WO2012086753A1 - チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法 - Google Patents

チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法 Download PDF

Info

Publication number
WO2012086753A1
WO2012086753A1 PCT/JP2011/079803 JP2011079803W WO2012086753A1 WO 2012086753 A1 WO2012086753 A1 WO 2012086753A1 JP 2011079803 W JP2011079803 W JP 2011079803W WO 2012086753 A1 WO2012086753 A1 WO 2012086753A1
Authority
WO
WIPO (PCT)
Prior art keywords
chabazite
type zeolite
zeolite
particle size
copper
Prior art date
Application number
PCT/JP2011/079803
Other languages
English (en)
French (fr)
Inventor
耕 有賀
英和 青山
悠軌 伊藤
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to KR1020137017978A priority Critical patent/KR101906620B1/ko
Priority to MX2013007022A priority patent/MX356439B/es
Priority to CA2822788A priority patent/CA2822788C/en
Priority to EP11850641.9A priority patent/EP2657190A4/en
Priority to CN2011800657056A priority patent/CN103328385A/zh
Priority to US13/995,841 priority patent/US9889436B2/en
Priority to CN201910613093.8A priority patent/CN110316743B/zh
Priority to BR112013015583-3A priority patent/BR112013015583B1/pt
Publication of WO2012086753A1 publication Critical patent/WO2012086753A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • B01D53/565Nitrogen oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a chabazite-type zeolite having large crystals and a method for producing the same.
  • the present invention also relates to a novel chabazite-type zeolite carrying copper.
  • the present invention relates to a nitrogen oxide reduction and removal catalyst containing chabazite-type zeolite, which has a higher reduction rate of nitrogen oxide at a low temperature than a conventional chabazite-type zeolite catalyst supporting copper.
  • the present invention relates to a method for reducing nitrogen oxides contained in a gas stream in the presence of oxygen using the catalyst for reducing and removing nitrogen oxides.
  • the present invention claims priority based on Japanese Patent Application No. 2010-28596 filed in Japan on December 22, 2010 and Japanese Patent Application No. 2011-066482 filed on March 23, 2011 in Japan. And the contents thereof are incorporated herein.
  • Chabazite-type zeolite is a zeolite with a three-dimensional pore structure composed of 3.8 x 3.8 angstrom oxygen 8-membered ring, and the details of the crystal structure were identified at the International Zeolite Association. Zeolite is named and classified by the structure code CHA (Non-patent Document 1).
  • Chabazite-type zeolite is known as a naturally occurring zeolite and typically has a composition of Ca 6 2+ [Si 24 Al 12 O 72 ] (Non-patent Document 2).
  • Patent Document 1 discloses zeolite D
  • Patent Document 2 discloses zeolite R
  • Patent Document 3 discloses a method of crystallizing Y-type zeolite as a raw material under hydrothermal conditions.
  • Patent Documents 4 and 5 disclose a so-called high silica chabazite-type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 5 to 50 and a synthesis method thereof as SSZ-13.
  • Patent Document 6 discloses a chabazite-type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 20 to 50 and a crystal diameter of 0.5 ⁇ m or less as SSZ-62.
  • Patent Document 7 chabazite-type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 50 or more, disclosed in Patent Document 7 and Non-Patent Document 3 regarding the method of adding fluorine, and Patent Document 8 regarding the method of not adding fluorine. Has been.
  • Patent Document 6 examples of the chabazite-type zeolite on which copper is supported include a catalyst in which copper is supported on SSZ-62 (Patent Document 6), and the SiO 2 / Al 2 O 3 molar ratio is greater than about 15, and the atomic ratio of copper to aluminum is A catalyst in which copper is supported in a range exceeding about 0.25 is disclosed (Patent Document 9).
  • Patent Document 10 discloses a catalyst comprising a chabazite-type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 15 to 50 and an average particle diameter of 1.5 ⁇ m or more.
  • Patent Document 11 a chabazite-type zeolite that has a SiO 2 / Al 2 O 3 molar ratio of less than 15 and can be used as a denitration catalyst is disclosed (Patent Document 11). Further, Patent Document 11 shows that a chabazite-type zeolite having a SiO 2 / Al 2 O 3 molar ratio of less than 10 under a 700 ° C. heat resistant condition is preferable.
  • the chabazite-type zeolite is expected to be used for various uses, particularly as an adsorbent and a catalyst carrier, but has sufficient ion exchange capacity and solid acidity for industrial use, Durability as an adsorbent or catalyst carrier is required.
  • Durability as an adsorbent or catalyst carrier is required.
  • the adsorption / desorption process including the heat regeneration step the adsorption performance does not deteriorate even when heated repeatedly, or the catalyst used for exhaust gas purification needs thermal durability to maintain the catalyst performance at high temperature. is there.
  • zeolite is used in a form that is applied to an extruded product or a honeycomb carrier, so that the particle size distribution of the zeolite is required to be at an appropriate level.
  • the present invention provides a chabazite-type zeolite having a high Al content and high durability and heat resistance from the viewpoint of the number of ion exchange sites and the amount of solid acid as a base material for a catalyst carrier or an adsorbent, and a method for producing the same.
  • the purpose is that.
  • the present invention provides a novel chabazite-type zeolite carrying copper.
  • a nitrogen oxide reduction and removal catalyst containing zeolite supporting copper which has a high reduction rate of nitrogen oxide in a low temperature range as compared with a conventional chabasite zeolite catalyst supporting copper, and this It is an object of the present invention to provide a nitrogen oxide reduction removing method using a catalyst.
  • the inventors of the present invention have made extensive studies on the durability and heat resistance improvement of chabazite-type zeolite and the production method thereof. As a result, a chabazite-type zeolite having a SiO 2 / Al 2 O 3 molar ratio of less than 15 and an average particle size of 1.0 ⁇ m or more and 8.0 ⁇ m or less that is useful as a catalyst, an adsorbent, or an ion exchanger is durable.
  • the inventors have found a novel method for producing a chabazite-type zeolite according to the present invention and have completed the present invention.
  • the present invention has the following aspects.
  • the molar ratio of the structure directing agent to SiO 2 in the raw material composition is 0.05 ⁇ structure directing agent / SiO 2 ⁇ 0.13, and The molar ratio of water to SiO 2 in the raw material composition is Crystallizing a raw material composition satisfying 5 ⁇ H 2 O / SiO 2 ⁇ 30 in the presence of at least two cations selected from the group consisting of Na + , K + , Rb + , Cs + and NH 4 +
  • the method for producing a chabazite-type zeolite according to any one of (1) to (3), wherein: (5)
  • the structure directing agent is a hydroxide, halide, carbonate, methyl carbonate or sulfate having N, N, N-trialkyladamantanammonium as a cation, and N, N, N-trimethylbenzyl.
  • the structure directing agent is N, N, N-trimethyladamantanammonium hydroxide, N, N, N-trimethyladamantanammonium halide, N, N, N-trimethyladamantanammonium carbonate, N, N,
  • (10) The chabazite-type zeolite as described in any one of (7) to (9) above, wherein the atomic ratio of copper / aluminum is 0.10 to 1.00.
  • (11) The chabazite-type zeolite according to any one of (7) to (10), wherein the ion exchange site is occupied by copper and / or protons (H + ).
  • (12) The chabazite-type zeolite according to any one of (7) to (11), wherein the crystal structure is SSZ-13.
  • a nitrogen oxide reduction removing catalyst comprising the chabazite-type zeolite according to any one of (7) to (12).
  • the chabazite-type zeolite according to the present invention has a composition useful as a base material for a catalyst carrier or an adsorbent, and has high durability and heat resistance.
  • the chabazite-type zeolite according to the present invention is controlled to a particle size distribution that is practically useful.
  • a chabazite-type zeolite with high durability and heat resistance can be produced under conditions where the amount of expensive organic structure directing agent used is small.
  • the nitrogen oxide reduction catalyst containing chabasite-type zeolite on which copper is supported according to the present invention has high catalytic activity even after hydrothermal durability treatment.
  • SEM scanning electron microscope
  • the chabazite-type zeolite according to the present invention is a high silica chabazite having a SiO 2 / Al 2 O 3 molar ratio of less than 15.
  • the SiO 2 / Al 2 O 3 molar ratio is preferably 10 or more and less than 15.
  • durability and heat resistance useful for the adsorbent or the catalyst carrier can be obtained.
  • the ion exchange capacity and solid acidity required by the application are insufficient.
  • the heat resistance of the chabazite-type zeolite according to the present invention was evaluated by the residual rate of crystallinity after hydrothermal durability treatment.
  • the durability of the chabazite-type zeolite carrying copper was evaluated by the reduction rate of nitrogen oxides after the same hydrothermal durability treatment.
  • the hydrothermal durability treatment was performed at a temperature of 900 ° C. for 1 hour at a space velocity of 6,000 hr ⁇ 1 under an air flow containing 10% by volume of water vapor.
  • the performance of the nitrogen oxide reduction catalyst is evaluated by the performance of the hydrothermal durability treatment.
  • There is no standardized hydrothermal durability treatment. Accordingly, the hydrothermal durability treatment condition of the chabazite-type zeolite according to the present invention is a category of conditions generally used as the hydrothermal durability treatment condition of the nitrogen oxide reduction catalyst, and is not a special condition.
  • the chabazite-type zeolite according to the present invention has an average particle size of 1.0 ⁇ m or more and 8.0 ⁇ m or less. Conventionally reported crystal particles of less than 1.0 ⁇ m have low durability and heat resistance when used as adsorbents or catalyst carriers. On the other hand, when the average particle diameter exceeds 8.0 ⁇ m, clogging and peeling are likely to occur when the honeycomb carrier is coated, and when it is formed into a molded product, it becomes a factor of deteriorating the compressive strength.
  • the crystal particles of the chabazite-type zeolite according to the present invention are characterized in that most of them are dispersed as rhombohedral or cubic particles and have a crystal particle form in which the rhombus can be clearly observed. Therefore, the average particle size of the chabazite-type zeolite according to the present invention is evaluated as the crystal particle size dispersed independently.
  • the chabazite-type zeolite according to the present invention preferably has an average particle size of 1.0 ⁇ m or more and 5.0 ⁇ m or less.
  • the average particle size of the chabazite-type zeolite according to the present invention means an average particle size based on SEM observation.
  • the average particle diameter based on SEM observation is a particle diameter (primary particle diameter) measured from an observation image obtained by a scanning electron microscope (SEM), and at an arbitrary magnification at which 50 or more primary particles can be observed.
  • SEM scanning electron microscope
  • the average particle size of the chabazite-type zeolite according to the present invention has an average particle size not included in the range of 1.0 ⁇ m or more and 8.0 ⁇ m or less as measured by a method other than the method of measuring the average particle size based on SEM observation. Even if it is a chabazite type zeolite, if it measures by the method based on SEM observation, if it is 1.0 micrometer or more and 8.0 micrometers or less, it will be contained in the range of the average particle diameter of the chabazite type zeolite which concerns on this invention.
  • the average particle diameter based on SEM observation is, for example, an arithmetic average of particle diameters obtained by measuring 50 or more crystal particles arbitrarily selected in one or a plurality of observation fields photographed at a magnification of 5,000 times in an arbitrary direction. By doing so, it can be evaluated. SEM observation conditions are not particularly limited as long as the shape and number of crystal grains can be clearly observed.
  • the 90% particle diameter is preferably 15.0 ⁇ m or less, and more preferably 10.0 ⁇ m or less.
  • the average particle size is a primary particle based on SEM observation, whereas the 90% particle size means the particle size of these aggregated particles.
  • the particle size distribution of the chabazite-type zeolite according to the present invention can be evaluated by particle size distribution measurement (volume distribution) by a laser diffraction scattering method.
  • the particle size distribution by the laser diffraction scattering method should be quantified with high reproducibility by measuring after dispersing the zeolite in water and making the dispersion state of the crystal particles uniform with an ultrasonic homogenizer. Can do.
  • the 90% particle diameter exceeds 15.0 ⁇ m, it is difficult to obtain dispersed crystal particles having an average particle diameter of 1.0 ⁇ m or more and 8.0 ⁇ m or less, which is a feature of the chabazite-type zeolite according to the present invention. Further, when the honeycomb carrier is coated, clogging or peeling is likely to occur, and when it is formed into a molded product, the compressive strength is deteriorated.
  • the raw material of the chabazite-type zeolite according to the present invention comprises a silica source, an aluminum source, an alkali source, a structure directing agent (hereinafter referred to as “SDA”) and water. Moreover, you may add the component which has crystallization promotion effects, such as a seed crystal.
  • SDA structure directing agent
  • silica source for example, colloidal silica, amorphous silica, sodium silicate, tetraethylorthosilicate, aluminosilicate gel, and the like can be used.
  • alumina source for example, aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, aluminosilicate gel, metal aluminum and the like can be used.
  • the silica source and the alumina source are preferably in a form that can be sufficiently uniformly mixed with other raw materials.
  • Alkali sources include, for example, sodium, potassium, rubidium, cesium and ammonium hydroxides, halides, sulfates, nitrates, carbonates and other salts, alkali components in aluminates and silicates, aluminosilicate gels
  • the alkali component in the inside can be used.
  • SDA includes hydroxides, halides, carbonates, methyl carbonates and sulfates with N, N, N-trialkyladamantanammonium as a cation; and N, N, N-trimethylbenzylammonium ions and N-alkyls.
  • -3-quinuclidinol ion or at least one selected from the group consisting of hydroxides, halides, carbonates, methyl carbonate salts and sulfates with N, N, N-trialkylexoaminonorbornane as a cation Can be used.
  • N, N, N-trimethyladamantanammonium hydroxide (hereinafter abbreviated as “TMADAOH”), N, N, N-trimethyladamantanammonium halide, N, N, N-trimethyladamantanammonium carbonate It is more preferable to use at least one selected from the group consisting of a salt, N, N, N-trimethyladamantanammonium methyl carbonate salt and N, N, N-trimethyladamantanammonium sulfate.
  • the chabazite-type zeolite according to the present invention can be produced with an SDA / SiO 2 molar ratio of 0.05 or more and less than 0.13 and an H 2 O / SiO 2 molar ratio of 5 or more and less than 30.
  • SDA / SiO 2 molar ratio 0.13 or more
  • only chabazite-type zeolite having an average crystal particle size of less than 1.5 ⁇ m can be obtained as in the prior art.
  • SDA is expensive, if the SDA / SiO 2 molar ratio is 0.13 or more, economic rationality is also lacking.
  • the SiO 2 / Al 2 O 3 molar ratio of the chabazite-type zeolite raw material composition according to the present invention is preferably 50 or less. If it is larger than 50, it is uneconomical or difficult to synthesize a chabazite-type zeolite having a SiO 2 / Al 2 O 3 molar ratio of less than 15.
  • the OH / SiO 2 molar ratio which is an index of the amount of hydroxide ions, is preferably 0.1 or more and less than 0.9. More preferably, it is 0.15 to 0.5. If it is less than 0.1, crystallization of the zeolite is difficult to proceed, and if it is 0.9 or more, dissolution of the silica component is promoted, so the SiO 2 / Al 2 O 3 molar ratio and particle diameter according to the present invention It is difficult to obtain a chabazite-type zeolite having
  • the chabazite-type zeolite according to the present invention there are at least two kinds selected from the group consisting of Na + , K + , Rb + , Cs + and NH 4 + as mineralized cations. And crystallize. When these cations are not included, the progress of crystallization is insufficient when the SDA / SiO 2 molar ratio is less than 0.13, and by-products (impurity crystals) are generated. Furthermore, it is difficult to obtain a chabazite-type zeolite having an average particle size of 1.0 ⁇ m or more and 8.0 ⁇ m or less according to the present invention. Similarly, when only one kind of these cations is contained, crystallization is insufficient or it is difficult to obtain the average particle size according to the present invention.
  • the chabazite-type zeolite according to the present invention is a raw material composition comprising water, a silica raw material, an alumina raw material, an alkali component, and SDA in a sealed pressure vessel at an arbitrary temperature of 100 to 200 ° C., taking a sufficient time.
  • the obtained chabazite-type zeolite can be used as it is as an adsorbent, a catalyst carrier or an ion exchanger. Moreover, the obtained chabazite-type zeolite contains SDA and / or alkali metal in the pores, and can be used after removing them as necessary. SDA and / or alkali metal removal treatment can employ liquid phase treatment using a chemical solution containing an acidic solution or an SDA decomposition component, exchange treatment using a resin, etc., and thermal decomposition treatment. You may combine. Furthermore, it can be converted into H type or NH 4 type using the ion exchange ability of zeolite, and a known technique can be adopted as the method.
  • Chabazite-type zeolite is known as a zeolite used as a selective catalytic reduction catalyst (SCR is an abbreviation of “Selective catalytic reduction”) called a nitrogen oxide reduction catalyst, particularly an SCR catalyst using ammonia as a reducing agent.
  • SCR selective catalytic reduction
  • nitrogen oxide reduction catalyst particularly an SCR catalyst using ammonia as a reducing agent.
  • the novel chabazite-type zeolite carrying copper according to the present invention is a chabazite-type zeolite having a SiO 2 / Al 2 O 3 molar ratio of less than 15 and an average particle size of 1.0 ⁇ m or more and 8.0 ⁇ m or less. This is a chabazite-type zeolite on which copper is supported.
  • novel chabazite-type zeolite supporting copper according to the present invention exhibits excellent catalytic activity when used as an SCR catalyst due to the interaction between the chabazite-type zeolite and copper.
  • catalytic activity means the reduction rate of nitrogen oxides in the chabazite-type zeolite on which copper according to the present invention is supported.
  • the atomic ratio of copper supported to aluminum (copper / aluminum) is preferably in the range of 0.10 to 1.00.
  • the lower limit of the atomic ratio (copper / aluminum) is more preferably 0.15 or more, and more preferably 0.2 or more.
  • the upper limit of the atomic ratio (copper / aluminum) is preferably 0.6 or less, and more preferably 0.4 or less.
  • the catalytic activity is remarkably lowered by the hydrothermal durability treatment.
  • the novel chabazite-type zeolite carrying copper according to the present invention preferably has its ion exchange site occupied by copper and / or protons (H + ). Since the ion exchange sites other than the ion exchange site occupied by copper are occupied only by protons, the reduction rate of nitrogen oxides becomes higher.
  • the SiO 2 / Al 2 O 3 molar ratio is less than 15, preferably the SiO 2 / Al 2 O 3 molar ratio is 10 or more and less than 15, and more preferably the SiO 2 / Al 2 O 3 molar ratio is 10 or more and 14 0.8 or less, and more preferably the SiO 2 / Al 2 O 3 molar ratio is 11 or more and 14.8 or less.
  • a conventional chabazite-type zeolite having a high SiO 2 / Al 2 O 3 molar ratio (for example, SiO 2 / Al 2 O 3 molar ratio of 15 to 50).
  • the new chabazite-type zeolite carrying copper according to the present invention has an average particle size of 1.0 ⁇ m or more and 8.0 ⁇ m or less.
  • the chabazite-type zeolite according to the present invention has an average particle size of 1.0 ⁇ m or more, preferably 1.2 ⁇ m or more, more preferably 1.5 ⁇ m, and even more preferably 2.0 ⁇ m or more. It is a zeolite with improved hot water resistance. Thereby, not only the reduction rate of nitrogen oxides in a high temperature range of 400 ° C. or more and 600 ° C. or less after the hydrothermal durability treatment, preferably 100 ° C. or more and 250 ° C.
  • the factor that increases the reduction rate of nitrogen oxides in the low temperature range is not necessarily clear. However, when the average particle size is increased in this range, the reduction rate of nitrogen oxides in the low temperature region of the chabazite-type zeolite according to the present invention tends to be higher.
  • the reduction rate of nitrogen oxides in the chabazite-type zeolite supporting copper according to the present invention is 52% or more at 150 ° C., more preferably 54% or more at 150 ° C. after hydrothermal durability treatment. Is preferred. Even if the reduction rate of nitrogen oxides at a temperature other than 150 ° C. is not 52% or more, the reduction rate at 150 ° C. of 52% or more is a chabazite type on which copper according to the present invention is supported. It is included in the range of the nitrogen oxide reduction rate of zeolite.
  • the average particle size of the chabazite-type zeolite according to the present invention is 8.0 ⁇ m or less, preferably 5.0 ⁇ m or less, and more preferably 3.5 ⁇ m or less.
  • the average particle diameter in this invention is a primary particle which the crystallite gathered. Therefore, it is different from particles (so-called secondary particles) in which primary particles are aggregated.
  • the chabazite-type zeolite carrying copper according to the present invention preferably has a 90% particle diameter of 15.0 ⁇ m or less. More preferably, it is 10.0 ⁇ m or less.
  • the particle size distribution according to the present invention can be evaluated by particle size distribution measurement (volume distribution) by a laser diffraction scattering method.
  • the particle size distribution by the laser diffraction scattering method should be quantified with high reproducibility by measuring after dispersing the zeolite in water and making the dispersion state of the crystal particles uniform with an ultrasonic homogenizer. Can do.
  • the 90% particle diameter exceeds 15.0 ⁇ m, it is difficult to obtain dispersed crystal particles having an average particle diameter of 1.0 ⁇ m or more and 8.0 ⁇ m or less, which is a feature of the chabazite-type zeolite according to the present invention. Further, when the honeycomb carrier is coated, clogging or peeling is likely to occur, and when it is formed into a molded product, the compressive strength is deteriorated.
  • the zeolite according to the present invention has a chabazite structure.
  • chabazite-type zeolite having a crystal structure belonging to SSZ-13 is particularly preferable. This is because the chabazite-type zeolite can be provided with sufficient durability by having a crystal structure belonging to SSZ-13 having a SiO 2 / Al 2 O 3 molar ratio of 5 or more.
  • the manufacturing method of the novel chabazite-type zeolite carrying copper according to the present invention is not particularly limited. For example, it can be produced by producing chabazite-type zeolite, converting it to H-type, and then supporting copper.
  • the novel chabazite-type zeolite carrying copper according to the present invention is preferably produced by carrying copper on the chabazite-type zeolite obtained by the above-described production method. In particular, it is preferable to manufacture by supporting copper on an H-type chabazite-type zeolite.
  • the supporting method is not particularly limited.
  • a method for supporting copper methods such as an ion exchange method, an impregnation supporting method, an evaporation to dryness method, a precipitation supporting method, a physical mixing method, and a skeleton substitution method can be employed.
  • the raw material used for supporting copper any of soluble and insoluble materials such as nitrates, sulfates, acetates, chlorides, complex salts, oxides and complex oxides containing copper can be used.
  • copper acetate monohydrate in a ratio of 0.2 times equivalent or more and less than 5.0 times equivalent is used.
  • Examples include a method of supporting copper by an ion exchange method.
  • the equivalent number of copper used is the atomic ratio (Cu / Al ratio) of copper contained in the raw material used for copper support relative to aluminum in the chabazite-type zeolite. ), The amount corresponding to 0.5 was defined as 1 time equivalent.
  • the novel chabazite-type zeolite carrying copper according to the present invention can be used as a catalyst incorporated in an exhaust gas treatment system. Furthermore, it can be used as a catalyst for reducing and removing nitrogen oxides contained in the gas stream in the presence of oxygen, a so-called nitrogen oxide reduction catalyst.
  • the novel chabazite-type zeolite carrying copper according to the present invention is a nitrogen oxide in a high temperature range of 400 ° C. or higher, preferably 400 ° C. or higher and 600 ° C. or lower, even after hydrothermal durability treatment.
  • the nitrogen oxide reduction rate in the high temperature range after the hydrothermal durability treatment is evaluated by the nitrogen oxide reduction rate at 500 ° C.
  • the nitrogen in the low temperature range after the hydrothermal durability treatment is evaluated.
  • the reduction rate of the oxide is evaluated by the reduction rate of the nitrogen oxide at 150 ° C.
  • the low temperature activity as a SCR catalyst of the novel chabasite-type zeolite supporting copper according to the present invention is 100 ° C. or higher and 250 ° C. or lower, preferably 100 ° C. or higher and 200 ° C. or lower, after the hydrothermal durability treatment.
  • it can be judged by measuring the nitrogen oxide reduction rate at a low temperature of 150 ° C. or higher and 200 ° C. or lower.
  • the nitrogen oxide reduction catalyst comprising the chabazite-type zeolite according to the present invention can be used by mixing with a binder such as silica, alumina and clay mineral.
  • a binder such as silica, alumina and clay mineral.
  • clay minerals used for molding include kaolin, attapulgite, montmorillonite, bentonite, allophane, and sepiolite.
  • it can also be used by wash-coating on a cordierite or metal honeycomb substrate.
  • the reduction and removal of nitrogen oxides from the exhaust gas can be performed by bringing the exhaust gas into contact with the catalyst composed of the above chabazite-type zeolite.
  • the nitrogen oxides reduced and removed by the chabazite-type zeolite according to the present invention include nitrogen monoxide, nitrogen dioxide, dinitrogen trioxide, dinitrogen tetroxide, dinitrogen monoxide, and mixtures thereof. Nitric oxide, nitrogen dioxide, and dinitrogen monoxide are preferred.
  • the nitrogen oxide concentration of the exhaust gas that can be treated by the present invention is not limited.
  • the exhaust gas contains components other than nitrogen oxides, including hydrocarbons, carbon monoxide, carbon dioxide, hydrogen, nitrogen, oxygen, sulfur oxides, and water. good.
  • nitrogen oxides can be reduced and removed from various exhaust gases such as diesel automobiles, gasoline automobiles, boilers, gas turbines and the like.
  • nitrogen oxides are reduced and removed in the presence of a reducing agent, and hydrocarbons, carbon monoxide, hydrogen, etc. contained in the exhaust gas are used as the reducing agent.
  • an appropriate reducing agent may be added to the exhaust gas to coexist.
  • the reducing agent added to the exhaust gas is not particularly limited, and examples thereof include ammonia, urea, organic amines, hydrocarbons, alcohols, ketones, carbon monoxide, hydrogen and the like.
  • ammonia, urea, and organic amines having high reaction selectivity are suitable.
  • the method of adding these reducing agents is not particularly limited, and a method of directly adding the reducing component in a gaseous state, a method of spraying and vaporizing a liquid such as an aqueous solution, a method of spraying pyrolysis, and the like can be employed. What is necessary is just to set arbitrarily the addition amount of these reducing agents so that a nitrogen oxide can fully be reduced and removed.
  • the space velocity when contacting the exhaust gas with the catalyst comprising the chabazite-type zeolite according to the present invention is not particularly limited, but the preferred space velocity is 500 to 500,000 hr on a volume basis. -1 , more preferably 2000 to 300,000 hr -1 .
  • Example 1 (Production of zeolite 1) 13.9 g of N, N, N-trimethyladamantanammonium hydroxide 25% aqueous solution (hereinafter referred to as “TMADAOH 25% aqueous solution”), 31.4 g of pure water, 2.5 g of potassium hydroxide 48% aqueous solution, silicic acid 9.0 g of amorphous aluminosilicate gel prepared from sodium and aluminum sulfate was added and mixed well to obtain a raw material composition.
  • the composition of the raw material composition was SiO 2 : 0.048Al 2 O 3 : 0.124TMADAOH: 0.054Na 2 O: 0.081K 2 O: 18H 2 O.
  • This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 150 ° C. for 72 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite. Further, the SiO 2 / Al 2 O 3 molar ratio of this chabazite-type zeolite was 14.9.
  • chabazite-type zeolite For this chabazite-type zeolite, arbitrary 150 crystal particles were selected from three fields of view taken at a magnification of 5,000 times by SEM, and the particle size obtained by arithmetically averaging the particle sizes (hereinafter referred to as “ The SEM particle size ”was 1.54 ⁇ m. Further, pure water was added to chabazite-type zeolite to make a slurry with a solid content of 1%, and after ultrasonic dispersion for 2 minutes, particle size distribution measurement (volume distribution) was performed by a laser diffraction scattering method.
  • the obtained chabazite-type zeolite had a 10% particle size of 1.54 ⁇ m, a 50% particle size of 2.36 ⁇ m, and a 90% particle size of 3.39 ⁇ m.
  • This chabazite-type zeolite was designated as zeolite 1.
  • Table 1 below shows a comparison between the X-ray diffraction pattern of the chabazite-type zeolite (US Pat. No. 4,544,538) and the X-ray diffraction pattern of the product obtained in Example 1.
  • Example 2 (Production of zeolite 2) TMADAOH 25% aqueous solution 11.1 g, pure water 35.2 g, potassium hydroxide 48% aqueous solution 1.2 g, and amorphous aluminosilicate gel 9.6 g prepared from sodium silicate and aluminum sulfate were added and mixed well.
  • the composition of the raw material composition was SiO 2 : 0.063Al 2 O 3 : 0.098TMADAOH: 0.065Na 2 O: 0.036K 2 O: 18H 2 O.
  • This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 170 ° C. for 48 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite.
  • the chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 14.2. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • the chabazite-type zeolite had an SEM particle size of 1.03 ⁇ m, a 10% particle size of 1.54 ⁇ m, a 50% particle size of 3.94 ⁇ m, and a 90% particle size of 7.14 ⁇ m.
  • This chabazite-type zeolite was designated as zeolite 2.
  • Example 3 (Production of zeolite 3) TMADAOH 25% aqueous solution 9.3 g, pure water 36.2 g, sodium hydroxide 48% aqueous solution 0.4 g, potassium hydroxide 48% aqueous solution 2.0 g, and deaerated amorphous aluminosilicate gel 9.2 g In addition, they were mixed well to obtain a raw material composition.
  • the composition of the raw material composition was SiO 2 : 0.065Al 2 O 3 : 0.081TMADAOH: 0.021Na 2 O: 0.063K 2 O: 18H 2 O.
  • This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 150 ° C. for 70 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite.
  • the chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 14.4. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • this chabazite-type zeolite had an SEM particle size of 1.90 ⁇ m, a 10% particle size of 2.76 ⁇ m, a 50% particle size of 5.37 ⁇ m, and a 90% particle size of 9.07 ⁇ m.
  • This chabazite-type zeolite was designated as zeolite 3.
  • Example 4 (Production of zeolite 4) TMADAOH 25% aqueous solution 9.3 g, pure water 36.2 g, sodium hydroxide 48% aqueous solution 0.9 g, potassium hydroxide 48% aqueous solution 1.4 g, and amorphous aluminosilicate gel 9.3 g were added and mixed well to prepare the raw material A composition was obtained.
  • the composition of the raw material composition was SiO 2 : 0.076Al 2 O 3 : 0.081TMADAOH: 0.042Na 2 O: 0.042K 2 O: 18H 2 O.
  • This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 170 ° C. for 70 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite.
  • the chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 12.5. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • the chabazite-type zeolite had an SEM particle size of 1.59 ⁇ m, a 10% particle size of 2.98 ⁇ m, a 50% particle size of 7.90 ⁇ m, and a 90% particle size of 20.7 ⁇ m.
  • This chabazite-type zeolite was designated as zeolite 4.
  • Example 5 (Production of zeolite 5) A product was obtained in the same manner as in Example 4 except that the SiO 2 / Al 2 O 3 molar ratio of the raw material composition was changed. From powder X-ray diffraction and X-ray fluorescence analysis, the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite. The chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 14.4. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • this chabazite-type zeolite had an SEM particle size of 2.23 ⁇ m, a 10% particle size of 4.65 ⁇ m, a 50% particle size of 9.22 ⁇ m, and a 90% particle size of 16.7 ⁇ m.
  • This chabazite-type zeolite was designated as zeolite 5.
  • Example 6 (Production of zeolite 6) A product was obtained in the same manner as in Example 3 except that the crystallization temperature was 170 ° C. From powder X-ray diffraction and X-ray fluorescence analysis, the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite. The chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 14.4. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • this chabazite-type zeolite had an SEM particle size of 2.67 ⁇ m, a 10% particle size of 4.18 ⁇ m, a 50% particle size of 9.16 ⁇ m, and a 90% particle size of 17.9 ⁇ m.
  • This chabazite-type zeolite was designated as zeolite 6.
  • Example 7 (Production of zeolite 7) A product was obtained in the same manner as in Example 3 except that the crystallization temperature was 180 ° C. From powder X-ray diffraction and X-ray fluorescence analysis, the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite. The chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 14.8. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • this chabazite-type zeolite had an SEM particle size of 3.50 ⁇ m, a 10% particle size of 5.95 ⁇ m, a 50% particle size of 10.7 ⁇ m, and a 90% particle size of 19.0 ⁇ m.
  • This chabazite-type zeolite was designated as zeolite 7.
  • Example 8 (Production of zeolite 8) TMADAOH 25% aqueous solution 589 g, pure water 2270 g, sodium hydroxide 48% aqueous solution 27 g, potassium hydroxide 48% aqueous solution 127 g, and amorphous aluminosilicate gel 582 g were added and mixed well to obtain a raw material composition.
  • the composition of the raw material composition was SiO 2 : 0.072Al 2 O 3 : 0.081TMADAOH: 0.021Na 2 O: 0.063K 2 O: 18H 2 O.
  • This raw material composition was sealed in a 4 L stainless steel autoclave and heated at 150 ° C. for 91 hours while stirring directly.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite.
  • the chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 13.4. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • the chabazite-type zeolite had an SEM particle size of 2.34 ⁇ m, a 10% particle size of 2.69 ⁇ m, a 50% particle size of 6.38 ⁇ m, and a 90% particle size of 9.96 ⁇ m.
  • This chabazite-type zeolite was designated as zeolite 8.
  • Example 9 (Production of zeolite 9) TMADAOH 25% aqueous solution 8.3g, pure water 37.0g, sodium hydroxide 48% aqueous solution 0.9g, potassium hydroxide 48% aqueous solution 1.4g, and amorphous aluminosilicate gel 9.4g were added and mixed well and the raw material composition I got a thing.
  • the composition of the raw material composition was SiO 2 : 0.076Al 2 O 3 : 0.082TMADAOH: 0.043Na 2 O: 0.043K 2 O: 18H 2 O.
  • This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 150 ° C. for 70 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite.
  • the chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 12.1. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • this chabazite-type zeolite had an SEM particle size of 1.12 ⁇ m, a 10% particle size of 2.54 ⁇ m, a 50% particle size of 4.26 ⁇ m, and a 90% particle size of 8.04 ⁇ m.
  • This chabazite-type zeolite was designated as zeolite 9.
  • Example 10 (Production of zeolite 10) Add TMADAOH 25% aqueous solution 7.5g, pure water 37.0g, sodium hydroxide 48% aqueous solution 1.0g, potassium hydroxide 48% aqueous solution 1.4g, and amorphous aluminosilicate gel 9.3g A composition was obtained.
  • the composition of the raw material composition was SiO 2 : 0.072Al 2 O 3 : 0.065TMADAOH: 0.044Na 2 O: 0.044K 2 O: 18H 2 O.
  • This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 150 ° C. for 70 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite.
  • the chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 13.3. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • the chabazite-type zeolite had an SEM particle size of 1.50 ⁇ m, a 10% particle size of 2.74 ⁇ m, a 50% particle size of 5.56 ⁇ m, and a 90% particle size of 9.96 ⁇ m.
  • This chabazite-type zeolite was designated as zeolite 10.
  • Example 11 (Production of zeolite 11) A product was obtained in the same manner as in Example 10 except that the SiO 2 / Al 2 O 3 molar ratio of the raw material composition was 12 and the crystallization temperature was changed to 160 ° C. From powder X-ray diffraction and X-ray fluorescence analysis, the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite. The chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 12.2. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • the chabazite-type zeolite had an SEM particle size of 1.41 ⁇ m, a 10% particle size of 3.23 ⁇ m, a 50% particle size of 5.84 ⁇ m, and a 90% particle size of 24.5 ⁇ m.
  • This chabazite-type zeolite was designated as zeolite 11.
  • Example 12 (Production of zeolite 12) TMADAOH 25% aqueous solution 6.9g, pure water 38.2g, sodium hydroxide 48% aqueous solution 1.0g, potassium hydroxide 48% aqueous solution 1.5g, amorphous aluminosilicate gel 9.4g, and mixed well, the raw material composition Got.
  • the composition of the raw material composition was SiO 2 : 0.082Al 2 O 3 : 0.060TMADAOH: 0.046Na 2 O: 0.046K 2 O: 18H 2 O.
  • This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 150 ° C. for 70 hours while rotating at 55 rpm.
  • the heated product was separated into solid and liquid, washed with a sufficient amount of pure water, and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite. Further, this chabazite-type zeolite had a SiO 2 / Al 2 O 3 ratio of 11.8. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • this chabazite-type zeolite had an SEM particle size of 1.45 ⁇ m, a 10% particle size of 3.11 ⁇ m, a 50% particle size of 5.64 ⁇ m, and a 90% particle size of 38.2 ⁇ m.
  • This chabazite-type zeolite was designated as zeolite 12.
  • Comparative Example 1 (Production of Comparative Zeolite 1) With reference to the method disclosed in Example 2 of US Pat. No. 4,544,538, a chabazite-type zeolite was produced as follows. No. 3 sodium silicate aqueous solution (SiO 2 ; 29.3%, Na 2 O; 9.2%) 14.7 g, N, N, N-trimethyladamantanammonium bromide (hereinafter referred to as “TMADABr”) 20% An aqueous solution was prepared by mixing 19.6 g of an aqueous solution and 2.1 g of pure water (the obtained aqueous solution is referred to as “aqueous solution A”).
  • aqueous solution A the obtained aqueous solution is referred to as “aqueous solution A”.
  • an aqueous solution in which 1.4 g of an aluminum sulfate aqueous solution (Al 2 O 3 ; 8.0%) and 2.0 g of a 48% sodium hydroxide aqueous solution were added to 17.1 g of pure water was prepared.
  • the aqueous solution B was added to the aqueous solution A, and this was stirred until uniform to obtain a raw material composition.
  • the composition of the raw material composition was SiO 2 : 0.016Al 2 O 3 : 0.20TMADABr: 0.47Na 2 O: 36H 2 O.
  • This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 140 ° C. for 144 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite.
  • the chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 8.9. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • this chabazite-type zeolite had an SEM particle size of 8.78 ⁇ m, a 10% particle size of 8.06 ⁇ m, a 50% particle size of 14.46 ⁇ m, and a 90% particle size of 32.66 ⁇ m.
  • This chabazite-type zeolite was designated as comparative zeolite 1.
  • Comparative Example 2 (Production of Comparative Zeolite 2) With reference to the method disclosed in Example 7 of US Pat. No. 4,544,538, a chabazite-type zeolite was produced as follows. No. 3 sodium silicate aqueous solution 14.9g, TMADABr20% aqueous solution 12.8g, and pure water 7.9g were mixed to prepare an aqueous solution (the obtained aqueous solution is referred to as "aqueous solution A2").
  • an aqueous solution was prepared by adding 3.3 g of an aqueous aluminum sulfate solution and 2.1 g of a 48% aqueous sodium hydroxide solution to 16.0 g of pure water (the obtained aqueous solution is referred to as “aqueous solution B2”).
  • the aqueous solution B2 was added to the aqueous solution A2, and this was stirred until it became uniform to obtain a raw material composition.
  • the composition of the raw material composition was SiO 2 : 0.036Al 2 O 3 : 0.13TMADABr: 0.47Na 2 O: 36H 2 O.
  • This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 140 ° C. for 144 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the resulting concept was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite. Further, this chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 10.7.
  • This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • this chabazite-type zeolite had an SEM particle size of 0.62 ⁇ m, a 10% particle size of 0.65 ⁇ m, a 50% particle size of 1.04 ⁇ m, and a 90% particle size of 1.55 ⁇ m.
  • This chabazite-type zeolite was designated as comparative zeolite 2.
  • Comparative Example 3 (Production of Comparative Zeolite 3) A chabazite-type zeolite was produced in the same manner as in Comparative Example 2 except that the SiO 2 / Al 2 O 3 molar ratio of the raw material composition was changed. No. 3 sodium silicate aqueous solution 15.1 g, TMADABr20% aqueous solution 13.0 g, and pure water 8.0 g were mixed to prepare an aqueous solution (the obtained aqueous solution is referred to as “aqueous solution A3”).
  • an aqueous solution was prepared by adding 0.6 g of an aqueous aluminum sulfate solution and 2.1 g of a 48% aqueous sodium hydroxide solution to 18.2 g of pure water (the obtained aqueous solution is referred to as “aqueous solution B3”).
  • the aqueous solution B3 was added to the aqueous solution A3, and this was stirred until it became uniform to obtain a raw material composition.
  • the composition of the raw material composition was SiO 2 : 0.007Al 2 O 3 : 0.13TMADABr: 0.47Na 2 O: 36H 2 O.
  • This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 140 ° C. for 144 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the resulting concept was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite. Further, this chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 9.9. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • this chabazite-type zeolite had an SEM particle size of 14.04 ⁇ m, a 10% particle size of 18.42 ⁇ m, a 50% particle size of 47.48 ⁇ m, and a 90% particle size of 86.32 ⁇ m.
  • This chabazite-type zeolite was designated as comparative zeolite 3.
  • Comparative Example 4 (Production of Comparative Zeolite 4) With reference to the method disclosed in US Pat. No. 4,665,110, a chabazite-type zeolite was produced as follows. TMADAOH 13% aqueous solution 17.9 g, pure water 27.2 g, sodium hydroxide 48% aqueous solution 0.9 g, aluminum hydroxide 0.29 g, and amorphous silica powder (trade name: NIPSEAL VN-3, manufactured by Tosoh Silica Corporation) ) 3.7 g was added and mixed well to obtain a raw material composition. The composition of the raw material composition was SiO 2 : 0.036Al 2 O 3 : 0.20TMADAOH: 0.10Na 2 O: 44H 2 O.
  • the raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 150 ° C. for 158 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite.
  • this chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 22.3.
  • This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1. As a result, the chabazite-type zeolite had an SEM particle size of 0.48 ⁇ m, a 10% particle size of 0.71 ⁇ m, a 50% particle size of 1.25 ⁇ m, and a 90% particle size of 2.64 ⁇ m. This chabazite-type zeolite was designated as comparative zeolite 4.
  • Comparative Example 5 (Production of Comparative Zeolite 5) A chabazite-type zeolite was produced in the same manner as in Comparative Example 4 except that the SiO 2 / Al 2 O 3 molar ratio of the raw material composition was changed. From powder X-ray diffraction and X-ray fluorescence analysis, the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite. Further, this chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 13.8. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • this chabazite-type zeolite had an SEM particle size of 0.36 ⁇ m, a 10% particle size of 0.35 ⁇ m, a 50% particle size of 0.59 ⁇ m, and a 90% particle size of 8.21 ⁇ m.
  • This chabazite-type zeolite was designated as comparative zeolite 5.
  • Comparative Example 6 (Production of Comparative Zeolite 6) TMADAOH 25% aqueous solution 9.2 g, pure water 35.3 g, potassium hydroxide 48% aqueous solution 3.4 g, and deNa-treated amorphous aluminosilicate gel 9.2 g were added and mixed well to obtain a raw material composition. It was. The composition of the raw material composition was SiO 2 : 0.076Al 2 O 3 : 0.081TMADAOH: 0.106K 2 O: 18H 2 O. This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 150 ° C. for 70 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product. From powder X-ray diffraction, the product was a mixture of chabazite and marlinoite.
  • Comparative Example 7 (Production of Comparative Zeolite 7) TMADAOH 25% aqueous solution 9.4 g, pure water 36.1 g, potassium hydroxide 48% aqueous solution 2.2 g, and deNa-treated amorphous aluminosilicate gel 9.3 g were added and mixed well to obtain a raw material composition. It was. The composition of the raw material composition was SiO 2 : 0.082Al 2 O 3 : 0.081TMADAOH: 0.070K 2 O: 18H 2 O. This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 150 ° C. for 70 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite. Further, this chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 12.0.
  • This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • this chabazite-type zeolite had an SEM particle size of 0.89 ⁇ m, a 10% particle size of 2.90 ⁇ m, a 50% particle size of 5.97 ⁇ m, and a 90% particle size of 10.9 ⁇ m.
  • This chabazite-type zeolite was designated as comparative zeolite 7.
  • Comparative Example 8 (Production of Comparative Zeolite 8) With reference to the method disclosed in Japanese Patent Application Laid-Open No. 2010-168269, a chabazite-type zeolite was produced as follows. TMADAOH 25% aqueous solution 11.2 g, pure water 35.1 g, potassium hydroxide 48% aqueous solution 1.4 g, and amorphous aluminosilicate gel 9.4 g were added and mixed well to obtain a raw material composition. The composition of the raw material composition was SiO 2 : 0.050Al 2 O 3 : 0.098TMADAOH: 0.058Na 2 O: 0.044K 2 O: 18H 2 O.
  • This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 150 ° C. for 70 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite.
  • the chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 17.9.
  • This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1. As a result, the chabazite-type zeolite had an SEM particle size of 1.50 ⁇ m, a 10% particle size of 1.66 ⁇ m, a 50% particle size of 3.31 ⁇ m, and a 90% particle size of 5.70 ⁇ m. This chabazite-type zeolite was designated as comparative zeolite 8.
  • Comparative Example 9 (Production of Comparative Zeolite 9) With reference to the method disclosed in US Pat. No. 4,503,024, a chabazite-type zeolite was produced as follows. 16.1 g of 48% potassium hydroxide aqueous solution and 15.3 g of Y-type zeolite (trade name: HSZ-320HOA, manufactured by Tosoh Corporation) were added to 128.6 g of pure water and mixed well to obtain a raw material composition. . The composition of the raw material composition was SiO 2 : 0.18Al 2 O 3 : 0.06Na 2 O: 0.39K 2 O: 43H 2 O.
  • This raw material composition was sealed in a 200 cc stainless steel autoclave, allowed to stand and heated at 95 ° C. for 96 hours.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite. Further, the SiO 2 / Al 2 O 3 molar ratio of this chabazite-type zeolite was 4.5.
  • This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1. As a result of SEM observation, it was clear that the chabazite-type zeolite was an aggregate of fine particles of less than 0.5 ⁇ m. Therefore, the measurement of the SEM particle size was not performed. The 10% particle size was 4.90 ⁇ m, the 50% particle size was 7.47 ⁇ m, and the 90% particle size was 21.8 ⁇ m. This chabazite-type zeolite was designated as comparative zeolite 9.
  • Comparative Example 10 (Production of Comparative Zeolite 10) With reference to the method disclosed in US 2011/020204 A1, chabazite-type zeolite was produced as follows. 125.2 g of pure water, 19.6 g of 48% potassium hydroxide aqueous solution, and 15.2 g of Y-type zeolite (trade name: HSZ-320HOA, manufactured by Tosoh Corporation) were added and mixed well to obtain a raw material composition. The composition of the raw material composition was SiO 2 : 0.18Al 2 O 3 : 0.06Na 2 O: 0.48K 2 O: 43H 2 O. This raw material composition was sealed in a 200 cc stainless steel autoclave and heated at 95 ° C.
  • the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite.
  • the chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 4.4. This chabazite-type zeolite was subjected to SEM observation and particle size distribution measurement in the same manner as in Example 1.
  • this chabazite-type zeolite was an aggregate of fine particles of less than 0.5 ⁇ m. Therefore, the measurement of the SEM particle size was not performed.
  • the chabazite-type zeolite had a 10% particle size of 4.77 ⁇ m, a 50% particle size of 7.32 ⁇ m, and a 90% particle size of 22.0 ⁇ m.
  • This chabazite-type zeolite was designated as comparative zeolite 10.
  • Table 2 below shows the raw material compositions and products of Examples 1 to 12 and Comparative Examples 1 to 10.
  • Table 3 shows the SiO 2 / Al 2 O 3 molar ratio of the product, the particle diameter obtained from the particle size distribution measurement, and the particle diameter determined from the SEM photograph.
  • Example 13 hot water resistance test of zeolite
  • the dried powders of zeolite 10 and comparative zeolite 5 were calcined at 600 ° C. for 2 hours under air flow, then each was pressure-molded, pulverized, and sized to 12 to 20 mesh.
  • 3 ml of the sized zeolite was charged into a normal pressure fixed bed flow type reaction tube, and treated at 900 ° C. for 1 hour while flowing air containing 10% by volume of water at 300 ml / min.
  • the heat resistance of zeolite was evaluated by the crystallinity after hydrothermal durability treatment.
  • Table 4 shows the crystallinity (%) after each hydrothermal durability treatment. It was shown that the chabazite-type zeolite according to the present invention has a high residual rate of crystallinity and excellent heat resistance as compared with the conventional chabazite-type zeolite.
  • the average particle diameter was measured by SEM observation as in Example 1.
  • the nitrogen oxide reduction rate (%) was measured when a gas having the following conditions was contacted at a predetermined temperature.
  • the SCR catalyst is evaluated by using a gas containing nitrogen oxide that is reductively decomposed and ammonia as a reducing agent in a ratio of 1: 1.
  • Nitrogen oxide reducing conditions used in the present invention fall within the category of general conditions for evaluating the reducing properties of nitrogen oxides of SCR catalysts, and are not special conditions.
  • Nitrogen oxide reduction conditions employed in the evaluation of the present invention Process gas composition NO 200ppm NH 3 200ppm O 2 10% by volume H 2 O 3% by volume N 2 balance process gas flow rate 1.5 l / min space velocity 60,000 -1
  • the copper-supported chabazite was press-molded and then crushed and sized to 12 to 20 mesh. Each sized zeolite was subjected to a hydrothermal durability treatment in the same manner as in Example 13. After the hydrothermal durability treatment, 1.5 ml of copper-supported chabazite was filled into a normal pressure fixed bed flow type reaction tube.
  • the steady nitrogen oxide removal activity was evaluated at an arbitrary temperature of 150 to 500 ° C. while a gas having the above composition was passed through the catalyst layer at 1500 ml / min.
  • the nitrogen oxide removal activity is represented by the following formula.
  • X NOx is the reduction removal rate (%) of nitrogen oxides
  • [NOx] in is the nitrogen oxide concentration of the incoming gas
  • [NOx] out is the nitrogen oxide concentration of the outgoing gas.
  • Example 14 (Production of chabazite-type zeolite and support of copper)
  • a structure directing agent a 25.1% aqueous solution of N, N, N-trimethyladamantanammonium hydroxide was used.
  • This structure directing agent 39.4 g, pure water 87.1 g, potassium hydroxide 48% aqueous solution 8.52 g, sodium hydroxide 48% aqueous solution 1.97 g, and amorphous aluminosilicate gel 103 prepared from sodium silicate and aluminum sulfate .1 g was sufficiently mixed to obtain a raw material composition.
  • the raw material composition was charged in a stainless steel autoclave and heated at 170 ° C. for 70 hours.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a solid product.
  • the obtained solid product was found to have a SiO 2 / Al 2 O 3 molar ratio of 14.4.
  • the X-ray diffraction pattern of the zeolite is shown in Table 5 below.
  • This X-ray diffraction pattern was the same as the X-ray diffraction pattern in Table 1 of JP 2010-168269 A. Therefore, it was confirmed that this zeolite was a chabazite type zeolite. Moreover, the SEM particle diameter of this chabazite-type zeolite was 2.67 ⁇ m. The particle size distribution was measured in the same manner as in Example 1. As a result, this chabazite-type zeolite had a 10% particle size of 4.18 ⁇ m, a 50% particle size of 9.16 ⁇ m, and a 90% particle size of 17.9 ⁇ m. The chabazite-type zeolite by heating 1 hour at 500 ° C. After the NH 4 + -type chabazite-type zeolite NH 4 + exchanged to was the H + form chabazite-type zeolite.
  • the hydrothermal durability treatment was performed in the same manner as in Example 13.
  • the obtained catalyst dry powder was pressure-molded, pulverized, and sized to 12 to 20 mesh.
  • 3 ml of the sized zeolite was charged into a normal pressure fixed bed flow type reaction tube, and treated at 900 ° C. for 1 hour while flowing air containing 10% by volume of water at 300 ml / min.
  • the method was performed as described above.
  • a feed gas mixture balanced with 200 ppm NO, 200 ppm NH 3 , 10% O 2 , 3% H 2 O and N 2 is added to an atmospheric pressure fixed bed flow reactor containing a hydrothermal endurance treated catalyst.
  • the nitrogen oxide reduction rate of the catalyst was measured.
  • the reaction was carried out at a space velocity of 60,000 hours ⁇ 1 over a temperature range of 150 ° C. to 500 ° C.
  • the nitrogen oxide reduction rate was calculated by dividing the concentration of NO reduced and removed after passing through the catalyst layer by the concentration of NO in the supply gas.
  • Example 15 (Production of chabazite-type zeolite and support of copper) Chabazite-type zeolite was produced in the same manner as in Example 14 except that the raw material composition was heated at 150 ° C. for 70 hours. From powder X-ray diffraction and X-ray fluorescence analysis, the product was pure chabazite-type zeolite, that is, a single phase of chabazite-type zeolite. It was also found that this chabazite-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 14.4. The chabazite-type zeolite had a SEM particle size of 1.90 ⁇ m.
  • the particle size distribution was measured in the same manner as in Example 1.
  • the chabazite-type zeolite had a 10% particle size of 2.76 ⁇ m, a 50% particle size of 5.37 ⁇ m, and a 90% particle size of 9.07 ⁇ m. there were.
  • the chabazite-type zeolite was exchanged with NH 4 + to obtain an NH 4 + -type chabazite-type zeolite, and then heated at 500 ° C. for 1 hour to obtain an H + -type chabazite-type zeolite.
  • Example 16 (supporting copper) A catalyst was produced in the same manner as in Example 14 except that 0.52 g of copper acetate monohydrate and 5.00 g of H + type chabazite-type zeolite were used when copper was supported. As a result of ICP composition analysis, the obtained catalyst had an atomic ratio of copper to aluminum of 0.25. Next, in the same manner as in Example 14, the catalyst was pressure-molded, sized and hydrothermally treated, and then the nitrogen oxide reduction rate (%) was measured.
  • Example 17 (Supporting copper) A catalyst was produced in the same manner as in Example 15 except that an aqueous copper acetate solution prepared by reducing the amount of copper acetate monohydrate to half (1.42 g) was used. As a result of ICP composition analysis, the obtained catalyst had an atomic ratio of copper to aluminum of 0.32. Next, in the same manner as in Example 14, the catalyst was pressure-molded, sized and hydrothermally treated, and then the nitrogen oxide reduction rate (%) was measured.
  • Example 18 (Copper loading) A catalyst was produced in the same manner as in Example 15 except that zeolite 7 (Example 7) was used as the zeolite supporting copper.
  • the dry powder of zeolite 7 was calcined at 600 ° C. for 2 hours under air flow.
  • An ion exchange treatment was performed by introducing the solution into an aqueous solution in which an excessive amount of ammonium chloride was dissolved with respect to the amount of aluminum contained in the zeolite. After the ion exchange treatment, solid-liquid separation was performed, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C.
  • the obtained dry powder was subjected to fluorescent X-ray analysis, and it was confirmed that Na or K could be removed to the detection lower limit (Na 2 O, K 2 O ⁇ 0.01 wt%) of the fluorescent X-ray analysis.
  • This NH 4 + type chabazite-type zeolite was calcined at 500 ° C. for 1 hour to obtain an H + type chabazite-type zeolite. After adding 0.95 g of copper acetate monohydrate to 80 g of pure water, the solution was stirred at 200 rpm for 10 minutes to prepare a copper acetate aqueous solution.
  • the copper acetate aqueous solution was charged with 5.45 g (dry base) of the above H + type chabasite-type zeolite, stirred at 200 rpm at 30 ° C. for 2 hours, and then solid-liquid separated with Nutsche.
  • the solid phase obtained by solid-liquid separation was washed with 400 g of warm pure water and dried at 110 ° C. overnight to produce a catalyst.
  • the obtained catalyst had an atomic ratio of copper to aluminum of 0.24.
  • Example 14 the catalyst was pressure-molded, sized and subjected to hydrothermal durability treatment, and then the nitrogen oxide reduction rate (%) was measured.
  • Example 19 (supporting copper) A catalyst was produced in the same manner as in Example 18 except that an aqueous copper acetate solution prepared by adjusting the amount of copper acetate monohydrate to 1.5 times (1.42 g) was used. As a result of ICP composition analysis, the obtained catalyst had an atomic ratio of copper to aluminum of 0.29.
  • Example 14 the catalyst was pressure-molded, sized and subjected to hydrothermal durability treatment, and then the nitrogen oxide reduction rate (%) was measured.
  • Example 20 (supporting copper) A catalyst was produced in the same manner as in Example 19 except that zeolite 8 (Example 8) was used as the zeolite supporting copper. As a result of ICP composition analysis, the obtained catalyst had an atomic ratio of copper to aluminum of 0.30.
  • Example 14 the catalyst was pressure-molded, sized and subjected to hydrothermal durability treatment, and then the nitrogen oxide reduction rate (%) was measured.
  • Example 21 (supporting copper) A catalyst was produced in the same manner as in Example 19 except that zeolite 10 (Example 10) was used as the zeolite supporting copper. As a result of ICP composition analysis, the obtained catalyst had an atomic ratio of copper to aluminum of 0.24.
  • Example 14 the catalyst was pressure-molded, sized and subjected to hydrothermal durability treatment, and then the nitrogen oxide reduction rate (%) was measured.
  • Comparative Example 11 (Production of chabasite-type zeolite and loading of copper)
  • a zeolite supporting copper As a zeolite supporting copper, a zeolite was synthesized by the method described in US Pat. No. 4,665,110. The X-ray diffraction pattern from the X-ray diffraction pattern of the obtained composite was the same as the X-ray diffraction pattern described in US Pat. No. 4,544,538. Therefore, it was confirmed that this zeolite was a chabazite type zeolite. This chabazite-type zeolite had a SEM particle size of 0.48 ⁇ m and a SiO 2 / Al 2 O 3 molar ratio of 22.3.
  • the chabazite-type zeolite of Comparative Example 1 has not only a small SEM particle diameter but also a large SiO 2 / Al 2 O 3 molar ratio as compared with the chabazite-type zeolites of Examples 14 and 15. I understood.
  • Example 14 (Measurement of hydrothermal durability treatment and nitrogen oxide reduction rate (%)) Next, in the same manner as in Example 14, the catalyst was pressure-formed, sized and subjected to hydrothermal durability treatment, and then the nitrogen oxide reduction rate (%) was measured.
  • Comparative Example 12 (Production of chabasite-type zeolite and loading of copper) A catalyst was produced in the same manner as in Comparative Example 11, except that 6.0 g of copper acetate monohydrate was added to 200 g of pure water and stirred at 200 rpm for 10 minutes to prepare a copper acetate aqueous solution.
  • the obtained chabasite-type zeolite had an SEM particle size of 0.48 ⁇ m and a SiO 2 / Al 2 O 3 molar ratio of 22.3.
  • the chabazite-type zeolite of Comparative Example 2 has not only a small SEM particle diameter but also a large SiO 2 / Al 2 O 3 molar ratio as compared with the chabazite-type zeolite of Examples 14 and 15. I understood. Further, this chabasite-type zeolite was exchanged with NH 4 + and then heated at 500 ° C. for 1 hour to obtain an H + -type chabasite-type zeolite. A catalyst was obtained by loading copper thereon in the same manner as in Comparative Example 1. As a result of ICP composition analysis, the obtained catalyst had an atomic ratio of copper to aluminum of 0.41, and a SiO 2 / Al 2 O 3 molar ratio of 22.6.
  • Example 14 the catalyst was pressure-molded, sized and subjected to hydrothermal durability treatment, and then the nitrogen oxide reduction rate (%) was measured.
  • Comparative Example 13 (supporting copper) A catalyst was produced in the same manner as in Example 18 except that the zeolite supporting copper was changed to Comparative Zeolite 8 (Comparative Example 8).
  • the dry powder of comparative zeolite 8 was calcined at 600 ° C. for 2 hours under air flow.
  • An ion exchange treatment was performed by introducing the solution into an aqueous solution in which an excessive amount of ammonium chloride was dissolved with respect to the amount of aluminum contained in the zeolite. Subsequently, it was separated into solid and liquid, washed with a sufficient amount of pure water, and dried at 110 ° C.
  • the obtained dry powder was subjected to fluorescent X-ray analysis, and it was confirmed that Na or K could be removed to the detection lower limit (Na 2 O, K 2 O ⁇ 0.01 wt%) of the fluorescent X-ray analysis.
  • This NH 4 + type chabazite-type zeolite was calcined at 500 ° C. for 1 hour to obtain an H + type chabazite-type zeolite. After adding 1.54 g of copper acetate monohydrate to 200 g of pure water, the solution was stirred at 200 rpm for 10 minutes to prepare a copper acetate aqueous solution.
  • Example 14 the catalyst was pressure-molded, sized and subjected to hydrothermal durability treatment, and then the nitrogen oxide reduction rate (%) was measured.
  • Comparative Example 14 (copper loading) A catalyst was produced in the same manner as in Comparative Example 13 except that an aqueous copper acetate solution prepared by triple the amount of copper acetate monohydrate was used. As a result of ICP composition analysis, the resulting catalyst had an atomic ratio of copper to aluminum of 0.30.
  • Example 14 the catalyst was pressure-molded, sized and subjected to hydrothermal durability treatment, and then the nitrogen oxide reduction rate (%) was measured.
  • Comparative Example 15 (supporting copper) Except for using a copper acetate aqueous solution prepared with 10 times the amount of copper acetate monohydrate, and adding the H + type chabasite zeolite to the copper acetate aqueous solution and stirring the temperature to 60 ° C.
  • a catalyst was produced in the same manner as in Comparative Example 13. As a result of ICP composition analysis, the obtained catalyst had an atomic ratio of copper to aluminum of 1.02.
  • Example 14 the catalyst was pressure-molded, sized and subjected to hydrothermal durability treatment, and then the nitrogen oxide reduction rate (%) was measured.
  • Comparative Example 16 (copper support) A catalyst was produced with reference to the method disclosed in Example 1 of US Pat. No. 2011 / 020204A1, with the zeolite supporting copper as the comparative zeolite 10 (Comparative Example 10). 11 g of dry powder of comparative zeolite 10 was added to an aqueous solution in which 89 g of ammonium nitrate was dissolved in 165 g of pure water to obtain a slurry. The slurry was stirred at 80 ° C. for 1 hour, and the zeolite was ion-exchanged into NH 4 + type chabazite type zeolite.
  • a copper sulfate aqueous solution was prepared by dissolving 1.02 g of copper sulfate pentahydrate in 50 g of pure water. To this aqueous copper sulfate solution, 3.5 g of the above H + type chabasite zeolite was added and stirred at 70 ° C. for 1 hour. Next, the solid phase obtained by solid-liquid separation was washed with 500 g of pure water and dried at 110 ° C. overnight to produce a catalyst. As a result of ICP composition analysis, the obtained catalyst had an atomic ratio of copper to aluminum of 0.19.
  • Example 14 the catalyst was pressure-molded, sized and subjected to hydrothermal durability treatment, and then the nitrogen oxide reduction rate (%) was measured.
  • Table 6 shows the compositions and SEM particle sizes of the copper-supported chabazites of Examples 14 to 21 and Comparative Examples 11 to 16, and the nitrogen oxide removal rate (%) at 150 ° C. and 500 ° C. after the hydrothermal durability treatment. It was shown that the chabazite-type zeolite according to the present invention has a high nitrogen oxide reduction and removal activity and superior hydrothermal durability compared to conventional chabazite-type zeolites.
  • the chabazite-type zeolite according to the present invention has high durability and heat resistance, it can be suitably used, for example, as a selective catalytic reduction catalyst for nitrogen oxides in automobile exhaust gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本発明のチャバザイト型ゼオライトは、SiO/Alモル比が15未満であって、平均粒子径が1.0μm以上8.0μm以下である。本発明のチャバザイト型ゼオライトは、耐久性及び耐熱性に優れ、また、銅が担持されているチャバザイト型ゼオライトは、従来の銅が担持されているチャバザイト型ゼオライトに比べて、低温での窒素酸化物の還元率が向上した。

Description

チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法
 本発明は、大結晶を有するチャバザイト型ゼオライト及びその製造方法に関するものである。
 また本発明は、銅が担持されている新規なチャバザイト型ゼオライトに関する。更には、従来の銅が担持されているチャバザイト型ゼオライト触媒と比べ、低温における窒素酸化物の還元率が高い、チャバザイト型ゼオライトを含む窒素酸化物還元除去触媒に関する。
 更に、その窒素酸化物還元除去触媒を使用して、ガス流中に含まれる窒素酸化物を酸素の存在下で還元する方法に関する。
 本発明は、2010年12月22日に、日本に出願された特願2010-285496号、及び2011年3月23日に、日本に出願された特願2011-064882号に基づき優先権を主張し、その内容をここに援用する。
 チャバザイト型ゼオライトは、3.8×3.8オングストロームの酸素8員環から構成される3次元細孔構造を有するゼオライトであり、国際ゼオライト学会(International Zeolite Association)において、結晶構造の詳細が同定されたゼオライトとして、CHAという構造コードで命名かつ分類されている(非特許文献1)。
 チャバザイト型ゼオライトは天然に産出するゼオライトとして知られており、典型的にはCa 2+[Si24Al1272]の組成を有する(非特許文献2)。合成ゼオライトとしての例は、特許文献1にゼオライトD、特許文献2にゼオライトRとして、SiO/Alモル比が3.45~4.9のチャバザイト型ゼオライトが開示されている。代表的な合成方法として、Y型ゼオライトを原料に水熱条件で結晶化する方法が特許文献3に開示されている。
 特許文献4及び特許文献5にはSiO/Alモル比が5~50の、いわゆる高シリカチャバザイト型ゼオライトとその合成方法が、SSZ-13として開示されている。
 また特許文献6には、SiO/Alモル比が20~50で結晶径が0.5μm以下のチャバザイト型ゼオライトが、SSZ-62として開示されている。
 更にSiO/Alモル比が50以上のチャバザイト型ゼオライトを合成できることが、フッ素を添加する方法について特許文献7及び非特許文献3に、フッ素を添加しない方法について特許文献8にそれぞれ開示されている。
 近年では、自動車排ガス中における窒素酸化物の選択還元触媒として、特に銅が担持されているチャバザイト型ゼオライトが注目されている。
 銅が担持されているチャバザイト型ゼオライトとしては、SSZ-62に銅を担持した触媒(特許文献6)やSiO/Alモル比が約15よりも大きく、銅のアルミニウムに対する原子割合が約0.25を超える範囲で銅が担持されている触媒が開示されている(特許文献9)。
 また特許文献10には、SiO/Alモル比が15~50であって、平均粒子径が1.5μm以上であるチャバザイト型ゼオライトからなる触媒が開示されている。
 また、SiO/Alモル比が15より小さく、脱硝触媒として利用できるチャバザイト型ゼオライトが開示されている(特許文献11)。さらに、特許文献11では、700℃耐熱条件下で、SiO/Alモル比が10より小さいチャバザイト型ゼオライトが好ましいことが示されている。
 しかしながら、これらのチャバザイト型ゼオライト触媒は、高温水蒸気雰囲気下での耐久処理(「水熱耐久処理」ともいう)後における、低温域での窒素酸化物の還元率が未だ不十分であった。そのため、更に高性能な窒素酸化物還元除去触媒が望まれている。
 このようにチャバザイト型ゼオライトは多様な用途、特に吸着剤や触媒担体としての利用が期待されているものであるが、工業的に使用するためには十分なイオン交換能や固体酸性を有するとともに、吸着剤あるいは触媒担体としての耐久性が必要となる。例えば加熱再生工程を含む吸脱着プロセスでは繰り返し加熱されることによっても吸着性能が低下しないこと、或いは排ガス浄化に利用される触媒では高温下で触媒性能が維持される熱的な耐久性が必要である。更に触媒や吸着剤としては、ゼオライトは押出成型品やハニカム担体に塗布する形態で使用されるため、ゼオライトの粒子径分布が適切な水準にあることが求められる。そのため、従来では得られなかった、より優れた耐久性及び耐熱性を有し、かつ、水熱耐久処理後における低温域での窒素酸化物の還元率が高く、更には粒子径分布が制御されたチャバザイト型ゼオライトが求められていた。
英国特許868,846号明細書 米国特許3,030,181号明細書 米国特許4,503,024号明細書 米国特許4,544,538号明細書 米国特許4,665,110号明細書 米国特許6,709,644号明細書 特表2007-534582号公報 特表2008-521744号公報 特表2010-519038号公報 特開2010-168269号公報 米国特許2011/020204A1公報
ATLAS OF ZEOLITE FRAMEWORK TYPES,Fifth Revised Edition,p.96(2001) Nature,Vol.181,p.1794(1958) Chem.Commun,p.1881(1998)
 本発明は、触媒担体や吸着剤の基材として、イオン交換サイト数や固体酸量の観点からAl含有量が高く、かつ高い耐久性及び耐熱性を有するチャバザイト型ゼオライト及びその製造方法を提供することを目的としている。更に本発明は、銅が担持されている新規なチャバサイト型ゼオライトを提供する。更には、従来の銅が担持されているチャバサイト型ゼオライト触媒と比べ、低温域における窒素酸化物の還元率が高い、銅が担持されているゼオライトを含む窒素酸化物還元除去触媒、並びに、この触媒を使用する窒素酸化物還元除去方法を提供することにある。
 本発明者らは、チャバザイト型ゼオライトの耐久性及び耐熱性向上及びその製造方法について鋭意検討を重ねた。その結果、触媒、吸着剤やイオン交換剤として有用なSiO/Alモル比が15未満であり、かつ、平均粒子径が1.0μm以上8.0μm以下のチャバザイト型ゼオライトは耐久性及び耐熱性が高く、更には、本発明に係る新規なチャバザイト型ゼオライトの製造方法を見出し、本発明を完成させるに至った。
 本発明は、以下の態様を有する。
(1)SiO/Alモル比が15未満であって、平均粒子径が1.0μm以上8.0μm以下であることを特徴とするチャバザイト型ゼオライト。
(2)平均粒子径が1.0μm以上5.0μm以下である前記(1)に記載のチャバザイト型ゼオライト。
(3)90%粒子径が体積基準で15.0μm以下ある前記(1)または(2)に記載のチャバザイト型ゼオライト。
(4)原料組成物における構造指向剤のSiOに対するモル比が、
0.05≦構造指向剤/SiO<0.13であり、かつ、
原料組成物における水のSiOに対するモル比が、
5≦HO/SiO<30である原料組成物を、Na、K、Rb、Cs及びNH からなる群から選ばれる少なくとも2種の陽イオンの存在下において結晶化させることを特徴とする前記(1)乃至(3)のいずれか一つに記載のチャバザイト型ゼオライトの製造方法。
(5)前記構造指向剤が、N,N,N-トリアルキルアダマンタンアンモニウムをカチオンとする水酸化物、ハロゲン化物、炭酸塩、メチルカーボネート塩及び硫酸塩、及び、N,N,N-トリメチルベンジルアンモニウムイオン、N-アルキル-3-キヌクリジノールイオン、またはN,N,N-トリアルキルエキソアミノノルボルナンをカチオンとする水酸化物、ハロゲン化物、炭酸塩、メチルカーボネート塩及び硫酸塩からなる群から選ばれる少なくとも一種であることを特徴とする前記(4)に記載のチャバザイト型ゼオライトの製造方法。
(6)前記構造指向剤が、N,N,N-トリメチルアダマンタンアンモニウム水酸化物、N,N,N-トリメチルアダマンタンアンモニウムハロゲン化物、N,N,N-トリメチルアダマンタンアンモニウム炭酸塩、N,N,N-トリメチルアダマンタンアンモニウムメチルカーボネート塩及びN,N,N-トリメチルアダマンタンアンモニウム硫酸塩からなる群から選ばれる少なくとも一種であることを特徴とする前記(5)に記載のチャバザイト型ゼオライトの製造方法。
(7)SiO/Alモル比が15未満であって、平均粒子径が1.0μm以上8.0μm以下であり、銅が担持されていることを特徴とするチャバザイト型ゼオライト。
(8)平均粒子径が1.0μm以上5.0μm以下であることを特徴とする前記(7)に記載のチャバザイト型ゼオライト。
(9)体積基準の90%粒子径が15.0μm以下であることを特徴とする前記(7)または(8)に記載のチャバザイト型ゼオライト。
(10)銅/アルミニウムの原子割合が0.10~1.00であることを特徴とする前記(7)乃至(9)のいずれか一つに記載のチャバザイト型ゼオライト。
(11)イオン交換サイトが銅及び/又はプロトン(H)で占有されていることを特徴とする前記(7)乃至(10)のいずれか一つに記載のチャバザイト型ゼオライト。
(12)結晶構造がSSZ-13であることを特徴とする前記(7)乃至(11)のいずれか一つに記載のチャバザイト型ゼオライト。
(13)前記(7)及至(12)のいずれか一つに記載のチャバザイト型ゼオライトを含むことを特徴とする窒素酸化物還元除去触媒。
(14)水熱耐久処理後における、150℃での窒素酸化物の還元率が52%以上である前記(13)に記載の窒素酸化物還元除去触媒。
(15)前記(13)又は(14)に記載の窒素酸化物還元除去触媒を使用することを特徴とする窒素酸化物の還元除去方法。
 本発明に係るチャバザイト型ゼオライトは、触媒担体や吸着剤の基材として有用な組成を有し、耐久性及び耐熱性が高い。また、本発明に係るチャバザイト型ゼオライトは、実用上で有用な粒子径分布に制御されている。更には耐久性及び耐熱性の高いチャバザイト型ゼオライトを高価な有機構造指向剤の使用量が少ない条件で製造できる。更に本発明に係る銅が担持されているチャバサイト型ゼオライトを含む窒素酸化物還元触媒は、水熱耐久処理後であっても、高い触媒活性を有する。
ゼオライト1の走査型電子顕微鏡(これ以降、「SEM」とする。)写真である。 ゼオライト3のSEM写真である。 ゼオライト5のSEM写真である。 ゼオライト9のSEM写真である。 ゼオライト10のSEM写真である。 比較ゼオライト1のSEM写真である。 比較ゼオライト2のSEM写真である。 比較ゼオライト3のSEM写真である。 比較ゼオライト5のSEM写真である。 比較ゼオライト10のSEM写真である。 実施例21で得られた、銅が担持されているゼオライトのSEM写真である。
 以下、本発明に係るチャバザイト型ゼオライトについて説明する。
 本発明に係るチャバザイト型ゼオライトは、SiO/Alモル比が15未満の高シリカチャバザイトである。好ましくはSiO/Alモル比が10以上15未満である。SiO/Alモル比が15より大きい場合には吸着剤あるいは触媒担体に有用な耐久性及び耐熱性が得られる。しかしながら、用途によって要求されるイオン交換能や固体酸性が不十分となる。
本発明に係るチャバザイト型ゼオライトの耐熱性は、水熱耐久処理後における結晶化度の残存率で評価した。銅が担持されているチャバザイト型ゼオライトの耐久性は、同様の水熱耐久処理後における窒素酸化物の還元率で評価した。なお、水熱耐久処理は、水蒸気を10容量%含む空気流通下において温度900℃、1時間、空間速度6,000hr-1で行った。窒素酸化物還元触媒の性能は水熱耐久処理の性能で評価されることが一般的である。その水熱耐久処理としては、特に規格化されたものはない。従って、本発明に係るチャバザイト型ゼオライトの水熱耐久処理条件は窒素酸化物還元触媒の水熱耐久処理条件として一般的に用いられる条件の範疇であり、特に特殊な条件ではない。
 本発明に係るチャバザイト型ゼオライトは平均粒子径が1.0μm以上8.0μm以下である。従来報告されている1.0μm未満の結晶粒子では吸着剤あるいは触媒担体に用いた場合、耐久性及び耐熱性が低くなる。一方、平均粒子径が8.0μmを超えると、ハニカム担体にコートした場合に目詰まりや剥離が発生しやすくなり、成型品にした場合には圧縮強度が悪化する要因となる。
 本発明に係るチャバザイト型ゼオライトの結晶粒子は、その殆どが菱面体あるいは立方状粒子として分散しており、また菱面がはっきりと観察できる結晶粒子形態を有しているのが特徴である。そのため、本発明に係るチャバザイト型ゼオライトの平均粒子径は、独立に分散している結晶粒子径として評価する。従来に報告されているチャバザイト型ゼオライトには、凝集成長により粒子間の境界が不明瞭な複数の結晶粒子からなる凝集粒子を形成するものがあるが、本発明に係るチャバザイト型ゼオライトの粒子形態とは異なるものである。合成ゼオライトの工業的な製造技術、及びその吸着剤や触媒としての利用の観点から、本発明に係るチャバザイト型ゼオライトは、平均粒子径が1.0μm以上5.0μm以下であることが好ましい。
 本発明に係るチャバザイト型ゼオライトの平均粒子径は、SEM観察に基づく平均粒子径を意味する。ここで、SEM観察に基づく平均粒子径とは、走査型電子顕微鏡(SEM)による観察像から計測された粒子径(一次粒子径)であって、50個以上の一次粒子が観察できる任意倍率での視野中に存在するチャバザイト型ゼオライトの各粒子径の平均値をいう。
本発明に係るチャバザイト型ゼオライトの平均粒子径は、SEM観察に基づく平均粒子径の測定方法以外の方法で測定して、1.0μm以上8.0μm以下の範囲に含まれない平均粒子径を有するチャバザイト型ゼオライトであっても、SEM観察に基づく方法で測定すれば、1.0μm以上8.0μm以下であれば、本発明に係るチャバザイト型ゼオライトの平均粒子径の範囲に含まれる。
SEM観察に基づく平均粒子径は、例えば、5,000倍の倍率で撮影した1つまたは複数の観察視野において任意に選択した50個以上の結晶粒子を任意方向に測った粒子径を相加平均することによって、評価することができる。SEMの観察条件は、結晶粒子の形状及び個数が明瞭に観察できるものであれば特に限定されない。
 また本発明に係るチャバザイト型ゼオライトにおいては、90%粒子径が15.0μm以下であることが好ましく、10.0μm以下であることがより好ましい。なお、前記の平均粒子径がSEM観察に基づく一次粒子であるのに対して、90%粒子径はこれらの凝集粒子の粒子径を意味する。
本発明に係るチャバザイト型ゼオライトの粒子径分布は、レーザー回折散乱法による粒子径分布測定(体積分布)で評価することができる。レーザー回折散乱法による粒子径分布は、ゼオライトを水中に分散させて、超音波式ホモジナイザーで結晶粒子の分散状態を均一化にする処理を施した後に測定することで、再現性良く定量化することができる。90%粒子径が15.0μmを超えると、本発明に係るチャバザイト型ゼオライトの特徴である平均粒子径が1.0μm以上8.0μm以下の分散した結晶粒子が得られ難い。またハニカム担体にコートした場合には目詰まりや剥離が発生しやすくなり、成型品にした場合には圧縮強度が悪化する要因となる。
 次に本発明に係るチャバザイト型ゼオライトの製造方法について説明する。
 本発明に係るチャバザイト型ゼオライトの原料は、シリカ源、アルミニウム源、アルカリ源、構造指向剤(これ以降、「SDA」と称する。)と水から構成される。また、種晶などの結晶化促進作用を有する成分を添加しても良い。
シリカ源は、例えば、コロイダルシリカ、無定型シリカ、珪酸ナトリウム、テトラエチルオルトシリケート及びアルミノシリケートゲルなどを使用することができる。
 アルミナ源は、例えば、硫酸アルミニウム、アルミン酸ナトリウム、水酸化アルミニウム、塩化アルミニウム、アルミノシリケートゲル及び金属アルミニウムなどを用いることができる。シリカ源及びアルミナ源は、他の原料と十分均一に混合できる形態のものが好ましい。
 アルカリ源は、例えば、ナトリウム、カリウム、ルビジウム、セシウムおよびアンモニウムの水酸化物、ハロゲン化物、硫酸塩、硝酸塩、炭酸塩などの各種の塩、アルミン酸塩及び珪酸塩中のアルカリ成分、アルミノシリケートゲル中のアルカリ成分などを用いることができる。
 SDAとしては、N,N,N-トリアルキルアダマンタンアンモニウムをカチオンとする水酸化物、ハロゲン化物、炭酸塩、メチルカーボネート塩及び硫酸塩;及びN,N,N-トリメチルベンジルアンモニウムイオン、N-アルキル-3-キヌクリジノールイオン、またはN,N,N-トリアルキルエキソアミノノルボルナンをカチオンとする水酸化物、ハロゲン化物、炭酸塩、メチルカーボネート塩及び硫酸塩からなる群から選ばれる少なくとも一種を使用することができる。
 SDAとして、N,N,N-トリメチルアダマンタンアンモニウム水酸化物(これ以降、“TMADAOH”と略記する。)、N,N,N-トリメチルアダマンタンアンモニウムハロゲン化物、N,N,N-トリメチルアダマンタンアンモニウム炭酸塩、N,N,N-トリメチルアダマンタンアンモニウムメチルカーボネート塩及びN,N,N-トリメチルアダマンタンアンモニウム硫酸塩からなる群から選ばれる少なくとも一種を使用することがより好ましい。
 本発明に係るチャバザイト型ゼオライトは、SDA/SiOモル比が0.05以上0.13未満、HO/SiOモル比が5以上30未満で製造することができる。
 SDA/SiOモル比が0.13以上では、従来の様に結晶の平均粒子径が1.5μm未満のチャバザイト型ゼオライトしか得られない。またSDAは高価であるため、SDA/SiOモル比が0.13以上では経済合理性にも欠ける。一方、SDA/SiOモル比が0.05未満では、チャバザイト型ゼオライトの結晶化が不十分となる。そのため、副生物(不純物)が生成する、あるいは、結晶化度が低くなるため、得られるチャバザイト型ゼオライトの耐熱性が不十分となる。
 HO/SiOモル比が30以上であると、収量が低くなり不経済である。一方、5未満では、原料組成物の粘度が増大し流動性が無くなるため、工業的な製造が困難となる。またいずれの場合にも副生物(不純物、未反応物の残存)が発生し易い。
 本発明に係るチャバザイト型ゼオライトの原料組成物のSiO/Alモル比としては、50以下が好ましい。50より大きいと、SiO/Alモル比が15未満のチャバザイト型ゼオライトの合成には不経済あるいは困難である。
水酸イオン量の指標であるOH/SiOモル比は0.1以上0.9未満が好ましい。より好ましくは0.15~0.5である。0.1未満であるとゼオライトの結晶化が進行し難く、また0.9以上の場合はシリカ成分の溶解が促進されるため、本発明に係るSiO/Alモル比と粒子径を有するチャバザイト型ゼオライトが得られ難い。
 また本発明に係るチャバザイト型ゼオライトの製造の際には、鉱化作用を有する陽イオンとして、Na、K、Rb、Cs及びNH からなる群から選ばれる少なくとも2種を存在させて結晶化させる。これらの陽イオンが含まれない場合、SDA/SiOモル比が0.13未満において結晶化の進行が不十分となり、また副生物(不純物結晶)が生成する。更には本発明に係る平均粒子径が1.0μm以上8.0μm以下のチャバザイト型ゼオライトが得られ難い。これらの陽イオンが1種のみ含まれる場合も同様に、結晶化が不十分になるか、あるいは本発明に係る平均粒子径が得られ難い。
本発明に係るチャバザイト型ゼオライトは、水、シリカ原料、アルミナ原料、アルカリ成分、及びSDAから成る原料組成物を密閉式圧力容器中で、100~200℃の任意の温度で、十分な時間をかけて結晶化させることにより製造することができる。結晶化は、原料組成物を静置した状態で行ってもよいが、原料組成物を攪拌混合した状態で行うことが好ましい。
結晶化終了後、十分放冷し、固液分離し、十分量の純水で洗浄し、100~150℃の任意の温度で乾燥して本発明に係るチャバザイト型ゼオライトが得られる。
 得られたチャバザイト型ゼオライトはそのまま吸着剤、触媒担体あるいはイオン交換体として使用することができる。また、得られたチャバザイト型ゼオライトは細孔内にSDA及び/又はアルカリ金属を含有しており、必要に応じてこれらを除去した後に使用することもできる。SDA及び/又はアルカリ金属の除去処理は、酸性溶液やSDA分解成分を含んだ薬液を用いた液相処理、レジンなどを用いた交換処理、熱分解処理を採用することができ、これらの処理を組合せても良い。更には、ゼオライトのイオン交換能を利用してH型やNH型に変換して用いることもでき、その方法は公知の技術を採用することができる。
 次に、本発明に係る銅が担持されている新規なチャバザイト型ゼオライト、及びそのゼオライトを含む触媒について説明する。
 チャバザイト型ゼオライトは、窒素酸化物還元触媒、特にアンモニアを還元剤として用いるSCR触媒といわれる選択的接触還元触媒(SCRは“Selective catalytic reduction”の略。)に用いられるゼオライトとして知られている。
 本発明に係る銅が担持されている新規なチャバザイト型ゼオライトは、SiO/Alモル比が15未満のチャバザイト型ゼオライトであり、且つ、平均粒子径が1.0μm以上8.0μm以下である銅が担持されているチャバザイト型ゼオライトである。
 本発明に係る銅が担持されている新規なチャバザイト型ゼオライトは、チャバザイト型ゼオライトと銅の相互作用により、SCR触媒として使用した場合に優れた触媒活性を呈する。
 本明細書において、触媒活性とは、本発明に係る銅が担持されているチャバザイト型ゼオライトにおける、窒素酸化物の還元率を意味する。担持される銅のアルミニウムに対する原子割合(銅/アルミニウム)は0.10~1.00の範囲であることが好ましい。原子割合(銅/アルミニウム)の下限は0.15以上であることがより好ましく、0.2以上であることがより好ましい。また、原子割合(銅/アルミニウム)の上限は0.6以下であることが好ましく、0.4以下であることがより好ましい。また銅/アルミニウムの原子割合が1.00を超えると、水熱耐久処理により触媒活性が著しく低下する。
 本発明に係る銅が担持されている新規なチャバザイト型ゼオライトは、そのイオン交換サイトが銅及び/又はプロトン(H)で占有されていることが好ましい。銅が占有しているイオン交換サイト以外のイオン交換サイトが、プロトンのみで占有されていることで、窒素酸化物の還元率がより高くなる。
 またSiO/Alモル比は15未満であり、好ましくはSiO/Alモル比が10以上15未満であり、より好ましくSiO/Alモル比が10以上14.8以下であり、さらに好ましくはSiO/Alモル比が11以上14.8以下である。
 SiO/Alモル比を15未満とすることにより、従来のSiO/Alモル比が高いチャバザイト型ゼオライト(例えば、SiO/Alモル比が15~50のチャバザイト型ゼオライト)に比べ、イオン交換サイト数(触媒活性点)が多くなる。これにより、本発明に係る銅が担持されている新規なチャバザイト型ゼオライトをSCR触媒として使用した場合に優れた触媒活性を得ることができる。
 本発明に係る銅が担持されている新規なチャバサイト型ゼオライトは、平均粒子径が1.0μm以上8.0μm以下である。
 本発明に係るチャバザイト型ゼオライトは、平均粒子径が1.0μm以上であること、好ましくは1.2μm以上であること、より好ましくは1.5μmであること、さらにより好ましくは2.0μm以上であることにより、耐熱水性を高めたゼオライトである。これにより、水熱耐久処理後の400℃以上、好ましくは、400℃以上600℃以下の高温域における窒素酸化物の還元率だけでなく、水熱耐久処理後の100℃以上250℃以下、好ましくは100℃以上200℃以下、より好ましくは150℃以上200℃以下の低温域における窒素酸化物の還元率が、従来の銅が担持されているチャバザイト型ゼオライトと比べて高くなる。前記低温域における窒素酸化物の還元率が高くなる要因は必ずしも明らかではない。しかしながら、平均粒子径がこの範囲で大きくなることにより、本発明に係るチャバザイト型ゼオライトの低温域における窒素酸化物の還元率がより高くなりやすい。
 本発明に係る銅が担持されているチャバザイト型ゼオライトにおける、窒素酸化物の還元率としては、水熱耐久処理後、150℃で52%以上、より好ましくは、150℃で54%以上であることが好ましい。150℃以外の温度における窒素酸化物の還元率が、52%以上でない場合であっても、150℃における還元率が52%以上であるものは、本発明に係る銅が担持されているチャバザイト型ゼオライトが有する窒素酸化物の還元率の範囲に含まれる。
一方、平均粒子径が大きくなりすぎると触媒として使用する際の操作性が低下する。従って、本発明に係るチャバザイト型ゼオライトの平均粒子径は8.0μm以下であり、好ましくは5.0μm以下であり、より好ましくは、3.5μm以下である。
 なお、本発明における平均粒子径とは、結晶子が集合した一次粒子である。そのため、一次粒子が凝集した粒子(いわゆる二次粒子)とは異なる。
また本発明に係る銅が担持されているチャバザイト型ゼオライトは、90%粒子径が15.0μm以下であることが好ましい。より好ましくは10.0μm以下である。本発明に係る粒子径分布は、レーザー回折散乱法による粒子径分布測定(体積分布)で評価することができる。レーザー回折散乱法による粒子径分布は、ゼオライトを水中に分散させて、超音波式ホモジナイザーで結晶粒子の分散状態を均一化にする処理を施した後に測定することで、再現性良く定量化することができる。90%粒子径が15.0μmを超えると、本発明に係るチャバザイト型ゼオライトの特徴である平均粒子径が1.0μm以上8.0μm以下の分散した結晶粒子が得られ難い。またハニカム担体にコートした場合には目詰まりや剥離が発生しやすくなり、成型品にした場合には圧縮強度が悪化する要因となる。
 本発明に係るゼオライトはチャバザイト構造を構成要件とする。その中でも特にSSZ-13に属する結晶構造を有するチャバザイト型ゼオライトが好ましい。その理由は、SiO/Alモル比が5以上であるSSZ-13に属する結晶構造を有することで、チャバザイト型ゼオライトに十分な耐久性を付与することができるからである。
 次に、本発明に係る銅が担持されている新規なチャバザイト型ゼオライトの製造方法及び使用方法について説明する。
 本発明に係る銅が担持されている新規なチャバザイト型ゼオライトの製造方法は特に限定されない。例えば、チャバザイト型ゼオライトを製造し、これをH型に変換した後に、銅を担持させることにより製造することができる。
 本発明に係る銅が担持されている新規なチャバザイト型ゼオライトは、前述の製造方法で得られたチャバザイト型ゼオライトに銅を担持させて製造することが好ましい。特に、H型のチャバザイト型ゼオライトに銅を担持させて製造することが好ましい。これにより、イオン吸着サイトが銅及び/又はプロトン(H)で占有されているチャバザイト型ゼオライトとすることができる。
 銅が担持されれば、その担持方法は特に限定されない。銅の担持方法として、イオン交換法、含浸担持法、蒸発乾固法、沈殿担持法、物理混合法、骨格置換法等の方法を採用することができる。
 銅担持に用いる原料も、銅を含む硝酸塩、硫酸塩、酢酸塩、塩化物、錯塩、酸化物、複合酸化物など可溶性、不溶性のいずれも使用できる。
 チャバザイト型ゼオライトに銅を担持させる方法としては、本発明に係るチャバザイト型ゼオライトに対し、例えば、0.2倍等量以上5.0倍等量未満の割合の酢酸銅一水和物を用いてイオン交換法で銅を担持させる方法等を挙げることができる。
 なお、チャバザイト型ゼオライトに銅を担持させる際に、用いられる銅の当量数については、チャバザイト型ゼオライト中のアルミニウムに対して、銅担持に用いる原料に含まれる銅が、原子比(Cu/Al比)で0.5に相当する量を1倍等量とした。
 本発明に係る銅が担持されている新規なチャバザイト型ゼオライトは、排気ガス処理システムに組み込まれる触媒として使用することができる。更には、ガス流中に含まれる窒素酸化物を、酸素の存在下で還元除去する触媒、いわゆる窒素酸化物還元触媒として使用することができる。
 特に、本発明に係る銅が担持されている新規なチャバザイト型ゼオライトは、水熱耐久処理後であっても、400℃以上、好ましくは、400℃以上600℃以下の高温域での窒素酸化物の還元率が高いだけではなく、100℃以上250℃以下、好ましくは100℃以上200℃以下、より好ましくは150℃以上200℃以下の低温域における窒素酸化物の還元率が高い触媒、いわゆる低温活性に優れた窒素酸化物還元触媒として使用することができる。なお、本発明においては、水熱耐久処理後の高温域での窒素酸化物の還元率を、500℃での窒素酸化物の還元率で評価し、水熱耐久処理後の低温域での窒素酸化物の還元率を、150℃での窒素酸化物の還元率で評価している。
  本発明に係る銅が担持されている新規なチャバサイト型ゼオライトのSCR触媒としての低温活性は、上記の水熱耐久処理後に、100℃以上250℃以下、好ましくは100℃以上200℃以下、より好ましくは150℃以上200℃以下の低い温度での窒素酸化物還元率を測定することで判断することができる。
 また本発明に係るチャバザイト型ゼオライトからなる窒素酸化物還元触媒は、シリカ、アルミナ及び粘土鉱物等のバインダーと混合し成形して使用することもできる。成形する際に用いられる粘土鉱物として、カオリン、アタパルガイト、モンモリロナイト、ベントナイト、アロフェン、セピオライトが例示できる。また、コージェライト製或いは金属製のハニカム基材にウォッシュコートして使用することもできる。
 排ガスからの窒素酸化物の還元除去は、上記のチャバザイト型ゼオライトから構成される触媒と前記排ガスを接触させることにより行うことができる。本発明に係るチャバザイト型ゼオライトにより還元除去される窒素酸化物は、例えば一酸化窒素、二酸化窒素、三酸化二窒素、四酸化二窒素、一酸化二窒素、及びそれらの混合物が例示される。好ましくは一酸化窒素、二酸化窒素、一酸化二窒素である。ここで本発明が処理可能な排ガスの窒素酸化物濃度は限定されるものではない。
 また前記排ガスには窒素酸化物以外の成分が含まれている場合にも有効であり、炭化水素、一酸化炭素、二酸化炭素、水素、窒素、酸素、硫黄酸化物、水が含まれていても良い。具体的には、本発明に係る窒素酸化物の還元除去方法では、例えば、ディーゼル自動車、ガソリン自動車、ボイラー、ガスタービン等の多種多様の排ガスから窒素酸化物を還元除去することができる。
 本発明に係る窒素酸化物の還元除去方法は、還元剤の存在下で窒素酸化物が還元除去されるが、前記排ガス中に含まれる炭化水素、一酸化炭素、水素等を還元剤として利用することができ、更には必要に応じて適当な還元剤を排ガスに添加して共存させても良い。排ガスに添加される還元剤は特に限定されず、例えば、アンモニア、尿素、有機アミン類、炭化水素、アルコール類、ケトン類、一酸化炭素、水素等が挙げられる。窒素酸化物の還元除去効率をより高めるためには、反応選択性の高いアンモニア、尿素、有機アミン類が好適である。これらの還元剤の添加方法は特に限定されず、還元成分をガス状で直接添加する方法、水溶液などの液状を噴霧し気化させる方法、噴霧熱分解させる方法等を採用することができる。これらの還元剤の添加量は、十分に窒素酸化物を還元除去することができるように任意に設定すれば良い。
 本発明に係る窒素酸化物の還元除去方法において、本発明に係るチャバザイト型ゼオライトから成る触媒と排ガスを接触させる際の空間速度は特に限定されないが、好ましい空間速度は体積基準で500~50万hr-1、更に好ましくは2000~30万hr-1である。
 以下の実施例及び比較例により本発明を具体的に説明する。しかしながら、本発明はこれら実施例に限定されるものではない。
 実施例1(ゼオライト1の製造)
 N,N,N-トリメチルアダマンタンアンモニウム水酸化物25%水溶液(これ以降、「TMADAOH25%水溶液」とする。)13.9gに、純水31.4g、水酸化カリウム48%水溶液2.5g、珪酸ナトリウムと硫酸アルミニウムから調製した無定形アルミノシリケートゲル9.0gを加えよく混合し、原料組成物を得た。原料組成物の組成はSiO:0.048Al:0.124TMADAOH:0.054NaO:0.081KO:18HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら150℃で72時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比は14.9であった。このチャバザイト型ゼオライトについて、SEMによって5,000倍の倍率で撮影した3視野から任意の150個の結晶粒子を選択し、その各粒子径を相加平均して得た粒子径(これ以降、「SEM粒子径」とする。)は1.54μmであった。また、チャバザイト型ゼオライトに純水を加え固形分1%のスラリーとし、超音波分散を2分間施した後にレーザー回折散乱法による粒子径分布測定(体積分布)を行った。その結果、得られたチャバザイト型ゼオライトは、10%粒子径が1.54μm、50%粒子径が2.36μm、及び、90%粒子径が3.39μmであった。このチャバザイト型ゼオライトをゼオライト1とした。
 以下の表1に、チャバザイト型ゼオライトのX線回折パターン(米国特許4,544,538号明細書)と実施例1で得られた生成物のX線回折パターンの比較を示す。
Figure JPOXMLDOC01-appb-T000001
実施例2(ゼオライト2の製造)
 TMADAOH25%水溶液11.1g、純水35.2g、水酸化カリウム48%水溶液1.2g、及び、珪酸ナトリウムと硫酸アルミニウムから調製した無定形アルミノシリケートゲル9.6gを加えよく混合し、原料組成物を得た。原料組成物の組成はSiO:0.063Al:0.098TMADAOH:0.065NaO:0.036KO:18HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら170℃で48時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトはSiO/Alモル比が14.2であった。
 このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が1.03μm、10%粒子径が1.54μm、50%粒子径が3.94μm、及び、90%粒子径が7.14μmであった。このチャバザイト型ゼオライトをゼオライト2とした。
 実施例3(ゼオライト3の製造)
 TMADAOH25%水溶液9.3g、純水36.2g、水酸化ナトリウム48%水溶液0.4g、水酸化カリウム48%水溶液2.0g、及び、脱Na処理を行った無定形アルミノシリケートゲル9.2gを加えよく混合し、原料組成物を得た。原料組成物の組成はSiO:0.065Al:0.081TMADAOH:0.021NaO:0.063KO:18HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら150℃で70時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が14.4であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が1.90μm、10%粒子径が2.76μm、50%粒子径が5.37μm、及び、90%粒子径が9.07μmであった。このチャバザイト型ゼオライトをゼオライト3とした。
 実施例4(ゼオライト4の製造)
 TMADAOH25%水溶液9.3g、純水36.2g、水酸化ナトリウム48%水溶液0.9g、水酸化カリウム48%水溶液1.4g、及び、無定形アルミノシリケートゲル9.3gを加えよく混合して原料組成物を得た。原料組成物の組成はSiO:0.076Al:0.081TMADAOH:0.042NaO:0.042KO:18HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら170℃で70時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が12.5であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が1.59μm、10%粒子径が2.98μm、50%粒子径が7.90μm、及び、90%粒子径が20.7μmであった。このチャバザイト型ゼオライトをゼオライト4とした。
 実施例5(ゼオライト5の製造)
 原料組成物のSiO/Alモル比を変更した以外は、実施例4と同様な方法で生成物を得た。
 粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が14.4であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が2.23μm、10%粒子径が4.65μm、50%粒子径が9.22μm、及び、90%粒子径が16.7μmであった。このチャバザイト型ゼオライトをゼオライト5とした。
 実施例6(ゼオライト6の製造)
 結晶化温度を170℃にした以外は実施例3と同様な方法で生成物を得た。
 粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が14.4であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が2.67μm、10%粒子径が4.18μm、50%粒子径が9.16μm、及び、90%粒子径が17.9μmであった。このチャバザイト型ゼオライトをゼオライト6とした。
 実施例7(ゼオライト7の製造)
 結晶化温度を180℃にした以外は実施例3と同様な方法で生成物を得た。
 粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が14.8であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が3.50μm、10%粒子径が5.95μm、50%粒子径が10.7μm、及び、90%粒子径が19.0μmであった。このチャバザイト型ゼオライトをゼオライト7とした。
 実施例8(ゼオライト8の製造)
 TMADAOH25%水溶液589g、純水2270g、水酸化ナトリウム48%水溶液27g、水酸化カリウム48%水溶液127g、及び、無定形アルミノシリケートゲル582gを加えよく混合して原料組成物を得た。原料組成物の組成はSiO:0.072Al:0.081TMADAOH:0.021NaO:0.063KO:18HOとした。
 この原料組成物を4Lのステンレス製オートクレーブに密閉し、直接に撹拌しながら150℃で91時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が13.4であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が2.34μm、10%粒子径が2.69μm、50%粒子径が6.38μm、及び、90%粒子径が9.96μmであった。このチャバザイト型ゼオライトをゼオライト8とした。
 実施例9(ゼオライト9の製造)
 TMADAOH25%水溶液8.3g、純水37.0g、水酸化ナトリウム48%水溶液0.9g、水酸化カリウム48%水溶液1.4g、及び、無定形アルミノシリケートゲル9.4gを加えよく混合し原料組成物を得た。原料組成物の組成はSiO:0.076Al:0.082TMADAOH:0.043NaO:0.043KO:18HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら150℃で70時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が12.1であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が1.12μm、10%粒子径が2.54μm、50%粒子径が4.26μm、及び、90%粒子径が8.04μmであった。このチャバザイト型ゼオライトをゼオライト9とした。
 実施例10(ゼオライト10の製造)
 TMADAOH25%水溶液7.5g、純水37.0g、水酸化ナトリウム48%水溶液1.0g、水酸化カリウム48%水溶液1.4g、及び、無定形アルミノシリケートゲル9.3gを加えよく混合して原料組成物を得た。原料組成物の組成はSiO:0.072Al:0.065TMADAOH:0.044NaO:0.044KO:18HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら150℃で70時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が13.3であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が1.50μm、10%粒子径が2.74μm、50%粒子径が5.56μm、及び、90%粒子径が9.96μmであった。このチャバザイト型ゼオライトをゼオライト10とした。
 実施例11(ゼオライト11の製造)
 原料組成物のSiO/Alモル比を12、結晶化温度を160℃に変えた以外は実施例10と同様な方法で生成物を得た。
 粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が12.2であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が1.41μm、10%粒子径が3.23μm、50%粒子径が5.84μm、及び、90%粒子径が24.5μmであった。このチャバザイト型ゼオライトをゼオライト11とした。
 実施例12(ゼオライト12の製造)
 TMADAOH25%水溶液6.9g、純水38.2g、水酸化ナトリウム48%水溶液1.0g、水酸化カリウム48%水溶液1.5g、無定形アルミノシリケートゲル9.4gを加えよく混合して原料組成物を得た。原料組成物の組成はSiO:0.082Al:0.060TMADAOH:0.046NaO:0.046KO:18HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら150℃で70時間加熱した。加熱後の生成物を固液分離し、十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Al比が11.8であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が1.45μm、10%粒子径が3.11μm、50%粒子径が5.64μm、及び、90%粒子径が38.2μmであった。このチャバザイト型ゼオライトをゼオライト12とした。
 比較例1(比較ゼオライト1の製造)
 米国特許4,544,538号明細書の実施例2に開示されている方法を参照して、以下の様にチャバザイト型ゼオライトを製造した。
 3号珪酸ナトリウム水溶液(SiO;29.3%、NaO;9.2%)14.7g、N,N,N-トリメチルアダマンタンアンモニウム臭化物(これ以降、「TMADABr」とする。)20%水溶液19.6g、純水2.1gを混合して水溶液を調製した(得られた水溶液を「水溶液A」とする)。次に、純水17.1gに硫酸アルミニウム水溶液(Al;8.0%)1.4g、水酸化ナトリウム48%水溶液2.0gを加えた水溶液を調製した(得られた水溶液を「水溶液B」とする)。水溶液Aに水溶液Bを加え、これを均一になるまで攪拌して原料組成物を得た。原料組成物の組成はSiO:0.016Al:0.20TMADABr:0.47NaO:36HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら140℃で144時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が8.9であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が8.78μm、10%粒子径が8.06μm、50%粒子径が14.46μm、及び、90%粒子径が32.66μmであった。このチャバザイト型ゼオライトを比較ゼオライト1とした。
 比較例2(比較ゼオライト2の製造)
 米国特許4,544,538号明細書の実施例7に開示されている方法を参照して、以下の様にチャバザイト型ゼオライトを製造した。
 3号珪酸ナトリウム水溶液14.9g、TMADABr20%水溶液12.8g、純水7.9gを混合して水溶液を調製した(得られた水溶液を「水溶液A2」とする)。次に純水16.0gに硫酸アルミニウム水溶液3.3g、水酸化ナトリウム48%水溶液2.1gを加えた水溶液を調製した(得られた水溶液を「水溶液B2」とする)。水溶液A2に水溶液B2を加え、これを均一になるまで攪拌して原料組成物を得た。原料組成物の組成はSiO:0.036Al:0.13TMADABr:0.47NaO:36HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら140℃で144時間加熱した。加熱後の生成物を固液分離し、得られた構想を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が10.7であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が0.62μm、10%粒子径が0.65μm、50%粒子径が1.04μm、及び、90%粒子径が1.55μmであった。このチャバザイト型ゼオライトを比較ゼオライト2とした。
 比較例3(比較ゼオライト3の製造)
 原料組成物のSiO/Alモル比を変更したこと以外は、比較例2と同様な方法でチャバザイト型ゼオライトを製造した。
 3号珪酸ナトリウム水溶液15.1g、TMADABr20%水溶液13.0g、純水8.0gを混合して水溶液を調製した(得られた水溶液を「水溶液A3」とする)。次に純水18.2gに硫酸アルミニウム水溶液0.6g、水酸化ナトリウム48%水溶液2.1gを加えた水溶液を調製した(得られた水溶液を「水溶液B3」とする)。水溶液A3に水溶液B3を加え、これを均一になるまで攪拌して原料組成物を得た。原料組成物の組成はSiO:0.007Al:0.13TMADABr:0.47NaO:36HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら140℃で144時間加熱した。加熱後の生成物を固液分離し、得られた構想を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が9.9であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が14.04μm、10%粒子径が18.42μm、50%粒子径が47.48μm、及び、90%粒子径が86.32μmであった。このチャバザイト型ゼオライトを比較ゼオライト3とした。
 比較例4(比較ゼオライト4の製造)
 米国特許4,665,110号明細書に開示されている方法を参照して、以下の様にチャバザイト型ゼオライトを製造した。
 TMADAOH13%水溶液17.9g、純水27.2g、水酸化ナトリウム48%水溶液0.9g、水酸化アルミニウム0.29g、及び、無定形シリカ粉末(東ソーシリカ株式会社製、商品名:ニップシールVN-3)3.7gを加えよく混合して原料組成物を得た。原料組成物の組成はSiO:0.036Al:0.20TMADAOH:0.10NaO:44HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら150℃で158時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が22.3であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が0.48μm、10%粒子径が0.71μm、50%粒子径が1.25μm、及び、90%粒子径が2.64μmであった。このチャバザイト型ゼオライトを比較ゼオライト4とした。
 比較例5(比較ゼオライト5の製造)
 原料組成物のSiO/Alモル比を変更したこと以外は、比較例4と同様な方法でチャバザイト型ゼオライトを製造した。
 粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトの、SiO/Alモル比が13.8であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が0.36μm、10%粒子径が0.35μm、50%粒子径が0.59μm、及び、90%粒子径が8.21μmであった。このチャバザイト型ゼオライトを比較ゼオライト5とした。
 比較例6(比較ゼオライト6の製造)
 TMADAOH25%水溶液9.2g、純水35.3g、水酸化カリウム48%水溶液3.4g、及び、脱Na処理を行った無定形アルミノシリケートゲル9.2gを加えよく混合して原料組成物を得た。原料組成物の組成はSiO:0.076Al:0.081TMADAOH:0.106KO:18HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら150℃で70時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折から、生成物はチャバザイトとマーリノアイトとの混合物であった。
 比較例7(比較ゼオライト7の製造)
 TMADAOH25%水溶液9.4g、純水36.1g、水酸化カリウム48%水溶液2.2g、及び、脱Na処理を行った無定形アルミノシリケートゲル9.3gを加えよく混合して原料組成物を得た。原料組成物の組成はSiO:0.082Al:0.081TMADAOH:0.070KO:18HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら150℃で70時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が12.0であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が0.89μm、10%粒子径が2.90μm、50%粒子径が5.97μm、及び、90%粒子径が10.9μmであった。このチャバザイト型ゼオライトを比較ゼオライト7とした。
 比較例8(比較ゼオライト8の製造)
 特開2010-168269号公報明細書に開示されている方法を参照して、以下の様にチャバザイト型ゼオライトを製造した。
 TMADAOH25%水溶液11.2g、純水35.1g、水酸化カリウム48%水溶液1.4g、及び、無定形アルミノシリケートゲル9.4gを加えよく混合して原料組成物を得た。原料組成物の組成はSiO:0.050Al:0.098TMADAOH:0.058NaO:0.044KO:18HOとした。
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら150℃で70時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が17.9であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは、SEM粒子径が1.50μm、10%粒子径が1.66μm、50%粒子径が3.31μm、及び、90%粒子径が5.70μmであった。このチャバザイト型ゼオライトを比較ゼオライト8とした。
 比較例9(比較ゼオライト9の製造)
 米国特許4,503,024号明細書に開示されている方法を参照して、以下の様に、チャバザイト型ゼオライトを製造した。
 純水128.6gに、水酸化カリウム48%水溶液16.1g、及び、Y型ゼオライト(東ソー株式会社製、商品名:HSZ-320HOA)15.3gを加えよく混合して原料組成物を得た。原料組成物の組成はSiO:0.18Al:0.06NaO:0.39KO:43HOとした。
 この原料組成物を200ccのステンレス製オートクレーブに密閉し、静置して95℃で96時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が4.5であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。SEM観察の結果、その結果、このチャバザイト型ゼオライトは0.5μm未満の微細粒子の凝集体であることが明らかであった。そのため、SEM粒子径の測定は実施しなかった。10%粒子径が4.90μm、50%粒子径が7.47μm、及び、90%粒子径が21.8μmであった。このチャバザイト型ゼオライトを比較ゼオライト9とした。
 比較例10(比較ゼオライト10の製造)
 米国特許2011/020204A1公報に開示されている方法を参照して、以下の様にチャバザイト型ゼオライトを製造した。
 純水125.2g、水酸化カリウム48%水溶液19.6g、及び、Y型ゼオライト(東ソー株式会社製、商品名:HSZ-320HOA)15.2gを加えよく混合して原料組成物を得た。原料組成物の組成はSiO:0.18Al:0.06NaO:0.48KO:43HOとした。
 この原料組成物を200ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら95℃で96時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が4.4であった。このチャバザイト型ゼオライトについて実施例1と同様にSEM観察と粒子径分布測定を行った。SEM観察の結果から、このチャバザイト型ゼオライトは0.5μm未満の微細粒子の凝集体であることが明らかであった。そのため、SEM粒子径の測定は実施しなかった。また、このチャバザイト型ゼオライトは、10%粒子径が4.77μm、50%粒子径が7.32μm、及び、90%粒子径が22.0μmであった。このチャバザイト型ゼオライトを比較ゼオライト10とした。
 以下の表2に、実施例1~12及び比較例1~10の原料組成物と生成物を示した。また、表3にその生成物のSiO/Alモル比、粒子径分布測定から得た粒子径、及びSEM写真から定量した粒子径を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
実施例13(ゼオライトの耐熱水性試験)
 ゼオライト10、比較ゼオライト5の乾燥粉末を空気流通下600℃で2時間焼成した後に、各々を加圧成形後、粉砕して12~20メッシュに整粒した。整粒したゼオライト3mlを常圧固定床流通式反応管に充填し、水分を10体積%含有させた空気を300ml/minで流通しながら、900℃で1時間処理した。ゼオライトの耐熱性は、水熱耐久処理後の結晶化度で評価した。結晶化度は粉末X線回折を測定し、表1に示すd=4.25の回折ピークにおいて、水熱耐久処理前を100としたピーク強度比として算出した。表4に各水熱耐久処理後の結晶化度(%)を示した。本発明に係るチャバザイト型ゼオライトは従来のチャバザイト型ゼオライトに比して結晶化度の残存率が高く、耐熱性に優れていることが示された。
Figure JPOXMLDOC01-appb-T000004
以下の実施例は、上記のチャバザイト型ゼオライトに銅を担持したチャバサイト型ゼオライトの実施例及び比較例を示す。
 尚、各測定は以下に示した方法によって実施した。
 (平均粒子径の測定方法)
 平均粒子径の測定は、実施例1と同様にSEM観察で行った。5000倍の倍率で撮影した3視野のSEM写真から任意の150個の結晶粒子を選択し、その各粒子径を平均して粒子径(以降、「SEM粒子径」と称する。)を算出する方法で行った。
 (ICP組成分析方法による銅のアルミニウムに対する原子割合の算出方法)
 60%濃硝酸10mlとフッ酸10mlを500mlのメスフラスコに入れ、純水で標線に合わせて洗浄液を調製した。チャバザイト型ゼオライト30mgを100mlのメスフラスコに入れ、調製した洗浄液で標線に合わせてICP分析液とした。
 ICP組成分析を行って得られたCuのモル濃度をAlのモル濃度で割り、銅のアルミニウムに対する原子割合とした。
 (窒素酸化物還元率(%)の測定方法)
 以下の条件のガスを所定の温度で接触させた場合の窒素酸化物還元率(%)を測定した。SCR触媒は一般的に還元分解する窒素酸化物と還元剤のアンモニアを1:1で含有するガスを用いて評価することが一般的である。本発明で用いた窒素酸化物還元条件は、通常SCR触媒の窒素酸化物の還元性を評価する一般的な条件の範疇に入るものであり、特に特殊な条件ではない。
 本発明の評価で採用した窒素酸化物還元条件:
  処理ガス組成 NO    200ppm
         NH   200ppm
         O          10容量%
         HO   3容量%
         N      バランス
  処理ガス流量 1.5リットル/分
  空間速度 60,000hr-1
 
測定手順としては、銅担持チャバザイトをプレス成形後、破砕して12~20メッシュに整粒した。整粒した各ゼオライトを実施例13と同様の方法で水熱耐久処理を行った。水熱耐久処理後の銅担持チャバザイト1.5mlを常圧固定床流通式反応管に充填した。触媒層に上記の組成のガスを1500ml/minで流通させながら、150~500℃の任意の温度で定常的な窒素酸化物の除去活性を評価した。
 窒素酸化物の除去活性は下式で表される。
Figure JPOXMLDOC01-appb-M000005
ここで、XNOxは窒素酸化物の還元除去率(%)、[NOx]inは入りガスの窒素酸化物濃度、[NOx]outは出ガスの窒素酸化物濃度を示す。
 実施例14(チャバザイト型ゼオライトの製造と銅の担持)
 構造指向剤としてN,N,N-トリメチルアダマンタンアンモニウム水酸化物25.1%水溶液を使用した。この構造指向剤39.4g、純水87.1g、水酸化カリウム48%水溶液8.52g、水酸化ナトリウム48%水溶液1.97g、及び、珪酸ナトリウムと硫酸アルミニウムから調製した無定形アルミノシリケートゲル103.1gを十分に混合し、原料組成物を得た。原料組成物はSiO:0.065Al:0.08TMADAOH:0.04NaO:0.13KO:18HOとした。
 原料組成物をステンレス製オートクレーブに装填し、170℃で70時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して固形生成物を得た。得られた固形生成物は蛍光X線分析の結果、SiO/Alモル比が14.4であることが分った。
 そのゼオライトのX線回折パターンを以下の表5に示す。
Figure JPOXMLDOC01-appb-T000006
このX線回折パターンは特開2010-168269号公報の表1のX線回折パターンと同一であった。そのため、このゼオライトはチャバサイト型ゼオライトであることが確かめられた。また、このチャバザイト型ゼオライトのSEM粒子径は2.67μmであった。また実施例1と同様に粒子径分布測定を行った。その結果、このチャバザイト型ゼオライトは10%粒子径が4.18μm、50%粒子径が9.16μm、及び、90%粒子径が17.9μmであった。
 このチャバサイト型ゼオライトをNH 交換してNH 型チャバザイト型ゼオライトとした後に500℃で1時間加熱してH型チャバザイト型ゼオライトとした。
 (銅の担持)
 純水80gに酢酸銅一水和物0.95gを投入後、200rpmで10分攪拌することで、酢酸銅水溶液を作製した。酢酸銅水溶液に、上記のH型チャバサイト型ゼオライト5.45g(600℃で1時間乾燥した時の重量;以下、「dry base」とする)を投入し、200rpmで30℃において2時間攪拌後、固液分離した。固液分離で得られた固相を温純水400gで洗浄し、110℃で一晩乾燥して触媒を製造した。ICP組成分析の結果、得られた触媒は、銅のアルミニウムに対する原子割合が0.30であり、SiO/Alモル比が14.5であった。
 (水熱耐久処理)
 実施例13と同様な方法で水熱耐久処理を行った。得られた触媒の乾燥粉末を加圧成形後、粉砕して12~20メッシュに整粒した。整粒したゼオライト3mlを常圧固定床流通式反応管に充填し、水分を10体積%含有させた空気を300ml/minで流通しながら、900℃で1時間処理した。
 (窒素酸化物還元率(%)の測定)
 上記に説明した方法で実施した。水熱耐久処理を施した触媒を含む常圧固定床流通式反応器に、200ppmのNO、200ppmのNH、10%O、3%HO及びNでバランスした供給ガス混合物を加えることにより、触媒の窒素酸化物還元率を測定した。150℃~500℃の温度範囲にわたり、空間速度60,000時間-1で、反応を行った。窒素酸化物還元率は、触媒層通過後に還元除去されたNOの濃度を、供給ガスにおけるNOの濃度で割ることにより算出した。
 実施例15(チャバサイト型ゼオライトの製造と銅の担持)
 原料組成物を150℃で70時間加熱した以外は、実施例14と同様の方法でチャバサイト型ゼオライトを製造した。
 粉末X線回折と蛍光X線分析から、生成物は純粋なチャバザイト型ゼオライト、即ち、チャバザイト型ゼオライトの単相であった。また、このチャバザイト型ゼオライトのSiO/Alモル比が14.4であることが分った。また、このチャバザイト型ゼオライトのSEM粒子径は1.90μmであった。また実施例1と同様に粒子径分布測定を行ったところ、このチャバザイト型ゼオライトの10%粒子径が2.76μm、50%粒子径が5.37μm、及び、90%粒子径が9.07μmであった。
 このチャバサイト型ゼオライトをNH 交換してNH 型チャバザイト型ゼオライトとした後に500℃で1時間加熱してH型チャバサイト型ゼオライトとした。
 (銅の担持)
 純水80gに酢酸銅一水和物2.84gを投入後、200rpmで10分攪拌し、酢酸銅水溶液を作製した。酢酸銅水溶液に、上記のH型チャバザイト型ゼオライト5.45g(dry base)を投入し、200rpmで30℃において2時間攪拌後、固液分離した。固液分離で得られた固相を温純水400gで洗浄し、110℃で一晩乾燥して触媒を製造した。ICP組成分析の結果、得られた触媒は、銅のアルミニウムに対する原子割合が0.28であり、SiO/Alモル比が14.5であった。
 (水熱耐熱処理と窒素酸化物還元率(%)の測定)
 次に、実施例14に概説したものと同様の方法で、触媒の加圧成形し、整粒して水熱耐久処理した後、窒素酸化物還元率を測定した。
 実施例16(銅の担持)
 銅を担持する際に酢酸銅一水和物を0.52g、H型チャバザイト型ゼオライトを5.00gとした以外は実施例14と同様な方法により、触媒を製造した。ICP組成分析の結果、得られた触媒は、銅のアルミニウムに対する原子割合が0.25であった。
 次に、実施例14と同様の方法で、触媒を加圧成形し、整粒して水熱耐久処理した後、窒素酸化物還元率(%)を測定した。
 実施例17(銅の担持)
 酢酸銅一水和物の量を半分(1.42g)として調製した酢酸銅水溶液を用いたこと以外は実施例15と同様にして触媒を製造した。ICP組成分析の結果、得られた触媒は、銅のアルミニウムに対する原子割合が0.32であった。
 次に、実施例14と同様の方法で、触媒を加圧成形し、整粒して水熱耐久処理した後、窒素酸化物還元率(%)を測定した。
 実施例18(銅の担持)
 銅を担持するゼオライトとしてゼオライト7(実施例7)を使用したこと以外は実施例15と同様にして、触媒を製造した。
 ゼオライト7の乾燥粉末を空気流通下600℃で2時間焼成した。ゼオライトに含まれるアルミニウム量に対して過剰量の塩化アンモニウムを溶解した水溶液に投入して、イオン交換処理を行った。イオン交換処理後、固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥した。得られた乾燥粉末の蛍光X線分析を行い、NaあるいはKが蛍光X線分析の検出下限(NaO、KO≦0.01wt%)まで除去できていることを確認した。このNH 型チャバザイト型ゼオライトを500℃で1時間焼成して、H型チャバザイト型ゼオライトにした。
 純水80gに酢酸銅一水和物0.95gを投入後、200rpmで10分攪拌することで、酢酸銅水溶液を作製した。酢酸銅水溶液に、上記のH型チャバサイト型ゼオライト5.45g(dry base)を投入し、200rpmで30℃において2時間攪拌後、ヌッチェで固液分離した。固液分離で得られた固相を温純水400gで洗浄し、110℃で一晩乾燥して触媒を製造した。ICP組成分析の結果、得られた触媒は、銅のアルミニウムに対する原子割合が0.24であった。
 次に、実施例14と同様の方法で、触媒を加圧成形し、整粒して水熱耐久処理した後、窒素酸化物還元率(%)を測定した。
 実施例19(銅の担持)
 酢酸銅一水和物の量を1.5倍(1.42g)として調製した酢酸銅水溶液を用いたこと以外は実施例18と同様にして、触媒を製造した。ICP組成分析の結果、得られた触媒は、銅のアルミニウムに対する原子割合が0.29であった。
 次に、実施例14と同様の方法で、触媒を加圧成形し、整粒して水熱耐久処理した後、窒素酸化物還元率(%)を測定した。
 実施例20(銅の担持)
 銅を担持するゼオライトとしてゼオライト8(実施例8)を使用したこと以外は実施例19と同様にして触媒を製造した。ICP組成分析の結果、得られた触媒は銅のアルミニウムに対する原子割合が0.30であった。
 次に、実施例14と同様の方法で、触媒を加圧成形し、整粒して水熱耐久処理した後、窒素酸化物還元率(%)を測定した。
 実施例21(銅の担持)
 銅を担持するゼオライトとしてゼオライト10(実施例10)を使用したこと以外は実施例19と同様にして触媒を製造した。ICP組成分析の結果、得られた触媒は、銅のアルミニウムに対する原子割合が0.24であった。
 次に、実施例14と同様の方法で、触媒を加圧成形し、整粒して水熱耐久処理した後、窒素酸化物還元率(%)を測定した。
 比較例11(チャバサイト型ゼオライトの製造と銅の担持)
 銅を担持するゼオライトとして、US4,665,110号公報に記載の方法でゼオライトを合成した。
 得られた合成物のX線回折図からのX線回折パターンはUS4,544,538号公報に記載のX線回折パターンと同一であった。そのため、このゼオライトはチャバサイト型ゼオライトであることが確かめられた。
 このチャバサイト型ゼオライトは、SEM粒子径が0.48μmであり、SiO/Alモル比が22.3であった。このように、比較例1のチャバザイト型ゼオライトは、実施例14及び15のチャバサイト型ゼオライトと比較して、SEM粒子径が小さいだけでなく、SiO/Alモル比がと大きいことがわかった。
 このチャバサイト型ゼオライトをNH 交換した後に500℃で1時間加熱してH型チャバザイト型ゼオライトとした。
 (銅の担持)
 純水100gに酢酸銅一水和物2.6gを投入後、200rpmで10分攪拌し、酢酸銅水溶液を作製した。酢酸銅水溶液に、上記のH型チャバサイト型ゼオライト10.71g (dry base)を投入し、200rpmで30℃において2時間攪拌後、固液分離した。固液分離で得られた固相を温純水400gで洗浄し、110℃で一晩乾燥して触媒を製造した。ICP組成分析の結果、得られた触媒は、銅のアルミニウムに対する原子割合が0.37であり、SiO/Alモル比が22.6であった。
 (水熱耐久処理と窒素酸化物還元率(%)の測定)
 次に、実施例14と同様の方法で、触媒の加圧成形し、整粒して水熱耐久処理した後、窒素酸化物還元率(%)を測定した。
 比較例12(チャバサイト型ゼオライトの製造と銅の担持)
 純水200gに酢酸銅一水和物6.0gを投入後、200rpmで10分攪拌し、酢酸銅水溶液を作製したこと以外は、比較例11と同様の方法で触媒を製造した。
 得られたチャバサイト型ゼオライトは、SEM粒子径が0.48μmであり、SiO/Alモル比が22.3であった。このように、比較例2のチャバザイト型ゼオライトは、実施例14及び15のチャバサイト型ゼオライトと比較して、SEM粒子径が小さいだけでなく、SiO/Alモル比がと大きいことがわかった。
 又、このチャバサイト型ゼオライトをNH 交換した後に500℃で1時間加熱してH型チャバサイト型ゼオライトとした。これに比較例1と同様な方法で銅を担持して触媒を得た。ICP組成分析の結果、得られた触媒は、銅のアルミニウムに対する原子割合が0.41であり、SiO/Alモル比が22.6であった。
 (水熱耐久処理と窒素酸化物還元率(%)の測定)
 次に、実施例14と同様の方法で、触媒を加圧成形し、整粒して水熱耐久処理した後、窒素酸化物還元率(%)を測定した。
 比較例13(銅の担持)
 銅を担持するゼオライトを比較ゼオライト8(比較例8)としたこと以外は実施例18と同様にして触媒を製造した。
 比較ゼオライト8の乾燥粉末を空気流通下600℃で2時間焼成した。ゼオライトに含まれるアルミニウム量に対して過剰量の塩化アンモニウムを溶解した水溶液に投入して、イオン交換処理を行った。次いで固液分離し、十分量の純水で洗浄し、110℃で乾燥した。得られた乾燥粉末の蛍光X線分析を行い、NaあるいはKが蛍光X線分析の検出下限(NaO、KO≦0.01wt%)まで除去できていることを確認した。このNH 型チャバザイト型ゼオライトを500℃で1時間焼成して、H型チャバザイト型ゼオライトにした。
 純水200gに酢酸銅一水和物1.54gを投入後、200rpmで10分攪拌することで、酢酸銅水溶液を作製した。酢酸銅水溶液に、上記のH型チャバサイト型ゼオライト18.6g(dry base)を投入し、200rpmで30℃において2時間攪拌後、固液分離した。固液分離で得られた固相を温純水800gで洗浄し、110℃で一晩乾燥して触媒を製造した。ICP組成分析の結果、得られた触媒は、銅のアルミニウムに対する原子割合が0.24であった。
 次に、実施例14と同様の方法で、触媒を加圧成形し、整粒して水熱耐久処理した後、窒素酸化物還元率(%)を測定した。
 比較例14(銅の担持)
 酢酸銅一水和物の量を3倍として調製した酢酸銅水溶液を用いたこと以外は比較例13と同様にして、触媒を製造した。ICP組成分析の結果、得られた触媒は、銅のアルミニウムに対する原子割合が0.30であった。
 次に、実施例14と同様の方法で、触媒を加圧成形し、整粒して水熱耐久処理した後、窒素酸化物還元率(%)を測定した。
 比較例15(銅の担持)
 酢酸銅一水和物の量を10倍として調製した酢酸銅水溶液を用いたこと、及び、酢酸銅水溶液に、H型チャバサイト型ゼオライト投入して攪拌する温度を60℃にしたこと以外は比較例13と同様にして、触媒を製造した。ICP組成分析の結果、得られた触媒は、銅のアルミニウムに対する原子割合が1.02であった。
 次に、実施例14と同様の方法で、触媒を加圧成形し、整粒して水熱耐久処理した後、窒素酸化物還元率(%)を測定した。
 比較例16(銅の担持)
 銅を担持するゼオライトを比較ゼオライト10(比較例10)として、米国特許2011/020204A1公報の実施例1に開示されている方法を参照して、触媒を製造した。
 硝酸アンモニウム89gを純水165gに溶解した水溶液に、比較ゼオライト10の乾燥粉末11gを加えてスラリーを得た。このスラリーを80℃で1時間撹拌し、ゼオライトをNH 型チャバザイト型ゼオライトにイオン交換した。次いで固液分離し、得られた固相を十分量の純水で洗浄した。このイオン交換処理を3回繰り返した後に、110℃で乾燥した。得られた乾燥粉末の蛍光X線分析を行い、NaあるいはKが蛍光X線分析の検出下限(NaO、KO≦0.01wt%)まで除去できていることを確認した。このNH 型チャバザイト型ゼオライトを540℃で4時間焼成して、H型チャバザイト型ゼオライトにした。
 純水50gに硫酸銅五水和物1.02gを溶解して、硫酸銅水溶液を作製した。この硫酸銅水溶液に、上記のH型チャバサイト型ゼオライト3.5gを加え、70℃において1時間攪拌した。次いで、固液分離で得られた固相を純水500gで洗浄し、110℃で一晩乾燥して触媒を製造した。ICP組成分析の結果、得られた触媒は、銅のアルミニウムに対する原子割合が0.19であった。
 次に、実施例14と同様の方法で、触媒を加圧成形し、整粒して水熱耐久処理した後、窒素酸化物還元率(%)を測定した。
 表6に実施例14~21及び比較例11~16の銅担持チャバザイトの組成とSEM粒子径、及び水熱耐久処理後の150℃と500℃での窒素酸化物除去率(%)を示す。本発明に係るチャバザイト型ゼオライトは従来のチャバザイト型ゼオライトに比して窒素酸化物の還元除去活性が高く、水熱耐久性に優れていることが示された。
Figure JPOXMLDOC01-appb-T000007
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本発明に係るチャバサイト型ゼオライトは、高い耐久性及び耐熱性を有するため、例えば、自動車排ガス中における窒素酸化物の選択的接触還元触媒として好適に用いることができる。

Claims (15)

  1.  SiO/Alモル比が15未満であって、平均粒子径が1.0μm以上8.0μm以下であることを特徴とするチャバザイト型ゼオライト。
  2.  平均粒子径が1.0μm以上5.0μm以下である請求項1に記載のチャバザイト型ゼオライト。
  3.  体積基準の90%粒子径が15.0μm以下である請求項1または2に記載のチャバザイト型ゼオライト。
  4.  原料組成物における構造指向剤/SiOモル比が、
      0.05≦構造指向剤/SiO<0.13であり、かつ、
    原料組成物における水/SiOモル比が、
      5≦HO/SiO<30
    である原料組成物を、Na、K、Rb、Cs及びNH からなる群から選ばれる少なくとも2種の陽イオンの存在下において結晶化させることを特徴とする請求項1乃至3のいずれか一項に記載のチャバザイト型ゼオライトの製造方法。
  5.  その構造指向剤が、N,N,N-トリアルキルアダマンタンアンモニウムをカチオンとする水酸化物、ハロゲン化物、炭酸塩、メチルカーボネート塩及び硫酸塩、及び、N,N,N-トリメチルベンジルアンモニウムイオン、N-アルキル-3-キヌクリジノールイオン、またはN,N,N-トリアルキルエキソアミノノルボルナンをカチオンとする水酸化物、ハロゲン化物、炭酸塩、メチルカーボネート塩及び硫酸塩からなる群から選ばれる少なくとも一種であることを特徴とする請求項4に記載のチャバザイト型ゼオライトの製造方法。
  6.  その構造指向剤が、N,N,N-トリメチルアダマンタンアンモニウム水酸化物、N,N,N-トリメチルアダマンタンアンモニウムハロゲン化物、N,N,N-トリメチルアダマンタンアンモニウム炭酸塩、N,N,N-トリメチルアダマンタンアンモニウムメチルカーボネート塩及びN,N,N-トリメチルアダマンタンアンモニウム硫酸塩からなる群から選ばれる少なくとも一種であることを特徴とする請求項5に記載のチャバザイト型ゼオライトの製造方法。
  7. SiO/Alモル比が15未満であって、平均粒子径が1.0μm以上8.0μm以下であり、銅が担持されていることを特徴とするチャバザイト型ゼオライト。
  8.  平均粒子径が1.0μm以上5.0μm以下であることを特徴とする請求項7に記載のチャバザイト型ゼオライト。
  9.  体積基準の90%粒子径が15.0μm以下であることを特徴とする請求項7または8に記載のチャバザイト型ゼオライト。
  10.  銅/アルミニウムの原子割合が0.10~1.00であることを特徴とする請求項7乃至9のいずれか一項に記載のチャバザイト型ゼオライト。
  11.  イオン交換サイトが銅及び/又はプロトン(H)で占有されていることを特徴とする請求項7乃至10のいずれか一項に記載のチャバザイト型ゼオライト。
  12.  結晶構造がSSZ-13であることを特徴とする請求項7乃至11のいずれか一項に記載のチャバザイト型ゼオライト。
  13.  請求項7及至請求項12のいずれか一項に記載のチャバザイト型ゼオライトを含むことを特徴とする窒素酸化物還元除去触媒。
  14.  水熱耐久処理後における、150℃での窒素酸化物の還元率が52%以上である請求項13に記載の窒素酸化物還元除去触媒。
  15.  請求項13又は14に記載の窒素酸化物還元除去触媒を使用することを特徴とする窒素酸化物の還元除去方法。
PCT/JP2011/079803 2010-12-22 2011-12-22 チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法 WO2012086753A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020137017978A KR101906620B1 (ko) 2010-12-22 2011-12-22 차바자이트형 제올라이트 및 그 제조 방법, 구리가 담지되어 있는 저실리카 제올라이트, 및 그 제올라이트를 함유하는 질소 산화물 환원 제거 촉매, 그리고, 그 촉매를 사용하는 질소 산화물 환원 제거방법
MX2013007022A MX356439B (es) 2010-12-22 2011-12-22 Zeolita tipo-chabazita y método para producir la misma, zeolita de bajo contenido de silice cargada con cobre y catalizador para eliminar nox reductivo que contiene la zeolita y método para eliminar nox reductivo usando este catalizador.
CA2822788A CA2822788C (en) 2010-12-22 2011-12-22 Chabazite-type zeolite and method for producing same, copper loaded low-silica zeolite and nox reductive removal catalyst containing the zeolite, and method of nox reductive removal using this catalyst
EP11850641.9A EP2657190A4 (en) 2010-12-22 2011-12-22 CHABAZITE-TYPE ZEOLITE AND PROCESS FOR PRODUCTION THEREOF, COPPER-CONTAINING SILICON SILICON ZEOLITE, NOX-REDUCING ELIMINATION CATALYST COMPRISING THE SAME, AND METHOD FOR NOX-REDUCING ELIMINATION USING THE CATALYST
CN2011800657056A CN103328385A (zh) 2010-12-22 2011-12-22 菱沸石型沸石及其制造方法、负载有铜的低二氧化硅沸石、以及含有该沸石的氮氧化物还原去除催化剂、以及使用该催化剂的氮氧化物还原去除方法
US13/995,841 US9889436B2 (en) 2010-12-22 2011-12-22 Chabazite-type zeolite and method for producing same, copper loaded low-silica zeolite and NOx reductive removal catalyst containing the zeolite, and method of NOx reductive removal using this catalyst
CN201910613093.8A CN110316743B (zh) 2010-12-22 2011-12-22 菱沸石型沸石及其制造法、负载铜的沸石、氮氧化物还原去除催化剂、氮氧化物还原去除法
BR112013015583-3A BR112013015583B1 (pt) 2010-12-22 2011-12-22 zeólita tipo chabazita, método para produzir a zeólita tipo chabazita, catalisador de remoção redutora de nox, e, método para remoção redutora de nox

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-285496 2010-12-22
JP2010285496 2010-12-22
JP2011-064882 2011-03-23
JP2011064882 2011-03-23

Publications (1)

Publication Number Publication Date
WO2012086753A1 true WO2012086753A1 (ja) 2012-06-28

Family

ID=46314020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079803 WO2012086753A1 (ja) 2010-12-22 2011-12-22 チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法

Country Status (9)

Country Link
US (1) US9889436B2 (ja)
EP (1) EP2657190A4 (ja)
JP (1) JP5895510B2 (ja)
KR (1) KR101906620B1 (ja)
CN (2) CN103328385A (ja)
BR (1) BR112013015583B1 (ja)
CA (1) CA2822788C (ja)
MX (1) MX356439B (ja)
WO (1) WO2012086753A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161860A1 (de) * 2013-04-05 2014-10-09 Umicore Ag & Co. Kg Cucha material für die scr-katalyse
JP5732169B1 (ja) * 2013-12-27 2015-06-10 イビデン株式会社 ゼオライトの製造方法及びハニカム触媒
JP5740040B1 (ja) * 2014-07-07 2015-06-24 イビデン株式会社 ゼオライト、ハニカム触媒及び排ガス浄化装置
EP2966040A1 (en) 2014-07-07 2016-01-13 Ibiden Co., Ltd. Cha-zeolite, method for manufacturing this zeolite, honeycomb catalyst, and exhaust gas purifying apparatus
US10882033B2 (en) 2017-11-27 2021-01-05 N.E. Chemcat Corporation Slurry composition for catalyst and method for producing same, method for producing catalyst using this slurry composition for catalyst, and method for producing Cu-containing zeolite

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2465606A1 (de) * 2010-12-16 2012-06-20 Umicore Ag & Co. Kg Zeolith-basierter Katalysator mit verbesserter katalytischer Aktivität zur Reduktion von Stickoxiden
JP5895510B2 (ja) 2010-12-22 2016-03-30 東ソー株式会社 チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法
WO2012145323A1 (en) * 2011-04-18 2012-10-26 Pq Corporation Large crystal, organic-free chabazite, methods of making and using the same
CN105263861B (zh) * 2013-04-02 2017-12-12 埃克森美孚研究工程公司 Emm‑25分子筛材料,其合成和用途
US9561469B2 (en) * 2014-03-24 2017-02-07 Johnson Matthey Public Limited Company Catalyst for treating exhaust gas
PL3152162T3 (pl) * 2014-06-05 2019-05-31 Basf Se Materiały zeolitowe typu cha i sposoby ich wytwarzania z użyciem połączeń związków cykloheksylo- i tetrametyloamoniowych
US9403148B2 (en) 2014-06-23 2016-08-02 Saudi Arabian Oil Company Synthesis of ultra-small pore aluminosilicates by controlled structural collapse of zeolites
US9333482B2 (en) 2014-06-23 2016-05-10 Saudi Arabian Oil Company Synthesis of ultra-small pore aluminosilicates by controlled structural collapse of zeolites
JP6546731B2 (ja) * 2014-10-09 2019-07-17 イビデン株式会社 ハニカム触媒
JP2017534447A (ja) * 2014-10-30 2017-11-24 ビーエーエスエフ コーポレーション 混合金属型の大結晶モレキュラーシーブ触媒組成物、触媒物品、システムおよび方法
US9708192B2 (en) * 2014-11-25 2017-07-18 Chevron U.S.A. Inc. Method for preparing aluminosilicate molecular sieves having the CHA framework type
MY179311A (en) * 2015-02-05 2020-11-04 Tosoh Corp Novel zeolite
JP2016150277A (ja) * 2015-02-16 2016-08-22 イビデン株式会社 ハニカム触媒
JP6599637B2 (ja) 2015-05-13 2019-10-30 イビデン株式会社 ゼオライト、該ゼオライトの製造方法、該ゼオライトを使用したハニカム触媒及び排ガス浄化装置
JP6616101B2 (ja) 2015-05-15 2019-12-04 イビデン株式会社 ゼオライト、該ゼオライトの製造方法、該ゼオライトを使用したハニカム触媒及び排ガス浄化装置
JP2016216296A (ja) * 2015-05-19 2016-12-22 イビデン株式会社 ゼオライトの製造方法
JP6558947B2 (ja) * 2015-05-22 2019-08-14 イビデン株式会社 ハニカム触媒の製造方法
JP2016222505A (ja) * 2015-06-01 2016-12-28 イビデン株式会社 ゼオライトの製造方法
JP2017007915A (ja) * 2015-06-25 2017-01-12 イビデン株式会社 ゼオライトの製造方法、該方法により得られるゼオライト、及びハニカム触媒の製造方法
JP2017007913A (ja) * 2015-06-25 2017-01-12 イビデン株式会社 ゼオライト、該ゼオライトの製造方法、該ゼオライトを使用したハニカム触媒及び排ガス浄化装置
JP2017007912A (ja) * 2015-06-25 2017-01-12 イビデン株式会社 ゼオライト、該ゼオライトの製造方法、該ゼオライトを使用したハニカム触媒及び排ガス浄化装置
JP6911354B2 (ja) * 2016-01-12 2021-07-28 東ソー株式会社 Cha型ゼオライトの製造方法
JP6713821B2 (ja) * 2016-05-06 2020-06-24 日本碍子株式会社 Cs含有CHA型ゼオライトの製造方法
CN109195911B (zh) * 2016-05-23 2023-04-07 东曹株式会社 Cha型沸石和其制造方法
JP6817022B2 (ja) * 2016-06-07 2021-01-20 日揮触媒化成株式会社 高耐水熱性チャバザイト型ゼオライトおよびその製造方法
WO2017213022A1 (ja) * 2016-06-07 2017-12-14 日揮触媒化成株式会社 高耐水熱性チャバザイト型ゼオライトおよびその製造方法
JP7069797B2 (ja) * 2017-02-22 2022-05-18 東ソー株式会社 チャバザイト型ゼオライト及びその製造方法
KR20200023391A (ko) * 2017-06-26 2020-03-04 바스프 에스이 지지체 물질 상에 지지된 제올라이트 물질을 포함하는 조성물
EP3661646A4 (en) * 2017-08-04 2021-05-05 Basf Se ZEOLITE MATERIAL WITH A FRAMEWORK-LIKE CHA AND WITH A TRANSITION METAL AND ONE OR MORE OF POTASSIUM AND CAESIUM
EP3788007A1 (en) * 2018-04-30 2021-03-10 PQ Corporation Low-silica chabazite zeolites with high acidity
US20210138441A1 (en) * 2018-05-14 2021-05-13 Umicore Ag & Co. Kg Stable CHA Zeolites
WO2020053191A1 (en) * 2018-09-11 2020-03-19 Basf Corporation A process for preparing a zeolitic material having framework type aei
US11883804B2 (en) 2018-10-29 2024-01-30 Pacific Industrial Development Corporation Method of making SSZ-13 zeolites with high acidity and low silica to alumina ratio (SAR)
CN109867294A (zh) * 2019-03-19 2019-06-11 南开大学 含铜cha型沸石、其制造方法和用途
KR102239941B1 (ko) * 2019-05-16 2021-04-13 한국화학연구원 메탄올로부터 경질올레핀의 전환을 위한 고활성 ssz-13 제올라이트 합성방법
WO2020254051A1 (en) 2019-06-21 2020-12-24 Total Se Chabazite-type zeolite, precursors thereof, methods for making the same and use of the zeolite as sorbent for co2
EP4007737A4 (en) * 2019-08-02 2024-02-28 Basf Corp CHABAZITE SYNTHESIS PROCESS USING ORGANIC AND INORGANIC STRUCTURAL DIRECTORS AND CHABAZITE ZEOLITE WITH FLAKE-LIKE MORPHOLOGY
EP3812034A1 (en) 2019-10-24 2021-04-28 Dinex A/S Durable copper-scr catalyst
CN110876957B (zh) * 2019-10-31 2021-01-22 山东国瓷功能材料股份有限公司 分子筛Cu-SSZ-13、其合成方法、催化剂和用途
EP3988506A1 (en) * 2020-10-21 2022-04-27 Basf Se Zeolite synthesis from cyclic precursors
EP4065513A4 (en) * 2021-02-09 2023-04-12 Basf Corporation ZEOLITE STRUCTURE SYNTHETIC USING MIXTURES OF ORGANIC STRUCTURE CONTROLLERS
US11565943B2 (en) * 2021-02-11 2023-01-31 Chevron U.S.A. Inc. Synthesis of ton framework type molecular sieves
GB2609550A (en) * 2021-07-30 2023-02-08 Johnson Matthey Plc A method of synthesizing a low SAR chabazite zeolite and the zeolite obtained thereby

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB868846A (en) * 1957-08-26 1961-05-25 Union Carbide Corp Improvements in and relating to zeolites
US3030181A (en) * 1957-08-26 1962-04-17 Union Carbide Corp Crystalline zeolite r
JPS5860612A (ja) * 1981-09-14 1983-04-11 コンパニ−・フランセ−ズ・ド・ラフイナ−ジユ 合成ゼオライトの製造方法、及びこの方法によつて得られたゼオライト
US4544538A (en) * 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
WO2010054034A2 (en) * 2008-11-06 2010-05-14 Basf Catalysts Llc Chabazite zeolite catalysts having low silica to alumina ratios
WO2010074040A1 (ja) * 2008-12-22 2010-07-01 東ソー株式会社 チャバザイト型ゼオライト及びその製造方法
JP2010163349A (ja) * 2008-12-17 2010-07-29 Tosoh Corp N,n,n−トリメチル−ベンジルアンモニウムイオンを用いたチャバザイトの製造方法
JP2011102209A (ja) * 2009-11-10 2011-05-26 Mitsubishi Chemicals Corp アルミノシリケートの製造方法
EP2657190A1 (en) 2010-12-22 2013-10-30 Tosoh Corporation Chabazite type zeolite and process for production thereof, copper-carrying low-silica zeolite, nox reductive elimination catalyst including said zeolite, and method for reductive elimination of nox employing said catalyst

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496786A (en) 1983-09-30 1985-01-29 Chevron Research Company Selective conversion of methanol to low molecular weight olefins over high silica SSZ-13 zeolite
US4665110A (en) 1986-01-29 1987-05-12 Chevron Research Company Process for preparing molecular sieves using adamantane template
US5024981A (en) 1989-04-20 1991-06-18 Engelhard Corporation Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same
GB9105421D0 (en) 1991-03-14 1991-05-01 Ici Plc Purification of 1,1,1,2-tetrafluoroethane
JPH0859566A (ja) 1994-08-23 1996-03-05 Mitsui Toatsu Chem Inc メチルアミン類の製造方法
TW325461B (en) 1995-09-11 1998-01-21 Air Prod & Chem Ammoxidation of alkanes and alkenes
US7033969B1 (en) 1997-12-10 2006-04-25 Volvo Car Corporation Porous material, method and arrangement for catalytic conversion of exhaust gases
US6353146B1 (en) 1998-04-20 2002-03-05 Playtex Products, Inc. Fibrous articles having odor adsorbtion ability and method of making same
US6488741B2 (en) 2001-01-23 2002-12-03 The Trustess Of The University Of Pennsylvania Light hydrocarbon separation using 8-member ring zeolites
US6709644B2 (en) 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
US6626980B2 (en) 2001-09-21 2003-09-30 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Mixed matrix membranes incorporating chabazite type molecular sieves
CN101607716A (zh) 2003-12-23 2009-12-23 埃克森美孚化学专利公司 菱沸石型分子筛、其合成及其在含氧化合物转化成烯烃中的应用
JP4944038B2 (ja) 2004-11-29 2012-05-30 シェブロン ユー.エス.エー. インコーポレイテッド 高シリカモレキュラシーブcha
US8048402B2 (en) * 2005-08-18 2011-11-01 Exxonmobil Chemical Patents Inc. Synthesis of molecular sieves having the chabazite framework type and their use in the conversion of oxygenates to olefins
US7998423B2 (en) * 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US7601662B2 (en) 2007-02-27 2009-10-13 Basf Catalysts Llc Copper CHA zeolite catalysts
GB2464478A (en) * 2008-10-15 2010-04-21 Johnson Matthey Plc Aluminosilicate zeolite catalyst and use thereof in exhaust gas after-treatment
JP5428540B2 (ja) * 2009-06-02 2014-02-26 東ソー株式会社 高耐水性且つ大粒子のsapo−34及びその合成方法並びにその用途
WO2012145323A1 (en) * 2011-04-18 2012-10-26 Pq Corporation Large crystal, organic-free chabazite, methods of making and using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB868846A (en) * 1957-08-26 1961-05-25 Union Carbide Corp Improvements in and relating to zeolites
US3030181A (en) * 1957-08-26 1962-04-17 Union Carbide Corp Crystalline zeolite r
JPS5860612A (ja) * 1981-09-14 1983-04-11 コンパニ−・フランセ−ズ・ド・ラフイナ−ジユ 合成ゼオライトの製造方法、及びこの方法によつて得られたゼオライト
US4544538A (en) * 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
WO2010054034A2 (en) * 2008-11-06 2010-05-14 Basf Catalysts Llc Chabazite zeolite catalysts having low silica to alumina ratios
JP2010163349A (ja) * 2008-12-17 2010-07-29 Tosoh Corp N,n,n−トリメチル−ベンジルアンモニウムイオンを用いたチャバザイトの製造方法
WO2010074040A1 (ja) * 2008-12-22 2010-07-01 東ソー株式会社 チャバザイト型ゼオライト及びその製造方法
JP2011102209A (ja) * 2009-11-10 2011-05-26 Mitsubishi Chemicals Corp アルミノシリケートの製造方法
EP2657190A1 (en) 2010-12-22 2013-10-30 Tosoh Corporation Chabazite type zeolite and process for production thereof, copper-carrying low-silica zeolite, nox reductive elimination catalyst including said zeolite, and method for reductive elimination of nox employing said catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161860A1 (de) * 2013-04-05 2014-10-09 Umicore Ag & Co. Kg Cucha material für die scr-katalyse
US20160038875A1 (en) * 2013-04-05 2016-02-11 Umicore Ag & Co. Kg CuCHA MATERIAL FOR SCR CATALYSIS
JP5732169B1 (ja) * 2013-12-27 2015-06-10 イビデン株式会社 ゼオライトの製造方法及びハニカム触媒
JP5740040B1 (ja) * 2014-07-07 2015-06-24 イビデン株式会社 ゼオライト、ハニカム触媒及び排ガス浄化装置
EP2966041A1 (en) 2014-07-07 2016-01-13 Ibiden Co., Ltd. Cha-zeolite, methods for manufacturing this zeolite, honeycomb catalyst, and exhaust gas purifying apparatus
EP2966040A1 (en) 2014-07-07 2016-01-13 Ibiden Co., Ltd. Cha-zeolite, method for manufacturing this zeolite, honeycomb catalyst, and exhaust gas purifying apparatus
US9656253B2 (en) 2014-07-07 2017-05-23 Ibiden Co., Ltd. Zeolite, method for manufacturing zeolite, honeycomb catalyst, and exhaust gas purifying apparatus
US9878315B2 (en) 2014-07-07 2018-01-30 Ibiden Co., Ltd. Zeolite, method for manufacturing zeolite, honeycomb catalyst, and exhaust gas purifying apparatus
US10882033B2 (en) 2017-11-27 2021-01-05 N.E. Chemcat Corporation Slurry composition for catalyst and method for producing same, method for producing catalyst using this slurry composition for catalyst, and method for producing Cu-containing zeolite

Also Published As

Publication number Publication date
MX2013007022A (es) 2013-12-06
EP2657190A4 (en) 2016-03-30
CA2822788A1 (en) 2012-06-28
CA2822788C (en) 2018-11-13
US20130280160A1 (en) 2013-10-24
BR112013015583B1 (pt) 2020-11-10
KR20130133245A (ko) 2013-12-06
JP5895510B2 (ja) 2016-03-30
CN103328385A (zh) 2013-09-25
BR112013015583A2 (pt) 2016-10-11
JP2012211066A (ja) 2012-11-01
KR101906620B1 (ko) 2018-10-10
CN110316743B (zh) 2023-11-14
MX356439B (es) 2018-05-29
US9889436B2 (en) 2018-02-13
EP2657190A1 (en) 2013-10-30
CN110316743A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
JP5895510B2 (ja) チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法
JP6328593B2 (ja) Cha構造を有するゼオライトの製造方法
JP6572751B2 (ja) Aei型ゼオライト及びその製造方法と用途
JP5082361B2 (ja) SCR触媒用β型ゼオライト及びそれを用いた窒素酸化物の浄化方法
US9272272B2 (en) Process for the direct synthesis of Cu containing zeolites having CHA structure
JP5169779B2 (ja) 窒素酸化物浄化触媒及び窒素酸化物浄化方法
JP7283046B2 (ja) 金属含有cha型ゼオライト及びその製造方法
WO2011078149A1 (ja) 新規メタロシリケート、その製造方法、窒素酸化物浄化触媒、その製造方法、及びそれを用いた窒素酸化物浄化方法
US20180237307A1 (en) Chabazite-type zeolite and method of manufacturing chabazite-type zeolite
JP4957176B2 (ja) 窒素酸化物浄化触媒及び窒素酸化物浄化方法
JP2015044720A (ja) 金属含有Cu−SAPOゼオライト
JP7435709B2 (ja) β型ゼオライト及びその製造方法
JP2014122142A (ja) 遷移金属含有ゼオライト、及びその製造方法
JP5594121B2 (ja) 新規メタロシリケート及び窒素酸化物浄化触媒
JP5309936B2 (ja) 窒素酸化物浄化触媒及び窒素酸化物浄化方法
JP7113821B2 (ja) Cha型アルミノ珪酸塩の製造方法
JP6957902B2 (ja) 遷移金属担持aei型シリコアルミノ燐酸塩及び窒素酸化物浄化処理用触媒
JP2017206417A (ja) Aei型ゼオライトの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850641

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13995841

Country of ref document: US

Ref document number: MX/A/2013/007022

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2011850641

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2822788

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137017978

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013015583

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013015583

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130620