WO2012086650A1 - ブレーキピストン用素形材の製造方法 - Google Patents

ブレーキピストン用素形材の製造方法 Download PDF

Info

Publication number
WO2012086650A1
WO2012086650A1 PCT/JP2011/079543 JP2011079543W WO2012086650A1 WO 2012086650 A1 WO2012086650 A1 WO 2012086650A1 JP 2011079543 W JP2011079543 W JP 2011079543W WO 2012086650 A1 WO2012086650 A1 WO 2012086650A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardness
treatment
artificial aging
brake piston
solution treatment
Prior art date
Application number
PCT/JP2011/079543
Other languages
English (en)
French (fr)
Inventor
翔史 橋本
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020137016173A priority Critical patent/KR101423447B1/ko
Priority to JP2012549836A priority patent/JP5848259B2/ja
Priority to EP11850736.7A priority patent/EP2657362A4/en
Priority to CN201180061992.3A priority patent/CN103282531B/zh
Publication of WO2012086650A1 publication Critical patent/WO2012086650A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/18Making uncoated products by impact extrusion
    • B21C23/186Making uncoated products by impact extrusion by backward extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/04Shaping in the rough solely by forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/18Making machine elements pistons or plungers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/06Shaping thick-walled hollow articles, e.g. projectiles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/02Fluid-pressure mechanisms
    • F16D2125/06Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0026Non-ferro
    • F16D2200/003Light metals, e.g. aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0023Shaping by pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0092Tools or machines for producing linings

Definitions

  • the present invention relates to an aluminum alloy brake piston shaped material manufacturing method and a brake piston shaped material.
  • Conventional aluminum alloy brake piston shaped parts are cylindrical with a bottom, and are generally manufactured according to the process sequence shown in FIG. That is, in the cutting step S101, a rod-shaped aluminum continuous cast material, an aluminum alloy extruded material, an aluminum drawing material, and the like are cut to obtain a material.
  • the material is O processed.
  • the cold forging process S103 the material is cold forged into a bottomed cylindrical shape.
  • the solution treatment step S104 the material is subjected to solution treatment.
  • the artificial aging treatment step S105 the material is subjected to artificial aging treatment.
  • the machining step S106 the material is machined.
  • the process from the cold forging process S103 to the artificial aging treatment process S105 is generally called a T6 process.
  • the material of the material conventionally used for the shape material for brake pistons is an A6061 aluminum alloy.
  • its hardness affects the time from solution treatment to artificial aging treatment (that is, the aging time of room temperature preliminary aging treatment) and the amount of Mg 2 Si contained in the aluminum alloy.
  • the amount of Mg 2 Si contained in the aluminum alloy of A6061 is about 1.3 to 1.9% by mass. Therefore, in the conventional material of the aluminum alloy of A6061, when the time from the solution treatment to the artificial aging treatment becomes long, the hardness of the material after the artificial aging treatment becomes small. Therefore, in order to obtain a hard brake piston shaped material, the solution treatment and the artificial aging treatment must be carried out quickly and continuously after the cold forging process, which is difficult.
  • the present invention has been made in view of the above-described technical background, and an object of the present invention is to provide a brake piston shaped material manufacturing method and a brake piston shaped material that can be easily manufactured without performing O treatment. Is to provide.
  • the present invention provides the following means.
  • Si 9.0 to 11.0% by mass
  • Fe 0.5% by mass or less
  • Cu 0.7 to 1.1% by mass
  • Mn 0.15% by mass or less
  • Mg 0.3 Brake piston element characterized by solution treatment of aluminum alloy material consisting of ⁇ 0.7 mass%, balance Al and inevitable impurities, then cold forging the material, and then artificially aging the material A method of manufacturing the material.
  • the hardness of the material at the start of artificial aging treatment is set,
  • the solution treatment conditions are set so that the hardness of the material obtained by solution treatment of the material is 40% to 65% of the material hardness at the start of artificial aging treatment.
  • a method for manufacturing a shaped material for a brake piston is set.
  • the present invention has the following effects.
  • forging processability of the material is improved by solution treatment before cold forging the material. Therefore, it is not necessary to O-process the raw material before cold forging and the O-treatment can be omitted. Furthermore, since the solution treatment is performed before the cold forging process and before the cold forging process, and the artificial aging process is performed after the cold forging process, the distortion of the material hardly occurs, so Inner diameter cutting for increasing the roundness of the inner diameter can also be omitted. As a result, the number of manufacturing steps can be further reduced, and as a result, the brake piston shaped material can be more easily manufactured and the manufacturing cost can be reduced.
  • the hardness of the material quickly reaches the peak hardness (that is, the maximum value) during the artificial aging treatment. Therefore, the aging time of the artificial aging treatment can be shortened, and as a result, the manufacturing cost can be further reduced.
  • the aluminum alloy material having a predetermined composition is sequentially subjected to a solution treatment, a cold forging process, and an artificial aging process under a predetermined processing condition, thereby forming a brake piston shaped material.
  • the integrated production line tact can be optimized. The reason is as follows. In the following description, the heat treatment temperature for solution treatment is referred to as “solution treatment temperature”, and the heat treatment time for solution treatment is referred to as “solution treatment time”.
  • T8 process is employable as a manufacturing process of the shape material for brake pistons. That is, since the solution treatment is not performed after the cold forging process, the artificial aging process can be started immediately after the cold forging process. Furthermore, since the solution treatment is not performed after the cold forging process, the hardness of the material quickly reaches the peak hardness during the artificial aging treatment. Therefore, the aging time of the artificial aging treatment can be shortened.
  • the rate-determining factor of the integrated production line for the brake piston shaped material is the heat treatment time, that is, the solution treatment time and the artificial aging treatment aging time.
  • the aging time of the artificial aging treatment can be shortened, so that the aging time can be made shorter than the solution treatment time.
  • the rate of tact of the integrated production line can be set to the solution treatment time, and the aging time can be shortened so as to be within the solution treatment time.
  • the aging time can be 0.3 to 1 times the solution treatment time. For example, when the solution treatment time is 3 to 5 h, the aging time can be 2 h ⁇ 0.5 h. In this way, it is possible to optimize (minimize) the tact of the integrated production line for the brake piston shaped material.
  • the required hardness is high by setting the hardness of the material after the artificial aging treatment (that is, the shape material for the brake piston) to 85% to 95% of the peak hardness of the material during the artificial aging treatment. It is possible to obtain a brake piston shaped material having thermal conductivity, that is, high heat dissipation.
  • the brake piston shaped material having high thermal conductivity that is, high heat dissipation can be obtained by having an electrical conductivity of 45 to 45% IACS. it can.
  • FIG. 1 is a process diagram showing a method for manufacturing a shaped material for a brake piston according to an embodiment of the present invention.
  • FIG. 2A is a cross-sectional view of a cold forging apparatus showing a state before pressing a material with a punch in cold forging.
  • FIG. 2B is a cross-sectional view of the cold forging apparatus showing a state after the material is pressed with a punch in the cold forging process.
  • FIG. 2C is a perspective view of the material before being pressed with a punch in the cold forging process.
  • FIG. 2D is a perspective view of the material after being pressed with a punch in the cold forging process.
  • FIG. 2A is a cross-sectional view of a cold forging apparatus showing a state before pressing a material with a punch in cold forging.
  • FIG. 2B is a cross-sectional view of the cold forging apparatus showing a state after the material is pressed with a punch in the cold forging process.
  • FIG. 3 is a graph (graph) comparing the roundness of the inner diameter of the material after artificial aging treatment between Example 1 and Comparative Example 1.
  • FIG. 4A is a graph (graph) showing the conductivity of the material of Example 4.
  • 4B is a graph (graph) showing the conductivity of the material of Comparative Example 2.
  • FIG. 5 is a graph (graph) comparing the relationship between the aging time and the hardness of the material in the artificial aging treatment process between Example 5 and Comparative Example 3.
  • FIG. 6 is a diagram (graph) showing the relationship between the aging time and the hardness of the material in the artificial aging treatment step of Example 6.
  • FIG. 7A is a diagram (graph) showing an aging curve when the aging temperature is changed.
  • FIG. 7B is a diagram (graph) showing an aging curve when the hardness of the material at the start of the artificial aging treatment is changed.
  • FIG. 8 is a graph (graph) showing the conductivity (relative IACS) and hardness (relative HRB) of the material of Example 9 shown in Table 7.
  • FIG. 9 is a diagram (graph) showing the relationship between the solution treatment temperature applied in Reference Examples 1 to 3 shown in Table 8 and the hardness of the material after the solution treatment.
  • FIG. 10 is a process diagram showing a conventional method for manufacturing a shaped material for a brake piston.
  • the base material for a brake piston according to an embodiment of the present invention is a bottomed cylindrical product made of an aluminum alloy.
  • the material of the raw material used for manufacturing the raw material is an aluminum alloy having the following composition. That is, the material of the material is Si: 9.0 to 11.0% by mass, Fe: 0.50% by mass or less, Cu: 0.7 to 1.1% by mass, Mn: 0.15% by mass or less, Mg : 0.3 to 0.7% by mass, an aluminum alloy composed of the balance Al and inevitable impurities.
  • this composition requirement is referred to as “aluminum alloy composition requirement” for convenience of explanation.
  • Wear resistance is improved when the Si content is in the range of 9.0 to 11.0 mass%. If the Si amount is less than 9.0% by mass, the wear resistance cannot be improved. When the amount of Si exceeds 11.0% by mass, forging workability and formability deteriorate.
  • the amount of Cu is within the range of 0.7 to 1.1% by mass, a hard alumite film can be formed on the surface of the material.
  • the amount of Cu is less than 0.7% by mass, the mechanical strength decreases.
  • the amount of Cu exceeds 1.1 mass%, the hardness of an alumite film will fall.
  • the amount of Mn is 0.15% by mass or less, the mechanical properties are not deteriorated and the heat resistance is improved. If the amount of Mn exceeds 0.15% by mass, mechanical properties (particularly forging processability) deteriorate.
  • the mechanical strength is improved.
  • the amount of Mg is less than 0.3% by mass, the mechanical strength decreases.
  • the amount of Mg exceeds 0.7% by mass, the amount of crystallization of the intermetallic compound increases, and as a result, it becomes brittle.
  • the base material for a brake piston of this embodiment is manufactured according to the process sequence shown in FIG. 1 using the aluminum alloy material having the above composition. That is, as shown in FIG. 1, the manufacturing method of the brake piston shaped material of the present embodiment includes a cutting step S1, a solution treatment step S2, a cold forging step S3, an artificial aging step S4, and a machining step. The manufacturing process provided with S5 is included.
  • the process of sequentially performing the solution treatment, the cold working process and the artificial aging process on the material is called “T8 process”, and the process of the material performed in accordance with this T8 process is called “T8 process”. "is called. Therefore, the material for brake piston according to the present embodiment is manufactured according to the manufacturing process including the T8 process.
  • the hardness of the material obtained by subjecting the material to artificial aging treatment (that is, the hardness of the material after artificial aging treatment) is the hardness required for the shape material for the brake piston
  • the hardness of the material at the start of artificial aging treatment is set so that the hardness will be 85% to 95% (particularly desirably 86% to 93%) of the peak hardness of the material during artificial aging treatment
  • the hardness of the material obtained by solution treatment of the material (that is, the hardness of the material after solution treatment) is 40% to 65% (particularly desirably 45%) of the material hardness at the start of the artificial aging treatment. % To 62%), it is desirable to set the solution treatment conditions. By doing so, it is possible to reliably obtain a brake piston shaped material having the required hardness. In order to ensure this effect, it is preferable to carry out the manufacturing process as follows.
  • a material having a predetermined shape and size is obtained by cutting a rod-shaped aluminum alloy continuous cast material, an aluminum alloy extruded material, an aluminum alloy drawn material, and the like.
  • the shape of the material is generally disc-shaped or cylindrical.
  • the material obtained in the cutting step S1 is subjected to solution treatment without O treatment. Thereby, the forge workability of a raw material improves.
  • the forging processability of the material is reduced, and as a result, it becomes difficult to cold forge the material into a bottomed cylindrical shape. It becomes uneven and leads to insufficient hardness.
  • Preferred treatment conditions for the solution treatment are a heat treatment temperature of 510 ° C. ⁇ 10 ° C. (ie, 500 ° C. to 520 ° C.), a heat treatment time of 3 hours or more, and a particularly preferred water quenching water temperature of 25 ° C. to 60 ° C. ° C.
  • a heat treatment temperature 510 ° C. ⁇ 10 ° C.
  • the additive element of the aluminum alloy can be reliably dissolved. Therefore, when the raw material is subjected to artificial aging treatment after the solution treatment, uniform and fine precipitates can be reliably obtained, and as a result, the hardness can be reliably improved.
  • a particularly desirable heat treatment temperature is 510 ° C. ⁇ 5 ° C.
  • the upper limit of the heat treatment time is not limited, but since the manufacturing cost increases when the heat treatment time is lengthened, the upper limit of the heat treatment time is particularly preferably 5 hours in order to prevent this. That is, it is particularly desirable that the heat treatment time be in the range of 3h to 5h.
  • the material solution-treated in the solution treatment process S2 is cold-forged into a bottomed cylindrical shape.
  • the mechanical strength of a bottomed cylindrical material can be improved by work hardening.
  • the material if the material is not cold forged, the material cannot be formed into a bottomed cylindrical shape, and the mechanical strength cannot be improved by work hardening.
  • This cold forging process is a closed type cold backward extrusion forging process in detail, and is carried out, for example, by the cold forging apparatus (detailed cold backward extrusion forging apparatus) 1 shown in FIGS. 2A and 2B.
  • the apparatus 1 includes a punch 2 and a forming die 5.
  • the molding die 5 has a molding cavity 6. 3 is a punch axis.
  • Reference numeral 10 denotes a material.
  • the surface of the material 10 is preliminarily subjected to a lubrication process such as a bond process over the entire surface.
  • this material 10 is arranged in the molding cavity 6 of the molding die 5. Then, by pressing the material 10 with the punch 2, the molding cavity 6 is hermetically sealed as shown in FIG. 2, and the material 10 is backward extruded and forged into a bottomed cylindrical shape in the cavity 6.
  • the forging rate of this cold forging is in the range of 40% to 60% (particularly desirably 45% to 55%) in that the dimensional accuracy of the forging can be reliably improved.
  • the cold forged material 10 has a bottomed cylindrical shape as described above, that is, a cylindrical peripheral wall formed integrally with the disc-shaped bottom wall portion 11 and the outer peripheral edge portion of the bottom wall portion 11. Part 12.
  • the bottom wall portion 11 of the material 10 corresponds to the crown portion of the brake piston (the shape material for the brake piston), and the peripheral wall portion 12 of the material 10 corresponds to the skirt portion of the brake piston (the shape material for the brake piston). ing.
  • FIG. 2C is a perspective view of the material 10 before being pressed by the punch 2 in this cold forging process.
  • the material 10 has a disk shape or a column shape.
  • the diameter A1 of the material 10 is 40 to 50 mm, for example.
  • FIG. 2D is a perspective view of the material 10 (that is, the material 10 that has been cold forged) after being pressed by the punch 2 in this cold forging process.
  • the outer diameter B1 of the material 10 is, for example, 40 to 55 mm
  • the inner diameter B2 is, for example, 25 to 40 mm
  • the wall thickness B3 of the peripheral wall portion 12 is, for example, 5 to 15 mm
  • the depth B5 of the hollow portion is, for example, 25 to 40 mm.
  • the material 10 that has been cold forged in the cold forging step S3 is subjected to artificial aging treatment.
  • uniform and fine precipitates can be obtained with certainty, and therefore mechanical strength such as hardness can be reliably improved.
  • the size of the precipitates becomes non-uniform, and therefore, the mechanical strength decreases due to the growth of the precipitates when the brake piston is used.
  • the preferable treatment conditions for this artificial aging treatment are an aging temperature of 210 ° C. ⁇ 10 ° C. (ie, 200 to 220 ° C.), and an aging interval of 2 h ⁇ 0.5 h (ie, 1.5 h to 2.5 h).
  • an aging temperature of 210 ° C. ⁇ 10 ° C. (ie, 200 to 220 ° C.)
  • an aging interval of 2 h ⁇ 0.5 h ie, 1.5 h to 2.5 h.
  • the shape material for a brake piston must be artificially aged under the treatment conditions for overaging due to the demands on the usage environment. Therefore, the material must be subjected to artificial aging treatment longer than the aging time at which peak hardness is obtained during the artificial aging treatment.
  • the hardness of the material quickly reaches the peak hardness (that is, the maximum value) during the artificial aging treatment. Therefore, the aging time of the artificial aging treatment can be shortened.
  • the material subjected to the artificial aging treatment in the artificial aging treatment step S4 is machined into a predetermined shape.
  • This machining includes outer diameter cutting and polishing for increasing the roundness of the outer diameter of the material, but does not include inner diameter cutting for increasing the roundness of the inner diameter of the material. That is, the solution treatment is performed before the cold forging process but before it, and the artificial aging process is performed after the cold forging process, so the roundness of the inner diameter of the material after the artificial aging process is high. Therefore, it is not necessary to perform inner diameter cutting on the material in this machining step S5.
  • the material is anodized as necessary, thereby forming an alumite film on the surface of the material.
  • the amount of Cu contained in the aluminum alloy constituting the material is set within a range of 0.7 to 1.1% by mass, a hard alumite film can be reliably formed.
  • the brake piston shaped material is manufactured so that the electrical conductivity is 40% to 45% IACS. Therefore, it is possible to manufacture a brake piston shaped material having high thermal conductivity, that is, high heat dissipation.
  • IACS is an abbreviation for International Annealed Copper Standard (international annealed copper wire standard).
  • the manufacturing method of the brake piston shaped material of the above embodiment has the following advantages.
  • the hardness of the material after the artificial aging treatment is small even if the time (period) from the solution treatment to the artificial aging treatment is long. Rather, its hardness is substantially constant. That is, the change with time of the hardness of the material after the solution treatment is small. Therefore, there is a time margin between solution treatment and artificial aging treatment, so if the material is cold forged during that time, the hardness of the material after artificial aging treatment will not decrease, but rather work hardening by cold forging Higher. Therefore, a hard brake piston shaped material can be easily manufactured.
  • forging processability of the material is improved by solution treatment of the material. Therefore, it is not necessary to O-process the raw material before cold forging and the O-treatment can be omitted. Furthermore, as described above, since the solution treatment is performed before the cold forging process but before the cold forging process, the inner diameter cutting process for increasing the roundness of the inner diameter of the material during machining is also omitted. be able to. As a result, the number of manufacturing steps can be further reduced. As a result, the brake piston shaped material can be easily manufactured and the manufacturing cost can be reduced.
  • the hardness of the material quickly reaches the peak hardness (that is, the maximum value) during the artificial aging treatment. Therefore, the aging time of the artificial aging treatment can be shortened, and as a result, the manufacturing cost can be further reduced.
  • the aluminum alloy material of the specified composition is sequentially subjected to solution treatment, cold forging processing and artificial aging treatment under the specified processing conditions, thereby optimizing the tact of the integrated production line for brake piston shaped materials.
  • Can be The reason is as follows.
  • T8 process is employable as a manufacturing process of the shape material for brake pistons. That is, since the solution treatment is not performed after the cold forging process, the artificial aging process can be started immediately after the cold forging process. Furthermore, since the solution treatment is not performed after the cold forging process, the hardness of the material quickly reaches the peak hardness during the artificial aging treatment (see FIG. 5 described later). Therefore, the aging time of the artificial aging treatment can be shortened.
  • the rate-determining factor of the integrated production line for the brake piston shaped material is the heat treatment time, that is, the solution treatment time and the artificial aging treatment aging time.
  • the aging time can be made shorter than the solution treatment time.
  • the rate of tact of the integrated production line can be set to the solution treatment time, and the aging time of the artificial aging treatment can be shortened so as to be within the solution treatment time.
  • the aging time can be 0.3 to 1 times (preferably 0.5 to 0.9 times) the solution treatment time.
  • the solution treatment time is 3h to 5h
  • the aging time can be 2h ⁇ 0.5h. In this way, it is possible to optimize (minimize) the tact of the integrated production line for the brake piston shaped material.
  • the required hardness is high by setting the hardness of the material after the artificial aging treatment (that is, the shape material for the brake piston) to 85% to 95% of the peak hardness of the material during the artificial aging treatment. It is possible to obtain a brake piston shaped material having thermal conductivity, that is, high heat dissipation.
  • FIG. 3 is a graph (graph) comparing the roundness of the inner diameter of the material after artificial aging treatment between Example 1 and Comparative Example 1.
  • Example 1 averages the roundness of the inner diameters of five materials subjected to artificial aging treatment according to the process sequence shown in FIG. 1 of the present embodiment.
  • Comparative Example 1 averages the roundness of the inner diameters of five materials that have been artificially aged according to the process sequence shown in FIG.
  • the target inner diameter of the material is 28 mm.
  • the roundness is measured according to, for example, JIS (Japanese Industrial Standard) B0021.
  • Example 1 the maximum roundness of the inner diameter of the material was 4 ⁇ m, the minimum value was 1 ⁇ m, and the average value was 2.16 ⁇ m. In Comparative Example 1, the maximum value of the roundness of the inner diameter of the material was 49 ⁇ m, the minimum value was 37 ⁇ m, and the average value was 46.2 ⁇ m.
  • the materials of the materials used in Example 1 and Comparative Example 1 are both aluminum alloys, and the composition satisfies the composition requirements of the aluminum alloy described above.
  • the solution treatment conditions applied in Example 1 are 510 ° C. ⁇ 3 h, the forging rate is 50%, and the artificial aging treatment conditions are 210 ° C. ⁇ 2 h.
  • the treatment conditions for O treatment applied in Comparative Example 1 are 380 ° C. ⁇ 3.5 h, the forging rate is 50%, the treatment conditions for solution treatment are 510 ⁇ 3 h, and the treatment conditions for artificial aging treatment are 210 ° C. ⁇ 2 h. .
  • Example 1 As shown in FIG. 3, in Example 1, the roundness of the inner diameter of the material is much higher (smaller) than in Comparative Example 1. Therefore, in Example 1, since the inner diameter of the material satisfied the preferable roundness standard of 8 ⁇ m or less, it is not necessary to perform an inner diameter cutting process for increasing the roundness of the inner diameter of the material in the machining step S5. It was.
  • Table 1 shows the results of evaluating the change over time (time change) in the hardness of the material.
  • Examples 2 and 3 in Table 1 are obtained by averaging the hardness of three materials subjected to artificial aging treatment in accordance with the process sequence shown in FIG. 1 of the present embodiment.
  • the time (period) from solution treatment to artificial aging treatment is 3 days, and in Example 3, it is 3 months.
  • the materials of the materials used in Examples 2 and 3 are all aluminum alloys, and the composition satisfies the composition requirements of the aluminum alloy described above.
  • the solution treatment conditions applied in Examples 2 and 3 were 510 ° C. ⁇ 3 h, the forging rate was 50%, and the artificial aging treatment conditions were 210 ° C. ⁇ 2 h.
  • the hardness of the material is Rockwell hardness (hardness symbol: HRB) measured according to JIS Z2245: 2005 "Rockwell hardness test-test method”, and the scale used for the measurement Is “B”, the indenter is a steel ball of 1.5875 mm, and the test load is 980.7 N.
  • the measurement method of the hardness of the raw material applied below is the same as this.
  • FIG. 4A is a diagram (graph) showing the conductivity of the material of Example 4
  • FIG. 4B is a diagram (graph) showing the conductivity of the material of Comparative Example 2.
  • Example 4 six materials machined according to the process sequence shown in FIG. 1 of the present embodiment were measured and averaged for the electrical conductivity of these materials in each step.
  • Comparative Example 2 six materials machined in accordance with the conventional process sequence shown in FIG. 10 are measured and averaged in terms of the electrical conductivity of these materials in each step.
  • the materials of the materials used in Example 4 and Comparative Example 2 are both aluminum alloys, and the composition satisfies the composition requirements of the aluminum alloy described above.
  • the solution treatment conditions applied in Example 4 are 510 ° C. ⁇ 3 h, the forging rate is 50%, and the artificial aging treatment conditions are 210 ° C. ⁇ 2 h.
  • the treatment conditions for O treatment applied in Comparative Example 2 were 380 ° C. ⁇ 3.5 h, the forging rate was 50%, the treatment conditions for solution treatment were 510 ° C. ⁇ 3 h, and the treatment conditions for artificial aging treatment were 210 ° C. ⁇ 2 h. is there.
  • the electrical conductivity of the material after machining (that is, the shape material for the brake piston) in Example 1 is in the range of 40% to 45% IACS, which is higher than that in Comparative Example 2. high. Therefore, in Example 4, it was possible to obtain a brake piston shaped material having high thermal conductivity, that is, high heat dissipation.
  • FIG. 5 is a graph (graph) comparing the relationship between the aging time and the hardness of the material in the artificial aging treatment process between Example 5 and Comparative Example 3.
  • Example 5 a material subjected to cold forging according to the process sequence shown in FIG. 1 of the present embodiment was subjected to artificial aging treatment under a treatment condition of an aging temperature of 210 ° C.
  • Comparative Example 3 a material subjected to cold forging according to the conventional process sequence shown in FIG. 10 is subjected to artificial aging treatment under a treatment condition of an aging temperature of 195 ° C.
  • the materials of the materials used in Example 5 and Comparative Example 3 are both aluminum alloys, and the composition satisfies the composition requirements of the aluminum alloy described above. Further, the solution treatment conditions applied in Example 5 are 510 ° C. ⁇ 3 h, and the forging rate is 50%. The treatment conditions for the O treatment applied in Comparative Example 1 are 380 ° C. ⁇ 3.5 h, the forging rate is 50%, and the treatment conditions for the solution treatment are 510 ° C. ⁇ 3 h.
  • Example 5 As shown in FIG. 5, in Example 5, the aging time for reaching the peak hardness is shorter than that in Comparative Example 3. Therefore, in Example 5, the aging time of the artificial aging treatment can be shortened, and as a result, the manufacturing cost can be reduced.
  • Comparative Example 3 since the aging time to reach the peak hardness is long, it is difficult to keep the tact time of the integrated production line of the brake piston shaped material within the solution treatment time.
  • the time to reach the peak hardness can be shortened by performing the artificial aging treatment without performing the solution treatment after the cold forging.
  • processing distortion occurs in the material by performing cold forging, and by performing artificial aging treatment with the distortion remaining, precipitates centered on the distortion are generated in the material.
  • the time to reach the peak hardness is shortened.
  • Comparative Example 3 since the solution treatment is performed after the forging process and the artificial aging process is performed thereafter, the processing distortion due to the cold forging process is eliminated by the solution treatment. As a result, the strain that becomes the center of the precipitate is eliminated, and it is estimated that the time to reach the peak hardness is delayed.
  • FIG. 6 is a diagram (graph) showing the relationship between the aging time and the hardness of the material in the artificial aging treatment step of Example 6.
  • a material that was cold forged according to the process sequence shown in FIG. 1 of the present embodiment was subjected to artificial aging treatment under a treatment condition of an aging temperature of 215 ° C.
  • the material of the material used in Example 6 is an aluminum alloy, and the composition satisfies the composition requirements of the aluminum alloy described above.
  • the solution treatment conditions applied in Example 6 are 510 ° C. ⁇ 3 h, and the forging rate is 50%.
  • the peak hardness of the material during the artificial aging treatment is 71.5HRB, and the aging time at this time is 0.5h.
  • the brake piston shaped material must be artificially aged under the treatment conditions for overaging due to the demands on the usage environment. Therefore, the material must be artificially aged for longer than the aging time of 0.5 h, which is the peak hardness during the artificial aging treatment.
  • the hardness required for the brake piston shape material from the customer that is, the hardness of the material after artificial aging treatment is generally in the range of 61 to 68 HRB.
  • the hardness 61HRB corresponds to 85% of the peak hardness 71.5HRB
  • the hardness 68HRB corresponds to 95% of the peak hardness 71.5HRB.
  • the hardness is 61 (ie, 85% of the peak hardness is 71.5HRB).
  • a material within the range of ⁇ 68 (ie 95% of peak hardness 71.5HRB) HRB (brake piston shape material) can be reliably obtained, and therefore the required hardness can be reliably satisfied.
  • the hardness of the material obtained by artificially aging the material is the hardness required for the brake piston shaped material. Therefore, it can be confirmed that the hardness of the material at the start of the artificial aging treatment should be set so that this hardness is 85% to 95% of the peak hardness of the material during the artificial aging treatment. It was.
  • Table 2 shows the results of measuring the hardness of the material after the solution treatment in Example 7 and the hardness of the material at the start of the artificial aging treatment.
  • Example 7 is an average of the hardness after solution treatment and the hardness at the start of artificial aging treatment for six materials that have been subjected to artificial aging treatment according to the process sequence shown in FIG. 1 of the present embodiment.
  • Table 2 lists the maximum value and the minimum value of the hardness of the material after the solution treatment and the hardness of the material at the start of the artificial aging treatment.
  • the material of the material used in Example 7 is an aluminum alloy, and the composition satisfies the composition requirements of the aluminum alloy described above.
  • the solution treatment conditions applied in Example 7 are 510 ° C. ⁇ 3 h, the forging rate is 50%, and the artificial aging treatment conditions are 210 ° C. ⁇ 2 h.
  • the hardness of the material after solution treatment / “the hardness of the material at the start of artificial aging treatment” is “the hardness of the material after solution treatment” / “the hardness of the material after cold forging” This value is the reciprocal of the work hardening rate ⁇ .
  • the hardness of the material obtained by solution treatment of the material is 40% to 65% (particularly desirably 45%) of the material hardness at the start of artificial aging treatment.
  • the desired hardness of the material at the start of the artificial aging treatment can be obtained by setting the treatment conditions for the solution treatment so as to be ( ⁇ 62%).
  • the hardness of the material obtained by solution treatment of the material is 40% to 65% of the hardness of the material at the start of the artificial aging treatment. It was confirmed that the solution treatment conditions should be set so as to be% (particularly desirably 45% to 62%).
  • Table 4 shows the results of measuring the hardness of the material after the solution treatment in Example 8 and the hardness of the material at the start of the artificial aging treatment.
  • Example 8 averaged the hardness after the solution treatment of the five different parts in the material subjected to the artificial aging treatment according to the process sequence shown in FIG. 1 of the present embodiment and the hardness at the start of the artificial aging treatment. Is.
  • the material of the material used in Example 8 is an aluminum alloy, and the composition satisfies the composition requirements of the aluminum alloy described above.
  • the solution treatment conditions applied in Example 8 are 510 ° C. ⁇ 3 h, the forging rate is 50%, and the artificial aging treatment conditions are 210 ° C. ⁇ 2 h.
  • the hardness of the material obtained by solution treatment of the material is 40% to the hardness of the material at the start of artificial aging treatment.
  • the treatment conditions for the solution treatment so as to be 65% (particularly desirably 45% to 62%)
  • the hardness of the material obtained by solution treatment of the material is 40% to 65% of the hardness of the material at the start of the artificial aging treatment. It was confirmed that the solution treatment conditions should be set so as to be% (particularly desirably 45% to 62%).
  • the “Solution Treatment Condition” column in Table 6 shows the treatment conditions of the solution treatment applied to each example.
  • the “forging rate” column indicates the forging rate of cold forging applied to each example.
  • the “artificial aging treatment condition” column shows the treatment condition of the artificial aging treatment applied to each embodiment.
  • the composition of the aluminum alloy constituting the material satisfies the above-described composition requirements of the aluminum alloy, and the solution treatment conditions are a heat treatment temperature of 510 ° C. ⁇ 10 ° C. and a heat treatment time of 3 hours.
  • the processing conditions of the artificial aging treatment are those having an aging temperature of 210 ° C. ⁇ 10 ° C. and an aging time of 2 h ⁇ 0.5 h, the hardness of the material should be reliably improved.
  • the roundness of the inner diameter of the material could be increased, and high conductivity (ie, high thermal conductivity and heat dissipation) could be obtained.
  • the work hardening rate ⁇ is determined as follows. That is, the shape of the product (brake piston material) is determined by presentation from the customer. Then, since the cold forging process applied when manufacturing this product is a closed mold, the volume of the product material is determined. Then, the shape of the material is determined by the volume of the material and the diameter of the aluminum alloy continuous cast material for obtaining the material, and the forging rate is determined by the determined shape of the material and the shape of the product. By determining the forging rate in this way, the work hardening rate ⁇ is determined. Regarding the adjustment of the work hardening rate ⁇ , it is also possible to adjust the forging rate by changing the diameter of the aluminum alloy continuous cast material and the like, thereby adjusting the work hardening rate ⁇ .
  • the mechanical properties (especially hardness) of the product are determined by customer demand.
  • the composition of the aluminum alloy composing the material is determined by the requirement to obtain the mechanical properties (especially hardness) required for the product and to reduce the time-dependent change in the material hardness after solution treatment. Is done.
  • the upper limit of the solution treatment temperature at which burning does not occur during the solution treatment and the solution treatment time for obtaining a sufficient solid solution state are determined.
  • the element that most affects the hardness is Cu.
  • 510 ° C. ⁇ 10 ° C. can be adopted as the upper limit of the solution treatment temperature at which Cu is dissolved as much as possible and burning does not occur during the solution treatment.
  • the lower limit of the solution treatment temperature is a temperature at which Cu can be dissolved.
  • the objective is to optimize (minimize) the tact of the integrated production line of the product, so that the product can be manufactured easily.
  • the product manufacturing history (material ⁇ solution treatment ⁇ cold forging ⁇ artificial aging treatment) and change in product (material) hardness can be expressed by the following formula 1.
  • Product hardness ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Material hardness after solution treatment (Formula 1) However, ⁇ : Product hardness / Aging peak hardness ⁇ : Aging peak hardness / Material hardness at the start of artificial aging treatment ⁇ : Material hardness after cold forging / Material treatment after solution treatment Hardness.
  • the hardness of the material before solution treatment is “H1”.
  • the hardness of the product, that is, the hardness of the material after artificial aging treatment is defined as “H4”.
  • the aging time is “T4”.
  • the hardness of the material after cold forging is the same as that of the material at the start of artificial aging treatment.
  • means work hardening rate.
  • the hardness of the material obtained by solution treatment of the material is 40% to 65% of the material hardness at the start of artificial aging treatment.
  • the optimum points (H4, T4) of the product hardness vs aging time are determined by the above preconditions B and D.
  • the slope of the aging curve and the time to reach the aging peak hardness change. That is, when the aging temperature is increased, the aging curve is reduced in the direction of the white arrow (left direction).
  • the aging peak hardness of the aging curve changes when the hardness of the material at the start of the artificial aging treatment is changed. That is, when the hardness of the raw material at the start of the artificial aging treatment is increased, the aging curve is translated in the direction of the approximate white arrow (upward), and the aging peak hardness is increased accordingly.
  • a plurality of aging temperatures at which the aging curve passes through the optimum points (H4, T4) and the hardness of the material at the start of the artificial aging treatment are selected.
  • the optimum point (H4, T4) needs to be in the overaged region in order to satisfy the demands on the usage environment of the product (the material for the brake piston). Furthermore, in order to reliably satisfy the hardness required for the product, it is desirable that the hardness of the optimum point (H4, T4) is 95% or less of the peak hardness.
  • the hardness of the optimum point (H4, T4) is desirably 85% or more of the peak hardness. The reason for this will be described with reference to Table 7 and FIG.
  • FIG. 8 is a graph (graph) showing changes in conductivity and hardness of the material of Example 9.
  • the material of the material of Example 9 is an aluminum alloy, and the composition satisfies the composition requirements of the aluminum alloy described above.
  • the solution treatment conditions applied in Example 9 were 510 ° C. ⁇ 3 h, the forging rate was 50%, and the artificial aging treatment temperature was 210 ° C.
  • Relative IACS is the conductivity of the material when the conductivity of the material after the solution treatment is 1. Relative IACS No.
  • the relative HRB is the hardness of the material when the hardness of the material after the solution treatment is 1.
  • Relative HRB No. 2 is the hardness of the material when the material hardness at the time of the peak hardness of the material during the artificial aging treatment (when the hardness is 100% of the peak hardness) is 1.
  • the electrical conductivity of the material is the highest at the peak hardness (at 100% of the peak hardness) during the artificial aging treatment, similarly to its hardness, and the peak hardness.
  • the peak hardness is 75%.
  • the hardness of the material becomes very high after the transition from solution treatment to cold forging, the effect of work hardening rate ⁇ by cold forging is greater than the aging time. receive.
  • the electrical conductivity of the material does not change much even after transition from the solution treatment to after cold forging, and is more affected by the aging time than the work hardening rate ⁇ . Therefore, in order to increase the conductivity, that is, to increase the thermal conductivity, it is necessary to manage the artificial aging treatment time, and it is desirable that the conductivity increased by the artificial aging treatment is not lowered as much as possible. Therefore, in the hardness corresponding to the electrical conductivity, the hardness of the optimum point (H4, T4) is desirably 85% or more of the peak hardness.
  • ⁇ - ⁇ is determined by the selected aging curve. For example, in the case of Examples 5 and 6 shown in FIGS. 5 and 6, respectively, ⁇ is determined to be 1 / (0.95 to 0.99).
  • ⁇ , ⁇ , and ⁇ are determined as follows, for example.
  • ⁇ : ⁇ : ⁇ (0.85 to 0.95): 1 / (0.95 to 0.99): 1 / (0.4 to 0.65)
  • the brake piston shaped material having the required hardness and high thermal conductivity (that is, high heat dissipation). (Products) can be manufactured, and the tact of the integrated production line for the brake piston shaped material can be optimized.
  • the method for determining the solution treatment temperature as the treatment condition for the solution treatment is as follows. That is, using a material that satisfies the composition requirements of the above-described aluminum alloy, a graph showing the relationship between the hardness of the material after solution treatment vs. the solution treatment temperature as shown in Table 8 and FIG. Create it. And based on this graph, solution treatment temperature is determined so that the hardness of the raw material after solution treatment may become the hardness of the raw material after solution treatment which satisfy
  • the solution treatment time applied in each of Reference Examples 1 to 3 is 3 h. Yes.
  • the term present invention or inventory should not be construed inappropriately as identifying criticality, nor should it be construed as inappropriately applied across all aspects or all embodiments ( That is, it should be understood that the present invention has numerous aspects and embodiments) and should not be construed inappropriately to limit the scope of the present application or the claims.
  • the term “embodiment” is also used to describe any aspect, feature, process or step, any combination thereof, and / or any part thereof. It is done. In some examples, various embodiments may include overlapping features.
  • the abbreviations “e.g.,” and “NB” may be used, meaning “for example” and “careful”, respectively.
  • the present invention is applicable to a method for manufacturing a brake piston shape material and a brake piston shape material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)
  • Braking Arrangements (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

 Si:9.0~11.0質量%、Fe:0.5質量%以下、Cu:0.7~1.1質量%、Mn:0.15質量%以下、Mg:0.3~0.7質量%、残部Al及び不可避不純物からなるアルミニウム合金の素材を溶体化処理する。次いで、素材を冷間鍛造加工する。その後、素材を人工時効処理する。これにより、ブレーキピストン用素形材が得られる。

Description

ブレーキピストン用素形材の製造方法
 本発明は、アルミニウム合金製ブレーキピストン用素形材の製造方法及びブレーキピストン用素形材に関する。
 従来のアルミニウム合金製ブレーキピストン用素形材は、有底円筒状のものであり、図10に示す工程順序に従って製造されるのが一般的である。すなわち、切断工程S101では、棒状のアルミニウム連続鋳造材、アルミニウム合金押出材、アルミニウム引抜材等を切断して素材を得る。O処理工程S102では素材をO処理する。冷間鍛造加工工程S103では素材を有底円筒状に冷間鍛造加工する。溶体化処理工程S104では素材を溶体化処理する。人工時効処理工程S105では素材を人工時効処理する。機械加工工程S106では素材を機械加工する。なお、冷間鍛造加工工程S103から人工時効処理工程S105までの工程は、一般にT6処理と呼ばれている。
 また、従来からブレーキピストン用素形材に用いられている素材の材質は、A6061のアルミニウム合金である。このようなA6000系のアルミニウム合金では、その硬さは、溶体化処理から人工時効処理までの時間(即ち、室温予備時効処理の時効時間)と、アルミニウム合金に含まれるMgSi量とに影響されることが知られている(例えば非特許文献1、2参照)。すなわち、MgSi量が約1質量%以上(又は0.9質量%超)のアルミニウム合金では、溶体化処理から人工時効処理までの時間(期間)が長いと、人工時効処理後の素材の硬さが小さくなる。一方、MgSi量が約1質量%未満(又は0.9質量%未満)のアルミニウム合金では、溶体化処理から人工時効処理までの時間が長いと、人工時効処理後の素材の硬さが大きくなる。
40周年記念事業実行委員会記念出版部会編集、「アルミニウムの組織と性質」、軽金属学会、1991年11月30日、p.282 社団法人軽金属協会編集、「アルミニウム材料の基礎と工業技術」、第1版、昭和60年5月1日、p.169
 しかるに、A6061のアルミニウム合金に含まれるMgSi量は約1.3~1.9質量%である。そのため、A6061のアルミニウム合金の従来の素材では、溶体化処理から人工時効処理までの時間が長くなると、人工時効処理後の素材の硬さは小さくなる。したがって、硬いブレーキピストン用素形材を得るためには、冷間鍛造加工後に溶体化処理と人工時効処理を迅速に連続して実施しなければならず、困難な作業が強いられていた。
 さらに、従来の製造方法では、冷間鍛造加工の前に、鍛造加工性を向上させるために素材についてO処理を実施する必要があった。
 さらに、溶体化処理の際の水焼入れにより素材が歪むため、素材の内径の真円度が悪かった。そのため、機械加工工程S106では、素材の内径の真円度を高めるための内径切削加工を実施する必要があった。
 本発明は、上述した技術背景に鑑みてなされたもので、その目的は、O処理を実施しないで且つ容易に製造することができるブレーキピストン用素形材の製造方法及びブレーキピストン用素形材を提供することにある。
 本発明のその他の目的及び利点は、以下の好ましい実施形態から明らかにされるであろう。
 本発明は以下の手段を提供する。
 [1] Si:9.0~11.0質量%、Fe:0.5質量%以下、Cu:0.7~1.1質量%、Mn:0.15質量%以下、Mg:0.3~0.7質量%、残部Al及び不可避不純物からなるアルミニウム合金の素材を溶体化処理し、次いで素材を冷間鍛造加工し、その後素材を人工時効処理することを特徴とするブレーキピストン用素形材の製造方法。
 [2] 素材を、時効温度210℃±10℃及び時効時間2h±0.5hの処理条件で人工時効処理する前項1記載のブレーキピストン用素形材の製造方法。
 [3] 素材を、熱処理温度510℃±10℃及び熱処理時間3h以上の処理条件で溶体化処理する前項1又は2記載のブレーキピストン用素形材の製造方法。
 [4] Si:9.0~11.0質量%、Fe:0.5質量%以下、Cu:0.7~1.1質量%、Mn:0.15質量%以下、Mg:0.3~0.7質量%、残部Al及び不可避不純物からなるアルミニウム合金の素材を溶体化処理し、次いで素材を冷間鍛造加工し、その後素材を過時効処理となる処理条件で人工時効処理する製造工程を含み、
 前記製造工程では、
 素材を人工時効処理して得られる素材の硬さがブレーキピストン用素形材に要求される硬さであって、この硬さが人工時効処理の際の素材のピーク硬さの85%~95%となるように、人工時効処理開始時の素材の硬さが設定されており、
 素材を溶体化処理して得られる素材の硬さが人工時効処理開始時の素材の硬さの40%~65%となるように、溶体化処理の処理条件が設定されていることを特徴とするブレーキピストン用素形材の製造方法。
 [5] 前項1~4のいずれかに記載のブレーキピストン用素形材の製造方法により製造されたブレーキピストン用素形材。
 [6] 導電率が40%~45%IACSである前項5記載のブレーキピストン用素形材。
 本発明は以下の効果を奏する。
 前項[1]記載のブレーキピストン用素形材の製造方法では、素材を構成するアルミニウム合金に含まれるMgSi量が約0.4~0.9質量%なので、溶体化処理から人工時効処理までの時間が長くても人工時効処理後の素材の硬さは小さくならず、その硬さは略一定である。すなわち、溶体化処理後の素材の硬さの経時的変化は小さい。したがって、溶体化処理から人工時効処理までの間に時間的余裕ができるのでその間に素材を冷間鍛造加工すると、人工時効処理後の素材の硬さは小さくならないでむしろ冷間鍛造加工による加工硬化により高くなる。そのため、硬いブレーキピストン用素形材を容易に製造することができる。
 さらに、素材を冷間鍛造加工する前に溶体化処理することにより、素材の鍛造加工性が向上する。そのため、冷間鍛造加工の前に素材をO処理する必要がなく、O処理を省略することができる。さらには、溶体化処理は冷間鍛造加工の後でなくその前に実施され、そして冷間鍛造加工の後で人工時効処理が実施されるから、素材の歪みが殆ど発生せず、したがって素材の内径の真円度を高めるための内径切削加工も省略することができる。これにより、製造工程数を更に削減することができ、その結果、ブレーキピストン用素形材を更に容易に製造することができるし、その製造コストを引き下げることができる。
 さらに、素材を人工時効処理すると、当該人工時効処理の際に素材の硬さが迅速にピーク硬さ(即ち最大値)に達する。そのため、人工時効処理の時効時間を短縮することができ、その結果、製造コストを更に引き下げることができる。
 前項[2]記載の製造方法では、要求される硬さを有するブレーキピストン用素形材をより確実に製造することができる。
 前項[3]記載の製造方法では、要求される硬さを有するブレーキピストン用素形材をより確実に製造することができる。
 前項[4]記載の製造方法では、所定の組成のアルミニウム合金の素材を、所定の処理条件で順次、溶体化処理、冷間鍛造加工処理及び人工時効処理することにより、ブレーキピストン用素形材の一貫製造ラインのタクトを最適化することができる。その理由は次のとおりである。なお、以下の説明文では、溶体化処理の熱処理温度を「溶体化処理温度」、溶体化処理の熱処理時間を「溶体化処理時間」とそれぞれ記する。
 アルミニウム合金が所定の組成を有することにより、溶体化処理後の素材の硬さの経時的変化を小さくすることができる。そのため、ブレーキピストン用素形材の製造工程としてT8工程を採用することができる。すなわち、冷間鍛造加工後に溶体化処理を実施しないので、冷間鍛造加工後にすぐに人工時効処理を開始することができる。さらに、冷間鍛造加工後に溶体化処理を実施しないので、人工時効処理の際に素材の硬さが迅速にピーク硬さに達する。そのため、人工時効処理の時効時間を短縮することができる。
 ここで、ブレーキピストン用素形材の一貫製造ラインのタクトの律速は、熱処理時間であり、すなわち溶体化処理時間と人工時効処理の時効時間とである。しかるに、溶体化処理時間は、十分な固溶状態を実現すべく、短縮することは困難である。これに対して、前項[4]記載の製造方法によれば人工時効処理の時効時間を短縮することができるので、時効時間を溶体化処理時間よりも短くすることができる。これにより、一貫製造ラインのタクトの律速を溶体化処理時間にすることができるとともに、この溶体化処理時間内に収まるように時効時間を短くすることができる。具体的には、時効時間を溶体化処理時間の0.3倍~1倍にすることができる。例えば、溶体化処理時間が3~5hである場合には、時効時間を2h±0.5hにすることが可能となる。このようにして、ブレーキピストン用素形材の一貫製造ラインのタクトを最適化(最小化)することができる。
 さらに、人工時効処理後の素材(即ちブレーキピストン用素形材)の硬さを人工時効処理の際の素材のピーク硬さの85%~95%とすることにより、要求される硬さ、高い熱伝導性、即ち高い放熱性を有するブレーキピストン用素形材を得ることができる。
 前項[5]記載のブレーキピストン用素形材によれば、前項[1]~[4]のいずれかに記載のブレーキピストン用素形材の製造方法による効果と同様の効果を奏する。
 前項[6]記載のブレーキピストン用素形材によれば、導電率が45~45%IACSであることにより、熱伝導性が高い、即ち放熱性が高いブレーキピストン用素形材を得ることができる。
図1は、本発明の一実施形態に係るブレーキピストン用素形材の製造方法を示す工程図である。 図2Aは、冷間鍛造加工において、パンチで素材を押圧する前の状態を示す冷間鍛造加工装置の断面図である。 図2Bは、同冷間鍛造加工において、パンチで素材を押圧した後の状態を示す冷間鍛造加工装置の断面図である。 図2Cは、同冷間鍛造加工において、パンチで押圧される前の素材の斜視図である。 図2Dは、同冷間鍛造加工において、パンチで押圧された後の素材の斜視図である。 図3は、人工時効処理後の素材の内径の真円度を実施例1と比較例1とで比較した図(グラフ)である。 図4Aは、実施例4の素材の導電率を示す図(グラフ)である。 図4Bは、比較例2の素材の導電率を示す図(グラフ)である。 図5は、人工時効処理工程における時効時間と素材の硬さとの関係を実施例5と比較例3とで比較した図(グラフ)である。 図6は、実施例6の人工時効処理工程における時効時間と素材の硬さとの関係を示す図(グラフ)である。 図7Aは、時効温度を変化させた場合の時効曲線を示す図(グラフ)である。 図7Bは、人工時効処理開始時の素材の硬さを変化させた場合の時効曲線を示す図(グラフ)である。 図8は、表7に示した実施例9の素材の導電率(相対IACS)と硬さ(相対HRB)をそれぞれ示す図(グラフ)である。 図9は、表8に示した参考例1~3で適用した溶体化処理温度と溶体化処理後の素材の硬さとの関係を示す図(グラフ)である。 図10は、従来のブレーキピストン用素形材の製造方法を示す工程図である。
 次に、本発明の一実施形態について図面を参照して以下に説明する。
 本発明の一実施形態に係るブレーキピストン用素形材は、アルミニウム合金製の有底円筒状のものである。この素形材の製造に用いられる素材の材質は、次の組成を有するアルミニウム合金である。すなわち、素材の材質は、Si:9.0~11.0質量%、Fe:0.50質量%以下、Cu:0.7~1.1質量%、Mn:0.15質量%以下、Mg:0.3~0.7質量%、残部Al及び不可避不純物からなるアルミニウム合金である。本明細書では、この組成の要件を説明の便宜上「アルミニウム合金の組成要件」という。
 このアルミニウム合金において各添加元素の含有量の範囲を規定した理由は次のとおりである。
 Si量が9.0~11.0質量%の範囲内であることにより、耐摩耗性が向上する。Si量が9.0質量%未満であると、耐摩耗性の向上を図ることができない。Si量が11.0質量%を超えると、鍛造加工性や成形性が低下する。
 Fe量が0.50質量%以下であることにより、機械的強度の低下がなく耐熱性が向上する。Fe量が0.50質量%を超えると、Feを含む晶出物が多く発生し、その結果、機械的強度が低下する。
 Cu量が0.7~1.1質量%の範囲内であることにより、素材の表面に硬いアルマイト皮膜を形成することができる。Cu量が0.7質量%未満であると、機械的強度が低下する。Cu量が1.1質量%を超えると、アルマイト皮膜の硬さが低下する。
 Mn量が0.15質量%以下であることにより、機械的特性の低下がなく耐熱性が向上する。Mn量が0.15質量%を超えると、機械的特性(特に鍛造加工性)が低下する。
 Mg量が0.3~0.7質量%の範囲内であることにより、機械的強度が向上する。Mg量が0.3質量%未満であると、機械的強度が低下する。Mg量が0.7質量%を超えると、金属間化合物の晶出量が多くなり、その結果、脆(もろ)くなる。
 本実施形態のブレーキピストン用素形材は、上記の組成のアルミニウム合金の素材を用いて図1に示した工程順序に従って製造される。すなわち、本実施形態のブレーキピストン用素形材の製造方法は、図1に示すように、切断工程S1と溶体化処理工程S2と冷間鍛造加工工程S3と人工時効処理工程S4と機械加工工程S5とを備えた製造工程を含んでいる。
 ここで、一般的に、素材を順次、溶体化処理、冷間加工処理及び人工時効処理する工程は「T8工程」と呼ばれており、またこのT8工程に従って行われる素材の処理は「T8処理」と呼ばれている。したがって、本実施形態のブレーキピストン用素形材は、T8工程を含んだ製造工程に従って製造される。
 さらに、この製造工程では、素材を人工時効処理して得られる素材の硬さ(即ち人工時効処理後の素材の硬さ)がブレーキピストン用素形材に要求される硬さであって、この硬さが人工時効処理の際の素材のピーク硬さの85%~95%(特に望ましくは86%~93%)となるように、人工時効処理開始時の素材の硬さが設定されており、更に、素材を溶体化処理して得られる素材の硬さ(即ち溶体化処理後の素材の硬さ)が人工時効処理開始時の素材の硬さの40%~65%(特に望ましくは45%~62%)となるように、溶体化処理の処理条件が設定されていることが望ましい。こうすることにより、要求される硬さを有するブレーキピストン用素形材を確実に得ることができる。この効果を確実に奏するようにするため、製造工程を次のように実施するのが好ましい。
 切断工程S1では、棒状のアルミニウム合金連続鋳造材、アルミニウム合金押出材、アルミニウム合金引抜材等を切断することにより所定形状及び寸法の素材を得る。素材の形状は一般に円板状又は円柱状である。
 溶体化処理工程S2では、切断工程S1で得られた素材をO処理しないで溶体化処理する。これにより、素材の鍛造加工性が向上する。一方、素材を溶体化処理しない場合には、素材の鍛造加工性が低下し、その結果、素材を有底円筒状に冷間鍛造加工することが困難になり、更に、析出物の大きさが不均一となって硬さ不足を招く。
 この溶体化処理の好ましい処理条件は、熱処理温度が510℃±10℃(即ち500℃~520℃)であり、熱処理時間が3h以上であり、また特に好ましい水焼入れの水温度は25℃~60℃である。熱処理温度を510℃±10℃に設定することにより、アルミニウム合金の添加元素を確実に固溶させることができる。そのため、溶体化処理の後で素材を人工時効処理すると、均一で微細な析出物を確実に得ることができ、その結果、硬さを確実に向上させることができる。特に望ましい熱処理温度は510℃±5℃である。熱処理時間が3h以上であることにより、均一で微細な析出物を確実に得ることができ、その結果、硬さを確実に向上させることができる。熱処理時間の上限は限定されるものではないが、熱処理時間を長くすると製造コストが高くなるので、これを防止するため、熱処理時間の上限は5hであることが特に望ましい。すなわち、熱処理時間は3h~5hの範囲内であることが特に望ましい。水焼入れの水温度が25℃~60℃の範囲内に設定されることにより、均一で微細な析出物を確実に得ることができ、その結果、硬さを確実に向上させることができる。
 冷間鍛造加工工程S3では、溶体化処理工程S2で溶体化処理された素材を有底円筒状に冷間鍛造加工する。これにより、有底円筒状の素材の機械的強度を加工硬化によって向上させることができる。一方、素材を冷間鍛造加工しない場合には、素材を有底円筒状に成形できないばかりか更に加工硬化による機械的強度の向上も図ることができない。
 この冷間鍛造加工は、詳述すると密閉型冷間後方押出鍛造加工であり、例えば図2A及び2Bに示した冷間鍛造加工装置(詳述すると冷間後方押出鍛造加工装置)1により実施される。この装置1は、パンチ2と成形ダイ5とを具備している。成形ダイ5は成形キャビティ6を有している。3はパンチ軸である。10は素材である。この冷間鍛造加工の際には、素材10の表面にその全面に亘ってボンデ処理等の潤滑処理が予め施される。図2Aでは、この素材10が成形ダイ5の成形キャビティ6内に配置されている。そして、この素材10をパンチ2で押圧することにより、図2に示すように成形キャビティ6が密閉状態となるとともに、このキャビティ6内で素材10が有底円筒状に後方押出鍛造加工される。
 この冷間鍛造加工の鍛造加工率は40%~60%(特に望ましくは45%~55%)の範囲内であることが、鍛造加工の寸法精度を確実に向上させることができる点で望ましい。なお、冷間鍛造加工された素材10は、上述したように有底円筒状であり、すなわち円板状底壁部11と該底壁部11の外周縁部に一体に形成された円筒状周壁部12とを有している。そして、素材10の底壁部11がブレーキピストン(ブレーキピストン用素形材)のクラウン部に対応し、素材10の周壁部12がブレーキピストン(ブレーキピストン用素形材)のスカート部に対応している。
 図2Cは、この冷間鍛造加工において、パンチ2で押圧される前の素材10の斜視図である。この素材10の形状は円板状又は円柱状である。この素材10の直径A1は例えば40~50mmである。
 図2Dは、この冷間鍛造加工において、パンチ2で押圧された後の素材10(即ち冷間鍛造加工された素材10)の斜視図である。この素材10の外径B1は例えば40~55mmであり、その内径B2は例えば25~40mmであり、その周壁部12の肉厚B3は例えば5~15mmであり、その長さ(高さ)B4は例えば30~45mmであり、その中空部の深さB5は例えば25~40mmである。
 人工時効処理工程S4では、冷間鍛造加工工程S3で冷間鍛造加工された素材10を人工時効処理する。これにより、均一で微細な析出物を確実に得ることができ、そのため硬さ等の機械的強度を確実に向上させることができる。一方、素材を人工時効処理しない場合には、析出物の大きさが不均一となり、そのため、ブレーキピストンの使用時に析出物が成長するなどして機械的強度が低下する。
 この人工時効処理の好ましい処理条件は、時効温度が210℃±10℃(即ち200~220℃)であり、時効理間が2h±0.5h(即ち1.5h~2.5h)である。時効時間を210℃±10℃に設定することにより、ブレーキピストン用素形材(即ちブレーキピストン)に要求される硬さ等の特性を確実に満足させることができる。時効時間が2h±0.5hであることにより、均一で微細な析出物を確実に得ることができ、そのため硬さ等の機械的強度を確実に向上させることができる。特に望ましい時効温度は210℃±5℃である。
 ここで、一般にブレーキピストン用素形材は、その使用環境上の要請から、過時効処理となる処理条件で人工時効処理されていなければならない。したがって、人工時効処理の際にピーク硬さとなる時効時間よりも長く素材を人工時効処理しなければならない。しかるに、本実施形態では、後述するように人工時効処理の際に素材の硬さが迅速にピーク硬さ(即ち最大値)に達する。そのため、人工時効処理の時効時間を短縮することができる。
 機械加工工程S5では、人工時効処理工程S4で人工時効処理された素材を所定形状に機械加工する。この機械加工は、素材の外径の真円度を高めるための外径切削加工、研磨加工等を含むが、しかし素材の内径の真円度を高めるための内径切削加工を含まない。すなわち、溶体化処理は冷間鍛造加工の後でなくその前に実施され、そして冷間鍛造加工の後で人工時効処理が実施されるから、人工時効処理後の素材の内径の真円度は高い。そのため、この機械加工工程S5では素材について内径切削加工を実施する必要はない。
 さらに、図1で示されていないが、機械加工工程S5の後で、必要に応じて、素材をアルマイト処理し、これにより素材の表面にアルマイト皮膜を形成する。このとき、素材を構成するアルミニウム合金に含まれるCu量が0.7~1.1質量%の範囲内に設定されているので、硬いアルマイト皮膜を確実に形成することができる。
 以上のこれらの工程を経て、導電率が40%~45%IACSになるようにブレーキピストン用素形材が製造される。したがって、熱伝導性が高い、即ち放熱性が高いブレーキピストン用素形材を製造できる。なお、IACSとは、International Annealed Copper Standard(国際焼きなまし銅線標準)の略である。
 上記実施形態のブレーキピストン用素形材の製造方法は次の利点がある。
 素材を構成するアルミニウム合金に含まれるMgSi量が約0.79質量%なので、溶体化処理から人工時効処理までの時間(期間)が長くても人工時効処理後の素材の硬さは小さくならず、その硬さは略一定である。すなわち、溶体化処理後の素材の硬さの経時的変化は小さい。したがって、溶体化処理から人工時効処理までの間に時間的余裕ができるのでその間に素材を冷間鍛造加工すると、人工時効処理後の素材の硬さは小さくならないでむしろ冷間鍛造加工による加工硬化により高くなる。そのため、硬いブレーキピストン用素形材を容易に製造することができる。
 さらに、素材を溶体化処理することにより、素材の鍛造加工性が向上する。そのため、冷間鍛造加工の前に素材をO処理する必要がなく、O処理を省略することができる。さらには、上述したように、溶体化処理は冷間鍛造加工の後でなくその前に実施されるので、機械加工の際に素材の内径の真円度を高めるための内径切削加工も省略することができる。これにより、製造工程数を更に削減することができ、その結果、ブレーキピストン用素形材を容易に製造することができるし、その製造コストを引き下げることができる。
 さらに、上述したように、素材を人工時効処理すると、当該人工時効処理の際に素材の硬さが迅速にピーク硬さ(即ち最大値)に達する。そのため、人工時効処理の時効時間を短縮することができ、その結果、製造コストを更に引き下げることができる。
 さらに、所定の組成のアルミニウム合金の素材を、所定の処理条件で順次、溶体化処理、冷間鍛造加工処理及び人工時効処理することにより、ブレーキピストン用素形材の一貫製造ラインのタクトを最適化することができる。その理由は次のとおりである。
 アルミニウム合金が所定の組成を有することにより、上述したように溶体化処理後の素材の硬さの経時的変化を小さくすることができる。そのため、ブレーキピストン用素形材の製造工程としてT8工程を採用することができる。すなわち、冷間鍛造加工後に溶体化処理を実施しないので、冷間鍛造加工後にすぐに人工時効処理を開始することができる。さらに、冷間鍛造加工後に溶体化処理を実施しないので、人工時効処理の際に素材の硬さが迅速にピーク硬さに達する(後述する図5参照)。そのため、人工時効処理の時効時間を短縮することができる。
 ここで、ブレーキピストン用素形材の一貫製造ラインのタクトの律速は、熱処理時間であり、すなわち溶体化処理時間と人工時効処理の時効時間とである。しかるに、溶体化処理時間は、十分な固溶状態を実現すべく、短縮することは困難である。これに対して、本実施形態の製造方法によれば人工時効処理の時効時間を短縮することができるので、時効時間を溶体化処理時間よりも短くすることができる。これにより、一貫製造ラインのタクトの律速を溶体化処理時間にすることができるとともに、この溶体化処理時間内に収まるように人工時効処理の時効時間を短くすることができる。具体的には、時効時間を溶体化処理時間の0.3倍~1倍(好ましくは0.5倍~0.9倍)にすることができる。例えば、溶体化処理時間が3h~5hである場合には、時効時間を2h±0.5hにすることが可能となる。このようにして、ブレーキピストン用素形材の一貫製造ラインのタクトを最適化(最小化)することができる。
 さらに、人工時効処理後の素材(即ちブレーキピストン用素形材)の硬さを人工時効処理の際の素材のピーク硬さの85%~95%とすることにより、要求される硬さ、高い熱伝導性、即ち高い放熱性を有するブレーキピストン用素形材を得ることができる。
 以上で本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で様々に変更可能であることは言うまでもない。
 本発明の具体的実施例について以下に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
 <内径の真円度の評価>
 図3は、人工時効処理後の素材の内径の真円度を実施例1と比較例1とで比較した図(グラフ)である。実施例1は、本実施形態の図1に示した工程順序に従って人工時効処理された5個の素材について、それらの内径の真円度を平均したものである。比較例1は、従来の図10に示した工程順序に従って人工時効処理された5個の素材について、それらの内径の真円度を平均したものである。なお実施例1及び比較例1において、素材の目標内径は28mmである。なお、真円度の測定は例えばJIS(日本工業規格) B0021に準拠して行われる。
 実施例1では、素材の内径の真円度の最大値は4μm、最小値は1μm、平均値は2.16μmであった。比較例1では、素材の内径の真円度の最大値は49μm、最小値は37μm、平均値は46.2μmであった。
 実施例1及び比較例1に用いた素材の材質は、いずれもアルミニウム合金であって、その組成は上述したアルミニウム合金の組成要件を満足している。また、実施例1で適用した溶体化処理の処理条件は510℃×3h、鍛造加工率は50%、人工時効処理の処理条件は210℃×2hである。比較例1で適用したO処理の処理条件は380℃×3.5h、鍛造加工率は50%、溶体化処理の処理条件は510×3h、人工時効処理の処理条件は210℃×2hである。
 図3に示すように、実施例1では素材の内径の真円度は比較例1よりも格段に高い(小さい)。そのため、実施例1では素材の内径は好ましい真円度の規格8μm以下を満たしていたので、機械加工工程S5において素材の内径の真円度を高くするための内径切削加工を実施する必要はなかった。
 <素材の硬さの経時的変化の評価>
 表1は、素材の硬さの経時的変化(時間的変化)を評価した結果を示している。この表1中の実施例2及び3は、いずれも本実施形態の図1に示した工程順序に従って人工時効処理された3個の素材について、それらの硬さを平均したものである。実施例2では溶体化処理から人工時効処理までの時間(期間)は3日、実施例3では3ヶ月である。
Figure JPOXMLDOC01-appb-T000001
 
 実施例2及び3に用いた素材の材質は、いずれもアルミニウム合金であって、その組成は上述したアルミニウム合金の組成要件を満足している。また、実施例2及び3で適用した溶体化処理の処理条件は510℃×3h、鍛造加工率は50%、人工時効処理の処理条件は210℃×2hである。また、素材の硬さは、JIS Z2245:2005の「ロックウェル硬さ試験-試験方法」に準拠して測定されたロックウェル硬さ(硬さ記号:HRB)であり、その測定に使用したスケールは“B”、圧子は鋼球1.5875mm、試験荷重は980.7Nである。なお、以下で適用した素材の硬さの測定方法はこれと同じである。
 表1に示すように、溶体化処理から人工時効処理までの時間が長くても人工時効処理後の素材の硬さは小さくならず、その硬さは略一定であった。具体的に示すと、素材の硬さの増量Δは0.5%(即ち、増量Δ={(66.39-66.07)/66.07}×100%=0.5%)である。すなわち、溶体化処理後の素材の硬さの経時的変化は非常に小さい。したがって、実施例2及び3では、溶体化処理と人工時効処理を迅速に連続して実施する必要はないことを確認し得た。なお、特に望ましい増量Δは0.5%以内である。
 <導電率の評価>
 図4Aは実施例4の素材の導電率を示す図(グラフ)であり、図4Bは比較例2の素材の導電率を示す図(グラフ)である。実施例4は、本実施形態の図1に示した工程順序に従って機械加工された6個の素材について、各工程でのこれらの素材の導電率を測定して平均したものである。比較例2は、従来の図10に示した工程順序に従って機械加工された6個の素材について、各工程でのこれらの素材の導電率を測定して平均したものである。
 実施例4及び比較例2に用いた素材の材質は、いずれもアルミニウム合金であって、その組成は上述したアルミニウム合金の組成要件を満足している。また、実施例4で適用した溶体化処理の処理条件は510℃×3h、鍛造加工率は50%、人工時効処理の処理条件は210℃×2hである。比較例2で適用したO処理の処理条件は380℃×3.5h、鍛造加工率は50%、溶体化処理の処理条件は510℃×3h、人工時効処理の処理条件は210℃×2hである。
 図4A及び4Bに示すように、実施例1における機械加工後の素材(即ちブレーキピストン用素形材)の導電率は40%~45%IACSの範囲内であり、これは比較例2よりも高い。したがって、実施例4では、熱伝導性が高い、即ち放熱性が高いブレーキピストン用素形材を得ることができた。
 <時効時間と素材の硬さとの関係-その1>
 図5は、人工時効処理工程における時効時間と素材の硬さとの関係を実施例5と比較例3とで比較した図(グラフ)である。実施例5は、本実施形態の図1に示した工程順序に従って冷間鍛造加工された素材について、時効温度210℃の処理条件で人工時効処理したものである。比較例3は、従来の図10に示した工程順序に従って冷間鍛造加工された素材について、時効温度195℃の処理条件で人工時効処理したものである。
 実施例5及び比較例3に用いた素材の材質は、いずれもアルミニウム合金であって、その組成は上述したアルミニウム合金の組成要件を満足している。また、実施例5で適用した溶体化処理の処理条件は510℃×3h、鍛造加工率は50%である。比較例1で適用したO処理の処理条件は380℃×3.5h、鍛造加工率は50%、溶体化処理の処理条件は510℃×3hである。
 図5に示すように、実施例5ではピーク硬さに到達する時効時間は、比較例3よりも短い。したがって、実施例5では、人工時効処理の時効時間を短縮することができ、その結果、製造コストを引き下げることができる。
 一方、比較例3では、ピーク硬さに到達する時効時間が長いので、ブレーキピストン用素形材の一貫製造ラインのタクトタイムを溶体化処理時間内に収めることが困難になる。
 実施例5のように、冷間鍛造加工後に溶体化処理を実施しないで人工時効処理を実施することによって、ピーク硬さへの到達時間を早めることができる。本実施例5では、冷間鍛造加工を実施することにより素材には加工歪みが発生し、その歪みを残した状態で人工時効処理を実施することにより素材にはその歪みを中心に析出物が発生し、その結果ピーク硬さへの到達時間が早くなると推定される。一方、比較例3では、鍛造加工後に溶体化処理を実施しその後に人工時効処理を実施しているので、溶体化処理で冷間鍛造加工による加工歪みが解消してしまう。その結果、析出物の中心となる歪が解消していることになり、ピーク硬さへの到達時間が遅くなると推定される。
 <時効時間と素材の硬さとの関係-その2> 
 図6は、実施例6の人工時効処理工程における時効時間と素材の硬さとの関係を示す図(グラフ)である。実施例6は、本実施形態の図1に示した工程順序に従って冷間鍛造加工された素材について、時効温度215℃の処理条件で人工時効処理したものである。
 実施例6に用いた素材の材質はアルミニウム合金であって、その組成は上述したアルミニウム合金の組成要件を満足している。また、実施例6で適用した溶体化処理の処理条件は510℃×3h、鍛造加工率は50%である。
 図6に示すように、実施例6では、人工時効処理の際の素材のピーク硬さは71.5HRBであり、このときの時効時間は0.5hである。また、一般にブレーキピストン用素形材は、その使用環境上の要請から、過時効処理となる処理条件で人工時効処理されていなければならない。したがって、人工時効処理の際にピーク硬さとなる時効時間0.5hよりも長く素材を人工時効処理しなければならない。さらに、客先からブレーキピストン用素形材に要求される硬さ、すなわち人工時効処理後の素材の硬さは、一般に61~68HRBの範囲内である。硬さ61HRBはピーク硬さ71.5HRBの85%に相当し、硬さ68HRBはピーク硬さ71.5HRBの95%に相当する。
 図6から分かるように、人工時効処理時間を2h±0.5h(即ち1.5h~2.5h)に設定した場合には、硬さが61(即ちピーク硬さ71.5HRBの85%)~68(即ちピーク硬さ71.5HRBの95%)HRBの範囲内の素材(ブレーキピストン用素形材)を確実に得ることができ、したがって要求される硬さを確実に満足することができる。換言すると、ブレーキピストン用素形材に要求される硬さを確実に満足させるためには、素材を人工時効処理して得られる素材の硬さがブレーキピストン用素形材に要求される硬さであって、この硬さが人工時効処理の際の素材のピーク硬さの85%~95%となるように、人工時効処理開始時の素材の硬さを設定すれば良いことを確認し得た。
 <溶体化処理後及び人工時効処理開始時の素材の硬さの評価>
 表2は、実施例7における溶体化処理後の素材の硬さと人工時効処理開始時の素材の硬さとを測定した結果を示している。実施例7は、本実施形態の図1に示した工程順序に従って人工時効処理された6個の素材について、溶体化処理後の硬さと人工時効処理開始時の硬さとをそれぞれ平均したものである。さらに、表2には、溶体化処理後の素材の硬さと人工時効処理開始時の素材の硬さとについてそれぞれ最大値及び最小値が記載されている。
Figure JPOXMLDOC01-appb-T000002
 
 実施例7に用いた素材の材質はアルミニウム合金であって、その組成は上述したアルミニウム合金の組成要件を満足している。また、実施例7で適用した溶体化処理の処理条件は510℃×3h、鍛造加工率は50%、人工時効処理の処理条件は210℃×2hである。
 さらに、「溶体化処理後の素材の最大硬さ」/「人工時効処理開始時の素材の最小硬さ」の値と、「溶体化処理後の素材の最小硬さ」/「人工時効処理開始時の素材の最大硬さ」の値とをそれぞれ算出した。その結果を表3に示す。この表3に示すように、前者の値は62%であり、後者の値は45%であった。ここで、人工時効処理開始時の素材の硬さは、冷間鍛造加工後の素材の硬さと同じである。したがって、「溶体化処理後の素材の硬さ」/「人工時効処理開始時の素材の硬さ」は、「溶体化処理後の素材の硬さ」/「冷間鍛造加工後の素材の硬さ」と同じであり、この値は加工硬化率γの逆数を意味している。
Figure JPOXMLDOC01-appb-T000003
 
 したがって、素材を溶体化処理して得られる素材の硬さ(即ち溶体化処理後の素材の硬さ)が人工時効処理開始時の素材の硬さの40%~65%(特に望ましくは45%~62%)となるように、溶体化処理の処理条件を設定することにより、人工時効処理開始時の素材について所望する硬さを得ることができる。換言すると、人工時効処理開始時の素材について所望する硬さを得るためには、素材を溶体化処理して得られる素材の硬さが人工時効処理開始時の素材の硬さの40%~65%(特に望ましくは45%~62%)となるように、溶体化処理の処理条件を設定すれば良いことを確認し得た。
 表4は、実施例8における溶体化処理後の素材の硬さと人工時効処理開始時の素材の硬さとを測定した結果を示している。実施例8は、本実施形態の図1に示した工程順序に従って人工時効処理された素材における互いに異なる5箇所の部位の溶体化処理後の硬さと人工時効処理開始時の硬さとをそれぞれ平均したものである。
Figure JPOXMLDOC01-appb-T000004
 
 実施例8に用いた素材の材質はアルミニウム合金であって、その組成は上述したアルミニウム合金の組成要件を満足している。また、本実施例8で適用した溶体化処理の処理条件は510℃×3h、鍛造加工率は50%、人工時効処理の処理条件は210℃×2hである。
 さらに、「溶体化処理後の素材の平均硬さ」/「人工時効処理開始時の素材の平均硬さ」の値を算出した。その結果を表5に示す。この表5に示すように、この値は53%であった。なお。この値は上述したように加工硬化率γの逆数を意味している。
Figure JPOXMLDOC01-appb-T000005
 
 この実施例8からも分かるように、素材を溶体化処理して得られる素材の硬さ(即ち溶体化処理後の素材の硬さ)が人工時効処理開始時の素材の硬さの40%~65%(特に望ましくは45%~62%)となるように、溶体化処理の処理条件を設定することにより、人工時効処理開始時の素材について所望する硬さを得ることができる。換言すると、人工時効処理開始時の素材について所望する硬さを得るためには、素材を溶体化処理して得られる素材の硬さが人工時効処理開始時の素材の硬さの40%~65%(特に望ましくは45%~62%)となるように、溶体化処理の処理条件を設定すれば良いことを確認し得た。
 <アルミニウム合金の組成の評価>
 実施例11~17では、様々な組成のアルミニウム合金の素材を、本実施形態の図1に示した工程順序に従って人工時効処理した。そして、素材の硬さHRB、内径の真円度及び導電率を調べた。その結果を表6に示す。なお、実施例11~17において、素材の目標内径は28mmである。
Figure JPOXMLDOC01-appb-T000006
 
 表6中の「溶体化処理条件」欄は、各実施例に適用した溶体化処理の処理条件を示している。「鍛造加工率」欄は、各実施例に適用した冷間鍛造加工の鍛造加工率を示している。「人工時効処理条件」欄は、各実施例に適用した人工時効処理の処理条件を示している。
 実施例11~17から分かるように、素材を構成するアルミニウム合金の組成が上述したアルミニウム合金の組成要件を満足し、且つ、溶体化処理の処理条件が熱処理温度510℃±10℃及び熱処理時間3h以上の処理条件であり、更に、人工時効処理の処理条件が時効温度210℃±10℃及び時効時間2h±0.5hの処理条件である場合には、素材の硬さを確実に向上させることができ、且つ、素材の内径の真円度を高くすることができ、更に、高い導電率(即ち高い熱伝導性及び放熱性)を得ることができた。
 <製造条件の決定方法例>
 次に、本実施形態のブレーキピストン用素形材の製造方法で用いられる製造条件の決定方法例について、上記実施例の結果を参照して以下に説明する。なお、以下の本説明文では「製品」とはブレーキピストン用素形材をいう。また、「時効ピーク硬さ」とは人工時効処理の際の素材のピーク硬さをいう。
 まず、前提条件A~Dについて以下に説明する。
 A.加工硬化率γは次のように決定される。すなわち、製品(ブレーキピストン用素形材)の形状は客先からの提示により決定される。すると、この製品を製造する際に適用される冷間鍛造加工は密閉型なので、この製品用素材の体積が決定される。そして、素材の体積と素材を得るためのアルミニウム合金連続鋳造材等の直径とによって、素材の形状が決定され、この決定された素材の形状と製品の形状とによって鍛造加工率が決定される。こうして鍛造加工率が決定されることにより、加工硬化率γが決定される。なお、加工硬化率γの調整については、アルミニウム合金連続鋳造材等の直径を変えることで鍛造加工率を調整し、これにより加工硬化率γを調整することも可能である。
 B.製品の機械特性(特に硬さ)は客先からの要求により決定される。
 C.素材を構成するアルミニウム合金の組成は、製品に要求される機械特性(特に硬さ)を得ることができて且つ溶体化処理後の素材の硬さの経時的変化を小さくするという要件によって、決定される。そして、この決定された組成において、溶体化処理の際にバーニングが発生しない溶体化処理温度の上限と、十分な固溶状態が得られる溶体化処理時間とが決定される。このアルミニウム合金ではその添加元素のうち最も硬さに影響を及ぼす元素はCuである。Cuが出来る限り多く固溶し、且つ、溶体化処理の際にバーニングが発生しない溶体化処理温度の上限として例えば510℃±10℃を採用できる。ちなみに、溶体化処理温度の下限はCuが固溶可能な温度である。
 D.目的は、製品の一貫製造ラインのタクトの最適化(最小化)を図ることであり、その結果、製品を容易に製造しうるようにする。
 次に、製造条件の決定方法の理解に必要な定義について以下に説明する。
 製品の製造履歴(素材→溶体化処理→冷間鍛造加工→人工時効処理)と製品(素材)の硬さの変化は次の式1で表現できる。
 製品の硬さ=α×β×γ×溶体化処理後の素材の硬さ …(式1)
 ただし、α:製品の硬さ/時効ピーク硬さ
     β:時効ピーク硬さ/人工時効処理開始時の素材の硬さ
     γ:冷間鍛造加工後の素材の硬さ/溶体化処理後の素材の硬さ。
 また、溶体化処理前の素材の硬さを「H1」とする。製品の硬さ、即ち人工時効処理後の素材の硬さを「H4」とする。時効時間を「T4」とする。また、冷間鍛造加工後の素材の硬さは人工時効処理開始時の素材の硬さと同じである。
 γの定義から分かるように、γは加工硬化率を意味している。なお、素材を溶体化処理して得られる素材の硬さ(即ち溶体化処理後の素材の硬さ)が人工時効処理開始時の素材の硬さの40%~65%であるとは、加工硬化率γの逆数が40%~65%であることを意味しており、換言するとγ=1/(0.4~0.65)であることを意味している。
 次に、決定方法例について以下に説明する。
 -αの決定方法例-
 図7Aに示すように、上記前提条件BとDにより、製品の硬さvs時効時間の最適ポイント(H4、T4)が決定される。時効曲線は、時効温度を変えると、時効曲線の傾きや時効ピーク硬さへの到達時間が変わる。すなわち、時効温度を高くすると、時効曲線は概略白矢印方向(左方向)に縮小される。さらに、図7Bに示すように、時効曲線は、人工時効処理開始時の素材の硬さを変えると、時効ピーク硬さが変わる。すなわち、人工時効処理開始時の素材の硬さを高くすると、時効曲線は概略白矢印方向(上方向)へ平行移動し、これに伴い時効ピーク硬さが高くなる。
 このような時効曲線の性質を踏まえて時効曲線が最適ポイント(H4、T4)を通るような時効温度と人工時効処理開始時の素材の硬さとが複数、選択される。
 さらに、素材を人工時効処理して得られる素材の硬さ(即ち人工時効処理後の素材の硬さ)がブレーキピストン用素形材(製品)に要求される硬さであって、この硬さが人工時効処理の際の素材のピーク硬さの85%~95%(特に望ましくは86%~93%)となるようにするため、最適ポイント(H4、T4)を通る複数の時効曲線のなかからα=0.85~0.95(特に望ましくは0.86~0.93)の要件を満足するような時効曲線が選択される。
 a.製品(ブレーキピストン用素形材)の使用環境上の要請を満たすべく、最適ポイント(H4、T4)は過時効領域にある必要がある。さらに、製品に要求される硬さを確実に満足させるために、最適ポイント(H4、T4)の硬さはピーク硬さの95%以下であることが望ましい。
 b.最適ポイント(H4、T4)の硬さはピーク硬さの85%以上であることが望ましい。その理由について表7と図8を参照して説明すると次のとおりである。
Figure JPOXMLDOC01-appb-T000007
 
 表7は、実施例9の素材の導電率及び硬さの変化の調査結果を示している。図8は、実施例9の素材の導電率及び硬さの変化を示す図(グラフ)である。実施例9の素材の材質はアルミニウム合金であって、その組成は上述したアルミニウム合金の組成要件を満足している。また、同実施例9で適用した溶体化処理の処理条件は510℃×3h、鍛造加工率は50%、人工時効処理温度は210℃である。相対IACSとは、溶体化処理後の素材の導電率を1とした場合の素材の導電率である。相対IACSその2とは、人工時効処理の際の素材のピーク硬さのとき(ピーク硬さの100%のとき)の素材の導電率を1とした場合の素材の導電率である。相対HRBとは、溶体化処理後の素材の硬さを1とした場合の素材の硬さである。相対HRBその2とは、人工時効処理の際の素材のピーク硬さのとき(ピーク硬さの100%のとき)の素材の硬さを1とした場合の素材の硬さである。
 表7及び図8に示すように、素材の導電率は、その硬さと同様に、人工時効処理の際のピーク硬さのとき(ピーク硬さの100%のとき)が最も高く、ピーク硬さの85%のときとピーク硬さの75%のときとで順次低くなっている。
 素材の硬さは、溶体化処理後から冷間鍛造加工後へ移行すると素材の硬さが非常に高くなっていることから、時効時間よりも冷間鍛造加工による加工硬化率γの影響を大きく受ける。一方、素材の導電率は、溶体化処理後から冷間鍛造加工後へ移行しても素材の硬さはあまり変化が無く、加工硬化率γよりも時効時間の影響を大きく受ける。したがって、導電率を高くするため、即ち熱伝導性を高めるためには、人工時効処理時間を管理する必要があり、人工時効処理で高くなった導電率は極力下げないことが望ましい。そのため、導電率に対応する硬さにおいて、最適ポイント(H4、T4)の硬さはピーク硬さの85%以上であることが望ましい。
 -βの決定方法例-
 βは、選択された時効曲線により決定される。例えば、図5及び6でそれぞれ示した実施例5及び6の場合では、βは1/(0.95~0.99)と決定される。
 -γの決定方法例-
 γは、上述したように加工硬化率を意味しており、したがって溶体化処理後の素材の形状と冷間鍛造加工後の素材の形状とにより決定される。本実施形態では、γ=1/(0.4~0.65)の要件を満足することが望ましい。
 -α、β、γの決定例-
 したがって、α、β、γは例えば次のように決定される。
 α:β:γ=(0.85~0.95):1/(0.95~0.99):1/(0.4~0.65)
 よって、上記(式1)を満たすように溶体化処理後の素材の硬さを設定することにより、要求される硬さ及び高い熱伝導性(即ち高い放熱性)を有するブレーキピストン用素形材(製品)を製造することができるし、ブレーキピストン用素形材の一貫製造ラインのタクトの最適化を図ることができる。
 -溶体化処理の処理条件の決定方法-
 溶体化処理の処理条件としての溶体化処理温度の決定方法は次のとおりである。すなわち、上述したアルミニウム合金の組成要件を満足する素材を用いて、表8及び図9に示すような、溶体化処理後の素材の硬さvs溶体化処理温度の関係を示すグラフを予備実験により作成しておく。そして、このグラフに基づいて、溶体化処理後の素材の硬さが上記(式1)を満たすような溶体化処理後の素材の硬さとなるように、溶体化処理温度が決定される。
 溶体化処理の処理条件としての溶体化処理時間は、十分な固溶状態を実現すべく、短縮することは困難であるため、参考例1~3で適用した溶体化処理時間はいずれも3hとしている。
Figure JPOXMLDOC01-appb-T000008
 本願は、2010年12月22日付で出願された日本国特許出願の特願2010-285706号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。
 ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。
 本発明は、多くの異なった形態で具現化され得るものであるが、この開示は本発明の原理の実施例を提供するものと見なされるべきであって、それら実施例は、本発明をここに記載しかつ/または図示した好ましい実施形態に限定することを意図するものではないという了解のもとで、多くの図示実施形態がここに記載されている。
 本発明の図示実施形態を幾つかここに記載したが、本発明は、ここに記載した各種の好ましい実施形態に限定されるものではなく、この開示に基づいていわゆる当業者によって認識され得る、均等な要素、修正、削除、組み合わせ(例えば、各種実施形態に跨る特徴の組み合わせ)、改良及び/又は変更を有するありとあらゆる実施形態をも包含するものである。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施例に限定されるべきではなく、そのような実施例は非排他的であると解釈されるべきである。例えば、この開示において、「preferably」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」ということを意味するものである。この開示および本願のプロセキューション中において、ミーンズ・プラス・ファンクションあるいはステップ・プラス・ファンクションの限定事項は、特定クレームの限定事項に関し、a)「means for」あるいは「step for」と明確に記載されており、かつb)それに対応する機能が明確に記載されており、かつc)その構成を裏付ける構成、材料あるいは行為が言及されていない、という条件の全てがその限定事項に存在する場合にのみ適用される。この開示および本願のプロセキューション中において、「present invention」または「invention」という用語は、この開示範囲内における1または複数の側面に言及するものとして使用されている場合がある。このpresent inventionまたはinventionという用語は、臨界を識別するものとして不適切に解釈されるべきではなく、全ての側面すなわち全ての実施形態に亘って適用するものとして不適切に解釈されるべきではなく(すなわち、本発明は多数の側面および実施形態を有していると理解されなければならない)、本願ないしはクレームの範囲を限定するように不適切に解釈されるべきではない。この開示および本願のプロセキューション中において、「embodiment」という用語は、任意の側面、特徴、プロセスあるいはステップ、それらの任意の組み合わせ、及び/又はそれらの任意の部分等を記載する場合にも用いられる。幾つかの実施例においては、各種実施形態は重複する特徴を含む場合がある。この開示および本願のプロセキューション中において、「e.g.,」、「NB」という略字を用いることがあり、それぞれ「たとえば」、「注意せよ」を意味するものである。
 本発明は、ブレーキピストン用素形材の製造方法及びブレーキピストン用素形材に利用可能である。
1:冷間鍛造加工装置
2:パンチ
5:成形ダイ
10:素材

Claims (6)

  1.  Si:9.0~11.0質量%、Fe:0.5質量%以下、Cu:0.7~1.1質量%、Mn:0.15質量%以下、Mg:0.3~0.7質量%、残部Al及び不可避不純物からなるアルミニウム合金の素材を溶体化処理し、次いで素材を冷間鍛造加工し、その後素材を人工時効処理することを特徴とするブレーキピストン用素形材の製造方法。
  2.  素材を、時効温度210℃±10℃及び時効時間2h±0.5hの処理条件で人工時効処理する請求項1記載のブレーキピストン用素形材の製造方法。
  3.  素材を、熱処理温度510℃±10℃及び熱処理時間3h以上の処理条件で溶体化処理する請求項1又は2記載のブレーキピストン用素形材の製造方法。
  4.  Si:9.0~11.0質量%、Fe:0.5質量%以下、Cu:0.7~1.1質量%、Mn:0.15質量%以下、Mg:0.3~0.7質量%、残部Al及び不可避不純物からなるアルミニウム合金の素材を溶体化処理し、次いで素材を冷間鍛造加工し、その後素材を過時効処理となる処理条件で人工時効処理する製造工程を含み、
     前記製造工程では、
     素材を人工時効処理して得られる素材の硬さがブレーキピストン用素形材に要求される硬さであって、この硬さが人工時効処理の際の素材のピーク硬さの85%~95%となるように、人工時効処理開始時の素材の硬さが設定されており、
     素材を溶体化処理して得られる素材の硬さが人工時効処理開始時の素材の硬さの40%~65%となるように、溶体化処理の処理条件が設定されていることを特徴とするブレーキピストン用素形材の製造方法。
  5.  請求項1~4のいずれかに記載のブレーキピストン用素形材の製造方法により製造されたブレーキピストン用素形材。
  6.  導電率が40%~45%IACSである請求項5記載のブレーキピストン用素形材。
PCT/JP2011/079543 2010-12-22 2011-12-20 ブレーキピストン用素形材の製造方法 WO2012086650A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137016173A KR101423447B1 (ko) 2010-12-22 2011-12-20 브레이크 피스톤용 소형재의 제조 방법
JP2012549836A JP5848259B2 (ja) 2010-12-22 2011-12-20 ブレーキピストン用素形材の製造方法
EP11850736.7A EP2657362A4 (en) 2010-12-22 2011-12-20 Method for producing formed material for brake piston
CN201180061992.3A CN103282531B (zh) 2010-12-22 2011-12-20 制动活塞用毛坯的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-285706 2010-12-22
JP2010285706 2010-12-22

Publications (1)

Publication Number Publication Date
WO2012086650A1 true WO2012086650A1 (ja) 2012-06-28

Family

ID=46313918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079543 WO2012086650A1 (ja) 2010-12-22 2011-12-20 ブレーキピストン用素形材の製造方法

Country Status (5)

Country Link
EP (1) EP2657362A4 (ja)
JP (1) JP5848259B2 (ja)
KR (1) KR101423447B1 (ja)
CN (1) CN103282531B (ja)
WO (1) WO2012086650A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814442A (zh) * 2012-09-06 2012-12-12 桐乡市隆盛精密机械有限公司 高硅铝合金空芯活塞的活塞筒体毛坯的加工方法
CN103614595A (zh) * 2013-12-09 2014-03-05 西南铝业(集团)有限责任公司 一种高硅高铜铝合金及其制备方法
WO2016015488A1 (zh) * 2014-08-01 2016-02-04 比亚迪股份有限公司 铝合金及其制备方法和应用
CN105598351A (zh) * 2015-12-25 2016-05-25 广东长盈精密技术有限公司 铝合金壳体的制备方法
CN107263542A (zh) * 2017-06-20 2017-10-20 扬州兴福果机电科技有限公司 一种机器人机壳的制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415360B (zh) * 2010-12-20 2015-11-25 昭和电工株式会社 向后冷挤压锻造用冲头和锻造装置
CN107427898B (zh) * 2015-04-02 2019-05-10 本田技研工业株式会社 锻造方法
CN104907481A (zh) * 2015-06-29 2015-09-16 江苏森威集团飞达股份有限公司 一种制动活塞的锻造装置及锻造方法
CN109402539B (zh) * 2018-11-29 2020-02-11 四川航天长征装备制造有限公司 一种提高铝合金棒材径向延伸率的方法
CN112247052B (zh) * 2020-10-09 2022-12-20 重庆特力普尔机械设备有限公司 一种氮气弹簧缸体的制造工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143798A (ja) * 1997-07-25 1999-02-16 Fujikura Ltd ブレーキ用ピストン及びその製造方法
JP2001059124A (ja) * 1999-06-16 2001-03-06 Nippon Light Metal Co Ltd 外観品質の優れたAl−Mg−Si系アルミニウム合金冷間鍛造品及びその製造方法
JP2004232087A (ja) * 2002-11-22 2004-08-19 Showa Denko Kk アルミニウム合金、棒状材、鍛造成形品、機械加工成形品、それを用いた陽極酸化皮膜硬さに優れた耐摩耗性アルミニウム合金、摺動部品、及びそれらの製造方法
WO2011078080A1 (ja) * 2009-12-22 2011-06-30 昭和電工株式会社 陽極酸化処理用アルミニウム合金およびアルミニウム合金製部品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921512B2 (en) * 2003-06-24 2005-07-26 General Motors Corporation Aluminum alloy for engine blocks
CN1278802C (zh) * 2003-08-14 2006-10-11 张强 挤压铸造金属基复合材料局部增强内燃机活塞毛坯的工艺
DE102004007704A1 (de) * 2004-02-16 2005-08-25 Mahle Gmbh Werkstoff auf der Basis einer Aluminium-Legierung, Verfahren zu seiner Herstellung sowie Verwendung hierfür
JP4412594B2 (ja) * 2004-05-21 2010-02-10 昭和電工株式会社 アルミニウム合金、棒状材、鍛造成形品、機械加工成形品、それを用いた陽極酸化皮膜硬さに優れた耐摩耗性アルミニウム合金、摺動部品、及びそれらの製造方法
CN101445898B (zh) * 2008-12-26 2010-06-02 成都银河动力股份有限公司 单冒口共晶Al-Si合金活塞材料低温热处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143798A (ja) * 1997-07-25 1999-02-16 Fujikura Ltd ブレーキ用ピストン及びその製造方法
JP2001059124A (ja) * 1999-06-16 2001-03-06 Nippon Light Metal Co Ltd 外観品質の優れたAl−Mg−Si系アルミニウム合金冷間鍛造品及びその製造方法
JP2004232087A (ja) * 2002-11-22 2004-08-19 Showa Denko Kk アルミニウム合金、棒状材、鍛造成形品、機械加工成形品、それを用いた陽極酸化皮膜硬さに優れた耐摩耗性アルミニウム合金、摺動部品、及びそれらの製造方法
WO2011078080A1 (ja) * 2009-12-22 2011-06-30 昭和電工株式会社 陽極酸化処理用アルミニウム合金およびアルミニウム合金製部品

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Structure and Property of Aluminum", 30 November 1991, THE JAPAN INSTITUTE OF LIGHT METALS, pages: 282
"The Fundamentals of Aluminum Materials and Industrial Technology", 1 May 1985, pages: 169
See also references of EP2657362A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814442A (zh) * 2012-09-06 2012-12-12 桐乡市隆盛精密机械有限公司 高硅铝合金空芯活塞的活塞筒体毛坯的加工方法
CN103614595A (zh) * 2013-12-09 2014-03-05 西南铝业(集团)有限责任公司 一种高硅高铜铝合金及其制备方法
WO2016015488A1 (zh) * 2014-08-01 2016-02-04 比亚迪股份有限公司 铝合金及其制备方法和应用
CN105598351A (zh) * 2015-12-25 2016-05-25 广东长盈精密技术有限公司 铝合金壳体的制备方法
CN107263542A (zh) * 2017-06-20 2017-10-20 扬州兴福果机电科技有限公司 一种机器人机壳的制造方法

Also Published As

Publication number Publication date
EP2657362A4 (en) 2017-03-22
JP5848259B2 (ja) 2016-01-27
CN103282531B (zh) 2015-07-29
KR20130086382A (ko) 2013-08-01
JPWO2012086650A1 (ja) 2014-05-22
EP2657362A1 (en) 2013-10-30
CN103282531A (zh) 2013-09-04
KR101423447B1 (ko) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5848259B2 (ja) ブレーキピストン用素形材の製造方法
US7648601B2 (en) High-strength, high-conductivity copper alloy wire excellent in resistance to stress relaxation
JP4118832B2 (ja) 銅合金及びその製造方法
CN108884525B (zh) 耐腐蚀性优异且具有良好的淬火性能的高强度铝合金挤出材料及其制造方法
US20090022620A1 (en) Copper-zinc alloy, production method and use
US20040159379A1 (en) Silver containing copper alloy
US10900108B2 (en) Method for manufacturing bent article using aluminum alloy
KR20120068910A (ko) 브레이크 피스톤의 제조 방법
JP2008138249A (ja) マグネシウム合金材およびその製造方法
WO2020261603A1 (ja) 快削性銅合金、及び、快削性銅合金の製造方法
JP2017503086A (ja) 改善された高温性能を有するアルミニウム鋳造合金
JP2008045157A (ja) 超高力アルミニウム粉末合金製メガネ部品及びその製造方法
JP6612029B2 (ja) 耐衝撃性に優れる高強度アルミニウム合金押出材及びその製造方法
WO2018088351A1 (ja) アルミニウム合金押出材
JP2019510132A (ja) 銅−亜鉛合金からなる摺動部材
WO2013114582A1 (ja) 耐摩耗性、押出性、鍛造加工性に優れたアルミニウム合金
JP4798943B2 (ja) 成形加工用アルミニウム合金板およびその製造方法
JP6796355B1 (ja) 快削性銅合金、及び、快削性銅合金の製造方法
JP2019019373A (ja) コンプレッサーのアルミニウム合金製ピストンの製造方法及び前記ピストン用アルミニウム合金
JP4412594B2 (ja) アルミニウム合金、棒状材、鍛造成形品、機械加工成形品、それを用いた陽極酸化皮膜硬さに優れた耐摩耗性アルミニウム合金、摺動部品、及びそれらの製造方法
JPH01149934A (ja) 耐熱性連続鋳造用鋳型及びその製造方法
JP5348624B2 (ja) マグネシウム合金ねじ
JP4849377B2 (ja) マグネシウム合金ねじの製造方法及びマグネシウム合金ねじ
JP2010174337A (ja) 鍛造用Al−Mg−Si系合金ビレット
JPWO2013114582A1 (ja) 耐摩耗性、押出性、鍛造加工性に優れたアルミニウム合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549836

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137016173

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011850736

Country of ref document: EP