WO2012096295A1 - 内面溝付管及びその製造方法並びにその製造装置 - Google Patents

内面溝付管及びその製造方法並びにその製造装置 Download PDF

Info

Publication number
WO2012096295A1
WO2012096295A1 PCT/JP2012/050352 JP2012050352W WO2012096295A1 WO 2012096295 A1 WO2012096295 A1 WO 2012096295A1 JP 2012050352 W JP2012050352 W JP 2012050352W WO 2012096295 A1 WO2012096295 A1 WO 2012096295A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
diameter
downstream
pipe
raw
Prior art date
Application number
PCT/JP2012/050352
Other languages
English (en)
French (fr)
Inventor
弘太郎 釣
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2012534895A priority Critical patent/JP5224423B2/ja
Priority to CN2012800023888A priority patent/CN103097047A/zh
Publication of WO2012096295A1 publication Critical patent/WO2012096295A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • B21C1/24Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles by means of mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/02Dies; Selection of material therefor; Cleaning thereof
    • B21C3/12Die holders; Rotating dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/16Mandrels; Mounting or adjusting same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/207Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with helical guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex

Definitions

  • the present invention relates to an internally grooved tube used as a heat transfer tube for a heat exchanger such as a refrigerator or an air conditioner, a manufacturing method thereof, and a manufacturing apparatus thereof.
  • heat transfer tubes for heat exchangers such as refrigerators and air conditioners often use an internally grooved tube with a groove on the inner surface because of the requirement for heat exchange performance.
  • a manufacturing apparatus for manufacturing such an internally grooved tube for example, as in an “inside grooved tube processing apparatus” disclosed in Patent Document 1, a reduced diameter portion for reducing the diameter of an element tube, and an inner surface of the tube
  • An apparatus having a configuration including a tube inner surface fin processed portion that forms a plurality of grooves can be exemplified.
  • the reduced diameter portion is composed of a reduced diameter die and a floating die, and in the diameter reducing step, the raw tube is reduced in diameter by the reduced diameter die.
  • the tube inner fin processed portion is composed of a rolled portion composed of a plurality of rolled balls as a pressing rolling element, and a grooved plug having a groove cut on the outer periphery.
  • a ball (rolling element) presses the outer surface of the tube while rolling on the outer periphery of the tube, and presses the inner surface of the tube against a groove plug provided inside the tube, thereby forming a plurality of grooves on the inner surface of the tube.
  • Patent Documents 2 and 3 a drawing die as a downstream diameter reducing die is provided downstream of the rolling roll (42) constituting the pipe inner surface fin processed portion in the drawing direction of the raw pipe.
  • an “inner grooved pipe manufacturing apparatus” in which (41) is arranged in a stationary installation form without rotating in the pipe circumferential direction.
  • the “apparatus for producing an internally grooved tube” in Patent Documents 2 and 3 has a configuration in which a drawing die (41) is arranged as a pressing rolling element on the downstream side of the tube inner surface fin processed portion.
  • a drawing die (41) is arranged as a pressing rolling element on the downstream side of the tube inner surface fin processed portion.
  • the pressing rolling element revolves in the pipe circumferential direction, and depending on the processing conditions, the pressing rolling element revolves on the outer surface of the raw pipe after passing through the tube inner fin processed portion.
  • spiral concave portions and spiral convex portions appear alternately along the tube axis direction along the tube axis direction.
  • the surface of the heat transfer tube is roughened and cracked due to the bending of the hairpin, and the inner grooved tube cannot be incorporated in the heat exchanger as the heat transfer tube, and the quality as the heat transfer tube cannot be secured. There was also a fear.
  • the heat transfer tube is passed through through holes formed in a plurality of aluminum fins arranged at predetermined intervals, and the copper tube is inserted into the copper tube as a jig.
  • the adhesiveness between the heat transfer tube and the aluminum fin was lowered during the mechanical tube expansion for inserting and expanding the tube.
  • the processing pitch of the pressing rolling element is the pulling length L1 (mm / R) of the raw tube per revolution of the pressing rolling element, and the pressing rolling element arranged equally in the pipe circumferential direction.
  • P L1 / N It is the pitch represented.
  • the present invention is excellent in bending workability at the time of hairpin bending performed when incorporated in a heat exchanger as a heat transfer tube by reducing the surface roughness, and at the time of machine tube expansion, it has improved adhesion to aluminum fins.
  • An object of the present invention is to provide a method for manufacturing an internally grooved tube and an apparatus for manufacturing the internally grooved tube which can be manufactured while ensuring excellent productivity. Objective.
  • the present invention relates to a grooved plug in which a groove is formed on an outer periphery of an inner surface of the raw pipe by pressing of the raw pipe by a pressing rolling element that rolls the outer surface of the raw pipe in a pipe circumferential direction, and the inner pipe is disposed inside
  • a method of manufacturing an internally grooved tube that performs a fin forming step of forming a plurality of fins on an inner surface of an element tube by pressing the element tube on the inner surface of the element tube, while the element tube is drawn from the upstream side to the downstream side along the tube axis direction.
  • a downstream side diameter reducing step is performed to reduce the diameter of the raw pipe by a downstream side reduced diameter portion provided downstream of the pressing rolling element in the drawing direction.
  • downstream side diameter reducing step the downstream side In the reduced diameter portion, the downstream pipe diameter reducing die disposed on the outer side of the pipe so as to be rotatable in the pipe circumferential direction is rotated in the pipe circumferential direction in conjunction with the rotation in the pipe circumferential direction by the pressing rolling element. The diameter is reduced.
  • the downstream diameter reducing step the diameter of the raw pipe is reduced by the downstream diameter reduced portion provided on the downstream side of the fin forming portion. Since the raw pipe after passing can be held by the downstream diameter reducing die, twisting of the raw pipe can be prevented. Further, in the downstream diameter reducing step, the downstream diameter reducing die is rotated in the pipe circumferential direction in the same rotational direction as the rolling pressure body in conjunction with the rotation in the pipe circumferential direction by the rolling pressure body. Since the diameter of the raw pipe is reduced, the surface roughness of the raw pipe after passing through the downstream-side reduced diameter portion can be reduced.
  • the hairpin bending process performed when the heat transfer tube is incorporated into a heat exchanger has excellent hairpin bendability that hardly causes wrinkles on the outer surface of the tube.
  • An internally grooved tube having excellent adhesion can be produced.
  • the present invention also includes a pressing rolling element that rolls the outer surface of the element pipe in the pipe circumferential direction, and a grooved plug that is formed in the outer periphery of the groove and disposed inside the pipe.
  • An apparatus for producing an internally grooved tube having a tube inner surface fin forming portion that presses an inner surface of an element tube against the grooved plug by pressing to form a plurality of fins on the inner surface of the element tube, and the tube is pulled out
  • a downstream diameter-reducing die that includes a downstream diameter-reduced portion on the downstream side of the tube inner surface fin forming portion in the drawing direction, and is disposed outside the raw tube so as to be rotatable in the tube circumferential direction at the downstream diameter-reduced portion.
  • a rotational force transmitting means for transmitting the rotational force of the pressing rolling element in the pipe circumferential direction to the downstream diameter reducing die, at least one of the drawing direction from the pressing rolling element to the downstream diameter reducing die. It is provided in the part.
  • the downstream diameter-reduced portion is provided on the downstream side of the fin forming portion, the raw pipe after passing through the fin forming portion is formed by the downstream diameter reducing die. Since it can hold
  • the hairpin bending process performed when the heat transfer tube is incorporated into a heat exchanger has excellent hairpin bendability that hardly causes wrinkles on the outer surface of the tube.
  • An internally grooved tube having excellent adhesion can be produced.
  • the rotational force transmitting means is provided at least in part in the drawing direction from the pressing rolling element to the downstream diameter reducing die” means that the rotating force transmitting means is, for example, the pressing rolling element. Only, or a configuration provided only with the downstream diameter-reducing die, and further, a configuration provided for the entire range from the pressing rolling body to the downstream diameter-reducing die can be exemplified. If it is the structure which transmits the rotational force of the pipe peripheral direction to the said downstream diameter reduction die, it will not specifically limit.
  • an inner grooved tube that causes the downstream diameter reducing die to interlock with rotation in the pipe circumferential direction by the pressing rolling element at a rotation speed that matches the rotation speed in the pipe circumferential direction of the pressing rolling element. It can be set as a manufacturing method.
  • the downstream-side diameter-reducing die may be configured such that the rotational force transmitting means is rotated at a rotational speed that matches the rotational speed in the pipe circumferential direction of the pressing rolling element.
  • the convex trajectory formed on the surface of the raw tube by the pressing rolling body pressing and rolling the surface of the raw tube when the raw tube passes through the fin forming portion is the downstream side.
  • the downstream pipe diameter can be reduced smoothly without colliding with the diameter reduction die with an excessive impact force, and the surface roughness of the pipe can be further reduced. be able to.
  • the convex trajectory formed on the raw pipe surface by the pressing rolling element pressing and rolling the raw pipe surface is a downstream reduced diameter portion.
  • the convex trajectory formed on the raw pipe surface by the pressing rolling element pressing and rolling the raw pipe surface is a downstream reduced diameter portion.
  • the downstream diameter reducing die is rotated in the tube circumferential direction by the rolling pressure member at a rotational speed that matches the rotational speed of the rolling pressure member in the tube circumferential direction.
  • the downstream diameter reducing die is connected in the pipe circumferential direction of the pressing rolling element. Since it can be rotated at a rotational speed that matches the rotational speed, the impact force applied in the drawing direction to the downstream diameter reducing die due to the collision of the convex locus with the downstream diameter reduced portion is Can be efficiently dispersed in the direction.
  • the convex locus can be allowed to enter the die hole without receiving impact force directly from the downstream diameter reducing die.
  • the surface roughness of the raw tube after passing through the downstream diameter-reduced portion can be further reduced, the hairpin bendability at the time of hairpin bending of the heat transfer tube when incorporated in the heat exchanger as a heat transfer tube And the adhesiveness with the aluminum fin at the time of mechanical pipe expansion can be improved more.
  • the processing pitch P (mm) of the pressing rolling element is set to 0.2 or more, it is not necessary to perform inner surface groove processing on the raw pipe while drawing the raw pipe at a low drawing speed.
  • the productivity of the tube can be ensured, and it is not necessary to excessively increase the revolution speed of the pressing rolling element, so that the tube is not twisted and the device is not burdened, and has an excellent inner surface groove.
  • a tube can be produced.
  • R D ⁇ ((D) by the outer diameter D o (mm) of the raw tube before passing through the downstream diameter reducing die and the diameter D 1 (mm) of the downstream diameter reducing die. o ⁇ D 1 ) / D o ⁇ ⁇ 100 (%), the diameter reduction ratio R D (%) of the outer diameter of the raw tube in the downstream diameter reduction die is set to 0.05 ⁇ R D ⁇ 3 can do.
  • the outer surface average roughness Ra ( ⁇ m) in the tube axis direction is 0.05 ⁇ Ra ⁇ 0.0.0 by the method for manufacturing the inner surface grooved tube or using the inner surface grooved tube manufacturing apparatus. It is an inner surface grooved tube manufactured so as to be in the range of 5.
  • a concave locus and a convex locus of the pressing rolling body are formed on the outer surface of the raw tube.
  • the outer surface of the raw tube in which the concave locus and the convex locus are formed can be effectively smoothed.
  • the raw pipe surface roughness after passing through the downstream diameter reducing die can be reduced, and the outer surface average roughness Ra ( ⁇ m) in the pipe axis direction satisfies the range of 0.05 ⁇ Ra ⁇ 0.5.
  • An internally grooved tube can be manufactured.
  • the inner grooved tube can obtain an excellent hairpin bendability that hardly causes wrinkles due to the hairpin bending performed when it is incorporated into a heat exchanger as a heat transfer tube, and has excellent aluminum fins at the time of machine expansion. Adhesion can be obtained.
  • the inner grooved tube can be formed of a material having excellent thermal conductivity such as copper, aluminum, or an alloy thereof.
  • the present invention by reducing the surface roughness, it is excellent in the bendability of the heat transfer tube during the hairpin bending process that is performed when the heat transfer tube is incorporated into the heat exchanger, and at the time of mechanical expansion, the aluminum fin and A method of manufacturing an internally grooved tube and an apparatus for manufacturing such an internally grooved tube which can be manufactured while ensuring excellent productivity can be provided. Can be provided.
  • Explanatory drawing which showed the principal part of the manufacturing apparatus of the heat exchanger tube of this embodiment in cross section. Explanatory drawing which showed a part of downstream diameter reducing die of this embodiment in the cross section. Action
  • a spiral fin having a predetermined angle with respect to the tube axis direction X is formed on the tube inner surface 1i, and a groove is formed between adjacent fins. Note that fins and grooves are not shown.
  • the outer surface 1o of the heat transfer tube 1 is configured such that the average roughness Ra ( ⁇ m) in the tube axis direction X satisfies the range of 0.05 ⁇ Ra ⁇ 0.5.
  • FIG. 1 is a schematic diagram illustrating a main part of the manufacturing apparatus 10 for the heat transfer tube 1 in the present embodiment in cross section
  • FIG. 2 illustrates a part of a downstream diameter reducing die 31A described later in cross section. It is explanatory drawing explaining the diameter reduction rate of 31 A of downstream diameter reduction dies.
  • the manufacturing apparatus 10 has a reduced diameter portion 11, a pipe inner surface fin processing portion 21, and a downstream side in order along the raw pipe 1a from the upstream side to the downstream side in the drawing direction (Dd direction in FIG. 1), that is, the drawing direction.
