WO2012085988A1 - 有機el素子およびその製造方法 - Google Patents

有機el素子およびその製造方法 Download PDF

Info

Publication number
WO2012085988A1
WO2012085988A1 PCT/JP2010/007526 JP2010007526W WO2012085988A1 WO 2012085988 A1 WO2012085988 A1 WO 2012085988A1 JP 2010007526 W JP2010007526 W JP 2010007526W WO 2012085988 A1 WO2012085988 A1 WO 2012085988A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
group
hydroxyl group
phosphine oxide
Prior art date
Application number
PCT/JP2010/007526
Other languages
English (en)
French (fr)
Inventor
坂元 豪介
奥本 健二
旬臣 芝田
正敬 渡辺
納戸 光治
後藤 康之
Original Assignee
パナソニック株式会社
大電株式会社
九州電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 大電株式会社, 九州電力株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2010/007526 priority Critical patent/WO2012085988A1/ja
Publication of WO2012085988A1 publication Critical patent/WO2012085988A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • the present invention relates to an organic electroluminescence (EL) element and a manufacturing method thereof.
  • An organic EL element is a light emitting element using an electroluminescence phenomenon of an organic compound, and since it can easily obtain bright light emission with high luminance, it has been put into practical use in a display device, a lighting device, and the like.
  • the organic EL element In order to further spread the organic EL element, it is necessary to manufacture the organic EL element at a lower cost than a liquid crystal display, a fluorescent lamp, and LED lighting. For this reason, it is desired to simplify the structure and manufacturing method of the organic EL element. ing.
  • Patent Document 1 the most widely used organic EL element has an anode formed on the substrate side, an organic layer formed by a vacuum film forming method, and a cathode formed on the organic layer.
  • Patent Document 2 a method of forming an organic layer by a wet method in which an ink containing an organic layer forming material is applied and dried is disclosed, as disclosed in Patent Document 2, and various polymers are disclosed.
  • Many organic EL devices having a structure in which a light-emitting layer is formed by dissolving a system material in a nonpolar solvent and applying it have been developed.
  • an organic layer can be formed without using a vacuum device, and a light emitting layer and the like can be formed relatively easily even in a large panel, which is preferable from the viewpoint of manufacturing time.
  • Non-Patent Document 1 discloses an inverted structure in which organic EL elements are stacked in the reverse order, that is, a structure in which a cathode is formed on a substrate side and an anode is formed on an organic layer. Has been.
  • Developing an organic EL element having such an inverted structure has the advantage that, in designing the device structure of the organic EL element, the selection range is widened and the degree of freedom in design is improved.
  • an active matrix organic EL device is realized by forming a transistor array on a large substrate and forming an organic EL element array thereon, an amorphous silicon, a microcrystalline silicon, an oxide semiconductor ( It is desirable to form an n-type TFT having a high-speed response using a channel material of indium-zinc-gallium oxide or the like.
  • an n-type TFT is used, a simple structure comprising two TFTs and one capacitor is used. In order to realize driving with a pixel circuit, the organic EL element needs to have an inverted structure.
  • an organic layer such as a light emitting layer can be formed by a wet method, it is advantageous for realizing a large organic EL device.
  • the material is formed by a wet method, the material of the electron injection layer or electron transport layer formed thereunder is not only contained in the ink for forming the organic layer in addition to having film formability and electron transport performance. It is also required to have properties that do not dissolve in polar solvents.
  • Patent Document 3 discloses an electron transporting material that can be applied by a wet method.
  • an electron injection layer or an electron transporting layer is formed of these electron transporting materials, a light emitting layer or the like is formed thereon.
  • the organic layer is applied by a wet method, the electron transporting material is dissolved in the nonpolar solvent of the organic layer forming ink, so that the film structure cannot be maintained. Therefore, it is difficult to use as a material for forming an electron injection layer or an electron transport layer of an organic EL element having an inverted structure.
  • Patent Document 4 discloses an organic EL device having an inverted structure, and also discloses a method of forming an electron injecting metal oxide layer by applying an inorganic material such as zinc oxide.
  • high-temperature treatment is required to form an oxide layer, which is not a simple manufacturing method.
  • the electron injection capability of the formed metal oxide layer is low, a high voltage is required for driving the organic EL element, and the efficiency is also lowered.
  • the formed metal oxide layer generally has poor homogeneity, the film surface is rough, and short-circuiting due to pinholes is likely to occur, so that stable characteristics are difficult to obtain.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a technique capable of satisfactorily forming an organic EL element having an inverted structure using a wet method.
  • a method for manufacturing an organic EL element includes a substrate, a cathode, a plurality of organic layers, and an anode, and the cathode and the plurality of organic layers are formed from the substrate side.
  • a method for producing an organic EL element laminated in the order of anodes the first step of forming a first organic layer containing an organic phosphine oxide compound having a hydroxyl group, and an organic layer on the first organic layer
  • a second step of laminating the second organic layer by a wet method using a liquid containing a material and a nonpolar solvent.
  • the organic phosphine oxide compound having a hydroxyl group is contained in the first organic layer formed in the first step.
  • Organic phosphine oxide compounds are basically known as electron-transporting materials, but the addition of polar hydroxyl groups to them loses their affinity for non-polar solvents. Oxide compounds become insoluble in nonpolar solvents. Therefore, in the second step, when the second organic layer is laminated by a wet method in which a liquid containing an organic material and a nonpolar solvent is applied, the first organic layer is not dissolved. Therefore, the laminated structure of organic layers can be formed stably. Further, addition of a hydroxyl group does not affect the electron transport property of the organic phosphine oxide compound, so that the electron transport property is maintained.
  • the laminated structure of the first organic layer and the second organic layer can be stably formed. Uniformity and longer life of the element can be achieved.
  • the material used for the second organic layer can be widely selected from organic materials that are soluble in the nonpolar solvent. . That is, when the second organic layer is a light emitting layer, the selection range of the light emitting material used for the light emitting layer is widened.
  • the structure of the organic EL element is an inverted structure in which the cathode is provided on the substrate side, even when an n-channel TFT having excellent switching characteristics is formed on the TFT substrate, The TFT and the cathode can be easily connected. Therefore, it is particularly suitable when an n-channel TFT is formed on the substrate.
  • the organic EL element according to this embodiment since the organic EL element according to this embodiment has an inverted structure, it contributes to widening the selection range in designing the organic EL element and has high practical value.
  • FIG. 1 is a plan view showing a part of a display panel 100 in which organic EL elements 110 are arranged on a substrate 101.
  • FIG. 1 is a diagram showing a configuration of a display device 200 using a display panel 100.
  • FIG. It is an external appearance which shows an example of the television system using the display apparatus 200.
  • FIG. 1 is a schematic cross-sectional view illustrating a configuration of an organic EL element according to Example 1.
  • FIG. It is a figure which shows the test result which investigated toluene durability about the organic phosphine oxide compound which has a hydroxyl group concerning an Example.
  • a manufacturing method of an organic EL element includes a substrate, a cathode, a plurality of organic layers, and an anode, and is laminated from the substrate side in the order of the cathode, the plurality of organic layers, and the anode.
  • a method for producing an organic EL device comprising: a first step of forming a first organic layer containing an organic phosphine oxide compound having a hydroxyl group; and a liquid containing an organic material and a nonpolar solvent on the first organic layer And a second step of laminating the second organic layer by a wet method of coating the layer.
  • the organic phosphine oxide compound having a hydroxyl group is insoluble in a nonpolar solvent, when the second organic layer is laminated by a wet method using a nonpolar solvent in the second step, The organic layer does not dissolve. Therefore, a stacked structure of organic layers can be stably formed. Moreover, the electron transport property of the organic phosphine oxide compound itself is also maintained.
  • An organic EL device includes a substrate, a cathode, a plurality of organic layers, and an anode, and is stacked in the order of the cathode, the plurality of organic layers, and the anode from the substrate side.
  • the plurality of organic layers are a first organic layer containing an organic phosphine oxide compound having a hydroxyl group, and a second organic layer in which an organic material is laminated on the anode side of the first organic layer And having the same effect as the method for manufacturing the organic EL element.
  • the ratio of the number of phosphine oxide groups to the number of hydroxyl groups per molecule is 1: 0.5 to 1: 3, which is sufficient for a nonpolar solvent. It is insoluble and preferable for maintaining good electron transport properties of the organic phosphine oxide compound.
  • the organic phosphine oxide compound having a hydroxyl group preferably has a structure represented by the following general structural formula.
  • Ar1 to Ar3 represent an aromatic residue, and any one or more of hydrogens of the aromatic residue are represented by the hydroxyl group represented by the formula (2) or the formula (3) Substituted with the hydroxyalkyl group represented.
  • CnH2n in the formula (3) is an alkyl group (n is a natural number of 8 or less), and may be linear or branched.
  • aromatic residue examples include monocyclic aromatic ring residues such as a benzene ring, a thiophene ring, a triazine ring, a furan ring, a pyrazine ring, and a pyridine ring, and a heterocyclic ring, a naphthalene ring, an anthracene ring, and a thieno [ 3,2-b] thiophene ring, phenanthrene ring, fluorene ring, fused polycyclic aromatic ring residues such as furo [3,2-b] furan ring and hetero ring, biphenyl ring, terphenyl ring, bithiophene ring Aromatic ring residues and heterocycles such as bifuran ring, hetero ring, acridine ring, isoquinoline ring, indole ring, carbazole ring, carboline ring, quinoline ring, dibenzofuran ring, a
  • hydrogen that is not substituted with the groups of the formulas (2) and (3) is an alkyl group, alkoxy group, halogen atom, cyano group, nitro group, amino group, aromatic group.
  • Substituents such as group residues and diarylphosphinoyl groups can also be substituted.
  • Ar1 to Ar3 represent aromatic residues
  • CnH2n is an alkyl group (n is a natural number of 8 or less), and may be linear or branched. .
  • Ar1 to Ar9 represent aromatic residues, one or more in one molecule, a hydroxyl group (—OH) or a hydroxyalkyl group (—CnH 2 nOH, n is a natural number of 8 or less.
  • the hydroxyalkyl group may be linear or branched.
  • one or more of X1 to X8 in one molecule is a hydroxyl group (—OH) or a hydroxyalkyl group (—CnH2nOH, n is a natural number of 8 or less). Except for hydrogen.
  • the hydroxyalkyl group may be linear or branched.
  • an aromatic solvent having a benzene ring or an aliphatic solvent containing alkyl or alkene is preferable.
  • a polymer material is preferably used as the organic material for forming the second organic layer.
  • the second organic layer may be a light emitting layer, an electron transport layer or a hole blocking layer.
  • the second organic layer is a light emitting layer, and has a third step of laminating a third organic layer thereon, and this third organic layer contains an aromatic amine compound.
  • the aromatic amine compound contained in the third organic layer functions as a hole transport material.
  • the organic EL element of the above aspect has an inverted structure, when the substrate is a TFT substrate, a driving circuit for the organic EL element can be realized with a simple pixel circuit including two n-type TFTs and one capacitor.
  • the first organic layer may contain an alkali metal, an alkaline earth metal, or a rare earth metal in addition to the organic phosphine oxide compound having a hydroxyl group. Good.
  • an alkali metal, an alkaline earth metal, or a rare earth metal is mixed in the first organic layer in the form of an organometallic complex.
  • the first layer may be an electron injection layer or an electron transport layer.
  • the second layer may be a light emitting layer, an electron transport layer or a hole blocking layer.
  • the second layer is preferably formed of a polymer material.
  • FIG. 1 is a cross-sectional view schematically showing an inverted-structure organic EL element according to an embodiment, in which one of the organic EL elements is cut perpendicularly to a substrate (along the X direction in FIG. 2). A cut section) is shown.
  • a cathode 102, an electron injection layer 104, a light emitting layer 105, a hole transport layer 106, a hole injection layer 107, and an anode 108 are sequentially formed on the surface of a substrate 101 to form an organic EL element 110.
  • the organic EL element 110 is a bottom emission type, and takes out light emitted from the light emitting layer 105 downward.
  • the substrate 101 may be a simple glass substrate, a silicon substrate, or a sapphire substrate, or may be a substrate on which metal wiring is formed.
  • the substrate 101 is planarized on which a transistor array is formed.
  • a TFT substrate on which a film is formed is formed, and organic EL elements are arranged in a matrix on the substrate 101 to form a display panel 100, which can be driven by an active matrix method.
  • FIG. 2 is a plan view showing a part of the display panel 100 in which the organic EL elements 110 are arranged on the substrate 101.
  • the organic EL elements 110a to 110c correspond to RGB sub-pixels.
  • the sub-pixels composed of the organic EL elements 110 are arranged in a matrix in the vertical and horizontal directions (XY directions), and one pixel is formed by the adjacent RGB three-color sub-pixels.
  • Adjacent organic EL elements 110 a, 110 b, 110 c are partitioned by a bank 103.
  • FIG. 3 is a diagram showing a configuration of a display device 200 using the display panel 100.
  • the display device 200 includes a display panel 100 and a drive control unit 120 connected thereto.
  • the drive control unit 120 is composed of four drive circuits 121 to 124 and a control circuit 125.
  • FIG. 4 is an external shape showing an example of a television system using the display device 200.
  • the substrate 101 is configured by sequentially forming TFTs, line wirings, and a planarizing film on the main surface of a glass substrate.
  • a ⁇ c-Si TFT made of microcrystalline silicon As a TFT, it is preferable to form a ⁇ c-Si TFT made of microcrystalline silicon as a TFT.
  • the ⁇ c-Si TFT has less variation in the threshold voltage in the substrate surface than a TFT made of low-temperature polysilicon, and the threshold voltage when DC is applied is more stable than a TFT made of amorphous silicon.
  • the TFT formed on the substrate 101 is an n-channel TFT, excellent switching characteristics can be obtained as compared with a P-channel TFT.
  • the planarizing film is made of an organic material having excellent insulating properties, such as polyimide, polyamide, and acrylic resin material, and covers the arranged TFTs as a whole. A via for wiring is formed in the planarizing film.
  • a cathode 102 is laminated on the surface of the substrate 101.
  • the cathode 102 is formed in a rectangular shape in a region corresponding to each subpixel on the planarizing film of the substrate 101, and the cathodes 102 of all subpixels have the same size.
  • the cathode 102 is connected to the TFT by a via formed in the planarizing film.
  • the material for forming the cathode 102 is not particularly limited, but it is preferable to use a metal, a conductive oxide, or a conductive polymer.
  • metals examples include aluminum, silver, molybdenum, tungsten, titanium, chromium, nickel, zinc, and alloys containing any of them.
  • Examples of the conductive oxide include indium tin oxide, indium zinc oxide, and zinc oxide.
  • Examples of the conductive polymer include polyaniline, polythiophene, and those mixed with an acidic or basic substance.
  • a bank 103 is formed along the gap between adjacent cathodes 102.
  • the bank 103 includes a bank element 103a extending in the Y direction and a bank element 103b extending in the X direction in FIG. 2, and partitions adjacent sub-pixels as described above.
  • the cross-sectional shape of each bank 103 is substantially trapezoidal, and the bank width is uniform.
  • the bank 103 is formed of an insulating organic material (for example, acrylic resin, polyimide resin, novolac type phenol resin, etc.), and the surface has water repellency.
  • an insulating organic material for example, acrylic resin, polyimide resin, novolac type phenol resin, etc.
  • the electron injection layer 104 and the light emitting layer 105 are formed in this order on the cathode 102, and the size of the subpixels surrounded by the bank 103 is also equal.
  • the material of the electron injection layer 104 is an organic phosphine oxide compound having a hydroxyl group, details of which will be described later.
  • the light emitting layer 105 is formed such that a light emitting layer 105a that emits blue light, a light emitting layer 105b that emits green light, and a light emitting layer 105c that emits red light are arranged in the horizontal direction (X direction in FIG. 2). ing.
  • the material of the light emitting layer 105 it is preferable to use a polymer material, for example, a ⁇ -conjugated polymer material or a low molecular dye-containing polymer material.
  • the material of the light emitting layer 105 may be a low molecular weight material as long as it is a material that dissolves in a nonpolar solvent.
  • Typical examples of the polymer material include polyphenylene vinylene (PPV (poly (phenylene vinylene)) derivatives or polyfluorene derivatives.
  • PPV polyphenylene vinylene
  • the light emitting layer 105 can be formed by a printing technique by using a polymer light emitting material, it is suitable for producing a large display panel in a large amount at a low cost.
  • the cathode 102 and the electron injection layer 104 are made of a common material for the three colors of organic EL elements.
  • the light emitting layer 105 is divided into blue, green, and red for the three colors of organic EL elements 110. It is made of a light emitting material that emits light.
  • a hole transport layer 106, a hole injection layer 107, and an anode 108 are formed so as to cover the light emitting layer 105 and the bank 103, and an organic EL element is configured.
  • the hole transport layer 106, the hole injection layer 107, and the anode 108 are layers that are common to all organic EL elements 110 arranged on the substrate 101.
  • the hole transport layer 106 can be formed by depositing a hole transport material such as an aromatic amine including a triphenylamine derivative.
  • the hole injection layer 107 can be formed by forming a thin film of a hole injection metal oxide such as molybdenum oxide, tungsten oxide, or vanadium oxide.
  • a hole injection metal oxide such as molybdenum oxide, tungsten oxide, or vanadium oxide.
  • the anode 108 is a common electrode common to all the organic EL elements 110.
  • the material of the anode 108 is not particularly limited, but it is preferable to use a metal or a conductive oxide.
  • metals examples include aluminum, silver alloys, molybdenum, tungsten, titanium, chromium, nickel, zinc, and alloys thereof.
  • indium tin oxide indium zinc oxide, zinc oxide, and the like can be used.
  • a sealing layer may be provided on the anode 108.
  • This sealing layer is formed of a material such as SiN (silicon nitride) or SiON (silicon oxynitride).
  • the electron injection layer 104 is mainly formed of an organic phosphine oxide compound having a hydroxyl group.
  • the organic phosphine oxide compound having a hydroxyl group has a structure in which three aryl groups are bonded to phosphine oxide, and has an electron transport property due to its electron tolerance. It has characteristics suitable as 104 materials.
  • a hydroxyl group which is a polar group is added, it is difficult to dissolve in a nonpolar solvent.
  • the ratio of the number of phosphine oxide groups to the number of hydroxyl groups in the molecule is set in the range of 1: 0.5 to 1: 3. It is preferable for exhibiting the characteristics.
  • Ar1 to Ar3 each represents an aromatic residue, and one or more hydrogen atoms of the aromatic residue are a hydroxyl group represented by the formula (2) or a hydroxy represented by the formula (3). Substituted with an alkyl group.
  • the alkyl group CnH2n (n is a natural number of 8 or less) may be linear or branched.
  • organic phosphine oxide compounds represented by general structural formulas (4) and (5) in Chemical formula 14.
  • Ar1 to Ar3 represent aromatic residues
  • CnH2n is an alkyl group (n is a natural number of 8 or less), and may be linear or branched. .
  • organic phosphine oxide compounds represented by the general structural formulas (6) to (8) may be mentioned.
  • Ar1 to Ar9 represent aromatic residues, and one or more in one molecule, a hydroxyl group (—OH) or a hydroxyalkyl group (—CnH2nOH, n is 8 or less. It has an aromatic residue substituted with a natural number).
  • the hydroxyalkyl group may be linear or branched.
  • organic phosphine oxide compounds represented by the general structural formulas (9) to (13) may be mentioned.
  • one or more of X1 to X8 in one molecule is a hydroxyl group (—OH) or a hydroxyalkyl group (—CnH2nOH, n is a natural number of 8 or less), The other is hydrogen.
  • the hydroxyalkyl group may be linear or branched.
  • the electron injection layer 104 is formed mainly of such an organic phosphine oxide compound having a hydroxyl group, and may contain an alkali metal, an alkaline earth metal, or a rare earth metal. Can be improved.
  • alkali metals, alkaline earth metals, and rare earth metals are electron-donating. Therefore, electrons are given to organic phosphine oxide compounds that are electron-acceptable, and radical anion states are given to the compounds. Form.
  • the radical anion species behaves as a movable electron, and the conductivity of the electron injection layer 104 is improved.
  • the electron injection layer 104 contains an alkali metal, an alkaline earth metal, or a rare earth metal
  • the ratio of mixing the alkali metal, alkaline earth metal, rare earth metal, or metal complex thereof is preferably 1% to 90%, more preferably 5% to 30%, by weight with respect to the organic phosphine oxide compound. It is preferable to set it as the range.
  • alkali metal lithium, sodium, potassium, rubidium and cesium are preferable.
  • alkaline earth metal magnesium, calcium, strontium and barium are preferable.
  • rare earth metal lanthanum, cerium, erbium, europium, scandium, yttrium, and yttrium are preferable.
  • the ligand of the metal complex is not limited, but preferred examples include acetylacetone, 2,2,6,6-tetramethylheptane-3,5-dione (TMHD), dipivaloylmethane, and dibenzoyl. Examples include ⁇ -diketones such as methane, and oxines such as oxine and 2-methyloxin.
  • a TFT layer composed of TFT and wiring, SD electrode, and ⁇ c-Si is formed by a reactive sputtering method or a thin film formation method using plasma.
  • a substrate 101 is formed by forming a planarizing film so as to cover the TFT.
  • the organic EL elements 110 of the respective colors are formed on the substrate 101 thus manufactured as follows.
  • Step of forming cathode 102 On the planarizing film, the cathode 102 is formed by forming a thin film of a metal material for the cathode 102 by sputtering and patterning it by wet etching.
  • Bank 103 formation process Next, as a bank material, for example, a photosensitive resist material or a resist material containing a fluorine-based or acrylic-based material is applied on the planarization film, and is patterned by a photoresist method to form the bank 103.
  • a bank material for example, a photosensitive resist material or a resist material containing a fluorine-based or acrylic-based material is applied on the planarization film, and is patterned by a photoresist method to form the bank 103.
  • the surface of the bank 103 is subjected to a surface treatment with an alkaline solution, water, an organic solvent or the like in order to adjust the contact angle of the bank 103 with respect to the ink to be applied next or to impart water repellency to the surface.
  • a surface treatment with an alkaline solution, water, an organic solvent or the like in order to adjust the contact angle of the bank 103 with respect to the ink to be applied next or to impart water repellency to the surface.
  • plasma treatment may be performed.
  • Step of forming the electron injection layer 104 An electron injection layer 104 is formed on the cathode 102 by a wet method.
  • the above-described electron injection layer material organic phosphine oxide compound having a hydroxyl group, or an alkali metal, alkaline earth metal, rare earth metal, or metal complex thereof
  • a polar solvent organic phosphine oxide compound having a hydroxyl group, or an alkali metal, alkaline earth metal, rare earth metal, or metal complex thereof
  • a polar solvent for dissolving the material of the electron injection layer 104 for example, a solvent having an OH group such as an alcohol type or a glycerin type can be used.
  • the solvent may be a single solvent or a mixture of many kinds of solvents.
  • a mixed solvent obtained by mixing a plurality of polar solvents may be used, or a mixed solvent of a polar solvent and a nonpolar solvent may be used.
  • the concentration of the material for the electron injection layer is preferably 0.05 wt% to 5 wt% in a liquid obtained by mixing the material for the electron injection layer and a polar solvent.
  • an inkjet method As the coating method, an inkjet method, a dispenser method, a nozzle coating method, intaglio printing, letterpress printing, and the like can be used.
  • Step of forming the light emitting layer 105 A light emitting layer 105 is formed on the electron injection layer 104 by a wet method.
  • an ink in which the above-described light emitting layer material is dissolved in a solvent is applied between the banks 103 and dried.
  • the material used is different for each emission color.
  • the solvent that dissolves the material of the light emitting layer 105 is a nonpolar solvent.
  • an aromatic solvent as the nonpolar solvent.
  • a solvent having a benzene ring as the center such as toluene or xylene, or a heterocyclic aromatic solvent such as pyridine can be preferably used.
  • nonpolar solvents other than aromatic solvents include linear or branched aliphatic solvents such as hexane and 2-methylhexane, cycloaliphatic solvents such as cyclohexane, and halogens such as chloroform. Or an aliphatic aliphatic solvent such as tetrahydrofuran may be used.
  • the solvent used here may be a single solvent or a mixed solvent obtained by mixing many kinds of solvents.
  • an ink jet method As a method for applying the ink, an ink jet method, a dispenser method, a nozzle coating method, intaglio printing, letterpress printing, and the like can be used.
  • Step of forming hole transport layer 106 A material for the hole transport layer 106 and a solvent are mixed at a predetermined ratio to prepare an ink for the hole transport layer, and the ink is applied onto the light emitting layer 105.
  • the applied ink entirely covers the light emitting layer 105 and the bank 103.
  • an inkjet method As a method for applying the ink for forming the hole transport layer 106, an inkjet method, a dispenser method, a nozzle coating method, a spin coating method, intaglio printing, letterpress printing, or the like is used.
  • the hole transport layer 106 is formed by drying the ink thus applied.
  • the hole-injection layer 107 can be formed into a thin film using a metal oxide material such as molybdenum oxide or tungsten oxide by a vacuum evaporation method or the like.
  • Step of forming anode 108 An anode 108 is formed on the surface of the hole injection layer 107 by depositing a material such as ITO or IZO by vacuum deposition or sputtering.
  • the sealing layer on the surface of the anode 108 it can be formed by depositing a material such as SiN (silicon nitride) or SiON (silicon oxynitride) by a vacuum deposition method.
  • a material such as SiN (silicon nitride) or SiON (silicon oxynitride) by a vacuum deposition method.
  • an organic EL element is formed on the substrate, and the display panel 100 is completed.
  • the electron injection layer 104 contains an organic phosphine oxide compound having a hydroxyl group. This compound is excellent in film formability, has a structure in which three aryl groups are bonded to phosphine oxide, has electron acceptability, excellent electron injectability, and is insoluble in nonpolar solvents. .
  • an organic phosphine oxide compound such as triphenylphosphine oxide is known as an electron transporting material, but basically has an affinity for a nonpolar solvent such as toluene and therefore includes a nonpolar solvent. Dissolves when ink comes in contact. When a hydroxyl group is added to this organic phosphine oxide compound, the affinity with a nonpolar solvent is lowered, so that it is difficult to dissolve in a nonpolar solvent such as toluene. Further, the electron transport performance originally possessed by the organic phosphine oxide compound is maintained without being impaired even when a hydroxyl group is added.
  • the organic phosphine oxide compound to which the hydroxyl group has been added can be formed by being dissolved in a polar solvent such as alcohol and applied to form a film.
  • the electron injection layer 104 is formed of an organic phosphine oxide compound having a hydroxyl group, the ink in which the light emitting layer material is dissolved in a nonpolar solvent is formed by a wet method in the step of forming the light emitting layer 105 on the electron injection layer 104. Even if the light emitting layer 105 is formed by coating, the electron injection layer 104 is hardly dissolved.
  • the stacked structure of the electron injection layer 104 and the electron injection layer 104 can be stably formed, the light emission luminance can be made uniform and the life of the organic EL element 110 can be extended.
  • the electron injection layer 104 is insoluble in a nonpolar solvent
  • various polymer materials can be used as the material of the light emitting layer 105, and a light emitting material that can be selected as the material of the light emitting layer 105. The range of
  • the organic EL element 110 has an inverted structure in which the cathode 102 is provided on the substrate 101 side.
  • an n-channel TFT is formed on the substrate 101 and connected to the cathode 102, and the anode A pixel structure in which 108 is a common electrode can be employed.
  • the driving speed of the organic EL element can be increased.
  • ⁇ c-Si is used for the semiconductor layer of the driving TFT, only an n-channel TFT can be formed. In that case, the inverted structure of the organic EL element 110 may be applied.
  • the organic EL element 110 of this embodiment has a wide range of options when designing an organic EL element, and has practical value.
  • Synthesis method of organic phosphine oxide compound having a hydroxyl group 1. Synthesis method of P-Ar-OH
  • the target P-Ar-OH compound is obtained by reacting an alkoxy-substituted diarylphosphine with an aryl halide in a solvent in the presence of a condensation catalyst and a base, as shown in Chemical Formula 14 above. It can be synthesized through a step of synthesizing an alkoxide (reaction (1)) and a step of dealkylating the generated triarylphosphine alkoxide in the presence of a dealkylating agent and a solvent to convert it into an alcohol (reaction (2)). it can.
  • Reaction (1) The method of synthesizing the alkoxy-substituted diarylphosphine as the starting material is not particularly limited, but secondary phosphites such as diethyl phosphite, phosphine chloride, phosphinic chloride and aryl Grignard reagents, aryllithium compounds, etc. It can obtain by reaction of.
  • secondary phosphites such as diethyl phosphite, phosphine chloride, phosphinic chloride and aryl Grignard reagents, aryllithium compounds, etc. It can obtain by reaction of.
  • C1-C8 linear and branched alkyl groups can be used.
  • a methyl group is preferable in terms of yield.
  • the solvent used in the reaction (1) is not particularly limited, but linear and branched (C1-C8) alcohols, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, glycerol, dimethyl ether, dimethyl sulfoxide, dimethyl Acetamide, N-methylpyrrolidone, tetrahydrofuran, dioxane, toluene, xylene, benzonitrile and the like can be used alone or in combination.
  • linear and branched (C1-C8) alcohols ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, glycerol, dimethyl ether, dimethyl sulfoxide, dimethyl Acetamide, N-methylpyrrolidone, tetrahydrofuran, dioxane, toluene, xylene, benzonitrile and the like can be used alone or in combination.
  • ethylene glycol ethylene glycol monomethyl ether, dimethyl ether, dimethyl sulfoxide, dimethylacetamide, N-methylpyrrolidone, tetrahydrofuran, and dioxane are preferable in terms of yield and reaction time.
  • the amount of the solvent used is preferably 0.2 L to 100 L with respect to 1 mol of the halogen atom, and more preferably 1 L to 10 L in terms of yield and reaction rate.
  • the condensation catalyst is not particularly limited, but palladium and nickel compounds are preferred.
  • the amount of the catalyst is not particularly limited, but is preferably 0.0001 mol to 0.5 mol with respect to 1 mol of the halogen atom, and more preferably 0.001 mol to 0.1 mol in terms of yield and rate.
  • a ligand that can be added to the catalyst in the reaction solvent can also be used.
  • the ligands include triphenylphosphine, tricyclohexylphosphine, tris (o-tolyl) phosphine, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4- Bis (diphenylphosphino) butane, 1,1'-bis (diphenylphosphino) ferrocene, tri-tert-butylphosphine, 2- (di-tert-butylphosphino) biphenyl, (2-biphenyl) cyclohexylphosphine, etc. Can be used.
  • the amount of the ligand is preferably 0.1 to 10 mol, more preferably 0.5 to 5 mol with respect to 1 mol of the catalyst. These details are described in WO2005 / 104628.
  • Reaction (2) In the reaction (2), dealkylation is performed. Because phosphine oxide is stable, this dealkylation reaction can be carried out under various known conditions. Examples of conditions are summarized in “Protective Groups in Organic Synthesis” pp 250-254 published by Wiely interscience. Among these, conditions using boron tribromide as a dealkylating agent in the solvent dichloromethane are preferable from the viewpoint of yield and reaction conditions.
  • the amount of boron tribromide may be used in the range of 0.1 mol to 10 mol with respect to 1 mol of the alkyl group, but 1 mol or more is preferable for complete dealkylation.
  • the amount of the solvent is preferably 0.2 L to 100 L with respect to 1 mol of the alkyl group, and more preferably 1 L to 10 L in terms of yield and reaction rate. 2. Synthesis method of P-Ar-CnH2nOH
  • the target P-Ar-CnH2nOH compound is a Grignard reagent that protects the hydroxyl group of the halogenated arylmethyl alcohol (reaction (1)), and the halogenated arylmethyl alcohol that protects the hydroxyl group in the solvent reacts with magnesium.
  • a lithium compound is prepared by lithium-halogen exchange reaction with alkyllithium, reacted with a phosphorus source to synthesize secondary phosphine oxide (reaction (2)), and the generated secondary phosphine oxide and aryl halide.
  • reaction (3) Is reacted with a condensation catalyst in the presence of a base in a solvent to synthesize tertiary phosphine oxide (reaction (3)), and the step of deprotecting the hydroxyl group protected in reaction (1) and converting it to a hydroxyl group (reaction ( It can be synthesized via 4)).
  • Chlorine, bromine and iodine can be used for the halogen of the halogenated arylmethyl alcohol.
  • the method for protecting the hydroxyl group is not particularly limited, but an alkyl group, triphenylmethyl group, methoxymethyl group, benzylmethoxymethyl group, tetrahydropyranyl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, triphenylsilyl group
  • a methyl group is preferable from the viewpoint of yield and easy generation.
  • iodomethane, methyl sulfate, diazomethane, etc. can be used, and sodium hydroxide, potassium hydroxide, sodium hydride, sodium carbonate, potassium carbonate, etc. can be used as the base.
  • the solvent is not particularly limited, and dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, acetone and the like can be used.
  • reaction (2) reaction with a phosphorus source is performed.
  • a method using a Grignard reagent or a method using butyl lithium can be used.
  • an exchange reaction with metal magnesium or an alkylmagnesium halide, or an exchange reaction with alkyllithium can be used for adjusting a lithium compound.
  • arylmagnesium for example, methylmagnesium iodide, ethylmagnesium chloride, ethylmagnesium bromide, isopropylmagnesium chloride, isopropylmagnesium bromide, and alkyllithium for methyllithium, n-butylmagnesium, sec-butylmagnesium, tert-butyl Magnesium or the like can be used.
  • the concentration of the organic metal is not particularly limited, but is preferably 0.1 to 10 M / L, and more preferably 0.5 to 2 M / L in terms of yield and reaction rate.
  • the phosphorus source is not particularly limited, but phosphorus trichloride can be used.
  • phosphorous source such as diethyl phosphite, dichloro (diethylamino) phosphine, ethoxydichlorophosphine, etc.
  • the solvent is not particularly limited, and diethyl ether, di-n-propyl ether, di-n-butyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, pentane, hexane, heptane, toluene, xylene and the like can be used.
  • reaction (3) the secondary phosphine oxide synthesized in the above reaction (2) is condensed with an aryl halide.
  • an aromatic compound having a leaving group such as chlorinated product, brominated product, iodide, trifluoromethanesulfonic acid ester and the like can be used. These details are described in WO2005 / 104628.
  • the solvent used is not particularly limited, but linear and branched (C1-C8) alcohols, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, glycerol, dimethyl ether, dimethyl sulfoxide, dimethylacetamide, N-methyl Pyrrolidone, tetrahydrofuran, dioxane, toluene, xylene, benzonitrile and the like can be used alone or in combination.
  • linear and branched (C1-C8) alcohols ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, glycerol, dimethyl ether, dimethyl sulfoxide, dimethylacetamide, N-methyl Pyrrolidone, tetrahydrofuran, dioxane, toluene, xylene, benzonitrile and the like can be used alone or in combination.
  • ethylene glycol ethylene glycol monomethyl ether, dimethyl ether, dimethyl sulfoxide, dimethylacetamide, N-methylpyrrolidone, tetrahydrofuran, and dioxane are preferable in terms of yield and reaction time.
  • the amount of the solvent is preferably 0.2 L to 100 L with respect to 1 mol of the halogen atom, and more preferably 1 L to 10 L in terms of yield and reaction rate.
  • the condensation catalyst is not particularly limited, but palladium and nickel compounds are preferred.
  • the amount of the catalyst is not particularly limited, but is preferably 0.0001 mol to 0.5 mol with respect to 1 mol of the halogen atom, and more preferably 0.001 mol to 0.1 mol from the viewpoint of the yield rate.
  • a ligand that can be added to the catalyst in the reaction solvent can also be used.
  • the ligands include triphenylphosphine, tricyclohexylphosphine, tris (o-tolyl) phosphine, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4- Bis (diphenylphosphino) butane, 1,1'-bis (diphenylphosphino) ferrocene, tri-tert-butylphosphine, 2- (di-tert-butylphosphino) biphenyl, (2-biphenyl) cyclohexylphosphine, etc.
  • the amount of the ligand is preferably 0.1 to 10 mol, more preferably 0.5 to 5 mol with respect to 1 mol of the catalyst.
  • reaction (4) In reaction (4), deprotection and conversion to a hydroxyl group are carried out, but the type of reaction and the number of steps are not particularly limited. In this reaction, it is converted into a hydroxyl group by a corresponding reaction depending on the kind of the protecting group used in the reaction (1).
  • a method in which it is once converted to bromide using boron tribromide and then hydrolyzed using sodium formate from the viewpoint of yield preferable.
  • 0.1 to 10 mol can be used per 1 mol of the methyl group, but 1 mol or more is preferable for complete bromination.
  • the amount of the solvent is preferably 0.2 to 100 L, more preferably 1 to 10 L with respect to 1 mol of the alkyl group.
  • the reaction is not particularly limited. However, since an intermolecular reaction occurs, it is preferable to use a carboxylic acid salt instead of a hydroxide such as sodium hydroxide, in terms of yield and reaction rate. It is more preferable to use sodium acid.
  • These compounds are all triphenylphosphine compounds in which three phenyl groups are bonded to phosphine oxide, but the compounds of the structural formulas (14) to (16) according to the examples have hydroxyl groups or hydroxymethyl groups on the phenyl groups. Whereas a group is added, the compound of the structural formula (21) does not have a hydroxyl group. Further, the compound of the structural formula (22) also has no hydroxyl group but has a methoxy group added to the phenyl group.
  • a coating film of each compound was formed on the surface of the quartz substrate.
  • a solution of each compound was applied onto a substrate by spin coating in the air, and was formed by vacuum drying at 100 ° C. for 30 minutes, and the film thickness was about 100 nm.
  • the absorbance at each wavelength was measured with an absorptiometer.
  • the measurement result is shown by a spectrum curve labeled “before toluene application” in FIGS.
  • the absorbance before applying toluene was 0.0992, and the absorbance after applying toluene was 0.000.
  • the absorbance before applying toluene was 0.404, and the absorbance after applying toluene was 0.0081. This shows that the coating film is almost dissolved by toluene application and does not remain.
  • the basic structure of the organic phosphine oxide compound is the same, but the structural formulas (14) to (16) ) Has a hydroxyl group or a hydroxymethyl group added thereto, and has improved durability against toluene.
  • the durability against toluene is improved by adding a hydroxyl group or a hydroxymethyl group to the phenyl group. This is thought to be due to a decrease in affinity.
  • the compound of the structural formula (16) according to the example and the compound of the structural formula (22) according to the comparative example are compared, the compound of the structural formula (16) is replaced by the compound of the structural formula (22).
  • the difference is that it is a methoxy group, but the compound of the structural formula (16) has higher durability against toluene than the compound of the structural formula (22).
  • organic phosphine oxide compound represented by the general structural formula (4) since a hydroxyl group is added to the phenyl group, it is considered that the durability against toluene is good.
  • an organic phosphine oxide compound having an aryl group as represented by the general structural formula (1) durability against toluene is improved by adding a hydroxyl group to the aryl group. Furthermore, durability against toluene is also improved by adding a hydroxyalkyl group as shown in the general structural formula (3).
  • the ratio of the number of hydroxyl groups to the number of phosphine oxide groups is preferably 0.5 or more and 3 or less.
  • the number of phosphine oxide groups is 4, the number of hydroxyl groups is 6, and the ratio is 1: 1.5, and the compound of the above formula (15) Then, the number of phosphine oxide groups is 4, the number of hydroxyl groups is 3, and the ratio is 1: 0.75.
  • reaction mixture was poured into 200 mL of saturated aqueous ammonium chloride solution and extracted three times with 100 mL of dichloromethane. The organic layer was dried over magnesium sulfate, filtered and concentrated under reduced pressure. The resulting concentrate was subjected to column chromatography (silica gel, developing solvent: ethyl acetate) to obtain 3.36 g of bis (4-methoxymethylphenyl) phosphine oxide (yield 46%).
  • reaction solution was neutralized by pouring into 200 mL of saturated aqueous sodium bicarbonate and extracted 3 times with 100 mL of dichloromethane. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained concentrate was purified by chromatography (silica gel, developing solvent: ethyl acetate) to obtain 1.48 g of -tris (4-bis (4-bromomethylphenyl) phosphorylphenyl) phosphine oxide (yield 76%). ).
  • the reaction solution was concentrated under reduced pressure. After adding cyclohexane to the concentrate to precipitate a solid, the concentrate was concentrated. 20 mL of water and 10 mL of 1N HCl were added to the concentrate, and the insoluble material was collected by filtration. The obtained solid was further washed with dichloromethane to obtain 183 mg of a brown solid (yield 86%).
  • the methyl ether group has a low molecular weight and can be easily confirmed by NMR.
  • the protecting group (methyl ether group) is removed using BBr 3 and substituted with a bromo group.
  • BBr 3 a plurality (six) of methyl ethers can be deprotected simultaneously.
  • an intermediate protected with a methyl ether group is similarly prepared using BBr 3. It can be produced by deprotection and hydrolysis with sodium formate.
  • FIG. 5 is a schematic cross-sectional view illustrating the configuration of the organic EL element according to Example 1.
  • a non-alkali glass made of Matsunami glass is used as the substrate 101.
  • the cathode 102, the electron transport layer 104, the light emitting layer 105, the hole transport layer 106, the hole injection layer 107, The anode 108 was formed in order.
  • the cathode 102 is formed by depositing ITO on the surface of the substrate 101 with a thickness of 50 nm by a sputtering method, patterning the ITO film by etching using a photolithography method using a photosensitive resist, and peeling the photosensitive resist. did. Subsequently, the substrate was cleaned using a neutral detergent and pure water, and then UV ozone cleaning was performed.
  • the electron injecting layer 104 is obtained by mixing 10 wt% of lithium acetyl acetate with a mixture of the compound of the above structural formula (16) and the compound of the above structural formula (13) [provided that X1 to X8 are absent] in a ratio of 50:50.
  • the solution dissolved in was applied by spin coating and formed by baking in nitrogen at a temperature of 130 ° C.
  • the rotation speed of the spin coat was 5000 rpm.
  • the thickness of the electron injection layer 104 after baking was 20 nm.
  • the light emitting layer 105 was formed by using a super yellow of Merck as a light emitting material, spin-coating a solution obtained by dissolving this in 4-methoxytoluene, and baking at 130 ° C.
  • the thickness of the light emitting layer 105 after baking was 50 nm.
  • the hole transport layer 10 was made of diphenylnaphthyldiamine (NPD, manufactured by Nippon Steel Chemical Co., Ltd.) with a film thickness of 60 nm by a vacuum deposition method.
  • NPD diphenylnaphthyldiamine
  • the hole injection layer 107 was formed of molybdenum oxide (MoOx high purity chemical) with a film thickness of 20 nm by vacuum deposition.
  • MoOx high purity chemical molybdenum oxide
  • aluminum high purity chemical purity 99.9%
  • an organic EL device according to Example 1 was manufactured.
  • the produced organic EL device was sealed in a glass can in a nitrogen dry box having a water and oxygen concentration of 5 ppm or less so that the organic EL device could be evaluated in the air. .
  • Comparative Example 1 An organic EL device according to Comparative Example 1 was produced in the same manner as in Example 1 except that the electron transport layer 104 was not formed.
  • Comparative Example 2 An anode is formed of ITO on the surface of the substrate 101 similar to that of the first embodiment, PEDOT: PSS is formed with a film thickness of 70 nm as a hole injection layer, and a light emitting layer is stacked thereon as in the first embodiment. Then, barium (Ba Aldrich) having a film thickness of 5 nm was formed as an electron injection layer by a vacuum evaporation method, and aluminum similar to that in Example 1 was stacked with a film thickness of 80 nm as a cathode, whereby organic EL according to Comparative Example 2 was used. An element was produced.
  • PEDOT: PSS is formed with a film thickness of 70 nm as a hole injection layer, and a light emitting layer is stacked thereon as in the first embodiment.
  • barium (Ba Aldrich) having a film thickness of 5 nm was formed as an electron injection layer by a vacuum evaporation method, and aluminum similar to that in Example 1 was stacked with a film
  • the evaluation device used Keythley 2400 as a voltage source and an ammeter.
  • Otsuka Electronics MC-940 was used as a luminance meter.
  • Table 1 shows the measurement results when the applied voltage was 9V.
  • the organic EL device of Example 1 has good luminance and light emission efficiency, but does not emit light well when the electron transport layer 104 is eliminated as in Comparative Example 1.
  • the electron injection layer 104 is formed by a wet method in which an ink in which an organic phosphine oxide compound having a hydroxyl group is dissolved in a solvent is applied.
  • the method for forming the electron injection layer 104 is not necessarily a wet method.
  • an electron injection layer 104 may be formed by vacuum-depositing an organic phosphine oxide compound having a hydroxyl group.
  • the light emitting layer 105 is formed on the electron injection layer 104 by a wet process using a nonpolar solvent.
  • the organic phosphine oxide compound having a hydroxyl group constituting the electron injection layer 104 is not dissolved in the nonpolar solvent, so that the same effect can be obtained.
  • the electron injection layer 104 is formed as a first layer with an organic phosphine oxide compound having a hydroxyl group
  • the light emitting layer 105 is formed thereon as a second layer
  • the material is dissolved in a nonpolar solvent and wetted.
  • the electron injection layer 104 was formed as a first layer with an organic phosphine oxide compound having a hydroxyl group, and an electron transport layer or a hole blocking layer was used as the second layer instead of the light emitting layer. It may be formed by a wet method using a nonpolar solvent, and a light emitting layer may be laminated thereon.
  • an ink in which an organic material for forming an electron transport layer or a hole blocking layer is dissolved in a nonpolar solvent is applied on the first layer to form the second layer. Since the organic phosphine oxide compound having a hydroxyl group constituting does not dissolve in a nonpolar solvent, the same effect is exhibited.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and improves the recombination probability of electrons and holes by blocking holes. .
  • examples of the material for the electron transport layer and the hole blocking layer include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives.
  • oxadiazole derivatives thiadiazole derivatives in which the oxygen atom of the oxadiazole ring in the oxadiazole derivative is substituted with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a main chain can also be used.
  • an electron injection layer may be formed as the first layer, the first layer may be an electron transport layer, and the second layer may be a light emitting layer or a hole blocking layer.
  • an ink in which an electron transport layer is formed as a first layer with an organic phosphine oxide compound having a hydroxyl group on the electron injection layer, and an organic material for forming a light emitting layer or a hole blocking layer is dissolved in a nonpolar solvent.
  • the organic phosphine oxide compound having a hydroxyl group constituting the first layer is not dissolved in the nonpolar solvent, so that the same effect is obtained. Play.
  • the organic EL element described in the above embodiment is a bottom mission type, and the direction in which light is extracted from the organic EL element is the substrate side, but is the top emission type in which light is extracted from the side opposite to the substrate side. You can also Alternatively, light can be extracted from both the substrate side and the opposite side of the substrate.
  • the organic EL element of the present invention is applied to an organic EL display device.
  • the organic EL element according to the present invention can also be applied to an organic EL lighting device.
  • the organic EL element according to the present invention can be applied to, for example, a display device for a mobile phone or a television, and is useful for manufacturing a display device or a lighting device having good light emission characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 インバーテッド構造の有機EL素子を、湿式法を用いて良好に形成できるようにすることを目的とする。 そのために、有機EL素子110は、基板101の表面上に、陰極102、電子注入層104、発光層105、正孔輸送層106、正孔注入層107、陽極108が、順に形成されて構成されている。 電子注入層104は、水酸基を有する有機ホスフィンオキシド゛化合物を、アルコール溶媒に溶解したインクを、バンク103同士の間に塗布し、乾燥することによって形成する。 発光層105は、ポリフェニレンビニレン(PPV)誘導体、あるいはポリフルオレン誘導体といった発光層用材料を、非極性溶媒に溶解させたインクを、バンク103同士の間に塗布し、乾燥することによって形成する。

Description

有機EL素子およびその製造方法
 本発明は、有機エレクトロルミネッセンス(EL)素子およびその製造方法に関する。
 有機EL素子は、有機化合物の電界発光現象を利用した発光素子であり、高輝度の明るい発光が容易に得られることから、ディスプレイ装置や照明装置などで実用化されている。
 この有機EL素子において、さらなる普及のために、液晶ディスプレイや蛍光灯、LED照明よりも低コストで製造する必要があり、そのために、有機EL素子の構造や製造方法を簡易にすることが望まれている。
 現在、最も広く用いられている有機EL素子は、特許文献1に記載されているように、陽極を基板側に形成し、有機層を真空製膜法により形成し、有機層の上に陰極を形成した構造を持つが、近年、特許文献2に開示されているように、有機層形成材料を含むインクを塗布して乾燥する湿式法によって有機層を形成する方式が開示され、種々の高分子系材料を非極性溶媒で溶解して塗布することによって発光層を形成した構造の有機EL素子も多数開発されている。
 この湿式法によれば、真空装置を用いることなく有機層を形成でき、大型のパネルにおいても発光層などを比較的容易に形成することができるので、製造時間の観点からも好ましい。
 また非特許文献1には、有機EL素子の構造として、通常とは逆の順序で積層したインバーテッド構造、すなわち、陰極を基板側に形成し、陽極を有機層の上に形成した構造が開示されている。
 このようなインバーテッド構造の有機EL素子を開発することによって、有機EL素子のデバイス構造を設計する上で、選択幅が広がり、設計上の自由度が向上するといったメリットが生じる。
 特に、大型の基板にトランジスタアレイを形成し、その上に有機EL素子アレイを形成してアクティブマトリクス型の有機EL装置を実現しようとすると、トランジスタとして、アモルファスシリコン、微結晶シリコン、酸化物半導体(インジウム-亜鉛-ガリウム酸化物など)をチャネル材料とし、高速応答性に優れるn型のTFTを形成することが望まれるが、n型TFTを用いる場合、2つのTFTと1つのキャパシタからなる簡易な画素回路で駆動を実現する上で、有機EL素子をインバーテッド構造にする必要がある。
特開平2-15595号公報 特表平4-500582号公報 WO2005-104628号公報 特開2007-053286号公報
Applied Physics Letters 89 053503 2006年
 インバーテッド構造の有機EL素子においても、発光層などの有機層を湿式法で形成できれば、大型の有機EL装置を実現する上で有利であるが、発光層などの有機層を、非極性溶媒を用いて湿式法で形成する場合、その下に形成される電子注入層あるいは電子輸送層の材料は、成膜性、電子輸送性能を有することに加えて、有機層形成用のインクに含まれる非極性溶媒には溶解しない性質を合わせ持つことも要求される。
 しかしながら、これらの要求性能を合わせ持つ材料は、なかなか見つかっていない。
 例えば、特許文献3には、湿式法で塗布可能な電子輸送性材料が開示されているが、これらの電子輸送性材料で電子注入層や電子輸送層を形成すると、その上に発光層などの有機層を湿式法で塗布した段階で、有機層形成用インクの非極性溶媒に電子輸送性材料が溶解してしまうため、膜構造を維持することができなくなる。従って、インバーテッド構造の有機EL素子の電子注入層や電子輸送層を形成する材料としては用いにくい。
 また、特許文献4には、インバーテッド構造の有機EL素子が開示され、酸化亜鉛などの無機物を塗布して電子注入性金属酸化物層を形成する方法も開示されているが、この方法で金属酸化物層を形成するには一般に高温処理が必要であり、簡易な製造方法とは言えない。また、形成した金属酸化物層の電子注入能力も低いため、有機EL素子の駆動に高電圧が必要となり効率も低くなる。加えて、形成された金属酸化物層は、一般に均質性に乏しく、膜表面が荒れて、ピンホールによるショートなども発生しやすいため、安定した特性が得られにくい。
 このような背景のもとで、湿式法で発光層などの有機層を形成して高性能かつ長寿命のインバーテッド構造の有機EL素子を実現できるには到っていない。
 本発明は、このような課題に鑑みてなされたものであって、インバーテッド構造の有機EL素子を、湿式法を用いて良好に形成できる技術を提供することを目的とする。
 上記課題を解決するために、本発明の一態様にかかる有機EL素子の製造方法は、基板と、陰極と、複数の有機層と、陽極とを備え、基板側から、陰極、複数の有機層、陽極の順序で積層されている有機EL素子の製造方法であって、水酸基を有する有機ホスフィンオキシド化合物を含む第一の有機層を形成する第1工程と、第一の有機層上に、有機材料及び非極性溶媒を含む液を用いた湿式法で第二の有機層を積層する第2工程とを含む。
 上記態様の有機EL素子の製造方法によれば、第1工程で形成される第一の有機層に、水酸基を有する有機ホスフィンオキシド化合物が含まれている。
 有機ホスフィンオキシド化合物は、基本的に電子輸送性の材料として知られているが、これに極性を有する水酸基が付加されることによって、非極性溶媒に対する親和性が失われるので、水酸基を有する有機ホスフィンオキシド化合物は非極性溶媒に対して不溶性となる。従って、第2工程で、有機材料及び非極性溶媒を含む液を塗布する湿式法によって第二の有機層が積層されるときに、第一の有機層が溶解することがない。よって、有機層同士の積層構造を安定して形成することができる。また、水酸基を付加しても、有機ホスフィンオキシド化合物が持っている電子輸送性には影響しないので、その電子輸送性は保持される。
 このように、上記態様の有機EL素子の製造方法、並びに有機EL素子によれば、第一の有機層及び第二の有機層の積層構造を安定して形成することができるので、発光輝度の均一化、素子の高寿命化を図ることができる。
 また、上記のように第一の有機層が非極性溶媒に対して不溶性であるため、第二の有機層に用いる材料を、非極性溶媒に溶解する有機材料の中から幅広く選択することができる。すなわち、第二の有機層が発光層の場合、発光層に用いる発光材料の選択幅が広くなる。
 また、上記態様によれば、有機EL素子の構造を、基板側に陰極を設けたインバーテッド構造にしているので、TFT基板に、スイッチング特性が優れるnチャネル型のTFTを形成した場合にも、TFTと陰極とを容易に接続することができる。従って、基板にnチャネルTFTを形成する場合には特に適している。
 このように、本態様にかかる有機EL素子は、インバーテッド構造なので、有機EL素子を設計する上で選択幅を広げるのに寄与し、実用的な価値も高い。
実施の形態に係るインバーテッド構造の有機EL素子を模式的に示す断面図である。 基板101上に有機EL素子110が配列されてなる表示パネル100の一部分を示す平面図である。 表示パネル100を用いた表示装置200の構成を示す図である。 表示装置200を用いたテレビシステムの一例を示す外観形状である。 実施例1にかかる有機EL素子の構成を示す断面模式図である。 実施例にかかる水酸基を有する有機ホスフィンオキシド化合物について、トルエン耐久性を調べた試験結果を示す図である。 比較例にかかる有機ホスフィンオキシド化合物について、トルエン耐久性を調べた試験結果を示す図である。 実施例にかかる水酸基を有する有機ホスフィンオキシド化合物の合成方法を示す図である。
 <発明の態様>
 本発明の一態様にかかる有機EL素子の製造方法は、基板と、陰極と、複数の有機層と、陽極とを備え、基板側から、陰極、複数の有機層、陽極の順序で積層されている有機EL素子の製造方法であって、水酸基を有する有機ホスフィンオキシド化合物を含む第一の有機層を形成する第1工程と、第一の有機層上に、有機材料及び非極性溶媒を含む液を塗布する湿式法によって第二の有機層を積層する第2工程とを備える。
 この水酸基を有する有機ホスフィンオキシド化合物は、非極性溶媒に対して不溶性であるので、第2工程で、非極性溶媒を用いた湿式法によって第二の有機層が積層されるときに、第一の有機層が溶解することがない。従って、有機層同士の積層構造を安定的に形成することができる。また、有機ホスフィンオキシド化合物自体の電子輸送性も保持される。
 また、本発明の一態様にかかる有機EL素子は、基板と、陰極と、複数の有機層と、陽極とを備え、基板側から、陰極、複数の有機層、陽極の順序で積層されている有機EL素子であって、複数の有機層は、水酸基を有する有機ホスフィンオキシド化合物を含む第一の有機層と、第一の有機層の陽極側に有機材料が積層されてなる第二の有機層とを備え、上記有機EL素子の製造方法と同様の効果を奏する。
 上記の水酸基を有する有機ホスフィンオキシド化合物において、1分子当たりのホスフィンオキシド基の数と水酸基の数の比率は、1:0.5~1:3であることが、非極性溶媒に対して十分な不溶性を持ち、且つ有機ホスフィンオキシド化合物の電子輸送性を良好に保つ上で好ましい。
 水酸基を有する有機ホスフィンオキシド化合物は、以下の一般構造式で表わされるような構造のものが好ましい。
Figure JPOXMLDOC01-appb-C000001
 ここで式(1)において、Ar1~Ar3は芳香族残基を表し、その芳香族残基の水素のいずれか1つ又は複数が、式(2)に表される水酸基又は式(3)に表されるヒドロキシアルキル基で置換される。式(3)中におけるCnH2nはアルキル基(nは8以下の自然数)であって、直鎖でもよいし分岐していてもよい。
 なお、芳香族残基は、例えば、ベンゼン環、チオフェン環、トリアジン環、フラン環、ピラジン環、ピリジン環などの単環式の芳香族環残基および複素環、ナフタレン環、アントラセン環、チエノ[3,2-b]チオフェン環、フェナントレン環、フルオレン環、フロ[3,2-b]フラン環などの縮合多環式の芳香族環残基および複素環、ビフェニル環、ターフェニル環、ビチオフェン環、ビフラン環などの環集合式の芳香族環残基および複素環、アクリジン環、イソキノリン環、インドール環、カルバゾール環、カルボリン環、キノリン環、ジベンゾフラン環、シンノリン環、チオナフテン環、1,10-フェナントロリン環、フェノチアジン環、プリン環、ベンゾフラン環、シロール環などの芳香族環残基と複素環との組み合わせからなるものが挙げられる。
 また、Ar1~Ar3の芳香族残基において、式(2)及び式(3)の基に置換されていない水素は、アルキル基、アルコキシ基、ハロゲン原子、シアノ基、ニトロ基、アミノ基、芳香族残基およびジアリールホスフィノイル基などに置換されることもできる。
Figure JPOXMLDOC01-appb-C000002
 ここで式(4),(5)において、Ar1~Ar3は芳香族残基を表し、CnH2nはアルキル基(nは8以下の自然数)であって、直鎖でもよいし分岐していてもよい。
Figure JPOXMLDOC01-appb-C000003
 ここで式(6)~(8)において、Ar1~Ar9は芳香族残基を示し、1分子内に1つ以上、水酸基(-OH)あるいはヒドロキシアルキル基(-CnH2nOH、nは8以下の自然数)に置換された芳香族残基を含んでなる。ヒドロキシアルキル基は直鎖でもよいし、分岐していてもよい。
Figure JPOXMLDOC01-appb-C000004
 ここで式(9)~(13)において、1分子中のX1~X8のうち、1つ以上が水酸基(-OH)あるいはヒドロキシアルキル基(-CnH2nOH、nは8以下の自然数)であり、それ以外は水素である。ヒドロキシアルキル基は直鎖でもよいし分岐していてもよい。
 上記態様の有機EL素子の製造方法において、第一の有機層を形成する方法として、湿式法を用いることが好ましい。
 そして、その湿式法において、アルコール系溶媒を用いることが好ましい。
 第二の有機層を湿式法で形成するのに用いる非極性溶媒としては、ベンゼン環を有する芳香族系の溶媒、あるいはアルキルまたはアルケンを含む脂肪族系の溶媒が好ましい。
 第二の有機層を湿式法で形成するのに、インクジェット法を用いることが好ましい。
 第二の有機層を形成する有機材料としては、高分子系材料を用いることが好ましい。
 上記態様の有機EL素子の製造方法及び有機EL素子において、第二の有機層は、発光層であってよいし、電子輸送層または正孔阻止層であってもよい。
 第二の有機層が発光層で、その上に、第三の有機層を積層する第三工程を有し、この第三の有機層が芳香族アミン系化合物を含むことも好ましい。この場合、第三の有機層に含まれる芳香族アミン系化合物が、正孔輸送材料として機能する。
 上記態様の有機EL素子はインバーテッド構造であるため、基板が、TFT基板である場合、n型TFT2個とキャパシタ1個の簡易な画素回路で有機EL素子の駆動回路を実現できる。
 上記態様の有機EL素子の製造方法及び有機EL素子において、第一の有機層には、水酸基を有する有機ホスフィンオキシド化合物に加えて、アルカリ金属、アルカリ土類金属、あるいは希土類金属を含んでいてもよい。
 この場合、アルカリ金属、アルカリ土類金属、あるいは希土類金属が、有機金属錯体の形状で第一の有機層の中に混合されていることが好ましい。
 上記態様の有機EL素子の製造方法及び有機EL素子において、第一の層は、電子注入層あるいは電子輸送層であってもよい。
 第二の層は、発光層であってもよいし、電子輸送層あるいは正孔阻止層であってもよい。
 第二の層は、高分子系材料で形成されることが好ましい。
 <実施の形態>
(表示パネル100の構成)
 図1は、実施の形態に係るインバーテッド構造の有機EL素子を模式的に示す断面図であって、有機EL素子の1つを基板に垂直に切断した断面(図2におけるX方向に沿って切断した断面)を示している。
 図1に示すように、基板101の表面上に、陰極102、電子注入層104、発光層105、正孔輸送層106、正孔注入層107、陽極108が、順に形成されて有機EL素子110が構成されている。この有機EL素子110はボトムエミッション型であって、発光層105で発した光を下方に取り出すようになっている。
 基板101は、単なるガラス基板、シリコン基板あるいはサファイア基板であってもよいし、金属配線が形成された基板であってもよいが、ここでは基板101は、トランジスタアレイが形成された上に平坦化膜が形成されたTFT基板とし、この基板101上に有機EL素子がマトリックス状に配列されて表示パネル100が形成され、アクティブマトリクス方式で駆動できるようになっている。
 図2は、基板101上に有機EL素子110が配列されてなる表示パネル100の一部分を示す平面図である。当図において、有機EL素子110a~110cは、RGB3色のサブピクセルに相当する。この図3に示されるように、表示パネル100において、有機EL素子110からなるサブピクセルが縦横方向(X-Y方向)にマトリック状に配列され、隣接するRGB3色のサブピクセルによって一画素が形成され、隣接する有機EL素子110a,110b,110c同士はバンク103で区画されている。
 図3は、表示パネル100を用いた表示装置200の構成を示す図である。
 表示装置200は、表示パネル100と、これに接続された駆動制御部120とから構成されている。駆動制御部120は、4つの駆動回路121~124と制御回路125とから構成されている。
 図4は、表示装置200を用いたテレビシステムの一例を示す外観形状である。
 (有機EL素子110の構成)
 以下、有機EL素子110の構成を図1に基づいて詳細に説明する。
 基板101は、ガラス基板の主面上に、TFT及びライン配線、平坦化膜が順に形成されて構成されている。
 大型のパネルでは、TFTとして微結晶シリコンからなるμc-SiTFTを形成することが好ましい。
 μc-SiTFTは、低温ポリシリコンからなるTFTと比べて、基板面内の閾値電圧のバラツキが少なく、アモルファスシリコンからなるTFTと比べて、DC印加における閾値電圧が安定である。また、基板101に形成するTFTをnチャネルTFTとすることによって、PチャネルTFTと比べて優れたスイッチング特性が得られる。
 平坦化膜は、絶縁性に優れる有機材料、例えばポリイミド、ポリアミド、アクリル系樹脂材料からなり、配列されたTFTを全体的に被覆している。そして、この平坦化膜には配線のためのビアが形成されている。
 基板101の表面上には陰極102が積層されている。この陰極102は、基板101の平坦化膜上において、各サブピクセルに相当する領域に矩形状に形成され、いずれのサブピクセルの陰極102もサイズは同等である。
 また、この陰極102は、上記平坦化膜に形成されたビアによって、TFTに接続されている。
 陰極102を形成する材料は、特に限定はされないが、金属、導電性酸化物、導電性高分子を用いることが好ましい。
 金属の例としては、アルミニウム、銀、モリブデン、タングステン、チタン、クロム、ニッケル、亜鉛およびそれらのいずれかを含む合金を挙げることができる。
 導電性酸化物の例としては、インジウムスズ酸化物、インジウム亜鉛酸化物、亜鉛酸化物などを挙げることができる。
 導電性高分子としては、ポリアニリン、ポリチオフェンおよびそれらを酸性あるいは塩基性の物質と混合したものを挙げることができる。
 そして、隣接する陰極102どうしの隙間に沿ってバンク103が形成されている。
 バンク103は、図2でY方向に延設されたバンク要素103aと、X方向に延設されたバンク要素103bとからなり、上記のように隣接するサブピクセル同士を区画している。各バンク103の断面形状は略台形状であって、そのバンク幅は均一である。
 このバンク103は、絶縁性の有機材料(例えばアクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂等)で形成され、表面が撥水性を持っている。
 そして、バンク103で仕切られた凹部には、陰極102の上に、電子注入層104、発光層105が順に形成され、バンク103で囲まれたサブピクセルのサイズも均等である。
 電子注入層104の材料は、水酸基を有する有機ホスフィンオキシド゛化合物であり、その詳細は後述する。
 発光層105は、青色の光を発光する発光層105a、緑色の光を発光する発光層105b、赤色の光を発光する発光層105cが横方向(図2でX方向)に並ぶように形成されている。
 発光層105の材料としては、高分子系材料、例えば、π共役高分子系材料あるいは低分子色素含有高分子系材料を用いることが好ましい。ただし、発光層105の材料は、非極性溶媒に溶解する材料であれば、低分子系材料であってもよい。
 高分子系材料の代表的なものとして、ポリフェニレンビニレン(PPV(poly(phenylene vinylene))誘導体、あるいはポリフルオレン誘導体が挙げられる。
 このように、高分子系の発光材料を用いることによって、印刷技術で発光層105を形成することができるので、大量に安価に大型の表示パネルを生産するのに適している。
 なお、陰極102、電子注入層104は、3色の有機EL素子で共通の材料が用いられているが、発光層105は、3色の有機EL素子110で別々に、青色,緑色,赤色を発光する発光材料で形成されている。
 そして、発光層105及びバンク103を覆うように正孔輸送層106、正孔注入層107、陽極108が形成されて、有機EL素子が構成されている。正孔輸送層106、正孔注入層107、陽極108は、基板101上に配列されるすべての有機EL素子110に共通する層である。
 正孔輸送層106は、トリフェニルアミン誘導体をはじめとする芳香族アミンなど、正孔輸送材料を成膜することによって形成できる。
 正孔注入層107は、酸化モリブデン、酸化タングステン、酸化バナジウムなどの正孔注入性の金属酸化物を薄膜形成することによって形成できる。
 陽極108は、すべての有機EL素子110に共通する共通電極である。陽極108の材料は、特に限定されないが、金属、導電性酸化物を用いることが好ましい。
 金属の例としては、例えばアルミニウム、銀合金、モリブデン、タングステン、チタン、クロム、ニッケル、亜鉛およびその合金を用いることができる。
 導電性酸化物の例としては、インジウムスズ酸化物、インジウム亜鉛酸化物、亜鉛酸化物などを用いることができる。
 陽極108の上に、封止層を設けてもよい。この封止層は、例えばSiN(窒化シリコン)、SiON(酸窒化シリコン)等の材料で形成される。
 (電子注入層104についての詳細)
 電子注入層104は、水酸基を有する有機ホスフィンオキシド゛化合物を主体として形成する。後で詳述するように、この水酸基を有する有機ホスフィンオキシド゛化合物は、ホスフィンオキシドに3つのアリール基が結合された構造を有し、その電子許容性によって電子輸送性も優れるので、電子注入層104の材料として適した特性を有している。また、それに加えて、極性基である水酸基が付加されているので非極性溶媒に対して溶解しにくい。ここで、この水酸基を有する有機ホスフィンオキシド゛化合物において、分子中におけるホスフィンオキシド基の数と水酸基の数の比率は、1:0.5~1:3の範囲に設定されていることが、上記特性を発揮する上で好ましい。
 以下に、電子注入層104を構成する水酸基を有する有機ホスフィンオキシド゛化合物として、好ましい化学構造を挙げる。
 化13において一般構造式(1)で示される有機ホスフィンオキシド゛化合物が挙げられ
る。
Figure JPOXMLDOC01-appb-C000005
 ここで、Ar1~Ar3は芳香族残基を表わし、その芳香族残基の水素のいずれかが1つ又は複数が、式(2)に表される水酸基又は式(3)に表されるヒドロキシアルキル基で置換される。式(3)において、アルキル基CnH2n(nは8以下の自然数)は直鎖でもよいし、分岐していてもよい。
 具体例として、化14において一般構造式(4),(5)で示される有機ホスフィンオキシド゛化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 ここで式(4),(5)において、Ar1~Ar3は芳香族残基を表し、CnH2nはアルキル基(nは8以下の自然数)であって、直鎖でもよいし分岐していてもよい。
 あるいは、化15において、一般構造式(6)~(8)で示される有機ホスフィンオキシド゛化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 ここで式(6)~(8)中において、Ar1~Ar9は芳香族残基を示し、1分子内に1つ以上、水酸基(-OH)あるいはヒドロキシアルキル基(-CnH2nOH、nは8以下の自然数)に置換された芳香族残基を有する。ヒドロキシアルキル基は、直鎖でもよいし分岐していてもよい。
 あるいは、化16において、一般構造式(9)~(13)で示される有機ホスフィンオキシド゛化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 ここで式(9)~(13)中において、1分子中のX1~X8のうち、1つ以上が水酸基(-OH)あるいはヒドロキシアルキル基(-CnH2nOH、nは8以下の自然数)であり、それ以外は水素である。ヒドロキシアルキル基は、直鎖でもよいし分岐していてもよい。
 電子注入層104は、このような水酸基を有する有機ホスフィンオキシド゛化合物を主体として形成されるが、これに、アルカリ金属、アルカリ土類金属あるいは希土類金属を含ませてもよく、それによって、電子注入性を向上させることができる。
 電子注入性が改善されるメカニズムとしては、アルカリ金属、アルカリ土類金属、希土類金属が、電子供与性であるため、電子許容性である有機ホスフィンオキシド化合物に電子を与え、化合物にラジカルアニオン状態を形成する。そして、このラジカルアニオン種は、可動な電子として振る舞い、電子注入層104の電導度が改善される。
 電子注入層104に、アルカリ金属、アルカリ土類金属、あるいは希土類金属を含ませる形態としては、これらの金属を、有機金属錯体の形状で混合させることが好ましい。これは、金属の形態のまま混入させると、溶媒に分散しにくく、金属が酸化しやすいが、有機金属錯体の形状で混入させることによって、溶媒に分散しやすく、金属の酸化を防ぐことができるからである。
 アルカリ金属、アルカリ土類金属、希土類金属、あるいはそれらの金属錯体を混合する比率は、有機ホスフィンオキシド化合物に対して、重量比で1%~90%とすることが好ましく、さらに5%~30%の範囲とすることが好ましい。
 アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが好ましい。アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウムが好ましい。希土類金属としては、ランタン、セリウム、エルビウム、ユーロピウム、スカンジウム、イットリウム、イットリビウムが好ましい。
 金属錯体の配位子は、限定されるものではないが、好ましい例としてアセチルアセトン、2,2,6,6-テトラメチルヘプタン-3,5-ジオン(TMHD)、ジピバロイルメタン、ジベンゾイルメタン等のβ-ジケトン類やオキシン、2-メチルオキシン等のオキシン類が挙げられる。
 (表示パネル100の製造方法)
 表示パネル100の製造方法について、その一例を説明する。
 基板101を作製する工程:
 反応性スパッタ法、あるいはプラズマを用いた薄膜形成方法で、TFT及び配線、SD電極、μc-SiからなるTFT層を形成する。
 そして、TFTを覆うように、平坦化膜を形成することによって基板101を作製する。
 このように作製した基板101上に、以下のように、各色の有機EL素子110を形成する。
 陰極102の形成工程:
 平坦化膜の上に、陰極102用の金属材料を、スパッタ法で薄膜成形して、ウェットエッチングでパターニングすることにより陰極102を形成する。
 バンク103形成工程:
 次に、バンク材料として、例えば感光性のレジスト材料、もしくはフッ素系やアクリル系材料を含有するレジスト材料を、平坦化膜上に塗布し、フォトレジスト法でパターニングすることによってバンク103を形成する。
 なお、このバンク形成工程では、次に塗布するインクに対するバンク103の接触角を調節したり、表面に撥水性を付与するために、バンク103の表面をアルカリ性溶液や水、有機溶媒等によって表面処理するか、プラズマ処理を施してもよい。
 電子注入層104の形成工程:
 陰極102の上に、電子注入層104を湿式法で形成する。
 この工程では、上述した電子注入層の材料(水酸基を有する有機ホスフィンオキシド゛化合物、あるいはこれにアルカリ金属、アルカリ土類金属、希土類金属、それらの金属錯体を加えたもの)を、極性溶媒に溶解したインクを、バンク103同士の間に塗布し、乾燥することによって、電子注入層104を形成する。
 電子注入層104の材料を溶解させる極性溶媒として、例えば、アルコール系やグリセリン系など、OH基を有する溶媒を用いることができる。
 具体的には、メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、グリセリンなどが挙げられる。これらと水との混合溶液でも良い。
 溶媒は、単一系の溶媒であってもよいし、多種類の溶媒を混合してもよい。複数の極性溶媒を混ぜた混合溶媒でも良いし、極性溶媒と非極性溶媒との混合溶媒であってもよい。
 電子注入層の材料の濃度は、電子注入層の材料と極性溶媒とを混合した液中において、0.05wt%~5wt%とするのがよい。
 塗布方法としては、インクジェット法をはじめ、ディスペンサー法、ノズルコート法、凹版印刷、凸版印刷等を用いることができる。
 発光層105の形成工程:
 電子注入層104の上に、湿式法で発光層105を形成する。
 この工程では、上述した発光層用の材料を溶媒に溶解させたインクを、バンク103同士の間に塗布し、乾燥することによって形成する。用いる材料は、発光色ごとに異なっている。このインクにおいて、発光層105の材料を溶解する溶媒は、非極性溶媒である。
 非極性溶媒としては、芳香族系の溶媒を用いることが好ましい。具体的には、トルエンやキシレンなどのベンゼン環を中心に有する溶媒、あるいはピリジンなど複素環芳香族の溶媒を好適に用いることができる。
 芳香族系以外の非極性溶媒の例としては、ヘキサンや2-メチルへキサンのような直鎖あるいは分岐した脂肪族系の溶媒、あるいはシクロヘキサンのような環状脂肪族の溶媒、あるいはクロロホルムなどのハロゲンを含む脂肪族溶媒、あるいはテトラヒドロフランなどの複素環脂肪族系の溶媒を用いてもよい。
 ここで用いる溶媒は、単一系の溶媒であってもよいし、多種類の溶媒を混合した混合溶媒であっても良い。
 インクを塗布する方法としては、インクジェット法をはじめ、ディスペンサー法、ノズルコート法、凹版印刷、凸版印刷等を用いることができる。
 正孔輸送層106の形成工程:
 正孔輸送層106の材料と溶媒とを所定比率で混合して正孔輸送層用のインクを作製し、そのインクを発光層105の上に塗布する。
 塗布されたインクは、発光層105及びバンク103の上を全体的に被覆する。
 正孔輸送層106を形成するインクを塗布する方法は、インクジェット法、ディスペンサー法、ノズルコート法、スピンコート法、凹版印刷、凸版印刷等を用いる。
 このように塗布したインクを乾燥させることによって正孔輸送層106が形成される。
 正孔注入層107の形成工程:
 正孔注入層107は、酸化モリブデンや酸化タングステン等の金属酸化物材料を、真空蒸着法などで薄膜形成することができる。
 陽極108の形成工程:
 正孔注入層107の表面上に、ITO、IZO等の材料を、真空蒸着法やスパッタ法で成膜することによって陽極108を形成する。
 陽極108の表面上に、封止層を形成する場合、SiN(窒化シリコン)、SiON(酸窒化シリコン)等の材料を真空蒸着法で成膜することによって形成できる。
 以上の工程により、基板上に有機EL素子が形成され、表示パネル100が完成する。
 (有機EL素子110及びその製造方法による効果)
 上記の有機EL素子110においては、電子注入層104に、水酸基を有する有機ホスフィンオキシド化合物が含まれている。この化合物は、成膜性に優れ、ホスフィンオキシドに3つのアリール基が結合した構造を持ち、電子許容性を有し、電子注入性に優れており、且つ、非極性溶媒に対して不溶性である。
 すなわち、トリフェニルホスフィンオキシドのような有機ホスフィンオキシド化合物は、電子輸送性材料として知られているが、基本的にトルエンのような非極性溶媒に対して親和性を有するので、非極性溶媒を含むインクが接触すると溶解する。この有機ホスフィンオキシド化合物に水酸基が付加されると、非極性溶媒との親和性が低下するので、トルエンのような非極性溶媒に溶解しにくくなる。また、有機ホスフィンオキシド化合物がもともと持っていた電子輸送性能は、水酸基を付加しても損なわれることなく維持される。また、この水酸基を付加した有機ホスフィンオキシド化合物は、アルコールなどの極性溶媒に溶解させて塗布して成膜することができ、成膜性も良好である。
 従って、水酸基を有する有機ホスフィンオキシド化合物で電子注入層104を形成すれば、電子注入層104の上に発光層105を形成する工程で、非極性溶媒に発光層材料を溶解したインクを湿式法で塗布して発光層105を積層形成しても、電子注入層104は溶解しにくい。
 よって、電子注入層104及びの積層構造を安定的に形成することができるので、発光輝度の均一化、有機EL素子110の高寿命化を図ることができる。
 また、電子注入層104が、非極性溶媒に対して不溶性であるので、発光層105の材料として、種々の高分子系材料を用いることが可能となり、発光層105の材料として選択可能な発光材料の範囲が広がる。
 また、上記有機EL素子110は、基板101側に陰極102を設けたインバーテッド構造であるが、インバーテッド構造では、基板101にnチャネルTFTを形成して、これを陰極102に接続し、陽極108を共通電極とする画素構造をとることができる。
 そして、TFTにnチャネルTFTを適用することによって、有機EL素子の駆動速度を高めることができる。
 特に、駆動TFTの半導体層にμc-Siを用いる場合、実質的にnチャネルTFTしか形成できないが、その場合に上記有機EL素子110のインバーテッド構造を適用すればよい。
 このように、本態様の有機EL素子110によって、有機EL素子を設計するときの選択幅が広がり、実用的な価値がある。
(水酸基を有する有機ホスフィンオキシド化合物の合成方法)
1.P-Ar-OHの合成方法
Figure JPOXMLDOC01-appb-C000009
 目的とするP-Ar-OH化合物は、上記化14に示すように、アルコキシが置換したジアリールホスフィンとハロゲン化アリールを、縮合触媒と塩基の存在化において、溶媒中で反応し、トリアリールホスフィンのアルコキシドを合成する工程(反応(1))と、生成したトリアリールホスフィンのアルコキシドを脱アルキル剤と溶媒の存在化で脱アルキルしアルコールに変換する工程(反応(2))を経て合成することができる。
 反応(1):
 出発物質となるアルコキシで置換したジアリールホスフィンを合成する方法は、特に限定されないが、亜りん酸ジエチル等の2級の亜りん酸エステル、ホスフィンクロライド及びホスフィン酸クロライドとアリールグリニャール試薬やアリールリチウム化合物等の反応で得ることができる。
 保護基となるAlkyは、C1~C8の直鎖及び分岐のアルキル基が用いることができる。その中でもメチル基が収率の点で好ましい。
 また、反応(1)で用いるハロゲン化物は、塩化物、臭化物及びヨウ化物を用いることができる。これらの詳細は、WO2005/104628に記載されている。
 反応(1)で用いる溶媒は、特に限定しないが、直鎖及び分岐の(C1~C8)アルコール類、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、グリセロール、ジメチルエーテル、ジメチルスルホキシド、ジメイチルアセトアミド、N-メチルピロリドン、テトラヒドロフラン、ジオキサン、トルエン、キシレン、ベンゾニトリル等を単独及び混合し用いることができる。中でもエチレングリコール、エチレングリコールモノメチルエーテル、ジメチルエーテル、ジメチルスルホキシド、ジメイチルアセトアミド、N-メチルピロリドン、テトラヒドロフラン、ジオキサンが、収率及び反応時間の点で好ましい。
 用いる溶媒の量は、ハロゲン原子1molに対して、0.2L~100Lが好ましく、収率及び反応速度の点でより好ましくは1L~10Lである。
 また、縮合触媒は特に限定されないが、パラジウム及びニッケルの化合物が好ましい。たとえば、酢酸パラジウム、塩化パラジウム、パラジウム-活性炭、テトラキス(トリフェニルホスフィン)パラジウム(0)、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド、トリス(ジベンジリデンアセトン)ジパラジウム(0)、〔1,3-ビス(ジフェニルフォスフィノ)プロパン〕ジクロロニッケル(II)を、単独または混合して用いることができる。触媒の量は、特に限定されないが、ハロゲン原子1molに対し0.0001mol~0.5molが好ましく、収率及び速度の点からより好ましくは0.001molから0.1molである。
 さらに反応溶媒中で触媒に付加できる配位子を用いることもできる。配位子としては、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリス(o-トリル)ホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、トリ-tert-ブチルホスフィン、2-(ジ-tert-ブチルホスフィノ)ビフェニル、(2-ビフェニル)シクロヘキシルホスフィン等が用いることができる。
 配位子の量は、触媒1molに対して、0.1~10molが好ましく、より好ましくは、0.5~5molである。これらの詳細は、WO2005/104628に記載されている。
 反応(2):
 反応(2)では脱アルキルを行う。ホスフィンオキシドが安定性を有するので、この脱アルキル反応を、様々な既知の条件で行うことが可能である。その条件の例は、Wiely interscience出版の「Protective Groups in Organic Synthesis」pp250~254にまとめられている。中でも、溶媒ジクロロメタンに脱アルキル剤に三臭化ホウ素を使用する条件は、収率、反応条件の点から好ましい。ここで三臭化ホウ素の量は、アルキル基1molに対して0.1mol~10molの範囲で使用すればよいが、完全に脱アルキルを行うには1mol以上が好ましい。溶媒の量は、アルキル基1molに対し0.2L~100Lが好ましく、収率及び反応速度の点で、より好ましくは1L~10Lである。
2.P-Ar-CnH2nOHの合成方法
Figure JPOXMLDOC01-appb-C000010
 目的とするP-Ar-CnH2nOH化合物は、ハロゲン化アリールメチルアルコールの水酸基を保護する工程(反応(1))と、溶媒中で水酸基を保護したハロゲン化アリールメチルアルコールはマグネシウムとの反応によるグリニヤール試薬、またはアルキルリチウムによるリチウム-ハロゲン交換反応によりリチウム化合物を調製し、リン源と反応を行い、2級ホスフィンオキシドを合成する工程(反応(2))と、生成した2級ホスフィンオキシドとハロゲン化アリールを縮合触媒と塩基存在下において溶媒中で反応し、3級ホスフィンオキシドを合成する工程(反応(3))と、反応(1)で保護した水酸基を脱保護し水酸基に変換する工程(反応(4))を経て合成することができる。
 反応(1):
 ハロゲン化アリールメチルアルコールのハロゲンには塩素、臭素及びヨウ素を用いることができる。水酸基の保護方法は、特に限定されないが、アルキル基、トリフェニルメチル基、メトキシメチル基、ベンジルメトキシメチル基、テトラヒドロピラニル基、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、トリフェニルシリル基などを用いることができ、特にアルキル基についてはメチル基が収率、生成の容易な点から好ましい。
 またメチル基を保護基に用いる際は、ヨードメタン、硫酸メチル、ジアゾメタンなどを用いることができ、塩基には水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、炭酸ナトリウム、炭酸カリウムなどを用いることができる。溶媒は特に限定されないが、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、アセトンなどを用いることができる。
 反応(2):
 反応(2)では、リン源との反応を行う。ここでは、グリニヤール試薬を用いる方法、ブチルリチウムを用いる方法のいずれも用いることができる。水酸基を保護したハロゲン化アリールメチルアルコールからグリニヤール試薬を調製するには、金属マグネシウム、あるいはハロゲン化アルキルマグネシウムとの交換反応、リチウム化合物の調整ではアルキルリチウムとの交換反応を用いることができる。ハロゲン化アリールマグネシウムでは、例えば、ヨウ化メチルマグネシウム、塩化エチルマグネシウム、臭化エチルマグネシウム、塩化イソプロピルマグネシウム、臭化イソプロピルマグネシウム、アルキルリチウムではメチルリチウム、n―ブチルマグネシウム、sec-ブチルマグネシウム、tert―ブチルマグネシウムなどを用いることができる。有機金属の濃度は特に限定しないが0.1~10M/Lが好ましく、収率及び反応速度の点において0.5 ~2M/Lがより好ましい。
 リン源は特に限定しないが三塩化りん等を用いることができる。またリン源に、亜リン酸ジエチル、ジクロロ(ジエチルアミノ)ホスフィン、エトキシジクロロホスフィン等を用いると、上記で調製した水酸基を保護したアリールメチルアルコールのグリニヤール試薬あるいはリチウム化合物を過剰に用いることができる点で好ましい。
 溶媒は特に限定しないが、ジエチルエーテル、ジ-n-プロピルエーテル、ジ-n-ブチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ペンタン、ヘキサン、ヘプタン、トルエン、キシレンなどを用いることができる。
 反応(3):
 反応(3)では、上記反応(2)で合成した2級ホスフィンオキシドとハロゲン化アリールとを、縮合する。ハロゲン化アリールには、塩素化物、臭素化物、ヨウ化物、トリフロロメタンスルホン酸エステルなどの脱離基を持つ芳香族化合物を用いることができる。これらの詳細は、WO2005/104628に記載されている。
 用いる溶媒は、特に限定しないが、直鎖及び分岐の(C1~C8)アルコール類、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、グリセロール、ジメチルエーテル、ジメチルスルホキシド、ジメイチルアセトアミド、N-メチルピロリドン、テトラヒドロフラン、ジオキサン、トルエン、キシレン、ベンゾニトリル等を、単独及び混合し用いることができる。中でも、エチレングリコール、エチレングリコールモノメチルエーテル、ジメチルエーテル、ジメチルスルホキシド、ジメイチルアセトアミド、N-メチルピロリドン、テトラヒドロフラン、ジオキサンが、収率及び反応時間の点で好ましい。溶媒の量は、ハロゲン原子1molに対し、0.2L~100Lが好ましく、収率及び反応速度の点で1L~10 Lがより好ましい。また、縮合触媒は特に限定されないが、パラジウム及びニッケルの化合物が好ましい。たとえば、酢酸パラジウム、塩化パラジウム、パラジウム-活性炭、テトラキス(トリフェニルホスフィン)パラジウム(0)、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド、トリス(ジベンジリデンアセトン)ジパラジウム(0)、〔1,3-ビス(ジフェニルフォスフィノ)プロパン〕ジクロロニッケル(II)を、単独または混合し用いることができる。触媒の量は、特に限定されないが、ハロゲン原子1molに対し0.0001mol~0.5molが好ましく、収率の速度の点から、より好ましくは0.001mol~0.1molである。
 さらに、反応溶媒中で触媒に付加できる配位子を用いることもできる。配位子としては、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリス(o-トリル)ホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、トリ-tert-ブチルホスフィン、2-(ジ-tert-ブチルホスフィノ)ビフェニル、(2-ビフェニル)シクロヘキシルホスフィン等を用いることができる。配位子の量は、触媒1molに対し、0.1~10molが好ましく、より好ましくは、0.5~5molである。これらの詳細は、WO2005/104628に記載されている。
 反応(4):
  反応(4)では、脱保護、水酸基への変換を行うが、反応の種類、ステップ数は特に限定しない。この反応では、反応(1)で用いた保護基の種類により対応する反応で水酸基へと変換する。これらの例はWiley Interscience出版の「Protective Group in Organic synthesis」第2版にまとめられている。
  反応(1)でメチル基を保護基に用いた場合には、三臭化ホウ素を用いて一度臭化物へと変換し、続いて、ぎ酸ナトリウムを用いて加水分解する方法が収率の点から好ましい。三臭化ホウ素による主家物への変換反応ではメチル基1molに対し、0.1~10 molまで使用できるが、完全に臭素化を行うには1mol以上が好ましい。溶媒の量はアルキル基1molに対し、0.2~100Lが好ましく、1~10Lがより好ましい。続く加水分解では、特に反応を限定しないが、分子間反応が起こるため、水酸化ナトリウムのような水酸化物ではなく、カルボン酸塩を用いることが好ましく、収率及び反応速度の点で、ぎ酸ナトリウムを用いることがより好ましい。
 [実施例]
 〔電子輸送材料の耐溶剤性試験〕
 図6(a)~(c)において構造式(14)~(16)で示す実施例にかかる化合物、並びに、図7(a),(b)において構造式(21),(22)で示す比較例にかかる化合物について、以下のようにしてトルエンに対する耐久性を調べた。
 これらの化合物は、いずれもホスフィンオキシドに3つのフェニル基が結合したトリフェニルフォスフィン化合物であるが、実施例にかかる構造式(14)~(16)の化合物は、フェニル基に水酸基またはヒドロキシメチル基が付加されているのに対して、構造式(21)の化合物は水酸基を持っていない。また、構造式(22)の化合物も、水酸基は持っていないが、フェニル基にメトキシ基が付加されている。
 石英基板の表面上に、各化合物の塗膜を形成した。塗膜形成方法は、大気中において、各化合物の溶液を基板上にスピンコートで塗布し、100℃で30分間真空乾燥して形成し、膜厚は約100nmとした。
 各塗膜を形成した基板について、吸光光度計で波長ごとの吸光度を測定した。その測定結果は、図6、図7において「トルエン塗布前」と表示したスペクトル曲線で示されている。
 次に、各塗膜を形成した基板について、塗膜上にトルエンを0.15ml滴下し、500rpmで45秒間スピンコートを行い、130℃で30分間乾燥した。
 そして、各基板について、吸光光度計で波長ごとの吸光度を測定した。その測定結果は、図6、図7において「トルエン塗布後」と表示したスペクトル曲線で示されている。
 図6に示されるように、構造式(14)~(16)で示す実施例にかかる化合物については、トルエン塗布前と塗布後とで吸光スペクトル曲線はほとんど同じである。
 これは、トルエン塗布によって塗膜が溶解されないこと、すなわちトルエンに対する耐久性が高いことを示している。
 一方、図7に示されるように、構造式(21),(22)で示す比較例にかかる化合物については、トルエン塗布前と塗布後とで吸光スペクトル曲線が変化しており、トルエン塗布後においては、ほとんど吸光は見られない。
 数値的には、構造式(21)の化合物では、波長274nmにおいて、トルエン塗布前の吸光度は0.0992、トルエン塗布後の吸光度は0.000であった。また、構造式(22)の化合物では、波長245nmにおいて、トルエン塗布前の吸光度は0.404、トルエン塗布後の吸光度は0.0081であった。これは、トルエン塗布によって塗膜がほとんど溶解され、残っていないこと示している。
 以上の試験結果から、構造式(14)~(16)で示す実施例にかかる化合物は、トルエンに対する耐久性に優れることがわかる。
 特に、構造式(14)~(16)の化合物と、構造式(21)の化合物とを比較すると、有機ホスフィンオキシド化合物の基本的な構造は同じであるが、構造式(14)~(16)の化合物は、水酸基あるいはヒドロキシメチル基が付加されており、トルエンに対する耐久性が向上している。
 このように、フェニル基を有する有機ホスフィンオキシド化合物において、フェニル基に、水酸基あるいはヒドロキシメチル基を付加することによって、トルエンに対する耐久性が向上するのは、水酸基の極性が高いため、非極性溶媒に対する親和性が低下するためと考えられる。
 また、実施例にかかる構造式(16)の化合物と、比較例にかかる構造式(22)の化合物とを比較すると、構造式(16)の化合物で水酸基のところが、構造式(22)の化合物ではメトキシ基となっている点だけが異なっているが、構造式(22)の化合物と比べて構造式(16)の化合物は、トルエンに対する耐久性が高い。
 これは、構造式(22)の化合物のように、メトキシ基を付加してもトルエン耐久性を高める効果は小さく、構造式(16)の化合物のようにプロトン性の水酸基を付加することによって、はじめてトルエン耐久性向上効果が十分に得られることを示している。
 これらの試験結果に基づいて考察すると、一般にアリール基を有する有機ホスフィンオキシド化合物において、アリール基に水酸基を付加することによって、トルエンに対する耐久性が大きく向上することが予測される。
 すなわち、構造式(14)~(16)で示す化合物に限らず、一般構造式(8)で示される有機ホスフィンオキシド化合物においても、構造が類似しており且つアリール基に水酸基が付加されている点が共通しているので、トルエンに対する耐久性が良好であると考えられる。
 また、一般構造式(4)で示される有機ホスフィンオキシド化合物においても、フェニル基に水酸基を付加されているので、トルエンに対する耐久性が良好と考えられる。
 また、一般構造式(1)で示されるようなアリール基を有する有機ホスフィンオキシド化合物においても、アリール基に水酸基が付加することによってトルエンに対する耐久性が向上する。また、さらに、一般構造式(3)に示されるようなヒドロキシアルキル基が付加することによっても、トルエンに対する耐久性が向上する。
 なお、下記化19において式(23)~(28)で示される比較例にかかる化合物についても、同様に試験を行ったところ、トルエン塗布前と塗布後とで吸光スペクトル曲線が変化し、トルエン塗布後においてほとんど吸光が見られなかったので、塗膜が溶解されたことがわかった。
Figure JPOXMLDOC01-appb-C000011
 以上の考察から、一般に有機ホスフィンオキシド化合物において、水酸基を付加することによって、トルエンに対する耐久性が高まることがわかる。
 なお、ここでは、非極性溶媒としてトルエンで試験を行った結果を示したが、トルエン以外の芳香族系溶媒(ベンゼン、キシレンなど)を用いても、あるいは芳香族系溶媒と飽和炭化水素溶媒との混合溶媒を用いて試験を行っても、同様に、耐久性が向上する結果が得られた。
 また、芳香族系溶媒以外の非極性溶媒だけで試験を行っても、同様の結果(耐久性の向上効果)が認められた。
 〔有機ホスフィンオキシド化合物においてOH基を付加する数について〕
 水酸基を有する有機ホスフィンオキシド化合物において、ホスフィンオキシド基の数に対する水酸基の数の比率は、0.5以上3以下とすることが好ましい。
 これは、この比率が小さいと、非極性溶媒に対して溶解しやすくなり、比率が大きすぎると、有機ホスフィンオキシド化合物の電子輸送性が損なわれやすいためである。
 なお、上記式(14)及び(16)の化合物では、ホスフィンオキシド基の数が4、水酸基の数が6であって、その比率は1:1.5であり、上記式(15)の化合物では、ホスフィンオキシド基の数が4、水酸基の数が3であって、その比率は1:0.75である。
 〔水酸基を有する有機ホスフィンオキシド化合物の合成方法〕
 上記構造式(16)で示したトリス(4-ビス(4-ヒドロキシメチルフェニル)ホスホリルフェニル)ホスフィンオキシドについて、その合成方法を、図8を参照しながら例示する。
 1.ビス(4-メトキシメチルフェニル)ホスフィンオキシドの合成
 4-ブロモベンジルメチルエーテル(15.1g、75mmol)の無水THF溶液75mLを、マグネシウム 2.01g (82.5mmol)へ、還流を維持しながら10分間かけて滴下した。滴下終了後、さらに室温で20分間撹拌した。溶液を-80℃に冷却し、亜リン酸ジエチル(3.45g、25mmol)を加え、-80℃で30分、室温で17時間撹拌した。
 反応終了後、反応混合物を、飽和塩化アンモニウム水溶液200mLに注ぎ、ジクロロメタン100mLで3回抽出した。有機層を硫酸マグネシウムで乾燥して、濾別した後、減圧下で濃縮した。得られた濃縮物を、カラムクロマトグラフィー(シリカゲル、展開溶媒:酢酸エチル)に付し、ビス(4-メトキシメチルフェニル)ホスフィンオキシド 3.36gを得た(収率46%)。
 得られた生成物をMS及びNMRで測定した。
MS (FAB+, 3-ニトロベンジルアルコール) m/z = 291 (M+1)
1H NMR (60MHz, CDCl3) d 3.39 (s, 6H, OCH3)、4.46 (s, 4 H, ArCH2O)、7.08-7.78 (m, 9H, ArH and PHO)
 2.トリス(4-ビス(4-メトキシメチルフェニル)ホスホリルフェニル)ホスフィンオキシドの合成
 トリ(4-ブロモフェニル)ホスフィンオキシド721mg(1.4mmol)、ビス(4-メトキシメチルフェニル)ホスフィンオキシド3.05g(10.5mmol)、酢酸パラジウム63mg(0.28mmol)、dppp 202mg(0.49mmol)及びN,N-ジイソプロピルエチルアミン1.9g(14.7mmol)を、DMSO15mLに加え、100℃で23時間撹拌した。
 反応混合物を、飽和塩化アンモニウム水溶液200mLに加え、ジクロロメタン100mLで3回抽出した。有機層を硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた濃縮物をカラムクロマトグラフィー(シリカゲル、展開溶媒:ジクロロメタン:メタノール= 25:1)に付して赤色固体を得た。この赤色固体を、トルエン:酢酸エチルで再結晶を行いトリス(4-ビス(4-メトキシメチルフェニル)ホスホリルフェニル)ホスフィンオキシド1.57gを得た(収率98%)。
 得られた生成物をMS及びNMRで測定して同定を行った。
MS (FAB+, 3-ニトロベンジルアルコール) m/z = 1144 (M+1)
1H NMR (60 MHz, CDCl3) d 3.42 (s, 18H, OCH3)、4.50 (s, 12H、ArCH2O)、7.50 - 7.86 (m, 36H)
 3.トリス(4-ビス(4-ブロモメチルフェニル)ホスホリルフェニル)ホスフィンオキシドの合成
 トリス(4-ビス(4-メトキシメチルフェニル)ホスホリルフェニル)ホスフィンオキシド 1.54g (1.35mmol)をジクロロメタン16mLに溶解させ、-80℃に冷却した。そこへ、1NのBBr3-ジクロロメタン溶液を16.2mL加え、-80℃で24時間撹拌した。
 反応終了後、反応液を飽和重曹水200mLに注いで中和し、ジクロロメタン100mLで3回抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた濃縮物をクロマトグラフィー(シリカゲル、展開溶媒:酢酸エチル)で精製し、-トリス(4-ビス(4-ブロモメチルフェニル)ホスホリルフェニル)ホスフィンオキシド1.48gを得た(収率76%)。
 得られた生成物をMS及びNMRで測定して同定を行った。
MS (FAB+, 3-ニトロベンジルアルコール) m/z = 1437 (M+1)
1H NMR (60MHz, CDCl3) d 4.48 (s, 12H, ArCH2)、7.35 - 8.06 (m, 36H)
 4.トリス(4-ビス(4-ヒドロキシメチルフェニル)ホスホリルフェニル)ホスフィンオキシドの合成
 トリス(4-ビス(4-ブロモフェニル)ホスホリルフェニル)ホスフィンオキシド287mg(0.2mmol)、ギ酸ナトリウム212mg(3.12mmol)を、エタノール2.4mL、水 0.6mLに加え、25時間還流した。反応終了後、反応液を減圧下で濃縮した。濃縮物にシクロヘキサンを加えて固体を析出した後に濃縮した。その濃縮物に、水を20mLと1N HClを10mL加え、不溶物を濾取した。得られた固体を、更にジクロロメタンで洗浄し、茶色固体183mgを得た(収率86%)。
 得られた生成物をMS及びNMRで測定して同定を行った。
MS (FAB+, 3-ニトロベンジルアルコール) m/z= 1060 (M+2)
1H NMR (60 MHz, DMSO) d 4.56 (d, 12H, 3J = 5.3 Hz, ArCH2O)、 5.29 (t, 6H, 3J = 5.3 Hz, OH), 7.30 -8.02 (m, 36H, ArH)
 なお、5.29 ppm にピークを示すメチレン基のHはD2OによってDと交換可能であり、この交換をしたとき、4.56 ppmのピークはシングレットに変化した。
 〔上記合成方法の特徴と効果〕
 上記合成方法では、2.の反応で、中間体における水酸基がメチルエーテル基で保護されているため、副反応が抑えられ、中間体化合物の溶媒への溶解性も向上させることができる。
 また、このメチルエーテル基は、低分子量であって、NMRで容易に確認できる。
 3.の反応では、BBr3を用いて保護基(メチルエーテル基)を外し、ブロム基に置換している。このようにBBr3を用いることによって、複数個(6個)のメチルエーテルを同時に脱保護することができる。
 4.の反応では、ギ酸ナトリウムを用いてベンジルブロミド基を加水分解し、ブロム基を水酸基に置換している。
 この加水分解を、水酸化ナトリウムを用いて行うと、一部で分子間反応が起こり、多量の沈殿が析出して目的物の合成ができなかったが、ギ酸ナトリウムを用いて行うと、分子間でArCH2-O-CH2Ar結合が生じて重合するのを抑えることができ、目的物の合成が可能となった。
 目的物である構造式(16)の化合物においては、水酸基とアリール基の間にアルキル基が導入されているため、4.の反応で、溶媒(ジクロロメタン、メタノールなど)に対する溶解性が向上したが、上述したようにトルエンなどの低極性溶媒に対する溶解性はほとんどなかった。
 なお、ここでは構造式(16)の化合物について合成方法を示したが、構造式(14),(15)の化合物、並びに一般構造式(8),(12)で表わされる化合物も、これと同様の方法で合成することができる。
 さらに、一般構造式(1)~(7)、(9)~(11)、(13)で表わされる化合物についても、同様に、メチルエーテル基で保護された中間体を、BBr3を用いて脱保護し、ギ酸ナトリウムで加水分解する方法で製造できる。
 〔有機EL素子の性能比較〕
 実施例1および比較例1~2にかかる有機EL素子を作製し、その性能を比較することによって、本発明の有用性を考察する。
 (実施例1)
 図5は、実施例1にかかる有機EL素子の構成を示す断面模式図である。
 基板101として松浪ガラス製無アルカリガラスを使用し、この基板101の表面上に、以下のように、陰極102,電子輸送層104,発光層105,正孔輸送層106,正孔注入層107,陽極108を順に形成した。
 陰極102は、基板101の表面上に、ITOをスパッタ法により膜厚50nm成膜し、感光性レジストを用いるフォトリソグラフィ法で、ITO膜をエッチングによってパターニングし、感光性レジストを剥離することによって形成した。続いて、中性洗剤と純水を用いて基板洗浄を行った後、UVオゾン洗浄を行った。
 電子注入層104は、上記構造式(16)の化合物と上記構造式(13)[ただしX1~X8はなし]の化合物を50:50で混合したものに、リチウムアセチルアセテートを10wt%混合し、エタノールに溶解した溶液を、スピンコートで塗布し、130℃の温度で、窒素中でベークすることによって形成した。スピンコートの回転数は5000rpmとした。ベーク後の電子注入層104の膜厚は20nmであった。
 発光層105は、発光材料としてメルク社のSuper Yellowを用い、これを4-メトキシトルエンに溶解した溶液をスピンコート塗布し、130℃ベークすることによって形成した。ベーク後の発光層105の膜厚は50nmであった。
 正孔輸送層10は、ジフェニルナフチルジアミン(NPD、新日鐵化学製)を真空蒸着法により膜厚60nmで形成した。
 正孔注入層107は、酸化モリブデン(MoOx高純度化学製)を膜厚20nmで真空蒸着法により形成した。最後に、陽極108として、アルミニウム(高純度化学製 純度99.9%)を真空蒸着法により膜厚80nmで薄膜形成して、実施例1にかかる有機EL素子を作製した。
 なお、図5には示していないが、作製した有機EL素子を、水および酸素濃度が5ppm以下の窒素ドライボックス中でガラス缶封止して、有機EL素子を空気中で評価できるようにした。
 (比較例1)
 電子輸送層104を形成しない点を除いて、上記実施例1と同様に、比較例1にかかる有機EL素子を作製した。
 (比較例2)
 上記実施例1と同様の基板101の表面上に、陽極をITOで形成し、正孔注入層としてPEDOT:PSSを膜厚70nmで形成し、その上に実施例1と同様に発光層を積層し、電子注入層として膜厚5nmのバリウム(Ba Aldrich製)を真空蒸着法により形成し、陰極として実施例1と同様のアルミニウムを膜厚80nmで積層することで、比較例2にかかる有機EL素子を作製した。
 このようにして作成した有機EL素子の実施例1と比較例1~2の有機EL素子について、以下のように試験を行って性能を評価した。
 陽極と陰極の間に電圧を-3.5Vから0.25V刻みで11Vまで変化させながら、そのときに陽極と陰極の間に流れる電流と輝度と色度を測定した。また、その測定結果から、発光効率を計算した。
 評価装置は、電圧源、電流計としてKeythley2400を用いた。
 輝度計として大塚電子MC-940を用いた。
 印加電圧9V時の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1の有機EL素子では、輝度、発光効率が良好であるが、比較例1のように電子輸送層104がなくなると、うまく発光しないことがわかる。
 また、比較例2のように、正極、PEDOT:PSSからなる正孔注入層、発光層という順序で形成する場合、輝度、発光効率が良好であるが、インバーテッド構造ではない。
 <変形例など>
 上記実施の形態では、水酸基を有する有機ホスフィンオキシド化合物を溶媒に溶解したインクを塗布する湿式法で電子注入層104を形成したが、電子注入層104を形成する方法は必ずしも湿式法でなくてもよく、水酸基を有する有機ホスフィンオキシド化合物を真空蒸着して電子注入層104を形成してもよく、その場合も、電子注入層104の上に非極性溶媒を用いた湿式で発光層105を形成するときに、電子注入層104を構成する水酸基を有する有機ホスフィンオキシド化合物が非極性溶媒に溶解することがないので、同様の効果を奏する。
 上記実施の形態では、水酸基を有する有機ホスフィンオキシド化合物で第一の層として電子注入層104を形成し、その上に第二の層として発光層105を、非極性溶媒に材料を溶解して湿式法で形成したが、水酸基を有する有機ホスフィンオキシド化合物で第一の層として電子注入層104を形成した上に、第二の層として、発光層の代わりに電子輸送層あるいは正孔阻止層を、非極性溶媒を用いて湿式法で形成して、その上に発光層を積層してもよい。
 この場合、電子輸送層あるいは正孔阻止層を形成する有機材料を非極性溶媒に溶解したインクを、第一の層の上に塗布して第二の層を形成するが、第一の層を構成する水酸基を有する有機ホスフィンオキシド化合物が非極性溶媒に溶解することがないので、同様の効果を奏する。
 正孔阻止層は、電子を輸送する機能を有しながら、正孔を輸送する能力が著しく小さい正孔阻止材料からなり、正孔を阻止することで電子と正孔の再結合確率を向上させる。
 この場合、電子輸送層の材料及び正孔阻止層の材料としては、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。また、オキサジアゾール誘導体におけるオキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。また、これらの材料を高分子鎖に導入した高分子材料、あるいはこれらの材料を主鎖とした高分子材料を用いることもできる。
 また、上記実施の形態では、第一の層として電子注入層を形成し、第一の層が電子輸送層であって、第二の層が発光層あるいは正孔阻止層であってもよい。
 この場合、電子注入層の上に、水酸基を有する有機ホスフィンオキシド化合物で第一の層として電子輸送層を形成し、発光層あるいは正孔阻止層を形成する有機材料を非極性溶媒に溶解したインクを、第一の層の上に塗布して第二の層を形成するが、第一の層を構成する水酸基を有する有機ホスフィンオキシド化合物が非極性溶媒に溶解することがないので、同様の効果を奏する。
 上記実施の形態で説明した有機EL素子は、ボトムミッション型であって、有機EL素子から光を取り出す方向が、基板側であったが、基板側と反対側から光を取り出すトップエミッション型とすることもできる。あるいは基板側と基板と反対側の両方から光を取り出すようにすることも可能である。
 上記実施の形態では、本発明の有機EL素子を有機EL表示装置に適用した例を示したが、本発明にかかる有機EL素子は、有機EL照明装置にも適用できる。
 本発明にかかる有機EL素子は、例えば、携帯電話用やテレビなどのディスプレイ装置に適用でき、発光特性の良好なディスプレイ装置や照明装置を作製するに有用である。
  100  表示パネル
  101  基板
  102  陰極
  103  バンク
  104  電子注入層
  105  発光層
  106  正孔輸送層
  107  正孔注入層
  108  陽極
  110  有機EL素子
 

Claims (29)

  1.  基板と、陰極と、複数の有機層と、陽極とを備え、前記基板側から、陰極、複数の有機層、陽極の順序で積層されている有機EL素子の製造方法であって、
     水酸基を有する有機ホスフィンオキシド化合物を含む第一の有機層を形成する第1工程と、
     前記第一の有機層上に、有機材料及び非極性溶媒を含む液を用いた湿式法で第二の有機層を積層する第2工程とを含む、
     有機EL素子の製造方法。
  2.  前記水酸基を有する有機ホスフィンオキシド化合物におけるホスフィンオキシド基の数と水酸基の数の比率が、1:0.5~1:3である、
     請求項1に記載の有機EL素子の製造方法。
  3.  前記水酸基を有する有機ホスフィンオキシド化合物が、下記一般構造式(1)で表される、請求項1に記載の有機EL素子の製造方法。
    Figure JPOXMLDOC01-appb-C000012
     ここで式(1)において、Ar1~Ar3は芳香族残基を表し、その芳香族残基の水素のいずれか1つ又は複数が、式(2)に表される水酸基又は式(3)に表されるヒドロキシアルキル基で置換される。式(3)中におけるCnH2nはアルキル基(nは8以下の自然数)であって、直鎖でもよいし分岐していてもよい。
  4.  前記水酸基を有する有機ホスフィンオキシド化合物が、下記一般構造式(4)及び(5)からなる群より選ばれる少なくとも1つで表される、
     請求項1に記載の有機EL素子の製造方法。
    Figure JPOXMLDOC01-appb-C000013
     ここで式(4),(5)において、Ar1~Ar3は芳香族残基を表し、CnH2nはアルキル基(nは8以下の自然数)であって、直鎖でもよいし分岐していてもよい。
  5.  前記水酸基を有する有機ホスフィンオキシド化合物が、下記一般構造式(6)~(8)からなる群より選ばれる少なくとも1つで表される、
     請求項1に記載の有機EL素子の製造方法。
    Figure JPOXMLDOC01-appb-C000014
     ここで式(6)~(8)において、Ar1~Ar9は芳香族残基を示し、1分子内に1つ以上、水酸基(-OH)あるいはヒドロキシアルキル基(-CnH2nOH、nは8以下の自然数)に置換された芳香族残基を含んでなる。ヒドロキシアルキル基は直鎖でもよいし、分岐していてもよい。
  6.  前記水酸基を有する有機ホスフィンオキシド化合物が、下記一般構造式(9)~(13)からなる群より選ばれる少なくとも1つで表される、
     請求項1に記載の有機EL素子の製造方法。
    Figure JPOXMLDOC01-appb-C000015
     ここで式(9)~(13)において、1分子中のX1~X8のうち、1つ以上が水酸基(-OH)あるいはヒドロキシアルキル基(-CnH2nOH、nは8以下の自然数)であり、それ以外は水素である。ヒドロキシアルキル基は直鎖でもよいし分岐していてもよい。
  7.  前記第1工程において、前記第一の有機層を湿式法で形成する、
     請求項1に記載の有機EL素子の製造方法。
  8.  前記湿式法において、アルコール系溶媒を用いる、
     請求項7に記載の有機EL素子の製造方法。
  9.  前記第2工程における前記非極性溶媒が、ベンゼン環を有する芳香族系の溶媒、及びアルキルまたはアルケンを含む脂肪族系の溶媒からなる群より選ばれる少なくとも1つを含有している、
     請求項1に記載の有機EL素子の製造方法。
  10.  前記第2工程における前記湿式法が、インクジェット法である、
     請求項1に記載の有機EL素子の製造方法。
  11.  前記第二の有機層が、高分子系材料を含有する、
     請求項1に記載の有機EL素子の製造方法。
  12.  前記第二の有機層は、発光層である、
     請求項1に記載の有機EL素子の製造方法。
  13.  前記第二の有機層は、電子輸送層または正孔阻止層である、
     請求項1に記載の有機EL素子の製造方法。
  14.  さらに、前記第二の有機層上に、第三の有機層を積層する第3工程を備え、
     前記第三の有機層は、芳香族アミン系化合物を含有する、
     請求項1に記載の有機EL素子の製造方法。
  15.  前記基板は、TFT基板である、
     請求項1に記載の有機EL素子の製造方法。
  16.  基板と、陰極と、複数の有機層と、陽極とを備え、前記基板側から、陰極、複数の有機層、陽極の順序で積層されている有機EL素子であって、
     前記複数の有機層は、
     水酸基を有する有機ホスフィンオキシド化合物を含む第一の有機層と、
     前記第一の有機層の陽極側に積層されている第二の有機層とを備える、
     有機EL素子。
  17.  前記水酸基を有する有機ホスフィンオキシド化合物におけるホスフィンオキシド基の数と水酸基の数の比率が、1:0.5~1:3である、
     請求項16に記載の有機EL素子。
  18.  前記水酸基を有する有機ホスフィンオキシド化合物が、下記一般構造式(1)で表される、請求項16に記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000016
     ここで式(1)において、Ar1~Ar3は芳香族残基を表し、その芳香族残基の水素のいずれか1つ又は複数が、式(2)に表される水酸基又は式(3)に表されるヒドロキシアルキル基で置換される。式(3)中におけるCnH2nはアルキル基(nは8以下の自然数)であって、直鎖でもよいし分岐していてもよい。
  19.  前記水酸基を有する有機ホスフィンオキシド化合物が、下記一般構造式(4)及び(5)からなる群より選ばれる少なくとも1つで表される、
     請求項16記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000017
     ここで式(4),(5)において、Ar1~Ar3は芳香族残基を表し、CnH2nはアルキル基(nは8以下の自然数)であって、直鎖でもよいし分岐していてもよい。
  20.  前記水酸基を有する有機ホスフィンオキシド化合物が、下記一般構造式(6)~(8)からなる群より選ばれる少なくとも1つで表される、
     請求項16に記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000018
     ここで式(6)~(8)において、Ar1~Ar9は芳香族残基を示し、1分子内に1つ以上、水酸基(-OH)あるいはヒドロキシアルキル基(-CnH2nOH、nは8以下の自然数)に置換された芳香族残基を含んでなる。ヒドロキシアルキル基は直鎖でもよいし、分岐していてもよい。
  21.  前記水酸基を有する有機ホスフィンオキシド化合物が、下記一般構造式(9)~(13)からなる群より選ばれる少なくとも1つで表される、
     請求項16に記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000019
     ここで式(9)~(13)において、1分子中のX1~X8のうち、1つ以上が水酸基(-OH)あるいはヒドロキシアルキル基(-CnH2nOH、nは8以下の自然数)であり、それ以外は水素である。ヒドロキシアルキル基は直鎖でもよいし分岐していてもよい。
  22.  前記第二の有機層は、インクジェット法によって形成されている、
     請求項16に記載の有機EL素子。
  23.  前記第一の有機層は、さらに、アルカリ金属、アルカリ土類金属、及び希土類金属のうち、少なくとも一種を含む、
     請求項16に記載の有機EL素子。
  24.  前記アルカリ金属、アルカリ土類金属、あるいは希土類金属が、有機金属錯体の形状で前記第一の有機層の中に混合されている、
     請求項23に記載の有機EL素子。
  25.  前記第二の有機層は、発光層である、
     請求項16に記載の有機EL素子。
  26.  前記第二の有機層は、電子輸送層又は正孔阻止層である、
     請求項16に記載の有機EL素子。
  27.  前記複数の有機層は、さらに、前記第二の有機層の陽極側に積層されている第三の有機層を備え、
     前記第三の有機層は、芳香族アミン系化合物を含む、
     請求項16に記載の有機EL素子。
  28.  前記第二の有機層は、高分子系材料からなる、
     請求項16に記載の有機EL素子。
  29.  前記基板は、TFT基板である、
     請求項16に記載の有機EL素子。
     
     
PCT/JP2010/007526 2010-12-24 2010-12-24 有機el素子およびその製造方法 WO2012085988A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/007526 WO2012085988A1 (ja) 2010-12-24 2010-12-24 有機el素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/007526 WO2012085988A1 (ja) 2010-12-24 2010-12-24 有機el素子およびその製造方法

Publications (1)

Publication Number Publication Date
WO2012085988A1 true WO2012085988A1 (ja) 2012-06-28

Family

ID=46313292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007526 WO2012085988A1 (ja) 2010-12-24 2010-12-24 有機el素子およびその製造方法

Country Status (1)

Country Link
WO (1) WO2012085988A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875435A (zh) * 2018-08-30 2020-03-10 乐金显示有限公司 涂覆型有机电致发光装置、包括其的显示装置和照明装置
CN114031752A (zh) * 2020-12-29 2022-02-11 广东聚华印刷显示技术有限公司 聚合型可交联化合物及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048339A1 (fr) * 1998-03-17 1999-09-23 Seiko Epson Corporation Substrat de formation de motifs sur film mince et son traitement de surface
JP2004095221A (ja) * 2002-08-29 2004-03-25 Toray Ind Inc 発光素子
JP2004204140A (ja) * 2002-12-26 2004-07-22 Toray Ind Inc 発光素子用材料およびそれを用いた発光素子
JP2006073581A (ja) * 2004-08-31 2006-03-16 Toray Ind Inc 発光素子材料および発光素子
JP2006073583A (ja) * 2004-08-31 2006-03-16 Toray Ind Inc 光電変換素子用材料およびこれを用いた光電変換素子
JP2008106180A (ja) * 2006-10-26 2008-05-08 Matsushita Electric Works Ltd 光半導体封止用樹脂組成物及び光半導体装置
JP2008244013A (ja) * 2007-03-26 2008-10-09 Fujifilm Corp 有機電界発光素子
JP2008270729A (ja) * 2007-03-26 2008-11-06 Fujifilm Corp 有機電界発光素子
JP2010146822A (ja) * 2008-12-18 2010-07-01 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048339A1 (fr) * 1998-03-17 1999-09-23 Seiko Epson Corporation Substrat de formation de motifs sur film mince et son traitement de surface
JP2004095221A (ja) * 2002-08-29 2004-03-25 Toray Ind Inc 発光素子
JP2004204140A (ja) * 2002-12-26 2004-07-22 Toray Ind Inc 発光素子用材料およびそれを用いた発光素子
JP2006073581A (ja) * 2004-08-31 2006-03-16 Toray Ind Inc 発光素子材料および発光素子
JP2006073583A (ja) * 2004-08-31 2006-03-16 Toray Ind Inc 光電変換素子用材料およびこれを用いた光電変換素子
JP2008106180A (ja) * 2006-10-26 2008-05-08 Matsushita Electric Works Ltd 光半導体封止用樹脂組成物及び光半導体装置
JP2008244013A (ja) * 2007-03-26 2008-10-09 Fujifilm Corp 有機電界発光素子
JP2008270729A (ja) * 2007-03-26 2008-11-06 Fujifilm Corp 有機電界発光素子
JP2010146822A (ja) * 2008-12-18 2010-07-01 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSANG-CHI LEE ET AL.: "Syntheses, Photophysics, and Application of Iridium(III) Phosphorescent Emitters for Highly Efficient, Long-Life Organic Light-Emitting Diodes", CHEMISTRY AN ASIAN JOURNAL, vol. 4, 2009, pages 742 - 753 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875435A (zh) * 2018-08-30 2020-03-10 乐金显示有限公司 涂覆型有机电致发光装置、包括其的显示装置和照明装置
CN110875435B (zh) * 2018-08-30 2022-05-27 乐金显示有限公司 涂覆型有机电致发光装置、包括其的显示装置和照明装置
CN114031752A (zh) * 2020-12-29 2022-02-11 广东聚华印刷显示技术有限公司 聚合型可交联化合物及其制备方法和应用
CN114031752B (zh) * 2020-12-29 2023-06-16 广东聚华印刷显示技术有限公司 聚合型可交联化合物及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP5744061B2 (ja) 有機el素子およびその製造方法
US10270037B2 (en) Polymers, monomers and methods of forming polymers
KR101155944B1 (ko) 유기발광소자 및 표시장치
TWI545143B (zh) 電子裝置、高分子化合物
TWI461508B (zh) 發藍光之材料
KR102197367B1 (ko) 유기 발광 조성물, 소자 및 방법
KR102233198B1 (ko) 방법 및 화합물
TW201336968A (zh) 聚合物、聚合物組合物及有機發光裝置
TWI641630B (zh) 聚合體、有機電致發光元件用組成物、有機電致發光元件、有機el顯示裝置及有機el照明
KR20170028997A (ko) 정공 수송 화합물 및 조성물
KR20170029563A (ko) 정공 수송용 사이클로부텐 화합물
WO2012085983A1 (ja) 有機ホスフィンオキシド化合物およびその製造方法
KR20190082209A (ko) 유기 일렉트로닉스 재료, 유기층, 유기 일렉트로닉스 소자, 유기 일렉트로루미네센스 소자, 표시 소자, 조명 장치, 및 표시 장치
US11349086B2 (en) Compound, composition and organic light-emitting device
US11136303B2 (en) Dibenzofuran and dibenzothiophene derivatives and organic light-emitting devices containing them
WO2012085988A1 (ja) 有機el素子およびその製造方法
GB2545657A (en) Light-emitting compound
WO2012085985A1 (ja) ポリマー化合物およびその製造方法
CN107075089B (zh) 聚合物以及有机发光器件
GB2579807A (en) Composition and organic light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10861107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP