1 (en) 2021-09-15 2023-03-23 Rhodia Operations Solvent-free process for preparing a salt of bis(fluorosulfonyl)imide

Also Published As

Publication number Publication date
CN103313933A (zh) 2013-09-18
JP2012144412A (ja) 2012-08-02
JP5672016B2 (ja) 2015-02-18
US20130294997A1 (en) 2013-11-07
CN103313933B (zh) 2015-09-02
KR20140024841A (ko) 2014-03-03

Similar Documents

Publication Publication Date Title
JP5899789B2 (ja) イミド塩の製造方法
KR101890787B1 (ko) 리튬비스플루오로설포닐이미드의 제조 방법
RU2655326C2 (ru) Получение гексафторфосфатной соли и пентафторида фосфора
WO2018201711A1 (zh) 一种双氟磺酰亚胺锂的制备方法
JP6495041B2 (ja) ジハロリン酸アルカリ金属塩の製造方法およびジフルオロリン酸アルカリ金属塩の製造方法
US11718524B2 (en) Method for manufacturing sulfur tetrafluoride
WO2012096371A1 (ja) フッ素化合物の製造方法
NL2020683B1 (en) Production of lithium hexafluorophosphate
JP5148125B2 (ja) 六フッ化リン酸塩の製造方法
JP6709686B2 (ja) ビス(フルオロスルホニル)イミドアルカリ金属塩の製造方法
JP6779468B2 (ja) ペンタフルオロスルファニルピリジン
CN112939893A (zh) 一种4-(4-氨基苯基)-3-吗啉酮的合成方法
JP6505115B2 (ja) 臭化亜鉛および臭化リチウムを含む非プロトン性溶液の製造方法
CN104327001A (zh) 一种芳炔的合成方法
JPS5852966B2 (ja) 有機フッ素化合物の製造法
JP2010083845A (ja) N−フルオロピリジニウム塩の製造方法
JP2005350326A (ja) 亜硝酸リチウム水溶液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137017374

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13978980

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12734175

Country of ref document: EP

Kind code of ref document: A1