WO2012090855A1 - リチウムイオン二次電池用ゲル電解質およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用ゲル電解質およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2012090855A1
WO2012090855A1 PCT/JP2011/079795 JP2011079795W WO2012090855A1 WO 2012090855 A1 WO2012090855 A1 WO 2012090855A1 JP 2011079795 W JP2011079795 W JP 2011079795W WO 2012090855 A1 WO2012090855 A1 WO 2012090855A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbon atoms
unsubstituted
acid ester
Prior art date
Application number
PCT/JP2011/079795
Other languages
English (en)
French (fr)
Inventor
金子 志奈子
安孝 河野
石川 仁志
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to EP11853432.0A priority Critical patent/EP2660921B1/en
Priority to US13/883,953 priority patent/US9196926B2/en
Priority to JP2012550899A priority patent/JP5975523B2/ja
Priority to CN201180062840.5A priority patent/CN103270640B/zh
Publication of WO2012090855A1 publication Critical patent/WO2012090855A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a gel electrolyte for a lithium ion secondary battery and a battery including the same, and more particularly to a lithium ion battery having both high safety and good life characteristics.
  • Lithium ion or lithium secondary batteries are attracting attention as mobile phone notebook PCs, large power storage power supplies and automobile power supplies because they can achieve high energy density.
  • Lithium ion or lithium secondary batteries can achieve a high energy density, but as the size increases, the energy density becomes enormous and higher safety is required. For example, a particularly large safety is required for a large power storage power source or an automobile power source. For this reason, safety measures such as structural design of cells and packages, protection circuits, electrode materials, additives with overcharge prevention functions, and enhancement of the shutdown function of separators have been taken, ensuring the safety of secondary batteries. Yes.
  • Lithium ion secondary batteries use aprotic solvents such as cyclic carbonates and chain carbonates as electrolyte solvents. These carbonates have a high dielectric constant and high ionic conductivity of lithium ions, but have a low flash point and tend to be flammable.
  • SEI Solid Electrolyte Interface
  • Patent Document 1 discloses an organic electrolyte secondary battery in which phosphoric acid triester is used as a main solvent of an organic electrolyte, and a negative electrode includes a carbon material as a constituent element.
  • Patent Document 2 discloses that safety can be improved by using a phosphoric acid triester as an organic solvent of an electrolytic solution.
  • Patent Document 3 discloses a secondary battery in which the nonaqueous electrolytic solution contains at least one selected from the group consisting of a phosphate ester, a halogen-containing substituted phosphate ester, and a condensed phosphate ester.
  • Patent Document 4 discloses that by using a mixed solvent of a specific halogen-substituted phosphate compound and a specific ester compound as an electrolytic solution solvent, an electrolytic solution having low viscosity and excellent low-temperature characteristics can be obtained.
  • Patent Document 5 discloses a battery manufacturing method that uses a non-aqueous electrolyte to which vinylene carbonate and 1,3-propane sultone are added.
  • Patent Document 6 has a nonaqueous electrolytic solution containing a predetermined amount of phosphoric acid ester having a fluorine atom in a molecular chain, a salt concentration of 1 mol / L or more, and a viscosity of less than 6.4 mPa ⁇ s.
  • a battery is disclosed. It is described that a battery having flame retardancy, self-extinguishing properties, and high rate charge / discharge characteristics can be provided by adopting such a configuration.
  • Patent Document 7 discloses a nonaqueous electrolytic solution containing at least one phosphate ester derivative represented by a predetermined formula, a nonaqueous solvent, and a solute.
  • Patent Document 8 discloses that by using a fluorophosphate ester compound in a nonaqueous electrolytic solution, an electrolytic solution having excellent electrical conductivity and reduction resistance and exhibiting high flame retardancy even at a low blending amount can be obtained. Has been.
  • Patent Document 9 discloses an electrolytic solution containing a solvent containing a halogenated ethylene carbonate and at least one phosphorus-containing compound selected from the group consisting of a phosphate ester, a phosphate ester, and a phosphazene compound. . It is disclosed that chemical stability at high temperatures can be improved by using the electrolytic solution.
  • Patent Document 10 discloses a nonaqueous electrolytic solution obtained by dissolving a lithium salt in a nonaqueous solvent containing a phosphate ester compound, a cyclic carbonate containing halogen, and a chain carbonate.
  • Patent Document 11 discloses a nonaqueous electrolytic solution containing an organic solvent containing a predetermined amount of a fluorine-containing phosphate represented by the predetermined formula and an electrolyte salt. It is disclosed that the electrolyte solution has non-flammability and flame retardancy useful as an electrolyte solution for a lithium secondary battery, has high solubility of an electrolyte salt, a large discharge capacity, and excellent charge / discharge cycle characteristics. Has been.
  • Patent Document 12 describes a polymer solid electrolyte composition containing a fluorine-containing phosphate ester. This document discloses a polymer crosslinkable material composed of a combination of an epoxy group and / or oxetane ring-containing polymer and a cationic polymerization initiator.
  • Patent Documents 1 and 2 the phosphoric acid ester is reduced and decomposed on the carbon negative electrode during long-term use, resulting in an increase in resistance due to deposition of the reduced product on the electrode and an increase in resistance due to gas generation, etc. There was a case. Furthermore, there has been a problem that the phosphoric acid ester is reduced and decomposed during use, and the effect of suppressing the combustion of the electrolytic solution may be reduced.
  • Patent Documents 3 to 8 describe the flammability of the electrolyte or the initial characteristics of the battery, they do not mention the long-term reliability of the battery.
  • halogen-substituted phosphate esters and their derivatives are also gradually reduced and decomposed on the negative electrode during long-term use, and battery characteristics may decrease due to increased resistance.
  • vinylene carbonate or 1,3-propane sultone which is an additive for forming SEI shown in Patent Document 5
  • a sufficient life may not be obtained.
  • no mention is made of the long-term flammability suppressing effect is made.
  • Patent Documents 9 to 11 describe that halogen-substituted cyclic carbonates can form a halogen-containing film on the negative electrode and can suppress reductive decomposition of phosphate esters or halogen-substituted phosphate esters.
  • a very large amount of the halogen-substituted carbonate ester is required, and the electrolyte ions In some cases, the conductivity was lowered.
  • the resistance of the battery is significantly increased and the capacity retention rate is decreased.
  • Patent Documents 1 to 11 are all electrolytes, there is a concern about the problem of leakage.
  • Patent Document 12 describes a polymer solid electrolyte or a polymer gel electrolyte.
  • the fluorine-containing phosphate ester decomposes on the negative electrode as in Patent Documents 9 to 11, and Li In some cases, the safety of the cell could not be ensured.
  • an object of the present embodiment is to provide a gel electrolyte for a lithium ion secondary battery that has a long-term flame retardancy and a good capacity retention rate.
  • Lithium salt A copolymer of a first monomer composed of at least one selected from compounds represented by chemical formulas (1) and (2) and a second monomer represented by chemical formula (4); An oxo acid ester derivative of phosphorus consisting of at least one selected from compounds represented by chemical formulas (5) to (7); A disulfonic acid ester comprising at least one selected from a cyclic disulfonic acid ester represented by the chemical formula (8) and a chain disulfonic acid ester represented by the chemical formula (9); Is a gel electrolyte for a lithium ion secondary battery.
  • R 1 represents H or CH 3
  • R 2 represents any of the substituents represented by the following chemical formula (3).
  • R 3 represents an alkyl group having 1 to 6 carbon atoms.
  • R 4 represents H or CH 3
  • R 5 represents —COOCH 3 , —COOC 2 H 5 , —COOC 3 H 7 , —COOC 4 H 9 , —COOCH 2 CH (CH 3 ).
  • N 1-3.
  • R 11 , R 12 and R 13 are each independently an alkyl group, aryl group, alkenyl group, cyano group, phenyl group, amino group, nitro group, alkoxy group, and cycloalkyl group. And any group selected from these halogen-substituted groups, any two or all of R 11 , R 12 and R 13 may be bonded to form a cyclic structure.
  • R 21 and R 22 are each independently an alkyl group, aryl group, alkenyl group, cyano group, phenyl group, amino group, nitro group, alkoxy group, and cycloalkyl group, and these R 21 and R 22 may combine to form a cyclic structure, and X 21 represents a halogen atom.
  • R 31 is selected from an alkyl group, an aryl group, an alkenyl group, a cyano group, a phenyl group, an amino group, a nitro group, an alkoxy group, and a cycloalkyl group, and halogen-substituted groups thereof.
  • X 31 and X 32 each independently represent a halogen atom.
  • a 1 may be a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, a carbonyl group, a sulfinyl group, A branched or substituted perfluoroalkylene group having 1 to 5 carbon atoms which may be branched, a substituted or unsubstituted fluoroalkylene group having 2 to 6 carbon atoms which may be branched, or an ether bond; A substituted or unsubstituted alkylene group having 1 to 6 carbon atoms and an ether bond may be branched, and a substituted or unsubstituted perfluoroalkylene group having 1 to 6 carbon atoms or an ether bond may be branched.
  • a 2 is a substituted or unsubstituted alkylene group, a substituted or unsubstituted fluoroalkylene al Shows the alkylene group or an oxygen atom.
  • R 6 and R 9 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, A substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, a polyfluoroalkyl group having 1 to 5 carbon atoms, -SO 2 X 3 (X3 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms),- SY 1 (Y 1 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), —COZ (Z is a hydrogen atom, or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), and a halogen atom, R 7 and R 8 each independently represents a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, and
  • one of the embodiments is the gel electrolyte for a lithium ion secondary battery containing 5 to 60% by mass of the phosphorus oxo acid ester derivative.
  • One of the embodiments is the gel electrolyte for a lithium ion secondary battery containing 0.05 to 10% by mass of the disulfonic acid ester.
  • One of the embodiments is the gel electrolyte for a lithium ion secondary battery containing 0.5 to 20% by mass of a halogenated cyclic carbonate.
  • One of the embodiments is a lithium ion secondary battery including the gel electrolyte for a lithium ion secondary battery.
  • FIG. 1A is a plan view of the positive electrode
  • FIG. 1B is a side view of the positive electrode.
  • FIG. 2A is a plan view of the negative electrode
  • FIG. 2B is a side view of the negative electrode. It is a figure explaining the structure of the battery element after winding of a lithium ion secondary battery.
  • the gel electrolyte for a lithium ion secondary battery of this embodiment includes a lithium salt, the copolymer as a gel component, the oxo acid ester of phosphorus, and the disulfonic acid ester.
  • the copolymer includes a first monomer consisting of at least one compound selected from the compounds represented by chemical formulas (1) and (2) having a ring-opening polymerizable functional group, and a chemical formula having no ring-opening polymerizable functional group. It is formed by polymerizing the second monomer represented by (4).
  • the ring-opening polymerizable functional group is represented by the chemical formula (3).
  • R 1 represents H or CH 3
  • R 2 represents any of the substituents represented by the following chemical formula (3).
  • R 3 represents an alkyl group having 1 to 6 carbon atoms.
  • R 4 represents H or CH 3
  • R 5 represents —COOCH 3 , —COOC 2 H 5 , —COOC 3 H 7 , —COOC 4 H 9 , —COOCH 2 CH (CH 3 ).
  • n represents an integer of 1 to 3.
  • Examples of the first monomer represented by the formula (1) or (2) include (3-ethyl-3-oxetanyl) methyl methacrylate, glycidyl methacrylate, 3,4-epoxycyclohexylmethyl methacrylate, and the like. These may use only 1 type and may use 2 or more types together.
  • the monomer represented by the formula (1) or (2) may be referred to as a monomer having a ring-opening polymerizable functional group.
  • Examples of the second monomer represented by the chemical formula (4) include methyl acrylate, ethyl acrylate, methyl methacrylate, propyl methacrylate, methoxytriethylene glycol methacrylate, methoxydipropylene glycol acrylate, and the like.
  • the monomer represented by the formula (4) may be used alone or in combination of two or more.
  • the monomer represented by the formula (4) may be referred to as a monomer having no ring-opening polymerizable functional group.
  • the oxo acid ester derivative of phosphorus in the present embodiment is at least one compound represented by the following chemical formulas (5) to (7).
  • R 11 , R 12 and R 13 are each independently an alkyl group, aryl group, alkenyl group, cyano group, phenyl group, amino group, nitro group, alkoxy group, and cycloalkyl group. And any group selected from these halogen-substituted groups, any two or all of R 11 , R 12 and R 13 may be bonded to form a cyclic structure.
  • R 21 and R 22 are each independently an alkyl group, aryl group, alkenyl group, cyano group, phenyl group, amino group, nitro group, alkoxy group, and cycloalkyl group, and these R 21 and R 22 may be bonded to form a cyclic structure, and X 21 represents a halogen atom.
  • X 21 is preferably a fluorine atom.
  • R 31 is selected from an alkyl group, an aryl group, an alkenyl group, a cyano group, a phenyl group, an amino group, a nitro group, an alkoxy group, and a cycloalkyl group, and halogen-substituted groups thereof.
  • X 31 and X 32 each independently represent a halogen atom.
  • X 31 and X 32 may be the same or different.
  • X 31 and X 32 are preferably fluorine atoms.
  • the phosphorus oxo acid ester derivative of this embodiment may contain one or more compounds represented by any one of formulas (5) to (7).
  • Specific examples of the compound represented by the chemical formula (5) are not particularly limited thereto.
  • trimethyl phosphate, triethyl phosphate, tributyl phosphate, triphenyl phosphate, dimethylethyl phosphate examples include phosphate esters such as dimethylpropyl phosphate, dimethylbutyl phosphate, diethylmethyl phosphate, dipropylmethyl phosphate, dibutylmethyl phosphate, methylethylpropyl phosphate, methylethylbutyl phosphate, and methylpropylbutyl phosphate. It is done.