  • the reduced diameter portion 31 is arranged in series.
  • the manufacturing apparatus 10 has a drawing device (not shown) for drawing the raw tube 1a from the upstream side to the downstream side downstream of the downstream reduced diameter portion 31 in the drawing direction Dd.
  • the manufacturing apparatus 10 includes a rotational drive unit 51 and a rotational force transmission unit 41 that transmits the rotational force generated by the rotational drive unit 51 to the pipe inner surface fin processing portion 21 and the downstream diameter reducing portion 31 side. ing.
  • the rotational force transmission unit 41 is disposed at least on the outer peripheral side of the pipe inner surface fin processed portion 21 and the downstream reduced diameter portion 31, and the rotational drive unit 51 is an outer periphery of the raw tube 1a. 41 on the downstream side.
  • the reduced diameter portion 11 is a portion for reducing the diameter of the passing raw tube 1 a, and includes a reduced diameter die 12 and a floating plug 13.
  • the diameter-reducing die 12 is configured in a cylindrical shape having a die hole 12a that opens in a divergent shape toward the upstream side D1u and penetrates in the tube axis direction X, and the raw tube 1a is inserted into the die hole 12a. It arrange
  • the floating plug 13 is disposed inside the raw tube 1a, and a part of the outer peripheral surface is formed in a conical shape. As a result, the floating plug 13 is engaged with the reduced diameter die 12 via the raw tube 1a so as to be rotatable around the tube axis.
  • the pipe inner surface fin processed portion 21 includes a grooved plug 22, a plurality of rolling balls 23, and a rolling ball holder 24.
  • the grooved plug 22 is disposed inside the tube, and crushes the tube inner surface 1i to form a spiral groove 22a on the outer surface of the tube inner surface 1i to form a helical fin having a predetermined angle with respect to the tube axis direction X. I have.
  • the grooved plug 22 is formed on the outer peripheral surface so that the groove 22a forms a lead angle of 40 ° in the right twist direction with respect to the tube axis direction X.
  • the plurality of rolling balls 23 are provided on the outer periphery of the raw tube 1a, and each of them is rollable while pressing the raw tube 1a on the outside of the raw tube 1a, that is, can rotate and rotate around the tube axis. Are arranged equally in the circumferential direction of the raw tube 1a.
  • the rolling ball holder 24 is a jig for holding the rolling ball 23 and revolving and guiding the circumferential direction of the pipe.
  • the rolling ball holder 24 is arranged on the upstream side with the upstream rolling ball holder 24U arranged on the upstream side.
  • the downstream rolling ball holder 24D is a jig for holding the rolling ball 23 and revolving and guiding the circumferential direction of the pipe.
  • the upstream rolling ball holder 24U is configured in a cylindrical shape that communicates in the drawing direction Dd and has a communication hole 24b that opens toward the drawing direction Dd.
  • the downstream side rolling ball holder 24D is a cylindrical member having a L-shaped cross section with a flange portion, and the flange portion 24a regulates the movement of the rolling ball 23 to the downstream side.
  • a connecting rod 61 is disposed as a connecting means between the reduced diameter portion 11 and the tube inner fin processed portion 21, and the connecting rod 61 rotates the grooved plug 22 and the floating plug 13 independently of each other. It is connected freely.
  • Downstream side reduced diameter die represented by the formula (1) by the inner diameter D 1 (mm) of the downstream side portion of the reduced diameter die 31A.
  • the die hole 31a is such that the reduction ratio R D (%) of the outer diameter of the element tube 1a in 31A satisfies the range of 0.05 ⁇ R D ⁇ 3.
  • the rotational drive unit 51 includes a motor connected to the rotational force transmission unit 41 on the downstream side of the rotational force transmission unit 41, and appropriately includes a control device and a speed reducer for controlling the motor. , Provided.
  • the rotational force transmission unit 41 includes a plurality of rotational force transmission blocks 42, 43, and 44, which will be described later, and a fastening bolt 45 that fastens the plurality of rotational force transmission blocks 42, 43, and 44 integrally.
  • the plurality of rotational force transmission blocks 42, 43, 44 are constituted by a holding fitting block 42, a die fitting block 43, and a rotating shaft block 44, and are arranged adjacent to each other in this order from the upstream side to the downstream side. Yes.
  • the holding fitting block 42 is a cylindrical block disposed on the outer peripheral side of the pipe inner surface fin processed portion 21, and the rolling ball holder 24U is fitted from the outside by a fitting portion 42a provided on the inner peripheral side. Yes.
  • the die fitting block 43 is a cylindrical block disposed on the outer peripheral side of the downstream reduced diameter portion 31, and the downstream reduced diameter die 31 ⁇ / b> A is fitted from the outside by a fitting portion 43 a provided on the inner peripheral side. Yes.
  • the rotary shaft block 44 is configured by a cylindrical block that is disposed on the downstream side of the die fitting block 43 and disposed on the outer peripheral side of the heat transfer tube 1 after passing through the downstream diameter-reduced die 31A.
  • Bolt insertion holes 41a are formed.
  • the bolt insertion holes 41 a are formed with a plurality of blocks 42, 43, 44 constituting the rotational force transmission unit 41 at positions that are equally distributed in the pipe circumferential direction.
  • a female screw portion is formed in a portion corresponding to the rotation shaft block 44 in the length direction of the bolt insertion hole 41a.
  • the fastening bolt 45 is formed with a male screw portion 45a on the outer periphery on the front end side, and is inserted into the bolt insertion hole 41a, whereby the holding fitting block 42, the die fitting block 43, and the rotating shaft block 44 are connected. A bolt that is tightened together by screwing.
  • the drawing device (not shown) provided on the downstream side of the manufacturing apparatus 10 includes a winding drum and a winding motor, and the winding drum is pulled while pulling the inner grooved tube 11 by the rotational drive of the motor. It is wrapped around.
  • the manufacturing apparatus 10 may include a diameter adjusting die (not shown) between the downstream diameter reducing die 31A and the drawing device.
  • the sizing die smoothly transfers, for example, distortion of the tube surface caused by pressing of the rolling ball 23 in the tube inner surface finned portion 21 when the heat transfer tube 1 passes through the die hole penetrating in the tube axis direction X. It is a die for adjusting the diameter to make it.
  • the structure of the diameter reduction part 11, the pipe inner surface fin process part 21, and the downstream diameter reduction part 31 mentioned above has the plug body 70 arrange
  • it is constituted by the jig 80.
  • the plug body 70 includes a floating plug 13, a grooved plug 22, and a connecting rod 61 that connects them in series.
  • the outside-tube arrangement jig 80 includes the reduced diameter die 12, the rolled ball 23, the rolled ball holder 24, and the downstream reduced diameter die 31A.
  • the heat transfer tube 1 of the present embodiment is manufactured by the following manufacturing method using the manufacturing apparatus 10 described above.
  • the method of manufacturing the heat transfer tube 1 includes the step of reducing the diameter of the tube 1a, the step of fining the tube inner surface, and the step of reducing the diameter of the tube 1a while the tube 1a is drawn from the upstream side to the downstream side by a drawing device (not shown). Perform sequentially in order.
  • the diameter reducing step is a step of reducing the diameter of the raw tube 1 a by the diameter reducing die 12 and the floating plug 13 in the diameter reducing portion 11.
  • the inner surface 1i of the element tube 1a is crushed by the grooved plug 22 by the pressing of the element tube 1a by the rolling ball 23 rolling the outer surface of the element tube 1a in the tube circumferential direction,
  • This is a step of forming spiral fins at a predetermined angle with respect to the tube axial direction X on the tube inner surface 1i and forming grooves between adjacent fins.
  • the rotational drive unit 51 is rotationally driven, and the rotational force of the rotational drive unit 51 is transmitted to the upstream rolling ball holder 24U via the holding fitting block 42 in the rotational force transmission unit 41, and upstream.
  • the side rolling ball holder 24U rotates.
  • the rolling ball 23 presses and rolls on the outer surface 1o of the raw tube 1a, so that the inner surface 1i is crushed by the grooved plug 22 and the inner tube 1a is crushed.
  • Spiral fins having a predetermined angle with respect to the tube axis direction X are formed on the surface 1i.
  • the processing pitch P (mm) of the rolled balls 23 is set to be in the range of 0.2 ⁇ P ⁇ 0.5.
  • the processing pitch P (mm) indicates the drawing length L1 (mm / R) of the raw tube 1a per revolution of the rolled ball 23.
  • the outer periphery of the raw tube 1a is connected to the outer periphery.
  • the drawing length L1 (mm / R) of the raw tube 1a while the rolling ball 23 revolves the raw tube 1a by an angle equally distributed by the number of the arranged rolling balls 23 indicates the tube circumference of the raw tube 1a.
  • P L1 / N (Expression (2)).
  • FIG. 5 is an explanatory diagram for explaining the processing pitch P schematically shown by omitting a part of the pipe inner surface fin processing portion 21 and omitting the downstream diameter reducing die 31A.
  • La, Ld, and Lb indicated by phantom lines in FIG. 5 are three rolling balls shown in FIG. 5 among the four rolling balls 23 arranged on the outer periphery of the raw tube 1a.
  • Reference numerals 23a, 23d, and 23b indicate trajectories of pressing the raw tube 1a.
  • FIG. 5 shows a case where the revolving direction of the rolling ball 23 is the reverse direction (the reverse direction to the normal direction which is the rotation direction of the grooved plug 22). When the rolling ball 23 is in the forward direction, the trajectories La, Lb, Ld of the rolling ball 23 are downwardly inclined in FIG.
  • the downstream diameter reducing step is a step of reducing the diameter (drawing) of the raw pipe 1a that has passed through the pipe inner surface finned portion 21 by the downstream reduced diameter portion 31 provided on the downstream side of the rolling ball 23 in the drawing direction Dd. is there.
  • the downstream diameter reducing die 31 ⁇ / b> A reduces the diameter of the raw pipe 1 a while rotating in the pipe circumferential direction in conjunction with the revolution of the rolling ball 23.
  • the downstream diameter reducing die 31 ⁇ / b> A is rotated in the pipe circumferential direction in accordance with the revolution speed of the rolling ball 23.
  • the rotational drive unit 51 is rotationally driven, and the rotation of the rotational drive unit 51 is transmitted to the downstream diameter reducing die 31 ⁇ / b> A via the die fitting block 43 in the rotational force transmission unit 41. Further, since the upstream side rolling ball holder 24U and the downstream side reduced diameter die 31A are integrally coupled via the holding fitting block 42 and the die fitting block 43, the rotational drive unit 51 is driven to rotate. Thus, the rolling ball 23 and the downstream diameter reducing die 31A rotate together in the pipe circumferential direction at a speed that matches each other.
  • downstream diameter reducing die 31 ⁇ / b> A reduces the diameter of the raw pipe 1 a while rotating in the pipe circumferential direction in conjunction with the revolution of the rolling ball 23.
  • the manufacturing apparatus 10 and the manufacturing method described above can obtain various actions and effects as described below.
  • the surface roughness of the heat transfer tube 1 after passing through the downstream-side reduced diameter die 31A can be reduced, and the average roughness Ra ( ⁇ m) of the outer surface 1o in the tube axis direction X ) Satisfying the range of 0.05 ⁇ Ra ⁇ 0.5 can be manufactured.
  • the tube outer surface 1o is less likely to be wrinkled, that is, the bending processability is excellent, and the machine fin is in close contact with the aluminum fin.
  • the heat transfer tube 1 having excellent properties can be manufactured.
  • the element after passing through the tube inner fin processing portion 21 is used.
  • the pipe 1a is reduced in diameter by the downstream reduced diameter part 131, an excessive load is applied from the downstream reduced diameter part 131, and the surface roughness of the pipe outer surface 1o becomes rough.
  • the downstream diameter-reduced portion 131 is extracted from the upstream side of the downstream-side reduced diameter portion 131.
  • the convex trajectory Lt of the spiral concave trajectory Lh and the convex trajectory Lt formed on the surface of the raw pipe 1a is shown in FIG. ), (B), it collides with the upstream end 131u of the die hole 131a of the stationary downstream diameter reducing portion 131.
  • 8 (a), 8 (b), and 8 (c) are functional explanations for explaining problems when the downstream reduced diameter portion 131 in the stationary installation mode reduces the diameter of the raw tube 1a as in the prior art.
  • 8 (a) and 8 (b) show details when drawing the raw tube 1a after passing through the tube inner fin processed portion 21 by the downstream reduced diameter portion 131 of the stationary installation form. Sectional drawing which showed typically the impact force F 'received from the downstream diameter reducing part 131 when the convex locus
  • FIG. 8C shows an enlarged view of a portion X in FIG.
  • the convex locus Lt in a state where the thickness of the outer surface 1o of the pipe is curled is forcibly bitten into the die hole 131a of the downstream diameter reducing portion 131. It will be pulled out. Furthermore, the load acting on the raw tube 1a fluctuates between the convex locus Lt and the concave locus Lh of the surface 1o of the raw tube 1a, resulting in a situation where stable drawing cannot be performed. As shown in (a), an internally grooved tube having a large surface roughness is manufactured as the heat transfer tube 1.
  • the hair pin bending process performed when the heat transfer tube 200 having a large surface roughness is incorporated into the heat exchanger in this way causes wrinkles on the tube outer surface 200o of the hairpin bent portion 200B of the heat transfer tube 200. If the wrinkles are severe, the strength of the heat transfer tube 1 may be hindered and damaged. In addition, when the surface roughness of the heat transfer tube 200 is large, there is also a problem that the adhesiveness with the aluminum fin is lowered during the mechanical expansion.
  • a manufacturing apparatus and a manufacturing method for manufacturing an internally grooved tube having a smooth surface have been conventionally provided.
  • Japanese Patent Application Laid-Open No. 2005-207670 in order to obtain an internally grooved tube that has good adhesion to the fin plate and is less likely to be cracked in hairpin bending processing, Reference is made to a specific surface roughness with a surface roughness of 3.2 ⁇ m and an average surface roughness of 0.35 ⁇ m or less.
  • the surface shaping die and the shaping die are drawn out from the rolled portion. It is set as the structure arrange
  • the manufacturing apparatus has a configuration in which the diameter reduction rate of the surface shaping die is 0.5 to 3.0% and the diameter reduction rate D2 of the metal tube in the shaping die is 10 to 25%. Yes.
  • the manufacturing apparatus 10 of the present embodiment is not limited to the configuration including the downstream side reduced diameter die 31A on the downstream side of the pipe inner surface fin processing portion 21, and the upstream side rolling ball holder 24U and A structure in which the downstream diameter reducing die 31A is integrally coupled, and the diameter of the raw pipe 1a is reduced while the upstream side rolling ball holder 24U is rotated and the downstream diameter reducing die 31A is integrally rotated in the pipe circumferential direction. is there.
  • the holding fitting block 42 and the die fitting block 43 are integrally fastened by the fastening bolt 45, and the holding fitting block 42 and the upstream rolling ball holder 24U are held.
  • the downstream side reduced diameter die 31 ⁇ / b> A is fitted by the fitting portion 43 a of the die fitting block 43 while being fitted by the fitting portion 42 a of the fitting block 42.
  • the diameter of the raw pipe 1a is reduced by the downstream diameter reducing die 31A.
  • the downstream diameter reducing die 31A is rolled.
  • the diameter of the raw tube 1a is reduced while rotating in the pipe circumferential direction at a rotation speed that matches the rotation speed in the pipe circumferential direction of the rolling ball 23 in conjunction with the rotation of the pressing ball in the pipe circumferential direction.
  • the rolling ball 23 presses and rolls on the outer surface 1o of the raw tube 1a in the tube inner surface fin processing portion 21, so that the outer surface 1o of the raw tube 1a has a concave locus.
  • the downstream diameter-reducing die 31A that rotates around the circumference of the pipe along with the revolution of the rolling ball 23 in the downstream diameter-reduced portion 31 is replaced with the raw pipe 1a. Passes, a concave locus Lh and a convex locus Lt are formed, and the outer surface of the raw tube 1a whose thickness varies in the tube axis direction X can be effectively smoothed.
  • the downstream diameter reducing die 31A performs the diameter reduction of the raw pipe 1a after passing through the pipe inner surface fin processing portion 21 while rotating in the pipe circumferential direction. For this reason, as shown in FIGS. 3A and 3B, when the pipe 1a passes through the downstream diameter-reduced portion 31, the pipe 1a having a convex locus Lt formed on the pipe surface is moved downstream. When pulling out by the reduced diameter portion 31, an impact force F that is positively applied in the pulling direction to the convex locus Lt on the tube surface is converted into a component Fy in the circumferential direction of the raw tube 1a (tangential direction of the tube outer surface 1o).
  • FIG. 3 (a) and 3 (b) are diagrams for explaining the operation of the downstream reduced diameter portion 31 of the present embodiment.
  • FIG. 3 (a) shows an installation configuration that rotates in the pipe circumferential direction.
  • the convex locus Lt of the pipe outer surface 1o collides with the upstream end portion 31u of the die hole 31a of the downstream reduced diameter portion 31, thereby A sectional view schematically showing an impact force F received from the side reduced diameter portion 31 is shown.
  • FIG. 3B shows an enlarged view of the portion X in FIG.
  • the convex trajectory Lt is the upstream end 31u of the die hole 31a of the downstream diameter reducing die 31A.
  • the impact force Fx that is positively applied in the drawing direction Dd to the convex trajectory Lt is also dispersed in the pipe circumferential direction, so that the tubular meat constituting the convex trajectory Lt Variation due to impact can be distributed in the tube axis direction X and the circumferential direction.
  • the convex locus Lt and the concave locus Lh formed on the outer surface 1o of the element tube 1a can be effectively smoothed, and as shown in a partially enlarged view in FIG.
  • the roughness of the outer surface 1o of the tube 1a can be reduced.
  • the hairpin bending process performed when the heat transfer tube 1 is incorporated into a heat exchanger is less likely to cause wrinkles on the outer surface of the tube, and has excellent bending workability and at the time of machine expansion.
  • An internally grooved tube having excellent adhesion to aluminum fins can be produced.
  • a downstream diameter reducing die 31 ⁇ / b> A is provided on the downstream side of the pipe inner surface fin processing section 21, and the pipe inner surface fin processing is performed by the downstream diameter reducing die 31 ⁇ / b> A. Since the raw pipe 1a after passing through the portion 21 is drawn, the raw pipe 1a after passing through the pipe inner fin processing portion 21 is held by the downstream diameter reducing die 31A, and the raw pipe 1a The effect that twist can be prevented can also be acquired.
  • the manufacturing apparatus 10 integrally couples the upstream rolling ball holder 24 ⁇ / b> U and the downstream diameter reducing die 31 ⁇ / b> A by the rotational force transmission unit 41, thereby reducing the downstream side shrinkage.
  • the diameter die 131 ⁇ / b> A is rotated at a rotation speed that matches the rotation speed of the rolling ball 23 in the pipe circumferential direction. That is, for example, as in the conventional configuration shown in FIG. 7, a bearing 47 is interposed between the downstream-side reduced-diameter die 131A and the die-fitting block 143, and the tube includes the rotatable rolling ball 23. It is not the structure arrange
  • the manufacturing apparatus 10 integrally connects the upstream rolling ball holder 24U and the downstream diameter reducing die 31A by the rotational force transmission unit 41, so that the pipe inner surface fin processing is performed as in the related art. It is not necessary to interpose the bearing 47 between the portion 21 and the downstream diameter reducing die 31A. For this reason, it is possible to manufacture the internally grooved tube in a state in which excellent productivity is ensured without considering the durability of the bearing 47.
  • the drawing length L1 (mm / R) of the raw tube 1a per revolution of the rolling ball 23 and the arrangement of the rolling balls 23 arranged equally in the pipe circumferential direction of the raw tube 1a. Since the processing pitch P (mm) of the rolling balls 23 represented by P L1 / N by the number N is set to be in the range of 0.2 ⁇ P ⁇ 0.5, the production of the internally grooved tube The tube surface roughness can be further reduced while securing the properties.
  • the processing pitch P (mm) is set to a small value of 0.5 or less, the spiral concave locus Lh and the convexity formed as the locus of the rolling ball 23 rolled on the outer surface 1o of the raw tube 1a. Since the formation pitch with the shape locus Lt can be reduced, it has been clear that the pipe surface roughness can be reduced. For this reason, as means for setting the processing pitch to a small value, means for reducing the drawing speed of the raw tube 1a and means for increasing the revolution period of the rolled ball 23 have been conventionally employed.
  • downstream inner diameter finned portion 31 is provided on the downstream side of the tube inner surface fin processing portion 21, as shown in FIG. Unlike the conventional manufacturing apparatus 100 that does not include the downstream reduced diameter portion 31 downstream of the processing portion 21, even when the revolution period of the rolled ball 23 is improved in the pipe inner surface fin processing portion 21.
  • the raw pipe 1a that has passed through the pipe inner surface fin processed portion 21 can be held by the downstream reduced diameter portion 31 so as not to twist.
  • the manufacturing apparatus 10 having the downstream diameter-reduced portion 31 on the downstream side of the tube inner fin processed portion 21, by setting the processing pitch P (mm) to 0.5 or less, the raw tube 1 a
  • the roughness of the outer surface 1o can be further reduced, and the excellent productivity and quality of the heat transfer tube can be ensured.
  • the drawing speed is set to 0.2 or less, it is necessary to set the drawing speed to be extremely low or to rotate the rolling ball 23 at an extremely high speed in the pipe circumferential direction. .
  • the drawing speed is extremely reduced, the problem that the productivity of the heat transfer tube is remarkably reduced occurs more remarkably.
  • the rolling ball 23 is rotated at a high speed in the pipe circumferential direction, the problem that an excessive load is imposed on the apparatus is more conspicuous.
  • the outer diameter D o (mm) of the raw tube 1a before passing through the downstream diameter reducing die 31A the diameter of the downstream diameter reducing die 31A.
  • the diameter reduction ratio R D of the outer diameter of the raw tube 1a in the downstream diameter reduction die 31A (%) Is set to 0.05 ⁇ R D ⁇ 3.
  • the pipe inner surface fin-machined portion 21 as the raw pipe 1a is reduced in diameter by the downstream diameter reduction die 31A.
  • the holding force for holding the raw tube 1a after passing through so as not to twist can be increased. Accordingly, it is possible to reliably prevent the raw tube 1a from being twisted after passing through the tube inner surface finned portion 21.
  • the rolling ball 23 can be revolved at a high speed, and a reduction in the processing speed can be minimized.
  • Performance verification experiment 1 In performance verification experiment 1, while verifying the limit ball rotation speed and the limit processing speed under the processing conditions of the example of the present invention and the conventional comparative examples 1 and 2, the processing of the example and the comparative examples 1 and 2 Under the conditions, a continuous 5000 mm processing experiment was performed to verify the presence or absence of processing breakage.
  • the limit ball rotation speed is a rolling ball in which the raw tube 1a does not twist after passing through the pipe inner surface finned portion 21 by the rolling ball 23 revolving the raw tube 1a in the tube inner surface fin processed portion 21.
  • 23 indicates the maximum number of rotations
  • the critical processing speed indicates the maximum drawing speed at which the pipe does not break during processing.
  • the processing conditions of Comparative Example 1 are to manufacture a heat transfer tube using a manufacturing apparatus 100 having a conventional configuration in which the downstream diameter reducing die 131 ⁇ / b> A is not disposed downstream of the tube inner surface fin processing portion 21.
  • the processing condition of Comparative Example 2 is that the downstream diameter reducing die 131 ⁇ / b> A is disposed on the downstream side of the pipe inner surface fin processing portion 21, and the downstream diameter reducing die 131 ⁇ / b> A is die-fitted.
  • This is a processing condition for manufacturing the heat transfer tube 200 with respect to the block 143 by the manufacturing apparatus 101 having a conventional configuration installed via the bearing 47.
  • the manufacturing apparatus 101 used as the processing condition of the comparative example 2 is a stationary installation in which the downstream diameter reducing die 131A does not rotate in the tube axial direction X together with the revolution of the rolling ball 23 of the tube inner surface fin processing portion 21. It is the structure which diameter-reduces the raw pipe 1a after passing the pipe inner surface fin process part 21 by a form.
  • the processing conditions of an Example are processing conditions which manufacture the heat exchanger tube 1 of this invention with the manufacturing apparatus 10 as shown in FIG. 1, and the manufacturing method mentioned above.
  • the downstream side reduced diameter die is manufactured by the manufacturing apparatus 10 having a configuration in which the upstream side rolled ball holder 24U and the downstream side reduced diameter die 31A are integrally coupled by the rotational force transmission unit 41.
  • the processing conditions are to be manufactured by a manufacturing method for reducing the diameter of the raw pipe 1a that has passed through the pipe inner surface fin processing portion 21 while rotating 31A at a rotation speed that matches the rotation speed of the rolling ball 23 in the pipe circumferential direction.
  • the results of the performance verification experiment 1 are shown in Table 2.
  • the downstream side reduced diameter die 31A is provided on the downstream side of the pipe inner surface fin processed portion 21 so that the downstream side reduced diameter die 31A is the tube inner surface fin processed portion. It is confirmed that the diameter can be reduced while holding the element tube 1a after passing through the tube 21, and even if the ball revolution number R is increased, the tube 1a can be pulled out without being twisted after passing through the tube inner fin processed portion 21. did it.
  • the upstream rolling ball holder 24U and the downstream diameter reduction die 31A are processed using the manufacturing apparatus 10 having a structure in which the rotational force transmission unit 41 is integrally coupled. Therefore, even if the ball revolution number R is increased, the heat transfer tube 1 will not be twisted.
  • the downstream diameter reducing die 131A and the die fitting block 143 Unlike the case where an apparatus having a configuration in which a bearing 47 is interposed therebetween is used, there is no possibility that the bearing 47 is damaged.
  • a breakage may occur because the downstream pipe diameter reducing die 31 ⁇ / b> A does not cause a situation in which the diameter of the raw pipe 1 a cannot be appropriately reduced due to breakage of the bearing 47. It was proved that the heat transfer tube 1 of excellent quality can be manufactured while ensuring excellent productivity.
  • the performance verification experiment 2 is an experiment conducted for verifying the bending workability at the time of hairpin bending performed on the heat transfer tube when the heat transfer tube is incorporated in the heat exchanger.
  • the wrinkles generated on the outer surface of the hairpin bending portion of the heat transfer tube that is, the compression of the outer surface of the tube accompanying the bending process.
  • the occurrence of distortion was verified.
  • the evaluation was performed based on whether or not wrinkles were generated on the appearance of the hairpin bending portion.
  • the wrinkles cannot be confirmed on the appearance of the hairpin bent part, or even when wrinkles are generated, if it is recognized that there is no problem on the quality as the heat transfer tube, evaluate as ⁇ no wrinkles '', When wrinkles that are recognized as problematic in terms of quality as a heat transfer tube have occurred, it was evaluated as “wrinkle generation”.
  • the surface roughness of the outer surface of the heat transfer tube can be considered.
  • the outer surface of the heat transfer tube manufactured under the processing conditions of Comparative Example 1 had a surface roughness as shown in a partially enlarged view in FIG.
  • the tube outer surface of the heat transfer tube produced under the processing conditions of the example has a surface roughness as shown in the partially enlarged view in FIG. 4B, and is compared with the tube outer surface in the case of Comparative Example 1.
  • the surface roughness was small. Therefore, the heat transfer tubes manufactured under the processing conditions of Comparative Example 2 and Example have a small surface roughness on the outer surface of the heat transfer tubes manufactured under the processing conditions of Comparative Example 1, and are more excellent in bending workability. I was able to prove that.
  • the hairpin bending process is performed on the heat transfer tube manufactured under the processing condition in which the processing pitch is set to a small value of 0.5 mm or less among the processing conditions of the examples. It was proved that wrinkles are less likely to occur at the hairpin bent part when performing the above.
  • the inner grooved tube corresponds to the heat transfer tube 1, and hereinafter,
  • the tube inner surface fin forming portion corresponds to the tube inner surface fin processing portion 21
  • the pressing rolling element corresponds to the processed part of the rolling ball 23
  • the rotational force transmission means corresponds to the rotational force transmission unit 41
  • the connecting rigid body corresponds to the holding fitting block 42, the die fitting block 43, the rotating shaft block 44, and the fastening bolt 45, but the present invention is not limited to the above-described embodiment, and is configured in various embodiments. be able to.
  • the present invention is not limited to the above-described embodiments, and can be configured in various embodiments.
  • the tube inner fin processed portion 21 is not limited to using the rolling ball 23 but may be rolled using another configuration such as a groove forming die or a rolling roller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Extraction Processes (AREA)

Abstract

 伝熱管として熱交換器に組み込む際に行うヘアピン曲げ加工時において、伝熱管のヘアピン曲げ性に優れた内面溝付管を提供すること。 素管1aを管軸方向Xに沿って上流側から下流側へ引抜く間、圧転動体23による素管の押圧によって管内面1iに複数のフィンを形成するフィン形成工程とともに、素管1aを縮径する下流側縮径工程において、押圧転動体23よりも引抜き方向の下流側に備えた下流側縮径ダイス31Aにより、押圧転動体23による管周方向の回転に連動して管周方向に回転しながら素管1aの縮径を行う。

Description

内面溝付管及びその製造方法並びにその製造装置
 本発明は、冷凍機、空調機などの熱交換器用の伝熱管として使用される内面溝付管及びその製造方法並びにその製造装置に関するものである。
 一般に冷凍機、空調機などの熱交換器用の伝熱管は、熱交換性能の要求から、内面に溝のついた内面溝付管が用いられることが多い。 
 このような内面溝付管を製造する製造装置としては、例えば、特許文献1に開示の「内面溝付き管の加工装置」のように、素管を縮径する縮径部と、管内面に複数の溝を形成する管内面フィン加工部とを備えた構成の装置を挙げることができる。
 前記縮径部は、縮径ダイスとフローティングダイスとで構成され、縮径工程において、素管を縮径ダイスにより縮径する。一方、管内面フィン加工部は、押圧転動体として複数の転造ボールからなる転造部と、外周に溝が切られている溝付プラグとで構成され、溝加工工程において、複数の転造ボール(転動体)が管外周を転動しながら管外面を押圧し、管内部に備えた溝プラグに管内面を押し付けて、該管内面に複数の溝を形成する。
 しかし、溝加工工程においては、複数の転造ボールが管外周を押圧しながら転動するため、加工条件によっては、管内面フィン加工部を通過後の素管が捩れるという問題があった。
 このような問題に対して、特許文献2,3において、管内面フィン加工部を構成する転造ロール(42)よりも、素管の引抜き方向の下流側に、下流側縮径ダイスとして抽伸ダイス(41)を管周方向に回転しないで静止した設置形態で配置した「内面溝付管の製造装置」が提案されている。
 特許文献2,3における「内面溝付き管の製造装置」は、上述したように、管内面フィン加工部の下流側に押圧転動体として抽伸ダイス(41)を配置した構成であり、該抽伸ダイス(41)によって、管内面フィン加工部よりも下流側で素管を抽伸することにより、素管が捩れることを防止することができる。
 しかし、その反面で、管内面フィン加工部の下流側に抽伸ダイス(41)を配置することで、管外表面粗さが大きくなるという問題が生じていた。
 詳しくは、管内面フィン加工部において、押圧転動体が管周方向に公転することにより、加工条件によっては、管内面フィン加工部を通過後の素管の外面には、押圧転動体が公転した軌跡として管軸方向に沿って螺旋状の凹部と螺旋状の凸部とが管軸方向に沿って交互にあらわれることになる。
 このような素管が抽伸ダイス(41)を通過する際に、素管表面に形成された凸部が抽伸ダイス(41)に衝突するとともに、強引に抽伸ダイス(41)に入り込んで通過しようとするため、素管の表面粗さが大きくなるという問題が生じていた。
 このように、内面溝付管の外表面粗さが大きくなると、内面溝付管を伝熱管として熱交換器に組み込む際に、直線状の伝熱管を折り曲げてU字状とするヘアピン曲げを行う際に、伝熱管に均一な曲げ応力がかからず、曲げ応力の不均衡に起因して伝熱管外周面にシワが生じるという問題があった。
 最悪の場合、ヘアピン曲げに伴い、伝熱管の表面には、肌荒れや割れが発生し、内面溝付管を伝熱管として熱交換器に組み込むことができずに、伝熱管としての品質を確保できないおそれもあった。 
 その他にも、内面溝付管の外表面粗さが大きくなると、伝熱管を、所定間隔ごとに配置した複数枚のアルミフィンに形成した貫通孔に通し、前記銅管を銅管内に治具を挿入して拡管する機械拡管時において、伝熱管とアルミフィンとの密着性が低下するという問題もあった。
 ところで、従来より、内面溝付管の外表面粗さを小さくするための対策として、前記押圧転動体の加工ピッチを小さくすることが知られている。
 ここで、前記押圧転動体の加工ピッチとは、前記押圧転動体の1公転あたりの素管の引抜き長さL1(mm/R)、素管の管周方向において等分に配置した前記押圧転動体の配置数Nにより、 
P=L1/N 
であらわされるピッチである。
 ところが、加工ピッチが小さいまま押圧転動体の公転数を増加させると、加工中に素管が周方向に捩れて潰れてしまう事態が生じる。よって、加工ピッチが小さいまま単純に、押圧転動体の公転数を増加することができず、生産性を悪化させるという別の問題が生じることになる。
特開平8-192219号公報 特開平1-99712号公報 特開平1-95811号公報
 そこで本発明は、表面粗さを小さくすることにより、伝熱管として熱交換器に組み込む際に行うヘアピン曲げ加工時において、曲げ加工性に優れるとともに、機械拡管時において、アルミフィンとの密着性に優れた内面溝付管の提供を目的とし、さらにこのような内面溝付管を、優れた生産性を確保した上で製造することができる内面溝付管の製造方法並びにその製造装置の提供を目的とする。
 本発明は、素管の外面を管周方向に転動する押圧転動体による素管の押圧によって該素管の内面を、溝が外周に形成され、素管の内部に配置された溝付プラグに押し付けて素管の内面に複数のフィンを形成するフィン形成工程を行う内面溝付管の製造方法であって、素管を管軸方向に沿って上流側から下流側へ引抜く間、前記フィン形成工程とともに、前記押圧転動体よりも引抜き方向の下流側に備えた下流側縮径部によって素管を縮径する下流側縮径工程を行い、前記下流側縮径工程では、前記下流側縮径部において、管周方向に回転自在に素管の外側に配置された下流側縮径ダイスにより、前記押圧転動体による管周方向の回転に連動して管周方向に回転しながら素管の縮径を行うことを特徴とする。
 上述した内面溝付管の製造方法によれば、下流側縮径工程において、前記フィン形成部よりも下流側に備えた下流側縮径部によって素管を縮径するため、前記フィン形成部を通過後の素管を、前記下流側縮径ダイスで保持することができるため、該素管の捻れを防ぐことができる。さらに、前記下流側縮径工程において、前記下流側縮径ダイスにより、前記転動押圧体による管周方向の回転に連動して前記転動押圧体と同じ回転方向へ管周方向に回転しながら素管の縮径を行うため、下流側縮径部を通過後の素管の表面粗さを小さくすることができる。
 従って、前記製造装置によれば、伝熱管として熱交換器に組み込む際に行うヘアピン曲げ加工によって管外面にシワが発生し難い優れたヘアピン曲げ性を有するとともに、機械拡管時において、アルミフィンとの優れた密着性を有する内面溝付管を製造することができる。
 また本発明は、素管の外面を管周方向に転動する押圧転動体と、溝が外周に形成され、管内部に配置された溝付プラグとを備え、前記押圧転動体による素管の押圧によって前記溝付プラグに素管の内面を押し付けて該素管の内面に複数のフィンを形成する管内面フィン形成部を備えた内面溝付管の製造装置であって、素管を引抜く引抜き方向における前記管内面フィン形成部よりも下流側に下流側縮径部を備え、前記下流側縮径部に、管周方向に回転自在に素管の外側に配置された下流側縮径ダイスを備え、前記押圧転動体の管周方向の回転力を前記下流側縮径ダイスに伝達する回転力伝達手段を、前記押圧転動体から前記下流側縮径ダイスに至る引抜き方向の間の少なくとも一部に備えたことを特徴とする。
 上述した内面溝付管の製造装置によれば、前記フィン形成部よりも下流側に下流側縮径部を備えたため、前記フィン形成部を通過後の素管を、前記下流側縮径ダイスで保持することができるため、該素管の捻れを防ぐことができる。さらに、回転力伝達手段を、前記押圧転動体から前記下流側縮径ダイスに至る引抜き方向の間の少なくとも一部に備えたため、下流側縮径部を通過後の素管の表面粗さを小さくすることができる。
 従って、前記製造装置によれば、伝熱管として熱交換器に組み込む際に行うヘアピン曲げ加工によって管外面にシワが発生し難い優れたヘアピン曲げ性を有するとともに、機械拡管時において、アルミフィンとの優れた密着性を有する内面溝付管を製造することができる。
 上述した「回転力伝達手段を、前記押圧転動体から前記下流側縮径ダイスに至る引抜き方向の間の少なくとも一部に備えた」とは、前記回転力伝達手段を、例えば、前記押圧転動体のみ、或いは前記下流側縮径ダイスのみ備えた構成を挙げることができ、さらに、前記押圧転動体から前記下流側縮径ダイスに至る全体に備えた構成を挙げることができるが、前記押圧転動体の管周方向の回転力を前記下流側縮径ダイスに伝達する構成であれば特に限定しない。
 この発明の態様として、前記下流側縮径ダイスを、前記押圧転動体の管周方向の回転速度と一致する回転速度で、前記押圧転動体による管周方向の回転に連動させる内面溝付管の製造方法とすることができる。
 或いは、この発明の態様として、前記回転力伝達手段を、前記押圧転動体の管周方向の回転により、該押圧転動体の管周方向の回転速度と一致する回転速度で前記下流側縮径ダイスを、回転させることを許容する剛体からなる連結剛体で構成し、前記連結剛体により、前記押圧転動体と前記下流側縮径ダイスとを一体に結合した内面溝付管の製造装置とすることができる。
 上述した発明の態様により、素管が前記フィン形成部を通過する際に、前記押圧転動体が素管表面を押圧転動することによって素管表面に形成された凸状軌跡が、前記下流側縮径ダイスに対して過大な衝撃力で衝突することがなく、前記下流側縮径ダイスによって、素管をスムーズに縮径することができ、素管の表面粗さを、より一層、小さくすることができる。
 詳しくは、従来、素管が前記フィン形成部を通過する際に、前記押圧転動体が素管表面を押圧転動することによって素管表面に形成された凸状軌跡が、下流側縮径部を通過する際に、下流側縮径部に衝突し、素管表面の粗さが大きくなるという問題があった。
 これに対して、前記製造方法によれば、前記下流側縮径ダイスを、前記転動押圧体の管周方向の回転速度と一致する回転速度で、前記転動押圧体による管周方向の回転に連動させることで、凸状軌跡の下流側縮径部への衝突によって、前記下流側縮径ダイスに対して引抜き方向に加わる衝撃力を、素管の周方向に効率的に分散させることができる。
 一方、前記製造装置によれば、前記連結剛体により、前記押圧転動体と前記下流側縮径ダイスとを一体に連結することで、前記下流側縮径ダイスを前記押圧転動体の管周方向の回転速度と一致する回転速度で回転させることができるため、凸状軌跡の下流側縮径部への衝突によって、前記下流側縮径ダイスに対して引抜き方向に加わる衝撃力を、素管の周方向に効率的に分散させることができる。
 よって、凸状軌跡は、前記下流側縮径ダイスからダイレクトに衝撃力を受けることがなく、ダイス孔に入り込ませることができる。
 従って、下流側縮径部を通過後の素管の表面粗さを、より一層、小さくすることができるため、伝熱管として熱交換器に組み込む際の伝熱管のヘアピン曲げ加工時のヘアピン曲げ性、及び、機械拡管時におけるアルミフィンとの密着性をより向上させることができる。
 またこの発明の態様として、前記押圧転動体の1公転あたりの素管の引抜き長さL1(mm/R)、素管の管周方向において等分に配置した前記押圧転動体の配置数Nにより、P=L1/Nであらわされる前記押圧転動体の加工ピッチP(mm)を、0.2≦P≦0.5の範囲になるように設定することができる。
 上述したように、前記押圧転動体の加工ピッチP(mm)を0.5以下とすることにより、内面溝付管の生産性を確保しつつ、管表面粗さをより一層、小さくすることができる。
 一方、前記押圧転動体の加工ピッチP(mm)を0.2以上とすることにより、素管を低い引き抜き速度で引き抜きながら素管に対して内面溝付加工を行う必要がないため、内面溝付管の生産性を確保することができ、また、前記押圧転動体の公転速度を過度に高める必要がないため、管が捻れたり、装置に負担を強いることがなく、優れた品質の内面溝付管を生産することができる。
 またこの発明の態様として、前記下流側縮径ダイスを通過前の前記素管の外径D(mm)、前記下流側縮径ダイスの径D(mm)により、R={(D-D)/D}×100(%)であらわされる前記下流側縮径ダイスにおける素管の外径の縮径率R(%)を、0.05≦R≦3に設定することができる。
 上述したように、縮径率R(%)を0.05≦Rに設定することで、前記下流側縮径ダイスにより素管が縮径するに伴って、フィン形成部を通過後の素管が捻れないよう保持する保持力を高めることができる。 
 従って、フィン形成部を通過後に素管が捩れることを確実に防止できる。
 一方、縮径率R(%)をR≦3に設定することで、素管を急激に縮径することにより、素管が破損したり、引抜き負荷が過大になることを防止できる。
 また本発明は、前記内面溝付管の製造方法により、または前記内面溝付管の製造装置を用いて、管軸方向における外表面平均粗さRa(μm)が0.05≦Ra≦0.5の範囲になるよう製造した内面溝付管であることを特徴とする。
 押圧転動体が素管の表面を押圧転動することにより、素管の外面には、押圧転動体の凹状軌跡と凸状軌跡とが形成されるが、前記押圧転動体の管周方向の回転とともに回転する下流側縮径ダイスを通過することで、凹状軌跡と凸状軌跡とが形成された素管の外面を効果的に平滑化することができる。
 よって、下流側縮径ダイスを通過後の素管表面粗さを小さくすることができ、管軸方向における外表面平均粗さRa(μm)が0.05≦Ra≦0.5の範囲を満たす内面溝付管を製造することができる。
 従って、内面溝付管は、伝熱管として熱交換器に組み込む際に行うヘアピン曲げによってシワが発生し難い優れたヘアピン曲げ性を得ることができるとともに、機械拡管時において、アルミフィンとの優れた密着性を得ることができる。
 前記内面溝付管は、例えば、銅、アルミニウム、又は、それらの合金等など熱伝導性に優れた材料で形成することができる。
 この発明によれば、表面粗さを小さくすることにより、伝熱管として熱交換器に組み込む際に行うヘアピン曲げ加工時において、伝熱管の曲げ加工性に優れるとともに、機械拡管時において、アルミフィンとの密着性に優れた内面溝付管を提供でき、さらに、このような内面溝付管を、優れた生産性を確保した上で製造することができる内面溝付管の製造方法並びにその製造装置を提供することができる。
本実施形態の伝熱管の製造装置の要部を断面で示した説明図。 本実施形態の下流側縮径ダイスの一部を断面で示した説明図。 本実施形態の伝熱管の製造装置の作用説明図。 本実施形態の伝熱管のヘアピン曲げ加工を行う前後の様子を模式的に示した説明図。 転造ボールの加工ピッチを説明する説明図。 従来の伝熱管の製造装置の要部を断面で示した説明図。 従来の他の実施形態の伝熱管の製造装置の要部を断面で示した説明図。 従来の伝熱管の製造装置の作用説明図。 従来の伝熱管のヘアピン曲げ加工を行う前後の様子を模式的に示した説明図。
 この発明の一実施形態を、以下図面を用いて説明する。 
 本実施形態における伝熱管1は、管内面1iに、管軸方向Xに対して所定角度の螺旋状のフィンを形成するとともに、隣り合うフィン間に溝を形成している。 
 なお、フィン、及び溝は図示省略する。
 伝熱管1の外表面1oは、管軸方向Xにおける平均粗さRa(μm)が0.05≦Ra≦0.5の範囲を満たすよう構成している。
 上述した伝熱管1を内面溝付管として製造する製造装置10について図1、及び図2を用いて説明する。 
 なお、図1は、本実施形態における伝熱管1の製造装置10の要部を断面により示した模式図であり、図2は、後述する下流側縮径ダイス31Aの一部を断面により示し、下流側縮径ダイス31Aの縮径率を説明する説明図である。
 前記製造装置10は、引抜き方向(図1中のDd方向)、すなわち抽伸方向の上流側から下流側へ素管1aに沿って、順に縮径部11、管内面フィン加工部21、及び下流側縮径部31を直列に配設している。
 また、前記製造装置10は、下流側縮径部31よりも引抜き方向Ddの下流側に、素管1aを上流側から下流側へ引抜く引抜装置を配置している(図示せず)。
 さらに、前記製造装置10は、回転駆動ユニット51と、回転駆動ユニット51による回転力を管内面フィン加工部21、及び、下流側縮径部31の側に伝達する回転力伝達ユニット41とを備えている。 
 回転力伝達ユニット41は、少なくとも管内面フィン加工部21、及び、下流側縮径部31の外周側に配設し、回転駆動ユニット51は、素管1aの外周であって、回転力伝達ユニット41の下流側に配設している。
 以下、上述した各部の構成について説明する。 
 前記縮径部11は、通過する素管1aを縮径するための箇所であり、縮径ダイス12とフローティングプラグ13とで構成している。前記縮径ダイス12は、上流側D1uへ向けて末広がり状に開口して管軸方向Xに貫通するダイス孔12aを有した筒状に構成し、ダイス孔12aに素管1aを挿通した状態で素管1aの外側に配置している。
 さらに、フローティングプラグ13は、素管1aの内側に配置され、外周面の一部を円錐状に形成している。これにより、フローティングプラグ13は、前記縮径ダイス12に対して管軸回りに回動自在に素管1aを介して係合している。
 管内面フィン加工部21は、溝付プラグ22と複数の転造ボール23、及び、転造ボール保持具24を備えている。
 溝付プラグ22は、管内部に配置され、管内面1iを押潰して、該管内面1iに管軸方向Xに対して所定角度の螺旋状のフィンを形成する螺旋状の溝22aを外周に備えている。
 溝付プラグ22は、外周面に溝22aが管軸方向Xに対して右ねじり方向に40°のリード角を成すように形成している。
 複数の転造ボール23は、素管1aの外周に4つ備え、それぞれを、素管1aの外側において該素管1aを押圧しながら転動自在に、すなわち、自転自在であるとともに管軸回りに公転自在に、素管1aの周方向に等分に配置している。
 転造ボール保持具24は、転造ボール23を保持するとともに、管周方向を公転案内する治具であり、上流側に配置された上流側転造ボール保持具24Uと、下流側に配置された下流側転造ボール保持具24Dとで構成している。
 上流側転造ボール保持具24Uは、引抜き方向Ddに連通するとともに、引抜き方向Ddへ向けて末広がり状に開口した連通孔24bを有した筒状に構成している。下流側転造ボール保持具24Dは、フランジ部分を備えた断面がL字形状の筒状部材であり、フランジ部分24aが下流側への転造ボール23の移動を規制している。
 なお、縮径部11と管内面フィン加工部21との間には、連結手段として連結棒61が配置され、連結棒61は、溝付プラグ22と前記フローティングプラグ13とをそれぞれ独立して回動自在に連結している。
 下流側縮径部31は、下流側縮径ダイス31Aで構成し、図2に示すように、該下流側縮径ダイス31Aを通過前の素管1aの外径D(mm)、下流側縮径ダイス31Aの下流側部分の内径D(mm)により、R={(D-D)/D}×100(%)…式(1)であらわされる下流側縮径ダイス31Aにおける素管1aの外径の縮径率R(%)が、0.05≦R≦3の範囲を満たすようなダイス孔31aで構成している。
 また、前記回転駆動ユニット51は、図示しないが、回転力伝達ユニット41における下流側で該回転力伝達ユニット41に対して連結したモータを備えるとともに、モータを制御する制御装置や減速機などを適宜、備えた構成である。
 前記回転力伝達ユニット41は、後述する複数の回転力伝達ブロック42,43,44とこれら複数の回転力伝達ブロック42,43,44を一体に締結する締結ボルト45で構成している。 
 複数の回転力伝達ブロック42,43,44は、保持嵌合ブロック42、ダイス嵌合ブロック43、及び、回転軸ブロック44で構成し、この順に上流側から下流側へ互いに隣接させて配置している。
 保持嵌合ブロック42は、管内面フィン加工部21の外周側に配置する筒状のブロックであり、内周側に設けた嵌合部42aにより転造ボール保持具24Uを外側から嵌合している。
 ダイス嵌合ブロック43は、下流側縮径部31の外周側に配置する筒状のブロックであり、内周側に設けた嵌合部43aにより下流側縮径ダイス31Aを外側から嵌合している。
 回転軸ブロック44は、ダイス嵌合ブロック43の下流側に配置するとともに、下流側縮径ダイス31Aを通過後の伝熱管1の外周側に配置する筒状のブロックで構成している。
 また、保持嵌合ブロック42、ダイス嵌合ブロック43、及び、回転軸ブロック44には、保持嵌合ブロック42から回転軸ブロック44に達する長さで管軸方向Xに沿って直線状に連通するボルト挿着孔41aを形成している。 
 ボルト挿着孔41aは、回転力伝達ユニット41を構成する各ブロック42,43,44を、管周方向に等分配する位置に複数形成している。
 なお、ボルト挿着孔41aの長さ方向の回転軸ブロック44に相当する部分には、雌螺子部を形成している。
 締結ボルト45は、先端側の外周に雄螺子部45aを形成し、ボルト挿着孔41aへ挿着することにより、これら保持嵌合ブロック42、ダイス嵌合ブロック43、及び、回転軸ブロック44を螺合により一体に友締めするボルトである。
 また、前記製造装置10の下流側に備えた図示しない前記引抜装置は、巻取りドラム、及び、巻取り用のモータを備え、該モータの回転駆動により内面溝付管11を引張りながら巻取りドラムに巻き付けている。
 なお、前記製造装置10は、下流側縮径ダイス31Aと引抜装置との間に、整径ダイスを備えてもよい(図示せず)。整径ダイスは、管軸方向Xに貫通したダイス孔を伝熱管1が通過することにより、例えば、前記管内面フィン加工部21における転造ボール23の押圧により生じた管表面の歪み等を滑らかにするための整径を行うダイスである。
 ところで、本実施形態では、上述した縮径部11、管内面フィン加工部21、及び、下流側縮径部31の構成は、管内部に配置したプラグ体70と管外側に配置した管外配置治具80とで構成していると換言することができる。
 プラグ体70は、フローティングプラグ13、溝付プラグ22、及び、これらを直列に連結する連結棒61で構成している。 
 管外配置治具80は、縮径ダイス12、転造ボール23、転造ボール保持具24、及び、下流側縮径ダイス31Aで構成している。
 本実施形態の伝熱管1は、上述した製造装置10を用いて以下の製造方法により製造する。 
 伝熱管1の製造方法は、図示しない引抜装置により素管1aを上流側から下流側へ引き抜く間、素管1aに対して縮径工程と管内面フィン加工工程と下流側縮径工程とをこの順で連続して行う。
 縮径工程は、縮径部11において縮径ダイス12とフローティングプラグ13により、素管1aを縮径する工程である。
 管内面フィン加工工程では、前記素管1aの外面を管周方向に転動する転造ボール23による素管1aの押圧によって該素管1aの内面1iを、溝付プラグ22によって押潰して、該管内面1iに管軸方向Xに対して所定角度の螺旋状のフィンを形成するとともに、隣り合うフィンの間に溝を形成する工程である。
 詳しくは、前記回転駆動ユニット51が回転駆動し、この回転駆動ユニット51の回転力が回転力伝達ユニット41における保持嵌合ブロック42を介して、上流側転造ボール保持具24Uに伝達し、上流側転造ボール保持具24Uが回転する。さらに、この上流側転造ボール保持具24Uの回転に伴って、転造ボール23が素管1aの外面1oを押圧転動することで、溝付プラグ22により管内面1iを押潰し、該管内面1iに管軸方向Xに対して所定角度の螺旋状のフィンを形成する。
 さらにまた、管内面フィン加工工程において、転造ボール23の加工ピッチP(mm)は、0.2≦P≦0.5の範囲になるように設定している。 
 ここで、加工ピッチP(mm)とは、転造ボール23の1公転あたりの素管1aの引抜き長さL1(mm/R)を示し、詳しくは、素管1aの外周を、該外周に配置した転造ボール23の個数で等分配した角度分だけ転造ボール23が素管1aを公転する間における素管1aの引抜き長さL1(mm/R)を示し、素管1aの管周方向において等分に配置した転造ボール23の配置数をNとしたとき、P=L1/N・・・式(2)であらわされる。
 前記製造装置では、素管1aの外周に転造ボール23をN=4個配置しているため、P=L1/4であらわされ、図5に示すように、転造ボール23が素管1aの外周を90度回転する間に素管1aが引抜き方向Ddへ進む移動距離Pを加工ピッチPとしている。
 なお、図5は、管内面フィン加工部21付近を一部省略するとともに、下流側縮径ダイス31Aを省略して模式的に示した加工ピッチPを説明する説明図である。また、図5中の仮想線で示したLa,Ld,Lbは、それぞれ素管1a外周に配置された4個の転造ボール23のうち、図5中に現される3個の転造ボール23a,23d,23bが素管1aを押圧した軌跡を示す。さらにまた、図5では、前記転造ボール23の公転方向が、逆方向(前記溝付プラグ22の回転方向である正方向と逆向き)の場合を示している。なお、転造ボール23が正方向である場合は、転造ボール23の軌跡La,Lb,Ldは、図5中、右下がりとなる。
 下流側縮径工程は、転造ボール23よりも引抜き方向Ddの下流側に備えた下流側縮径部31によって管内面フィン加工部21を通過した素管1aを縮径(抽伸)する工程である。下流側縮径工程において、下流側縮径ダイス31Aは、転造ボール23の公転に連動して管周方向に回転しながら素管1aの縮径を行う。 
 このとき、下流側縮径ダイス31Aは、転造ボール23の公転速度と一致させて管周方向に回転させている。
 詳しくは、回転駆動ユニット51が回転駆動し、この回転駆動ユニット51の回転が回転力伝達ユニット41におけるダイス嵌合ブロック43を介して、下流側縮径ダイス31Aに伝達する。さらに、上流側転造ボール保持具24Uと下流側縮径ダイス31Aとは、保持嵌合ブロック42、及びダイス嵌合ブロック43を介して一体に結合しているため、回転駆動ユニット51の回転駆動により、転造ボール23と下流側縮径ダイス31Aとは、互いに一致する速度で一体に管周方向を回転することになる。
 よって、下流側縮径ダイス31Aは、転造ボール23の公転に連動して管周方向に回転しながら素管1aの縮径を行う。
 上述した製造装置10、及び、製造方法は、以下のような様々な作用、効果を得ることができる。 
 上述した製造装置10、及び、製造方法により、下流側縮径ダイス31Aを通過後の伝熱管1の表面粗さを小さくすることができ、管軸方向Xにおける外面1oの平均粗さRa(μm)が0.05≦Ra≦0.5の範囲を満たす伝熱管1を製造することができる。
 このため、伝熱管1として熱交換器に組み込む際に行うヘアピン曲げ加工において、管外面1oにシワが発生し難い特性、つまりは曲げ加工性が優れるとともに、機械拡管時において、アルミフィンとの密着性に優れた伝熱管1を製造することができる。
 上述した製造装置10、及び、製造方法が奏する作用効果について以下で詳述する。 
 一般的に、管内面フィン加工部21において、転造ボール23が素管1aの外面1oを押圧しながら管周方向に転動するため、図3に示すように、管内面フィン加工部21を通過後の素管1aの外面1oには、転造ボール23が押圧転動した軌跡である凹状軌跡Lhと凸状軌跡Ltとが管軸方向Xに沿って交互に螺旋状に形成されることになる。
 このため図7に示すように、回転力伝達ユニット141におけるダイス嵌合ブロック143と下流側縮径部131との間にベアリング47を介在させた従来の構成、すなわち、管内面フィン加工部21の下流側において、下流側縮径部131を、転造ボール23の公転と連動して管周方向に回転せずに単に、静止した設置形態の場合、管内面フィン加工部21を通過後の素管1aは、下流側縮径部131により縮径される際に、下流側縮径部131から過大な負荷がかかり、管外面1oの表面粗さが粗くなるといった問題が発生する。 
 具体的には、従来のように、下流側縮径部131を、管内面フィン加工部21の下流側において静止して設置する設置形態の場合、下流側縮径部131よりも上流側から引抜かれる素管1aが、下流側縮径部131に達したとき、素管1a表面に形成された螺旋状の凹状軌跡Lhと凸状軌跡Ltとのうち、凸状軌跡Ltが、図8(a),(b)に示すように、静止している下流側縮径部131のダイス孔131aの上流側端部131uに衝突することになる。
 このように、静止した設置形態の下流側縮径部131に対して、素管1aの外面の凸状軌跡Ltが衝突すると、図8(a),(b),(c)に示すように、該凸状軌跡Ltは、管周方向(管外面1oの接線方向)の成分Fy’に対して引抜き方向Ddの成分Fx’の方が大きな衝撃力F’を下流側縮径部131から積極的に受けることになり、管外面1oの肉が捲れるなどの事態が発生する。
 なお、図8(a),(b),(c)は、従来のように、静止した設置形態の下流側縮径部131が素管1aを縮径する際の問題点を説明する作用説明図を示し、詳しくは、図8(a),(b)は、静止した設置形態の下流側縮径部131によって管内面フィン加工部21を通過後の素管1aを引き抜く際に、素管1a表面の凸状軌跡Ltが、下流側縮径部131のダイス孔131aの上流側端部に衝突することにより、下流側縮径部131から受ける衝撃力F’を模式的に示した断面図を示している。図8(c)は、図8(b)のX部分の拡大図を示している。
 さらに、素管1aを下流側縮径ダイス131で縮径する過程で、管外面1oの肉が捲れた状態の凸状軌跡Ltが下流側縮径部131のダイス孔131aに強引に食い込まれながら引抜かれることになる。さらにまた、素管1aの表面1oの凸状軌跡Ltと凹状軌跡Lhとの部分とで素管1aに作用する負荷が変動し、安定した抽伸ができない事態が発生し、結果的に、図9(a)に示すように、表面粗さが大きな内面溝付管が伝熱管1として製造されることになる。
 このように、表面粗さが大きな伝熱管200を熱交換器に組み込む際に行うヘアピン曲げ加工によって、図9(b)に示すように、伝熱管200のヘアピン曲げ部分200Bの管外面200oにシワが発生し易くなり、シワがひどい場合には、伝熱管1として使用する際に、強度上の支障を来たし、破損するおそれもあった。その他にも、伝熱管200の表面粗さが大きい場合、機械拡管時において、アルミフィンとの密着性が低くなるという問題もあった。
 このような様々な問題を回避するため、平滑な表面の内面溝付管を製造するための製造装置、及び製造方法が従来より提供されている。例えば、「特開2005-207670号」では、フィンプレートとの密着性がよく、また、ヘアピン曲げ加工における割れ等が発生し難い内面溝付管を得るために、外表面における管軸方向の最大表面粗さを3.2μmとし、平均表面粗さを0.35μm以下とする具体的な表面粗さについて言及されている。
 そして、このような表面粗さを備えた内面溝付管を製造するために、「特開2005-207670号」に開示の製造装置では、表面整形ダイスと整形ダイスとを転造部よりも引抜き方向の下流側に配置するとともに、上流側から下流側へ順に配置した構成としている。
 さらに、前記製造装置は、表面整形ダイスの縮径加工率を、0.5乃至3.0%とするとともに、前記整形ダイスにおける金属管の縮径加工率D2が10乃至25%とする構成としている。
 しかし、「特開2005-207670号」では、このような記載に留まり、内面溝付管の管軸方向の表面粗さと、抽伸加工における抽伸ダイスの抽伸速度の条件との関係についてや、例えば、これらダイスの上流側に配置した転造部に備えた転造ボールの回転に連動して上述した表面整形ダイスや整形ダイスが、管周方向に回転するという技術思想について何ら着目されていない。
 一方、「特開2009-228037号」では、内面溝付管の管軸方向の表面粗さが、抽伸加工における抽伸ダイスの抽伸速度の条件によって影響されることについて着目され、特に、段落[0012]において、内面溝付管の管軸方向の表面粗さを、抽伸加工における抽伸ダイスの抽伸速度の条件によって調整可能であることについても言及している。
 しかし、「特開2009-228037号」では、Raで0.1~2.0μmという所望の表面粗さの内面溝付管を得るため、抽伸速度(引抜き速度)の具体的な値や、具体的な転造加工の構成について何ら開示されていない。
 これに対して、本実施形態の製造装置10は、管内面フィン加工部21の下流側に、単に、下流側縮径ダイス31Aを備えた構成に留まらず、上流側転造ボール保持具24Uと下流側縮径ダイス31Aとを一体に結合し、上流側転造ボール保持具24Uの回転とともに、下流側縮径ダイス31Aを管周方向に一体に回転させながら素管1aを縮径する構成である。
 詳しくは、前記製造装置10は、保持嵌合ブロック42、及び、ダイス嵌合ブロック43を、締結ボルト45により一体に締結し、保持嵌合ブロック42と上流側転造ボール保持具24Uは、保持嵌合ブロック42の嵌合部42aにより嵌合するとともに、下流側縮径ダイス31Aは、ダイス嵌合ブロック43の嵌合部43aにより嵌合した構成である。
 さらに、上述した製造方法によれば、前記下流側縮径工程において、前記下流側縮径ダイス31Aにより素管1aの縮径を行うが、その際、前記下流側縮径ダイス31Aは、転動押圧ボールによる管周方向の回転に連動して転造ボール23の管周方向の回転速度と一致する回転速度で、管周方向に回転しながら素管1aの縮径を行う製造方法である。
 上述した製造装置10、及び製造方法によれば、管内面フィン加工部21において、転造ボール23が素管1aの外面1oを押圧転動することにより、素管1aの外面1oには凹状軌跡Lhと凸状軌跡Ltとが形成された場合であっても、下流側縮径部31において、転造ボール23の公転とともに、管周周りに回転する下流側縮径ダイス31Aを、素管1aが通過することで、凹状軌跡Lhと凸状軌跡Ltとが形成され、肉厚が管軸方向Xにおいて変動する素管1aの外面を効果的に平滑化することができる。
 詳しくは、前記下流側縮径ダイス31Aは、管内面フィン加工部21を通過後の素管1aの縮径を管周方向に回転しながら行う。このため、図3(a),(b)に示すように、素管1aが下流側縮径部31を通過する際に、管表面に凸状軌跡Ltが形成された素管1aを下流側縮径部31により引抜く際に、管表面の凸状軌跡Ltに対して、引き抜き方向に積極的に加わる衝撃力Fを、素管1aの周方向(管外面1oの接線方向)の成分Fy、すなわち、下流側縮径部31が回転する方向の成分Fyに分散させることができ、結果的に引抜き方向Ddに作用する衝撃力Fxの大きさを緩和することができる。 
 なお、図3(a),(b)は、本実施形態の下流側縮径部31が奏する作用説明図を示し、詳しくは、図3(a)は、管周方向に回転する設置形態の下流側縮径部31に対して素管1aを引き抜く際に、管外面1oの凸状軌跡Ltが、下流側縮径部31のダイス孔31aの上流側端部31uに衝突することにより、下流側縮径部31から受ける衝撃力Fを模式的に示した断面図を示している。図3(b)は、図3(a)のX部分の拡大図を示している。
 上述したように、素管1aの外面1oに形成される凸状軌跡Ltと凹状軌跡Lhとのうち、凸状軌跡Ltが、前記下流側縮径ダイス31Aのダイス孔31aの上流側端部31uから受ける衝撃力Fを、引抜き方向Ddの成分Fxと素管1aの周方向の成分Fyとに分散することで、結果的に引抜き方向Ddに作用する成分Fxの大きさを大幅に緩和できるため、素管1aの外面1oの肉に捲れなどが生じことがなく、滑らかな表面のままダイス孔31aに入り込ませた素管1aに対して抽伸することができる。
 さらに、素管1aの外面1oにおいて、凸状軌跡Ltに対して、引抜き方向Ddに積極的に加わる衝撃力Fxを管周方向にも分散することにより、凸状軌跡Ltを構成する管肉の衝撃による変動を、管軸方向Xと周方向とに分散することもできる。これにより、素管1aの外面1oに形成される凸状軌跡Ltと凹状軌跡Lhとを効果的に平滑化することができ、図4(a)中の一部拡大図に示すように、素管1aの外面1oの粗さを小さくすることができる。
 従って、図4(b)に示すように、伝熱管1として熱交換器に組み込む際に行うヘアピン曲げ加工によって管外面にシワが発生し難い、優れた曲げ加工性を有するとともに、機械拡管時において、アルミフィンとの優れた密着性を有する内面溝付管を製造することができる。
 その他にも、上述した内面溝付管の製造装置10のように、管内面フィン加工部21よりも下流側に下流側縮径ダイス31Aを備え、下流側縮径ダイス31Aによって、管内面フィン加工部21を通過後の素管1aを抽伸する構成とすることで、前記管内面フィン加工部21を通過後の素管1aを、前記下流側縮径ダイス31Aで保持し、該素管1aの捩れを防ぐことができるという効果も得ることができる。
 また、前記製造装置10は、図1に示すように、回転力伝達ユニット41により、上流側転造ボール保持具24Uと前記下流側縮径ダイス31Aとを一体に結合することで、下流側縮径ダイス131Aを転造ボール23の管周方向の回転速度と一致する回転速度で回転させる構成である。すなわち、例えば、図7に示した従来の構成ように、前記前記下流側縮径ダイス131Aとダイス嵌合ブロック143との間にベアリング47を介在させ、回転自在な前記転造ボール23を含む管内面フィン加工部21の下流側において、下流側縮径ダイス131Aを回転しない設置形態で配置した構成ではない。
 このため、管内面フィン加工部21の回転を伴う装置の長期に亘る稼動によって、前記前記下流側縮径ダイス131Aとダイス嵌合ブロック143との間に介在させたベアリング47が劣化するおそれがない。
 従って、前記製造装置10は、回転力伝達ユニット41により、上流側転造ボール保持具24Uと前記下流側縮径ダイス31Aとを一体に結合することで、従来のように、前記管内面フィン加工部21と下流側縮径ダイス31Aとの間にベアリング47を介在させる必要がなくなる。このため、ベアリング47の耐久性を考慮せずに、優れた生産性を確保した状態で内面溝付管を製造することができる。
 また、前記製造方法において、転造ボール23の1公転あたりの素管1aの引抜き長さL1(mm/R)、素管1aの管周方向において等分に配置した前記転造ボール23の配置数Nにより、P=L1/Nであらわされる前記転造ボール23の加工ピッチP(mm)を、0.2≦P≦0.5の範囲になるように設定したため、内面溝付管の生産性を確保しつつ、管表面粗さをより一層、小さくすることができる。
 詳しくは、加工ピッチP(mm)を0.5以下という小さな値に設定した場合、素管1aの外面1oに転造ボール23が転造した軌跡として形成される螺旋状の凹状軌跡Lhと凸状軌跡Ltとの形成ピッチを小さくできるため、管表面粗さを小さくすることができることが従来より明らかとなっている。このため、加工ピッチを小さな値に設定するための手段として、素管1aの引抜き速度を低減させる手段と、転造ボール23の公転周期を高める手段が従来から採用されていた。
 しかし、素管1aの引抜き速度を低減させた場合には、伝熱管の生産能力が低下するという問題が生じる。一方、転造ボール23の公転周期を単純に向上させた場合には、管が捩れることや、装置に加工負担を強いることになるという問題が生じる。 
 すなわち、伝熱管の品質、生産性を確保しつつ、加工ピッチを0.5以下という小さな値に設定することは、困難であった。
 これに対して、前記製造装置10によれば、前記管内面フィン加工部21よりも下流側に下流側縮径部31を備えた構成であるため、図6に示すように、前記管内面フィン加工部21よりも下流側に下流側縮径部31を備えていない従来の製造装置100と異なり、前記管内面フィン加工部21において転造ボール23の公転周期を向上させた場合であっても、前記管内面フィン加工部21を通過した素管1aが捩れないよう下流側縮径部31によって保持することができる。
 従って、前記管内面フィン加工部21よりも下流側に下流側縮径部31を備えた構成の前記製造装置10において、加工ピッチP(mm)を0.5以下とすることにより、素管1aの外面1oの粗さをより一層、小さくすることができ、且つ、伝熱管の優れた生産性、品質を確保することができる。
 一方、加工ピッチP(mm)を仮に0.2以下に設定した場合には、引抜き速度を極端に低く設定したり、前記転造ボール23を管周方向に極端に高速に回転させる必要がある。例えば、引抜き速度が極端に低下した場合には、伝熱管の生産性が著しく低下するという問題がより顕著に生じることになる。一方、前記転造ボール23を管周方向に高速回転させた場合には、装置に過度な負担を強いるという問題がより顕著に生じることになる。
 これに対して、加工ピッチP(mm)を0.2以上とすることにより、上述したような問題が生じることを未然に回避することができるため、伝熱管の生産性を確保することができ、装置に負担を強いることがなく、優れた品質の伝熱管を生産することができる。
 また、前記製造装置10によれば、図2に示すように、前記下流側縮径ダイス31Aを通過前の前記素管1aの外径D(mm)、前記下流側縮径ダイス31Aの径D(mm)により、R={(D-D)/D}×100(%)であらわされる前記下流側縮径ダイス31Aにおける素管1aの外径の縮径率R(%)を、0.05≦R≦3に設定している。
 このように、縮径率R(%)を0.05≦Rに設定することで、前記下流側縮径ダイス31Aにより素管1aが縮径するに伴って、管内面フィン加工部21を通過後の素管1aが捩れないよう保持する保持力を高めることができる。 
 従って、管内面フィン加工部21を通過後に素管1aが捩れることを確実に防止できる。
 さらに、上述したように、前記下流側縮径ダイス31Aにおける素管1aの外径の縮径率R(%)を0.05以上になるよう適切に設定することで、特に、前記転造ボール23の加工ピッチを小さくした場合であっても、管内面フィン加工部21において前記転造ボール23が素管1aの外面1oを押圧転動することによって、管内面フィン加工部21を通過後の素管1aが捩れて座屈することを確実に防止することができる。よって、前記転造ボール23を高速に公転させることができ、加工速度の減少を最小限に留めることができる。
 一方、縮径率R(%)をR≦3に設定することで、素管1aを急激に縮径することを回避し、素管1aが破損したり、引抜き負荷が過大になることを防止できる。
 以上、本発明の一実施形態である伝熱管1について詳述したが、続いて、本発明の伝熱管の性能を検証するために行った性能検証実験について説明する。
 (性能検証実験1) 
 性能検証実験1では、本発明の実施例、及び従来の比較例1,2の加工条件での限界ボール回転数、及び限界加工速度を検証するとともに、実施例、及び比較例1,2の加工条件の下、連続5000mm加工実験を行い加工破断の有無を検証した。
 ここで、限界ボール回転数とは、管内面フィン加工部21において転造ボール23が素管1aを公転することによって、管内面フィン加工部21を通過後の素管1aが捩れない転造ボール23の最大の回転数を示し、限界加工速度とは、加工中、管が破断しない最大の引抜き速度を示す。
 引抜き速度V(m/min)は、転造ボール23の公転回転数をR(rpm)、転造ボール23の加工ピッチをP(mm)、転造ボール23の配置数をC(個)とした場合、V=R×P×C/1000…式(3)であらわすことができる。 
 本実験では、実施例、及び比較例1,2の加工条件の中でも、溝付プラグ22の形状、加工ピッチ、材料管(素管1a)については、表1に示すとおり、実施例、及び比較例1,2の間で互いに共通する条件で行った。 
Figure JPOXMLDOC01-appb-T000001
 また、比較例1の加工条件は、図6に示すように、管内面フィン加工部21の下流側に下流側縮径ダイス131Aを配置していない従来の構成の製造装置100により伝熱管を製造する加工条件である。 
 比較例2の加工条件は、図7に示すように、管内面フィン加工部21の下流側に下流側縮径ダイス131Aを配置しているが、該下流側縮径ダイス131Aを、ダイス嵌合ブロック143に対して、ベアリング47を介して設置した従来の構成の製造装置101により伝熱管200を製造する加工条件である。 
 すなわち、比較例2の加工条件として用いる製造装置101は、下流側縮径ダイス131Aが、管内面フィン加工部21の転造ボール23の公転とともに管軸方向Xに回転せずに、静止した設置形態で管内面フィン加工部21を通過後の素管1aを縮径する構成である。
 これに対して、実施例の加工条件は、図1に示したような製造装置10、及び上述した製造方法により本発明の伝熱管1を製造する加工条件である。 
 詳しくは、実施例によれば、上流側転造ボール保持具24Uと前記下流側縮径ダイス31Aとを、回転力伝達ユニット41により一体に結合した構成の製造装置10により、下流側縮径ダイス31Aを転造ボール23の管周方向の回転速度と一致する回転速度で回転させながら管内面フィン加工部21を通過した素管1aを縮径する製造方法により製造する加工条件である。 
 性能検証実験1の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、比較例1の加工条件の場合、連続5000m加工実験を行ったところ、問題なく加工できたが、限界ボール公転数は、30000rpmに留まるとともに、限界加工速度は、42m/minに留まった。なお、上記の数式(3)からも明らかなとおり、ボール公転数Rの限界を示す限界ボール公転数と、引き抜き速度Vの限界を示す限界加工速度とは互いに影響を及ぼすパラメータである。
 これに対して、比較例2、及び実施例のいずれの加工条件の場合も、限界ボール公転数Rが42000rpmに達するとともに、限界加工速度が59m/minにまで達することができた。すなわち、比較例2、及び実施例の加工条件の場合、比較例1の加工条件に対して40%の生産性の向上を図ることができた。
 従って、比較例2、及び実施例の加工条件のように、管内面フィン加工部21の下流側に下流側縮径ダイス31Aを備えることで、下流側縮径ダイス31Aは、管内面フィン加工部21を通過後に素管1aを保持しながら縮径でき、ボール公転数Rを大きくしても、管内面フィン加工部21を通過後に素管1aが捩れることがなく引抜くことができることを確認できた。
 一方、連続5000m加工実験の結果に着目すると、比較例2の加工条件の場合、2700m加工時点で、下流側縮径ダイス31Aとダイス嵌合ブロック43との間に介在させたベアリング47が破損した。この場合、下流側縮径ダイス131Aにより安定して素管1aを縮径できなくなり、結果的に、素管1aの加工破断が発生する結果となった。
 これに対して、実施例の加工条件の場合、連続5000mの引抜き加工を行ったところ、断管などの問題が生じることなく5000mの引抜き加工を行うことができた。
 すなわち、実施例の加工条件では、上流側転造ボール保持具24Uと前記下流側縮径ダイス31Aとを、回転力伝達ユニット41を介して一体に結合した構成の製造装置10を用いる加工条件であるため、ボール公転数Rを高めても伝熱管1に捩れが発生することはないのは勿論、比較例2の加工条件のように、下流側縮径ダイス131Aとダイス嵌合ブロック143との間にベアリング47を介在させた構成の装置を用いた場合とは異なり、ベアリング47が破損するおそれがない。
 よって、実施例の加工条件においては、ベアリング47の破損に伴って、下流側縮径ダイス31Aにより素管1aを適切に縮径できなくなる事態が生じることがないため、断管が発生することのない優れた生産性を確保した上で、優れた品質の伝熱管1を製造できることを実証することができた。
 さらに、実施例の加工条件においては、比較例2の加工条件のように、下流側縮径ダイス31Aを設置する上でベアリング47を備える必要がないため、定期的にベアリング47の交換やメンテナンスの手間を要しない。さらにまた、加工中にベアリング47に負荷をかけないように、ボール公転数Rを低く設定するなど、加工条件を緩和する必要がないため、限界加工速度の下、連続加工できることも実証できた。
 (性能検証実験2) 
 性能検証実験2では、伝熱管を熱交換器に組み込む際に、伝熱管に対して行うヘアピン曲げ加工時の曲げ加工性を検証するために行った実験であり、詳しくは、比較例1,2、及び、実施例の各加工条件で作製した伝熱管に対してヘアピン曲げ加工を行った際に、伝熱管のヘアピン曲げ部分の管外面に発生するシワ、すなわち、曲げ加工に伴う管外面の圧縮歪みの発生状況を検証した。
 性能検証実験2では、性能検証実験1と同様の比較例1,2、及び、実施例の各加工条件を設定し、これらの加工条件の下で、外径が7mm、管肉厚が0.23mmである共通の実験材(素管1a)を用いて伝熱管を作製した。
 続いて行う伝熱管のヘアピン曲げ加工では、それぞれの加工条件ごとに作製した伝熱管ごとに、曲げピッチが17mm、15mmとなる2種類のヘアピン曲げ部分を作製し、ヘアピン曲げ部分のシワの発生状況の検証を行った。
 なお、性能検証実験2の結果の評価方法としては、ヘアピン曲げ部分の外観上のシワの発生の有無で評価した。ここで、ヘアピン曲げ部分に外観上、シワが確認できない場合、或いは、シワが発生した場合でも、伝熱管としての品質上、問題がないと認められる場合には、「シワ無し」と評価し、伝熱管としての品質上、問題があると認められるシワが発生している場合には、「シワ発生」と評価した。
 さらに、「シワ無し」と評価した中でも、シワが確認できない場合(優)や、確認できたとしても僅かなシワの場合(良)には、「シワ無し(◎)」と評価し、それ以外の場合(可)を「シワ無し(〇)」と評価した。 
 性能検証実験2の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり、比較例1の加工条件の下で作製した伝熱管のヘアピン曲げ部分を検証したところ、曲げピッチが17mm、15mmのいずれにおいても、伝熱管の品質上、問題があると認められるシワが発生する結果となった。
 これに対して、比較例2、実施例の加工条件の下で作製した伝熱管のヘアピン曲げ部分を検証したところ、曲げピッチが17mm、15mmのいずれにおいても、少なくとも伝熱管1の品質上、問題があると認められるシワが発生しない結果となった。
 上述した結果の要因として、伝熱管の外面の表面粗さが考えられる。 
 詳しくは、比較例1の加工条件の下で作製した伝熱管の管外面は、図9(a)中の一部拡大図に示したような表面粗さとなった。一方、実施例の加工条件の下で作製した伝熱管の管外面は、図4(b)中の一部拡大図に示したような表面粗さとなり、比較例1の場合の管外面と比較して表面粗さが小さかった。 
 従って、比較例2、実施例の加工条件の下で作製した伝熱管は、比較例1の加工条件の下で作製した伝熱管の外面の表面粗さが小さく、より曲げ加工性に優れていることを実証できた。
 続いて、比較例2、及び実施例の各加工条件の場合の結果に着目すると、表3に示すとおり、比較例2の加工条件の下で作製した伝熱管1の場合、曲げピッチが17mmの場合、結果は「シワ無し(◎)」であったが、曲げ加工の際にヘアピン曲げ部分に、より負荷が加わる曲げピッチが15mmの場合においては、結果は「シワ無し(〇)」であった。
 これに対して、本発明の加工条件の下で作製した伝熱管1の場合、曲げピッチが17mm、15mmのいずれにおいても結果は「シワ無し(◎)」であった。
 これらの結果より、実施例の加工条件の下で作製した伝熱管1の場合、比較例2の加工条件の下で作製した伝熱管200と比較して、ヘアピン曲げ加工を行った際に、ヘアピン曲げ部分にシワがより発生し難しくなることを実証できた。このことから、実施例の場合、比較例2と比較して、ヘアピン曲げ加工の際にシワの発生の要因となる管表面粗さが、より小さな伝熱管1を作製きることを実証できた。
 なお、一般的に、加工ピッチを小さく設定した場合、転造ボール23が管表面を公転することによって管表面に形成される転造ボール23の軌跡が残留し難くなることが明らかになっており、その結果、管表面粗さを小さくできるため、ヘアピン曲げ部分にシワが発生し難くなる。
 よって、表3中には記載していないが、実施例の加工条件の中でも、加工ピッチを0.5mm以下という小さな値に設定した加工条件の下で作製した伝熱管に対して、ヘアピン曲げ加工を行った際に、ヘアピン曲げ部分にシワが、より発生し難くなることを実証できた。
 この発明の構成と、上述した実施形態との対応において、
内面溝付管は、伝熱管1に対応し、以下、同様に、
管内面フィン形成部は、管内面フィン加工部21に対応し、
押圧転動体は、転造ボール23加工部に対応し、
回転力伝達手段は、回転力伝達ユニット41に対応し、
連結剛体は、保持嵌合ブロック42、ダイス嵌合ブロック43、回転軸ブロック44、及び締結ボルト45に対応するも、この発明は、上述した実施形態に限定せず、様々な実施形態で構成することができる。
 このように本発明は、上述した実施形態に限定せず、様々な実施形態で構成することができる。 
 例えば、管内面フィン加工部21は、転造ボール23を用いるに限らず、溝形成ダイスや転造ローラーなど、他の構成を用いて転造してもよい。
 1…伝熱管
 1a…素管
 1i…管内面
 1o…管外面
 2…フィン
 10…製造装置
 21…管内面フィン加工部
 22…溝付プラグ
 23…転造ボール
 31…下流側縮径部
 31A…下流側縮径ダイス
 41…回転力伝達ユニット
 42…保持嵌合ブロック
 43…ダイス嵌合ブロック
 44…回転軸ブロック
 45…締結ボルト
 X…管軸方向
 D1…引抜き方向

Claims (9)

  1.  素管の外面を管周方向に転動する押圧転動体による素管の押圧によって該素管の内面を、溝が外周に形成され、素管の内部に配置された溝付プラグに押し付けて素管の内面に複数のフィンを形成するフィン形成工程を行う内面溝付管の製造方法であって、
    素管を管軸方向に沿って上流側から下流側へ引抜く間、
    前記フィン形成工程とともに、前記押圧転動体よりも引抜き方向の下流側に備えた下流側縮径部によって素管を縮径する下流側縮径工程を行い、
    前記下流側縮径工程では、
    前記下流側縮径部において、管周方向に回転自在に素管の外側に配置された下流側縮径ダイスにより、前記押圧転動体による管周方向の回転に連動して管周方向に回転しながら素管の縮径を行う
    内面溝付管の製造方法。
  2.  前記下流側縮径ダイスを、前記押圧転動体の管周方向の回転速度と一致する回転速度で、前記押圧転動体による管周方向の回転に連動させる
    請求項1に記載の内面溝付管の製造方法。
  3.  前記押圧転動体の1公転あたりの素管の引抜き長さL1(mm/R)、素管の管周方向において等分に配置した前記押圧転動体の配置数Nにより、
    P=L1/N
    であらわされる前記押圧転動体の加工ピッチP(mm)を、
    0.2≦P≦0.5
    の範囲になるように設定する
    請求項1、又は、2に記載の内面溝付管の製造方法。
  4.  前記下流側縮径ダイスを通過前の前記素管の外径D(mm)、前記下流側縮径ダイスの径D(mm)により、
    ={(D-D)/D}×100(%)
    であらわされる前記下流側縮径ダイスにおける素管の外径の縮径率R(%)を、
    0.05≦R≦3に設定する
    請求項1から3のいずれかに記載の内面溝付管の製造方法。
  5.  素管の外面を管周方向に転動する押圧転動体と、溝が外周に形成され、管内部に配置された溝付プラグとを備え、前記押圧転動体による素管の押圧によって前記溝付プラグに素管の内面を押し付けて該素管の内面に複数のフィンを形成する管内面フィン形成部を備えた内面溝付管の製造装置であって、
    素管を引抜く引抜き方向における前記管内面フィン形成部よりも下流側に下流側縮径部を備え、
    前記下流側縮径部に、管周方向に回転自在に素管の外側に配置された下流側縮径ダイスを備え、
    前記押圧転動体の管周方向の回転力を前記下流側縮径ダイスに伝達する回転力伝達手段を、
    前記押圧転動体から前記下流側縮径ダイスに至る引抜き方向の間の少なくとも一部に備えた
    内面溝付管の製造装置。
  6.  前記回転力伝達手段を、
    前記押圧転動体の管周方向の回転により、該押圧転動体の管周方向の回転速度と一致する回転速度で前記下流側縮径ダイスを、回転させることを許容する剛体からなる連結剛体で構成し、
    前記連結剛体により、前記押圧転動体と前記下流側縮径ダイスとを一体に結合した
    請求項5に記載の内面溝付管の製造装置。
  7.  前記押圧転動体の1公転あたりの素管の引抜き長さL1(mm/R)、素管の管周方向において等分に配置した前記押圧転動体の配置数Nにより、
    P=L1/N
    であらわされる前記押圧転動体の加工ピッチP(mm)を、
    0.2≦P≦0.5
    の範囲になるように設定した
    請求項5、又は、6に記載の内面溝付管の製造装置。
  8.  前記下流側縮径ダイスを通過前の前記素管の外径D(mm)、前記下流側縮径ダイスの径D(mm)により、
    ={(D-D)/D}×100(%)
    であらわされる前記下流側縮径ダイスにおける素管の外径の縮径率R(%)を、
    0.05≦R≦3に設定した
    請求項5から7のいずれかに記載の内面溝付管の製造装置。
  9.  請求項1から請求項4のうちいずれかに記載の内面溝付管の製造方法により、または請求項5から請求項8のうちいずれかに記載の内面溝付管の製造装置を用いて、管軸方向における外表面平均粗さRa(μm)が
    0.05≦Ra≦0.5
    の範囲になるよう製造した
    内面溝付管。
PCT/JP2012/050352 2011-01-14 2012-01-11 内面溝付管及びその製造方法並びにその製造装置 WO2012096295A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012534895A JP5224423B2 (ja) 2011-01-14 2012-01-11 内面溝付管及びその製造方法並びにその製造装置
CN2012800023888A CN103097047A (zh) 2011-01-14 2012-01-11 带有内表面槽的管及其制造方法和制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-005589 2011-01-14
JP2011005589 2011-01-14

Publications (1)

Publication Number Publication Date
WO2012096295A1 true WO2012096295A1 (ja) 2012-07-19

Family

ID=46507190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050352 WO2012096295A1 (ja) 2011-01-14 2012-01-11 内面溝付管及びその製造方法並びにその製造装置

Country Status (3)

Country Link
JP (1) JP5224423B2 (ja)
CN (1) CN103097047A (ja)
WO (1) WO2012096295A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521353B1 (ko) * 2013-12-03 2015-05-18 주식회사 에스엠아이 보일러 열교환기용 연관 제조 장치
CN104889195A (zh) * 2015-06-09 2015-09-09 常州市腾田液压机械有限公司 中大口径管材联合成形工艺及成形装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110978861B (zh) * 2019-12-24 2021-01-15 温州大学新材料与产业技术研究院 一种大管径针管笔头的缩颈方法
CN111531050A (zh) * 2020-03-10 2020-08-14 温州文星制笔有限公司 一种针管型笔头制造装备
CN113020460A (zh) * 2021-03-02 2021-06-25 有研工程技术研究院有限公司 一种形状记忆合金管接头的扩径方法
CN113305174B (zh) * 2021-05-27 2023-05-16 江苏兴荣高新科技股份有限公司 一种内螺纹铜管或内螺纹铝管及其制造方法和生产线

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590568B2 (ja) * 1989-08-30 1997-03-12 三菱マテリアル株式会社 金属管内外面加工装置
JP2002292420A (ja) * 2001-03-29 2002-10-08 Kobe Steel Ltd 管の抽伸方法、シームレス内面溝付伝熱管の製造方法及びシームレス内面溝付伝熱管

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3302244B2 (ja) * 1996-01-19 2002-07-15 株式会社神戸製鋼所 内面溝付管の加工装置
JP2002292419A (ja) * 2001-03-29 2002-10-08 Kobe Steel Ltd 管の縮径方法及び管の縮径装置
CN1141193C (zh) * 2001-04-06 2004-03-10 上海申马铜业科技股份有限公司 计算机散热用异形铜管的制造方法
CN1313793C (zh) * 2003-02-28 2007-05-02 日立电线株式会社 螺旋形内开槽金属管及其制造方法
JP5227771B2 (ja) * 2008-12-08 2013-07-03 古河電気工業株式会社 内面溝付管及びその製造方法
JP5128515B2 (ja) * 2009-02-16 2013-01-23 古河電気工業株式会社 内面溝付管の製造装置及び製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590568B2 (ja) * 1989-08-30 1997-03-12 三菱マテリアル株式会社 金属管内外面加工装置
JP2002292420A (ja) * 2001-03-29 2002-10-08 Kobe Steel Ltd 管の抽伸方法、シームレス内面溝付伝熱管の製造方法及びシームレス内面溝付伝熱管

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521353B1 (ko) * 2013-12-03 2015-05-18 주식회사 에스엠아이 보일러 열교환기용 연관 제조 장치
CN104889195A (zh) * 2015-06-09 2015-09-09 常州市腾田液压机械有限公司 中大口径管材联合成形工艺及成形装置
CN104889195B (zh) * 2015-06-09 2016-09-07 常州市腾田液压机械有限公司 中大口径管材联合成形工艺及成形装置

Also Published As

Publication number Publication date
CN103097047A (zh) 2013-05-08
JPWO2012096295A1 (ja) 2014-06-09
JP5224423B2 (ja) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5224423B2 (ja) 内面溝付管及びその製造方法並びにその製造装置
US6834523B2 (en) Method for producing seamless tube with grooved inner surface
JP4311502B2 (ja) 内面リブ付鋼管の製造方法および内面リブ付鋼管
WO2016010113A1 (ja) 内面螺旋溝付管の製造方法および製造装置
JP2008173648A (ja) 管の冷間曲げ方法、冷間曲げ装置およびこれらで加工されたエルボ
CN110325298B (zh) 芯棒、弯管及其制造方法和制造装置
JP4833577B2 (ja) 内面溝付管の製造装置及び製造方法
JP2013111605A (ja) 内面螺旋溝付管の製造方法および製造装置
JP2004322141A (ja) ヘアピン曲げ銅管および銅管のヘアピン曲げ加工方法
JP3345225B2 (ja) 異形管の製造方法
JP6316698B2 (ja) 内面螺旋溝付管およびその製造方法と熱交換器
JP4511797B2 (ja) 内面溝付管及びその製造装置並びにその製造方法
JP5227771B2 (ja) 内面溝付管及びその製造方法
JP6966884B2 (ja) 内面螺旋溝付管の製造方法
JP6358720B2 (ja) 内面螺旋溝付管の製造方法および製造装置
JPH0952127A (ja) 内面溝付伝熱管の製造方法及びその装置
JP6964498B2 (ja) 内面螺旋溝付管および熱交換器と内面螺旋溝付管の製造方法
JP6846182B2 (ja) 伝熱管、熱交換器および伝熱管の製造方法
JP2012076126A (ja) 内面溝付管の製造装置及び製造方法
JP6316696B2 (ja) 内面螺旋溝付管およびその製造方法と熱交換器
US361954A (en) mannesmann
JP2005138149A (ja) 内面溝付管の製造方法及び装置
JP2006239773A (ja) 内面溝付管の製造装置及び製造方法
JP6316697B2 (ja) 内面螺旋溝付管およびその製造方法
JPH06190408A (ja) 継ぎ目無し鋼管の製造設備及び製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002388.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012534895

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1301003908

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12734261

Country of ref document: EP

Kind code of ref document: A1