WO2012088861A1 - 一种混凝土泵送设备用锥管及其制造方法 - Google Patents
一种混凝土泵送设备用锥管及其制造方法 Download PDFInfo
- Publication number
- WO2012088861A1 WO2012088861A1 PCT/CN2011/076600 CN2011076600W WO2012088861A1 WO 2012088861 A1 WO2012088861 A1 WO 2012088861A1 CN 2011076600 W CN2011076600 W CN 2011076600W WO 2012088861 A1 WO2012088861 A1 WO 2012088861A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- steel
- cone
- outer tube
- tapered
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G53/00—Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
- B65G53/34—Details
- B65G53/52—Adaptations of pipes or tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G53/00—Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
- B65G53/32—Conveying concrete, e.g. for distributing same at building sites
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L57/00—Protection of pipes or objects of similar shape against external or internal damage or wear
- F16L57/06—Protection of pipes or objects of similar shape against external or internal damage or wear against wear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/02—Rigid pipes of metal
Definitions
- the present invention relates to an engineering work device, and in particular to a cone pipe for a concrete pumping device and a method of manufacturing the same.
- BACKGROUND OF THE INVENTION With the rapid development of concrete pumping technology, construction efficiency is further improved, engineering project cycle is shortened, and people have higher requirements on pump life and stability of use, and material performance improvement of key parts of equipment is particularly important.
- the cone tube As a key component affecting the life and stability of the pump, the cone tube is currently used for internal surface surfacing to improve wear resistance. The products of this preparation process have high energy consumption, high cost, poor quality, serious environmental pollution, and weak market competitiveness.
- the taper pipe for a concrete pumping device comprises an inner pipe and an outer pipe.
- the inner pipe and the outer pipe are formed of different metal materials, the hardness of the inner pipe is higher than that of the outer pipe, and the toughness of the outer pipe is higher than that of the inner pipe, thereby Under the premise of satisfying the performance requirements of the cone tube, the forming process of the cone tube is greatly simplified, and the environmental pollution of the cone tube of the present invention is small and can be compared with the cone tube formed by the surfacing process. Low consumption.
- the inner tube including: medium carbon low alloy steel, high carbon low alloy steel, wear resistant cast steel, wear resistant cast iron or tool steel; the outer tube can be made of ordinary carbon steel, low carbon alloy steel.
- the inner cone tube is made of medium carbon low alloy steel, has good hardenability, high hardness after heat treatment, and good wear resistance.
- the outer tube is made of ordinary carbon steel, which has a carbon content. After heat treatment, the hardness is still low, the toughness is good, and the impact resistance is strong, which can protect the inner tube.
- Methods for producing the double-layered tapered tube of the present invention In one method, two materials are first formed into a single-layer conical tube by casting or molding, and then composited in a certain manner to form a double-layered conical tube, and finally the product is quenched as a whole. Composite methods include cold drawing, cementing, extrusion compounding, metallurgical bonding, and the like.
- Another method is to first combine two single-layer straight pipes into a double-layer pipe, and then obtain induction heating and a taper of the tapered die to obtain a double-layer taper pipe with a desired taper. Finally, the quenching process improves the cone.
- the structure of the tube is preferred because, in this way, the inner and outer tubes can achieve a tight fit without gaps.
- the obtained double-layer composite cone tube is unequal in wall thickness, because the small end is a vulnerable end, the end of the composite cone tube having a large diameter (referred to as a large end), the wall thickness is thin, and the end having a small diameter (referred to as a small end) Thick and thick, in line with the design principle of the same life, saving raw materials.
- the composite tapered tube needs to be quenched.
- the purpose of quenching is to make the inner tube with better hardenability form martensite and bainite structure with high hardness, while the outer tube with weak hardenability is pearlite and ferrite structure, with low hardness and good toughness. , strong impact resistance.
- the inner tube material is made of 55SiMn steel with a thickness of 3-12 mm, and the outer tube material is made of 20 steel with a thickness of 2-6 mm; the inner and outer tubes are first combined by a composite drawing machine, and then passed through a cone. The tube machine is inductively heated to obtain the required taper, and the total thickness of the cone is controlled between 5 and 16 mm.
- the inner tube material is selected from wear-resistant cast iron or wear-resistant cast steel, and is cast and formed; the outer tube material is selected from 20 steel, and is molded, and a glue injection layer is added between the inner and outer tubes.
- the inner tube material is selected from 55SiMn, and the outer tube material is selected from 20 steel; the copper foil is used as the intermediate layer material, and the metallurgical composite between the inner and outer tubes is realized by cold drawing-liquid solid phase diffusion composite method. And molding.
- the two materials used for the inner tube and the outer tube respectively are layered and combined by using their respective performance advantages, which can overcome their respective shortcomings and fully exert the advantages of the combined materials.
- the inner tube of the composite cone tube has strong hardenability, smooth surface, high hardness and good wear resistance.
- the outer tube has low hardness, good toughness and strong impact resistance, and can protect the inner tube well, thereby satisfying at the same time.
- Pumping The comprehensive requirements of the equipment for the wear resistance and toughness of the cone.
- the preferred process arrangement achieves a seamless fit of the inner and outer layers, and the large end is thin, and the wall thickness of the small end is designed to meet the life expectancy design principle, saving raw materials.
- Figure 1 is a schematic view of an exemplary embodiment of a composite cone tube of the present invention
- Figure 2 is a schematic view of another embodiment of a composite cone tube of the present invention
- Figure 3 is another embodiment of the composite cone tube of the present invention Schematic diagram.
- DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments. Inventors have made many attempts to create a tapered tube that meets the requirements of concrete pumping equipment.
- the inner and outer cones of the desired thickness, taper and diameter are first separately formed by compression molding, and then the inner tube is pressed into the outer tube.
- a double-layered tapered tube can be obtained, the adhesion between the inner and outer tubes is not good, and the gap is easily left.
- a tapered inner tube is obtained by casting; a tapered outer tube is obtained by compression molding, and then the inner tube is pressed into the outer tube to form a double layer composite cone.
- the inner tube Limited by the casting process, the inner tube must be thicker than 5 mm, because too thin will cause the metal liquid to condense when it is not flowing to the bottom of the mold during casting, resulting in various casting defects, the workpiece of the required size is not obtained, after compounding
- the total thickness of the cone is between 10 and 16 mm.
- This manufacturing method requires a large amount of inner tube material to be consumed.
- the taper inner cone tube is obtained by compression molding, and then the outer tube is molded by the inner tube as a mold, thereby achieving the double effect of the inner and outer tube compounding and forming the required taper, and then The combined cone tube is quenched. This manufacturing method is difficult to process.
- the tapered outer tube is formed by molding, and the obtained outer tube is placed in a cavity, and the inner tube material is cast with wear-resistant cast iron or cast steel to form a local metallurgical bond, and a composite after quenching treatment.
- the casting process in this process is difficult, inefficient, costly, and has a harsh working environment.
- the inner cone tube may be selected from materials such as 45Mn2 or 55SiMn or tool steel; if the inner cone tube is formed by casting, the inner cone tube material may be selected from wear-resistant cast iron. Or wear-resistant cast steel, such as high chromium cast iron, high chromium cast steel.
- the outer tube of the molded outer tube can be made of ordinary carbon steel, such as 20 steel.
- the inventors have selected a large number of material choices and tube thickness selections.
- a double-layer composite cone tube it has been found that it is difficult to efficiently produce a double-layered cone tube for a concrete pumping device with stable parameters and stable performance by the above method.
- a double cone is produced by the following process:
- the double-layer straight pipe obtained in the step (1) is inductively heated through the induction coil of the cone machine, and immediately after heating, pushes through a solid conical mold (corresponding to the core mold of the cone machine)
- the shape and size of the mold are comparable to the internal space of the inner tube.
- the mold should be arranged so that it is coaxial with the double straight pipe.
- the small end of the mold is preferably near the end of the induction coil so that the double straight tube can be immediately pushed to the small end of the mold after being heated.
- the double-layered cone tube that has been formed is pushed from the opposite direction of the mold to be disengaged from the mold, and the double-layer composite cone tube with the desired taper and no gap fit can be obtained.
- the diameter of the small end of the solid tapered mold should be slightly larger than the inner diameter of the small end of the inner tube, so that the tapered tube can still meet the design requirements after cooling deformation.
- Embodiment 1 As shown in Fig. 1, the inner tube 2 is made of medium carbon low alloy steel, and the outer tube 1 is made of ordinary low carbon steel. First, two kinds of steel tubes meeting the design requirements are drawn and combined to obtain a double layer composite steel tube. The composite tube is inductively heated by a cone tube machine to obtain the desired taper, and the inner and outer layers of the cone tube are tightly coupled without gaps.
- the double-layer composite cone tube is unequal in wall thickness, and the large end is thin and the small end is thick. Finally, the product is quenched as a whole, so that the inner tube with good hardenability forms martensite and bainite structure, which gives higher hardness and wear resistance, while the outer tube with weak hardenability is pearlite and ferrite. Body structure, low hardness, good toughness and strong impact resistance.
- the inner tube material is made of wear-resistant cast iron and wear-resistant cast steel with a thickness greater than 5 mm, and cast into a tapered shape; the outer tube material is made of 20 steel and molded; then the inner tube is pressed into the outer tube to form a double-layer composite cone tube.
- the inner tube must be thicker than 5 mm, because too thin will cause the metal liquid to condense when it flows to the bottom of the mold, resulting in various casting defects, the workpiece of the required size is not obtained, after molding
- the total thickness of the double-layer composite cone is above 10 mm, typically between 10 and 16 mm. Then, the formed composite cone tube is quenched. After the heat treatment, the inner tube of the cone tube has good wear resistance and the outer tube has good toughness.
- Example 3 The outer tube is made of 20 steel, molded into a single-layer cone tube with a thickness of 2-6 mm, and the obtained outer tube is placed in a cavity, and the inner tube material is cast with wear-resistant cast iron or cast steel to form a local metallurgical bond, compound After quenching treatment. Or the molded outer tube is placed in the cavity, the inner tube is made of high-chromium cast iron and high-chromium cast steel material, and the double-layer composite cone tube with local metallurgical combination is obtained by centrifugal casting. Then, the formed double-layer composite cone tube is quenched, and after the heat treatment, the inner tube of the cone tube has good wear resistance and the outer tube has good toughness.
- Embodiment 4 As shown in FIG.
- the inner tube 2 material is selected from wear-resistant cast iron or wear-resistant cast steel, cast and formed, and then quenched after the inner tube to have good wear resistance;
- the outer tube 1 material is selected from 20 steel. , Molded.
- a glue layer 5 having a thickness of about 2 mm may be added between the inner and outer tubes, and the inner and outer tubes are bonded together to form a composite cone tube.
- the glue-injecting layer material is, for example, an epoxy resin, and the glue-filled mortar is injected between the inner and outer layers by a spring-replacement glue injection machine or a glue injection machine.
- Example 5 As shown in Fig.
- the material of the inner tube 2 is 55SiMn
- the material of the outer tube 1 is 20 steel
- the inner and outer tubes are separately formed
- the copper foil is used as the intermediate layer 5 material
- the inner and outer tubes are realized by cold drawing-liquid solid phase diffusion composite method. Metallurgical compounding and forming between. Then, the formed composite cone tube is quenched. After the heat treatment, the inner tube of the cone tube has good wear resistance and the outer tube has good toughness.
- Figure 3 shows a composite cone with a connecting flange.
- the connecting flanges 3, 4 are provided with a wear-resistant sleeve 41 on the inner wall, and the joint surface between the inner tube 2 and the outer tube 1 has a larger diameter at the end than the inner wall diameter of the connecting flanges 3, 4 at the end, the joint surface Corresponding to the corresponding end face of the connecting flange.
- the inner tube surface of the cone tube is smooth and the flow path resistance is small, which effectively solves the problem that the inner surface of the cone tube manufactured by the surfacing welding process has a large flow path resistance caused by welding quality problems such as welding tumor and welding slag, thereby blocking the tube;
- the compound cone tube manufacturing process has high reliability and accurate dimensional control.
- the obtained inner and outer tubes are single integral materials with stable composition and uniformity, which avoids the position and thickness of the joint interface in the complicated surfacing process. Insufficient wall thickness.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Description
一种混凝土泵送 i史备用锥管及其制造方法 技术领域 本发明涉及工程作业装置, 具体涉及一种混凝土泵送设备用锥管及其制造 方法。 背景技术 随着混凝土泵送技术的快速发展, 施工效率进一步提高, 工程项目周期缩 短, 人们对泵车寿命及使用稳定性提出了更高的要求, 而设备关键部位的材料 性能改善显得尤为重要。 锥管作为影响泵车寿命及使用稳定性的关键部件, 目 前多釆用内表面堆焊来提高耐磨性。 这种制备工艺的产品能耗高、 成本高、 质 量差、 环境污染严重、 市场竟争力弱, 同时复杂的堆焊工序中不可避免地存在 结合界面位置和厚度不能精确控制及壁厚不均勾的问题。 此外, 堆焊锥管还存 在大量严重威胁泵送设备寿命及施工稳定性的安全隐患: ( 1 )堆焊所得锥管内 表面粗糙、 多焊瘤焊渣、 焊接紋路深, 因此流道阻力大, 易引起堵管, 影响工 程施工进度, 即使釆用机械手纵向焊缝, 仍难达到减少内表面焊瘤和流道阻力 的满意结果; (2 ) 堆焊工序复杂、 能耗大、 作业时间长、 可控性差, 难以保证 焊层厚度及均勾性; (3 )锥管两端最易磨损部位因焊不满而导致寿命减短; (4 ) 堆焊层厚度有限, 堆焊过厚容易造成堆焊层的脱落与堵管现象, 因此通过增加 焊层厚度以进一步提高耐磨性的工作难以实现。 本发明的发明人尚未发现能满足混凝土泵送设备需要的双层锥管的出现。 发明内容 针对现有技术存在的问题, 发明人提出一种混凝土泵送设备用锥管, 以克 服现有的堆焊锥管的堆焊工艺复杂难控、 流道阻力大的缺陷。 根据本发明的混凝土泵送设备用锥管包括内管和外管, 内管和外管由不同 的金属材料形成, 内管的硬度高于外管, 外管的韧性高于内管, 从而在满足锥 管性能要求的前提下还极大地简化了锥管的成型工艺, 而且相对于通过堆焊工 艺加工成型的锥管来说,本发明的锥管的制造过程中对环境的污染小、能耗低。
可用于内层管的材料有多种, 包括: 中碳低合金钢、 高碳低合金钢, 耐磨 铸钢, 耐磨铸铁或工具钢; 外管可以用普通碳钢、 低碳合金钢。 在一种具体实施方式中, 内层锥管釆用中碳低合金钢, 淬透性好, 热处理 后硬度高、 耐磨性好。 外管釆用普通碳钢, 其含碳量氏, 热处理后硬度仍然艮 低、 韧性好、 抗冲击能力强, 能对内管起到很好的保护作用。 制造本发明的双层锥管的方法可以有多种。 在一种方法中, 先将两种材料 通过铸造或模压的方法形成单层锥形管, 然后通过一定的方式进行复合形成双 层锥管, 最后将产品整体淬火。 复合的方式包括冷拔、 胶结、 挤压复合、 冶金 结合等。 另一种方法是先将两个单层直管复合为双层管, 然后经过感应加热和 借助锥形模的扩口成型, 获得所需锥度的双层锥管, 最后经过淬火工艺, 改善 锥管的啟观结构。 后一种方法是优选的, 因为, 釆用这种方式, 内、 外管能实 现无间隙紧密配合。 所得双层复合锥管是不等壁厚的, 因为小端为易损端, 复 合锥管口径大的一端 (简称为大端) 壁厚较薄, 口径小的一端 (简称为小端) 壁厚较厚, 符合等寿命设计原理, 节约原材料。 无论上述哪种方法, 都需要对复合后的锥管进行淬火处理。 淬火的目的是 使得淬透性较好的内管形成硬度很高的马氏体和贝氏体组织, 而淬透性弱的外 管则为珠光体和铁素体组织, 硬度低、 韧性好, 抗冲击能力强。 在一种具体实施方式中, 内管材料选用 3-12 mm厚度的 55SiMn钢, 外管 材料选用 2-6 mm厚度的 20钢; 先通过复合拉拔机将内外管复合在一起, 然后 通过锥管机感应加热成型,得到所需的锥度,锥管总厚度控制在 5- 16 mm之间。 在另一种具体实施方式中, 内管材料选用耐磨铸铁或耐磨铸钢,铸造成型; 外管材料选用 20钢, 模压成型, 在内外两管之间加入一个注胶层。 在另一种具体实施方式中, 内管材料选用 55SiMn, 外管材料选用 20钢; 以铜箔为中间层材料,釆用冷拔-液固相扩散复合的方法实现内外管之间的冶金 复合及成型。 本发明提出的不等壁复合锥管, 内管和外管分别釆用的两种材料利用各自 的性能优势进行分层组合, 能够克服各自的缺点, 充分发挥组合材料的优点。 复合锥管的内管淬透能力强, 表面光滑、 硬度高、 耐磨性好, 外管硬度低、 韧 性好, 抗冲击能力强, 能够对内管起到很好的保护作用, 从而同时满足了泵送
设备对锥管耐磨性与韧性的综合要求。 优选工艺安排实现了内外层的无间隙紧 密配合, 且大端薄, 小端厚的壁厚设计符合等寿命设计原理, 节约原材料。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是本发明复合锥管的典型实施例的示意图; 图 2是本发明复合锥管的另一实施例的示意图; 以及 图 3是本发明复合锥管的另一实施例的示意图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征 可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 为了制造出满足混凝土泵送设备要求的锥管, 发明人做了很多尝试。 在一 种尝试方案中, 先分别通过模压成型加工出所需厚度、 锥度和直径的内、 外锥 管, 然后将内管压入外管。 这种方式虽然能获得双层锥管, 但是内、 外管之间 的密合性不佳, 艮容易留有空隙。 而且, 为了获得结合良好的双层管, 需要精 确控制内外管的管径。 在另一种实施方式中, 通过铸造成型获得有锥度的内管; 通过模压成型获 得有锥度的外管, 然后将内管压入外管, 形成双层复合锥管。 受铸造工艺限制, 内管必须保证大于 5 mm的厚度, 因为太薄会导致铸造时金属液体没有流动到 模型底部就冷凝, 产生各种铸造缺陷, 得不到所需尺寸的工件, 复合后的锥管 总厚度在 10 - 16mm之间。 这种制造方法需要消耗较大量的内管材料。 在另一种实施方式中, 先通过模压成型获得有锥度的内层锥管, 然后以内 管为模具对外管进行模压成型, 达到了内外管复合同时还形成所需锥度的双重 效果, 之后再对复合后的锥管进行淬火处理。 该种制造方法工艺难度较大。
在另一种实施方式中, 通过模压形成有锥度的外层锥管, 将所得外管放入 型腔, 用耐磨铸铁或铸钢浇铸内管材料, 形成局部冶金结合, 复合后淬火处理。 但是, 该工艺中浇铸工序难度大, 效率低, 成本高, 工作环境恶劣。 在上述各制造方法中, 如果内层锥管通过模压成型, 内层锥管可以选用 45Mn2或 55SiMn或工具钢等材料; 如果内层锥管通过铸造成型, 内层锥管材 料可以选用耐磨铸铁或耐磨铸钢, 例如釆用高铬铸铁、 高铬铸钢。 釆用模压成 型的外层锥管可以釆用普通碳钢, 例如 20钢。 发明人通过大量的材料选择和管材厚度选择, 虽然也能获得双层复合锥 管, 发现通过上述方法很难高效率地生产出参数、 性能稳定的混凝土泵送设备 用双层锥管。 在本发明的一种最佳方案中, 通过下述工艺制造双层锥管:
( 1 ) 复合拉拔: 先将加工好的均为直管的内管和外管进行复合拉拔, 得 到双层复合直管。
( 2 )感应加热成型: 将步骤( 1 ) 中获得的双层直管经过锥管机的感应线 圏进行感应加热, 加热之后立即推过一个实心锥形模具 (相当于锥管机的芯 模), 该模具的形状和尺寸与内管的内部空间相当。 模具的布置应使得与双层 直管同轴线。 模具小头端最好靠近感应线圏的末端, 使得双层直管被加热后可 以立即被推到模具的小头端。 当整个直管被推过模具之后, 再从模具的反方向 推动已经成型的双层锥管, 使其与模具脱开, 即可获得所需锥度且无间隙配合 的双层复合锥管。 需要注意的是, 实心锥形模具小头端的直径需略大于内管小 头端的内径, 以使锥管冷却变形后仍满足设计要求。
( 3 ) 整体淬火: 将获得的复合锥管整体淬火, 淬透性强的内管形成硬度 很高的马氏体和贝氏体组织, 淬透性弱的外管为低硬度的珠光体和铁素体组 织。 釆用该方法, 通过感应线圏可以快速加热复合直管, 降低其变形抗力, 再 由外力推至实心锥状扩孔凸模, 实现复合锥管的成型。 通过改变扩孔凸模的尺 寸和锥度, 能快速生产出不同尺寸长度和锥度的锥管。 由于是对等壁复合直管 进行的同轴扩孔成型, 所得锥管大端壁厚薄于小端, 这种不等厚的内管正好适 应在使用过程中锥管小端的磨损严重的现象, 既延长了锥管的使用寿命, 又节 约了材料。
实施例 1 如图 1所示, 内管 2选用中碳低合金钢, 外管 1釆用普通低碳钢, 先将两 种符合设计要求的钢管经过拉拔复合, 得到双层复合钢管, 再将复合管通过锥 管机感应加热成型, 得到所需的锥度, 并实现锥管内外层无间隙紧密结合。 双 层复合锥管是不等壁厚的, 大端薄, 小端厚。 最后将产品整体淬火, 使淬透性 较好的内管形成马氏体和贝氏体组织, 得到较高的硬度和耐磨性, 而淬透性弱 的外管则为珠光体和铁素体组织, 硬度低、 韧性好, 抗冲击能力强。 实施例 2 内管材料选用厚度大于 5 mm的耐磨铸铁、 耐磨铸钢, 铸造成锥型; 外管 材料选用 20 钢, 模压成型; 然后将内管压入外管, 形成双层复合锥管。 受铸 造工艺限制, 内管必须保证大于 5 mm的厚度, 因为太薄会导致铸造时金属液 体没有流动到模型底部就冷凝, 产生各种铸造缺陷, 得不到所需尺寸的工件, 成型后的双层复合锥管总厚度在 10mm之上,一般处于 10 - 16 mm之间。然后, 对成型后的复合锥管进行淬火处理, 热处理后, 锥管的内管耐磨性好, 外管韧 性好。 实施例 3 外管选用 20钢,模压成厚度为 2-6 mm的单层锥管,将所得外管放入型腔, 用耐磨铸铁或铸钢浇铸内管材料, 形成局部冶金结合, 复合后淬火处理。 或者 将模压成型的外管放入型腔后, 内管选用高铬铸铁、 高铬铸钢材料, 釆用离心 铸造的方法得到局部冶金结合的双层复合锥管。 然后, 对成型后的双层复合锥 管进行淬火处理, 热处理后, 锥管的内管耐磨性好, 外管韧性好。 实施例 4 如图 2所示, 内管 2材料选用耐磨铸铁或耐磨铸钢, 铸造成型, 然后对内 管后进行淬火处理, 使具有良好的耐磨性; 外管 1材料选用 20钢, 模压成型。 考虑到铸造内管表面粗糙度及变形造成镶套困难的问题, 内外管之间可以加入 一个厚度约为 2mm的注胶层 5 , 将内、 外管粘结在一起形成复合锥管。 注胶层 材料例如为环氧树脂类, 将注胶浆釆用弹簧复位注胶器或注胶机等注入到内外 两层管之间。 实施例 5
如图 2所示, 内管 2材料选用 55SiMn, 外管 1材料选用 20钢, 内外管分 别成型; 以铜箔为中间层 5材料, 釆用冷拔-液固相扩散复合的方法实现内外管 之间的冶金复合及成型。 然后, 对成型后的复合锥管进行淬火处理, 热处理后, 锥管的内管耐磨性好, 外管韧性好。 图 3示出带连接法兰的复合锥管。 连接法兰 3、 4在内壁设有耐磨套 41 , 内管 2和外管 1之间的接合面在端部处的直径大于在该端的连接法兰 3、 4 的内壁直径, 该接合面对应于连接法兰的相应的止口端面。 综上所述, 釆用本发明的技术方案, 具有如下效果:
1. 摒弃传统工艺中的堆焊环节, 显著简化锥管制备流程, 缩短作业时间, 提高生产效率, 降低生产成本; 成型工艺可控性强, 节省人力物力, 有利于实 现生产自动化;
2. 锥管的内管表面光滑、 流道阻力小, 有效解决了釆用堆焊工艺制造的锥 管内表面由于焊瘤、 焊渣等焊接质量问题引起的流道阻力大以致堵管的难题;
3. 本工艺以满足工程实际中的管道允许应力为基材设计原则,通过不同选 材和热处理工艺, 能够设计不同的内、 外管组织和厚度, 从而充分满足泵送设 备用锥管的机械性能要求, 克服了传统工艺中堆焊厚度有限, 堆焊过厚易造成 堆焊层的脱落与堵管的问题;
4. 复合锥管制作工艺可靠性高, 尺寸控制精确, 所得内外管均为成分、 性 能稳定、 均勾的单一整体材料, 避免了复杂的堆焊工序中结合界面的位置和厚 度不能精确控制、 壁厚不均等不足。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 i或的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。
Claims
权 利 要 求 书 一种混凝土泵送设备用锥管, 其特征在于包括内管 (2 )和外管 ( 1 ), 所 述内管 (2 ) 和外管 ( 1 ) 由不同的金属材料形成, 所述内管的硬度高于 所述外管, 所述外管的韧性高于所述内管。 根据权利要求 1所述的锥管, 其特征在于, 所述内管 (2 ) 由中碳低合金 钢、 高碳低合金钢、 耐磨铸钢、 耐磨铸铁、 或工具钢形成。 根据权利要求 1所述的锥管, 其特征在于, 在所述内管 (2 )和外管 ( 1 ) 之间具有中间层 (5 )。 根据权利要求 3所述的锥管, 其特征在于, 所述中间层(5 )为铜箔层或 注胶层。 根据权利要求 1所述的锥管, 其特征在于, 所述锥管不等壁厚, 且所述 锥管口径大的一端的壁厚小于所述锥管口径小的一端的壁厚。 根据权利要求 1所述的锥管, 其特征在于, 在所述内管 (2 )和外管 ( 1 ) 之间具有中间层( 5 )或接合面, 所述锥管还包括设置于所述锥管的端部 的连接法兰 (3、 4 ), 所述连接法兰在内壁设有耐磨套 (41 ), 所述内管 和外管之间的接合面或中间层在端部处的直径大于在该端的连接法兰
( 3、 4 ) 的内壁直径, 该接合面或中间层对应于所述连接法兰的相应的 止口端面。 用于制造权利要求 1所述锥管的方法, 其特征在于包括以下步骤:
通过先复合后成型或先成型后复合, 获得预成型双层锥管; 将所得到的预成型双层锥管进行淬火处理。 根据权利要求 7所述的方法, 其特征在于, 在获得预成型双层锥管的步 4聚中, 包括:
将所述内管和外管进行拉拔复合, 形成等直径双层复合管; 将所述等直径双层复合管在锥管机上感应加热成型, 然后推过一个 锥形模具, 以形成所需锥度的无间隙配合双层锥管;
将获得的复合锥管整体淬火。
9. 根据权利要求 8所述的方法, 其特征在于, 内管材料选用中碳低合金钢, 外管材料选用低碳钢。
10. 根据权利要求 7所述的方法, 其特征在于, 内管材料选用 3- 12 mm厚度 的 55SiMn钢, 外管材料选用 2-6 mm厚度的 20钢; 先分别通过锥管机 感应加热成型形成所需的锥管, 然后将所述内管压入所述外管, 所述锥 管总厚度控制在 5- 16 mm之间。
11. 根据权利要求 7所述的方法, 其特征在于, 所述外管选用 20钢, 模压成 厚度为 2-6 mm的单层锥管, 将所得外管放入型腔, 用耐磨铸铁或耐磨 铸钢浇铸成内管, 形成局部冶金结合, 然后淬火处理。
12. 根据权利要求 7所述的方法, 其中, 内管材料选用耐磨铸铁或耐磨铸钢 铸造成型; 外管材料选用 20钢模压成型, 在内外两管之间加入一个注胶 层。
13. 根据权利要求 7所述的方法, 其中, 内管材料选用 55SiMn, 外管材料选 用 20钢; 以铜箔为中间层材料, 釆用冷拔-液固相扩散复合的方法实现 内外管之间的冶金复合及成型。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010106205488A CN102128312A (zh) | 2010-12-31 | 2010-12-31 | 一种混凝土泵送设备用锥管及其制造方法 |
CN201010620548.8 | 2010-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012088861A1 true WO2012088861A1 (zh) | 2012-07-05 |
Family
ID=44266516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/076600 WO2012088861A1 (zh) | 2010-12-31 | 2011-06-29 | 一种混凝土泵送设备用锥管及其制造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102128312A (zh) |
WO (1) | WO2012088861A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9090829B1 (en) | 2014-09-03 | 2015-07-28 | Strategy Licensing, Llc | Apparatus for controlled blowing of asphalt |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102900897A (zh) * | 2011-07-28 | 2013-01-30 | 锐迈管业有限公司 | 一种混凝土泵车弯管及其加工工艺 |
CN102297304A (zh) * | 2011-08-11 | 2011-12-28 | 李宗仙 | 一种混凝土输送管及其制造方法 |
CN102506236A (zh) * | 2011-10-21 | 2012-06-20 | 唐勇 | 一种双金属机械复合耐磨钢管及其生产方法 |
CN102506237B (zh) * | 2011-11-01 | 2014-07-09 | 三一汽车制造有限公司 | 混凝土输送管及其制造方法 |
CN102494223A (zh) * | 2011-12-12 | 2012-06-13 | 攀枝花钢城集团有限公司 | 通过补焊修复炼铁除尘系统中耐磨管道上的孔洞的方法 |
CN102537536A (zh) * | 2012-02-09 | 2012-07-04 | 三一重工股份有限公司 | 复合弯直管、混凝土泵车及复合弯直管的制造方法 |
CN102829254B (zh) * | 2012-08-23 | 2017-02-01 | 枣庄市凯博机械制造有限公司 | 冶金熔合复合混凝土输送管及其制造方法 |
CN103383495A (zh) * | 2012-09-25 | 2013-11-06 | 能富企业有限公司 | 眼镜框架的加工方法及用于加工眼镜框架的塑料板 |
CN103256433A (zh) * | 2013-03-20 | 2013-08-21 | 天津市联众钢管有限公司 | 一种复合型泵车臂架输送管及其加工工艺 |
CN103215588A (zh) * | 2013-04-28 | 2013-07-24 | 上海高斯雷洁激光技术有限公司 | 管道内壁增加耐磨性的激光熔覆加工方法 |
CN103591390B (zh) * | 2013-11-19 | 2015-08-12 | 中联重科股份有限公司 | 混凝土泥浆输送装置及具有其的混凝土泵车 |
CN103615631A (zh) * | 2013-11-19 | 2014-03-05 | 中联重科股份有限公司 | 混凝土输送直管及其制造方法和混凝土泵送设备 |
CN104723027A (zh) * | 2013-12-20 | 2015-06-24 | 周朝辉 | 一种锻压焊接制造耐磨金属弯管的方法 |
CN104075057A (zh) * | 2014-06-25 | 2014-10-01 | 三一汽车制造有限公司 | 混凝土泵送设备、弯管及其制造方法 |
CN104075036A (zh) * | 2014-06-25 | 2014-10-01 | 三一汽车制造有限公司 | 混凝土泵送设备、锥管及其制造方法 |
CN104075037A (zh) * | 2014-06-25 | 2014-10-01 | 三一汽车制造有限公司 | 一种混凝土泵送设备和混凝土输送管及制造方法 |
CN104455919B (zh) * | 2014-12-05 | 2016-08-24 | 中联重科股份有限公司 | 输送管及输送管的制造方法 |
CN107755455B (zh) * | 2017-10-10 | 2019-04-12 | 中联重科股份有限公司 | 双层管的制造方法及双层管 |
CN110871327B (zh) * | 2018-09-03 | 2021-07-30 | 核工业西南物理研究院 | 一种聚变堆高热负荷多层复合管及其制造方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4497673A (en) * | 1981-12-08 | 1985-02-05 | Esser-Werke Gmbh Vorm. Westmontan-Werke | Method of manufacturing double-walled tube |
CN2219411Y (zh) * | 1995-05-27 | 1996-02-07 | 西安建筑科技大学 | 双金属管 |
JP2000291838A (ja) * | 1999-04-08 | 2000-10-20 | Sekishin Sangyo Kk | 埋設管の更生用テーパ管 |
CN1375362A (zh) * | 2002-04-11 | 2002-10-23 | 中国石化集团洛阳石油化工工程公司 | 一种双金属复合管的制造方法 |
CN2594219Y (zh) * | 2002-12-17 | 2003-12-24 | 孟炎 | 混凝土泵车用高耐磨复合管件 |
CN201184457Y (zh) * | 2008-04-28 | 2009-01-21 | 上海得锡乐汽车配件有限公司 | 高耐磨输送管道 |
CN101413604A (zh) * | 2008-10-17 | 2009-04-22 | 江苏明雨耐磨材料有限公司 | 双金属耐磨弯管及其生产方法 |
CN101551041A (zh) * | 2009-05-08 | 2009-10-07 | 陶斌 | 整体无焊缝锥度管 |
CN101566256A (zh) * | 2009-06-04 | 2009-10-28 | 大连合生科技开发有限公司 | 不锈钢复合钢管及制造方法 |
DE102008061837A1 (de) * | 2008-12-15 | 2010-06-17 | Technische Universität Dresden | Innenbeschichtetes Formstück zur Förderung abrasiv wirkender Medien |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201621414U (zh) * | 2010-03-17 | 2010-11-03 | 三一重工股份有限公司 | 一种输送弯管和具有该输送弯管的混凝土输送机械 |
-
2010
- 2010-12-31 CN CN2010106205488A patent/CN102128312A/zh active Pending
-
2011
- 2011-06-29 WO PCT/CN2011/076600 patent/WO2012088861A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4497673A (en) * | 1981-12-08 | 1985-02-05 | Esser-Werke Gmbh Vorm. Westmontan-Werke | Method of manufacturing double-walled tube |
CN2219411Y (zh) * | 1995-05-27 | 1996-02-07 | 西安建筑科技大学 | 双金属管 |
JP2000291838A (ja) * | 1999-04-08 | 2000-10-20 | Sekishin Sangyo Kk | 埋設管の更生用テーパ管 |
CN1375362A (zh) * | 2002-04-11 | 2002-10-23 | 中国石化集团洛阳石油化工工程公司 | 一种双金属复合管的制造方法 |
CN2594219Y (zh) * | 2002-12-17 | 2003-12-24 | 孟炎 | 混凝土泵车用高耐磨复合管件 |
CN201184457Y (zh) * | 2008-04-28 | 2009-01-21 | 上海得锡乐汽车配件有限公司 | 高耐磨输送管道 |
CN101413604A (zh) * | 2008-10-17 | 2009-04-22 | 江苏明雨耐磨材料有限公司 | 双金属耐磨弯管及其生产方法 |
DE102008061837A1 (de) * | 2008-12-15 | 2010-06-17 | Technische Universität Dresden | Innenbeschichtetes Formstück zur Förderung abrasiv wirkender Medien |
CN101551041A (zh) * | 2009-05-08 | 2009-10-07 | 陶斌 | 整体无焊缝锥度管 |
CN101566256A (zh) * | 2009-06-04 | 2009-10-28 | 大连合生科技开发有限公司 | 不锈钢复合钢管及制造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9090829B1 (en) | 2014-09-03 | 2015-07-28 | Strategy Licensing, Llc | Apparatus for controlled blowing of asphalt |
Also Published As
Publication number | Publication date |
---|---|
CN102128312A (zh) | 2011-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012088861A1 (zh) | 一种混凝土泵送设备用锥管及其制造方法 | |
CN102032397B (zh) | 混凝土输送管及其制备方法 | |
CN102829254B (zh) | 冶金熔合复合混凝土输送管及其制造方法 | |
CN102182874A (zh) | 一种双金属机械复合耐磨钢管及其生产方法 | |
CN102506237B (zh) | 混凝土输送管及其制造方法 | |
CN102506236A (zh) | 一种双金属机械复合耐磨钢管及其生产方法 | |
CN103469053B (zh) | 一种球墨铸铁基础桩管及其制备工艺 | |
CN102343430B (zh) | 一种双金属复合输送管及其生产工艺 | |
CN104325098B (zh) | 一种铸铁水平连续铸造双水套式结晶器 | |
CN104588436A (zh) | 一种由二次浇注双金属管坯扩径制备复合管的方法 | |
CN101704084B (zh) | 离心铸管模具及其制作工艺 | |
CN106076480A (zh) | 一种辊压机合金辊套及其加工方法 | |
CN208041344U (zh) | 一种耐磨输送直管 | |
CN105014311B (zh) | 一种三层结构双金属冶金复合管的制备方法 | |
CN1923410A (zh) | 双法兰球墨铸铁管的制造工艺 | |
CN109676107A (zh) | 一种铝镁合金三层不等厚复合环件短流程制造方法 | |
WO2013100576A1 (ko) | 열변위 저감을 위한 공작기계용 베이스 구조물 제조방법 및 그 방법에 의해 제조된 베이스 구조물 | |
CN107313724A (zh) | 一种冶金式复合油井管及其制造方法 | |
CN207048691U (zh) | 一种冶金式复合油井管 | |
CN101284284A (zh) | 钛铜复合型材的挤压工艺 | |
CN104723027A (zh) | 一种锻压焊接制造耐磨金属弯管的方法 | |
CN208431465U (zh) | 一种耐腐蚀管道 | |
WO2013004018A1 (zh) | 混凝土输送管道及其制造方法 | |
CN104074737A (zh) | 一种s管及其制造方法、混凝土泵送设备 | |
CN108679317A (zh) | 一种耐腐蚀管道及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11854344 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11854344 Country of ref document: EP Kind code of ref document: A1 |