  • Examples of the phosphate ester having a halogen-substituted group include tri (trifluoroethyl) phosphate, methyl phosphate (ditrifluoroethyl), dimethyl phosphate (trifluoroethyl), ethyl phosphate (ditrifluoroethyl), Diethyl phosphate (trifluoroethyl), propyl phosphate (ditrifluoroethyl), dipropyl phosphate (trifluoroethyl), tri (pentafluoropropyl) phosphate, methyl phosphate (dipentafluoropropyl), dimethyl phosphate ( Pentafluoropropyl), ethyl phosphate (dipentafluoropropyl), diethyl phosphate (pentafluoropropyl), butyl phosphate (dipentafluoropropyl), dibutyl phosphate (penta
  • Specific examples of the compound represented by the chemical formula (6) are not particularly limited, and examples thereof include dimethyl fluorophosphonate, diethyl fluorophosphonate, dibutyl fluorophosphonate, diphenyl fluorophosphonate, and fluorophosphone.
  • Specific examples of the compound represented by the chemical formula (7) are not particularly limited, and examples thereof include, for example, methyl difluorohypophosphite, ethyl difluorohypophosphite, butyl difluorohypophosphite, difluoro Examples thereof include phenyl hypophosphite, difluorohypophosphite, trifluoroethyl difluorohypophosphite, fluoropropyl difluorohypophosphite, fluorophenyl difluorohypophosphite and the like.
  • the content of phosphorus oxo acid ester derivative is preferably 5 to 60% by mass, and more preferably 10 to 40% by mass with respect to the entire gel electrolyte.
  • the content of the oxo acid ester derivative of phosphorus is 5% by mass or more with respect to the gel electrolyte, the effect of suppressing the combustion of the electrolytic solution can be obtained more effectively. Increases effectiveness.
  • the content of the oxo acid ester derivative of phosphorus is 60% by mass or less, the battery characteristics are improved by suppressing the increase in resistance, and the effect of suppressing the reductive decomposition by the disulfonic acid ester is more effectively obtained. This makes it easier to ensure a long-term combustion suppression effect.
  • the disulfonic acid ester in the present embodiment is at least one selected from a cyclic disulfonic acid ester represented by the chemical formula (8) and a chain disulfonic acid ester represented by the chemical formula (9). Disulfonic acid esters contribute to the formation of SEI. The disulfonic acid ester is preferably included as an additive.
  • a 1 may be a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, a carbonyl group, a sulfinyl group, A branched or substituted perfluoroalkylene group having 1 to 5 carbon atoms which may be branched, a substituted or unsubstituted fluoroalkylene group having 2 to 6 carbon atoms which may be branched, or an ether bond; A substituted or unsubstituted alkylene group having 1 to 6 carbon atoms and an ether bond may be branched, and a substituted or unsubstituted perfluoroalkylene group having 1 to 6 carbon atoms or an ether bond may be branched.
  • .A 2 showing a good substituted or unsubstituted fluoroalkylene group having 2 to 6 carbon atoms be substituted or unsubstituted alkylene group, Furuoroa substituted or unsubstituted Shows the Killen group or an oxygen atom.
  • R 6 and R 9 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, A substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, a polyfluoroalkyl group having 1 to 5 carbon atoms, -SO 2 X 3 (X3 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms),- SY 1 (Y 1 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), —COZ (Z is a hydrogen atom, or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), and a halogen atom, R 7 and R 8 each independently represents a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, and
  • the compound represented by chemical formula (8) or chemical formula (9) can be obtained, for example, using the production method described in Japanese Patent Publication No. 5-44946.
  • the content of the disulfonic acid ester is preferably 0.05 to 10% by mass and more preferably 0.1 to 5% by mass with respect to the entire gel electrolyte.
  • the content of the disulfonic acid ester is 0.05% by mass or more, a sufficient SEI effect can be obtained.
  • the content of the disulfonic acid ester is 10% by mass or less, the reductive decomposition of the oxo acid ester of phosphorus can be suppressed over a long period of time, and the increase in resistance can be suppressed, so that the battery characteristics can be further improved.
  • the gel electrolyte of this embodiment may contain an aprotic solvent.
  • An aprotic solvent may be contained in the electrolyte for a lithium ion secondary battery of the present embodiment.
  • the aprotic solvent include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), cyclic carbonates such as vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl.
  • Linear carbonates such as carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2- Chain ethers such as ethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, di Methylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolid
  • the gel electrolyte of the present embodiment may further contain a cyclic carbonate containing halogen as an additive.
  • a cyclic carbonate containing halogen By adding a cyclic carbonate containing halogen to the gel electrolyte, it contributes to the improvement of the ionic conductivity of the electrolyte and the formation of a film, so that the battery characteristics can be maintained for a long time and the combustion can be suppressed.
  • the cyclic carbonate containing halogen include fluorine-containing carbonate.
  • the fluorine-containing carbonate includes linear and cyclic ones, and is preferably a cyclic fluorine-containing carbonate (hereinafter also abbreviated as fluorine-containing cyclic carbonate).
  • the content of the halogen-containing cyclic carbonate is preferably 0.5 to 20% by mass, more preferably 0.1 to 10% by mass, based on the entire gel electrolyte. It is more preferably in the range of ⁇ 8% by mass, and particularly preferably in the range of 1 to 5% by mass.
  • the fluorine-containing cyclic carbonate is not particularly limited, but a compound obtained by fluorinating a part of propylene carbonate, vinylene carbonate, vinyl ethylene carbonate, or the like can also be used. More specifically, for example, 4-fluoro-1,3-dioxolane-2-one (fluoroethylene carbonate, hereinafter also referred to as FEC), (cis or trans) 4,5-difluoro-1,3-dioxolane-2 -One, 4,4-difluoro-1,3-dioxolan-2-one, 4-fluoro-5-methyl-1,3-dioxolan-2-one and the like can be used. Among these, fluoroethylene carbonate is preferable.
  • Electrolyte contained in the gel electrolyte of the present embodiment is not limited to, for example, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiClO 4, LiAlCl 4, and LiN (C n F 2n + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (n and m are natural numbers), LiCF 3 SO 3 and the like.
  • the gel electrolyte of this embodiment can be obtained from, for example, the following Step A and Step B.
  • Step A a step of synthesizing a copolymer of the first monomer represented by the formula (1) or (2) and the second monomer represented by the formula (4).
  • Step B lithium salt, Step.
  • the copolymer can be synthesized by using a radical polymerization initiator.
  • radical polymerization initiators include azo initiators such as N, N-azobisisobutyronylyl, dimethyl N, N′-azobis (2-methylpropionate), benzoyl peroxide, lauroyl peroxide, and the like. An organic peroxide type initiator is mentioned. These radical polymerization initiators bind to the terminal of the copolymer of the first monomer represented by the formula (1) or (2) and the second monomer represented by the formula (4) at the start of the reaction. Therefore, the reaction is not caused again by reheating after completion of the reaction.
  • the cationic polymerization initiator is not particularly limited.
  • various onium salts for example, cation salts such as ammonium and phosphonium, -BF 4 , -PF 6 , -CF 3 SO 3
  • anionic salts such as LiBF 4 and LiPF 6 .
  • a radical polymerization initiator such as an organic peroxide is not required in the step Step B of obtaining the gel electrolyte. Therefore, phosphorus oxo acid ester derivatives and disulfonic acid esters are not decomposed in the gelation step. Further, since the radical polymerization initiator is unnecessary for the battery, the battery characteristics are not deteriorated by the influence of the residue after polymerization. Further, the gel electrolyte does not have to worry about leakage as compared with the electrolytic solution, and good adhesion characteristics between the negative electrode and the positive electrode and the separator can be obtained over a long period of time so that good life characteristics can be obtained.
  • the gel electrolyte of the present embodiment can reduce the amount of gas generated during the initial charge, and is preferable from the viewpoint of safety.
  • the reason for this is that the phosphorus oxo acid ester derivative and the disulfonic acid ester coexist in the gel electrolyte, resulting in a reaction mechanism different from that of SEI formation in the gel electrolyte containing only the disulfonic acid ester. It is speculated that the amount of gas generated is reduced because SEI can be formed by incorporating a part of the derivative.
  • Examples of the negative electrode active material included in the negative electrode of the lithium ion secondary battery including the gel electrolyte of the present embodiment include one or two selected from the group consisting of lithium metal, a lithium alloy, and a material capable of inserting and extracting lithium.
  • the above substances can be used.
  • a material capable of inserting and extracting lithium ions a carbon material or an oxide can be used.
  • graphite that absorbs lithium, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite material thereof can be used.
  • graphite has high electron conductivity, excellent adhesion to a current collector made of a metal such as copper, and voltage flatness. Since it is formed at a high processing temperature, it contains few impurities and improves negative electrode performance. This is preferable.
  • a composite material of graphite with high crystallinity and amorphous carbon with low crystallinity can be used.
  • any of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, phosphoric acid, boric acid, or a composite thereof may be used, and it is particularly preferable to include silicon oxide.
  • the structure is preferably in an amorphous state. This is because silicon oxide is stable and does not cause a reaction with other compounds, and the amorphous structure does not lead to deterioration due to nonuniformity such as crystal grain boundaries and defects.
  • a film forming method a vapor deposition method, a CVD method, a sputtering method, or the like can be used.
  • the lithium alloy is composed of lithium and a metal capable of forming an alloy with lithium.
  • a metal capable of forming an alloy with lithium is composed of a binary or ternary alloy of a metal such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and lithium.
  • the lithium metal or lithium alloy is particularly preferably amorphous. This is because the amorphous structure hardly causes deterioration due to non-uniformity such as crystal grain boundaries and defects.
  • Lithium metal or lithium alloy may be appropriately formed by a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, a thermal CVD method, a sol-gel method, or the like. it can.
  • Examples of the positive electrode active material included in the positive electrode of the lithium ion secondary battery including the gel electrolyte for the lithium ion secondary battery of the present embodiment include lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4. Can be mentioned. In addition, the transition metal portion of these lithium-containing composite oxides may be replaced with another element.
  • a lithium-containing composite oxide having a plateau at 4.5 V or more at the metal lithium counter electrode potential can be used.
  • the lithium-containing composite oxide include spinel-type lithium manganese composite oxide, olivine-type lithium-containing composite oxide, and reverse spinel-type lithium-containing composite oxide.
  • the lithium-containing composite oxide include Li a (MxMn 2 ⁇ x ) O 4 (where 0 ⁇ x ⁇ 2 and 0 ⁇ a ⁇ 1.2. M is Ni, And at least one selected from the group consisting of Co, Fe, Cr and Cu.).
  • a laminated body or a wound body can be used as the electrode element, and an aluminum laminate exterior body or a metal exterior body can be used as the exterior body.
  • the battery capacity is not limited.
  • the gel electrolyte of this embodiment does not require a radical polymerization initiator such as an organic peroxide for gelation, the phosphorus oxo acid ester derivative or disulfonic acid ester is not decomposed during heat polymerization. Further, since the radical polymerization initiator is unnecessary for the battery, the battery characteristics are not deteriorated by the influence of the residue after polymerization. In addition, leakage due to the gel electrolyte can be prevented.
  • a radical polymerization initiator such as an organic peroxide for gelation
  • the reductive decomposition of the oxo acid ester derivative of phosphorus on the negative electrode active material can be suppressed by including a disulfonic acid ester that forms SEI having a very high reductive decomposition suppressing effect. Only in the presence of a disulfonic acid ester can an increase in resistance due to reductive decomposition of an oxo acid ester derivative of phosphorus be suppressed over a long period of time, and good lifetime characteristics can be obtained over a long period of time.
  • the phosphorus oxo acid ester derivative can be suppressed by reductive decomposition over a long period of time, an effective amount of phosphorus oxo acid ester derivative can be present in the gel electrolyte even after long-term use to suppress combustibility. Therefore, high safety can be obtained over a long period of time.
  • the gel electrolyte has no worry of leakage, and has good adhesion between the negative electrode and the positive electrode and the separator, so that good life characteristics can be obtained over a long period of time.
  • the amount of gas generated at the first charge is reduced.
  • the reaction mechanism different from the SEI formation in the non-aqueous electrolyte containing only the disulfonic acid ester due to the coexistence of the oxo acid ester derivative of phosphorus and the disulfonic acid ester in the gel electrolyte. It is presumed that the amount of gas generated is reduced because SEI in which some oxo acid ester derivatives of phosphorus are incorporated is formed.
  • the SEI by the disulfonic acid ester incorporating the phosphorus oxo acid ester derivative is strong SEI. It is speculated that there is a possibility that the reductive decomposition inhibiting effect on the gel electrolyte component containing the oxo acid ester derivative of phosphorus is increased. Due to this effect, it is presumed that the life characteristics are also good. Furthermore, since reductive decomposition of phosphorus oxo acid ester derivatives can be suppressed over a long period of time, high safety can be obtained over a long period of time.
