WO2012090691A1 - アクリロニトリルの精製方法 - Google Patents

アクリロニトリルの精製方法 Download PDF

Info

Publication number
WO2012090691A1
WO2012090691A1 PCT/JP2011/078708 JP2011078708W WO2012090691A1 WO 2012090691 A1 WO2012090691 A1 WO 2012090691A1 JP 2011078708 W JP2011078708 W JP 2011078708W WO 2012090691 A1 WO2012090691 A1 WO 2012090691A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
condenser
acrylonitrile
tower
hydrogen cyanide
Prior art date
Application number
PCT/JP2011/078708
Other languages
English (en)
French (fr)
Inventor
和彦 佐野
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to CN201180059878.7A priority Critical patent/CN103261151B/zh
Priority to JP2012550806A priority patent/JP5605922B2/ja
Priority to KR1020137015542A priority patent/KR101528987B1/ko
Publication of WO2012090691A1 publication Critical patent/WO2012090691A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4211Regulation; Control of columns
    • B01D3/4216Head stream
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/32Separation; Purification; Stabilisation; Use of additives
    • C07C253/34Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • C07C255/08Acrylonitrile; Methacrylonitrile

Definitions

  • the present invention relates to a method for purifying acrylonitrile including a step of distilling a solution containing acrylonitrile, hydrogen cyanide and water.
  • reaction product gas containing acrylonitrile, acetonitrile and hydrogen cyanide is cooled in a quenching tower and unreacted.
  • the ammonia is neutralized and removed with sulfuric acid.
  • the reaction product gas is sent to an absorption tower to absorb acrylonitrile, acetonitrile and hydrogen cyanide in water.
  • Patent Document 1 discloses a method of suppressing the polymerization of acrylonitrile and hydrogen cyanide by adding an acid and hydroquinone to a dehydride dehydration tower in the purification of acrylonitrile.
  • a solution containing acrylonitrile, hydrogen cyanide and water is distilled, a vapor containing hydrogen cyanide is distilled from the top of the tower, and a solution containing acrylonitrile is withdrawn from the bottom of the tower.
  • the gas containing hydrogen cyanide distilled from the top of the column is cooled and fractionated by a condenser, and the hydrogen cyanide with less impurities that has not been condensed is used as a raw material for the hydrogen cyanide derivative. It is preferred to keep the acrylonitrile concentration low.
  • the acrylonitrile concentration in the hydrogen cyanide gas distilled from the top of the column is not stable, and the acrylonitrile concentration in the hydrogen cyanide gas is regulated.
  • the phenomenon of rising above the value is often seen.
  • this phenomenon occurs, not only does the quality of the hydrogen cyanide derivative raw material become stable, but also the quality of the acrylonitrile product becomes unstable, and further, it becomes a factor in the polymerization of acrylonitrile and hydrogen cyanide in the dehydride dehydration tower.
  • increasing the yield of the product acrylonitrile has, of course, received much interest and consideration.
  • the problem to be solved by the present invention is to provide a method for stabilizing product quality in an acrylonitrile manufacturing process.
  • the present inventor controls the temperature of the outlet fluid of the condenser connected to the distillation column to be constant in the step of distilling the solution containing acrylonitrile, hydrogen cyanide and water in the process of producing acrylonitrile, The inventors have found that the product quality can be stabilized and the process load can be reduced, and the present invention has been completed.
  • the present invention is as follows.
  • a method for purifying acrylonitrile comprising a step of distilling a solution containing acrylonitrile, hydrogen cyanide and water using a distillation column having a condenser connected to the top of the column, Maintaining the temperature of the outlet fluid of the condenser constant.
  • Separating acrylonitrile and hydrogen cyanide in the condenser The method for purifying acrylonitrile according to the above [1], wherein the temperature of the reflux liquid and / or hydrogen cyanide gas distilled from the condenser is maintained constant.
  • a regulating valve is provided in a pipe for supplying the refrigerant to the condenser and / or a pipe for discharging the refrigerant, and the condenser is provided with a thermometer for measuring the temperature of the outlet fluid,
  • the target temperature of the outlet fluid of the condenser is set, and when the temperature of the outlet fluid of the condenser is higher than the target temperature, the supply amount of the refrigerant is increased by adjusting the opening of the adjustment valve, and the condensation
  • the purification method according to the above [1] or [2], wherein when the temperature of the outlet fluid of the vessel is lower than the target temperature, the supply amount of the refrigerant is decreased by adjusting the opening of the regulating valve.
  • a distillation tower A condenser connected to the distillation column and provided with a refrigerant supply pipe and a discharge pipe;
  • a distillation apparatus comprising: An adjustment valve for adjusting the supply amount of the refrigerant is attached to the supply pipe and / or the discharge pipe, A thermometer is provided at the outlet of the condenser, The thermometer is connected to the regulating valve via a temperature controller, The temperature measured by the thermometer is transmitted to the temperature controller, When the temperature is higher than the target temperature, the amount of refrigerant supplied is increased by adjusting the opening of the adjusting valve, and when the temperature is lower than the target temperature, the opening of the adjusting valve is adjusted. An instruction is sent from the temperature controller to the control valve so that the supply amount of the refrigerant is reduced.
  • a high-quality product can be stably obtained over a long period of time in the acrylonitrile manufacturing process.
  • the purification method of acrylonitrile of this embodiment is: A method for purifying acrylonitrile comprising a step of distilling a solution containing acrylonitrile, hydrogen cyanide and water using a distillation column having a condenser connected to the top of the column, The method includes the step of maintaining a constant temperature of the outlet fluid of the condenser.
  • a distillation tower A condenser connected to the distillation column and provided with a refrigerant supply pipe and a discharge pipe;
  • a distillation apparatus comprising: An adjustment valve for adjusting the supply amount of the refrigerant is attached to the supply pipe and / or the discharge pipe, A thermometer is provided at the outlet of the condenser, The thermometer is connected to the regulating valve via a temperature controller, The temperature measured by the thermometer is transmitted to the temperature controller, When the temperature is higher than the target temperature, the amount of refrigerant supplied is increased by adjusting the opening of the adjusting valve, and when the temperature is lower than the target temperature, the opening of the adjusting valve is adjusted. An instruction is sent from the temperature controller to the control valve so that the supply amount of the refrigerant is reduced.
  • FIG. 1 is a schematic diagram conceptually showing an example of an acrylonitrile production process.
  • FIG. 2 is a schematic diagram conceptually showing an example of a dehydrating acid dehydration tower and equipment connected thereto in the acrylonitrile production process.
  • the “distillation tower” in the present embodiment will be described as a “debleaching acid dehydration tower”.
  • the “distillation tower” is not limited to the “debleaching acid dehydration tower”, and may be any tower capable of performing distillation. Are all included in the range of the “distillation tower” of the present embodiment.
  • High-boiling substances, catalysts, and ammonium sulfate are extracted from the process system through line 7 at the bottom of quenching tower 6.
  • a gas taken out from the upper part of the quenching tower 6 is introduced into the absorption tower 9 through a line 8.
  • the water extracted from the recovery tower 12 is supplied to the top of the absorption tower 9 from the line 14 as absorption water, and acrylonitrile, acetonitrile and hydrogen cyanide in the reaction product gas are absorbed by water.
  • unabsorbed propylene, propane, oxygen, nitrogen, carbon dioxide, carbon monoxide, etc., and a small amount of organic matter, etc. are obtained from the line 11 at the top of the absorption tower. Extract.
  • the liquid at the bottom of the absorption tower 9 is supplied from the line 10 to the recovery tower 12. Extracted water is introduced from the line 15 to the top of the recovery tower 12, and acetonitrile is extracted and separated by extractive distillation. Acetonitrile is extracted from the line 16 to the outside of the process system. Most of the water is extracted from the line 13 to the outside of the process system. From the top of the recovery tower, acrylonitrile, hydrogen cyanide and water are distilled off by a line 17 and condensed by a condenser not shown, and then separated into two layers of an organic layer and an aqueous layer by a decanter not shown.
  • An organic layer containing acrylonitrile, hydrogen cyanide and a small amount of water is supplied to the dehydride dehydration tower 18.
  • the aqueous layer is preferably recycled to the previous step. Specifically, the aqueous layer is joined to the line 10 and used as a recovery tower supply liquid, or joined to the line 15 and used as extraction water or the like.
  • Vapor (gas) containing hydrogen cyanide is distilled from line 19 from the top of dehydrating acid dehydration tower 18 and sent to condenser 20 for cooling and partial condensation.
  • a liquid containing condensed hydrogen cyanide is refluxed to the top of the tower as a reflux liquid through line 22, and crude hydrogen cyanide gas with little impurities that has not been condensed is extracted out of the system from line 21.
  • the crude hydrogen cyanide gas is purified by a distillation column (not shown) as necessary and used as a raw material for the hydrogen cyanide derivative.
  • the condenser 20 is preferably a vertical type, and acetic acid is sprayed on the upper tube sheet to suppress hydrogen cyanide polymerization.
  • water or an aqueous methanol solution having a supply temperature of 0 to 35 ° C., preferably 3 to 30 ° C. is used.
  • the liquid in the tower is extracted from the chimney tray B in the middle stage of the dehydrating acid dehydration tower 18 by the line 23, cooled by cooling water by the side cut cooler 23b, supplied to the decanter 23d by the line 23c, and the organic layer and the water layer by the decanter 23d. Separate into two layers.
  • the “middle stage” indicates a portion below the tower top and above the tower bottom, and in the case of a multistage distillation tower, indicates one stage between the tower bottom and the tower top.
  • the line 23 is preferable to set the line 23 to 20 to 30 stages, usually counted from the bottom of the tower, from the viewpoint of efficiently separating water from the crude acrylonitrile.
  • the refrigerant 23a the same refrigerant as the refrigerant 20a can be used.
  • the amount of heat removed by the side cut cooler 23b is adjusted with reference to a thermometer (not shown) for measuring the temperature of the liquid installed in the decanter 23d.
  • the liquid temperature in the decanter is preferably controlled to be constant in the range of 20 to 40 ° C.
  • the aqueous layer in the decanter is recycled to a pre-process such as the recovery tower 12 through the line 23f.
  • the organic layer in the decanter is returned to the lower stage by the line 23e from the stage from which the liquid in the tower is extracted. This organic layer may be preheated back.
  • the heat necessary for distillation is supplied from the reboiler 24a through the line 24c.
  • As the heat medium 24b steam or high-temperature process water taken out from the tower bottom (lines 14 and 15) and / or the tower bottom (line 13) of the recovery tower 12 is used.
  • the amount of heat given to the distillation column by the reboiler 24a is preferably 180 ⁇ 10 3 to 260 ⁇ 10 3 kcal / h / t-acrylonitrile, and preferably 190 ⁇ 10 3 from the viewpoint of efficiently separating and recovering acrylonitrile in the deblue acid dehydration column 18. ⁇ 230 ⁇ 10 3 kcal / h / t-acrylonitrile is more preferred.
  • the mass of acrylonitrile is the mass (t) of acrylonitrile obtained as a product from the product tower, and the above-mentioned numerical value represents the calorie per unit mass of acrylonitrile. Can do.
  • Crude acrylonitrile is extracted from the bottom of the dehydration acid dehydration tower 18 through the line 24 and sent to the product tower 25. A part of the column bottom liquid extracted by the line 24 is supplied to the reboiler 24a.
  • the product column 25 is a plate distillation column operated under a pressure lower than atmospheric pressure.
  • the distillate vapor from the product column 25 is withdrawn through a line 26 and sent to a condenser 30 for condensation.
  • the condensed liquid is refluxed to the product column 25 through the line 31, and a part of the liquid is extracted through the line 29.
  • the column bottom liquid containing the high boiling point substance is extracted from the line 28.
  • acrylonitrile is obtained as a product from line 27.
  • the amount of acrylonitrile produced may be increased or decreased due to production plans, even during normal operation.
  • the amount of the solution fed to the dehydrating acid dehydration tower 18 is increased or decreased, and it becomes necessary to adjust the operating conditions of the distillation apparatus.
  • the “distillation apparatus” is a concept including ancillary equipment of a distillation column such as a reboiler and a condenser. A part of the solution is extracted from the middle stage of the distillation column, and the middle stage extracted liquid is cooled.
  • a cooler and / or oil-water separator is also included in the distillation apparatus.
  • the dehydrating acid dehydration tower 18 is preferably a tray distillation tower operated under normal pressure, and the number of shelves is preferably 50 to 65. Examples of shelves to be used include, but are not limited to, a sheave tray and a dual flow tray.
  • the feed liquid to the dehydrating acid dehydration tower is supplied to the feed stage A from the line 17.
  • the position of the feed stage A is the upper part of the chimney tray B, preferably the upper part of the 10th to 25th stages of the chimney tray B.
  • the feed liquid is supplied, the vapor rises in the column, and the vapor containing hydrogen cyanide is distilled from the line 19 from the top of the column.
  • the distillate vapor is sent to the condenser 20 and cooled to be condensed.
  • the condenser 20 is a partial condenser that does not fully condense the distillate vapor but condense only a part thereof.
  • the liquid containing condensed hydrogen cyanide is refluxed as a reflux liquid to the uppermost stage of the tower through line 22, and hydrogen cyanide gas with little impurities that has not been condensed is extracted from line 21 to the outside of the system.
  • the mass of the hydrogen cyanide gas that does not condense is approximately equal to the mass of hydrogen cyanide supplied from the line 17 to the dehydrating acid dehydration tower 18. That is, the hydrogen cyanide supplied to the dehydrocyanation dehydration tower 18 is separated from the crude acrylonitrile, and almost the entire amount is extracted from the condenser 20. Next, the reflux liquid flowing down in the column comes into contact with the vapor rising in the column, and distillation purification is performed.
  • the temperature of the outlet fluid of the condenser 20 is kept constant.
  • the “exit fluid” means reflux liquid and / or hydrogen cyanide gas
  • the reflux liquid means liquid returned from the condenser 20 to the inside of the tower
  • the hydrogen cyanide gas is extracted from the condenser 20 to the outside of the system. Indicates the gas to be released.
  • “maintaining the temperature constant” means that the temperature of the outlet fluid is the target temperature or the target temperature range in addition to maintaining the temperature within the target temperature or the target temperature range (within the temperature range ⁇ 2 ° C.).
  • a mode in which the temperature is maintained in a temperature range that is not inferior to distillation maintained at the target temperature or the target temperature range for distillation separation is included.
  • “Temperature range that is comparable to distillation maintained at the target temperature or target temperature range for distillation separation” can be determined by searching for a temperature that can achieve the following separation specifications.
  • the target temperature is preferably set at a specific temperature, but in practice, even if the temperature of the outlet fluid deviates from the target temperature, an acceptable temperature that is comparable to distillation at the target temperature in distillation separation.
  • the values are called the upper limit value and the lower limit value, respectively, and when setting the upper limit value and the lower limit value of the outlet fluid temperature of the condenser, the temperature of the outlet fluid is not less than the lower limit value and not more than the upper limit value.
  • the supply amount of the refrigerant can be adjusted by the adjustment valve so as to change by For example, when the upper limit value is the target temperature + 2 ° C.
  • the “target temperature” is an optimum temperature derived from an acrylonitrile distillation experiment in a laboratory and / or an experiment on temperature dependence of distillation separation performance using a commercial scale distillation apparatus.
  • the key substance is a substance that serves as a guideline for carrying out distillation separation, and generally refers to a trace amount of impurities. If a large amount of the substance is mixed, it is not preferable for purification. It is preferable that a specification of the key substance concentration is determined, and this is used as a separation specification and used for operation management of the distillation column.
  • thermometer 22b The temperature of the outlet fluid of the condenser is measured with a thermometer 22b.
  • the temperature of the hydrogen cyanide gas is measured, but the temperature of the reflux liquid may be measured instead of the hydrogen cyanide gas or together with the hydrogen cyanide gas because the temperature of the gas and the liquid after the partial reduction is the same. Absent.
  • the thermometer 22b is connected to the flow rate control valve 20b of the refrigerant 20a provided in the pipe for discharging the refrigerant via the temperature controller 22a, and the temperature of the outlet fluid is changed to the temperature controller 22a by the thermometer 22b.
  • the regulating valve 20b When the temperature of the outlet fluid is higher than the target temperature by the temperature controller 22a, the regulating valve 20b is opened, and when the temperature of the outlet fluid is lower than the target temperature, the regulating valve 20b is closed.
  • the temperature of the outlet fluid of the condenser 20 is kept constant by changing the supply amount of the refrigerant 20a by the control valve 20b.
  • the target temperature of the outlet fluid of the condenser is 26 to 40 from the viewpoint of lowering the acrylonitrile concentration in the distillate vapor and increasing the hydrogen cyanide purity, lowering the hydrogen cyanide concentration in the bottom liquid and increasing the acrylonitrile purity, and from the viewpoint of energy load. ° C is preferred, and 27 to 35 ° C is more preferred.
  • the temperature of the outlet fluid is higher than the target temperature, as a result of countercurrent contact between the reflux liquid flowing down the column and the vapor rising in the column, the concentration of acrylonitrile in the distillate vapor increases, leading to loss of acrylonitrile. Since the purity of the hydrogen cyanide to be discharged is lowered, the quality of the hydrogen cyanide derivative is adversely affected.
  • the concentration of hydrogen cyanide in the column bottom liquid rises and cannot be sufficiently removed by the downstream product column, and the acrylonitrile product may become an off-spec product.
  • the efficiency of distillation purification performed by countercurrent contact between the reflux liquid flowing down the tower and the vapor rising in the tower is increased.
  • the separability of hydrogen cyanide from the condenser 20 can be improved.
  • FIG. 3 is a schematic diagram showing another example of the dehydration acid dehydration tower 18 and equipment connected thereto. Since the flow rate adjusting valve 20b 'for connecting the supply pipe and the discharge pipe for the refrigerant 20a of the condenser is substantially the same as the example shown in FIG. 2, only the differences will be described. When the control valve 20b 'is opened, a part of the refrigerant 20a flows from the supply pipe to the discharge pipe without passing through the condenser, so that the supply amount of the refrigerant 20a is reduced by opening the control valve 20b'.
  • the thermometer 22b is connected to the flow rate control valves 20b and 20b ′ via the temperature controller 22a, the temperature of the outlet fluid of the condenser is transmitted to the temperature controller 22a, and the temperature of the outlet fluid is higher than the target temperature. Is higher, the regulating valve 20b is opened and / or the regulating valve 20b ′ is closed to increase the supply amount of the refrigerant 20a. When the temperature of the outlet fluid is lower than the target temperature, the regulating valve 20b is closed and / or the regulating valve 20b 'is opened to reduce the supply amount of the refrigerant 20a, and keep the temperature of the outlet fluid constant.
  • both the flow rate control valves 20b and 20b ′ are operated by a command from the temperature controller 22a, but the function of “maintaining the temperature of the condenser outlet fluid is constant” is provided.
  • both do not need to be opened and closed by the temperature controller 22a only the flow control valve 20b may be opened and closed by the temperature controller 22a, and the flow control valve 20b ′ may be manually operated.
  • the opening of the control valve 20b ′ is kept constant, and the temperature of the outlet fluid of the condenser is kept constant by operating the control valve 20b in the same manner as in the example shown in FIG. To do.
  • acrylonitrile is used as the key material at the top of the column and hydrogen cyanide and water as the key material at the bottom.
  • Hydrogen cyanide is also one of commercially available products and is used in various hydrogen cyanide derivatives.
  • methacrylic acid obtained by the acetone cyanohydrin (ACH) method is used.
  • Undesirable coloring such as methyl acid (MMA) can be prevented.
  • acrylonitrile is distilled from the top of the column, it is possible to increase the purity of hydrogen cyanide by further separation by distillation or the like.
  • separation equipment such as distillation equipment
  • acrylonitrile-containing wastewater discharged from this equipment Processing equipment is also an essential requirement. Therefore, considering the use of hydrogen cyanide, it is preferable to keep the concentration of acrylonitrile in the hydrogen cyanide distilled from the top of the column low.
  • the acrylonitrile concentration in the hydrogen cyanide distilled from the top of the column is preferably 1000 ppm or less, more preferably 700 ppm or less, and even more preferably 500 ppm or less.
  • the hydrogen cyanide concentration in acrylonitrile extracted from the column bottom is preferably 100 ppm or less, more preferably 70 ppm or less, and further preferably 50 ppm or less.
  • the desired separation specifications are achieved by controlling the temperatures measured at various points in the distillation column, for example, at the top and bottom of the column, to be the target temperatures.
  • the purification of acrylonitrile when a solution containing acrylonitrile, hydrogen cyanide, and water is distilled (distillation using a so-called debranching acid dehydration tower), it is distilled from the top of the tower even if the top temperature is maintained at the target temperature.
  • concentration of acrylonitrile in the hydrogen cyanide gas is not stable and the concentration of acrylonitrile in the hydrogen cyanide gas rises above the separation specification.
  • the present inventor has found that the above phenomenon is caused by a significant change in the hydrogen cyanide concentration and the acrylonitrile concentration in the upper part of the dehydride dehydration tower, particularly in the upper part of the feed stage.
  • the fraction from the top of the column is a mixture of hydrogen cyanide and acrylonitrile having different latent heats of condensation and specific heat
  • the amount of heat removal required for the condenser to condense this fraction depends on the mixing ratio.
  • the heat removal amount required in the condenser is dominated by the heat amount accompanying the phase change from steam to liquid, that is, the heat of condensation.
  • the column top temperature does not necessarily reflect the amount of heat removal necessary for condensation.
  • the amount of heat removal is appropriately adjusted.
  • the tower top temperature rises without being set, and as a result, the concentration of acrylonitrile at the top of the tower rises and the proportion of distillation from the tower top rises.
  • the temperature of the outlet fluid of the condenser is the gas temperature after the condensed liquid of acrylonitrile condensed from the distillate vapor or the condensed acrylonitrile is separated from the hydrogen cyanide gas, and is influenced by the composition change. I hardly receive it.
  • the condensation latent heat of the fraction that is a mixture increases.
  • the temperature will rise.
  • the amount of heat removal should be determined so as to maintain this constant. Can be said to be an appropriate control that can be fed back to the amount of heat removal by reflecting not only the temperature of the fraction but also the effect of the composition.
  • the temperature of the outlet fluid is faster in response than the temperature in the tower where gas-liquid contact is performed, and is suitable for management. Therefore, by setting an appropriate target temperature and controlling it according to the temperature of the outlet fluid, it is easy to operate the condenser with good responsiveness so that the acrylonitrile concentration in the hydrogen cyanide gas extracted from the condenser becomes the separation specification at the top of the column. Can be maintained. Furthermore, because of the mass balance, substantially all of the hydrogen cyanide supplied to the dehydride dehydration tower is withdrawn from the condenser, so that sufficient separation of hydrogen cyanide from the crude acrylonitrile is achieved, and the concentration of hydrogen cyanide at the bottom of the tower is reduced. Can be kept within the separation spec. That is, by maintaining the temperature of the outlet fluid of the condenser, not the temperature at the top of the column, it is possible to satisfy the separation specifications of the top and the bottom of the column.
  • the reboiler heating amount and the condenser heat removal amount are repeated in parallel, but in the final adjustment stage, the reboiler heating amount and the condenser heat removal amount are referred to as If the two heat quantity variables are increased or decreased at a time, it becomes difficult to operate the distillation column stably. Therefore, from the viewpoint of stably operating the distillation column, the reboiler is given a constant heating amount in the range of 180 ⁇ 10 3 to 260 ⁇ 10 3 kcal / h / t-acrylonitrile, and the heat removal amount of the condenser is increased or decreased.
  • the amount of acrylonitrile produced may be increased or decreased due to production plans, even during normal operation.
  • the amount of the solution fed to the dehydrating acid dehydration tower 18 is increased or decreased.
  • the amount of product produced according to the change in the mass of the feed liquid and the amount of heat applied to the reboiler from the above-described reboiler calorific value (hereinafter referred to as “reboiler heating amount”) are adjusted and changed.
  • the reboiler heating amount is increased or decreased, the amount of steam inside the distillation column changes.
  • acrylonitrile may be cooked in the upper part of the tower and the proportion of distilling in the crude hydrogen cyanide may be increased.
  • hydrogen cyanide may fall to the lower part of the tower, and the ratio existing in the bottom extract may rise. All of these adversely affect the purity of the product (acrylonitrile, hydrogen cyanide derivative). In order to prevent these, it is required to appropriately adjust the distillation column according to the amount of increase / decrease in the reboiler heating amount, and this is performed by the method in the present embodiment described above.
  • the present embodiment will be described in more detail with reference to examples.
  • the acrylonitrile manufacturing process in an Example is the same as that of what was shown in FIG.
  • the dehydrating acid dehydration tower in the examples is the same as that shown in FIG.
  • Analysis of acrylonitrile was performed by gas chromatography using the following apparatus and conditions. In the gas chromatography, Shimadzu GC-17A was used as an apparatus, and TC-FFAP 60 m ⁇ 0.32 film thickness 0.25 ⁇ m was used as a column. The detector used was FID and the carrier gas used helium.
  • the column temperature conditions were as follows.
  • Hydrogen cyanide and water were analyzed by silver nitrate titration method and Karl Fischer method, respectively.
  • Flow meter Differential pressure type flow meter (orifice type) Manufacturer: Yokogawa, Product Name: Differential Pressure Transmitter DP harp EJX Thermometer: Resistance thermometer Manufacturer: OKAZAKI, Product name: Resistance Thermometer + Temperature Transmitter
  • Example 1 Propylene, ammonia and air were supplied to a vertical cylindrical fluidized bed reactor 1 having an inner diameter of 8 m and a length of 20 m, and propylene ammoxidation reaction was carried out as follows.
  • the fluidized bed reactor 1 had a raw material gas dispersion pipe, a dispersion plate, a heat removal pipe, and a cyclone inside.
  • the dehydrating acid dehydration tower 18 comprises 55 sheave trays, has a supply stage at the 37th stage counted from the bottom of the tower, has a line 23 for extracting a side cut flow at the 24th stage, a side cut cooler 23b, and a decanter 23d.
  • the line 23e for returning the organic layer in the decanter was provided on the 23rd stage.
  • a molybdenum-bismuth-iron-based supported catalyst having a particle size of 10 to 100 ⁇ m and an average particle size of 55 ⁇ m was used and packed so as to have a stationary bed height of 2.7 m.
  • Air was 56000Nm 3 / h supplied from the air distribution plate, propylene 6200Nm 3 / h and ammonia from a raw material gas dispersion tube was 6600Nm 3 / h feed.
  • the reaction temperature was controlled with a heat removal tube so as to be 440 ° C.
  • the pressure was 0.70 kg / cm 2 G.
  • the reaction product gas was introduced into the quenching tower 6 and brought into countercurrent contact with water, and unreacted ammonia was neutralized and removed with sulfuric acid.
  • the gas flowing out of the quenching tower 6 was introduced into the absorption tower 9 from the line 8. Absorbed water was introduced from the line 14 at the top of the absorption tower 9 and brought into countercurrent contact with the gas, so that acrylonitrile, acetonitrile and hydrogen cyanide in the gas were absorbed into water.
  • the amount of absorbed water was adjusted so that the acrylonitrile concentration in the gas discharged from the top of the absorption tower was 100 volppm.
  • the gas that was not absorbed was taken out from the absorption tower top line 11 and incinerated.
  • the absorption tower bottom liquid was preheated to 80 ° C. and supplied to the recovery tower 12. Acetonitrile and most of the water were separated in the recovery tower 12, and acrylonitrile, hydrogen cyanide and water were distilled from the tower top line 17.
  • the distillate vapor is condensed, an organic layer and an aqueous layer are formed by a recovery tower decanter (not shown), the aqueous layer is recycled to the supply line 10 of the recovery tower 12, and the organic layer is supplied to the dehydride dehydration tower 18. .
  • the mass and temperature of the feed liquid to the dehydrating acid dehydration tower 18 were measured by a flow meter and a thermometer (not shown) installed in the line 17.
  • the measured values were 13595 kg / h and 35.0 ° C., respectively.
  • Crude hydrogen cyanide gas was extracted from the top line 19 of the dehydrating acid dehydration tower 18 and sent to the condenser 20, where it was cooled and fractionated.
  • the refrigerant 20a used in the condenser 20 was 6 ° C. water.
  • a liquid containing condensed hydrogen cyanide was refluxed as a reflux liquid to the top of the column, and hydrogen cyanide gas with little impurities that was not condensed was extracted from the line 21 to the outside of the system.
  • the temperature of the outlet fluid (hydrogen cyanide gas) of the condenser is measured by a thermometer 22b attached to the lower part of the condenser, and the flow rate of the refrigerant 20a is passed through the temperature controller 22a so that the target temperature is 29 ° C.
  • the control valve 20b was controlled.
  • the liquid in the tower was extracted from the 24th stage of the dehydration acid dehydration tower 18 and cooled by the side cut cooler 23b.
  • the refrigerant 23a used for the side cut cooler 23b was 25 ° C. water.
  • the heat removal amount Q3 of the side cut cooler was adjusted by the flow rate of the refrigerant 23a so that the liquid temperature of the decanter 23d was 30 ° C.
  • the side stream extracted from the tower was separated into two layers of an organic layer and an aqueous layer by a decanter 23d, and the aqueous layer was extracted through a line 23f and recycled to the supply liquid of the recovery tower 12.
  • the organic layer was returned to the 23rd stage of the tower by line 23e. 110 ° C. process water extracted from the lower part of the recovery tower 12 was used as a heat source for the reboiler 24a.
  • the amount of heat Q1 applied was 200 ⁇ 10 3 kcal / h / t-acrylonitrile, and the mass of acrylonitrile obtained as a product in the product tower 25 was 11.5 t per hour, so 2300 ⁇ 10 3 kcal / h
  • the flow rate of the process water 24b leading to the reboiler 24a was adjusted.
  • Crude acrylonitrile was extracted from the tower bottom line 24 and sent to the product tower 25.
  • the bottom extract liquid was measured for mass by a flow meter (not shown) installed in the line 24, and the measured value was 11585 kg / h.
  • the temperature of the liquid extracted from the bottom of the tower was 86 ° C., which was the same as the liquid temperature at the bottom of the dehydration acid dehydration tower 18.
  • the above operation was continued for about 6 months when the acrylonitrile production amount was 11.5 ⁇ 0.2 t / h.
  • the temperature of the outlet fluid of the condenser was 29 ⁇ 0.3 ° C.
  • the dehydrating acid dehydration tower can be operated stably.
  • the concentration of acrylonitrile in hydrogen cyanide distilled from the top of the dehydrating acid dehydration tower is 300 ⁇ 20 ppm
  • the concentration of hydrogen cyanide in acrylonitrile extracted from the bottom of the tower is 40 ⁇ 10 ppm. Met.
  • the concentration of hydrogen cyanide in the acrylonitrile product was 5 ppm or less, and a high-quality acrylonitrile product was stably obtained. Moreover, the purity of the crude hydrogen cyanide was stable, and there was no problem with the quality of the hydrogen cyanide derivative.
  • Example 2 Acrylonitrile was produced using the same equipment and method as in Example 1 except that the production amount of acrylonitrile was increased to 12.7 t / h by changing the production plan.
  • the reboiler heat was increased to 2540 ⁇ 10 3 kcal / h.
  • the flow rate adjustment valve 20b of the refrigerant 20a was controlled via the temperature controller 22a so that the temperature of the outlet fluid of the condenser 20 was 29 ° C.
  • Each temperature in the dehydrating acid dehydration tower 18 and the temperature of the decanter 23d were substantially the same as those in Example 1. The above operation was continued for about 3 months when the acrylonitrile production amount was 12.7 ⁇ 0.2 t / h.
  • the temperature in the temperature control stage was 29 ⁇ 0.3 ° C.
  • the dehydrating acid dehydration tower 18 can be operated stably.
  • the concentration of acrylonitrile in hydrogen cyanide distilled from the top of the dehydrating acid dehydration tower is 300 ⁇ 20 ppm, and the concentration of hydrogen cyanide in acrylonitrile extracted from the bottom of the tower is 40 ⁇ . It was 10 ppm.
  • the concentration of hydrogen cyanide in the acrylonitrile product was 5 ppm or less, and a high-quality acrylonitrile product was stably obtained.
  • the purity of the crude hydrogen cyanide was stable, and there was no problem with the quality of the hydrogen cyanide derivative.
  • Example 3 Propane, ammonia and air were supplied to the same fluidized bed reactor 1 as in Example 1, and propane ammoxidation reaction was performed as follows.
  • the fluidized bed catalyst was a molybdenum-vanadium-based supported catalyst having a particle size of 10 to 100 ⁇ m and an average particle size of 55 ⁇ m, and packed so that the stationary bed height was 2.2 m.
  • Air was 64500Nm 3 / h supplied from the air distribution plate, propane 4300Nm 3 / h and ammonia from a raw material gas dispersion tube was 4300Nm 3 / h feed.
  • the reaction temperature was controlled with a heat removal tube so as to be 440 ° C.
  • the pressure was 0.75 kg / cm 2 G.
  • the reaction product gas was introduced into the quenching tower 6 and brought into countercurrent contact with water. Further, unreacted ammonia was neutralized and removed with sulfuric acid.
  • the gas taken out from the quenching tower 6 was introduced into the absorption tower 9 from the line 8. Absorbed water was introduced from the top line 14 and brought into countercurrent contact with the gas to absorb acrylonitrile, acetonitrile and hydrogen cyanide in the gas into the water. Unabsorbed gas was taken out from the absorption tower top line 11 and incinerated. The amount of absorbed water was adjusted so that the acrylonitrile concentration in the gas taken out from the top of the absorption tower was 100 volppm. The absorption tower bottom liquid was preheated and supplied to the recovery tower 12.
  • Acetonitrile and most of the water were separated in the recovery tower, and acrylonitrile, hydrogen cyanide and water were distilled from the top line 17.
  • the distillate vapor was condensed to form an organic layer and an aqueous layer, the aqueous layer was recycled to the supply line 10 of the recovery tower, and the organic layer was supplied to the dehydrating acid dehydration tower 18.
  • the mass and temperature of the feed liquid to the dehydrating acid dehydration tower 18 were measured by a flow meter and a thermometer (not shown) installed in the line 17. The measured values were 6219 kg / h and 35.0 ° C., respectively.
  • Crude hydrogen cyanide gas was extracted from the top line 19 of the dehydrating acid dehydration tower 18 and sent to the condenser 20, where it was cooled and fractionated.
  • the refrigerant 20a used in the condenser 20 was 6 ° C. water.
  • a liquid containing condensed hydrogen cyanide was refluxed as a reflux liquid to the top of the column, and hydrogen cyanide gas with little impurities that was not condensed was extracted from the line 21 to the outside of the system.
  • the temperature of the outlet fluid (hydrogen cyanide gas) of the condenser is measured by a thermometer 22b attached to the lower part of the condenser, and the flow rate of the refrigerant 20a is passed through the temperature controller 22a so that the target temperature is 29 ° C.
  • the control valve 20b was controlled.
  • the liquid in the tower was extracted from the 24th stage of the dehydration acid dehydration tower 18 and cooled by the side cut cooler 23b.
  • the refrigerant 23a used for the side cut cooler 23b was 25 ° C. water.
  • the heat removal amount Q3 of the side cut cooler was adjusted by the flow rate of the refrigerant 23a so that the liquid temperature of the decanter 23d was 30 ° C.
  • the side stream extracted from the tower was separated into two layers of an organic layer and an aqueous layer by a decanter 23d.
  • the organic layer was returned to the 23rd stage of the tower by line 23e.
  • Process water at 110 ° C. extracted from the lower part of the recovery tower 12 was used as a heat source for the reboiler 24a.
  • the amount of heat Q1 applied was 250 ⁇ 10 3 kcal / h / t-acrylonitrile, and the mass of acrylonitrile obtained as a product in the product tower 25 was 5.22 t per hour, so 1305 ⁇ 10 3 kcal / h
  • the flow rate of the process water 24b leading to the reboiler 24a was adjusted.
  • Crude acrylonitrile was extracted from the tower bottom line 24 and supplied to the product tower 25.
  • the tower bottom extract was measured for mass by a flow meter (not shown) installed in the line 24, and the measured value was 5312 kg / h.
  • the temperature of the liquid extracted from the bottom of the tower was 86 ° C., which was the same as the liquid temperature at the bottom of the dehydrating acid dehydrating tower 18.
  • the above operation was continued for about 4 months when the acrylonitrile production amount was 5.22 ⁇ 0.17 t / h. During this time, the temperature in the temperature control stage was 29 ⁇ 0.4 ° C.
  • the dehydrating acid dehydration tower can be operated stably, During this time, the acrylonitrile concentration in the hydrogen cyanide distilled from the top of the dehydride dehydration tower was 300 ⁇ 20 ppm, and the hydrogen cyanide concentration in the acrylonitrile extracted from the tower bottom was 40 ⁇ 10 ppm. During this time, the hydrogen cyanide concentration in the acrylonitrile product was 5 ppm, and high-quality acrylonitrile product could be obtained stably. Moreover, the purity of the crude hydrogen cyanide was stable, and there was no problem with the quality of the hydrogen cyanide derivative.
  • Example 1 is the same as Example 1 except that the temperature control of the outlet fluid of the condenser of the dehydrating acid dehydration tower is not performed, the uppermost stage of the dehydrating acid dehydration tower is a temperature control stage, and the temperature of the stage is 30 ° C.
  • An ammoxidation reaction of propylene was carried out with the same equipment and method to produce acrylonitrile for 3 months. During this time, the temperature in the temperature control stage was not changed at 30 ° C., but one month after the start of production, the concentration of acrylonitrile in hydrogen cyanide distilled from the top of the dehydrating acid dehydration tower increased to 1000 ppm.
  • Example 3 is the same as Example 3 except that the temperature control of the outlet fluid of the condenser of the dehydrating acid dehydration tower is not performed and the uppermost stage of the dehydrating acid dehydration tower is a temperature control stage and the temperature of the stage is 30 ° C. Propane ammoxidation reaction was carried out with the same equipment and method to produce acrylonitrile for 2 months. During this time, the temperature in the temperature control stage was not changed at 30 ° C., but two weeks after the start of production, the acrylonitrile concentration in the hydrogen cyanide distilled from the top of the dehydrating acid dehydration tower increased to 1000 ppm or more.
  • the method of the present invention has industrial applicability in a process for producing acrylonitrile in which propylene and / or propane, ammonia and oxygen are reacted in the presence of a catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 塔頂に凝縮器が接続された蒸留塔を用いて、アクリロニトリル、シアン化水素及び水を含む溶液を蒸留する工程を含むアクリロニトリルの精製方法であって、 前記凝縮器の出口流体の温度を一定に維持する工程を含む方法。

Description

アクリロニトリルの精製方法
 本発明は、アクリロニトリル、シアン化水素及び水を含む溶液を蒸留する工程を含むアクリロニトリルの精製方法に関する。
 プロピレン及び/又はプロパン、アンモニア並びに酸素を触媒の存在下に反応させてアクリロニトリルを製造するプロセスにおいては、まず、生成したアクリロニトリル、アセトニトリル及びシアン化水素を含む反応生成ガスを急冷塔で冷却するとともに、未反応のアンモニアを硫酸で中和除去する。その後、反応生成ガスは吸収塔に送られ、アクリロニトリル、アセトニトリル及びシアン化水素を水に吸収させる。次いで、吸収塔で得られたアクリロニトリル等を含む水溶液を回収塔に導入し、該水溶液から、蒸留操作によってアセトニトリル及び大部分の水を含む留分と、アクリロニトリルやシアン化水素の大部分を含む留分とに分離する。その後、アクリロニトリルやシアン化水素の大部分を含む留分を脱青酸脱水塔に導入し、塔頂及び塔底温度を管理して蒸留塔を運転してシアン化水素及び水を分離する。シアン化水素及び水が低減された塔底液を製品塔に導入し、蒸留操作によりアクリロニトリルを精製し、製品規格に適合した製品を得る。
 特許文献1には、アクリロニトリルの精製において、脱青酸脱水塔に酸及びハイドロキノンを添加して、アクリロニトリル及びシアン化水素の重合を抑制する方法が開示されている。
特開平2007-39403号公報
 脱青酸脱水塔ではアクリロニトリル、シアン化水素及び水を含む溶液を蒸留し、塔頂からはシアン化水素を含む蒸気が留出し、塔底からはアクリロニトリルを含む溶液が抜き出される。塔頂から留出するシアン化水素を含むガスは、凝縮器により冷却して分縮し、凝縮しなかった不純物の少ないシアン化水素はシアン化水素誘導体の原料として用いられるため、塔頂から留出するシアン化水素ガス中のアクリロニトリル濃度を低く保つことが好ましい。このため、一般的な蒸留の手法に従い塔頂温度を目標温度に維持する運転を行っても、塔頂から留出するシアン化水素ガス中のアクリロニトリル濃度が安定せず、シアン化水素ガス中のアクリロニトリル濃度が規定値を超えて上昇する現象が度々見られる。この現象が起こると、シアン化水素誘導体原料の品質が安定しないばかりでなく、アクリロニトリル製品の品質が安定しなかったり、さらには脱青酸脱水塔におけるアクリロニトリル及びシアン化水素の重合の一要因にもなる。
 従来、製品であるアクリロニトリルの収量を増加させることについては、当然ながら多くの関心が寄せられ、検討されてきた。一方、収量の増加という直接的な効果を目的とした改良の他にも、製品品質の安定化という間接的な改善によっても技術上及び経済上大きなメリットがあるが、これまで詳細な検討がなされていないのが現状である。
 上記事情に鑑み、本発明が解決しようとする課題は、アクリロニトリルの製造プロセスにおいて、製品品質を安定化させる方法を提供することである。
 本発明者は、アクリロニトリルを製造するプロセスにおいて、アクリロニトリル、シアン化水素及び水を含む溶液を蒸留する工程における、蒸留塔に接続された凝縮器の出口流体の温度が一定となるように制御することで、製品品質を安定化させ、且つ、プロセス負荷を軽減できることを見出し、本発明を完成させた。
 即ち、本発明は以下のとおりである。
[1]
 塔頂に凝縮器が接続された蒸留塔を用いて、アクリロニトリル、シアン化水素及び水を含む溶液を蒸留する工程を含むアクリロニトリルの精製方法であって、
 前記凝縮器の出口流体の温度を一定に維持する工程を含む方法。
[2]
 前記凝縮器でアクリロニトリルとシアン化水素を分離し、
 前記凝縮器から留出する還流液及び/又はシアン化水素ガスの温度を一定に維持する、上記[1]記載のアクリロニトリルの精製方法。
[3]
 前記凝縮器へ冷媒を供給する管及び/又は冷媒を排出する管に調整弁が設けられ、前記凝縮器には出口流体の温度を測定するための温度計が設けられており、
 前記凝縮器の出口流体の目標温度を設定し、前記凝縮器の出口流体の温度が前記目標温度より高い場合は前記調整弁の開度を調整することにより冷媒の供給量を増加させ、前記凝縮器の出口流体の温度が前記目標温度より低い場合は前記調整弁の開度を調整することにより冷媒の供給量を減少させる、上記[1]又は[2]記載の精製方法。
[4]
 前記凝縮器の出口流体の温度の上限値及び下限値を設定し、前記凝縮器の出口流体の温度が前記下限値以上、前記上限値以下で推移するように、前記冷媒の供給量を前記調整弁によって調整する、上記[3]記載の精製方法。
[5]
 蒸留塔と、
 前記蒸留塔に接続され、冷媒の供給管及び排出管が設けられた凝縮器と、
を有する蒸留装置であって、
 前記供給管及び/又は排出管に冷媒の供給量を調整するための調整弁が取り付けられており、
 前記凝縮器の出口には温度計が設けられており、
 前記温度計は温度調節計を介して前記調整弁に接続されており、
 前記温度計によって測定された温度が前記温度調節計に送信され、
 前記温度が目標温度より高い場合には前記調整弁の開度が調整されることにより冷媒の供給量が増やされ、前記温度が前記目標温度より低い場合には前記調整弁の開度が調整されることにより冷媒の供給量が減らされるように、前記温度調節計から前記調整弁に指示が送られる、蒸留装置。
 本発明によれば、アクリロニトリルの製造プロセスにおいて、長期間に渡り高品質の製品を安定的に得ることができる。
アクリロニトリル製造プロセスの一例を概念的に示した概略図である。 脱青酸脱水塔とそれに接続された設備の一例を概念的に示した概略図である。 脱青酸脱水塔とそれに接続された設備の別の例を概念的に示した概略図である。
 以下、本発明を実施するための形態(以下、本実施形態)について詳細に説明する。尚、本発明は、本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 以下、必要に応じて図面を参照しつつ、本実施の形態について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。装置や部材の寸法比率は図示の比率に限られるものではない。
 本実施形態のアクリロニトリルの精製方法は、
 塔頂に凝縮器が接続された蒸留塔を用いて、アクリロニトリル、シアン化水素及び水を含む溶液を蒸留する工程を含むアクリロニトリルの精製方法であって、
 前記凝縮器の出口流体の温度を一定に維持する工程を含む方法である。
 本実施形態の精製方法を行うための装置としては特に限定されないが、例えば、以下の蒸留装置を用いて行うことができる。
 蒸留塔と、
 前記蒸留塔に接続され、冷媒の供給管及び排出管が設けられた凝縮器と、
を有する蒸留装置であって、
 前記供給管及び/又は排出管に冷媒の供給量を調整するための調整弁が取り付けられており、
 前記凝縮器の出口には温度計が設けられており、
 前記温度計は温度調節計を介して前記調整弁に接続されており、
 前記温度計によって測定された温度が前記温度調節計に送信され、
 前記温度が目標温度より高い場合には前記調整弁の開度が調整されることにより冷媒の供給量が増やされ、前記温度が前記目標温度より低い場合には前記調整弁の開度が調整されることにより冷媒の供給量が減らされるように、前記温度調節計から前記調整弁に指示が送られる、蒸留装置。
 図1は、アクリロニトリル製造プロセスの一例を概念的に示した概略図である。図2は、アクリロニトリル製造プロセスにおける、脱青酸脱水塔とそれに接続された設備の一例を概念的に示した概略図である。なお、以下本実施形態における「蒸留塔」は「脱青酸脱水塔」として説明するが、「蒸留塔」としては「脱青酸脱水塔」に限らず、蒸留を行うことが可能な塔であれば、全て本実施形態の「蒸留塔」の範囲に含まれる。
 アクリロニトリル製造プロセスにおいては、まず、ガス状プロピレン及び/又はプロパンをライン2から、アンモニアをライン3から、酸素(通常は空気を用いる)はライン4から、それぞれ流動層触媒を充填した流動層反応器1に供給し、プロピレン及び/又はプロパンをアンモ酸化反応させる。得られた反応生成ガスをライン5から抜き出し、急冷塔6に導入する。急冷塔6では反応生成ガスと水を向流接触させ、反応生成ガスを冷却し、高沸点物質及びガス中に微量に含まれている流動層触媒を除去する。また、向流接触させる水に硫酸を添加しておくことで、反応生成ガスに含まれる未反応アンモニアを中和する。高沸点物質、触媒及び硫安は、急冷塔6の塔底のライン7よりプロセス系外に抜き出す。
 急冷塔6上部から取り出されるガスをライン8により吸収塔9に導入する。吸収塔9の塔頂に回収塔12から抜き出した水を吸収水としてライン14から供給し、反応生成ガス中のアクリロニトリル、アセトニトリル及びシアン化水素を水に吸収させる。吸収塔9に供給されたガスに含まれる成分のうち、吸収されなかったプロピレン、プロパン、酸素、窒素、二酸化炭素、一酸化炭素等及び微量の有機物等は、吸収塔の塔頂のライン11より抜き出す。吸収塔9の塔底液はライン10より回収塔12に供給する。
 回収塔12の塔頂に抽出水をライン15から導入し、抽出蒸留によりアセトニトリルを抽出分離する。アセトニトリルはライン16よりプロセス系外に抜き出す。また、大部分の水はライン13よりプロセス系外に抜き出す。回収塔の塔頂からライン17によりアクリロニトリル、シアン化水素及び水を留出し、図示していない凝縮器で凝縮した後、図示していないデカンターで有機層と水層の二層に分離する。アクリロニトリル、シアン化水素及び少量の水を含む有機層を脱青酸脱水塔18に供給する。水層は前工程にリサイクルするのが好ましく、具体的にはライン10に合流させて回収塔供給液として利用するか、ライン15に合流させて抽出水等として利用する。
 脱青酸脱水塔18の塔頂からシアン化水素を含む蒸気(ガス)をライン19より留出して凝縮器20に送り、冷却して分縮する。凝縮したシアン化水素を含む液をライン22により還流液として塔頂に還流し、凝縮しなかった不純物の少ない粗シアン化水素ガスをライン21より系外に抜き出す。粗シアン化水素ガスは、必要に応じて図示していない蒸留塔で精製し、シアン化水素誘導体の原料として用いる。凝縮器20としては縦型が好ましく、上部管板に酢酸を散布してシアン化水素の重合を抑制する。凝縮器20に用いる冷媒20aとしては、供給温度が0~35℃、好ましくは3~30℃の水又はメタノール水溶液を用いる。
 脱青酸脱水塔18の中段にあるチムニートレイBからライン23により塔内液を抜き出し、サイドカットクーラー23bで冷却水によって冷却後、ライン23cによりデカンター23dに供給し、デカンター23dで有機層と水層の二層に分離する。本実施形態において、「中段」とは、塔頂より下で塔底より上の部分を示し、多段蒸留塔の場合は塔底と塔頂の間の一段を示す。例えば、全段数が50~65段の蒸留塔の場合、粗アクリロニトリルから水を効率よく分離する観点で、ライン23を通常塔底から数えて20~30段に設定するのが好ましい。冷媒23aは、冷媒20aと同様のものを使用できる。サイドカットクーラー23bでの除熱量は、デカンター23d内に設置された液の温度を測定するための温度計(図示されていない)を参照し、調整される。デカンター内の液温度は、20~40℃の範囲で一定となるよう制御されることが好ましい。デカンター内の水層はライン23fにより、回収塔12等の前工程にリサイクルする。デカンター内の有機層はライン23eにより、上述した塔内液を抜き出した段より下の段に戻す。この有機層は予熱して戻してもよい。
 蒸留に必要な熱は、リボイラー24aからライン24cを通じて供給する。熱媒24bとしては、水蒸気又は回収塔12の塔下部(ライン14及び15)及び/又は塔底(ライン13)から取り出される高温のプロセス水を用いる。
 リボイラー24aにより蒸留塔に与える熱量は、脱青酸脱水塔18におけるアクリロニトリルの分離回収を効率よく行う観点から、180×10~260×10kcal/h/t-アクリロニトリルが好ましく、190×10~230×10kcal/h/t-アクリロニトリルがより好ましい。ここで、アクリロニトリルの質量は、製品塔から製品として取得されるアクリロニトリルの質量(t)であり、上述の数値は、アクリロニトリル単位質量当たりの熱量を表していることから「熱量原単位」と呼ぶことができる。
 脱青酸脱水塔18の塔底からライン24により粗アクリロニトリルを抜き出し、製品塔25に送る。なお、ライン24により抜き出された塔底液の一部はリボイラー24aに供給される。
 製品塔25は、大気圧より低い圧力下で運転される棚段蒸留塔である。製品塔25の留出蒸気はライン26を通じて抜出され、凝縮器30に送られて凝縮される。凝縮液は、ライン31を通じて製品塔25に還流され、一部の液は、ライン29を通じて抜き出される。高沸点物質を含む塔底液は、ライン28より抜出される。図1で示されるプロセスにおいては、ライン27からアクリロニトリルを製品として取得する。
 アクリロニトリルの製造プロセスにおいては、通常運転中であっても、生産計画などからアクリロニトリルの生産量の増減がなされることがある。この場合、脱青酸脱水塔18にフィードする溶液量が増減され、蒸留装置の運転条件を調整する必要性が生じる。本実施形態において、「蒸留装置」とは、リボイラー、凝縮器を始めとする蒸留塔の付帯設備を含む概念であり、蒸留塔の中段から溶液の一部を抜出して、その中段抜出し液を冷却及び/又は油水分離する場合、冷却器及び/又は油水分離器も蒸留装置に含まれる。
 脱青酸脱水塔18は、常圧下で運転される棚段蒸留塔が好ましく、その棚数は、好ましくは50段~65段である。使用する棚の例としては、シーブトレイ、デュアルフロートレイ等が挙げられるが、これらに限定されない。
 脱青酸脱水塔へのフィード液は、ライン17よりフィード段Aに供給される。前記フィード段Aの位置は、前記チムニートレイBの上部であり、好ましくはチムニートレイBの10段~25段上部である。フィード液が供給されると、塔内を蒸気が上昇し、塔頂からシアン化水素を含む蒸気がライン19より留出する。留出蒸気を凝縮器20に送り、冷却して分縮する。凝縮器20は、留出蒸気を全凝縮せず、一部のみ凝縮させる分縮凝縮器(パーシャルコンデンザー)である。凝縮したシアン化水素を含む液をライン22により塔の最上段に還流液として還流し、凝縮しなかった不純物の少ないシアン化水素ガスをライン21より系外に抜き出す。凝縮しないシアン化水素ガスの質量は、ライン17から脱青酸脱水塔18に供給されるシアン化水素質量にほぼ等しい。即ち、脱青酸脱水塔18に供給されたシアン化水素は、粗アクリロニトリルから分離され、ほぼ全量が凝縮器20から抜き出される。次いで、塔内を流下する還流液と塔内を上昇する蒸気が接触して、蒸留精製が行われる。
 本実施形態の方法においては、前記凝縮器20の出口流体の温度を一定に維持する。ここで「出口流体」とは、還流液及び/又はシアン化水素ガスのことを示し、還流液は凝縮器20から塔内に戻される液のことを示し、シアン化水素ガスは凝縮器20から系外に抜き出されるガスのことを示す。本実施形態において、「温度を一定に維持する」とは、温度を目標温度又は目標温度域(温度幅±2℃以内)に保持することの他、出口流体の温度が目標温度又は目標温度域からずれた場合に、蒸留分離上、目標温度又は目標温度域に維持する蒸留と遜色がない温度範囲に維持する態様を包含する。「蒸留分離上、目標温度又は目標温度域に維持する蒸留と遜色がない温度範囲」は、下記した分離スペックを達成できる温度の探索によって決定することができる。
 目標温度は、特定の一点の温度を設定することが好ましいが、実際には、出口流体の温度が目標温度からずれた場合でも、蒸留分離上、目標温度での蒸留と遜色がない許容できる温度の上限及び下限が存在する。本実施形態においては、その値をそれぞれ上限値、下限値と呼び、凝縮器の出口流体の温度の上限値及び下限値を設定する場合には、出口流体の温度が下限値以上、上限値以下で推移するように、冷媒の供給量を調整弁によって調整することができる。例えば、上限値が目標温度+2℃であり、下限値が目標温度-2℃である場合、出口流体の温度を目標温度±2℃以内に維持する。上限値及び下限値は、概ね、上限値は=目標温度×1.05以下、下限値=目標温度×0.95以上とするのが好ましい。
 本実施形態において「目標温度」とは、実験室におけるアクリロニトリル蒸留実験及び/又は商業スケールの蒸留装置を用いた蒸留分離性能の温度依存性に関する実験から導き出される最適な温度である。例えば、凝縮器の出口流体の温度と塔頂のキー物質の濃度及び塔底のキー物質の濃度の関係を調べる。ここで、キー物質とは、蒸留分離を行うに際して指針とする物質のことで、一般には微量不純物のことを指し、当該物質が多く混入していると精製上好ましくない。キー物質濃度のスペックを定め、これを分離スペックとし、蒸留塔の運転管理に用いるのが好ましい。
 凝縮器の出口流体の温度は温度計22bで測定する。図2では、シアン化水素ガスの温度を測定しているが、分縮後のガス及び液の温度は同一であるため、シアン化水素ガスの代わりに、又はシアン化水素ガスと共に還流液の温度を測定しても構わない。温度計22bは、温度調節計22aを介して、冷媒を排出する管に設けられた、冷媒20aの流量調節弁20bに接続されており、温度計22bによって出口流体の温度が温度調節計22aに送信され、温度調節計22aによって出口流体の温度が目標温度より高い場合には調整弁20bが開かれ、出口流体の温度が前記目標温度より低い場合には調整弁20bが閉じられる。調整弁20bの「開度を調整」する態様には2とおりあり、弁を開くことで開度を大きくする態様と、弁を閉じることで開度を小さくする態様がある。調節弁20bにより、冷媒20aの供給量を変化させることで、凝縮器20の出口流体の温度を一定に維持する。
 凝縮器の出口流体の目標温度は、留出蒸気中のアクリロニトリル濃度を下げ、シアン化水素純度を上げる観点、塔底液中のシアン化水素濃度を下げ、アクリロニトリル純度を上げる観点及びエネルギー負荷の観点から26~40℃が好ましく、27~35℃がより好ましい。出口流体の温度が目標温度より高い場合、塔内を流下する還流液と塔内を上昇する蒸気の向流接触の結果、留出蒸気中のアクリロニトリル濃度が上昇しアクリロニトリルの損失につながる上、留出するシアン化水素の純度が下がるためシアン化水素誘導体の品質に悪影響を及ぼす。一方、出口流体の温度が目標温度より低い場合、塔底液中のシアン化水素濃度が上昇し、下流の製品塔で充分に除去できず、アクリロニトリル製品がオフスペック品となるおそれがある。本実施形態の方法においては、凝縮器の出口流体の一定に維持することで、塔内を流下する還流液と塔内を上昇する蒸気が向流接触することで行われる蒸留精製の効率を高め、凝縮器20からのシアン化水素の分離性を向上することができる。
 図3は、脱青酸脱水塔18とそれに接続された設備の別の例を示す概要図である。凝縮器の冷媒20aの供給管と排出管とを接続する流量調節弁20b’が設けられていること以外は、図2に示す例とほぼ同じであるので、相違点のみ説明する。調節弁20b’を開くと、冷媒20aの一部は供給管から凝縮器を経ないで排出管に流入するので、調節弁20b’を開くことで冷媒20aの供給量が減少する。温度計22bは、温度調節計22aを介して、流量調節弁20b,20b’に接続されており、凝縮器の出口流体の温度が温度調節計22aに送信され、出口流体の温度が目標温度よりも高い場合には調整弁20bが開かれ、及び/又は調節弁20b’が閉じられて冷媒20aの供給量を増加させる。出口流体の温度が目標温度よりも低い場合には調整弁20bが閉じられ、及び/又は調節弁20b’が開かれて冷媒20aの供給量を減少させ、出口流体の温度を一定に維持する。
 図3に示す例では、流量調節弁20b,20b’の両方が温度調節計22aからの命令で動作するようになっているが、「凝縮器の出口流体の温度を一定に維持する」機能を奏する限り、両方が温度調節計22aによって開閉される必要はなく、流量調節弁20bのみが温度調節計22aによって開閉し、流量調節弁20b’は手動であってもよい。調節弁20b’が手動の場合、調節弁20b’の開度は一定にしておき、図2に示す例と同様に調節弁20bを操作することで、凝縮器の出口流体の温度を一定に維持する。
 商業スケールのアクリロニトリル蒸留装置では、塔頂のキー物質としてはアクリロニトリル、塔底のキー物質としてはシアン化水素及び水を用いることが好ましい。塔頂から留出するシアン化水素ガス中のアクリロニトリルを低濃度に保つことで、製品として取得するアクリロニトリルの質量低下を防止できる。また、シアン化水素も市販される製品の1つであり、種々のシアン化水素誘導体に利用されるが、シアン化水素中のアクリロニトリルの濃度を低く保つことで、例えば、アセトンシアンヒドリン(ACH)法によって得られるメタクリル酸メチル(MMA)等の好ましくない着色を防ぐことができる。塔頂からアクリロニトリルが留出しても、蒸留等によってさらに分離することでシアン化水素の純度を上げることは可能ではあるが、蒸留装置等の分離設備の他に、この設備から排出されるアクリロニトリル含有廃水の処理設備も必須要件となってしまう。そのため、シアン化水素を利用することを考慮すると、塔頂から留出するシアン化水素中のアクリロニトリルの濃度を低く維持することが好ましい。塔頂から留出するシアン化水素中のアクリロニトリル濃度は、好ましくは1000ppm以下であり、より好ましくは700ppm以下であり、さらに好ましくは500ppm以下である。
 塔底から抜き出されるアクリロニトリル中にシアン化水素が多く混入する場合、そのアクリロニトリルを用いて得られるアクリル繊維やABS樹脂の着色原因になる。また、水が多く混入する場合は、製品アクリロニトリルの純度が落ちる。塔底から抜き出されるアクリロニトリル中のシアン化水素濃度は、好ましくは100ppm以下であり、より好ましくは70ppm以下であり、さらに好ましくは50ppm以下である。
 凝縮器の除熱量を増減することで凝縮器の出口流体の温度を変更し、塔頂及び塔底のキー物質濃度の変化を測定する。その測定結果から、良好な蒸留分離性能を示す凝縮器の出口流体の目標温度が定められる。
 以下に、出口流体の目標温度の決定方法の一例を示す。
 まず、リボイラーの加熱量と凝縮器の除熱量を一定にして、塔頂及び塔底のキー物質の濃度(質量%)を調べる。次いで、リボイラーの加熱量は変更しないで、凝縮器の除熱量のみを変更し、凝縮器の出口流体の温度を変化させる。凝縮器の出口流体の温度が異なる場合の塔頂及び塔底それぞれのキー物質の濃度を比較した時、塔頂及び塔底の分離スペックを安定的に保持できる特定の温度範囲が存在することを本発明者は発見した。
 一般的な蒸留の場合、蒸留塔の各所、例えば、塔頂及び塔底で測定される温度がそれぞれ目標温度となるように制御することで、所期の分離スペックを達成する。しかしながら、アクリロニトリルの精製において、アクリロニトリル、シアン化水素及び水を含む溶液を蒸留(いわゆる脱青酸脱水塔を用いて蒸留)する場合、塔頂温度を目標温度に維持していても、塔頂から留出するシアン化水素ガス中のアクリロニトリルの濃度が安定せず、シアン化水素ガス中のアクリロニトリルの濃度が分離スペックを超えて上昇する現象が度々見られる。本発明者は、上記現象は、脱青酸脱水塔の塔上部、特にフィード段より上部においては、シアン化水素濃度とアクリロニトリル濃度の変化が著しいことに起因していることを見出した。つまり、塔頂からの留分はシアン化水素とアクリロニトリルという異なる凝縮潜熱及び比熱を有するものの混合物であるので、この留分を凝縮するために凝縮器で必要とされる除熱量は、それらの混合比によって大きく異なることになる(なお、凝縮器で必要とされる除熱量は、蒸気から液への相変化に伴う熱量、即ち凝縮熱が支配的である。)。つまり、塔頂温度は凝縮に必要な除熱量を必ずしも反映していないことが分った。従って、例え塔頂温度を一定に維持して、塔頂の分離スペックを安定的に維持しようと試みても、塔頂温度が目標温度内で変動している場合でさえ、除熱量を適切に設定できずに塔頂温度を上がってしまい、その結果、塔上部でのアクリロニトリルの濃度が上昇し、塔頂から留出する割合が上がってしまう。
 これに対し、凝縮器の出口流体の温度は、凝縮器において、留出蒸気から凝縮分離したアクリロニトリルの凝縮液又は凝縮したアクリロニトリルをシアン化水素ガスから分離した後のガス温度であり、組成変化による影響をほとんど受けることがない。仮に、塔頂温度、凝縮器の除熱量が一定の状態で、塔頂留分の組成が変化し、アクリロニトリルの濃度が上がったとすると、混合物である留分の凝縮潜熱が上がるので、出口流体の温度は上昇することになる。つまり、出口流体の温度には塔頂から留出する留分の温度のみならず、間接的に留分の組成も反映されているので、これを一定に維持するように除熱量を決定することは、留分の温度のみならず組成の影響も反映させて除熱量にフィードバックできる適切な制御であると言える。
 また、凝縮器の除熱量を決定する上で、出口流体の温度は気液接触を行っている塔内温度に比べて応答性も速く、管理に適している。よって適正な目標温度を定めて、出口流体の温度に応じて制御することで応答性よく凝縮器を運転し、凝縮器から抜き出すシアン化水素ガス中のアクリロニトリル濃度が塔頂の分離スペックになるよう容易に維持できる。さらに、質量バランス上、脱青酸脱水塔に供給したシアン化水素は、実質的にほぼ全てが凝縮器から抜き出されることになるので、粗アクリロニトリルからのシアン化水素の分離が充分になされ、塔底のシアン化水素濃度を分離スペック以内に維持することができる。即ち、塔頂の温度ではなく凝縮器の出口流体の温度を一定に維持することで、塔頂及び塔底の分離スペックを満たすことができる。
 蒸留塔の運転開始時は、リボイラーの加熱量の増加と凝縮器の除熱量の増加を並行して繰り返すことになるが、最終調整段階においては、リボイラーの加熱量と、凝縮器の除熱量という二つの熱量に関する変数を一度に増減すると、蒸留塔を安定に運転することが困難となる。そのため、蒸留塔を安定に運転する観点で、リボイラーには180×10~260×10kcal/h/t-アクリロニトリルの範囲で一定の加熱量を与えつつ、凝縮器の除熱量を増減し、凝縮器の出口流体の温度が目標温度となるように制御することが好ましい。こうすることで、蒸留塔の良好な分離性能を早期に引き出し、再精製が必要なオフスペック品の生成量を抑制できる傾向にある。また、製品取得時期を早めることが可能となる。
 アクリロニトリルの製造プロセスにおいては、通常運転中であっても、生産計画などからアクリロニトリルの生産量の増減がなされることがある。この場合、脱青酸脱水塔18にフィードされる溶液量が増減される。フィード液の質量変化に応じた製品生産量と、上述したリボイラー熱量原単位からリボイラーに加える熱量(以下、「リボイラー加熱量」とする。)を調整変更する。リボイラー加熱量を増減した場合、蒸留塔内部の蒸気量が変化する。例えば、リボイラー加熱量を増加させた場合、アクリロニトリルが塔上部に炊き上がり、粗シアン化水素中に留出する割合が上がってしまうことがある。逆にリボイラー加熱量を減少させた場合、シアン化水素が塔下部に下がり、塔底抜出液中に存在する割合が上がってしまうことがある。これらはいずれも製品(アクリロニトリル、シアン化水素誘導体)純度に悪影響を及ぼす。これらを防止するために、リボイラー加熱量の増減量に応じて、蒸留塔を適正に調整することが求められ、これは上述した本実施形態における方法でなされる。
 以下に実施例を示して、本実施の形態をより詳細に説明するが、本実施の形態は以下に記載の実施例によって限定されるものではない。なお、実施例におけるアクリロニトリル製造プロセスは、図1に示したものと同様である。また、実施例における脱青酸脱水塔は、図2に示したものと同様である。
 アクリロニトリルの分析は、以下の装置及び条件でガスクロマトグラフィーにより行った。
 ガスクロマトグラフィーは、装置として島津GC-17Aを用い、カラムはTC-FFAP 60m×0.32膜厚0.25μmを用いた。検出器はFID、キャリヤーガスにはヘリウムを用いた。
 カラム温度条件は、以下の通りであった。
 初期温度:50℃
 昇温速度:5℃/分
 最終温度1:180℃ 15分HOLD
 昇温速度:10℃/分
 最終温度2:230℃ 10分HOLD
 最終温度3:50℃ 5分HOLD
 シアン化水素及び水の分析は、それぞれ硝酸銀滴定法及びカールフィシャー法により行った。
 流量計及び温度計としては、以下のものを用いた。
 流量計:差圧式流量計(オリフィス型)
メーカー:YOKOGAWA、商品名:Differential Pressure Transmitter DP harp EJX
 温度計:抵抗温度計
メーカー:OKAZAKI、商品名:Resistance Thermometer + Temperature Trans
[実施例1]
 プロピレン、アンモニア及び空気を内径8m、長さ20mの縦型円筒型の流動層反応器1に供給し、プロピレンのアンモ酸化反応を下記の通り行った。流動層反応器1は、その内部に原料ガス分散管や分散板、除熱管及びサイクロンを有していた。脱青酸脱水塔18は、シーブトレイ55段からなり、塔底から数えて37段目に供給段を有し、24段目にサイドカット流を抜き出すライン23を有し、サイドカットクーラー23b、デカンター23dを経て、23段目にデカンター内の有機層を戻すライン23eを有していた。
 流動層触媒は、粒径10~100μm、平均粒径55μmであるモリブデン-ビスマス-鉄系担持触媒を用い、静止層高2.7mとなるよう充填した。空気分散板から空気を56000Nm/h供給し、原料ガス分散管からプロピレン6200Nm/h及びアンモニアを6600Nm/h供給した。反応温度は440℃となるよう除熱管で制御した。圧力は0.70kg/cmGであった。
 反応生成ガスを急冷塔6に導入し、水と向流接触させ、未反応のアンモニアを硫酸で中和除去した。急冷塔6から流出したガスをライン8より吸収塔9に導入した。吸収塔9塔頂のライン14より吸収水を導入し、ガスと向流接触させ、ガス中のアクリロニトリル、アセトニトリル及びシアン化水素を水中に吸収させた。吸収水量は、吸収塔塔頂から排出されるガス中のアクリロニトリル濃度が100volppmとなるように調整した。吸収されなかったガスは、吸収塔塔頂ライン11より取り出し、焼却した。
 吸収塔塔底液を80℃に予熱し、回収塔12に供給した。回収塔12でアセトニトリル及び大部分の水を分離し、塔頂ライン17からアクリロニトリル、シアン化水素及び水を留出させた。該留出蒸気を凝縮し、図示していない回収塔デカンターで有機層と水層を形成させ、水層は回収塔12の供給ライン10にリサイクルし、有機層は脱青酸脱水塔18に供給した。
 脱青酸脱水塔18へのフィード液は、ライン17に設置された図示していない流量計及び温度計により、質量及び温度を測定した。測定値は、それぞれ13595kg/h及び35.0℃であった。
 脱青酸脱水塔18の塔頂ライン19から粗シアン化水素ガスを抜き出して凝縮器20に送り、冷却して分縮した。凝縮器20に用いた冷媒20aは、6℃の水であった。凝縮したシアン化水素を含む液を還流液として塔頂に還流し、凝縮しなかった不純物の少ないシアン化水素ガスをライン21から系外に抜き出した。凝縮器の出口流体(シアン化水素ガス)の温度は、凝縮器下部に取り付けられた温度計22bにて測定し、目標温度である29℃となるよう、温度調節計22aを介して、冷媒20aの流量調節弁20bを制御した。
 脱青酸脱水塔18の24段から塔内液を抜き出し、サイドカットクーラー23bで冷却した。サイドカットクーラー23bに用いた冷媒23aは、25℃の水であった。サイドカットクーラーの除熱量Q3は、デカンター23dの液温が30℃となるように、冷媒23aの流量で調整した。塔から抜き出したサイド流は、デカンター23dにて有機層と水層の二層に分離し、水層は、ライン23fにより抜き出し、回収塔12の供給液にリサイクルした。有機層はライン23eにより、塔の23段に戻した。
 リボイラー24aの熱源には、回収塔12下部から抜き出した110℃のプロセス水を用いた。与えた熱量Q1は200×10kcal/h/t-アクリロニトリルとし、製品塔25にて製品として取得したアクリロニトリルの質量が、時間当たり11.5tであったので、2300×10kcal/hとなるよう、リボイラー24aに通じるプロセス水24bの流量を調整した。
 塔底ライン24から粗アクリロニトリルを抜き出し、製品塔25に送った。塔底抜出液は、ライン24に設置された図示していない流量計により、質量を測定し、その測定値は、11585kg/hであった。塔底抜出液の温度は、脱青酸脱水塔18の塔底の液温と同一であり86℃であった。
 アクリロニトリル生産量を11.5±0.2t/hとした時期約6ヶ月間、上記のような運転を継続した。この間、凝縮器の出口流体の温度は、29±0.3℃であった。
 脱青酸脱水塔は安定的に運転でき、この間、脱青酸脱水塔塔頂から留出するシアン化水素中のアクリロニトリル濃度は300±20ppmであり、塔底から抜き出されるアクリロニトリル中のシアン化水素濃度は40±10ppmであった。またこの間、アクリロニトリル製品中のシアン化水素濃度は5ppm以下であり、高品質のアクリロニトリル製品を安定的に取得できた。また、粗シアン化水素の純度も安定しており、シアン化水素誘導体の品質にも問題はなかった。
[実施例2]
 生産計画の変更によりアクリロニトリル生産量を12.7t/hに増量したこと以外は、実施例1と同一の設備及び方法でアクリロニトリルを製造した。
 リボイラー熱量は2540×10kcal/hまで増加させた。凝縮器20の出口流体の温度が29℃となるよう温度調節計22aを介して、冷媒20aの流量調節弁20bを制御した。脱青酸脱水塔18の塔内の各温度及びデカンター23dの温度は、実施例1とほぼ同一であった。
 アクリロニトリル生産量を12.7±0.2t/hとした時期約3ヶ月間、上記運転を継続した。この間、温度制御段の温度は、29±0.3℃であった。脱青酸脱水塔18は安定的に運転でき、この間、脱青酸脱水塔塔頂から留出するシアン化水素中のアクリロニトリル濃度は300±20ppmであり、塔底から抜き出されるアクリロニトリル中のシアン化水素濃度は40±10ppmであった。またこの間、アクリロニトリル製品中のシアン化水素濃度は5ppm以下であり、高品質のアクリロニトリル製品を安定的に取得できた。また、粗シアン化水素の純度も安定しており、シアン化水素誘導体の品質にも問題はなかった。
[実施例3]
 プロパン、アンモニア及び空気を実施例1と同じ流動層反応器1に供給し、プロパンのアンモ酸化反応を下記の通り行った。
 流動層触媒は、粒径10~100μm、平均粒径55μmであるモリブデン-バナジウム系担持触媒を用い、静止層高2.2mとなるよう充填した。空気分散板から空気を64500Nm/h供給し、原料ガス分散管からプロパン4300Nm/h及びアンモニアを4300Nm/h供給した。反応温度は440℃となるよう除熱管で制御した。圧力は0.75kg/cmGであった。
 反応生成ガスを急冷塔6に導入し、水と向流接触させた。また、未反応のアンモニアを硫酸で中和除去した。
 急冷塔6から取り出したガスをライン8より吸収塔9に導入した。塔頂ライン14より吸収水を導入し、ガスと向流接触させ、ガス中のアクリロニトリル、アセトニトリル及びシアン化水素を水中に吸収させた。未吸収のガスは、吸収塔塔頂ライン11より取り出し、焼却した。吸収塔塔頂から取り出したガス中のアクリロニトリル濃度が100volppmとなるよう、吸収水量を調整した。
 吸収塔塔底液を予熱し、回収塔12に供給した。回収塔でアセトニトリル及び大部分の水を分離し、塔頂ライン17からアクリロニトリル、シアン化水素及び水を留出させた。該留出蒸気を凝縮し、有機層と水層を形成させ、水層は回収塔の供給ライン10にリサイクルし、有機層は脱青酸脱水塔18に供給した。
 脱青酸脱水塔18へのフィード液は、ライン17に設置された図示していない流量計及び温度計により、質量及び温度を測定した。測定値は、それぞれ6219kg/h及び35.0℃であった。
 脱青酸脱水塔18の塔頂ライン19から粗シアン化水素ガスを抜き出して凝縮器20に送り、冷却して分縮した。凝縮器20に用いた冷媒20aは、6℃の水であった。凝縮したシアン化水素を含む液を還流液として塔頂に還流し、凝縮しなかった不純物の少ないシアン化水素ガスをライン21から系外に抜き出した。凝縮器の出口流体(シアン化水素ガス)の温度は、凝縮器下部に取り付けられた温度計22bにて測定し、目標温度である29℃となるよう、温度調節計22aを介して、冷媒20aの流量調節弁20bを制御した。
 脱青酸脱水塔18の24段から塔内液を抜き出し、サイドカットクーラー23bで冷却した。サイドカットクーラー23bに用いた冷媒23aは、25℃の水であった。サイドカットクーラーの除熱量Q3は、デカンター23dの液温が30℃となるように、冷媒23aの流量で調整した。塔から抜き出したサイド流は、デカンター23dにて有機層と水層の二層に分離し、水層は、ライン23fにより抜き出し、回収塔12の供給液にリサイクルした。有機層はライン23eにより、塔の23段に戻した。
 リボイラー24aの熱源には、回収塔12下部から抜き出した110℃のプロセス水を用いた。与えた熱量Q1は、250×10kcal/h/t-アクリロニトリルとし、製品塔25にて製品として取得したアクリロニトリルの質量が、時間当たり5.22tであったので、1305×10kcal/hとなるよう、リボイラー24aに通じるプロセス水24bの流量を調整した。
 塔底ライン24から粗アクリロニトリルを抜き出し、製品塔25に供給した。塔底抜出液は、ライン24に設置された図示していない流量計により、質量を測定し、その測定値は5312kg/hであった。塔底抜出液の温度は、脱青酸脱水塔18の塔底の液温と同一であり86℃であった。
 アクリロニトリル生産量を5.22±0.17t/hとした時期約4ヶ月間、上記運転を継続した。この間、温度制御段の温度は、29±0.4℃であった。脱青酸脱水塔は安定的に運転でき、
 この間、脱青酸脱水塔塔頂から留出するシアン化水素中のアクリロニトリル濃度は300±20ppmであり、塔底から抜き出されるアクリロニトリル中のシアン化水素濃度は40±10ppmであった。またこの間、アクリロニトリル製品中のシアン化水素濃度は5ppmであり、高品質のアクリロニトリル製品を安定的に取得できた。また、粗シアン化水素の純度も安定しており、シアン化水素誘導体の品質にも問題はなかった。
[比較例1]
 脱青酸脱水塔の凝縮器の出口流体の温度管理を行わず、脱青酸脱水塔の最上段を温度制御段とし、当該段の温度が30℃となるよう運転したこと以外は、実施例1と同一の設備及び方法でプロピレンのアンモ酸化反応を実施し、3ヶ月間アクリロニトリルを製造した。この間、温度制御段の温度は30℃で変化がなかったが、製造開始から1ヵ月後に、脱青酸脱水塔塔頂から留出するシアン化水素中のアクリロニトリル濃度が1000ppmに上昇した。凝縮器の除熱量Q2が不足していると判断し、凝縮器に通じる冷媒の流量を上げてQ2を増加させところ、脱青酸脱水塔の最上段の温度は30℃で変化がなかったが、塔頂から留出するシアン化水素中のアクリロニトリル濃度は300ppmまで減少した。
 製造開始から2ヵ月後に製品として取得したアクリロニトリル中のシアン化水素の濃度が20ppmまで上昇しオフスペック品となった。この時、脱青酸脱水塔の塔底液中のシアン化水素濃度は、120wtppmであった。凝縮器の除熱量Q2が過多と判断し、凝縮器に通じる冷媒の流量を下げてQ2を減少させたところ、製品として取得したアクリロニトリル中のシアン化水素濃度が5ppmまで減少しオンスペック品となった。また、塔頂から留出するシアン化水素中に留出するアクリロニトリルの割合は600ppmまで上昇し、シアン化水素誘導体の品質が落ちていた。この間、脱青酸脱水塔の最上段の温度は30℃で変化がなかった。
[比較例2]
 脱青酸脱水塔の凝縮器の出口流体の温度管理を行わず、脱青酸脱水塔の最上段を温度制御段とし、当該段の温度が30℃となるよう運転したこと以外は、実施例3と同一の設備及び方法でプロパンのアンモ酸化反応を実施し、2ヶ月間アクリロニトリルを製造した。この間、温度制御段の温度は30℃で変化がなかったが、製造開始から2週間後に、脱青酸脱水塔塔頂から留出するシアン化水素中のアクリロニトリル濃度が1000ppm以上に上昇した。凝縮器の除熱量Q2が不足していると判断し、凝縮器に通じる冷媒の流量を上げてQ2を増加させところ、脱青酸脱水塔の最上段の温度は30℃で変化がなかったが、塔頂から留出するシアン化水素中のアクリロニトリル濃度は300ppmまで減少した。
 製造開始から4週間後に製品として取得したアクリロニトリル中のシアン化水素の濃度20ppmまで上昇しオフスペック品となった。この時、脱青酸脱水塔の塔底液中のシアン化水素濃度は、120wtppmであった。凝縮器の除熱量Q2が過多と判断し、凝縮器に通じる冷媒の流量を下げてQ2を減少させたところ、製品として取得したアクリロニトリル中のシアン化水素濃度が5ppmまで減少しオンスペック品となった。また、塔頂から留出するシアン化水素中に留出するアクリロニトリルの割合は600ppmまで上昇し、シアン化水素誘導体の品質が落ちていた。この間、脱青酸脱水塔の最上段の温度は30℃で変化がなかった。
 本出願は、2010年12月27日に日本国特許庁へ出願された日本特許出願(特願2010-290461)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の方法は、プロピレン及び/又はプロパン、アンモニア及び酸素を触媒の存在下に反応させるアクリロニトリルの製造プロセスにおける産業上利用可能性を有する。
 1 流動層反応器
 2 プロピレン及び/又はプロパンの供給管
 3 アンモニアの供給管
 4 空気(酸素)の供給管
 6 急冷塔
 5、7、8 ライン
 9 吸収塔
 10、11 ライン
 12 回収塔
 13、14、15、16、17 ライン
 18 脱青酸脱水塔
 19 ライン
 20 脱青酸脱水塔凝縮器
 20a 脱青酸脱水塔凝縮器に供給する冷媒
 20b 調製弁
 20b’ 凝縮器の冷媒の供給管と排出管とを接続する流量調節弁
 21、22、23、23c、23e、23f ライン
 22b 温度計
 22a 温度調節計
 23a 脱青酸脱水塔サイドカットクーラーに供給する冷媒
 23b 脱青酸脱水塔サイドカットクーラー
 23d 脱青酸脱水塔デカンター
 24、24c ライン
 24a 脱青酸脱水塔リボイラー
 24b 脱青酸脱水塔リボイラーに供給する熱媒
 25 製品塔
 26、27、28、29 ライン
 30 製品塔凝縮器
 31 ライン
 A フィード段
 B チムニートレイ

Claims (5)

  1.  塔頂に凝縮器が接続された蒸留塔を用いて、アクリロニトリル、シアン化水素及び水を含む溶液を蒸留する工程を含むアクリロニトリルの精製方法であって、
     前記凝縮器の出口流体の温度を一定に維持する工程を含む方法。
  2.  前記凝縮器でアクリロニトリルとシアン化水素を分離し、
     前記凝縮器から留出する還流液及び/又はシアン化水素ガスの温度を一定に維持する、請求項1記載のアクリロニトリルの精製方法。
  3.  前記凝縮器へ冷媒を供給する管及び/又は冷媒を排出する管に調整弁が設けられ、前記凝縮器には出口流体の温度を測定するための温度計が設けられており、
     前記凝縮器の出口流体の目標温度を設定し、前記凝縮器の出口流体の温度が前記目標温度より高い場合は前記調整弁の開度を調整することにより冷媒の供給量を増加させ、前記凝縮器の出口流体の温度が前記目標温度より低い場合は前記調整弁の開度を調整することにより冷媒の供給量を減少させる、請求項1又は2記載の精製方法。
  4.  前記凝縮器の出口流体の温度の上限値及び下限値を設定し、前記凝縮器の出口流体の温度が前記下限値以上、前記上限値以下で推移するように、前記冷媒の供給量を前記調整弁によって調整する、請求項3記載の精製方法。
  5.  蒸留塔と、
     前記蒸留塔に接続され、冷媒の供給管及び排出管が設けられた凝縮器と、
    を有する蒸留装置であって、
     前記供給管及び/又は排出管に冷媒の供給量を調整するための調整弁が取り付けられており、
     前記凝縮器の出口には温度計が設けられており、
     前記温度計は温度調節計を介して前記調整弁に接続されており、
     前記温度計によって測定された温度が前記温度調節計に送信され、
     前記温度が目標温度より高い場合には前記調整弁の開度が調整されることにより冷媒の供給量が増やされ、前記温度が前記目標温度より低い場合には前記調整弁の開度が調整されることにより冷媒の供給量が減らされるように、前記温度調節計から前記調整弁に指示が送られる、蒸留装置。
PCT/JP2011/078708 2010-12-27 2011-12-12 アクリロニトリルの精製方法 WO2012090691A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180059878.7A CN103261151B (zh) 2010-12-27 2011-12-12 丙烯腈的精制方法
JP2012550806A JP5605922B2 (ja) 2010-12-27 2011-12-12 アクリロニトリルの精製方法
KR1020137015542A KR101528987B1 (ko) 2010-12-27 2011-12-12 아크릴로니트릴의 정제 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-290461 2010-12-27
JP2010290461 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090691A1 true WO2012090691A1 (ja) 2012-07-05

Family

ID=46382807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078708 WO2012090691A1 (ja) 2010-12-27 2011-12-12 アクリロニトリルの精製方法

Country Status (5)

Country Link
JP (1) JP5605922B2 (ja)
KR (1) KR101528987B1 (ja)
CN (1) CN103261151B (ja)
TW (1) TWI438181B (ja)
WO (1) WO2012090691A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300387B1 (ja) * 2016-10-21 2018-03-28 旭化成株式会社 アクリロニトリルの精製方法、製造方法、及び蒸留装置
WO2018074046A1 (ja) * 2016-10-21 2018-04-26 旭化成株式会社 アクリロニトリルの精製方法、製造方法、及び蒸留装置
CN108164436A (zh) * 2018-02-23 2018-06-15 上海晟兰石化工程技术有限公司 一种粗丙烯氨氧化制丙烯腈及丙烯回收工艺及系统
EP3998251A4 (en) * 2020-09-11 2022-09-14 LG Chem, Ltd. METHOD FOR RECOVERING NITRILE-BASED MONOMERS AND DEVICE FOR RECOVERING SOLVENTS

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105983244A (zh) * 2015-01-31 2016-10-05 中国石油化工股份有限公司 蒸馏塔及其用途
CN105983242A (zh) * 2015-01-31 2016-10-05 中国石油化工股份有限公司 塔设备及其用途
CN111484428A (zh) * 2019-01-29 2020-08-04 旭化成株式会社 (甲基)丙烯腈的纯化方法和(甲基)丙烯腈的制备方法
CN112441939B (zh) * 2019-09-05 2024-03-22 中石油吉林化工工程有限公司 丙烯腈生产系统
KR102482497B1 (ko) * 2020-06-16 2022-12-29 태광산업주식회사 증류 장치 및 이의 용도

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518353A (ja) * 1998-06-15 2002-06-25 ソリユテイア・インコーポレイテツド オレフィン系不飽和ニトリルの回収方法
JP2010222309A (ja) * 2009-03-24 2010-10-07 Asahi Kasei Chemicals Corp アクリロニトリルの精製方法
JP2010533578A (ja) * 2007-07-19 2010-10-28 バール,フランク 蒸留塔を制御し冷却する方法
JP2010241742A (ja) * 2009-04-07 2010-10-28 Daiyanitorikkusu Kk (メタ)アクリロニトリルの回収方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1171823A (en) * 1967-01-20 1969-11-26 G & J Weir Ltd Water Distillation Plant.
US3885928A (en) * 1973-06-18 1975-05-27 Standard Oil Co Ohio Acrylonitrile and methacrylonitrile recovery and purification system
DD125821A1 (ja) * 1976-05-21 1977-05-18
JPH0975604A (ja) * 1995-09-14 1997-03-25 Sumitomo Chem Co Ltd 蒸留塔の制御方法
JP2005028224A (ja) * 2003-07-08 2005-02-03 Mitsubishi Chemicals Corp 蒸留装置の制御方法
JP4959158B2 (ja) * 2005-08-05 2012-06-20 旭化成ケミカルズ株式会社 アクリロニトリルの分離回収方法
CN201512484U (zh) * 2009-09-14 2010-06-23 郑州正力聚合物科技有限公司 特种丙烯腈提纯装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518353A (ja) * 1998-06-15 2002-06-25 ソリユテイア・インコーポレイテツド オレフィン系不飽和ニトリルの回収方法
JP2010533578A (ja) * 2007-07-19 2010-10-28 バール,フランク 蒸留塔を制御し冷却する方法
JP2010222309A (ja) * 2009-03-24 2010-10-07 Asahi Kasei Chemicals Corp アクリロニトリルの精製方法
JP2010241742A (ja) * 2009-04-07 2010-10-28 Daiyanitorikkusu Kk (メタ)アクリロニトリルの回収方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300387B1 (ja) * 2016-10-21 2018-03-28 旭化成株式会社 アクリロニトリルの精製方法、製造方法、及び蒸留装置
WO2018074046A1 (ja) * 2016-10-21 2018-04-26 旭化成株式会社 アクリロニトリルの精製方法、製造方法、及び蒸留装置
KR20180055796A (ko) * 2016-10-21 2018-05-25 아사히 가세이 가부시키가이샤 아크릴로니트릴의 정제 방법, 제조 방법 및 증류 장치
KR101914914B1 (ko) 2016-10-21 2018-11-02 아사히 가세이 가부시키가이샤 아크릴로니트릴의 정제 방법, 제조 방법 및 증류 장치
US10294197B2 (en) 2016-10-21 2019-05-21 Asahi Kasei Kabushiki Kaisha Purifying method, production method, and distillation apparatus for acrylonitrile
RU2736379C1 (ru) * 2016-10-21 2020-11-16 Асахи Касеи Кабусики Кайся Способ очистки, способ получения и устройство для дистилляции акрилонитрила
CN108164436A (zh) * 2018-02-23 2018-06-15 上海晟兰石化工程技术有限公司 一种粗丙烯氨氧化制丙烯腈及丙烯回收工艺及系统
CN108164436B (zh) * 2018-02-23 2023-12-19 上海晟兰石化工程技术有限公司 一种粗丙烯氨氧化制丙烯腈及丙烯回收工艺及系统
EP3998251A4 (en) * 2020-09-11 2022-09-14 LG Chem, Ltd. METHOD FOR RECOVERING NITRILE-BASED MONOMERS AND DEVICE FOR RECOVERING SOLVENTS

Also Published As

Publication number Publication date
TWI438181B (zh) 2014-05-21
JP5605922B2 (ja) 2014-10-15
CN103261151B (zh) 2015-04-22
KR20130086644A (ko) 2013-08-02
TW201229012A (en) 2012-07-16
KR101528987B1 (ko) 2015-06-15
JPWO2012090691A1 (ja) 2014-06-05
CN103261151A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5605922B2 (ja) アクリロニトリルの精製方法
JP5605921B2 (ja) アクリロニトリルの精製方法
WO2018074046A1 (ja) アクリロニトリルの精製方法、製造方法、及び蒸留装置
KR101648653B1 (ko) 아세토니트릴의 정제 방법
JP5512083B2 (ja) 反応器内部の反応速度制御方法、反応装置及びジメチルエーテルの製造方法。
JP5717280B2 (ja) アクリロニトリルの精製方法
TW296373B (ja)
JP6300387B1 (ja) アクリロニトリルの精製方法、製造方法、及び蒸留装置
JP2018537512A (ja) 回収塔の制御
JP5785728B2 (ja) 不飽和ニトリルの蒸留方法及び蒸留装置、並びに不飽和ニトリルの製造方法
KR102079773B1 (ko) (메트)아크릴산의 연속 회수 방법
JP2008162956A (ja) (メタ)アクリル酸溶液を得るためのシステムおよび(メタ)アクリル酸の製造方法
KR102079772B1 (ko) (메트)아크릴산의 연속 회수 방법
JP2010037227A (ja) アクリロニトリルの精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550806

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137015542

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854462

Country of ref document: EP

Kind code of ref document: A1