  • FIG. 1 is a schematic diagram illustrating the configuration of the positive electrode of the lithium ion battery of Example 1.
  • FIG. 2 is a schematic view illustrating the configuration of the negative electrode of the lithium ion battery of Example 1.
  • FIG. 3 is a schematic cross-sectional view illustrating the configuration of the battery element after winding the lithium ion battery of Example 1.
  • Example 1 First, the production of the positive electrode will be described with reference to FIG. A mixture of 85% by mass of LiMn 2 O 4 as a positive electrode active material, 7% by mass of acetylene black as a conductive auxiliary material, and 8% by mass of polyvinylidene fluoride as a binder was added and further mixed with N-methylpyrrolidone, A positive electrode slurry was prepared. This positive electrode slurry is applied to both surfaces of a 20 ⁇ m thick Al foil 2 as a current collector by a doctor blade method so that the thickness after the roll press treatment is 160 ⁇ m, dried at 120 ° C. for 5 minutes, and roll press treatment The process was given and the positive electrode active material application part 3 was formed.
  • coated to either surface was provided in both ends. Further, a positive electrode conductive tab 6 was provided in one of the positive electrode active material non-applied portions 5. Next to the positive electrode active material non-applied portion 5 provided with the positive electrode conductive tab 6, the positive electrode active material single-side applied portion 4 in which the positive electrode active material is applied only on one surface is provided.
  • the positive electrode 1 was produced by the above method.
  • N-methylpyrrolidone was added to and mixed with 90% by mass of graphite as the negative electrode active material, 1% by mass of acetylene black as the conductive auxiliary agent, and 9% by mass of polyvinylidene fluoride as the binder, and the negative electrode slurry was mixed.
  • This negative electrode slurry is applied to both surfaces of a 10 ⁇ m thick Cu foil 8 serving as a current collector by a doctor blade method so that the thickness after the roll press treatment is 120 ⁇ m, and dried at 120 ° C. for 5 minutes, and the roll press treatment step
  • the negative electrode active material application part 9 was formed.
  • coated to either surface was provided in both ends.
  • one of the negative electrode active material non-applied portions 11 was provided with a negative electrode conductive tab 12.
  • surface was provided next to the negative electrode active material non-application part 11 with which the negative electrode conductive tab 12 was provided.
  • the negative electrode 7 was produced by the above method.
  • the production of the battery element will be described with reference to FIG.
  • Two separators 13 made of a polypropylene microporous membrane having a membrane thickness of 25 ⁇ m and a porosity of 55% were welded, and the cut portion was fixed to the core of the winding device and wound up. 1 (FIG. 1) and the tip of the negative electrode 7 (FIG. 2) were introduced.
  • the positive electrode 1 is on the opposite side of the connection portion of the positive electrode conductive tab 6, and the negative electrode 7 is on the connection portion side of the negative electrode conductive tab 12 on the tip side.
  • the negative electrode was placed between the two separators, and the positive electrode was placed on the upper surface of the separator, and the winding core was rotated and wound to form a battery element (hereinafter referred to as jelly roll (J / R)).
  • jelly roll J / R
  • the J / R was housed in an embossed laminate outer package, the positive electrode conductive tab 6 and the negative electrode conductive tab 12 were pulled out, one side of the laminate outer package was folded back, and heat fusion was performed leaving a portion for injection. .
  • ethyl acrylate was charged as the second monomer, and (3-ethyl-3-oxetanyl) methyl methacrylate was charged at a ratio of 26 mass% as the first monomer.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • 2500 ppm of N, N'-azobisisobutyronitrile was added with respect to the monomer weight. The reaction was heated at 65 to 70 ° C. while introducing dry nitrogen gas, and then cooled to room temperature.
  • the pregel solution was injected from the laminate injection part, and impregnated with vacuum.
  • the liquid injection part was heat-sealed.
  • the pregel solution was heat-polymerized on condition of 60 degreeC and 24 hours, and was gelatinized. A battery was obtained through the above steps.
  • the cycle test of the obtained battery was CC-CV charge (upper limit voltage 4.2V, current 1C, CV time 1.5 hours), CC discharge (lower limit voltage 3.0V, current 1C), both at 45 ° C. Carried out.
  • the capacity retention rate was the ratio of the discharge capacity at the 1000th cycle to the discharge capacity at the 1st cycle. The capacity retention rate is shown in Table 3.
  • the combustion test was performed by placing the battery after the cycle test 10 cm above the tip of the flame of the gas burner. And flame retardance was judged as follows from a mode that electrolyte solution volatilizes and combusts.
  • the electrolyte did not ignite: ⁇ , even after ignited, extinguished after 2 to 3 seconds: ⁇ , even after ignited, extinguished within 10 seconds: ⁇ , continued to burn without extinguishing within 10 seconds: x.
  • Example 2 was performed in the same manner as Example 1 except that a pregel solution was prepared by mixing 10% by mass of tri (2,2,2-trifluoroethyl) phosphate (hereinafter also referred to as PTTFE).
  • PTTFE tri (2,2,2-trifluoroethyl) phosphate
  • Example 3 was carried out in the same manner as in Example 1 except that 20% by mass of PTTFE was mixed to prepare a pregel solution.
  • Example 4 was carried out in the same manner as Example 1 except that 40% by mass of PTTFE was mixed to prepare a pregel solution.
  • Example 5 a pregel solution was prepared by mixing 20% by mass of di (2,2,2-trifluoroethyl) fluorophosphate (hereinafter also simply referred to as ditrifluoroethyl fluorophosphate) instead of PTTFE. was carried out in the same manner as in Example 1.
  • di (2,2,2-trifluoroethyl) fluorophosphate hereinafter also simply referred to as ditrifluoroethyl fluorophosphate
  • Example 6 Example 6 was carried out except that 20% by mass of 2,2,2-trifluoroethyl difluorophosphate (hereinafter also simply referred to as trifluoroethyl difluorophosphate) was mixed in place of PTTFE to prepare a pregel solution. Performed as in Example 1.
  • 2,2,2-trifluoroethyl difluorophosphate hereinafter also simply referred to as trifluoroethyl difluorophosphate
  • Example 7 is No. 1 in Table 1. No. 2 instead of No. 2 The same procedure as in Example 3 was carried out except that a pregel solution was prepared by mixing 2% by mass of the compound No. 4.
  • Example 8 is No. 1 in Table 1. No. 2 in Table 2 instead of the compound of 2 The same procedure as in Example 3 was performed except that a pregel solution was prepared by mixing 2% by mass of the compound 101.
  • Example 9 is No. 1 in Table 1. No. 2 in Table 2 instead of the compound of 2 The same procedure as in Example 3 was performed except that a pregel solution was prepared by mixing 2% by mass of the compound No. 102.
  • Example 10 was carried out in the same manner as Example 3 except that a pregel solution was prepared by further mixing 2% by mass of fluoroethylene carbonate (FEC).
  • FEC fluoroethylene carbonate
  • Comparative Example 1 Comparative Example 1 is No. 1 in Table 1. The same procedure as in Example 3 was performed except that the pregel solution was prepared without mixing the compound of 2.
  • Comparative Example 2 is No. 1 in Table 1.
  • the same procedure as in Example 3 was performed, except that the pregel solution was prepared by mixing 3% by mass of 1,3-propane sultone (PS) without mixing the compound of 2.
  • PS 1,3-propane sultone
  • Comparative Example 3 is No. 1 in Table 1. The same procedure as in Example 3 was performed, except that the pregel solution was prepared by mixing 5% by mass of vinylene carbonate (VC) without mixing the compound of No. 2.
  • VC vinylene carbonate
  • Table 3 shows the results of Examples 1 to 10 and Comparative Examples 1 to 3.
  • Examples 1 to 4 when the phosphate ester content increases, the capacity retention rate after 1000 cycles tends to slightly decrease, but the flame resistance of the battery electrolyte after evaluation is very high. It was good. Further, when Examples 3 and 5 to 10 containing the same amount of phosphate ester were compared with Comparative Examples 1 to 3, Examples 3 and 5 to 10 to which disulfonate was added had a good capacity retention rate. The flame retardancy was also very good. Furthermore, in Example 10 to which FEC was added, the capacity retention rate was good and the flame retardancy was also very good.
  • Example 11 was performed in the same manner as Example 3 except that the negative electrode material of Example 3 was replaced with a silicon-based material instead of graphite.
  • a method for manufacturing the negative electrode will be described below. First, 90% by mass of silicon, 1% by mass of acetylene black as a conductive auxiliary agent, and 9% by mass of a polyimide binder as a binder were mixed, N-methylpyrrolidone was added and further mixed to prepare a negative electrode slurry. .
  • This negative electrode slurry was applied to both sides of a 10 ⁇ m thick Cu foil serving as a current collector, and was applied so that the thickness after the roll press treatment was 80 ⁇ m. And it was made to dry at 120 degreeC for 5 minutes, the press process was performed, and also it was made to dry additionally at 300 degreeC for 10 minutes, and the negative electrode active material application part 9 was formed.
  • Example 12 In Example 12, No. 1 in Table 1 was obtained. No. 2 in Table 2 instead of the compound of 2 The same procedure as in Example 11 was performed, except that a pregel solution was prepared by mixing 2% by mass of the compound 101.
  • Comparative Example 4 is No. 1 in Table 1. The same procedure as in Example 11 was performed, except that the pregel solution was prepared by mixing 3% by mass of PS without mixing the compound of 2.
  • Comparative Example 5 is No. 1 in Table 1.
  • the same procedure as in Example 11 was performed except that the pregel solution was prepared by mixing 5% by mass of VC without mixing the compound of 2.
  • Table 4 shows the results of Examples 12 and 13 and Comparative Examples 4 and 5.
  • Example 13 was performed in the same manner as Example 3 except that ethyl acrylate was used as the second monomer and glycidyl methacrylate was used as the first monomer.
  • Example 14 was performed in the same manner as Example 3 except that ethyl acrylate was used as the second monomer and 3,4-epoxycyclohexylmethyl methacrylate was used as the first monomer.
  • Example 15 was carried out in the same manner as Example 3 except that methyl methacrylate was used as the second monomer and (3-ethyl-3-oxetanyl) methyl methacrylate was used as the first monomer.
  • Example 16 was performed in the same manner as in Example 3 except that methyl methacrylate was used as the second monomer and glycidyl methacrylate was used as the first monomer.
  • Example 17 was carried out in the same manner as Example 3 except that methyl methacrylate was used as the second monomer and 3,4-epoxycyclohexylmethyl methacrylate was used as the first monomer.
  • Example 18 was carried out in the same manner as Example 3 except that propyl methacrylate was used as the second monomer and (3-ethyl-3-oxetanyl) methyl methacrylate was used as the first monomer.
  • Example 19 was performed in the same manner as in Example 3 except that propyl methacrylate was used as the second monomer and glycidyl methacrylate was used as the first monomer.
  • Example 20 Example 20 was performed in the same manner as Example 3 except that propyl methacrylate was used as the second monomer and 3,4-epoxycyclohexylmethyl methacrylate was used as the first monomer.
  • Example 21 was carried out in the same manner as in Example 3 except that methoxytriethylene glycol methacrylate was used as the second monomer and (3-ethyl-3-oxetanyl) methyl methacrylate was used as the first monomer.
  • Example 22 was carried out in the same manner as Example 3 except that methoxytriethylene glycol methacrylate was used as the second monomer and glycidyl methacrylate was used as the first monomer.
  • Example 23 was carried out in the same manner as Example 3 except that methoxytriethylene glycol methacrylate was used as the second monomer and 3,4-epoxycyclohexylmethyl methacrylate was used as the first monomer.
  • SEI by disulfonic acid ester can suppress the reductive decomposition of phosphorus oxo acid ester over a long period of time regardless of the polymer structure, and can obtain good life characteristics, and as a result, it is high over a long period of time. I was able to get safety.
  • Comparative Example 6 Comparative Example 6 was performed in the same manner as Example 1 except that the gel electrolyte of Example 1 was produced as follows.
  • Example 1 the pregel solution was injected from the injection part and impregnated with vacuum.
  • the pregel solution was polymerized and gelled at 80 ° C. for 2 hours.
  • a battery was obtained through the above steps and measured in the same manner as in Example 1.
  • Comparative Example 7 was performed in the same manner as Comparative Example 6 except that 10% by mass of PTTFE was mixed.
  • Comparative Example 8 Comparative Example 8 was performed in the same manner as Comparative Example 6 except that 20% by mass of PTTFE was mixed.
  • Table 6 shows the results of Examples 1 to 3 and Comparative Examples 6 to 8.
  • Comparative Examples 6 to 8 show that the combustion suppression effect after the cycle is lowered even with the same amount of phosphate ester added.
  • the flame retardancy is lowered by the decomposition of the phosphate ester by the polymerization initiator in the gel electrolyte.
  • the cycle maintenance rate is lowered because SEI was hardly formed normally by the decomposition of the phosphate ester by the polymerization initiator.
  • the battery containing the gel electrolyte of the present embodiment can suppress the reductive decomposition of phosphorus oxoacid ester over a long period of time, and can obtain good life characteristics. As a result, high safety over a long period of time. Can get.
  • This embodiment can be used for other energy storage devices such as electric double layer capacitors and lithium ion capacitors.
  • Positive electrode 2 Al foil 3: Positive electrode active material application part 4: Positive electrode active material single-side application part 5: Positive electrode active material non-application part 6: Positive electrode conductive tab 7: Negative electrode 8: Cu foil 9: Negative electrode active material application part 10 : Negative electrode active material one side application part 11: Negative electrode active material non-application part 12: Negative electrode conductive tab 13: Insulating porous sheet 14: Positive electrode active material layer 15: Negative electrode active material layer

Abstract

長期的に難燃性を有し、かつ良好な容量維持率が有するリチウムイオン二次電池用ゲル電解質を提供することを目的とする。 本実施形態のリチウムイオン二次電池用ゲル電解質は、リチウム塩と、化学式(1)及び(2)で示される化合物から選ばれる少なくとも1種からなる第1のモノマーと化学式(4)で示される第2のモノマーとの共重合体と、化学式(5)乃至(7)で示される化合物から選ばれる少なくとも1種からなるリンのオキソ酸エステル誘導体と、化学式(8)で示される環状ジスルホン酸エステル及び化学式(9)で示される鎖状ジスルホン酸エステルから選ばれる少なくとも1種からなるジスルホン酸エステルと、を含有する。

Description

リチウムイオン二次電池用ゲル電解質およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用ゲル電解質およびそれを備えた電池に関し、特に、高い安全性と良好な寿命特性を併せ持つリチウムイオン電池に関するものである。
 リチウムイオンまたはリチウム二次電池は、高いエネルギー密度を実現できることから携帯電話ノートパソコン用、また大型の電力貯蔵用電源や自動車用電源としても注目されている。
 リチウムイオンまたはリチウム二次電池は、高いエネルギー密度を実現できるが、大型化するとエネルギー密度は膨大となり、より高い安全性が求められる。たとえば、大型の電力貯蔵用電源や自動車用電源においては特に高い安全性が求められる。そのため、セルやパッケージなどの構造設計、保護回路、電極材料、過充電防止機能を有する添加剤や、セパレータのシャットダウン機能の強化などの安全対策が施され、二次電池の安全性が確保されている。
 リチウムイオン二次電池は、電解液溶媒として環状カーボネートや鎖状カーボネートなどの非プロトン性溶媒を用いている。これらカーボネート類は、誘電率が高くリチウムイオンのイオン伝導度は高いが、引火点が低く可燃性を有する傾向がある。
 また、電解液溶媒として用いているカーボネート類よりも高い電位で還元分解してリチウムイオン透過性の高い保護膜、SEI(Solid Electrolyte Interface:固体電解質界面)を生成する物質を添加剤として使用する技術が知られている。このSEIは、充放電効率、サイクル特性、安全性に大きな影響を及ぼす。SEIにより炭素材料や酸化物材料の不可逆容量の低減ができる。
 リチウムイオン二次電池の安全性をさらに高める手段のひとつとして電解液の難燃化がある。特許文献1には、有機電解液の主溶媒としてリン酸トリエステルを用い、かつ負極が炭素材料を構成要素とする有機電解液二次電池について開示されている。特許文献2には、電解液の有機溶媒としてリン酸トリエステルを用いることにより、安全性を向上させることができたことが開示されている。
 特許文献3には、非水電解液がリン酸エステル、含ハロゲン置換リン酸エステルおよび縮合リン酸エステルからなる群より選ばれる少なくとも1つを含有する二次電池について開示されている。特許文献4には、電解液溶媒として特定のハロゲン置換リン酸エステル化合物と特定のエステル化合物との混合溶媒を用いることにより、低粘度で低温特性の優れた電解液を得ることができることが開示されている。特許文献5には、ビニレンカーボネート及び1,3-プロパンスルトンを添加した非水電解液を用いる電池の製造方法について開示されている。特許文献6には、分子鎖中にフッ素原子を有するリン酸エステル類を所定量含有し、塩濃度が1mol/L以上であり、粘度が6.4mPa・s未満である非水電解液を有する電池が開示されている。このような構成とすることで、難燃性、自己消火性、高率充放電特性を備えた電池を提供することができると記載されている。
 特許文献7には、所定の式で表される少なくとも1種のリン酸エステル誘導体と、非水溶媒と、溶質とを含む非水電解液について開示されている。特許文献8には、非水電解液にフルオロリン酸エステル化合物を用いることにより、導電率及び耐還元性に優れ、かつ低配合量でも高い難燃性を発現する電解液が得られることが開示されている。
 特許文献9には、ハロゲン化炭酸エチレンと、リン酸エステル、リン酸エステルおよびホスファゼン化合物からなる群のうちの少なくとも1種のリン含有化合物と、を含む溶媒を含有する電解液が開示されている。該電解液を用いることにより、高温における化学的安定性を向上させることができることが開示されている。特許文献10には、リン酸エステル化合物と、ハロゲンを含有する環状炭酸エステルと、鎖状炭酸エステルと、を含む非水溶媒にリチウム塩を溶解してなる非水電解液が開示されている。特許文献11には、所定式で示される含フッ素リン酸エステルを所定量含む有機溶媒と電解質塩を含む非水系電解液が開示されている。該電解液は、リチウム二次電池用の電解液として有用な不燃性かつ難燃性を有し、電解質塩の溶解性が高く、放電容量が大きく、充放電サイクル特性に優れていることが開示されている。
 特許文献12には、含フッ素リン酸エステルを含有したポリマー固体電解質用組成物の記載がある。該文献には、エポキシ基および/またはオキセタン環含有ポリマーとカチオン重合開始剤の組合せから成るポリマー架橋性材料が開示されている。
特許第2908719号明細書 特許第3425493号明細書 特開平10-255839号公報 特許第3821495号明細書 特開2007-059192号公報 特開2007-258067号公報 特許第3422769号明細書 特開2006-286277号公報 特開2007-115583号公報 特許第3961597号明細書 特開2008-21560号公報 特開2003-238821号公報
 しかしながら、特許文献1、2では、長期使用中にリン酸エステルが炭素負極上で還元分解され、還元物の電極上への堆積による抵抗上昇およびガス発生による抵抗上昇などが起こり、電池特性が低下する場合があった。さらに、使用中にリン酸エステルが還元分解され、電解液の燃焼抑制効果も低下する場合があるという課題があった。
 特許文献3~8には電解液の燃焼性もしくは電池の初期特性についての記述はあるものの、電池の長期信頼性に関しては言及されていない。さらに、ハロゲン置換したリン酸エステルおよびそれらの誘導体も、長期使用中に負極上で徐々に還元分解され、抵抗上昇による電池特性低下が起こる場合があり、還元分解された結果、電解液の燃焼抑制効果も低下する場合があるという課題があった。特に、特許文献5に示されたSEI形成のための添加剤であるビニレンカーボネートや1,3-プロパンスルトンを添加した場合においても、十分な寿命が得られない場合があった。また、長期にわたる燃焼性抑制効果については言及されていない。
 特許文献9~11では、ハロゲン置換した環状炭酸エステルはハロゲンを含有した皮膜を負極上に形成することができ、リン酸エステルもしくはハロゲン置換したリン酸エステルの還元分解を抑制することができると記載されている。しかし、ハロゲン置換した環状炭酸エステルのみで長期的にリン酸エステルもしくはハロゲン置換したリン酸エステルの還元分解を抑制しようとする場合、非常に多くのハロゲン置換した炭酸エステルが必要となり、電解液のイオン伝導度の低下を招く場合があった。さらに、長期的には電池の大幅な抵抗上昇や容量維持率の低下を招く場合があった。
 さらに、特許文献1~11はいずれも電解液であるため、漏液の問題が懸念される。それに対し、特許文献12ではポリマー固体電解質もしくはポリマーゲル電解質の記述はある。しかし、特許文献12に記載される電池においては、初期的に電解質そのものの難燃性は確保されていても、特許文献9~11同様に、含フッ素リン酸エステルが負極上で分解し、Liの析出を招き、セルとしての安全性が確保されない場合があった。
 そこで、本実施形態は、長期的に難燃性を有し、かつ良好な容量維持率を有するリチウムイオン二次電池用ゲル電解質を提供することを目的とする。
 本実施形態の一つは、
 リチウム塩と、
 化学式(1)及び(2)で示される化合物から選ばれる少なくとも1種からなる第1のモノマーと化学式(4)で示される第2のモノマーとの共重合体と、
 化学式(5)乃至(7)で示される化合物から選ばれる少なくとも1種からなるリンのオキソ酸エステル誘導体と、
 化学式(8)で示される環状ジスルホン酸エステル及び化学式(9)で示される鎖状ジスルホン酸エステルから選ばれる少なくとも1種からなるジスルホン酸エステルと、
を含有するリチウムイオン二次電池用ゲル電解質である。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 (式(1)中、RはHまたはCHを表し、式(1)、(2)中、Rは下記化学式(3)で示される置換基のいずれかを表す。)
Figure JPOXMLDOC01-appb-C000012
 (式(3)中、Rは炭素数1~6のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000013
 (式(4)中、RはHまたはCHを表し、Rは-COOCH,-COOC,-COOC、-COOC、-COOCHCH(CH,-COO(CHCHO)CH,-COO(CHCHO),-COO(CHCHCHO)CH,-COO(CHCH(CH)O)CH,-COO(CHCH(CH3)O),-OCOCH、-OCOC、又は-CHOCを表す。ここで、n=1~3である。)
Figure JPOXMLDOC01-appb-C000014
 (式(5)中、R11、R12、及びR13は、それぞれ独立に、アルキル基、アリール基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、及びシクロアルキル基、並びにこれらのハロゲン置換した基から選ばれるいずれかの基を表す。R11、R12、及びR13のいずれか2つまたは全てが結合して環状構造を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000015
 (式(6)中、R21、及びR22は、それぞれ独立に、アルキル基、アリール基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、及びシクロアルキル基、並びにこれらのハロゲン置換した基から選ばれるいずれかの基を表す。R21、及びR22が結合して環状構造を形成していてもよい。X21は、ハロゲン原子を表す。)
Figure JPOXMLDOC01-appb-C000016
 (式(7)中、R31は、アルキル基、アリール基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、及びシクロアルキル基、並びにこれらのハロゲン置換した基から選ばれるいずれかの基を表す。X31、及びX32は、それぞれ独立に、ハロゲン原子を表す。)
Figure JPOXMLDOC01-appb-C000017
 (式(8)中、Qは酸素原子、メチレン基または単結合を示す。A1は、分岐していても良い置換もしくは無置換の炭素数1~5のアルキレン基、カルボニル基、スルフィニル基、分岐していても良い置換もしくは無置換の炭素数1~5のパーフルオロアルキレン基、分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のパーフルオロアルキレン基又はエーテル結合を含み分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基を示す。Aは置換もしくは無置換のアルキレン基、置換もしくは無置換のフルオロアルキレン基、または酸素原子を示す。)
Figure JPOXMLDOC01-appb-C000018
 (式(9)中、RおよびRは、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~5のアルキル基、置換もしくは無置換の炭素数1~5のアルコキシ基、置換もしくは無置換の炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、‐SO(X3は置換もしくは無置換の炭素数1~5のアルキル基)、‐SY(Yは置換もしくは無置換の炭素数1~5のアルキル基)、-COZ(Zは水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、及びハロゲン原子、から選ばれる原子または基を示す。RおよびRは、それぞれ独立して、置換もしくは無置換の炭素数1~5のアルキル基、置換もしくは無置換の炭素数1~5のアルコキシ基、置換もしくは無置換のフェノキシ基、置換もしくは無置換の炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、置換もしくは無置換の炭素数1~5のフルオロアルコキシ基、炭素数1~5のポリフルオロアルコキシ基、水酸基、ハロゲン原子、-NX(X及びXは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)
、及び-NYCONY(Y~Yは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、から選ばれる原子または基を示す。)
 また、本実施形態の一つは、前記リンのオキソ酸エステル誘導体を、5~60質量%含有する前記リチウムイオン二次電池用ゲル電解質である。
 また、本実施形態の一つは、前記ジスルホン酸エステルを、0.05~10質量%含有する前記リチウムイオン二次電池用ゲル電解質である。
 また、本実施形態の一つは、ハロゲンを含有する環状炭酸エステルを、0.5~20質量%含有する前記リチウムイオン二次電池用ゲル電解質である。
 また、本実施形態の一つは、前記リチウムイオン二次電池用ゲル電解質を備えたリチウムイオン二次電池である。
 本実施形態により、長期にわたり高い難燃性と良好な容量維持率を併せ持つリチウムイオン二次電池用ゲル電解質を提供することが可能となる。
リチウムイオン二次電池の正極の構成を説明するための概略図である。図1(a)は正極の平面図であり、図1(b)は正極の側面図である。 リチウムイオン二次電池の負極の構成を説明するための概略図である。図2(a)は負極の平面図であり、図2(b)は負極の側面図である。 リチウムイオン二次電池の巻回後の電池要素の構成を説明する図である。
 以下、本発明の実施の形態について、詳細に説明する。
 本実施形態のリチウムイオン二次電池用ゲル電解質は、リチウム塩と、ゲル成分としての前記共重合体と、前記リンのオキソ酸エステルと、前記ジスルホン酸エステルと、を含む。
 前記共重合体は、開環重合性官能基を有する化学式(1)及び(2)で示される化合物から選ばれる少なくとも1種からなる第1のモノマーと、開環重合性官能基を有しない化学式(4)で示される第2のモノマーと、を重合させることによって形成される。なお、開環重合性官能基は化学式(3)で示される。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 (式(1)中、RはHまたはCHを表し、式(1)、(2)中、Rは下記化学式(3)示される置換基のいずれかを表す。)
Figure JPOXMLDOC01-appb-C000021
 (式(3)中、Rは炭素数1~6のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000022
 (式(4)中、RはHまたはCHを表し、Rは-COOCH,-COOC,-COOC、-COOC、-COOCHCH(CH,-COO(CHCHO)CH,-COO(CHCHO),-COO(CHCHCHO)CH,-COO(CHCH(CH)O)CH,-COO(CHCH(CH)O),-OCOCH、-OCOC、又は-CHOCを表す。ここで、n=1~3の整数を示す。)
 前記式(1)または(2)で示される第1のモノマーの例としては、(3-エチル-3-オキセタニル)メチルメタクリレート、グリシジルメタクリレート、3,4-エポキシシクロヘキシルメチルメタクリレート等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。なお、以下前記式(1)または(2)で示されるモノマーを、開環重合性官能基を有するモノマーと示す場合がある。
 前記化学式(4)で示される第2のモノマーの例としては、メチルアクリレート、エチルアクリレート、メチルメタクリレート、プロピルメタクリレート、メトキシトリエチレングリコールメタクリレート、メトキシジプロピレングリコールアクリレートなどが挙げられる。前記式(4)で示されるモノマーは一種のみを用いてもよく、二種以上を併用してもよい。なお、以下前記式(4)で示されるモノマーを、開環重合性官能基を有さないモノマーと示す場合がある。
 本実施形態におけるリンのオキソ酸エステル誘導体は、下記化学式(5)乃至(7)で示される化合物の少なくとも1種である。
Figure JPOXMLDOC01-appb-C000023
 (式(5)中、R11、R12、及びR13は、それぞれ独立に、アルキル基、アリール基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、及びシクロアルキル基、並びにこれらのハロゲン置換した基から選ばれるいずれかの基を表す。R11、R12、及びR13のいずれか2つまたは全てが結合して環状構造を形成してもよい。)
Figure JPOXMLDOC01-appb-C000024
 (式(6)中、R21、及びR22は、それぞれ独立に、アルキル基、アリール基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、及びシクロアルキル基、並びにこれらのハロゲン置換した基から選ばれるいずれかの基を表す。R21、及びR22が結合して環状構造を形成してもよい。X21は、ハロゲン原子を表す。)
 式(6)中、X21はフッ素原子であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 (式(7)中、R31は、アルキル基、アリール基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、及びシクロアルキル基、並びにこれらのハロゲン置換した基から選ばれるいずれかの基を表す。X31、及びX32は、それぞれ独立に、ハロゲン原子を表す。)
 式(7)中、X31及びX32は、同一でも異なっていても良い。また、X31及びX32はフッ素原子であることが好ましい。
 本実施形態のリンのオキソ酸エステル誘導体は、式(5)乃至(7)のいずれかで示される化合物を1種以上含有してもよい。
 化学式(5)で表される化合物の具体例としては、特にこれらに制限されるものではないが、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸トリフェニル、リン酸ジメチルエチル、リン酸ジメチルプロピル、リン酸ジメチルブチル、リン酸ジエチルメチル、リン酸ジプロピルメチル、リン酸ジブチルメチル、リン酸メチルエチルプロピル、リン酸メチルエチルブチル、リン酸メチルプロピルブチル等のリン酸エステルが挙げられる。また、ハロゲン置換した基を有するリン酸エステルとしては、リン酸トリ(トリフルオロエチル)、リン酸メチル(ジトリフルオロエチル)、リン酸ジメチル(トリフルオロエチル)、リン酸エチル(ジトリフルオロエチル)、リン酸ジエチル(トリフルオロエチル)、リン酸プロピル(ジトリフルオロエチル)、リン酸ジプロピル(トリフルオロエチル)、リン酸トリ(ペンタフルオロプロピル)、リン酸メチル(ジペンタフルオロプロピル)、リン酸ジメチル(ペンタフルオロプロピル)、リン酸エチル(ジペンタフルオロプロピル)、リン酸ジエチル(ペンタフルオロプロピル)、リン酸ブチル(ジペンタフルオロプロピル)、リン酸ジブチル(ペンタフルオロプロピル)などが挙げられる。
 化学式(6)で表される化合物の具体例としては、特にこれらに制限されるものではないが、例えば、フルオロホスホン酸ジメチル、フルオロホスホン酸ジエチル、フルオロホスホン酸ジブチル、フルオロホスホン酸ジフェニル、フルオロホスホン酸メチルエチル、フルオロホスホン酸メチルプロピル、フルオロホスホン酸メチルブチル、フルオロホスホン酸エチルメチル、フルオロホスホン酸プロピルメチル、フルオロホスホン酸ブチルメチル、フルオロホスホン酸エチルプロピル、フルオロホスホン酸エチルブチル、フルオロホスホン酸プロピルブチル、フルオロホスホン酸ジ(トリフルオロエチル)、フルオロホスホン酸メチルトリフルオロエチル、フルオロホスホン酸エチルトリフルオロエチル、フルオロホスホン酸プロピルトリフルオロエチル、フルオロホスホン酸ジ(ペンタフルオロプロピル)、フルオロホスホン酸メチルペンタフルオロプロピル、フルオロホスホン酸エチルペンタフルオロプロピル、フルオロホスホン酸ブチルペンタフルオロプロピル、フルオロホスホン酸ジフルオロフェニル、フルオロホスホン酸エチルフルオロフェニルなどが挙げられる。
 化学式(7)で表される化合物の具体例としては、特にこれらに制限されるものではないが、例えば、ジフルオロ次亜リン酸メチル、ジフルオロ次亜リン酸エチル、ジフルオロ次亜リン酸ブチル、ジフルオロ次亜リン酸フェニル、ジフルオロ次亜リン酸プロピル、ジフルオロ次亜リン酸トリフルオロエチル、ジフルオロ次亜リン酸フルオロプロピル、ジフルオロ次亜リン酸フルオロフェニルなどが挙げられる。
 リンのオキソ酸エステル誘導体の含有量は、ゲル電解質全体に対して5~60質量%であることが好ましく、10~40質量%であることがより好ましい。リンのオキソ酸エステル誘導体の含有量がゲル電解質に対して5質量%以上の場合、電解液の燃焼抑制効果をより効果的に得ることができ、さらに、10質量%以上の場合、さらに燃焼抑制効果が高くなる。また、リンのオキソ酸エステル誘導体の含有量が60質量%以下の場合、抵抗の増加が抑えられることによって電池特性が向上され、また、ジスルホン酸エステルによる還元分解抑制効果がより効果的に得られ易くなり、長期にわたる燃焼抑制効果を確保し易くなる。
 本実施形態におけるジスルホン酸エステルは、化学式(8)で示される環状ジスルホン酸エステル及び化学式(9)で示される鎖状ジスルホン酸エステルから選ばれる少なくとも1種である。ジスルホン酸エステルはSEIの形成に寄与する。ジスルホン酸エステルは添加剤として含まれることが好ましい。
Figure JPOXMLDOC01-appb-C000026
 (式(8)中、Qは酸素原子、メチレン基または単結合を示す。Aは、分岐していても良い置換もしくは無置換の炭素数1~5のアルキレン基、カルボニル基、スルフィニル基、分岐していても良い置換もしくは無置換の炭素数1~5のパーフルオロアルキレン基、分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のパーフルオロアルキレン基又はエーテル結合を含み分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基を示す。Aは置換もしくは無置換のアルキレン基、置換もしくは無置換のフルオロアルキレン基、または酸素原子を示す。)
Figure JPOXMLDOC01-appb-C000027
 (式(9)中、RおよびRは、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~5のアルキル基、置換もしくは無置換の炭素数1~5のアルコキシ基、置換もしくは無置換の炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、‐SO(X3は置換もしくは無置換の炭素数1~5のアルキル基)、‐SY(Yは置換もしくは無置換の炭素数1~5のアルキル基)、-COZ(Zは水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、及びハロゲン原子、から選ばれる原子または基を示す。RおよびRは、それぞれ独立して、置換もしくは無置換の炭素数1~5のアルキル基、置換もしくは無置換の炭素数1~5のアルコキシ基、置換もしくは無置換のフェノキシ基、置換もしくは無置換の炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、置換もしくは無置換の炭素数1~5のフルオロアルコキシ基、炭素数1~5のポリフルオロアルコキシ基、水酸基、ハロゲン原子、-NX4(X及びXは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、及び-NYCONY(Y~Yは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、から選ばれる原子または基を示す。)
 化学式(8)で示される化合物の具体例を表1に、化学式(9)で示される化合物の具体例を表2に具体的に例示するが、特にこれらに限定されるものではない。これらの化合物は1種のみを用いてもよく、2種類以上を併用してもよい。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 化学式(8)または化学式(9)に示す化合物は、例えば特公平5-44946号公報に記載される製造方法を用いて得ることができる。
 ジスルホン酸エステルの含有量は、ゲル電解質全体に対して0.05~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。ジスルホン酸エステルの含有量が0.05質量%以上の場合、十分なSEIの効果を得ることができる。また、ジスルホン酸エステルの含有量が10質量%以下の場合、リンのオキソ酸エステルの還元分解を長期にわたり抑制でき、抵抗の増加を抑制できることから、電池特性をさらに向上させることができる。
 本実施形態のゲル電解質には非プロトン性溶媒が含まれてもよい。本実施形態のリチウムイオン二次電池用電解質には非プロトン性溶媒が含まれていてもよい。該非プロトン性溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステルなどがあり、これらの非プロトン性有機溶媒を一種又は二種以上を混合して使用できるが、これらに限定されるものではない。
 本実施形態のゲル電解質には、さらに添加剤として、ハロゲンを含有する環状炭酸エステルが含まれていても良い。ゲル電解質にハロゲンを含有する環状炭酸エステルを添加することにより、電解液のイオン電導度の向上や、皮膜形成にも寄与するため、長期にわたる電池特性の維持と燃焼抑制効果が得られる。ハロゲンを含有する環状炭酸エステルとしては、例えばフッ素含有カーボネートが挙げられる。フッ素含有カーボネートは、鎖状及び環状のものを含み、環状のフッ素含有カーボネート(以下、フッ素含有環状カーボネートとも略す)であることが好ましい。
 ハロゲンを含有する環状炭酸エステルの含有量は、ゲル電解質全体に対して0.5~20質量%であることが好ましく、0.1~10質量%の範囲であることがより好ましく、0.2~8質量%の範囲であることがさらに好ましく、1~5質量%の範囲であることが特に好ましい。
 フッ素含有環状カーボネートとしては、特に制限されないが、プロピレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネートの一部をフッ素化した化合物等を用いることもできる。より具体的には、例えば、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート、以下FECとも称す)、(cis又はtrans)4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、4-フルオロ-5-メチル-1,3-ジオキソラン-2-オン等を用いることができる。これらの中でも、フルオロエチレンカーボネートが好ましい。
 本実施形態のゲル電解質に含まれる電解質は、特にこれらに限定されるものではないが、例えば、LiPF、LiBF、LiAsF、LiSbF、LiClO、LiAlCl、およびLiN(C2n+1SO)(C2m+1SO)(n、mは自然数)、LiCFSOなどが挙げられる。
 本実施形態のゲル電解質は、例えば、以下のStepA及びStepBから得ることができる。StepA;式(1)または(2)で示される第1のモノマーと式(4)で示される第2のモノマーとの共重合体を合成する工程。StepB;リチウム塩と、Step.Aで得られた共重合体と、前記リンのオキソ酸エステル誘導体と、前記ジスルホン酸エステルと、前記非プロトン性溶媒とを含有するプレゲル溶液をカチオン重合開始剤の存在下でゲル化させる工程。
 前記StepAにおいて、共重合体はラジカル重合開始剤を用いることで合成できる。ラジカル重合開始剤としては、N,N-アゾビスイソブチロニロリル、ジメチルN,N’-アゾビス(2-メチルプロピオネート)などのアゾ系開始剤、ベンゾイルパーオキシド、ラウロイルパーオキシド等の有機過酸化物系開始剤が挙げられる。これらラジカル重合開始剤は、反応開始とともに前記式(1)または(2)で示される第1のモノマーと前記式(4)で示される第2のモノマーとの共重合体の末端に結合することから不活性化するため、反応終了後再加熱により再度反応を起こすことはない。
 前記StepBにおいて、カチオン重合開始剤としては、特に制限されるものではないが、例えば、各種のオニウム塩(例えば、アンモニウム、ホスホニウムなどのカチオン塩、-BF,-PF,-CFSOなどのアニオン塩等)、LiBF、LiPFなどのリチウム塩等が挙げられる。
 本実施形態のゲル電解質においては、ゲル電解質を得る工程StepBの工程において有機過酸化物等のラジカル重合開始剤を必要としない。そのため、ゲル化工程においてリンのオキソ酸エステル誘導体やジスルホン酸エステルが分解されない。また、前記ラジカル重合開始剤は電池には不要なものであることから重合後の残存物の影響により電池特性が低下することがない。また、ゲル電解質は電解液と比較すると漏液の心配がなく、負極、正極の両電極とセパレータとの密着性が良好であることから長期にわたり良好な寿命特性を得ることができる。
 さらに、本実施形態のゲル電解質は、初回充電時におけるガスの発生量を低減することができ、安全性の観点からも好ましい。その理由としては、リンのオキソ酸エステル誘導体とジスルホン酸エステルとがゲル電解質中に共存することにより、ジスルホン酸エステルのみを含有するゲル電解質におけるSEI形成とは異なる反応機構によって、リンのオキソ酸エステル誘導体の一部を取り込んだSEIが形成できるため、ガスの発生量が低減したものと推測している。また、こうして形成されたSEI上においては、ゲル電解質中に存在するリンのオキソ酸エステル誘導体の還元を抑制できていることから、リンのオキソ酸エステル誘導体を取り込んだジスルホン酸エステルによるSEIは強固に形成されており、リンのオキソ酸エステル誘導体を含んだ何かしらのゲル電解質中の成分に対する還元分解抑制効果が大きくなっている可能性があると推測される。その効果により、寿命特性も良好であると推測される。さらにリンのオキソ酸エステル誘導体を長期にわたり還元分解抑制できることから、長期にわたり高い安全性を得ることができる。
 本実施形態のゲル電解質を備えるリチウムイオン二次電池の負極に含まれる負極活物質としては、例えば、リチウム金属、リチウム合金およびリチウムを吸蔵、放出できる材料、からなる群から選択される一または二以上の物質を用いることができる。リチウムイオンを吸蔵、放出できる材料としては、炭素材料または酸化物を用いることができる。
 炭素材料としては、リチウムを吸蔵する黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブなど、あるいはこれらの複合材料を用いることができる。特に、黒鉛は、電子伝導性が高く、銅などの金属からなる集電体との接着性と電圧平坦性が優れており、高い処理温度によって形成されるため含有不純物が少なく、負極性能の向上に有利であるため、好ましい。さらに、結晶性の高い黒鉛と結晶性の低い非晶質炭素との複合材料なども用いることができる。
 また、酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、リン酸、ホウ酸のいずれか、あるいはこれらの複合物を用いてもよく、特に酸化シリコンを含むことが好ましい。構造としてはアモルファス状態であることが好ましい。これは、酸化シリコンが安定で他の化合物との反応を引き起こさないため、またアモルファス構造が結晶粒界、欠陥といった不均一性に起因する劣化を導かないためである。成膜方法としては、蒸着法、CVD法、スパッタリング法などの方法を用いることができる。
 リチウム合金は、リチウムおよびリチウムと合金形成可能な金属により構成される。例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元または3元以上の合金により構成される。リチウム金属やリチウム合金としては、特にアモルファス状態のものが好ましい。これは、アモルファス構造により結晶粒界、欠陥といった不均一性に起因する劣化が起きにくいためである。
 リチウム金属またはリチウム合金は、融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾルーゲル方式、などの方式で適宜形成することができる。
 本実施形態のリチウムイオン二次電池用ゲル電解質を備えるリチウムイオン二次電池の正極に含まれる正極活物質としては、例えば、LiCoO、LiNiO、LiMnなどのリチウム含有複合酸化物が挙げられる。また、これらのリチウム含有複合酸化物の遷移金属部分を他元素で置き換えたものでもよい。
 また、金属リチウム対極電位で4.5V以上にプラトーを有するリチウム含有複合酸化物を用いることもできる。該リチウム含有複合酸化物としては、スピネル型リチウムマンガン複合酸化物、オリビン型リチウム含有複合酸化物、逆スピネル型リチウム含有複合酸化物等が例示される。リチウム含有複合酸化物としては、例えば、Li(MxMn2-x)O(ただし、0<x<2であり、また、0<a<1.2である。また、Mは、Ni、Co、Fe、CrおよびCuよりなる群から選ばれる少なくとも一種である。)で表される化合物が挙げられる。
 また、本実施形態のリチウムイオン二次電池の電池構成は、電極要素として積層体や捲回体が使用でき、外装体としてはアルミラミネート外装体や金属外装体が使用できる。さらに、電池容量について限定されるものではない。
 本実施形態のゲル電解質は、ゲル化のために有機過酸化物等のラジカル重合開始剤を必要としないため、加熱重合時にリンのオキソ酸エステル誘導体やジスルホン酸エステルが分解されることがない。また前記ラジカル重合開始剤は電池には不要なものであることから重合後の残存物の影響により電池特性を低下することがない。また、ゲル電解質のため漏液を防止することができる。
 また、本実施形態によると、非常に高い還元分解抑制効果を持つSEIを形成するジスルホン酸エステルを含有させることにより、負極活物質上でのリンのオキソ酸エステル誘導体の還元分解を抑制できる。ジスルホン酸エステルを共存させることにより初めて、リンのオキソ酸エステル誘導体の還元分解による抵抗増加を長期にわたり抑制でき、良好な寿命特性を長期にわたり得ることができる。
 また、本実施形態によると、リンのオキソ酸エステル誘導体を長期にわたり還元分解抑制できることから、長期使用後にもゲル電解質中に燃焼性抑制に有効量のリンのオキソ酸エステル誘導体を存在させることができるため、長期にわたり高い安全性を得ることができる。
 また、ゲル電解質は漏液の心配がなく、負極、正極の両電極とセパレータとの密着性が良好であることから長期にわたり良好な寿命特性を得ることができる。
 さらに、本実施形態においては、初回充電時に発生するガス量が低減する傾向があった。その理由としては、本実施形態では、リンのオキソ酸エステル誘導体とジスルホン酸エステルとがゲル電解質中に共存することにより、ジスルホン酸エステルのみを含有する非水電解液におけるSEI形成とは異なる反応機構によって、一部のリンのオキソ酸エステル誘導体が取り込まれたSEIが形成されるため、ガスの発生量が低減したものと推測している。また、こうして形成されたSEI上においては、ゲル電解質中に存在するリンのオキソ酸エステル誘導体のさらなる還元分解を抑制できることから、リンのオキソ酸エステル誘導体を取り込んだジスルホン酸エステルによるSEIは強固なSEIを形成しており、リンのオキソ酸エステル誘導体を含むゲル電解質成分に対する還元分解抑制効果が大きくなっている可能性があると推測される。その効果により、寿命特性も良好であると推測される。さらにリンのオキソ酸エステル誘導体を長期にわたり還元分解抑制できることから、長期にわたり高い安全性を得ることができる。
 以下に本実施形態を実施例により図面を参照して詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
 図1は実施例1のリチウムイオン電池の正極の構成を説明する概略図である。図2は実施例1のリチウムイオン電池の負極の構成を説明する概略図である。図3は実施例1のリチウムイオン電池の巻回後の電池要素の構成を説明する概略断面図である。
 (実施例1)
 先ず、図1を参照して正極の作製について説明する。正極活物質としてLiMnを85質量%、導電補助材としてアセチレンブラックを7質量%、バインダーとしてポリフッ化ビニリデンを8質量%として混合したものに、N-メチルピロリドンを加えてさらに混合し、正極スラリーを作製した。この正極スラリーをドクターブレード法により集電体となる厚さ20μmのAl箔2の両面にロールプレス処理後の厚さが160μmになるように塗布し、120℃で5分乾燥させ、ロールプレス処理工程を施し、正極活物質塗布部3を形成した。なお、両端部にはいずれの面にも正極活物質が塗布されていない正極活物質非塗布部5を設けた。また、そのうち一方の正極活物質非塗布部5には正極導電タブ6を設けた。正極導電タブ6が設けられた正極活物質非塗布部5の隣に、片面のみ正極活物質を塗布した正極活物質片面塗布部4を設けた。以上の方法により正極1を作製した。
 次に、図2を参照して負極の作製について説明する。負極活物質として黒鉛を90質量%、導電補助剤としてアセチレンブラックを1質量%、バインダーとしてポリフッ化ビニリデンを9質量%として混合したものに、N-メチルピロリドンを加えてさらに混合し、負極スラリーを作製した。この負極スラリーをドクターブレード法により集電体となる厚さ10μmのCu箔8両面にロールプレス処理後の厚さが120μmとなるように塗布し、120℃で5分乾燥させ、ロールプレス処理工程を施し、負極活物質塗布部9を形成した。なお、両端部にはいずれの面にも負極活物質が塗布されていない負極活物質非塗布部11を設けた。また、そのうち一方の負極活物質非塗布部11には負極導電タブ12を設けた。また、負極導電タブ12が設けられた負極活物質非塗布部11の隣に、片面のみ負極活物質を塗布した負極活物質片面塗布部10を設けた。以上の方法により、負極7を作製した。
 図3を参照して電池要素の作製について説明する。膜厚25μm、気孔率55%の親水処理を施したポリプロピレン微多孔膜の微多孔膜からなるセパレータ13を二枚溶着して、切断した部分を巻回装置の巻き芯に固定し巻きとり、正極1(図1)、及び負極7(図2)の先端を導入した。正極1は正極導電タブ6の接続部の反対側を、負極7は負極導電タブ12の接続部側を先端側とした。負極は二枚のセパレータの間に、正極電極はセパレータの上面にそれぞれ配置して巻き芯を回転させ巻回し、電池要素(以下ジェリーロール(J/R)と表記)を形成した。
 前記J/Rをエンボス加工したラミネート外装体に収容し、正極導電タブ6と負極導電タブ12を引き出し、ラミネート外装体の1辺を折り返し、注液用の部分を残して熱融着を行った。
 ポリマー溶液の調製について説明する。第2のモノマーとしてエチルアクリレートを74質量%、第1のモノマーとして(3-エチル-3-オキセタニル)メチルメタクリレートを26質量%の割合で仕込んだ。反応溶剤としてはエチレンカーボネート(EC)/ジエチルカーボネート(DEC)=30/70(体積比)を用いた。重合開始剤としてはN,N’-アゾビスイソブチロニトリルをモノマー重量に対して2500ppm加えた。ドライ窒素ガスを導入しながら65~70℃で加熱反応後、室温まで冷却した。その後、希釈溶剤としてEC/DEC=30/70(体積比)を加え、全体が均一になるまで撹拌溶解して、分子量20万、4.0質量%、EC/DEC=30/70(体積比)のポリマー溶液が得られた。
 プレゲル溶液の調製について説明する。プレゲル溶液は、前記分子量20万のポリマーが4.0質量%含まれたEC:DEC=30/70(体積比)のポリマー溶液、リン酸トリ(2,2,2-トリフルオロエチル)、EC/DEC=30/70(体積比)、表1中の化合物No.2、及びLiPFを用いて調製した。より具体的には、上記ポリマーが2.0質量%、リン酸トリ(2,2,2-トリフルオロエチル)が5.0質量%、表1中の化合物No.2が2.0質量%、およびLiPFが1.2mol/Lとなるように配合して、プレゲル溶液を作製した。
 次に、ラミネート注液部分から前記プレゲル溶液を注液し、真空で含浸させた。次に、注液部分を熱融着した。そして、60℃、24時間の条件でプレゲル溶液を加熱重合させてゲル化させた。以上の工程により、電池を得た。
 得られた電池をCC-CV充電(上限電圧4.2V、電流0.2C、CV時間1.5時間)した後、CC放電(下限電圧3.0V、電流0.2C)したときの放電容量を初期容量とした。また、設計容量に対して得られた初期容量の割合を表3に示した。
 得られた電池のサイクル試験は、CC-CV充電(上限電圧4.2V、電流1C、CV時間1.5時間)、CC放電(下限電圧3.0V、電流1C)とし、いずれも45℃で実施した。容量維持率は、1サイクル目の放電容量に対する1000サイクル目の放電容量の割合とした。容量維持率を表3に示した。
 燃焼試験は、上記サイクル試験後の電池を、ガスバーナーの炎の先端から10cm上部に設置して行った。そして、難燃性は電解液溶媒が揮発して燃焼する様子から以下のように判断した。電解液に着火しない:◎、着火しても2~3秒後に消火した:○、着火しても10秒以内に消火した:△、10秒以内に消火しないで燃焼し続ける:×とした。
 (実施例2)
 実施例2は、リン酸トリ(2,2,2-トリフルオロエチル)(以下、PTTFEとも称す)を10質量%混合してプレゲル溶液を調製した以外は、実施例1と同様に行った。
 (実施例3)
 実施例3は、PTTFEを20質量%混合してプレゲル溶液を調製した以外は、実施例1と同様に行った。
 (実施例4)
 実施例4は、PTTFEを40質量%混合してプレゲル溶液を調製した以外は、実施例1と同様に行った。
 (実施例5)
 実施例5は、PTTFEの代わりにフルオロリン酸ジ(2,2,2-トリフルオロエチル)(以下、単にフルオロリン酸ジトリフルオロエチルとも称す)を20質量%混合してプレゲル溶液を調製した以外は、実施例1と同様に行った。
 (実施例6)
 実施例6は、PTTFEの代わりにジフルオロリン酸2,2,2-トリフルオロエチル(以下、単にジフルオロリン酸トリフルオロエチルとも称す)を20質量%混合してプレゲル溶液を調製した以外は、実施例1と同様に行った。
 (実施例7)
 実施例7は、表1のNo.2の化合物の代わりにNo.4の化合物を2質量%混合してプレゲル溶液を調製した以外は、実施例3と同様に行った。
 (実施例8)
 実施例8は、表1のNo.2の化合物の代わりに表2のNo.101の化合物を2質量%混合してプレゲル溶液を調製した以外は、実施例3と同様に行った。
 (実施例9)
 実施例9は、表1のNo.2の化合物の代わりに表2のNo.102の化合物を2質量%混合してプレゲル溶液を調製した以外は、実施例3と同様に行った。
 (実施例10)
 実施例10は、さらにフルオロエチレンカーボネート(FEC)を2質量%混合してプレゲル溶液を調製した以外は、実施例3と同様に行った。
 (比較例1)
 比較例1は、表1のNo.2の化合物を混合しないでプレゲル溶液を調製した以外は、実施例3と同様に行った。
 (比較例2)
 比較例2は、表1のNo.2の化合物を混合せず、1,3-プロパンスルトン(PS)を3質量%混合してプレゲル溶液を調製した以外は、実施例3と同様に行った。
 (比較例3)
 比較例3は、表1のNo.2の化合物を混合せず、ビニレンカーボネート(VC)を5質量%混合してプレゲル溶液を調製した以外は、実施例3と同様に行った。
 実施例1~10および比較例1~3の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000030
 ※表3中、No.2、No.4は、それぞれ、表1に表すNo.2、No.4の化合物である。No.101、No.102は、それぞれ、表2に表すNo.101、No.102の化合物である。また、FECはフルオロエチレンカーボネート、PSは1,3-プロパンスルトン、VCはビニレンカーボネートである。
 実施例1~4に示すように、リン酸エステルの含有量が増加すると、1000サイクル後の容量維持率がやや低下する傾向にあるものの、評価後の電池の電解液の難燃性は非常に良好であった。また、同量のリン酸エステルを含有する実施例3、5~10と比較例1~3を比較すると、ジスルホン酸エステルを添加した実施例3、5~10においては、容量維持率も良好で、難燃性も非常に良好であった。さらに、FECを添加した実施例10では、容量維持率も良好で、難燃性も非常に良好であった。
 以上より、ジスルホン酸エステルとリンのオキソ酸エステル誘導体を含むことでさらに良好なSEIを形成できたことにより、長期にわたりゲル電解質中のリンのオキソ酸エステル誘導体の還元分解を抑制することができ、良好な寿命特性を得ることができ、さらに、長期に亘り高い難燃性を得ることができた。
 (実施例11)
 実施例11は、実施例3の負極材料を黒鉛の代わりにシリコン系材料を用いた以外は、実施例3と同様に行った。以下に負極の作製方法について説明する。まず、シリコンを90質量%、導電補助剤としてアセチレンブラックを1質量%、バインダーとしてポリイミドバインダを9質量%となるように混合し、N-メチルピロリドンを加えてさらに混合して負極スラリーを作製した。この負極スラリーを集電体となる厚さ10μmのCu箔両面に塗布し、ロールプレス処理後の厚さが80μmとなるように塗布した。そして、120℃で5分乾燥させ、プレス工程を施し、さらに300℃で10分の追加的に乾燥させ、負極活物質塗布部9を形成した。
 (実施例12)
 実施例12は、表1のNo.2の化合物の代わりに表2のNo.101の化合物を2質量%混合してプレゲル溶液を調製した以外は、実施例11と同様に行った。
 (比較例4)
 比較例4は、表1のNo.2の化合物を混合せず、PSを3質量%混合してプレゲル溶液を調製した以外は、実施例11と同様に行った。
 (比較例5)
 比較例5は、表1のNo.2の化合物を混合せず、VCを5質量%混合してプレゲル溶液を調製した以外は、実施例11と同様に行った。
 実施例12、13および比較例4、5の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000031
 ※No.2は、表1に示したNo.2の化合物である。No.101は、表2に示したNo.101の化合物である。また、PSは1,3-プロパンスルトン、VCはビニレンカーボネートである。
 表4より、黒鉛の代わりにシリコン材料を用いた場合においても、ジスルホン酸エステルによるSEIは、リンのオキソ酸エステル誘導体の還元分解を抑制することができ、良好な寿命特性である容量維持率を得ることができ、その結果、長期に亘る高い難燃性を得ることができた。
 (実施例13)
 実施例13は、第2のモノマーとしてエチルアクリレート、第1のモノマーとしてグリシジルメタクリレートを用いた以外は、実施例3と同様に行った。
 (実施例14)
 実施例14は、第2のモノマーとしてエチルアクリレート、第1のモノマーとして3,4-エポキシシクロヘキシルメチルメタクリレートを用いた以外は、実施例3と同様に行った。
 (実施例15)
 実施例15は、第2のモノマーとしてメチルメタクリレート、第1のモノマーとして(3-エチル-3-オキセタニル)メチルメタクリレートを用いた以外は、実施例3と同様に行った。
 (実施例16)
 実施例16は、第2のモノマーとしてメチルメタクリレート、第1のモノマーとしてグリシジルメタクリレートを用いた以外は、実施例3と同様に行った。
 (実施例17)
 実施例17は、第2のモノマーとしてメチルメタクリレート、第1のモノマーとして3,4-エポキシシクロヘキシルメチルメタクリレートを用いた以外は、実施例3と同様に行った。
 (実施例18)
 実施例18は、第2のモノマーとしてプロピルメタクリレート、第1のモノマーとして(3-エチル-3-オキセタニル)メチルメタクリレートを用いた以外は、実施例3と同様に行った。
 (実施例19)
 実施例19は、第2のモノマーとしてプロピルメタクリレート、第1のモノマーとしてグリシジルメタクリレートを用いた以外は、実施例3と同様に行った。
 (実施例20)
 実施例20は、第2のモノマーとしてプロピルメタクリレート、第1のモノマーとして3,4-エポキシシクロヘキシルメチルメタクリレートを用いた以外は、実施例3と同様に行った。
 (実施例21)
 実施例21は、第2のモノマーとしてメトキシトリエチレングリコールメタクリレート、第1のモノマーとして(3-エチル-3-オキセタニル)メチルメタクリレートを用いた以外は、実施例3と同様に行った。
 (実施例22)
 実施例22は、第2のモノマーとしてメトキシトリエチレングリコールメタクリレート、第1のモノマーとしてグリシジルメタクリレートを用いた以外は、実施例3と同様に行った。
 (実施例23)
 実施例23は、第2のモノマーとしてメトキシトリエチレングリコールメタクリレート、第1のモノマーとして3,4-エポキシシクロヘキシルメチルメタクリレートを用いた以外は、実施例3と同様に行った。
 実施例3および13~23の結果を表5に示す。
Figure JPOXMLDOC01-appb-T000032
 ※表5中、No.2は表1のNo.2の化合物である。
 以上より、ジスルホン酸エステルによるSEIは、ポリマー構成によらず、長期にわたりリンのオキソ酸エステルの還元分解を抑制することができ、良好な寿命特性を得ることができ、その結果、長期に亘る高い安全性を得ることができた。
 (比較例6)
 比較例6は、実施例1のゲル電解質を以下のように作製した以外は実施例1と同様に行った。
 まず、プレゲル溶液は、LiPFを1.2mol/Lと、EC/DEC=30/70(体積比)と、PTTFEを5質量%と、表1の化合物No.2を2質量%と、ゲル化剤としてトリエチレングリコールジアクリレートとトリメチロールプロパントリアクリレートをそれぞれ3.8質量%及び1質量%と、重合開始剤としてt-ブチルパーオキシピバレートを0.5質量%と、混合することで作製した。まず、LiPFとEC/DEC=30/70(体積比)とを含む溶液に対して、PTTFEと表1の化合物No.2を混合し、さらにゲル化剤を加えてよく混合し、その後に、重合開始剤を混合した。
 次に、プレゲル溶液を注液部分から注液し、真空で含浸させた。そして、80℃、2時間の条件でプレゲル溶液を重合させてゲル化させた。以上の工程により電池を得て、実施例1と同様に測定を行った。
 (比較例7)
 比較例7は、PTTFEを10質量%混合した以外は比較例6と同様に行った。
 (比較例8)
 比較例8は、PTTFEを20質量%混合した以外は比較例6と同様に行った。
 実施例1~3および比較例6~8の結果を表6に示す。
Figure JPOXMLDOC01-appb-T000033
 表6中、No.2は表1のNo.2の化合物である。
 実施例1~3に対して、比較例6~8は、リン酸エステルが同じ添加量でも、サイクル後の燃焼抑制効果が低下していることが分かる。おそらく、比較例6~8では、ゲル電解質中の重合開始剤によりリン酸エステルが分解されることによって難燃性が低下しているものと推測される。また、重合開始剤によりリン酸エステルが分解されることによりSEIが正常に形成され難かったため、サイクル維持率が低下してものと推測される。一方、本実施形態のゲル電解質を含有する電池は、長期にわたりリンのオキソ酸エステルの還元分解を抑制することができ、良好な寿命特性を得ることができ、その結果、長期に亘る高い安全性を得ることができた。
 この出願は、2010年12月27日に出願された日本出願特願2010-290545を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
産業上の利用の可能性
 本実施形態は、その他電気二重層キャパシタや、リチウムイオンキャパシタなどエネルギー貯蔵デバイスに利用できる。
  1:正極
  2:Al箔
  3:正極活物質塗布部
  4:正極活物質片面塗布部
  5:正極活物質非塗布部
  6:正極導電タブ
  7:負極
  8:Cu箔
  9:負極活物質塗布部
 10:負極活物質片面塗布部
 11:負極活物質非塗布部
 12:負極導電タブ
 13:絶縁性多孔質シート
 14:正極活物質層
 15:負極活物質層

Claims (5)

  1.  リチウム塩と、
     化学式(1)及び(2)で示される化合物から選ばれる少なくとも1種からなる第1のモノマーと化学式(4)で示される第2のモノマーとの共重合体と、
     化学式(5)乃至(7)で示される化合物から選ばれる少なくとも1種からなるリンのオキソ酸エステル誘導体と、
     化学式(8)で示される環状ジスルホン酸エステル及び化学式(9)で示される鎖状ジスルホン酸エステルから選ばれる少なくとも1種からなるジスルホン酸エステルと、
    を含有するリチウムイオン二次電池用ゲル電解質。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、RはHまたはCHを表し、式(1)、(2)中、Rは下記化学式(3)で示される置換基のいずれかを表す。)

    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、Rは炭素数1~6のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、RはHまたはCHを表し、Rは-COOCH,-COOC,-COOC、-COOC、-COOCHCH(CH,-COO(CHCHO)CH,-COO(CHCHO),-COO(CHCHCHO)CH,-COO(CHCH(CH)O)CH,-COO(CHCH(CH)O),-OCOCH、-OCOC、又は-CHOCを表す。ここで、n=1~3の整数を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (式(5)中、R11、R12、及びR13は、それぞれ独立に、アルキル基、アリール基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、及びシクロアルキル基、並びにこれらのハロゲン置換した基から選ばれるいずれかの基を表す。R11、R12、及びR13のいずれか2つまたは全てが結合して環状構造を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000006
    (式(6)中、R21、及びR22は、それぞれ独立に、アルキル基、アリール基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、及びシクロアルキル基、並びにこれらのハロゲン置換した基から選ばれるいずれかの基を表す。R21、及びR22が結合して環状構造を形成していてもよい。X21は、ハロゲン原子を表す。)
    Figure JPOXMLDOC01-appb-C000007
    (式(7)中、R31は、アルキル基、アリール基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、及びシクロアルキル基、並びにこれらのハロゲン置換した基から選ばれるいずれかの基を表す。X31、及びX32は、それぞれ独立に、ハロゲン原子を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式(8)中、Qは酸素原子、メチレン基または単結合を示す。Aは、分岐していても良い置換もしくは無置換の炭素数1~5のアルキレン基、カルボニル基、スルフィニル基、分岐していても良い置換もしくは無置換の炭素数1~5のパーフルオロアルキレン基、分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のパーフルオロアルキレン基又はエーテル結合を含み分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基を示す。Aは置換もしくは無置換のアルキレン基、置換もしくは無置換のフルオロアルキレン基、または酸素原子を示す。)
    Figure JPOXMLDOC01-appb-C000009
    (式(9)中、RおよびRは、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~5のアルキル基、置換もしくは無置換の炭素数1~5のアルコキシ基、置換もしくは無置換の炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、‐SO(Xは置換もしくは無置換の炭素数1~5のアルキル基)、‐SY(Yは置換もしくは無置換の炭素数1~5のアルキル基)、-COZ(Zは水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、及びハロゲン原子、から選ばれる原子または基を示す。RおよびRは、それぞれ独立して、置換もしくは無置換の炭素数1~5のアルキル基、置換もしくは無置換の炭素数1~5のアルコキシ基、置換もしくは無置換のフェノキシ基、置換もしくは無置換の炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、置換もしくは無置換の炭素数1~5のフルオロアルコキシ基、炭素数1~5のポリフルオロアルコキシ基、水酸基、ハロゲン原子、-NX(X及びXは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、及び-NYCONY(Y~Yは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、から選ばれる原子または基を示す。)
  2.  前記リンのオキソ酸エステル誘導体を、5~60質量%含有する請求項1に記載のリチウムイオン二次電池用ゲル電解質。
  3.  前記ジスルホン酸エステルを、0.05~10質量%含有する請求項1または2に記載のリチウムイオン二次電池用ゲル電解質。
  4.  さらに、ハロゲンを含有する環状炭酸エステルを、0.5~20質量%含有する請求項1乃至3のいずれかに記載のリチウムイオン二次電池用ゲル電解質。
  5.  請求項1乃至4のいずれかに記載のリチウムイオン二次電池用ゲル電解質を備えたリチウムイオン二次電池。
PCT/JP2011/079795 2010-12-27 2011-12-22 リチウムイオン二次電池用ゲル電解質およびリチウムイオン二次電池 WO2012090855A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11853432.0A EP2660921B1 (en) 2010-12-27 2011-12-22 Gel electrolyte for lithium ion secondary batteries, and lithium ion secondary battery
US13/883,953 US9196926B2 (en) 2010-12-27 2011-12-22 Gel electrolyte for lithium ion secondary battery, and lithium ion secondary battery
JP2012550899A JP5975523B2 (ja) 2010-12-27 2011-12-22 リチウムイオン二次電池用ゲル電解質およびリチウムイオン二次電池
CN201180062840.5A CN103270640B (zh) 2010-12-27 2011-12-22 锂离子二次电池用的凝胶电解质和锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010290545 2010-12-27
JP2010-290545 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090855A1 true WO2012090855A1 (ja) 2012-07-05

Family

ID=46382961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079795 WO2012090855A1 (ja) 2010-12-27 2011-12-22 リチウムイオン二次電池用ゲル電解質およびリチウムイオン二次電池

Country Status (5)

Country Link
US (1) US9196926B2 (ja)
EP (1) EP2660921B1 (ja)
JP (1) JP5975523B2 (ja)
CN (1) CN103270640B (ja)
WO (1) WO2012090855A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10038217B2 (en) 2014-04-18 2018-07-31 Seeo, Inc. Polymer composition with electrophilic groups for stabilization of lithium sulfur batteries
US10044064B2 (en) 2014-04-18 2018-08-07 Seeo, Inc. Long cycle-life lithium sulfur solid state electrochemical cell

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618110B (zh) * 2013-12-12 2015-12-02 宁德新能源科技有限公司 锂离子二次电池及其电解液
CN103772607B (zh) * 2014-01-26 2016-01-13 郑州大学 含磷交联凝胶聚合物电解质及其现场热聚合制备方法、应用
EP3353844B1 (en) 2015-03-27 2022-05-11 Mason K. Harrup All-inorganic solvents for electrolytes
CN106558731B (zh) * 2015-09-28 2019-05-17 比亚迪股份有限公司 一种锂离子电池电解液和锂离子电池
US10868332B2 (en) 2016-04-01 2020-12-15 NOHMs Technologies, Inc. Modified ionic liquids containing phosphorus
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN108075187B (zh) * 2016-11-10 2020-09-11 宁德时代新能源科技股份有限公司 电解液及二次电池
EP4087005A1 (en) 2017-07-17 2022-11-09 Nohms Technologies, Inc. Phosphorus-containing electrolytes
CN110247111B (zh) * 2019-06-24 2022-03-29 中国科学院青岛生物能源与过程研究所 一种含磺酸或磷酸衍生物结构的固态聚合物电解质及其在二次锂电池中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238821A (ja) * 2002-02-21 2003-08-27 Sunstar Eng Inc ポリマー固体電解質用難燃性組成物
JP2008071559A (ja) * 2006-09-13 2008-03-27 Nec Tokin Corp リチウムイオン二次電池
JP2009277397A (ja) * 2008-05-13 2009-11-26 Hitachi Maxell Ltd ラミネート形非水二次電池
WO2011099580A1 (ja) * 2010-02-10 2011-08-18 Necエナジーデバイス株式会社 非水系電解液およびそれを備えるリチウムイオン二次電池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2908719B2 (ja) 1994-03-19 1999-06-21 日立マクセル株式会社 有機電解液二次電池
JP3821495B2 (ja) 1994-09-16 2006-09-13 三井化学株式会社 非水電解液および非水電解液電池
JP3425493B2 (ja) 1994-07-28 2003-07-14 日立マクセル株式会社 非水二次電池およびその製造方法
JP3961597B2 (ja) 1996-11-22 2007-08-22 三井化学株式会社 非水電解液及び非水電解液二次電池
JPH10255839A (ja) 1997-03-12 1998-09-25 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2001093574A (ja) * 1999-09-22 2001-04-06 Sanyo Electric Co Ltd ゲル状高分子電解質二次電池
JP4911813B2 (ja) 2000-10-03 2012-04-04 サンスター技研株式会社 固体電解質用架橋性組成物、ポリマー固体電解質リチウムイオン2次電池及びポリマー固体電解質リチウムイオン2次電池の製造法
JP3422769B2 (ja) 2000-11-01 2003-06-30 松下電器産業株式会社 非水系電池用電解液およびこれを用いた二次電池
JP4662533B2 (ja) * 2003-08-26 2011-03-30 日東電工株式会社 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いる電池の製造方法
JP2006286277A (ja) 2005-03-31 2006-10-19 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2007059192A (ja) 2005-08-24 2007-03-08 Gs Yuasa Corporation:Kk 非水電解液二次電池及びその製造方法
JP4940625B2 (ja) * 2005-10-21 2012-05-30 ソニー株式会社 電解液および電池
JP2007273445A (ja) * 2006-03-09 2007-10-18 Nec Tokin Corp ポリマーゲル電解質およびそれを用いたポリマー二次電池
CN101033323A (zh) 2006-03-09 2007-09-12 Nec东金株式会社 聚合物凝胶电解质和使用该电解质的聚合物二次电池
JP2007258067A (ja) 2006-03-24 2007-10-04 Gs Yuasa Corporation:Kk 非水電解質電池
JP2008021560A (ja) 2006-07-13 2008-01-31 Daikin Ind Ltd 非水系電解液
JP2008041296A (ja) * 2006-08-02 2008-02-21 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池
JP2008282735A (ja) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd 非水電解質二次電池及びその製造方法
JP5260075B2 (ja) * 2008-02-13 2013-08-14 日東電工株式会社 電池用セパレータ用反応性ポリマー担持多孔質フィルムとそれより得られる電極/セパレータ接合体
JP5169400B2 (ja) 2008-04-07 2013-03-27 Necエナジーデバイス株式会社 非水電解液およびそれを用いた非水電解液二次電池
JP5235109B2 (ja) * 2008-07-15 2013-07-10 日立マクセル株式会社 非水電解質電池用セパレータおよび非水電解質電池
JP2010062113A (ja) * 2008-09-08 2010-03-18 Nec Tokin Corp リチウムイオン二次電池
JP5721179B2 (ja) * 2009-11-13 2015-05-20 Necエナジーデバイス株式会社 リチウムイオン二次電池用ゲル電解質およびそれを備えたリチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238821A (ja) * 2002-02-21 2003-08-27 Sunstar Eng Inc ポリマー固体電解質用難燃性組成物
JP2008071559A (ja) * 2006-09-13 2008-03-27 Nec Tokin Corp リチウムイオン二次電池
JP2009277397A (ja) * 2008-05-13 2009-11-26 Hitachi Maxell Ltd ラミネート形非水二次電池
WO2011099580A1 (ja) * 2010-02-10 2011-08-18 Necエナジーデバイス株式会社 非水系電解液およびそれを備えるリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660921A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10038217B2 (en) 2014-04-18 2018-07-31 Seeo, Inc. Polymer composition with electrophilic groups for stabilization of lithium sulfur batteries
US10044065B2 (en) 2014-04-18 2018-08-07 Seeo, Inc. Polymer composition with electrophilic groups for stabilization of lithium sulfur batteries
US10044064B2 (en) 2014-04-18 2018-08-07 Seeo, Inc. Long cycle-life lithium sulfur solid state electrochemical cell
US10141604B2 (en) * 2014-04-18 2018-11-27 Seeo, Inc. Polymer composition with electrophilic groups for stabilization of lithium sulfur batteries
US10153514B2 (en) 2014-04-18 2018-12-11 Seeo, Inc. Polymer composition with electrophilic groups for stabilization of lithium sulfur batteries
US10665895B2 (en) 2014-04-18 2020-05-26 Seeo, Inc. Polymer composition with olefinic groups for stabilization of lithium sulfur batteries

Also Published As

Publication number Publication date
EP2660921A4 (en) 2015-12-09
EP2660921A1 (en) 2013-11-06
CN103270640A (zh) 2013-08-28
JPWO2012090855A1 (ja) 2014-06-05
US9196926B2 (en) 2015-11-24
CN103270640B (zh) 2016-08-10
US20130230779A1 (en) 2013-09-05
JP5975523B2 (ja) 2016-08-23
EP2660921B1 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP5645287B2 (ja) 非水系電解液およびそれを備えるリチウムイオン二次電池
JP5975523B2 (ja) リチウムイオン二次電池用ゲル電解質およびリチウムイオン二次電池
JP5721179B2 (ja) リチウムイオン二次電池用ゲル電解質およびそれを備えたリチウムイオン二次電池
JP5403710B2 (ja) 非水系電解液およびそれを備えたデバイス
JP5315674B2 (ja) 非水電池用電解液及びこれを用いた非水電池
JP5429845B2 (ja) 非水電解液、ゲル電解質及びそれらを用いた二次電池
JP5738011B2 (ja) 二次電池の非水電解液用添加剤、二次電池用非水電解液及び非水電解液二次電池
JP2008300126A (ja) 電池用非水電解液及びそれを備えた非水電解液2次電池
JP2005514750A (ja) 電解質系及びそれを用いたエネルギー貯蔵装置
JP5641593B2 (ja) リチウムイオン電池
JP6476611B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2006179458A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
CN110495042B (zh) 锂离子二次电池用电解液、锂离子二次电池和组件
JP5435644B2 (ja) ポリマー電解質及びそれを用いた二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853432

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011853432

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011853432

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13883953

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012550899

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE