WO2012081611A1 - 基材の加工方法 - Google Patents

基材の加工方法 Download PDF

Info

Publication number
WO2012081611A1
WO2012081611A1 PCT/JP2011/078887 JP2011078887W WO2012081611A1 WO 2012081611 A1 WO2012081611 A1 WO 2012081611A1 JP 2011078887 W JP2011078887 W JP 2011078887W WO 2012081611 A1 WO2012081611 A1 WO 2012081611A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
substrate
resin
sacrificial layer
semiconductor wafer
Prior art date
Application number
PCT/JP2011/078887
Other languages
English (en)
French (fr)
Inventor
江津 竹内
俊治 久保山
敏寛 佐藤
広道 杉山
楠木 淳也
川田 政和
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010278682A external-priority patent/JP2012126801A/ja
Priority claimed from JP2010278681A external-priority patent/JP2012129325A/ja
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2012081611A1 publication Critical patent/WO2012081611A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • C09J2301/502Additional features of adhesives in the form of films or foils characterized by process specific features process for debonding adherents

Definitions

  • the present invention relates to a base material processing method, and more particularly to a base material processing method in which a base material is temporarily fixed to a supporting base material using a temporary fixing agent.
  • via holes and films are formed with BG tape attached, but the temperature at that time reaches at least about 180 ° C. , Increase the adhesive strength of the BG tape. Further, the adhesive layer of the BG tape is eroded by the plating chemicals for film formation, and peeling may occur.
  • fragile semiconductor wafers typified by compound semiconductors may be damaged by mechanical grinding, so they are thinned by etching.
  • this etching there is no particular problem as long as the etching amount is for the purpose of removing stress.
  • the BG tape may be deteriorated by the etching chemical.
  • a fixing material for a base material to a supporting base material As a fixing material for a base material to a supporting base material, a fixing material (for example, refer to Patent Document 1) that softens at a high temperature and facilitates removal of a semiconductor wafer has been proposed.
  • the semiconductor wafer is subjected to processing such as polishing in a state in which the semiconductor wafer is fixed on the supporting substrate with the functional surface of the semiconductor wafer facing the supporting substrate.
  • processing such as polishing
  • a conductive part such as a wiring containing copper is formed on the functional surface when the semiconductor wafer is detached from the support base by heating to a high temperature after that, the semiconductor wafer is heated. In contact with oxygen in the atmosphere. As a result, there is a problem that copper is oxidized and the conductivity of the conductive portion is lowered due to this.
  • This problem is not limited to the processing of a semiconductor wafer provided with a conductive part containing copper on the functional surface, but also occurs on various base materials provided with the conductive part on the surface to which the fixing member is joined.
  • the object of the present invention is to temporarily fix the base material on the supporting base material, process the base material, and then remove the base material from the supporting base material. It is in providing the processing method of the base material which can suppress that electrical conductivity falls in the electroconductive part to contain.
  • a base material provided with a functional surface having a conductive part containing copper, a temporary fixing agent composed of a resin composition containing a resin component whose main material is norbornene resin or polycarbonate resin, and the base material A first step of forming a thin film by supplying to at least one of the supporting substrate for supporting A second step of bonding the base material and the support base material with the functional surface facing the support base material via the thin film; A third step of processing the surface of the substrate opposite to the functional surface; A fourth step of detaching the substrate from the support substrate by heating the thin film, In the fourth step, the base material is desorbed from the supporting base material in a non-oxidizing atmosphere having an oxygen concentration of 30 ppm or less, and then the base material is cooled.
  • the temporary fixing agent is selectively supplied to the support base material among the base material and the support base material to form the thin film (2) to ( The method for processing a substrate according to any one of 6).
  • the resin component is a resin component mainly composed of a polycarbonate-based resin,
  • the base material is cooled to less than 200 ° C.
  • the temporary fixing agent is selectively supplied to the support base material among the base material and the support base material to form the thin film (9) to (9)
  • the processing method of the base material in any one of 12).
  • the resin component is one in which the thermal decomposition temperature is lowered by irradiation of the temporary fixing agent with active energy rays. Prior to the fourth step, the active energy rays are converted into the thin film.
  • the base material processing method according to any one of the above (9) to (14), which is irradiated.
  • the resin component has a lower temperature for thermal decomposition in the presence of an acid or a base, and the resin composition further contains an activator that generates an acid or a base by irradiation with the active energy ray.
  • the processing method of the base material as described in said (15) which contains.
  • the base material is processed in a state where the base material is temporarily fixed on the supporting base material through the thin film formed using the temporary fixing agent, and then from the supporting base material.
  • the base material When removing the base material, it is possible to accurately prevent or suppress oxidation of copper contained in the conductive portion formed on the support base material side of the base material.
  • processing with high accuracy can be performed on the base material while suppressing a decrease in conductivity in the conductive portion.
  • the temporary fixing agent is used to temporarily fix the base material to a supporting base material in order to process the base material, and to release the base material from the supporting base material by heating after processing the base material.
  • a resin component mainly composed of a norbornene-based resin This resin component has a characteristic of melting or vaporizing by being thermally decomposed by the heating, or being thermally melted by the heating.
  • the base material can be processed in a state where the base material is temporarily fixed to the supporting base material by a thin film formed using the temporary fixing agent.
  • the substrate can be detached from the supporting substrate by melting or vaporizing the resin component or by thermally melting the resin component.
  • the resin component has a function of fixing the base material to the supporting base material at the time of temporary fixing (processing the base material), and further thermally decomposes to lower the molecular weight by the heating of the temporary fixing agent. Since the bonding strength is lowered due to melting or vaporization or thermal melting by heating, it has a function of allowing the substrate to be detached from the supporting substrate.
  • a resin component composed mainly of a norbornene resin is used.
  • copper is formed on the support substrate side of the substrate when the substrate is detached from the support substrate after processing the substrate in a non-oxidizing atmosphere with an oxygen concentration as described later.
  • the base material can be easily detached from the support base material while suppressing the decrease in the conductivity in the conductive part containing the.
  • the norbornene-based resin is not particularly limited, and examples thereof include those containing a structural unit represented by the following general formula (1Y).
  • R 1 to R 4 are each hydrogen, a linear or branched alkyl group having 1 to 20 carbon atoms, an aromatic group, an alicyclic group, a glycidyl ether group, the following substituents ( 2Y).
  • M is an integer of 0-4.
  • R 5 is hydrogen, a methyl group or an ethyl group
  • R 6 , R 7 and R 8 are each a linear or branched alkyl group having 1 to 20 carbon atoms, a linear group Linear or branched alkoxy group having 1 to 20 carbon atoms, linear or branched alkylcarbonyloxy group having 1 to 20 carbon atoms, linear or branched alkyl peroxy group having 1 to 20 carbon atoms, substitution Or an unsubstituted aryloxy group having 6 to 20 carbon atoms.
  • N is an integer of 0 to 5.
  • the linear or branched alkyl group having 1 to 20 carbon atoms is not particularly limited, but is methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group. Group, nonyl group, decyl group and the like.
  • a decyl group is preferred.
  • the aromatic group is not particularly limited, and examples thereof include a phenyl group, a phenethyl group, and a naphthyl group. Among these, the mechanical properties when the substrate and the supporting substrate are temporarily fixed are excellent. A phenethyl group and a naphthyl group are preferred.
  • the alicyclic group is not particularly limited, but is a cyclohexyl group, norbornenyl group, dihydrodicyclopentadiethyl group, tetracyclododecyl group, methyltetracyclododecyl group, tetracyclododecadiethyl group, dimethyltetracyclododecyl group.
  • alicyclic groups such as trimer of ethyl group, ethyltetracyclododecyl group, ethylidenyltetracyclododecyl group, phenyltetracyclododecyl group, and cyclopentadiethyl group.
  • a cyclohexyl group and a norbornenyl group which are excellent in mechanical properties when the base material and the supporting base material are temporarily fixed, and further excellent in thermal decomposability when the temporary fixing agent is heated, are preferable.
  • R 5 in the substituent (2Y) is not particularly limited as long as it is hydrogen, a methyl group, or an ethyl group, but is preferably a hydrogen atom that is excellent in thermal decomposability during heating of the temporary fixing agent.
  • R 6 , R 7 and R 8 in the substituent (2Y) are each a linear or branched alkyl group having 1 to 20 carbon atoms or a linear or branched alkoxy group having 1 to 20 carbon atoms.
  • substituents include methoxy, ethoxy, propoxy, butoxy, pentyloxy, acetoxy, propoxy, butyroxy, methylperoxy, isopropylperoxy, t-butylperoxy, phenoxy , A hydroxyphenoxy group, a naphthyloxy group, a phenoxy group, a hydroxyphenoxy group, a naphthyloxy group, and the like.
  • a methoxy group having excellent mechanical properties at the time of substrate processing, adhesion to a supporting substrate during temporary fixing An ethoxy group and a propoxy group are preferable.
  • M in the general formula (1Y) is an integer of 0 to 4, and is not particularly limited, but 0 or 1 is preferable.
  • m is 0 or 1
  • the structural unit represented by the general formula (1Y) can be represented by the following general formula (3Y) or (4Y).
  • R 1 to R 4 are each hydrogen, a linear or branched alkyl group having 1 to 20 carbon atoms, an aromatic group, an alicyclic group, or a glycidyl ether group. , Any of substituents (2Y).
  • N in the substituent (2Y) is an integer of 0 to 5, and is not particularly limited, but n is preferably 0.
  • n is 0, the silyl group is directly bonded to the polycyclic ring via a silicon-carbon bond, so that both the thermal decomposability of the temporary fixing agent and the mechanical properties during substrate processing can be achieved.
  • the structural unit represented by the general formula (1Y) is not particularly limited, but norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-propylnorbornene, 5-butylnorbornene, 5-pentylnorbornene, 5 -Hexyl norbornene, 5-heptyl norbornene, 5-octyl norbornene, 5-nonyl norbornene, 5-decyl norbornene, 5-phenethyl norbornene, 5-triethoxysilyl norbornene, 5-trimethylsilyl norbornene, 5-trimethoxysilyl norbornene, 5 It can be obtained by polymerizing norbornene monomers such as methyldimethoxysisilylnorbornene, 5-dimethylmethoxynorbornene and 5-glycidyloxymethylnorbornene.
  • the norbornene monomer When the norbornene monomer is polymerized, it may be polymerized with a single norbornene monomer or a plurality of norbornene monomers.
  • norbornene-based monomers 5-butylnorbornene, 5-decylnorbornene, 5-phenethylnorbornene, 5-triethoxysilylnorbornene, 5-glycidyloxy are excellent in mechanical properties when the substrate and the supporting substrate are temporarily fixed. Methylnorbornene is preferred.
  • the norbornene-based resin is not particularly limited, and may be formed of a single structural unit represented by the general formula (1Y), or may be formed of a plurality of structural units.
  • the norbornene-based resin is polynorbornene, polymethylnorbornene, polyethylnorbornene, polypropylnorbornene, polybutylnorbornene, polypentylnorbornene, polyhexylnorbornene, polyheptylnorbornene, polyoctylnorbornene, polynonyl.
  • Norbornene polydecylnorbornene, polyphenethylnorbornene, polytriethoxysilylnorbornene, polytrimethylsilylnorbornene, polytrimethoxysilylnorbornene, polymethyldimethoxysisilylnorbornene, polydimethylmethoxynorbornene, polyglycidyloxymethylnorbornene, etc.
  • the norbornene-based resin having the structural unit represented by the general formula (1Y) is not particularly limited, but ring-opening metathesis polymerization (hereinafter also referred to as ROMP), a combination of ROMP and hydrogenation reaction. It can be synthesized by polymerization with radicals or cations.
  • ROMP ring-opening metathesis polymerization
  • the norbornene-based resin having the structural unit represented by the general formula (1Y) is obtained by using, for example, a catalyst containing a palladium ion source, a catalyst containing nickel and platinum, a radical initiator, or the like. Can be synthesized.
  • the resin component is preferably blended at a ratio of 10% by weight to 100% by weight of the total amount constituting the resin composition (when the solvent is included, the total amount excluding the solvent). More preferably, it is blended in a proportion of 50% by weight or more, and particularly 80 to 100% by weight.
  • the resin composition may contain other components as shown below in addition to a resin component mainly composed of a norbornene-based resin.
  • the resin composition may contain an antioxidant.
  • This antioxidant has a function of preventing acid generation and natural oxidation in the resin composition (temporary fixing agent).
  • the antioxidant is not particularly limited, and for example, “Ciba IRGANOX (registered trademark) 1076” and “Ciba IRGAFOS (registered trademark) 168” manufactured by Ciba Fine Chemicals are preferably used.
  • antioxidants include, for example, “Ciba Irganox 129”, “Ciba Irganox 1330”, “Ciba Irganox 1010”, “Ciba Cyanox (registered trademark) 1790”, “Ciba Irganox 3114”, “Ciba Irganox 3114”. Can also be used.
  • the content of the antioxidant is preferably 0.1 to 10 parts by weight, and more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the resin component described above.
  • the resin composition may contain additives such as acid scavengers, acrylic, silicone, fluorine, and vinyl leveling agents, silane coupling agents, and diluents as necessary.
  • the silane coupling agent is not particularly limited.
  • the adhesion between the substrate and the supporting substrate can be improved.
  • the diluent is not particularly limited, and examples thereof include cycloether compounds such as cyclohexene oxide and ⁇ -pinene oxide, aromatic cycloethers such as [methylenebis (4,1-phenyleneoxymethylene)] bisoxirane, 1, Examples thereof include cycloaliphatic vinyl ether compounds such as 4-cyclohexanedimethanol divinyl ether, and one or more of these can be used in combination.
  • the resin composition (temporary fixing agent) contains a diluent
  • the fluidity of the temporary fixing agent can be improved, and the wettability of the temporary fixing agent with respect to the support base material is improved in the sacrificial layer forming step described later. It becomes possible.
  • the resin composition may contain a solvent.
  • the viscosity of the resin composition can be easily adjusted.
  • the solvent is not particularly limited.
  • hydrocarbons such as decalin and mineral spirits, aromatic hydrocarbons such as toluene, xylene and mesitylene, anisole, propylene glycol monomethyl ether, dipropylene glycol methyl Alcohols / ethers such as ether, diethylene glycol monoethyl ether, diglyme, ethylene carbonate, ethyl acetate, N-butyl acetate, ethyl lactate, ethyl 3-ethoxypropionate, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene carbonate , Esters / lactones such as ⁇ -butyrolactone, ketones such as cyclopentanone, cyclohexanone, methyl isobutyl ketone, 2-heptanone, N-methyl- - amide / lactam such as pyrrolidone, and the like, can be used
  • the content of the solvent is not particularly limited, but is preferably 5 to 98% by weight, more preferably 10 to 95% by weight, based on the total amount of the resin composition (temporary fixing agent).
  • the temporary fixing agent as described above is applied to a method for manufacturing a semiconductor device, for example.
  • the substrate processing method of the present invention using a temporary fixing agent is applied to the processing of a semiconductor wafer in the method for manufacturing a semiconductor device.
  • the above-described temporary fixing is performed on at least one of a semiconductor wafer having a functional surface having a conductive portion containing copper and a support base material for supporting the semiconductor wafer.
  • the fourth step of the method for processing a semiconductor wafer having such a configuration in the present embodiment, after the semiconductor wafer is desorbed from the support base material in a non-oxidizing atmosphere having an oxygen concentration of 30 ppm or less, the semiconductor wafer is cooled. I will do it.
  • FIG. 1 is a longitudinal sectional view for explaining a semiconductor wafer processing process to which a substrate processing method of the present invention is applied.
  • the upper side in FIG. 1 is “upper” and the lower side is “lower”.
  • a support base material 1 is prepared, and a sacrificial layer 2 is formed on the support base material (base material) 1 using the above-described temporary fixing agent as shown in FIG. Process).
  • the sacrificial layer 2 can be easily formed by supplying a temporary fixing agent onto the support substrate 1 and then drying by heating.
  • the TMA (Thermal Mechanical Analysis) softening point of the sacrificial layer 2 to be deposited is not particularly limited, but is preferably less than 200 ° C., more preferably about 50 to 180 ° C.
  • the resin component is thermally decomposed or melted, or the semiconductor wafer 3 is altered or deteriorated. It can be suppressed or prevented accurately.
  • the TMA softening point is measured by a thermomechanical measuring device (TMA), and the temperature of the object to be measured (sacrificial layer 2) is increased while applying a constant load at a constant temperature increase rate. It is obtained by observing the phase of the object.
  • TMA softening point the temperature at which the phase of the sacrificial layer 2 starts to change.
  • the TMA softening point is, for example, a thermomechanical measuring device (TA Instruments Inc.).
  • the measurement temperature range is 25 to 200 ° C. and the rate of temperature rise is 5 ° C./min
  • the phase shifts when a 10 g load is applied to a 1 mm ⁇ quartz glass pin (needle). It can be determined by measuring the temperature at which it begins to change.
  • the method for supplying the temporary fixing agent onto the support substrate 1 is not particularly limited.
  • various coating methods such as a spin coating method, a spray method, a printing method, a film transfer method, a slit coating method, and a scan coating method.
  • the spin coating method is particularly preferably used. According to the spin coating method, a more uniform and flat sacrificial layer 2 can be easily formed.
  • a temporary fixing agent having a viscosity (25 ° C.) of about 500 to 100,000 mPa ⁇ s, preferably about 1,000 to 50,000 mPa ⁇ s. Is more preferable.
  • Viscosity (25 ° C.) can be measured with an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., viscometer TVE-22) at a cone temperature of 25 ° C. after 3 minutes.
  • the rotational speed of the supporting base material 1 for supplying the temporary fixing agent is set to about 300 to 4,000 rpm, and more preferably to about 500 to 3,500 rpm.
  • the sacrificial layer 2 is formed under conditions that satisfy these conditions, so that the average thickness of the obtained sacrificial layer 2 is preferably about 10 to 100 ⁇ m, and is preferably about 50 to 100 ⁇ m. Is more preferable. Furthermore, it becomes possible to form the sacrificial layer 2 having such a thickness with a substantially uniform thickness.
  • the viscosity (25 ° C.) of the temporary fixing agent is A [mPa ⁇ s] and the rotation speed of the supporting base material 1 is B [rpm]
  • a / B is 0.13 to 330.
  • it is 0.5 to 100.
  • the sacrificial layer 2 having an average thickness of 50 to 100 ⁇ m can be formed with a particularly uniform and flat thickness.
  • the support base material 1 is not particularly limited, but a support base material having a strength that can support the semiconductor wafer 3 is used.
  • a supporting substrate 1 for example, a glass material such as quartz glass or soda glass, or a resin material such as polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, or polycarbonate is used as a main material.
  • a substrate to be constructed is mentioned.
  • the semiconductor wafer (base material) 3 is placed on the surface of the support base material 1 on which the sacrificial layer 2 is provided, and the functional surface 31 is on the sacrificial layer 2 side. In this state, the semiconductor wafer 3 is bonded to the support base material 1 via the sacrificial layer 2 (second step).
  • the semiconductor wafer 3 and the support base 1 are bonded together with the functional surface 31 facing the support base 1 via the sacrificial layer 2.
  • thermocompression bonding can be easily performed using an apparatus such as a vacuum press machine or a wafer bonder.
  • the semiconductor wafer 3 is provided with conductive portions such as wirings, terminals, and bumps made of a conductor containing copper on the functional surface 31 thereof.
  • conductive portions such as wirings, terminals, and bumps made of a conductor containing copper on the functional surface 31 thereof.
  • these function as a protective layer for protecting the functional surface 31. Therefore, in the next step (processing step), when processing the surface opposite to the functional surface 31 of the semiconductor wafer 3, it is possible to accurately damage the functional surface 31 or oxidize copper contained in the conductive portion. Can be suppressed or prevented.
  • the temperature at which the semiconductor wafer 3 and the supporting substrate 1 are bonded is preferably in the range of about 50 to 200 ° C. higher than the TMA softening point, and in the range of about 60 to 180 ° C. higher than the TMA softening point. More preferably.
  • the sacrificial layer 2 comes into contact with the functional surface 31 in a molten state.
  • the conductive portion is formed on the functional surface 31 of the semiconductor wafer 3 as described above, the functional surface 31 is configured by an uneven surface. As described above, the functional surface 31 is configured as an uneven surface.
  • the sacrificial layer 2 When the sacrificial layer 2 is in a molten state, when the sacrificial layer 2 comes into contact with the functional surface 31, the sacrificial layer 2 is sacrificed by following the uneven shape. The layer 2 will be embedded in the functional surface 31. As a result, the formation of a gap between the sacrificial layer 2 and the functional surface 31 is accurately suppressed, so that the semiconductor wafer 3 and the support base 1 are supported in a state where a constant distance is maintained between the semiconductor wafer 3 and the support base 1. The substrate 1 is bonded with excellent adhesion through the sacrificial layer 2.
  • the time for heating the sacrificial layer 2 at such a temperature is not particularly limited, but is preferably about 0.1 to 10 minutes, and more preferably about 0.5 to 5 minutes. Thereby, the sacrificial layer 2 can be heated to a temperature within the above range, and the sacrificial layer 2 can be surely brought into a molten state.
  • the pressure at which the semiconductor wafer 3 and the support base 1 are pressed in the direction in which they approach each other is not particularly limited, but is 0.01 to 3
  • the pressure is preferably about 0.0 MPa, more preferably about 0.012 to 2.5 MPa, and most preferably about 0.05 to 2.0 MPa.
  • the sacrificial layer 2 has an average film thickness of about 50 to 100 ⁇ m as in the sacrificial layer forming step, as in the case where the sacrificial layer 2 is formed using a spin coat method. More preferably, the film is formed to a thickness of about 60 to 80 ⁇ m.
  • the entire functional surface 31 can be covered with the sacrificial layer 2 having a uniform film thickness, and the functional surface 31 can be reliably protected by the sacrificial layer 2 in the next step (processing step).
  • the processing of the semiconductor wafer 3 is not particularly limited. For example, in addition to grinding and polishing the back surface of the semiconductor wafer 3 as shown in FIG. 1C, for forming a via hole in the semiconductor wafer 3 and for stress release. Etching of the back surface of the semiconductor wafer 3, lithography, coating of a thin film on the back surface of the semiconductor wafer 3, vapor deposition, and the like can be given.
  • the semiconductor wafer 3 undergoes a thermal history associated with the processing of this. Therefore, when the conductive portion of the functional surface 31 is exposed, the copper contained in the conductive portion is oxidized due to contact with oxygen present in the atmosphere. As a result, the conductivity of the conductive portion is increased. There is a problem that decreases.
  • the functional surface 31 is covered with the sacrificial layer 2 and the sacrificial layer 2 exhibits a function as a protective layer. The point is eliminated.
  • the sacrificial layer 2 is bonded to the functional surface 31 constituted by the uneven surface so as to follow the uneven shape.
  • the semiconductor wafer 3 and the support base 1 are bonded to each other by the sacrificial layer 2 with excellent adhesion, and the semiconductor wafer 3 is supported by the support layer 2 via the sacrificial layer 2 in a state in which they are maintained at a constant interval. Bonded to the material 1. Therefore, if the semiconductor wafer 3 and the support base material 1 are not bonded with excellent adhesion, and the separation distance between the semiconductor wafer 3 and the support base material 1 does not maintain a constant distance, When the opposite surface is ground and polished, there is a problem that the thickness of the semiconductor wafer 3 varies. In the present embodiment, the semiconductor wafer 3 and the support base material 1 are bonded with excellent adhesion, and the separation distance between the semiconductor wafer 3 and the support base material 1 can be maintained at a constant interval. The problem is solved.
  • the semiconductor wafer 3 in this desorption step, is desorbed from the support base 1 in a non-oxidizing atmosphere having an oxygen concentration of 30 ppm or less, and then the semiconductor wafer 3 is cooled.
  • the resin component mainly composed of norbornene-based resin undergoes thermal decomposition or heat melting by heating smoothly under a relatively low oxygen concentration.
  • the semiconductor wafer 3 is heated to a high temperature, the semiconductor wafer 3 is detached from the support base 1 under a low concentration of oxygen, so that the functional surface of the sacrificial layer 2 functioning as a protective layer can be obtained. Even if 31 is exposed, the oxidation of copper contained in the conductive portion can be suppressed.
  • the inventors pay attention to these points, and the oxygen concentration in the atmosphere from when the sacrificial layer 2 is heated to detach the semiconductor wafer 3 from the support base 1 to when the semiconductor wafer 3 is cooled is described above.
  • the low concentration range as described above, it is found that the thermal decomposition or thermal melting by heating of the resin component is performed smoothly and the oxidation of copper contained in the conductive part is accurately suppressed.
  • the invention has been completed.
  • the oxygen concentration in the non-oxidizing atmosphere may be 30 ppm or less, but is preferably set to 0.5 ppm or more and 25 ppm or less, more preferably 1 ppm or more and 20 ppm or less. Even if it falls below the above lower limit, there is a possibility that further improvement of the effect cannot be obtained. Moreover, when the above upper limit is exceeded, copper contained in the conductive part may be oxidized and the conductivity of the conductive part may be lowered, or thermal decomposition or heat melting due to heating of the resin component may not be performed smoothly. is there.
  • the present invention is applied when the sacrificial layer 2 is heated to preferably 200 ° C. or higher, more preferably about 200 to 350 ° C., and still more preferably about 220 to 320 ° C.
  • the present invention when the sacrificial layer 2 is heated in such a temperature range, oxidation of copper contained in the conductive portion is more accurately suppressed or prevented.
  • the cooling of the semiconductor wafer 3 after the semiconductor wafer 3 is detached from the support base 1 is preferably less than 200 ° C., more preferably about 80 to 200 ° C., and still more preferably 100 It is performed at about 180 ° C.
  • non-oxidizing atmosphere examples include an inert gas atmosphere such as nitrogen and argon, a reducing gas atmosphere such as hydrogen and carbon monoxide, and a reduced-pressure atmosphere of about 10 ⁇ 1 to 10 ⁇ 6 Torr.
  • an inert gas atmosphere is preferable.
  • the oxygen concentration in the atmosphere can be set within the above range by a simple operation of flowing an inert gas into the chamber.
  • desorption from the support base material 1 of the semiconductor wafer 3 in this process is accept
  • the temperature for heating the sacrificial layer 2 is set to a temperature at which a resin component mainly composed of a norbornene resin is thermally decomposed or melted, and a temperature at which the deterioration / deterioration of the semiconductor wafer 3 is prevented.
  • the temperature is preferably set to about 150 to 350 ° C., more preferably about 200 to 300 ° C.
  • the resin component contained in the sacrificial layer 2 is mainly heat-melted, and when the sacrificial layer 2 is heated at 300 to 350 ° C., The resin component contained in the sacrificial layer 2 is melted or vaporized by thermal decomposition to a low molecular weight.
  • the semiconductor wafer 3 is detached from the supporting substrate 1 by thermal decomposition of the resin component. As a result, there is an advantage that the semiconductor wafer 3 can be detached more easily.
  • desorption means an operation of peeling the semiconductor wafer 3 from the support substrate 1.
  • desorption means an operation of peeling the semiconductor wafer 3 from the support substrate 1.
  • a method of detaching the semiconductor wafer 3 in a direction perpendicular to the surface of the support base 1 A method of detaching the semiconductor wafer 3 by sliding it horizontally with respect to the surface of the support substrate 1, or the semiconductor wafer 3 from one end side of the semiconductor wafer 3 as shown in FIG.
  • a method of detaching by floating from the surface for example, a method of detaching by floating from the surface.
  • the sacrificial layer 2 When the sacrificial layer 2 is vaporized through the heating step, the sacrificial layer 2 is removed from between the semiconductor wafer 3 and the support base 1, so that the semiconductor from the support base 1 is removed.
  • the wafer 3 can be detached more easily.
  • a method for removing this residue is not particularly limited, and examples thereof include plasma treatment, chemical immersion treatment, polishing treatment, and heat treatment.
  • the sacrificial layer 2 is formed on the support substrate 1 in the sacrificial layer formation step.
  • the present invention is not limited to this, and the sacrificial layer 2 is formed on both the support substrate 1 and the semiconductor wafer 3.
  • the sacrificial layer 2 may be selectively formed on the semiconductor wafer 3 without forming the sacrificial layer 2 on the support substrate 1.
  • the sacrificial layer 2 is selectively formed on the support substrate 1.
  • the present invention is not limited to this, and the sacrificial layer 2 may be selectively formed on the semiconductor wafer 3. You may make it form in both the base material 1 and the semiconductor wafer 3.
  • FIG. the time and labor for forming the sacrificial layer 2 can be simplified by forming the support substrate 1 selectively as in the present embodiment. Since the surface on which the sacrificial layer 2 is formed can be configured as a flat surface, there is also an effect that the sacrificial layer 2 can surely have a uniform film thickness.
  • the present invention is not limited to this, and for example, a wiring board, a circuit board, or the like can be used.
  • each constituent material contained in the temporary fixing agent can be replaced with an arbitrary material that can exhibit the same function, or an arbitrary material can be added.
  • the arbitrary process may be added to the processing method of the base material of this invention as needed.
  • the temporary fixing agent is used to temporarily fix the base material to the supporting base material in order to process the base material, and to release the base material from the supporting base material by heating after processing the base material.
  • the resin composition is composed of a polycarbonate resin as a main material and contains a resin component that is thermally decomposed by heating.
  • the base material can be processed in a state where the base material is temporarily fixed to the supporting base material by a thin film formed using the temporary fixing agent, and further, by heating after processing.
  • the base material can be detached from the supporting base material by melting or vaporizing the thin film.
  • the resin component has a function of fixing the base material to the supporting base material at the time of temporary fixing (at the time of processing the base material), and further, the resin component is thermally decomposed by the heating of the temporary fixing agent to lower the molecular weight. Due to melting or vaporization, the bonding strength is lowered, and thus the substrate has a function of allowing the substrate to be detached from the supporting substrate.
  • this resin component in this embodiment, a resin component composed mainly of a polycarbonate resin is used.
  • the base material when such a polycarbonate-based resin is used, when the base material is detached from the support base material after processing the base material in a non-oxidizing atmosphere with an oxygen concentration as described later, The base material can be easily detached from the supporting base material while suppressing the decrease in the conductivity of the conductive part formed.
  • Polycarbonate resins are not particularly limited, but are polypropylene carbonate resin, polyethylene carbonate resin, 1,2-polybutylene carbonate resin, 1,3-polybutylene carbonate resin, 1,4-polybutylene carbonate resin, cis-2, 3-polybutylene carbonate resin, trans-2,3-polybutylene carbonate resin, ⁇ , ⁇ -polyisobutylene carbonate resin, ⁇ , ⁇ -polyisobutylene carbonate resin, cis-1,2-polycyclobutylene carbonate resin, trans- 1,2-polycyclobutylene carbonate resin, cis-1,3-polycyclobutylene carbonate resin, trans-1,3-polycyclobutylene carbonate resin, polyhexene carbonate resin, polycyclopropylene Pen carbonate resin, polycyclohexene carbonate resin, 1,3-polycyclohexane carbonate resin, poly (methylcyclohexene carbonate) resin, poly (viny
  • polycarbonate resin examples include polypropylene carbonate / polycyclohexene carbonate copolymer, 1,3-polycyclohexane carbonate / polynorbornene carbonate copolymer, poly [(oxycarbonyloxy-1,1,4,4- Tetramethylbutane) -alt- (oxycarbonyloxy-5-norbornene-2-endo-3-endo-dimethane)] resin, poly [(oxycarbonyloxy-1,4-dimethylbutane) -alt- (oxycarbonyloxy -5-norbornene-2-endo-3-endo-dimethane)] resin, poly [(oxycarbonyloxy-1,1,4,4-tetramethylbutane) -alt- (oxycarbonyloxy-p-xylene)] Resin and poly [(oxyca Bonyloxy-1,4-dimethylbutane) -alt- (oxycarbonyloxy-p-xylene)] resin, 1,3-poly
  • polycarbonate-based resin in addition to the above, a polycarbonate resin having at least two cyclic bodies in the carbonate constituent unit can also be used.
  • the number of cyclic bodies may be two or more in the carbonate structural unit, but is preferably 2 to 5, more preferably 2 or 3, and even more preferably 2.
  • the adhesion between the supporting base material and the base material becomes excellent.
  • the temporary fixing agent is heated, the polycarbonate resin is thermally decomposed to have a low molecular weight, thereby melting.
  • the plurality of cyclic bodies may have a linked polycyclic structure in which the vertices are connected to each other, but a condensed polycyclic structure in which the sides of each ring are connected to each other. It is preferable. Thereby, both heat resistance as a temporary fixing agent and shortening of the thermal decomposition time when this thing melts can be made compatible.
  • each of the plurality of annular bodies is a 5-membered ring or a 6-membered ring.
  • Such a plurality of cyclic bodies are preferably alicyclic compounds.
  • each cyclic body is an alicyclic compound, the effects as described above are more remarkably exhibited.
  • the carbonate structural unit for example, a structure represented by the following chemical formula (1X) is a particularly preferable structure.
  • the polycarbonate-type resin which has a carbonate structural unit represented by the said Chemical formula (1X) can be obtained by the polycondensation reaction of decalin diol and carbonic acid diester like diphenyl carbonate.
  • the hydroxyl groups of decalin diol are each bonded to separate carbon atoms constituting decalin (that is, two cyclic bodies forming a condensed polycyclic structure).
  • Examples of the carbonate structural unit include those represented by the following chemical formulas (1A) and (1B).
  • the plurality of cyclic bodies may be alicyclic compounds or heteroalicyclic compounds. Even when each cyclic body is a heteroalicyclic compound, the effects as described above are more remarkably exhibited.
  • a structure represented by the following chemical formula (2X) is a particularly preferable structure.
  • polycarbonate-type resin which has a carbonate structural unit represented by the said Chemical formula (2X) can be obtained by the polycondensation reaction of ether diol represented by the following Chemical formula (2a), and carbonic acid diester like diphenyl carbonate.
  • the hydroxyl groups of the cyclic ether diol represented by the chemical formula (2a) are each the cyclic ether (that is, two cyclic groups forming a condensed polycyclic structure). It is preferable that three or more atoms are interposed between these carbon atoms at the shortest and separate carbon atoms constituting the body. Thereby, both heat resistance as a temporary fixing agent and shortening of the thermal decomposition time when this thing melts can be made compatible. Furthermore, the solubility with respect to a solvent can be stabilized more.
  • Examples of such a carbonate structural unit include a 1,4: 3,6-dianhydro-D-sorbitol (isosorbide) type represented by the following chemical formula (2A), and a 1,4: 4 represented by the following chemical formula (2B): 3,6-dianhydro-D-mannitol (isomannide) type may be mentioned.
  • the weight average molecular weight (Mw) of the polycarbonate resin is preferably 1,000 to 1,000,000, and more preferably 5,000 to 800,000.
  • Mw weight average molecular weight
  • the polymerization method of the polycarbonate-based resin is not particularly limited.
  • a known polymerization method such as a phosgene method (solvent method) or a transesterification method (melting method) can be used.
  • the resin component is preferably blended at a ratio of 10% by weight to 100% by weight of the total amount constituting the resin composition (when the solvent is included, the total amount excluding the solvent). More preferably, it is blended at a ratio of 50% by weight or more, particularly 80% by weight to 100% by weight.
  • a resin component composed mainly of such a polycarbonate-based resin has a lower temperature for thermal decomposition in the presence of an acid or a base.
  • the polycarbonate resins in particular, such a decrease in the temperature for thermal decomposition is more noticeably observed in polypropylene carbonate, 1,4-polybutylene carbonate, and 1,3-polycyclohexane carbonate / polynorbornene carbonate copolymer.
  • the resin composition contains an activator that generates an acid or a base upon irradiation with an active energy ray on the temporary fixing agent.
  • the temperature at which the resin component (polycarbonate resin) is thermally decomposed can be lowered by irradiation of the active energy ray to the temporary fixing agent.
  • the temporary fixing agent (resin composition) contains a resin component composed mainly of a polycarbonate-based resin and an active agent that generates an acid or a base upon irradiation with active energy rays to the temporary fixing agent.
  • the temperature at which the resin component is thermally decomposed by irradiation with active energy rays is lowered, so that the substrate can be more easily detached from the supporting substrate by heating the temporary fixing agent after irradiation with active energy rays. The effect is obtained.
  • the activator As described above, the activator generates an active species such as an acid or a base when energy is applied by irradiation with an active energy ray, and the action of the active species causes thermal decomposition of the resin component. It has a function to lower the temperature.
  • the activator is not particularly limited, and examples thereof include a photoacid generator that generates an acid upon irradiation with active energy rays and a photobase generator that generates a base upon irradiation with active energy rays.
  • the photoacid generator is not particularly limited.
  • tetrakis (pentafluorophenyl) borate-4-methylphenyl [4- (1-methylethyl) phenyl] iodonium DPI-TPFPB
  • tris (4-t- Butylphenyl) sulfonium tetrakis- (pentafluorophenyl) borate TBPS-TPFPB
  • triphenylsulfonium triflate TPS-Tf
  • bis ( 4-tert-butylphenyl) iodonium triflate DTBPI-Tf
  • triazine TZ-101
  • triphenylsulfonium hexafluoroantimonate TS-103
  • triphenylsulfonium bis -Fluoromethanes
  • one or a combination of two or more may be used. it can.
  • tetrakis (pentafluorophenyl) borate-4-methylphenyl [4- (1-methylethyl) phenyl] iodonium (DPI-) particularly from the viewpoint that the melt viscosity of the resin component can be efficiently lowered.
  • DPI- tetrakis (pentafluorophenyl) borate-4-methylphenyl [4- (1-methylethyl) phenyl] iodonium
  • TPFPB tetrakis (pentafluorophenyl) borate-4-methylphenyl [4- (1-methylethyl) phenyl] iodonium
  • the photobase generator is not particularly limited, and examples thereof include 5-benzyl-1,5-diazabicyclo (4.3.0) nonane, 1- (2-nitrobenzoylcarbamoyl) imidazole, and the like. 1 type or 2 types or more can be used in combination. Among these, 5-benzyl-1,5-diazabicyclo (4.3.0) nonane and derivatives thereof are particularly preferable from the viewpoint of efficiently reducing the melt viscosity of the resin component.
  • the activator is preferably about 0.01 to 50% by weight, more preferably about 0.1 to 30% by weight, based on the total amount of the resin composition (temporary fixing agent). By setting it within such a range, it becomes possible to stably lower the melt viscosity of the resin component within the target range.
  • an active species such as an acid or a base is generated by irradiating an active energy ray, and the action of this active species lowers the thermal decomposition temperature of the main chain of the resin component Is formed. As a result, it is presumed that the temperature at which the resin component is thermally decomposed decreases.
  • the temporary fixing agent when it contains an active agent, it may contain a sensitizer that is a component having a function of expressing or increasing the reactivity of the active agent with respect to an active energy ray of a specific wavelength together with the active agent. good.
  • the sensitizer is not particularly limited.
  • the content of such a sensitizer is preferably 100 parts by weight or less with respect to 100 parts by weight of the total amount of the activator such as the photoacid generator and the photo radical initiator, and is 20 parts by weight or less. More preferably.
  • the resin composition as described above may further contain other components as shown below.
  • the resin composition may contain an antioxidant.
  • This antioxidant has a function of preventing acid generation and natural oxidation in the resin composition (temporary fixing agent).
  • the antioxidant is not particularly limited, and for example, “Ciba IRGANOX (registered trademark) 1076” and “Ciba IRGAFOS (registered trademark) 168” manufactured by Ciba Fine Chemicals are preferably used.
  • antioxidants include, for example, “Ciba Irganox 129”, “Ciba Irganox 1330”, “Ciba Irganox 1010”, “Ciba Cyanox (registered trademark) 1790”, “Ciba Irganox 3114”, “Ciba Irganox 3114”. Can also be used.
  • the content of the antioxidant is preferably 0.1 to 10 parts by weight, and more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the resin component described above.
  • the resin composition may contain additives such as acid scavengers, acrylic, silicone, fluorine, and vinyl leveling agents, silane coupling agents, and diluents as necessary.
  • the silane coupling agent is not particularly limited.
  • the adhesion between the substrate and the supporting substrate can be improved.
  • the diluent is not particularly limited, and examples thereof include cycloether compounds such as cyclohexene oxide and ⁇ -pinene oxide, aromatic cycloethers such as [methylenebis (4,1-phenyleneoxymethylene)] bisoxirane, 1, Examples thereof include cycloaliphatic vinyl ether compounds such as 4-cyclohexanedimethanol divinyl ether, and one or more of these can be used in combination.
  • the resin composition (temporary fixing agent) contains a diluent
  • the fluidity of the temporary fixing agent can be improved, and the wettability of the temporary fixing agent with respect to the support base material is improved in the sacrificial layer forming step described later. It becomes possible.
  • the resin composition temporary fixing agent
  • the resin composition may contain a solvent (solvent).
  • the resin composition contains a solvent (solvent), it is possible to easily adjust the viscosity and the like of the resin composition.
  • the solvent is not particularly limited.
  • hydrocarbons such as mesitylene, decalin, and mineral spirits, aromatic hydrocarbons such as toluene, xylene, and trimethylbenzene, anisole, propylene glycol monomethyl ether, Alcohol / ethers such as propylene glycol methyl ether, diethylene glycol monoethyl ether, diglyme, ethylene carbonate, ethyl acetate, N-butyl acetate, ethyl lactate, ethyl 3-ethoxypropionate, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate , Esters / lactones such as propylene carbonate and ⁇ -butyrolactone, cyclopentanone, cyclohexanone, methyl isobutyl ketone, 2-heptanone and the like Emissions such, include amide / lactam such as N- methyl-2-pyrrolidon
  • the content of the solvent is not particularly limited, but is preferably 5 to 98% by weight, more preferably 10 to 95% by weight, based on the total amount of the resin composition (temporary fixing agent).
  • the temporary fixing agent as described above is applied to a method for manufacturing a semiconductor device, for example.
  • the substrate processing method of the present embodiment using a temporary fixing agent is applied to the processing of a semiconductor wafer in the semiconductor device manufacturing method.
  • the above-described temporary fixing is performed on at least one of a semiconductor wafer having a functional surface having a conductive portion containing copper and a support base material for supporting the semiconductor wafer.
  • a fourth step is
  • the semiconductor wafer is desorbed from the support base material in a non-oxidizing atmosphere having an oxygen concentration of 1 ppm or more and 30 ppm or less, and then the semiconductor wafer. Is to be cooled.
  • FIG. 1 is a longitudinal sectional view for explaining a semiconductor wafer processing process to which a substrate processing method of the present invention is applied.
  • the upper side in FIG. 1 is “upper” and the lower side is “lower”.
  • a support base material 1 is prepared, and a sacrificial layer 2 is formed on the support base material (base material) 1 using the above-described temporary fixing agent as shown in FIG. Process).
  • the sacrificial layer 2 can be easily formed by supplying a temporary fixing agent onto the support substrate 1 and then drying by heating.
  • the TMA (Thermal mechanical Analysis) softening point of the sacrificial layer 2 to be formed is not particularly limited, but is preferably less than 200 ° C., more preferably about 50 to 180 ° C. Thereby, in the next process (bonding process), when the sacrificial layer 2 is heated under the conditions described later, it is possible to accurately prevent the resin component from being thermally decomposed and the semiconductor wafer 3 from being altered or deteriorated. Or it can be prevented.
  • the TMA softening point is measured by a thermomechanical measuring device (TMA), and the temperature of the object to be measured (sacrificial layer 2) is increased while applying a constant load at a constant temperature increase rate. It is obtained by observing the phase of the object.
  • TMA softening point the temperature at which the phase of the sacrificial layer 2 starts to change.
  • the TMA softening point is, for example, a thermomechanical measuring device (TA Instruments Inc.).
  • the measurement temperature range is 25 to 200 ° C. and the rate of temperature rise is 5 ° C./min
  • the phase shifts when a 10 g load is applied to a 1 mm ⁇ quartz glass pin (needle). It can be determined by measuring the temperature at which it begins to change.
  • the method for supplying the temporary fixing agent onto the support substrate 1 is not particularly limited.
  • various coating methods such as a spin coating method, a spray method, a printing method, a film transfer method, a slit coating method, and a scan coating method.
  • the spin coating method is particularly preferably used. According to the spin coating method, a more uniform and flat sacrificial layer 2 can be easily formed.
  • a temporary fixing agent having a viscosity (25 ° C.) of about 500 to 100,000 mPa ⁇ s, preferably about 1,000 to 50,000 mPa ⁇ s. Is more preferable.
  • the viscosity (25 ° C.) can be measured with an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., viscometer TVE-22) at a cone temperature of 25 ° C. for 3 minutes.
  • the rotational speed of the supporting base material 1 for supplying the temporary fixing agent is set to about 300 to 4,000 rpm, and more preferably to about 500 to 3,500 rpm.
  • the sacrificial layer 2 is formed under conditions that satisfy these conditions, so that the average thickness of the obtained sacrificial layer 2 is preferably about 10 to 100 ⁇ m, and is preferably about 50 to 100 ⁇ m. Is more preferable. Furthermore, it becomes possible to form the sacrificial layer 2 having such a thickness with a substantially uniform thickness.
  • the viscosity (25 ° C.) of the temporary fixing agent is A [mPa ⁇ s] and the rotation speed of the supporting base material 1 is B [rpm]
  • a / B is 0.13 to 330.
  • it is 0.5 to 100.
  • the sacrificial layer 2 having an average thickness of 50 to 100 ⁇ m can be formed with a particularly uniform and flat thickness.
  • the supporting substrate 1 is not particularly limited as long as it has a strength that can support the semiconductor wafer 3, but it is preferable that the supporting substrate 1 has optical transparency. Thereby, when the temperature at which the temporary fixing agent is thermally decomposed by irradiation with active energy rays is lowered, the active energy rays are transmitted from the support base material 1 side, and the active energy rays are transmitted to the sacrificial layer 2. Irradiation can be ensured.
  • the support substrate 1 having optical transparency for example, glass materials such as quartz glass and soda glass, and resin materials such as polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, and polycarbonate are mainly used.
  • substrate comprised as a material is mentioned.
  • the semiconductor wafer (base material) 3 is placed on the surface on which the sacrificial layer 2 is provided on the support base material 1 so that the functional surface 31 is on the sacrificial layer 2 side.
  • the semiconductor wafer 3 is bonded to the support base material 1 via the sacrificial layer 2 by thermocompression bonding (second step). Since the bonding step is performed in the same manner as in the first embodiment, the details are omitted.
  • the sacrificial layer 2 is heated to thermally decompose the resin component to lower the molecular weight, thereby melting or vaporizing the sacrificial layer 2, and then supporting the semiconductor wafer 3 with the supporting group. Desorption from the material 1 (fourth step).
  • the semiconductor wafer 3 is desorbed from the support base 1 in a non-oxidizing atmosphere having an oxygen concentration of 0.1 ppm or more and 30 ppm or less, and then the semiconductor wafer 3 is cooled. I will do it.
  • the thermal decomposition by heating of the resin component mainly composed of polycarbonate resin proceeds smoothly under a relatively high oxygen concentration.
  • the semiconductor wafer 3 is detached from the support substrate 1 under a high oxygen concentration in a state where the semiconductor wafer 3 is heated to a high temperature, the function from the sacrificial layer 2 functioning as a protective layer is achieved. As a result, the copper contained in the conductive portion is oxidized.
  • the inventors of the present invention have an atmosphere from when the sacrificial layer 2 is heated to detach the semiconductor wafer 3 from the support base 1 until the semiconductor wafer 3 is further cooled.
  • the oxygen concentration within the appropriate range as described above, the thermal decomposition by heating of the resin component is performed smoothly, and the oxidation of copper contained in the conductive part is accurately suppressed. It has been found that the above problems can be solved, and the present invention has been completed.
  • the oxygen concentration in the non-oxidizing atmosphere may be 0.1 ppm or more and 30 ppm or less, but is preferably set to 0.5 ppm or more and 25 ppm or less, more preferably 1 ppm or more and 20 ppm or less. If the lower limit is not reached, thermal decomposition due to heating of the resin component may not be performed smoothly. Moreover, when the said upper limit is exceeded, there exists a possibility that the copper contained in an electroconductive part may oxidize and the electrical conductivity of an electroconductive part may fall.
  • the present invention is applied when the sacrificial layer 2 is heated to preferably 200 ° C. or higher, more preferably about 200 to 350 ° C., and still more preferably about 220 to 320 ° C.
  • the present invention when the sacrificial layer 2 is heated in such a temperature range, oxidation of copper contained in the conductive portion is more accurately suppressed or prevented.
  • the cooling of the semiconductor wafer 3 after the semiconductor wafer 3 is detached from the support base 1 is preferably less than 200 ° C., more preferably about 100 to 190 ° C., and further preferably 120 ° C.
  • the temperature is adjusted to about 180 ° C.
  • non-oxidizing atmosphere examples include an inert gas atmosphere such as nitrogen and argon, a reducing gas atmosphere such as hydrogen and carbon monoxide, and a reduced-pressure atmosphere of about 10 ⁇ 1 to 10 ⁇ 6 Torr.
  • an inert gas atmosphere is preferable.
  • the oxygen concentration in the atmosphere can be set within the above range by a simple operation of flowing an inert gas into the chamber.
  • the temperature for heating the sacrificial layer 2 is specifically set to a temperature at which a resin component mainly composed of a polycarbonate-based resin is thermally decomposed and a temperature at which the semiconductor wafer 3 is prevented from being deteriorated or deteriorated. Therefore, the temperature is preferably set to about 200 to 350 ° C., more preferably about 220 to 320 ° C.
  • desorption means an operation of peeling the semiconductor wafer 3 from the support substrate 1.
  • desorption means an operation of peeling the semiconductor wafer 3 from the support substrate 1.
  • a method of detaching the semiconductor wafer 3 in a direction perpendicular to the surface of the support base 1 A method of detaching the semiconductor wafer 3 by sliding it horizontally with respect to the surface of the support substrate 1, or the semiconductor wafer 3 from one end side of the semiconductor wafer 3 as shown in FIG.
  • a method of detaching by floating from the surface for example, a method of detaching by floating from the surface.
  • the sacrificial layer 2 When the sacrificial layer 2 is vaporized through the heating step, the sacrificial layer 2 is removed from between the semiconductor wafer 3 and the support base 1, so that the semiconductor from the support base 1 is removed.
  • the wafer 3 can be detached more easily.
  • a method for removing this residue is not particularly limited, and examples thereof include plasma treatment, chemical immersion treatment, polishing treatment, and heat treatment.
  • the sacrificial layer 2 is formed on the support substrate 1 in the sacrificial layer formation step.
  • the present invention is not limited to this, and the sacrificial layer 2 is formed on both the support substrate 1 and the semiconductor wafer 3.
  • the sacrificial layer 2 may be selectively formed on the semiconductor wafer 3 without forming the sacrificial layer 2 on the support substrate 1.
  • the back surface of the semiconductor wafer 3 is processed.
  • the sacrificial layer (resin composition) 2 contains an activator, and the resin component is thermally decomposed by irradiation with active energy rays, the sacrificing in the desorption step is performed. Prior to heating the layer 2, the following active energy ray irradiation step may be performed.
  • the sacrificial layer 2 is irradiated with active energy rays.
  • the sacrificial layer (resin composition) 2 includes a resin component whose temperature for thermal decomposition is reduced and an active agent that generates an acid or a base by irradiation with an active energy ray on the temporary fixing agent
  • an active species such as an acid or a base is generated from the active agent, so that the resin component is thermally decomposed by the action of the active species.
  • the temperature drops.
  • the sacrificial layer 2 prior to the heating of the sacrificial layer 2, the sacrificial layer 2 is irradiated with the active energy rays, whereby the heating temperature, the heating time, etc. when heating the sacrificial layer 2 can be reduced or shortened. Therefore, this heating can be performed under more relaxed conditions. As a result, alteration / deterioration due to heating of the semiconductor wafer 3 can be suppressed or prevented more accurately.
  • the active energy ray is not particularly limited, but for example, a light beam having a wavelength of about 200 to 800 nm is preferable, and a light beam having a wavelength of about 300 to 500 nm is more preferable.
  • the irradiation amount of the active energy ray is not particularly limited, but is preferably 10mJ / cm 2 ⁇ 20000mJ / cm 2, and more preferably 20mJ / cm 2 ⁇ 10000mJ / cm 2.
  • the sacrificial layer 2 is selectively formed on the support substrate 1.
  • the present invention is not limited to this, and the sacrificial layer 2 may be selectively formed on the semiconductor wafer 3. You may make it form in both the base material 1 and the semiconductor wafer 3.
  • the time and labor for forming the sacrificial layer 2 can be simplified by forming the support substrate 1 selectively as in the present embodiment. Since the surface on which the sacrificial layer 2 is formed can be configured as a flat surface, there is also an effect that the sacrificial layer 2 can surely have a uniform film thickness.
  • the present invention is not limited to this, and for example, a wiring board, a circuit board, or the like can be used.
  • each constituent material contained in the temporary fixing agent can be replaced with an arbitrary material that can exhibit the same function, or an arbitrary material can be added.
  • the arbitrary process may be added to the processing method of the base material of this invention as needed.
  • a solution obtained by dissolving 26 g of glacial acetic acid in about 1500 g of pure water to which 49 g of 30% hydrogen peroxide water was added was added to the obtained solution, and the mixture was stirred at 50 ° C. for 5 hours. Removed.
  • the remaining organic layer was washed by adding, stirring and removing a mixture of 220 g of methanol and 200 g of isopropyl alcohol. Further, 510 g of cyclohexane and 290 g of ethyl acetate were added to the washed organic layer to uniformly dissolve the system, and then a mixture of 156 g of methanol and 167 g of isopropyl alcohol was washed by adding, stirring and removing (2 Repeated times).
  • the weight average molecular weight of the synthesized 5-decylnorbornene polymer was measured by GPC and found to be 75,300.
  • a solution obtained by dissolving 26 g of glacial acetic acid in about 1500 g of pure water to which 49 g of 30% hydrogen peroxide water was added was added to the obtained solution, and the mixture was stirred at 50 ° C. for 5 hours. Removed.
  • the remaining organic layer was washed by adding, stirring and removing a mixture of 220 g of methanol and 200 g of isopropyl alcohol. Further, 510 g of cyclohexane and 290 g of ethyl acetate were added to the washed organic layer to uniformly dissolve the system, and then a mixture of 156 g of methanol and 167 g of isopropyl alcohol was washed by adding, stirring and removing (2 Repeated times).
  • the weight average molecular weight of the synthesized 5-decylnorbornene / 5-hexylnorbornene 50 mol% / 50 mol% copolymer was measured by GPC and found to be 120,300.
  • each sample no. The back surface of the semiconductor wafer was processed using 1A and 2A temporary fixing agents.
  • sample no. 1A temporary fixing agent was applied to 8-inch transparent glass (rotation speed: 1,000 rpm, time: 30 seconds), then prebaked (dried) on a hot plate at 120 ° C. for 5 minutes, A thin film (sacrificial layer) made of a temporary fixing agent having a thickness of 50 ⁇ m was formed.
  • thermomechanical measuring device manufactured by TA Instruments, "Q400EM"
  • a substrate bonder (model number SB-8e, manufactured by SUSS Microtec) was used to temporarily fix an 8-inch silicon wafer to 8-inch transparent glass through a thin film made of a temporary fixative (atmosphere) : 10 ⁇ 2 mbar, temperature: 140 ° C., pressure: 0.32 MPa, time: 4 minutes).
  • the 8-inch silicon wafer has a thickness of 725 ⁇ m, and a plurality of wirings made of copper with a pitch of 50 ⁇ m, a width of 50 ⁇ m, and a height of 10 ⁇ m are provided in a certain direction on the surface on which the thin film is brought into contact. I used something.
  • the lower surface (back surface) of the semiconductor wafer is ground using a grinding device (“DFG8540” manufactured by DISCO), and the thickness of the semiconductor wafer is 145 ⁇ m. It processed so that it might become.
  • the temporary fixing agent was thermally decomposed by heat treatment at 320 ° C. for 30 minutes in a nitrogen atmosphere having an oxygen concentration of 10 ppm.
  • the temperature of the atmosphere is set to 200 ° C. while keeping the non-oxidizing atmosphere in the chamber in which the pyrolyzed sample is arranged, and tweezers are inserted in the gap between the 8-inch transparent glass and the 8-inch silicon wafer at such a temperature. After removing the 8-inch silicon wafer, it was cooled to 180 ° C., and then the sample was taken out of the chamber.
  • Example 2A Comparative Examples 1A and 2A
  • Table 2 shows the type of temporary fixing agent used in the step ⁇ 1> and the conditions for film formation, the conditions for temporary fixing in the step ⁇ 2>, and the conditions for heating the sacrificial layer in the step ⁇ 4>.
  • the back surface processing of the silicon wafer was performed in the same manner as in Example 1A except that the changes were made as shown in FIG.
  • the oxygen concentration at the time of desorption of the silicon wafer was not set within an appropriate range, so that the oxidation of the copper wiring was remarkably recognized.
  • the weight average molecular weight of the synthesized 1,4-polybutylene carbonate was measured by GPC and found to be 35,000.
  • the pressure inside the reaction vessel was reduced to 0.5 kPa or less, and stirring was continued at 120 ° C. for 1.5 hours.
  • the temperature of the heating tank is raised to 180 ° C. over about 30 minutes while reducing the pressure inside the reaction vessel to 0.5 kPa or less, and then stirred at 180 ° C. for 1.5 hours.
  • the phenol produced in the second to fourth steps of the reaction was distilled out of the reaction vessel.
  • sample no. 1B temporary fixing agent is applied to 8 inch transparent glass (rotation speed: 500 rpm, time: 30 seconds), and then prebaked (dried) on a hot plate at 120 ° C. for 5 minutes to obtain a thickness.
  • a thin film (sacrificial layer) made of a 20 ⁇ m temporary fixing agent was formed.
  • the TMA softening point of this thin film was measured using a thermomechanical measuring apparatus (manufactured by TA Instruments Inc., “Q400EM”) and found to be 70 ° C.
  • a substrate bonder (model number SB-8e, manufactured by SUSS Microtec) was used to temporarily fix an 8-inch silicon wafer to 8-inch transparent glass through a thin film made of a temporary fixative (atmosphere) : 10 -2 mbar, temperature: 120 ° C, load: 10 kN, time: 5 minutes).
  • the 8-inch silicon wafer has a thickness of 725 ⁇ m, and a plurality of wirings made of copper with a pitch of 50 ⁇ m, a width of 50 ⁇ m, and a height of 10 ⁇ m are provided in a certain direction on the surface on which the thin film is brought into contact. I used something.
  • the lower surface (back surface) of the semiconductor wafer is ground using a grinding device (“DFG8540” manufactured by DISCO), and the thickness of the semiconductor wafer is 145 ⁇ m. It processed so that it might become.
  • the temporary fixative was thermally decomposed by heat treatment at 200 ° C. for 30 minutes in a nitrogen atmosphere with an oxygen concentration of 10 ppm.
  • tweezers are put in the gap between the 8-inch transparent glass and the 8-inch silicon wafer in a non-oxidizing atmosphere to remove the 8-inch silicon wafer. After performing, it was cooled to 180 ° C., and then the sample was taken out of the chamber.
  • Example 2B Comparative Examples 1B and 2B
  • Table 4 shows the types of temporary fixing agents used in the step ⁇ 1> and the conditions for film formation, the temporary fixing conditions in the step ⁇ 2>, and the conditions for heating the sacrificial layer in the step ⁇ 4>. Except for the change as shown, the back surface processing of the silicon wafer was performed in the same manner as in Example 1B.
  • the oxygen concentration at the time of desorption of the silicon wafer was not set within an appropriate range, so that the oxidation of the copper wiring was remarkably recognized.
  • the base material processing method of the present invention the base material is processed in a state where the base material is temporarily fixed on the supporting base material through the thin film formed using the temporary fixing agent, and then from the supporting base material.
  • the present invention can be suitably used for processing a substrate.

Abstract

 本発明により、支持基材上に基材を仮固定して基材を加工したのち支持基材から基材を脱離させる際に、基材の支持基材側に形成されている銅を含有する導電部の導電率の低下を抑制し得る基材の加工方法が提供される。本発明の基材の加工方法は、ノルボルネン系樹脂またはポリカーボネート系樹脂を主材料とする樹脂成分を含む仮固定剤を、銅を含有する導電部を有する機能面を備える基材と、支持基材とのうちの少なくとも一方に供給したのち乾燥させて薄膜を形成する第1の工程と、薄膜を介して、基材と支持基材とを、機能面を支持基材側にして貼り合わせる第2の工程と、基材の機能面と反対側の面を加工する第3の工程と、薄膜を加熱して樹脂成分を熱分解させることで、基材を支持基材から脱離させる第4の工程とを有し、第4の工程において、基材を支持基材から非酸化性雰囲気下で脱離させた後、前記基材を冷却する。

Description

基材の加工方法
 本発明は、基材の加工方法、特に、仮固定剤を用いて基材を支持基材に仮固定して基材を加工する基材の加工方法に関する。
 本願は、2010年12月14日に日本に出願された特願2010-278681号及び特願2010-278682号に基づき優先権を主張し、その内容をここに援用する。
 半導体ウエハに研磨やエッチング等の加工を行うためには、半導体ウエハを支持するための基材上に半導体ウエハを一時的に仮固定する必要があり、そのための様々な方法が提案されている。例えば、現在では基材としてのPETフィルムに接着層を設けた固定用のフィルム上に半導体ウエハを固定する方法が多く用いられている。
 この方法では、研削に用いられる一般的なバックグラインドマシンの研削精度(約1μm)と、半導体ウエハを固定するための一般的なバックグラインド(BG)テープの厚み精度(約5μm)とを合わせると、要求される厚み精度を超えてしまい、研削されたウエハの厚みにバラツキが生じる問題がある。
 また、スルー・シリコン・ビア(Through Silicon Via)に用いる半導体ウエハを加工する場合、BGテープが付いた状態でビアホールや膜の形成を行うが、そのときの温度は低くとも180℃程度に達するため、BGテープの粘着力を上げてしまう。また、膜形成のためのメッキの薬液によってBGテープの接着層が侵され、剥がれが生じたりする。
 また、化合物半導体に代表される脆弱な半導体ウエハは、機械的研削によってはダメージを受ける場合があるので、エッチングによって薄化を行う。このエッチングにおいては、ストレス除去を目的とする程度のエッチング量であれば特に問題はないが、数μmエッチングする場合には、エッチングの薬液によってBGテープが変質してしまうことがある。
 一方で、近年、表面が平滑な支持基材に固定材料を介して半導体ウエハを固定する方法が採用されるようになっている。
 例えば、ストレス除去の目的でエッチングを行うには、高い温度まで加熱する必要があるが、PETフィルムではこのような高温に耐えることができないため、このような場合には支持基材を用いた方法が好ましく適用される。
 基材の支持基材への固定材料としては、高温で軟化して半導体ウエハの脱離が容易になるような固定材料(例えば、特許文献1参照。)が提案されている。
 このような固定材料を用いて、半導体ウエハの機能面を支持基材側にして支持基材上に半導体ウエハを固定した状態において、半導体ウエハに研磨等の加工を行う。しかし、その後に、高温に加熱して支持基材から半導体ウエハを脱離させる際に、前記機能面に銅を含有する配線等の導電部が形成されていると、半導体ウエハが加熱された状態で雰囲気中の酸素と接触することとなる。その結果、銅が酸化され、これに起因して導電部の導電率が低下してしまうという問題がある。
 なお、かかる問題は、機能面に銅を含有する導電部を備える半導体ウエハの加工に限らず、固定部材を接合する面にかかる導電部を備える各種基材についても同様に生じている。
特表2010-531385号公報
 本発明の目的は、支持基材上に基材を仮固定して基材を加工したのち支持基材から基材を脱離させる際に、その基材の支持基材側に形成され銅を含有する導電部において導電率が低下することを抑制し得る基材の加工方法を提供することにある。
 このような目的は、下記(1)~(16)に記載の本発明により達成される。
 (1) ノルボルネン系樹脂またはポリカーボネート系樹脂を主材料とする樹脂成分を含む樹脂組成物で構成される仮固定剤を、銅を含有する導電部を有する機能面を備える基材と、前記基材を支持するための支持基材とのうちの少なくとも一方に供給したのち乾燥させて薄膜を形成する第1の工程と、
 前記薄膜を介して、前記基材と前記支持基材とを、前記機能面を前記支持基材側にして貼り合わせる第2の工程と、
 前記基材の前記機能面と反対側の面を加工する第3の工程と、
 前記薄膜を加熱することで、前記基材を前記支持基材から脱離させる第4の工程とを有し、
 前記第4の工程において、前記基材を前記支持基材から30ppm以下の酸素濃度の非酸化性雰囲気下で脱離させた後、前記基材を冷却することを特徴とする基材の加工方法。
 (2) 前記樹脂成分がノルボルネン系樹脂を主材料とする樹脂成分である、上記(1)に記載の基材の加工方法。
 (3) 前記第4の工程において、前記薄膜の加熱により、前記樹脂成分が熱分解して溶融または気化することで、前記基材が前記支持基材から脱離される上記(2)に記載の基材の加工方法。
 (4) 前記第4の工程において、前記薄膜を200℃以上に加熱して前記基材を前記支持基材から脱離させる上記(2)または(3)に記載の基材の加工方法。
 (5) 前記第4の工程において、前記基材の前記支持基材からの脱離の後、前記基材を200℃未満に冷却する上記(2)ないし(4)のいずれかに記載の基材の加工方法。
 (6) 前記第4の工程における前記非酸化性雰囲気は、不活性ガス雰囲気である上記(2)ないし(5)のいずれかに記載の基材の加工方法。
 (7) 前記第1の工程において、前記基材および前記支持基材のうちの前記支持基材に対して選択的に前記仮固定剤を供給して前記薄膜を形成する上記(2)ないし(6)のいずれかに記載の基材の加工方法。
 (8) 前記第1の工程において、前記薄膜を、その平均厚さが10~100μmの厚さとなるように形成する上記(2)ないし(7)のいずれかに記載の基材の加工方法。
 (9) 前記樹脂成分がポリカーボネート系樹脂を主材料とする樹脂成分であり、
 前記第4の工程における非酸化性雰囲気下が、0.1ppm以上、30ppm以下の酸素濃度の非酸化性雰囲気下である、上記(1)に記載の基材の加工方法。
 (10) 前記第4の工程において、前記薄膜を200℃以上に加熱して前記基材を前記支持基材から脱離させる上記(9)に記載の基材の加工方法。
 (11) 前記第4の工程において、前記基材の前記支持基材からの脱離の後、前記基材を200℃未満に冷却する上記(9)または(10)に記載の基材の加工方法。
 (12) 前記第4の工程における前記非酸化性雰囲気は、不活性ガス雰囲気である上記(9)ないし(11)のいずれかに記載の基材の加工方法。
 (13) 前記第1の工程において、前記基材および前記支持基材のうちの前記支持基材に対して選択的に前記仮固定剤を供給して前記薄膜を形成する上記(9)ないし(12)のいずれかに記載の基材の加工方法。
 (14) 前記第1の工程において、前記薄膜を、その平均厚さが10~100μmの厚さとなるように形成する上記(9)ないし(13)のいずれかに記載の基材の加工方法。
 (15) 前記樹脂成分は、前記仮固定剤への活性エネルギー線の照射により、前記熱分解する温度が低下するものであり、前記第4の工程に先立って、前記活性エネルギー線を前記薄膜に照射する上記(9)ないし(14)のいずれかに記載の基材の加工方法。
 (16) 前記樹脂成分は、酸または塩基の存在下において前記熱分解する温度が低下するものであり、前記樹脂組成物は、さらに前記活性エネルギー線の照射により酸または塩基を発生する活性剤を含有する上記(15)に記載の基材の加工方法。
 本発明の基材の加工方法によれば、仮固定剤を用いて形成された薄膜を介して支持基材上に基材を仮固定した状態で基材を加工し、その後、支持基材から基材を脱離させる際に、基材の支持基材側に形成されている導電部に含有される銅の酸化を的確に防止または抑制することができる。その結果、導電部における導電率の低下を抑制しつつ、基材に対して精度の高い加工が可能となる効果を奏する。
本発明の基材の加工方法が適用された、半導体ウエハの加工工程を説明するための縦断面図である。
 以下、本発明の基材の加工方法を、添付図面に示す好適実施形態に基づいて詳細に説明する。
<第1実施形態>
 まず、本発明の第1実施形態の基材の加工方法を説明するのに先立って、本発明の第1実施形態に用いられる仮固定剤について説明する。
 <仮固定剤>
 仮固定剤は、基材を加工するために前記基材を支持基材に仮固定し、前記基材の加工後に、加熱することで前記基材を前記支持基材から脱離させるために用いられ、ノルボルネン系樹脂を主材料とする樹脂成分からなるものである。この樹脂成分は、前記加熱により熱分解することで溶融または気化したり、あるいは、前記加熱により熱溶融する特性を有するものである。
 このような仮固定剤を用いることにより、仮固定剤を用いて形成された薄膜により基材を支持基材に仮固定した状態で基材を加工することができ、さらに、加工後における薄膜の加熱により、樹脂成分を溶融または気化させたり、あるいは、樹脂成分を熱溶融させたりすることで基材を支持基材から脱離させることができる。
 以下、この樹脂成分を含有する樹脂組成物を構成する各成分について、順次、説明する。
 樹脂成分は、仮固定時(基材の加工時)には、基材を支持基材に固定する機能を有し、さらに、仮固定剤の前記加熱により、熱分解して低分子化することで溶融または気化したり、あるいは、加熱により熱溶融することに起因して、その接合強度が低下することから、支持基材からの基材の脱離を許容する機能を有するものである。
 この樹脂成分としては、本実施形態では、ノルボルネン系樹脂を主材料として構成されるものが用いられる。ノルボルネン系樹脂を用いると、後述するような酸素濃度による非酸化性雰囲気で、基材の加工の後に支持基材から基材を脱離させる際に、基材の支持基材側に形成され銅を含有する導電部において導電率の低下を抑制しつつ、支持基材から基材を容易に脱離させることができるようになる。
 ノルボルネン系樹脂としては、特に限定されないが、例えば、下記一般式(1Y)で示される構造単位を含むものを挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 式(1Y)において、R~Rは、それぞれ、水素、直鎖状または分岐状の炭素数1~20のアルキル基、芳香族基、脂環族基、グリシジルエーテル基、下記置換基(2Y)のいずれかである。また、mは0~4の整数である。
Figure JPOXMLDOC01-appb-C000002
 式(2Y)において、Rは、水素、メチル基またはエチル基であり、R、RおよびRは、それぞれ、直鎖状または分岐状の炭素数1~20のアルキル基、直鎖状または分岐状の炭素数1~20のアルコキシ基、直鎖状または分岐状の炭素数1~20のアルキルカルボニルオキシ基、直鎖状または分岐状の炭素数1~20のアルキルペルオキシ基、置換もしくは未置換の炭素数6~20のアリールオキシ基のいずれかである。また、nは0~5の整数である。
 前記直鎖状または分岐状の炭素数1~20のアルキル基としては、特に限定されるものではないが、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。
 これらの中でも、仮固定剤(樹脂組成物)を構成する各種成分との相溶性や各種溶剤に対する溶解性、さらに、基材と支持基材とを仮固定した際の機械物性に優れるブチル基、デシル基が好ましい。
 前記芳香族基としては、特に限定されるものではないが、フェニル基、フェネチル基、ナフチル基等が挙げられるが、これらの中でも、基材と支持基材を仮固定した際の機械物性に優れるフェネチル基、ナフチル基が好ましい。
 前記脂環族としては、特に限定されるものではないが、シクロヘキシル基、ノルボルネニル基、ジヒドロジシクロペンタジエチル基、テトラシクロドデシル基、メチルテトラシクロドデシル基、テトラシクロドデカジエチル基、ジメチルテトラシクロドデシル基、エチルテトラシクロドデシル基、エチリデニルテトラシクロドデシル基、フエニルテトラシクロドデシル基、シクロペンタジエチル基の三量体等の脂環族基等が挙げられる。
 これらの中でも、基材と支持基材を仮固定した際の機械物性、さらには、仮固定剤の加熱時における熱分解性に優れるシクロヘキシル基、ノルボルネニル基が好ましい。
 前記置換基(2Y)中のRは、水素、メチル基またはエチル基であれば、特に限定されないが、仮固定剤の加熱時における熱分解性に優れる水素原子が好ましい。
 前記置換基(2Y)中のR、RおよびRは、それぞれ、直鎖状または分岐状の炭素数1~20のアルキル基、直鎖状または分岐状の炭素数1~20のアルコキシ基、直鎖状または分岐状の炭素数1~20のアルキルカルボニルオキシ基、直鎖状または分岐状の炭素数1~20のアルキルペルオキシ基、置換もしくは未置換の炭素数6~20のアリールオキシ基のいずれかであれば、特に限定されるわけではない。
 そのような置換基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチロキシ基、アセトキシ基、プロピオキシ基、ブチロキシ基、メチルペルオキシ基、イソプロピルペルオキシ基、t-ブチルペルオキシ基、フェノキシ基、ヒドロキシフェノキシ基、ナフチロキシ基、フェノキシ基、ヒドロキシフェノキシ基、ナフチロキシ基等が挙げられ、これらの中でも、仮固定の際の支持基材に対する密着性、基材加工時の機械特性に優れるメトキシ基、エトキシ基、プロポキシ基が好ましい。
 前記一般式(1Y)中のmは、0~4の整数であり、特に限定されるわけではないが、0または1が好ましい。mが0または1である場合、前記一般式(1Y)で示される構造単位は、下記一般式(3Y)または(4Y)で示すことができる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 前記式(3Y)および(4Y)において、R~Rは、それぞれ、水素、直鎖状または分岐状の炭素数1~20のアルキル基、芳香族基、脂環族基、グリシジルエーテル基、置換基(2Y)のいずれかである。
 前記置換基(2Y)中のnは、0~5の整数であり、特に限定されるわけではないが、nは0であることが好ましい。nが0である時、シリル基はケイ素-炭素結合を介して多環式環に直接結合しており、仮固定剤の熱分解性および基材加工時の機械特性を両立することができる。
 前記一般式(1Y)で示される構造単位は、特に限定されるわけではないが、ノルボルネン、5-メチルノルボルネン、5-エチルノルボルネン、5-プロピルノルボルネン、5-ブチルノルボルネン、5-ペンチルノルボルネン、5-ヘキシルノルボルネン、5-へプチルノルボルネン、5-オクチルノルボルネン、5-ノニルノルボルネン、5-デシルノルボルネン、5-フェネチルノルボルネン、5-トリエトキシシリルノルボルネン、5-トリメチルシリルノルボルネン、5-トリメトキシシリルノルボルネン、5-メチルジメトキシシシリルノルボルネン、5-ジメチルメトキシノルボルネン、5-グリシジルオキシメチルノルボルネン等のノルボルネン系モノマーを重合することにより得ることができる。
 前記ノルボルネン系モノマーを重合する際は、単一のノルボルネン系モノマーで重合しても、複数のノルボルネン系モノマーを共重合しても良い。これらノルボルネン系モノマーの中でも、基材と支持基材とを仮固定した際の機械物性に優れる5-ブチルノルボルネン、5-デシルノルボルネン、5-フェネチルノルボルネン、5-トリエトキシシリルノルボルネン、5-グリシジルオキシメチルノルボルネンが好ましい。
 前記ノルボルネン系樹脂は、特に限定されるわけではなく、前記一般式(1Y)で示される単一の構造単位で形成されていてもよく、また、複数の構造単位で形成されていても良い。
 前記ノルボルネン系樹脂は、より具体的には、ポリノルボルネン、ポリメチルノルボルネン、ポリエチルノルボルネン、ポリプロピルノルボルネン、ポリブチルノルボルネン、ポリペンチルノルボルネン、ポリヘキシルノルボルネン、ポリへプチルノルボルネン、ポリオクチルノルボルネン、ポリノニルノルボルネン、ポリデシルノルボルネン、ポリフェネチルノルボルネン、ポリトリエトキシシリルノルボルネン、ポリトリメチルシリルノルボルネン、ポリトリメトキシシリルノルボルネン、ポリメチルジメトキシシシリルノルボルネン、ポリジメチルメトキシノルボルネン、ポリグリシジルオキシメチルノルボルネン等の単一重合体、ノルボルネン-トリエトキシシリルノルボルネン共重合体、ノルボルネン-グリシジルオキシメチルノルボルネン共重合体、ブチルノルボルネン-トリエトキシシリルノルボルネン共重合体、デシルノルボルネン-トリエトキシシリルノルボルネン共重合体、ブチルノルボルネン-グリシジルオキシメチルノルボルネン共重合体、デシルノルボルネン-グリシジルオキシメチルノルボルネン共重合体、デシルノルボルネン-ブチルノルボルネン-フェネチルノルボルネン-グリシジルオキシメチルノルボルネン共重合体等の共重合体が挙げられる。
 これらの中でも、基材と支持基材とを仮固定した際の機械物性に優れるポリブチルノルボルネン、ポリデシルノルボルネン、ポリトリエトキシシリルノルボルネン、ポリグリシジルオキシメチルノルボルネン-ブチルノルボルネン-トリエトキシシリルノルボルネン共重合体、デシルノルボルネン-トリエトキシシリルノルボルネン共重合体、ブチルノルボルネン-グリシジルオキシメチルノルボルネン共重合体、デシルノルボルネン-グリシジルオキシメチルノルボルネン共重合体、デシルノルボルネン-ブチルノルボルネン-フェネチルノルボルネン-グリシジルオキシメチルノルボルネン共重合体が好ましい。
 なお、前記一般式(1Y)で示される構造単位を有するノルボルネン系樹脂は、特に限定されるわけではないが、開環メタセシス重合(以下、ROMPとも記載する。)、ROMPと水素化反応の組み合わせ、ラジカルまたはカチオンによる重合により合成することができる。
 より具体的には、前記一般式(1Y)で示される構造単位を有するノルボルネン系樹脂は、例えば、パラジウムイオン源を含有する触媒、ニッケルと白金を含有する触媒、ラジカル開始剤等を用いることにより合成することができる。
 また、樹脂成分は、樹脂組成物を構成する全量(溶剤を含む場合には、溶剤を除いた全量)の10重量%~100重量%の割合で配合することが好ましい。さらに好ましくは、50重量%以上、特には、80重量%~100重量%の割合で配合することが好ましい。10重量%以上、特に80重量%以上とすることで、仮固定剤を熱分解した後の残渣を低減できるという効果がある。また、樹脂組成物中の樹脂成分を多くすることにより短時間で仮固定剤を熱分解できるという効果がある。
 樹脂組成物には、ノルボルネン系樹脂を主材料とされる樹脂成分の他に、以下に示すような他の成分が含まれていてもよい。
(酸化防止剤)
 すなわち、樹脂組成物(仮固定剤)は、酸化防止剤を含んでいてもよい。
 この酸化防止剤は、樹脂組成物(仮固定剤)中における酸の発生や、自然酸化を防止する機能を有している。
 酸化防止剤としては、特に限定されないが、例えば、Ciba Fine Chemicals社製、「Ciba IRGANOX(登録商標) 1076」および「Ciba IRGAFOS(登録商標) 168」が好適に用いられる。
 また、他の酸化防止剤としては、例えば、「Ciba Irganox 129」、「Ciba Irganox 1330」、「Ciba Irganox 1010」、「Ciba Cyanox(登録商標) 1790」、「Ciba Irganox 3114、Ciba Irganox 3125」等を用いることもできる。
 酸化防止剤の含有量は、上述した樹脂成分100重量部に対して、0.1~10重量部であるのが好ましく、0.5~5重量部であるのがより好ましい。
(添加剤)
 また、樹脂組成物(仮固定剤)は、必要により酸捕捉剤、アクリル系、シリコーン系、フッ素系、ビニル系等のレベリング剤、シランカップリング剤、希釈剤等の添加剤等を含んでも良い。
 シランカップリング剤としては、特に限定されるものではないが、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン等が挙げられ、これらのうち、1種または2種以上を組み合わせて用いることができる。
 樹脂組成物(仮固定剤)がシランカップリング剤を含むことにより、基材と支持基材との密着性の向上を図ることができる。
 また、希釈剤としては、特に限定されないが、例えば、シクロヘキセンオキサイドやα-ピネンオキサイド等のシクロエーテル化合物、[メチレンビス(4,1-フェニレンオキシメチレン)]ビスオキシランなどの芳香族シクロエーテル、1,4-シクロヘキサンジメタノールジビニルエーテルなどのシクロアリファティックビニルエーテル化合物等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 樹脂組成物(仮固定剤)が希釈剤を含むことにより、仮固定剤の流動性を向上させることができ、後述する犠牲層形成工程において、仮固定剤の支持基材に対する濡れ性を向上させることが可能となる。
(溶剤)
 また、樹脂組成物(仮固定剤)は、溶媒を含有していても良い。
 樹脂組成物を、溶媒を含む構成とすることで、樹脂組成物の粘度等の調整が容易に行え得る。
 溶剤としては、特に限定されるものではないが、例えば、デカリン、ミネラルスピリット類等の炭化水素類、トルエン、キシレン、メシチレン等の芳香族炭化水素類、アニソール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールメチルエーテル、ジエチレングリコールモノエチルエーテル、ジグライム等のアルコール/エーテル類、炭酸エチレン、酢酸エチル、酢酸N-ブチル、乳酸エチル、3-エトキシプロピオン酸エチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、炭酸プロピレン、γ-ブチロラクトン等のエステル/ラクトン類、シクロペンタノン、シクロヘキサノン、メチルイソブチルケトン、2-ヘプタノン等のケトン類、N-メチル-2-ピロリドン等のアミド/ラクタム類が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これにより、仮固定剤の粘度を調整することが容易となり、仮固定剤で構成される犠牲層(薄膜)を支持基材に形成することが容易となる。
 前記溶剤の含有量は、特に限定されるものではないが、樹脂組成物(仮固定剤)の全量の5~98重量%であることが好ましく、10~95重量%であることがより好ましい。
 <半導体装置の製造方法>
 上述したような仮固定剤が、例えば、半導体装置の製造方法に適用される。
 すなわち、半導体装置の製造方法における半導体ウエハの加工に、仮固定剤を用いた本発明の基材の加工方法が適用される。
 以下、この本発明の基材の加工方法の実施形態の一例について説明する。
 この半導体ウエハ(基材)の加工には、銅を含有する導電部を有する機能面を備える半導体ウエハと、この半導体ウエハを支持するための支持基材とのうちの少なくとも一方に上述した仮固定剤を供給したのち乾燥させて犠牲層(薄膜)を形成する第1の工程と、犠牲層を介して、支持基材と半導体ウエハとを、半導体ウエハの機能面を支持基材側にして貼り合わせる第2の工程と、半導体ウエハの機能面と反対側の面を加工する第3の工程と、犠牲層を加熱することで、半導体ウエハを支持基材から脱離させる第4の工程とを有する。かかる構成の半導体ウエハの加工方法の第4の工程において、本実施形態では、半導体ウエハを支持基材から30ppm以下の酸素濃度の非酸化性雰囲気下で脱離させた後、半導体ウエハを冷却することとする。
 図1は、本発明の基材の加工方法が適用された、半導体ウエハの加工工程を説明するための縦断面図である。なお、以下の説明では、図1中における上側を「上」、下側を「下」とする。
 以下、これら各工程について順次説明する。なお、以下では、半導体ウエハおよび支持基材のうちの支持基材に対して犠牲層を選択的に形成する場合を一例に説明する。
(犠牲層形成工程)
 まず、支持基材1を用意し、図1(a)に示すように、この支持基材(基材)1上に、上述した仮固定剤を用いて犠牲層2を形成する(第1の工程)。
 この犠牲層2は、仮固定剤を支持基材1上に供給した後加熱して乾燥させることで容易に形成することができる。
 ここで、成膜される犠牲層2のTMA(Thermal Mechanical Analysis)軟化点は、特に限定されないが、200℃未満であるのが好ましく、50~180℃程度であるのがより好ましい。これにより、次工程(貼り合わせ工程)において、犠牲層2を後述するような条件で加熱した際に、樹脂成分が熱分解または熱溶融したり、半導体ウエハ3が変質・劣化したりするのを的確に抑制または防止することができる。
 なお、TMA軟化点とは、熱機械測定装置(TMA)により測定されるものであり、測定対象物(犠牲層2)を一定の昇温速度で、一定の荷重を掛けながら昇温し、測定対象物の位相を観測することにより求められる。本明細書では、犠牲層2の位相が変化し始める温度をもってTMA軟化点と定義することとし、具体的には、TMA軟化点は、例えば、熱機械測定装置(ティー・エイ・インスツルメント社製、「Q400EM」)を用いて、測定温度範囲を25~200℃とし、昇温速度を5℃/minとした際に、10gの荷重を1mmφの石英ガラスピン(針)にかけた時に位相が変化し始める温度を測定することで求めることができる。
 また、仮固定剤を支持基材1上に供給する方法としては、特に限定されないが、例えば、スピンコート法、スプレー法、印刷法、フィルム転写法、スリットコート法、スキャン塗布法等の各種塗布法を用いることができる。これらの中でも、特に、スピンコート法が好ましく用いられる。スピンコート法によれば、より均一で平坦な犠牲層2を容易に形成することができる。
 スピンコート法を用いる場合、仮固定剤として、その粘度(25℃)が500~100,000mPa・s程度のものを用いるのが好ましく、1,000~50,000mPa・s程度のものを用いるのがより好ましい。
 粘度(25℃)は、E型粘度計(東機産業製、粘度計TVE-22型)で、コーン温度25℃、3分後の値を測定値とすることができる。
 さらに、かかる仮固定剤を供給する支持基材1の回転数を300~4,000rpm程度に設定するのが好ましく、500~3,500rpm程度に設定するのがより好ましい。
 スピンコート法を用いる際に、これらを満足する条件で犠牲層2を成膜することにより、得られる犠牲層2の平均厚さを10~100μm程度とするのが好ましく、50~100μm程度とするのがより好ましい。さらに、このような厚さの犠牲層2をほぼ均一な厚さで成膜することが可能となる。
 さらに、仮固定剤の粘度(25℃)をA[mPa・s]とし、支持基材1の回転数をB[rpm]としたとき、A/Bは、0.13~330であるのが好ましく、0.5~100であるのがより好ましい。これにより、平均厚さ50~100μmの犠牲層2を特に均一で平坦な厚さで成膜することができる。
 なお、支持基材1としては、特に限定されないが、半導体ウエハ3を支持し得る程度の強度を有するものが用いられる。
 このような支持基材1としては、例えば、石英ガラス、ソーダガラスのようなガラス材料や、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリカーボネートのような樹脂材料等を主材料として構成される基板が挙げられる。
(貼り合わせ工程)
 次に、図1(b)に示すように、支持基材1上の犠牲層2が設けられた面上に、半導体ウエハ(基材)3を、その機能面31が犠牲層2側になるように載置し、この状態で熱圧着することにより、支持基材1に犠牲層2を介して半導体ウエハ3を貼り合わせる(第2の工程)。
 すなわち、犠牲層2を介して、半導体ウエハ3と支持基材1とを、機能面31を支持基材1側にして貼り合わせる。
 この熱圧着による貼り合わせは、例えば、真空プレス機、ウエハボンダー等の装置を用いて容易に行うことができる。
 ここで、本発明では、この半導体ウエハ3には、その機能面31に、銅を含有する導電体で構成される配線や端子およびバンプのような導電部が設けられている。このような機能面31を犠牲層2で覆い支持基材1と接合することで、これらが機能面31を保護する保護層としての機能を発揮する。そのため、次工程(加工工程)において、半導体ウエハ3の機能面31と反対側の面を加工する際に、機能面31が損傷したり、導電部に含まれる銅が酸化したりするのを的確に抑制または防止することができる。
 また、半導体ウエハ3と支持基材1とを貼り合わせる際の温度は、TMA軟化点より50~200℃程度高い範囲内であるのが好ましく、TMA軟化点より60~180℃程度高い範囲内であるのがより好ましい。かかる条件で犠牲層2を加熱して犠牲層2を機能面31に熱圧着することにより、犠牲層2が溶融した状態で、機能面31に接触することとなる。ここで、半導体ウエハ3の機能面31には、上述のように導電部が形成されていることから、機能面31は凹凸面で構成される。このように機能面31が凹凸面で構成されるが、犠牲層2を溶融した状態とすることにより、その犠牲層2が機能面31に接触した際には、その凹凸形状に追従して犠牲層2が機能面31に埋入することとなる。その結果、犠牲層2と機能面31との間における空隙の形成が的確に抑制されることから、半導体ウエハ3と支持基材1とが一定の間隔を維持した状態で、半導体ウエハ3と支持基材1とが犠牲層2を介して優れた密着性をもって接合される。
 さらに、犠牲層2が必要以上に軟化してしまうのが的確に防止される結果、半導体ウエハ3と支持基材1とを互いが近づく方向に加圧する際に、半導体ウエハ3と支持基材1との間から犠牲層2の一部が押し出されてしまって、これに起因して半導体ウエハ3と支持基材1との間隔を一定に維持できなくなるのを的確に抑制または防止することができる。
 また、かかる範囲の温度で犠牲層2を加熱する時間は、特に限定されないが、例えば、0.1~10分程度であるのが好ましく、0.5~5分程度であるのがより好ましい。これにより、犠牲層2を前記範囲内の温度に加熱することができ、犠牲層2を確実に溶融状態とすることができる。
 また、上述したような温度範囲で犠牲層2を加熱した際に、半導体ウエハ3と支持基材1とを互いが近づく方向に加圧する際の圧力は、特に限定されないが、0.01~3.0MPa程度であるのが好ましく、0.012~2.5MPaであるのがより好ましく、0.05~2.0MPa程度であるのが最も好ましい。これにより、溶融状態とした犠牲層2を機能面31に埋入させることができるとともに、半導体ウエハ3と支持基材1との間から犠牲層2の一部が押し出されてしまうのを確実に防止することができる。
 なお、機能面31における凹凸は、バンプのように嵩高いものが形成されていたとしても、通常、50μm未満の高低差のものとなっている。したがって、犠牲層2の平均膜厚は、前記犠牲層形成工程において、スピンコート法を用いて犠牲層2を形成する場合のように、50~100μm程度の厚さに成膜されるのが好ましく、60~80μm程度に成膜されるのがより好ましい。かかる範囲内の平均膜厚を有する犠牲層2とすることで、上記のような凹凸面で構成される機能面31であっても、犠牲層2を機能面31に埋入させることができるため、犠牲層2を介して半導体ウエハ3と支持基材1とを一定の離間距離に保つことが可能となる。また、機能面31の全体を均一な膜厚の犠牲層2で覆うことができ、次工程(加工工程)において、機能面31を犠牲層2により確実に保護することができる。
(加工工程)
 次に、犠牲層2を介して支持基材1上に固定された半導体ウエハ3の機能面31と反対側の面(裏面)を加工する(第3の工程)。
 この半導体ウエハ3の加工は、特に限定されず、例えば、図1(c)に示すような半導体ウエハ3の裏面の研削・研磨の他、半導体ウエハ3へのビアホールの形成、ストレスリリースのための半導体ウエハ3の裏面のエッチング、リソグラフィー、さらには半導体ウエハ3の裏面への薄膜のコート、蒸着等が挙げられる。
 ここで、本加工工程において、半導体ウエハ3は、このものの加工に伴う熱履歴を経ることとなる。したがって、機能面31が有する導電部が露出していると、雰囲気中に存在する酸素と接触することに起因して、導電部に含まれる銅が酸化し、その結果、導電部の導電率が低下してしまう問題がある。しかしながら、本実施形態では、前記工程(貼り合わせ工程)において説明したように、機能面31が犠牲層2により覆われており、この犠牲層2が保護層としての機能を発揮するため、かかる問題点は解消される。
 さらに、本実施形態では、凹凸面で構成される機能面31に対してその凹凸形状に追従するようにして犠牲層2が接合される。これにより、半導体ウエハ3と支持基材1とが優れた密着性をもって犠牲層2により接合されるとともに、これらが一定の間隔を維持した状態で、犠牲層2を介して半導体ウエハ3が支持基材1に接合される。そのため、仮に、半導体ウエハ3と支持基材1とが優れた密着性をもって接合されず、半導体ウエハ3と支持基材1との離間距離が一定の距離を保たれない状態で、機能面31と反対側の面の研削・研磨を行うと、半導体ウエハ3の厚さにバラツキが生じるという問題がある。本実施形態では、半導体ウエハ3と支持基材1とを優れた密着性をもって接合して、半導体ウエハ3と支持基材1との間の離間距離を一定の間隔に維持し得ることから、かかる問題点が解消される。
 すなわち、半導体ウエハ3の裏面の研削・研磨を、その厚さにバラツキを生じることなく優れた精度で行うことが可能となる。
(脱離工程)
 次いで、図1(d)に示すように、犠牲層2を加熱して半導体ウエハ3を支持基材1から脱離させる(第4の工程)。
 本実施形態では、この脱離工程において、30ppm以下の酸素濃度の非酸化性雰囲気下で半導体ウエハ3を支持基材1から脱離させた後、半導体ウエハ3の冷却を行うこととする。
 ここで、本発明者らの検討により、ノルボルネン系樹脂を主材料とする樹脂成分は、その加熱による熱分解または熱溶融が比較的低濃度の酸素濃度下で円滑に進行することが判っている。これとともに、半導体ウエハ3が高温に加熱された状態で、低濃度の酸素濃度下において半導体ウエハ3を支持基材1から脱離させることによって、保護層として機能していた犠牲層2から機能面31が露出したとしても、導電部に含まれる銅の酸化を抑制し得る。
 本発明者らは、これらの点に着目し、犠牲層2を加熱して半導体ウエハ3を支持基材1から脱離させるときから、半導体ウエハ3を冷却するまでの雰囲気の酸素濃度を、上述したような低濃度の範囲に設定することにより、樹脂成分の加熱による熱分解または熱溶融が円滑に行われ、かつ、導電部に含まれる銅の酸化が的確に抑制されることを見出し、本発明を完成するに至った。
 なお、非酸化性雰囲気における酸素濃度は、30ppm以下であれば良いが、好ましくは0.5ppm以上、25ppm以下、より好ましくは1ppm以上、20ppm以下に設定される。上記下限を下回るようにしても、それ以上の効果の向上が得られないおそれがある。また、上記上限を超えると、導電部に含まれる銅が酸化して導電部の導電率が低下してしまったり、樹脂成分の加熱による熱分解または熱溶融が円滑に行われなくなったりするおそれがある。
 また、銅の酸化は、200℃以上の温度に導電部が加熱された際に顕著に認められる。そのため、本発明は、犠牲層2が好ましくは200℃以上、より好ましくは200~350℃程度、さらに好ましくは220~320℃程度に加熱される際に適用される。かかる温度範囲に犠牲層2が加熱される際に本発明を適用することで、導電部に含まれる銅の酸化がより的確に抑制または防止される。
 さらに、加熱時とは逆に、半導体ウエハ3を支持基材1から脱離させた後の半導体ウエハ3の冷却を、好ましくは200℃未満、より好ましくは80~200℃程度、さらに好ましくは100~180℃程度となるように行う。これにより、冷却の後に半導体ウエハ3を酸化性雰囲気下に配置したとしても、導電部に含まれる銅の酸化をより的確に抑制または防止することができる。
 非酸化性雰囲気としては、例えば、窒素、アルゴンのような不活性ガス雰囲気、水素、一酸化炭素のような還元性ガス雰囲気、10-1~10-6Torr程度の減圧雰囲気等が挙げられ、これらの中でも、不活性ガス雰囲気であるのが好ましい。これにより、チャンバー内に不活性ガスを流入させるという簡単な操作で、雰囲気中の酸素濃度を前記範囲内に設定することができる。
 なお、本工程における半導体ウエハ3の支持基材1から脱離は、ノルボルネン系樹脂を主材料とする樹脂成分が熱分解して低分子化することに起因して溶融または気化することで許容される場合と、前記樹脂成分が熱溶融することで許容される場合とに分類される。
 したがって、犠牲層2を加熱する温度は、ノルボルネン系樹脂を主材料とする樹脂成分が熱分解または熱溶融する温度で、かつ、半導体ウエハ3の変質・劣化が防止される温度に設定され、具体的には、好ましくは150~350℃程度、より好ましくは200~300℃程度に設定される。
 ただし、犠牲層2を200~300℃未満で加熱する場合は、犠牲層2に含まれる樹脂成分は熱溶融が主体的であり、また、犠牲層2を300~350℃で加熱する場合は、犠牲層2に含まれる樹脂成分は熱分解することにより低分子化されて溶融または気化することとなる。
 また、半導体ウエハ3の支持基材1から脱離は、樹脂成分の熱分解により許容されているのが好ましい。これにより、半導体ウエハ3の脱離を、より容易に行うことができるようになる利点が得られる。
 ここで、本明細書中において、脱離とは、半導体ウエハ3を支持基材1から剥離する操作を意味する。この操作として、具体的には、犠牲層2が溶融状態となる場合や気化する場合に関わらず、例えば、支持基材1の表面に対して垂直方向に半導体ウエハ3を脱離させる方法や、支持基材1の表面に対して水平方向にスライドさせて半導体ウエハ3を脱離させる方法や、図1(e)に示すように、半導体ウエハ3の一端側から半導体ウエハ3を支持基材1から浮かせることで脱離させる方法等が挙げられる。
 なお、前記加熱工程を経ることで犠牲層2が気化している場合には、半導体ウエハ3と支持基材1との間から犠牲層2が除去されているため、支持基材1からの半導体ウエハ3の脱離をより容易に行うことができる。
 以上のように、本工程における雰囲気の酸素濃度を、上述したような適切な範囲に設定することにより、銅を含有する導電部における銅の酸化を的確に防止または抑制することができる。その結果、導電部における導電率の低下を抑制することができる。
(洗浄工程)
 次に、前記脱離工程において、犠牲層2を加熱することで犠牲層2が溶融状態となる場合や、気化した犠牲層2の一部が残存している場合には、必要に応じて、半導体ウエハ3の機能面31に残存する犠牲層2を洗浄する。
 すなわち、機能面31に残留した犠牲層2の残留物を除去する。
 この残留物の除去方法としては、特に限定されるものではないが、例えば、プラズマ処理、薬液浸漬処理、研磨処理、加熱処理等が挙げられる。
 なお、本実施形態では、犠牲層形成工程において、犠牲層2を支持基材1に形成する構成としたが、かかる場合に限定されず、支持基材1および半導体ウエハ3の双方に犠牲層2を形成する構成としてもよいし、支持基材1への犠牲層2の形成を省略して半導体ウエハ3に選択的に犠牲層2を形成する構成としてもよい。
 以上のようにして、半導体ウエハ3の裏面が加工される。
 なお、本実施形態では、支持基材1に犠牲層2を選択的に形成することとしたが、かかる場合に限定されず、半導体ウエハ3に選択的に形成するようにしてもよいし、支持基材1および半導体ウエハ3の双方に形成するようにしてもよい。ただし、本実施形態のように、支持基材1に選択的に形成する構成とすることで、犠牲層2の形成のための時間と手間の簡略化が図られ、さらに、支持基材1の犠牲層2を形成する面を平坦面で構成し得ることから、犠牲層2を確実に均一な膜厚を有するものとし得るという効果も得られる。
 また、本実施形態では、基材として半導体ウエハ3を用いた場合を一例に説明したが、かかる場合に限らず、例えば、配線基板および回路基板等を用いることもできる。
 以上、本発明の基材の加工方法を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。
 たとえば、仮固定剤に含まれる各構成材料は、同様の機能を発揮し得る任意のものと置換することができ、あるいは、任意の構成のものを付加することができる。
 また、本発明の基材の加工方法には、必要に応じて任意の工程が追加されてもよい。
<第2実施形態>
 まず、本発明の第2実施形態の基材の加工方法を説明するのに先立って、本発明の第2実施形態に用いられる仮固定剤について説明する。
 <仮固定剤>
 仮固定剤は、基材を加工するために前記基材を支持基材に仮固定し、前記基材の加工後に加熱することで前記基材を前記支持基材から脱離させるために用いられ、ポリカーボネート系樹脂を主材料とし、前記加熱により熱分解する樹脂成分を含有する樹脂組成物からなるものである。
 このような仮固定剤を用いることにより、仮固定剤を用いて形成された薄膜により基材を支持基材に仮固定した状態で基材を加工することができ、さらに、加工後における加熱により薄膜を溶融または気化させることで基材を支持基材から脱離させることができる。
 以下、この樹脂成分を含有する樹脂組成物を構成する各成分について、順次、説明する。
 樹脂成分は、仮固定時(基材の加工時)には、基材を支持基材に固定する機能を有し、さらに、仮固定剤の前記加熱により熱分解して低分子化することで溶融または気化することに起因して、その接合強度が低下することから、支持基材からの基材の脱離を許容する機能を有するものである。
 この樹脂成分としては、本実施形態では、ポリカーボネート系樹脂を主材料として構成されるものが用いられる。
 このようなポリカーボネート系樹脂を用いると、後述するような酸素濃度による非酸化性雰囲気下で、基材の加工後に支持基材から基材を脱離させる際に、基材の支持基材側に形成されている導電部の導電率の低下を抑制しつつ、支持基材から基材を容易に脱離させることができるようになる。
 ポリカーボネート系樹脂としては、特に制限されないが、ポリプロピレンカーボネート樹脂、ポリエチレンカーボネート樹脂、1,2-ポリブチレンカーボネート樹脂、1,3-ポリブチレンカーボネート樹脂、1,4-ポリブチレンカーボネート樹脂、cis-2,3-ポリブチレンカーボネート樹脂、trans-2,3-ポリブチレンカーボネート樹脂、α,β-ポリイソブチレンカーボネート樹脂、α,γ-ポリイソブチレンカーボネート樹脂、cis-1,2-ポリシクロブチレンカーボネート樹脂、trans-1,2-ポリシクロブチレンカーボネート樹脂、cis-1,3-ポリシクロブチレンカーボネート樹脂、trans-1,3-ポリシクロブチレンカーボネート樹脂、ポリヘキセンカーボネート樹脂、ポリシクロプロペンカーボネート樹脂、ポリシクロヘキセンカーボネート樹脂、1,3-ポリシクロヘキサンカーボネート樹脂、ポリ(メチルシクロヘキセンカーボネート)樹脂、ポリ(ビニルシクロヘキセンカーボネート)樹脂、ポリジヒドロナフタレンカーボネート樹脂、ポリヘキサヒドロスチレンカーボネート樹脂、ポリシクロヘキサンプロピレンカーボネート樹脂、ポリスチレンカーボネート樹脂、ポリ(3-フェニルプロピレンカーボネート)樹脂、ポリ(3-トリメチルシリロキシプロピレンカーボネート)樹脂、ポリ(3-メタクリロイロキシプロピレンカーボネート)樹脂、ポリパーフルオロプロピレンカーボネート樹脂、ポリノルボルネンカーボネート樹脂、ポリノルボルナンカーボネート樹脂、exo-ポリノルボルネンカーボネート樹脂、endo-ポリノルボルネンカーボネート樹脂、trans-ポリノルボルネンカーボネート樹脂、cis-ポリノルボルネンカーボネート樹脂が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 また、ポリカーボネート系樹脂としては、例えば、ポリプロピレンカーボネート/ポリシクロヘキセンカーボネート共重合体、1,3-ポリシクロヘキサンカーボネート/ポリノルボルネンカーボネート共重合体、ポリ[(オキシカルボニルオキシ-1,1,4,4-テトラメチルブタン)-alt-(オキシカルボニルオキシ-5-ノルボルネン-2-endo-3-endo-ジメタン)]樹脂、ポリ[(オキシカルボニルオキシ-1,4-ジメチルブタン)-alt-(オキシカルボニルオキシ-5-ノルボルネン-2-endo-3-endo-ジメタン)]樹脂、ポリ[(オキシカルボニルオキシ-1,1,4,4-テトラメチルブタン)-alt-(オキシカルボニルオキシ-p-キシレン)]樹脂、およびポリ[(オキシカルボニルオキシ-1,4-ジメチルブタン)-alt-(オキシカルボニルオキシ-p-キシレン)]樹脂、1,3-ポリシクロヘキサンカーボネート樹脂/exo-ポリノルボルネンカーボネート樹脂、1,3-ポリシクロヘキサンカーボネート樹脂/endo-ポリノルボルネンカーボネート樹脂等の共重合体を用いることもできる。
 さらに、ポリカーボネート系樹脂としては、上記の他、カーボネート構成単位において、少なくとも2つの環状体を有するポリカーボネート樹脂を用いることもできる。
 環状体の数は、カーボネート構成単位において2つ以上であればよいが、2~5であるのが好ましく、2または3であるのがより好ましく、2であるのがさらに好ましい。カーボネート構成単位としてこのような数の環状体が含まれることにより、支持基材と基材との密着性が優れたものとなる。また、仮固定剤の加熱により、かかるポリカーボネート樹脂が熱分解して低分子化することにより、溶融するものとなる。
 また、複数の環状体は、それぞれの頂点同士が互いに連結している連結多環系構造をなしていてもよいが、それぞれが有する一辺同士が互いに連結している縮合多環系構造をなしているのが好ましい。これにより、仮固定剤としての耐熱性と、このものが溶融する際の熱分解時間を短縮することを両立することができる。
 さらに、複数の環状体は、それぞれ、5員環または6員環であるのが好ましい。これにより、カーボネート構成単位の平面性が保たれることから、溶剤に対する溶解性をより安定させることができる。
 このような複数の環状体は、脂環式化合物であるのが好ましい。各環状体が脂環式化合物である場合に、前述したような効果がより顕著に発揮されることになる。
 これらのことを考慮すると、ポリカーボネート系樹脂において、カーボネート構成単位としては、例えば、下記化学式(1X)で表わされるものが特に好ましい構造である。
Figure JPOXMLDOC01-appb-C000005
 なお、上記化学式(1X)で表わされるカーボネート構成単位を有するポリカーボネート系樹脂は、デカリンジオールと、炭酸ジフェニルのような炭酸ジエステルとの重縮合反応により得ることができる。
 また、上記化学式(1X)で表わされるカーボネート構成単位において、デカリンジオールが有する水酸基は、それぞれ、デカリン(すなわち、縮合多環系構造を形成する2つの環状体)を構成する別個の炭素原子に結合し、かつ、これら水酸基に結合する炭素原子の間には最短で3つ以上の原子が介在しているのが好ましい。これにより、ポリカーボネート系樹脂の分解性を制御でき、その結果、仮固定剤としての耐熱性と、このものが溶融する際の熱分解時間を短縮することを両立することができる。さらに、溶剤に対する溶解性をより安定させることができる。
 このようなカーボネート構成単位としては、例えば、下記化学式(1A)、(1B)で表わされるものが挙げられる。
Figure JPOXMLDOC01-appb-C000006
 さらに、複数の環状体は、脂環式化合物である他、複素脂環式化合物であってもよい。各環状体が複素脂環式化合物である場合であっても、前述したような効果がより顕著に発揮されることになる。
 この場合、ポリカーボネート系樹脂において、カーボネート構成単位としては、例えば、下記化学式(2X)で表わされるものが特に好ましい構造である。
Figure JPOXMLDOC01-appb-C000007
 なお、上記化学式(2X)で表わされるカーボネート構成単位を有するポリカーボネート系樹脂は、下記化学式(2a)で表わされるエーテルジオールと、炭酸ジフェニルのような炭酸ジエステルとの重縮合反応により得ることができる。
Figure JPOXMLDOC01-appb-C000008
 また、上記化学式(2X)で表わされるカーボネート構成単位において、上記化学式(2a)で表わされる環状エーテルジオールが有する水酸基は、それぞれ、上記環状エーテル(すなわち、縮合多環系構造を形成する2つの環状体)を構成する別個の炭素原子に結合し、かつ、これら炭素原子の間には最短で3つ以上の原子が介在しているのが好ましい。これにより、仮固定剤としての耐熱性と、このものが溶融する際の熱分解時間を短縮することを両立することができる。さらに、溶剤に対する溶解性をより安定させることができる。
 このようなカーボネート構成単位としては、例えば、下記化学式(2A)で表わされる1,4:3,6-ジアンヒドロ-D-ソルビトール(イソソルビド)型や、下記化学式(2B)で表わされる1,4:3,6-ジアンヒドロ-D-マンニトール(イソマンニド)型が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 ポリカーボネート系樹脂の重量平均分子量(Mw)は、1,000~1,000,000であることが好ましく、5,000~800,000であることがさらに好ましい。重量平均分子量を上記下限以上とすることにより、支持基材に対する濡れ性が向上する効果、さらに、成膜性が向上する効果を得ることができる。また、上記上限値以下とすることで、各種溶剤に対する溶解性、さらには、仮固定剤の加熱による溶融および気化がより顕著に認められる効果を得ることができる。
 なお、ポリカーボネート系樹脂の重合方法は、特に限定されるわけではないが、例えば、ホスゲン法(溶剤法)または、エステル交換法(溶融法)等の公知の重合方法を用いることができる。
 また、樹脂成分は、樹脂組成物を構成する全量(溶剤を含む場合には、溶剤を除いた全量)の10重量%~100重量%の割合で配合することが好ましい。さらに好ましくは、50重量%以上、特には、80重量%~100重量%の割合で配合することが好ましい。10重量%以上、特に80重量%以上とすることで、仮固定剤を熱分解した後の残渣を低減できるという効果がある。また、樹脂組成物中の樹脂成分を多くすることにより短時間で仮固定剤を熱分解できるという効果がある。
 ところで、このようなポリカーボネート系樹脂を主材料として構成される樹脂成分は、酸または塩基の存在下において、熱分解する温度が低下するものである。ポリカーボネート系樹脂の中でも、特に、ポリプロピレンカーボネート、1,4-ポリブチレンカーボネート、1,3-ポリシクロヘキサンカーボネート/ポリノルボルネンカーボネート共重合体には、かかる熱分解する温度の低下がより顕著に認められる。
 そこで、ポリカーボネート系樹脂を主材料として構成される樹脂成分の他に、樹脂組成物中に、仮固定剤への活性エネルギー線の照射により酸または塩基を発生する活性剤が含まれる構成とすることで、仮固定剤への活性エネルギー線の照射によって樹脂成分(ポリカーボネート系樹脂)の熱分解する温度が低下するものとなり得る。
 したがって、仮固定剤(樹脂組成物)中に、ポリカーボネート系樹脂を主材料として構成される樹脂成分と、仮固定剤への活性エネルギー線の照射により酸または塩基を発生する活性剤とを含有させることで、活性エネルギー線照射により樹脂成分の熱分解する温度が低下するため、活性エネルギー線照射の後の仮固定剤の加熱により、基材の支持基材からの脱離をより容易に行え得るという効果が得られる。
(活性剤)
 活性剤は、上述したように、活性エネルギー線の照射によってエネルギーが加えられることにより、酸または塩基のような活性種を発生させるものであり、この活性種の作用により、前記樹脂成分の熱分解する温度を低下させる機能を有するものである。
 この活性剤としては、特に限定されないが、例えば、活性エネルギー線の照射により酸を発生する光酸発生剤や、活性エネルギー線の照射により塩基を発生する光塩基発生剤等が挙げられる。
 光酸発生剤としては、特に限定されないが、例えば、テトラキス(ペンタフルオロフェニル)ボレート-4-メチルフェニル[4-(1-メチルエチル)フェニル]ヨードニウム(DPI-TPFPB)、トリス(4-t-ブチルフェニル)スルホニウムテトラキス-(ペンタフルオロフェニル)ボレート(TTBPS-TPFPB)、トリス(4-t-ブチルフェニル)スルホニウムヘキサフルオロホスフェート(TTBPS-HFP)、トリフェニルスルホニウムトリフレート(TPS-Tf)、ビス(4-tert-ブチルフェニル)ヨードニウムトリフレート(DTBPI-Tf)、トリアジン(TAZ-101)、トリフェニルスルホニウムヘキサフルオロアンチモネート(TPS-103)、トリフェニルスルホニウムビス(パーフルオロメタンスルホニル)イミド(TPS-N1)、ジ-(p-t-ブチル)フェニルヨードニウム、ビス(パーフルオロメタンスルホニル)イミド(DTBPI-N1)、トリフェニルスルホニウム、トリス(パーフルオロメタンスルホニル)メチド(TPS-C1)、ジ-(p-t-ブチルフェニル)ヨードニウムトリス(パーフルオロメタンスルホニル)メチド(DTBPI-C1)等が挙げられ、これらのうち1種または2種以上を組合せて用いることができる。これらの中でも、特に、樹脂成分の溶融粘度を効率的に下げることができるという観点から、テトラキス(ペンタフルオロフェニル)ボレート-4-メチルフェニル[4-(1-メチルエチル)フェニル]ヨードニウム(DPI-TPFPB)が好ましい。
 また、光塩基発生剤としては、特に限定されないが、例えば、5-ベンジル-1,5-ジアザビシクロ(4.3.0)ノナン、1-(2-ニトロベンゾイルカルバモイル)イミダゾール等が挙げられ、これらのうち1種または2種以上を組合せて用いることができる。これらの中でも、特に、樹脂成分の溶融粘度を効率的に下げることができるという観点から、5-ベンジル-1,5-ジアザビシクロ(4.3.0)ノナンおよびこの誘導体が好ましい。
 前記活性剤は、樹脂組成物(仮固定剤)の全量の0.01~50重量%程度であるのが好ましく、0.1~30重量%程度であるのがより好ましい。かかる範囲内とすることにより、樹脂成分の溶融粘度を安定的に目的とする範囲内に下げることが可能となる。
 このような活性剤の添加により、活性エネルギー線を照射することで酸または塩基のような活性種が発生し、この活性種の作用によって、樹脂成分の主鎖にその熱分解温度が低下する構造が形成される。その結果、樹脂成分の熱分解する温度が低下すると推察される。
 ここで、樹脂成分としてポリカーボネート系樹脂であるポリプロピレンカーボネート樹脂を使用し、活性剤として光酸発生剤を使用した場合の熱分解温度が低下するメカニズムについて説明する。下記式(1Z)で示すように、まず、前記光酸発生剤由来のHが、ポリプロピレンカーボネート樹脂のカルボニル酸素をプロトン化し、さらに極性遷移状態を転移させ不安定な互変異性中間体[A]および[B]を生じる。次に、中間体[A]は、アセトンおよびCOとして断片化する熱切断が起こるため、熱分解温度が低下する。また、中間体[B]は炭酸プロピレンを生成し、炭酸プロピレンはCOおよびプロピレンオキシドとして断片化する熱閉環構造を形成するため、熱分解温度が低下する。
Figure JPOXMLDOC01-appb-C000010
(増感剤)
 また、仮固定剤は、活性剤を含む場合、この活性剤とともに、特定の波長の活性エネルギー線に対する活性剤の反応性を発現あるいは増大させる機能を有する成分である増感剤を含んでいても良い。
 増感剤としては、特に限定されるものではないが、例えば、アントラセン、フェナントレン、クリセン、ベンツピレン、フルオランテン、ルブレン、ピレン、キサントン、インダンスレン、チオキサンテン-9-オン、2‐イソプロピル-9H-チオキサンテン-9-オン、4-イソプロピル-9H-チオキサンテン-9-オン、1-クロロ-4‐プロポキシチオキサントン、およびこれらの混合物等が挙げられる。
 このような増感剤の含有量は、前述した光酸発生剤等の活性剤および光ラジカル開始剤の総量100重量部に対して、100重量部以下であるのが好ましく、20重量部以下であるのがより好ましい。
 以上のような樹脂組成物には、さらに、以下に示すような他の成分が含まれていてもよい。
(酸化防止剤)
 すなわち、樹脂組成物(仮固定剤)は、酸化防止剤を含んでいてもよい。
 この酸化防止剤は、樹脂組成物(仮固定剤)中における酸の発生や、自然酸化を防止する機能を有している。
 酸化防止剤としては、特に限定されないが、例えば、Ciba Fine Chemicals社製、「Ciba IRGANOX(登録商標) 1076」および「Ciba IRGAFOS(登録商標) 168」が好適に用いられる。
 また、他の酸化防止剤としては、例えば、「Ciba Irganox 129」、「Ciba Irganox 1330」、「Ciba Irganox 1010」、「Ciba Cyanox(登録商標) 1790」、「Ciba Irganox 3114、Ciba Irganox 3125」等を用いることもできる。
 酸化防止剤の含有量は、上述した樹脂成分100重量部に対して、0.1~10重量部であるのが好ましく、0.5~5重量部であるのがより好ましい。
(添加剤)
 また、樹脂組成物(仮固定剤)は、必要により酸捕捉剤、アクリル系、シリコーン系、フッ素系、ビニル系等のレベリング剤、シランカップリング剤、希釈剤等の添加剤等を含んでも良い。
 シランカップリング剤としては、特に限定されるものではないが、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン等が挙げられ、これらのうち、1種または2種以上を組み合わせて用いることができる。
 樹脂組成物(仮固定剤)がシランカップリング剤を含むことにより、基材と支持基材との密着性の向上を図ることができる。
 また、希釈剤としては、特に限定されないが、例えば、シクロヘキセンオキサイドやα-ピネンオキサイド等のシクロエーテル化合物、[メチレンビス(4,1-フェニレンオキシメチレン)]ビスオキシランなどの芳香族シクロエーテル、1,4-シクロヘキサンジメタノールジビニルエーテルなどのシクロアリファティックビニルエーテル化合物等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 樹脂組成物(仮固定剤)が希釈剤を含むことにより、仮固定剤の流動性を向上させることができ、後述する犠牲層形成工程において、仮固定剤の支持基材に対する濡れ性を向上させることが可能となる。
(溶剤)
 また、樹脂組成物(仮固定剤)は、溶媒(溶剤)を含有していても良い。
 樹脂組成物を、溶媒(溶剤)を含む構成とすることで、樹脂組成物の粘度等の調整が容易に行え得る。
 溶剤としては、特に限定されるものではないが、例えば、メシチレン、デカリン、ミネラルスピリット類等の炭化水素類、トルエン、キシレン、トリメチルベンゼン等の芳香族炭化水素類、アニソール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールメチルエーテル、ジエチレングリコールモノエチルエーテル、ジグライム等のアルコール/エーテル類、炭酸エチレン、酢酸エチル、酢酸N-ブチル、乳酸エチル、3-エトキシプロピオン酸エチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、炭酸プロピレン、γ-ブチロラクトン等のエステル/ラクトン類、シクロペンタノン、シクロヘキサノン、メチルイソブチルケトン、2-ヘプタノン等のケトン類、N-メチル-2-ピロリドン等のアミド/ラクタム類が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これにより、仮固定剤の粘度を調整することが容易となり、仮固定剤で構成される犠牲層(薄膜)を支持基材に形成することが容易となる。
 前記溶剤の含有量は、特に限定されるものではないが、樹脂組成物(仮固定剤)の全量の5~98重量%であることが好ましく、10~95重量%であることがより好ましい。
 <半導体装置の製造方法>
 上述したような仮固定剤が、例えば、半導体装置の製造方法に適用される。
 すなわち、半導体装置の製造方法における半導体ウエハの加工に、仮固定剤を用いた本実施形態の基材の加工方法が適用される。
 以下、この本発明における基材の加工方法の実施形態の一例について説明する。
 この半導体ウエハ(基材)の加工には、銅を含有する導電部を有する機能面を備える半導体ウエハと、この半導体ウエハを支持するための支持基材とのうちの少なくとも一方に上述した仮固定剤を供給したのち乾燥させて犠牲層(薄膜)を形成する第1の工程と、犠牲層を介して、支持基材と半導体ウエハとを、半導体ウエハの機能面を支持基材側にして貼り合わせる第2の工程と、半導体ウエハの機能面と反対側の面を加工する第3の工程と、犠牲層を加熱して樹脂成分を熱分解させることで、半導体ウエハを支持基材から脱離させる第4の工程とを有する。かかる構成の半導体ウエハの加工方法の第4の工程において、本実施形態では、半導体ウエハを支持基材から1ppm以上、30ppm以下の酸素濃度の非酸化性雰囲気下で脱離させた後、半導体ウエハを冷却することとする。
 図1は、本発明の基材の加工方法が適用された、半導体ウエハの加工工程を説明するための縦断面図である。なお、以下の説明では、図1中における上側を「上」、下側を「下」とする。
 以下、これら各工程について順次説明する。なお、以下では、半導体ウエハおよび支持基材のうちの支持基材に対して犠牲層を選択的に形成する場合を一例に説明する。
(犠牲層形成工程)
 まず、支持基材1を用意し、図1(a)に示すように、この支持基材(基材)1上に、上述した仮固定剤を用いて犠牲層2を形成する(第1の工程)。
 この犠牲層2は、仮固定剤を支持基材1上に供給した後加熱して乾燥させることで容易に形成することができる。
 ここで、成膜される犠牲層2のTMA(Thermal mechanical Analysis)軟化点は、特に限定されないが、200℃未満であるのが好ましく、50~180℃程度であるのがより好ましい。これにより、次工程(貼り合わせ工程)において、犠牲層2を後述するような条件で加熱した際に、樹脂成分が熱分解したり、半導体ウエハ3が変質・劣化したりするのを的確に抑制または防止することができる。
 なお、TMA軟化点とは、熱機械測定装置(TMA)により測定されるものであり、測定対象物(犠牲層2)を一定の昇温速度で、一定の荷重を掛けながら昇温し、測定対象物の位相を観測することにより求められる。本明細書では、犠牲層2の位相が変化し始める温度をもってTMA軟化点と定義することとし、具体的には、TMA軟化点は、例えば、熱機械測定装置(ティー・エイ・インスツルメント社製、「Q400EM」)を用いて、測定温度範囲を25~200℃とし、昇温速度を5℃/minとした際に、10gの荷重を1mmφの石英ガラスピン(針)にかけた時に位相が変化し始める温度を測定することで求めることができる。
 また、仮固定剤を支持基材1上に供給する方法としては、特に限定されないが、例えば、スピンコート法、スプレー法、印刷法、フィルム転写法、スリットコート法、スキャン塗布法等の各種塗布法を用いることができる。これらの中でも、特に、スピンコート法が好ましく用いられる。スピンコート法によれば、より均一で平坦な犠牲層2を容易に形成することができる。
 スピンコート法を用いる場合、仮固定剤として、その粘度(25℃)が500~100,000mPa・s程度のものを用いるのが好ましく、1,000~50,000mPa・s程度のものを用いるのがより好ましい。
 なお、粘度(25℃)は、E型粘度計(東機産業製、粘度計TVE-22型)で、コーン温度25℃、3分後の値を測定値とすることができる。
 さらに、かかる仮固定剤を供給する支持基材1の回転数を300~4,000rpm程度に設定するのが好ましく、500~3,500rpm程度に設定するのがより好ましい。
 スピンコート法を用いる際に、これらを満足する条件で犠牲層2を成膜することにより、得られる犠牲層2の平均厚さを10~100μm程度とするのが好ましく、50~100μm程度とするのがより好ましい。さらに、このような厚さの犠牲層2をほぼ均一な厚さで成膜することが可能となる。
 さらに、仮固定剤の粘度(25℃)をA[mPa・s]とし、支持基材1の回転数をB[rpm]としたとき、A/Bは、0.13~330であるのが好ましく、0.5~100であるのがより好ましい。これにより、平均厚さ50~100μmの犠牲層2を特に均一で平坦な厚さで成膜することができる。
 本実施形態においては、支持基材1として、半導体ウエハ3を支持し得る程度の強度を有するものであれば特に限定されないが、光透過性を有するものであるのが好ましい。これにより、仮固定剤を、活性エネルギー線の照射により、熱分解する温度が低下するものとした場合に、支持基材1側から活性エネルギー線を透過させて、犠牲層2に活性エネルギー線を確実に照射することができるようになる。
 光透過性を有する支持基材1としては、例えば、石英ガラス、ソーダガラスのようなガラス材料や、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリカーボネートのような樹脂材料等を主材料として構成される基板が挙げられる。
(貼り合わせ工程)
 次に、図1(b)に示すように、支持基材1上の犠牲層2が設けられた面上に、半導体ウエハ(基材)3をその機能面31が犠牲層2側になるように載置し、この状態で、熱圧着することにより、支持基材1に犠牲層2を介して半導体ウエハ3を貼り合わせる(第2の工程)。貼り合わせ工程については、第1実施形態と同様に行うため、詳細を省略する。
(加工工程)
 次に、犠牲層2を介して支持基材1上に固定された半導体ウエハ3の機能面31と反対側の面(裏面)を加工する(第3の工程)。加工工程についても、第1実施形態と同様に行うため、詳細を省略する。
(脱離工程)
 次いで、図1(d)に示すように、犠牲層2を加熱して樹脂成分を熱分解させて低分子化させることにより、犠牲層2を溶融または気化させた後、半導体ウエハ3を支持基材1から脱離させる(第4の工程)。
 本実施形態では、この脱離工程において、0.1ppm以上、30ppm以下の酸素濃度の非酸化性雰囲気下で半導体ウエハ3を支持基材1から脱離させた後、半導体ウエハ3の冷却を行うこととする。
 ここで、本発明ら者の検討により、ポリカーボネート系樹脂を主材料とする樹脂成分は、その加熱による熱分解が比較的高濃度の酸素濃度下で円滑に進行することが判っている。これに反して、半導体ウエハ3が高温に加熱された状態で、高濃度の酸素濃度下において半導体ウエハ3を支持基材1から脱離させると、保護層として機能していた犠牲層2から機能面31が露出し、その結果、導電部に含まれる銅が酸化される。
 本発明者らは、かかる問題点に鑑み鋭意検討を重ねた結果、犠牲層2を加熱して半導体ウエハ3を支持基材1から脱離させるときから、さらに半導体ウエハ3を冷却するまでの雰囲気の酸素濃度を、上述したような適切な範囲内に設定することにより、樹脂成分の加熱による熱分解が円滑に行われるともに、導電部に含まれる銅の酸化が的確に抑制されることから、前記問題点を解消し得ることを見出し、本発明を完成するに至った。
 なお、非酸化性雰囲気における酸素濃度は、0.1ppm以上、30ppm以下であれば良いが、好ましくは0.5ppm以上、25ppm以下、より好ましくは1ppm以上、20ppm以下に設定される。上記下限を下回ると樹脂成分の加熱による熱分解が円滑に行われないおそれがある。また、上記上限を超えると、導電部に含まれる銅が酸化して導電部の導電率が低下してしまうおそれがある。
 また、銅の酸化は、200℃以上の温度に導電部が加熱された際に顕著に認められる。そのため、本発明は、犠牲層2が好ましくは200℃以上、より好ましくは200~350℃程度、さらに好ましくは220~320℃程度に加熱される際に適用される。かかる温度範囲に犠牲層2が加熱される際に本発明を適用することで、導電部に含まれる銅の酸化がより的確に抑制または防止される。
 さらに、加熱時とは逆に、半導体ウエハ3を支持基材1から脱離させた後の半導体ウエハ3の冷却を、好ましくは200℃未満、より好ましくは100~190℃程度、さらに好ましくは120~180℃程度となるように行う。これにより、冷却の後に半導体ウエハ3を酸化性雰囲気下に配置したとしても、導電部に含まれる銅の酸化をより的確に抑制または防止することができる。
 非酸化性雰囲気としては、例えば、窒素、アルゴンのような不活性ガス雰囲気、水素、一酸化炭素のような還元性ガス雰囲気、10-1~10-6Torr程度の減圧雰囲気等が挙げられ、これらの中でも、不活性ガス雰囲気であるのが好ましい。これにより、チャンバー内に不活性ガスを流入させるという簡単な操作で、雰囲気中の酸素濃度を前記範囲内に設定することができる。
 なお、犠牲層2を加熱する温度は、具体的には、ポリカーボネート系樹脂を主材料とする樹脂成分が熱分解する温度で、かつ、半導体ウエハ3の変質・劣化が防止される温度に設定されるため、好ましくは200~350℃程度、より好ましくは220~320℃程度に設定される。
 ここで、本明細書中において、脱離とは、半導体ウエハ3を支持基材1から剥離する操作を意味する。この操作として、具体的には、犠牲層2が溶融状態となる場合や気化する場合に関わらず、例えば、支持基材1の表面に対して垂直方向に半導体ウエハ3を脱離させる方法や、支持基材1の表面に対して水平方向にスライドさせて半導体ウエハ3を脱離させる方法や、図1(e)に示すように、半導体ウエハ3の一端側から半導体ウエハ3を支持基材1から浮かせることで脱離させる方法等が挙げられる。
 なお、前記加熱工程を経ることで犠牲層2が気化している場合には、半導体ウエハ3と支持基材1との間から犠牲層2が除去されているため、支持基材1からの半導体ウエハ3の脱離をより容易に行うことができる。
 以上のように、本工程における雰囲気の酸素濃度を、上述したような適切な範囲内に設定することにより、銅を含有する導電部における銅の酸化を的確に防止または抑制することができる。その結果、導電部における導電率の低下を抑制することができる。
(洗浄工程)
 次に、前記脱離工程において、犠牲層2を加熱することで犠牲層2が溶融状態となる場合や、気化した犠牲層2の一部が残存している場合には、必要に応じて、半導体ウエハ3の機能面31に残存する犠牲層2を洗浄する。
 すなわち、機能面31に残留した犠牲層2の残留物を除去する。
 この残留物の除去方法としては、特に限定されるものではないが、例えば、プラズマ処理、薬液浸漬処理、研磨処理、加熱処理等が挙げられる。
 なお、本実施形態では、犠牲層形成工程において、犠牲層2を支持基材1に形成する構成としたが、かかる場合に限定されず、支持基材1および半導体ウエハ3の双方に犠牲層2を形成する構成としてもよいし、支持基材1への犠牲層2の形成を省略して半導体ウエハ3に選択的に犠牲層2を形成する構成としてもよい。
 以上のようにして、半導体ウエハ3の裏面が加工される。
 なお、犠牲層(樹脂組成物)2に活性剤が含まれ、これにより樹脂成分が、活性エネルギー線の照射により、熱分解する温度が低下するものとなる場合には、前記脱離工程における犠牲層2の加熱に先立って、下記の活性エネルギー線照射工程を施すようにしてもよい。
(活性エネルギー線照射工程)
 本工程では、犠牲層2に活性エネルギー線を照射する。
 ここで、犠牲層(樹脂組成物)2に、熱分解する温度が低下する樹脂成分と、仮固定剤への活性エネルギー線の照射により酸または塩基を発生する活性剤とが含まれる場合、仮固定剤(樹脂組成物)中に含まれる活性剤にエネルギーが付与されると、活性剤から酸または塩基のような活性種が発生するため、この活性種の作用により、樹脂成分の熱分解する温度が低下する。
 したがって、犠牲層2の加熱に先立って、犠牲層2に活性エネルギー線を照射する構成とすることで、犠牲層2を加熱する際の加熱温度や加熱時間等を低くしたり短くすることができるため、この加熱をより緩和された条件で行うことができる。その結果、半導体ウエハ3が加熱されることによる変質・劣化をより的確に抑制または防止することができる。
 また、活性エネルギー線としては、特に限定されないが、例えば、波長200~800nm程度の光線であるのが好ましく、波長300~500nm程度の光線であるのがより好ましい。
 さらに、活性エネルギー線の照射量は、特に限定されないが、10mJ/cm~20000mJ/cmであるのが好ましく、20mJ/cm~10000mJ/cmであるのがより好ましい。
 なお、本実施形態では、支持基材1に犠牲層2を選択的に形成することとしたが、かかる場合に限定されず、半導体ウエハ3に選択的に形成するようにしてもよいし、支持基材1および半導体ウエハ3の双方に形成するようにしてもよい。ただし、本実施形態のように、支持基材1に選択的に形成する構成とすることで、犠牲層2の形成のための時間と手間の簡略化が図られ、さらに、支持基材1の犠牲層2を形成する面を平坦面で構成し得ることから、犠牲層2を確実に均一な膜厚を有するものとし得るという効果も得られる。
 また、本実施形態では、基材として半導体ウエハ3を用いた場合を一例に説明したが、かかる場合に限らず、例えば、配線基板および回路基板等を用いることもできる。
 以上、本発明の基材の加工方法を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。
 たとえば、仮固定剤に含まれる各構成材料は、同様の機能を発揮し得る任意のものと置換することができ、あるいは、任意の構成のものを付加することができる。
 また、本発明の基材の加工方法には、必要に応じて任意の工程が追加されてもよい。
 次に、本発明の第1実施形態に対応する具体的実施例について説明する。
 1.仮固定剤の調製
 まず、以下に示すようなサンプルNo.1A、2Aの仮固定剤を調整した。
 [サンプルNo.1A]
<5-デシルノルボルネン重合体>
 十分乾燥させた反応容器に酢酸エチル430g、シクロヘキサン890g、5-デシルノルボルネン223g(0.95モル)を導入した。この系中に乾燥窒素を40℃で30分流し、溶存酸素を除去した。その後、ビス(トルエン)ビス(パーフルオロフェニル)ニッケル1.33g(2.75×10-4モル)を酢酸エチル12gに溶解したものを反応系中に添加した。上記の系を40℃から55℃に15分掛けて昇温し、その温度を保持しながら3時間系中を攪拌した。
 得られた溶液に、30%過酸化水素水49gを添加した純水約1500gに氷酢酸26gを溶解させたものを加え、50℃で5時間攪拌した後、攪拌を止め、分離した水層を除去した。
 残った有機層にメタノール220gとイソプロピルアルコール200gを混合したものを、添加~攪拌~除去することで洗浄した。さらに、洗浄後の有機層にシクロヘキサン510gと酢酸エチル290gを添加し、系を均一に溶解した後、メタノール156gとイソプロピルアルコール167gを混合したものを、添加~攪拌~除去することで洗浄した(2回繰り返し)。
 洗浄後の有機層にシクロヘキサン180mlを添加して系を均一に溶解し、さらにメシチレン670gを添加した。そして、減圧下にてロータリーエバポレーターでシクロヘキサンを蒸発除去することにより、5-デシルノルボルネン重合体543g(35%のメシチレン溶液)を得た。
 合成した5-デシルノルボルネン重合体をGPCにより重量平均分子量を測定したところ、75,300であった。
<仮固定剤の作製>
 上記で得られた5-デシルノルボルネン重合体の35%のメシチレン溶液300gをトリメチルベンゼン(溶剤)50gで希釈し、樹脂濃度30%の仮固定剤を作製した。
 なお、このサンプルNo.1Aの仮固定剤の粘度(25℃)は10,000mPa・sであった。
 [サンプルNo.2A]
<5-デシルノルボルネン/5-ヘキシルノルボルネン=50モル%/50モル%共重合体の合成>
 十分乾燥させた反応容器に酢酸エチル430g、シクロヘキサン890g、5-デシルノルボルネン112g(0.48モル)、5-ヘキシルノルボルネン86g(0.48モル)を導入した。この系中に乾燥窒素を40℃で30分流し、溶存酸素を除去した。その後、ビス(トルエン)ビス(パーフルオロフェニル)ニッケル1.33g(2.75×10-4モル)を酢酸エチル12gに溶解したものを反応系中に添加した。上記の系を40℃から55℃に15分掛けて昇温し、その温度を保持しながら3時間系中を攪拌した。
 得られた溶液に、30%過酸化水素水49gを添加した純水約1500gに氷酢酸26gを溶解させたものを加え、50℃で5時間攪拌した後、攪拌を止め、分離した水層を除去した。
 残った有機層にメタノール220gとイソプロピルアルコール200gを混合したものを、添加~攪拌~除去することで洗浄した。さらに、洗浄後の有機層にシクロヘキサン510gと酢酸エチル290gを添加し、系を均一に溶解した後、メタノール156gとイソプロピルアルコール167gを混合したものを、添加~攪拌~除去することで洗浄した(2回繰り返し)。
 洗浄後の有機層にシクロヘキサン180mlを添加して系を均一に溶解し、さらにメシチレン670gを添加した。そして、減圧下にてロータリーエバポレーターでシクロヘキサンを蒸発除去することにより、5-デシルノルボルネン/5-ヘキシルノルボルネン=50モル%/50モル%共重合体525g(35%のメシチレン溶液)を得た。
 合成した5-デシルノルボルネン/5-ヘキシルノルボルネン=50モル%/50モル%共重合体をGPCにより重量平均分子量を測定したところ、120,300であった。
<仮固定剤の作製>
 上記で得られた5-デシルノルボルネン/5-ヘキシルノルボルネン=50モル%/50モル%共重合体の35%のメシチレン溶液300gをトリメチルベンゼン(溶剤)50gで希釈し、樹脂濃度30%の仮固定剤を作製した。
 なお、このサンプルNo.2Aの仮固定剤の粘度(25℃)は25,000mPa・sであった。
Figure JPOXMLDOC01-appb-T000011
 2.半導体ウエハの裏面加工
 次に、以下に示すようにして、各サンプルNo.1A、2Aの仮固定剤を用いて、半導体ウエハの裏面に加工を施した。
 [実施例1A]
<1> まず、スピンコータを用いて、サンプルNo.1Aの仮固定剤を8インチの透明ガラスに塗布し(回転数:1,000rpm、時間:30秒)、次いで、ホットプレート上で、120℃、5分の条件でプリベーク(乾燥)を行い、厚さ50μmの仮固定剤からなる薄膜(犠牲層)を形成した。
 なお、この薄膜のTMA軟化点を、熱機械測定装置(ティー・エイ・インスツルメント社製、「Q400EM」)を用いて測定したところ、90℃であった。
<2> 次に、サブストレート・ボンダー(型番SB-8e、ズース・マイクロテック社製)を用い、8インチシリコンウエハを仮固定剤からなる薄膜を介して8インチ透明ガラスに仮固定した(雰囲気:10-2mbar、温度:140℃、圧力:0.32MPa、時間:4分)。
 なお、この8インチシリコンウエハとしては、厚さ725μmであり、薄膜を接触させる側の面に、ピッチ50μm、幅50μm、高さ10μmの銅で構成される配線が一定方向に複数設けられているものを使用した。
<3> 次に、透明ガラスに仮固定されたシリコンウエハについて、研削装置(DISCO社製、「DFG8540」)を用いて半導体ウエハの下面(裏面)を研削して、半導体ウエハの厚さが145μmとなるように加工した。
<4> 次に、8インチ透明ガラスに8インチシリコンウエハを仮固定したサンプルをチャンバー内に配置し、所定の酸素濃度、温度、時間によって窒素雰囲気下における加熱処理を行い、仮固定剤の熱分解を行った。
 なお、仮固定剤は、酸素濃度10ppmの窒素雰囲気下における320℃、30分の加熱処理により熱分解を行った。
<5> 次に、熱分解を行ったサンプルが配置されたチャンバー内において非酸化性雰囲気としたまま雰囲気の温度を200℃とし、かかる温度で8インチ透明ガラスと8インチシリコンウエハの隙間にピンセットを入れて8インチシリコンウエハの脱離を行ったのちに、180℃に冷却し、その後、チャンバーからサンプルを取り出した。
 [実施例2A、比較例1A、2A]
 前記工程<1>において用いる仮固定剤の種類、成膜の条件を、前記工程<2>において仮固定の条件を、前記工程<4>において犠牲層を加熱する際の条件を、それぞれ表2に示すように変更したこと以外は、前記実施1Aと同様にして、シリコンウエハの裏面加工を行った。
 3.銅配線の変色による評価
 前記工程<5>において得られた8インチシリコンウエハの銅配線の変色を目視により観察し、以下の判定基準により判定した。
 ○:未処理の銅配線と同じ色に観察される。
 ×:未処理の銅配線に比べて黒ずんで観察される。
 以下に、実施例1A、2Aおよび比較例1A、2Aの評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000012
 表2に示したように、各実施例では、シリコンウエハ脱離時の酸素濃度が適切な範囲内に設定されていることに起因して、シリコンウエハに形成した銅配線の酸化を的確に抑制することができた。
 これに対して、各比較例では、シリコンウエハ脱離時の酸素濃度が適切な範囲内に設定されていないために、銅配線の酸化が顕著に認められる結果となった。
 次に、本発明の第2実施形態に対応する具体的実施例について説明する。
 1.仮固定剤の調製
 まず、以下に示すようなサンプルNo.1B、2Bの仮固定剤を調整した。
 [サンプルNo.1B]
<1,4-ポリブチレンカーボネートの合成>
 攪拌機、原料仕込み口、および窒素ガス導入口を備えた三口フラスコに1,4-ブタンジオール(168g、1.864モル)と炭酸ジエチル(264.2g、2.236モル)を加え、窒素雰囲気下で90~100℃に加熱し、混合物を溶解した。
 次いで、20%ナトリウムエトキシドエタノール溶液(80ml、0.186モル)を加えた後、窒素雰囲気下、90~100℃で1時間攪拌した。その後、反応容器内を30kPa程度に減圧し、90~100℃で1時間、120℃で1時間攪拌した。その後、更に、0.1kPaの真空下、150℃で1時間、180℃で2時間攪拌した。
 上記で得られた反応物をテトラヒドロフラン(2L)に溶解させ、ろ過を行い、触媒残渣を除去した。その後、その濾液を蒸留水/メタノール=1/9の溶液(20L)に投入、沈殿物を回収し、さらに、蒸留水/メタノール=1/9の溶液(10L)で充分に洗浄し、125gの1,4-ポリブチレンカーボネート(収率48%)を得た。
 合成した1,4-ポリブチレンカーボネートをGPCにより重量平均分子量を測定したところ、35,000であった。
<仮固定剤の作製>
 得られた1,4-ポリブチレンカーボネート100g、活性剤としてRhodorsil Photoinitiator2074(FABA)(ローディアジャパン(株)社製 Rhodorsil Photoinitiator2074)5g、増感剤として1-クロロ-4-プロポキシチオキサントン(英Lambson社製 SPEEDCURE CPTX(商品名))1.5gをアニソール(溶剤)393.5gに溶解し、樹脂濃度20%のサンプルNo.1Bの仮固定剤を作製した。
 なお、このサンプルNo.1Bの仮固定剤の粘度(25℃)は3,000mPa・sであった。
 [サンプルNo.2B]
<イソソルビド型ポリカーボネートの合成>
 イソソルビド102.01g(0.698モル)、炭酸ジフェニル149.53g(0.698モル)、炭酸セシウム0.0023g(6.98×10-6モル)をそれぞれ秤量し、その後、これらを反応容器に入れた。反応の第1工程として、窒素雰囲気下で、120℃に加熱した加熱槽に反応容器を浸し、攪拌し、原料を溶解させ、2時間攪拌を続けた。次に、反応の第2工程として、反応容器内を10kPaに減圧し、120℃で1時間攪拌を続けた。次に、反応の第3工程として、反応容器内を0.5kPa以下に減圧し、120℃で1.5時間攪拌を続けた。次に、反応の第4工程として、反応容器内を0.5kPa以下に減圧したまま、約30分かけて加熱槽の温度を180℃に昇温した後、180℃で1.5時間攪拌を続けた。なお、前記反応の第2~4工程で生じたフェノールは反応容器外へ留去した。
 反応容器内の圧力を常圧に戻した後、上記で得られた反応物をγ-ブチロラクトン1.2Lを加え、生成物を溶解させた。次に、イソプロパノール/水=9/1(v/v)の混合溶液12Lを攪拌させた状態で、生成物を溶解した溶液を滴下した。次に、析出した沈殿を吸引濾過で回収し、回収した沈殿をイソプロパノール/水=9/1(v/v)の混合溶液4Lで洗浄した後、吸引濾過で回収した。回収した沈殿を真空乾燥機で80℃/18時間乾燥することにより、上記化学式(2A)で表わされるイソソルビド型ポリカーボネートの粉末123.15g(収率100%)を得た。
 合成したイソソルビド型ポリカーボネートをGPCにより重量平均分子量を測定したところ、45,000であった。
<仮固定剤の調製>
 イソソルビド型ポリカーボネート100.0g、活性剤(光酸発生剤)としてGSID26-1(チバジャパン社製)2.0gをγ-ブチロラクトン198.0gに溶解し、樹脂成分濃度33重量%の仮固定剤を調製した。
 なお、このサンプルNo.2Bの仮固定剤の粘度(25℃)は22,000mPa・sであった。
Figure JPOXMLDOC01-appb-T000013
 2.半導体ウエハの裏面加工
 次に、以下に示すようにして、各サンプルNo.1B、2Bの仮固定剤を用いて、半導体ウエハの裏面に加工を施した。
 [実施例1B]
<1> まず、スピンコータを用いて、サンプルNo.1Bの仮固定剤を8インチの透明ガラスに塗布し(回転数:500rpm、時間:30秒)、次いで、ホットプレート上で、120℃、5分の条件でプリベーク(乾燥)を行い、厚さ20μmの仮固定剤からなる薄膜(犠牲層)を形成した。
 なお、この薄膜のTMA軟化点を、熱機械測定装置(ティー・エイ・インスツルメント社製、「Q400EM」)を用いて測定したところ、70℃であった。
<2> 次に、サブストレート・ボンダー(型番SB-8e、ズース・マイクロテック社製)を用い、8インチシリコンウエハを仮固定剤からなる薄膜を介して8インチ透明ガラスに仮固定した(雰囲気:10-2mbar、温度:120℃、荷重:10kN、時間:5分)。
 なお、この8インチシリコンウエハとしては、厚さ725μmであり、薄膜を接触させる側の面に、ピッチ50μm、幅50μm、高さ10μmの銅で構成される配線が一定方向に複数設けられているものを使用した。
<3> 次に、透明ガラスに仮固定されたシリコンウエハについて、研削装置(DISCO社製、「DFG8540」)を用いて半導体ウエハの下面(裏面)を研削して、半導体ウエハの厚さが145μmとなるように加工した。
<4> 次に、8インチ透明ガラスに8インチシリコンウエハを仮固定したサンプルをチャンバー内に配置し、所定の酸素濃度、温度、時間によって窒素雰囲気下における加熱処理を行い、仮固定剤の熱分解を行った。
 なお、仮固定剤は、酸素濃度10ppmの窒素雰囲気下における200℃、30分の加熱処理により熱分解を行った。
<5> 次に、熱分解を行ったサンプルを配置したチャンバー内において、非酸化性雰囲気としたまま8インチ透明ガラスと8インチシリコンウエハの隙間にピンセットを入れて8インチシリコンウエハの脱離を行ったのちに、180℃に冷却し、その後、チャンバーからサンプルを取り出した。
 [実施例2B、比較例1B、2B]
 前記工程<1>において用いる仮固定剤の種類、成膜の条件を、前記工程<2>において仮固定条件を、前記工程<4>において犠牲層を加熱する際の条件を、それぞれ表4に示すように変更したこと以外は、前記実施例1Bと同様にして、シリコンウエハの裏面加工を行った。
 3.銅配線の変色による評価
 前記工程<5>において得られた8インチシリコンウエハの銅配線の変色を目視により観察し、以下の判定基準により判定した。
 ○:未処理の銅配線と同じ色に観察される。
 ×:未処理の銅配線に比べて黒ずんで観察される。
 以下に、実施例1B、2Bおよび比較例1B、2Bの評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000014
 表4に示したように、各実施例では、シリコンウエハ脱離時の酸素濃度が適切な範囲内に設定されていることに起因して、シリコンウエハに形成した銅配線の酸化を的確に抑制することができた。
 これに対して、各比較例では、シリコンウエハ脱離時の酸素濃度が適切な範囲内に設定されていないために、銅配線の酸化が顕著に認められる結果となった。
 本発明の基材の加工方法によれば、仮固定剤を用いて形成された薄膜を介して支持基材上に基材を仮固定した状態で基材を加工し、その後、支持基材から基材を脱離させる際に、基材の支持基材側に形成されている導電部に含有される銅の酸化を的確に防止または抑制することができる。その結果、導電部における導電率の低下を抑制しつつ、基材に対して精度の高い加工が可能となる効果を奏する。したがって、本発明は、基材の加工に好適に用いることができる。
 1        支持基材
 2        犠牲層(薄膜)
 3        半導体ウエハ(基材)
 31       機能面

Claims (16)

  1.  ノルボルネン系樹脂またはポリカーボネート系樹脂を主材料とする樹脂成分を含む樹脂組成物で構成される仮固定剤を、銅を含有する導電部を有する機能面を備える基材と、前記基材を支持するための支持基材とのうちの少なくとも一方に供給したのち乾燥させて薄膜を形成する第1の工程と、
     前記薄膜を介して、前記基材と前記支持基材とを、前記機能面を前記支持基材側にして貼り合わせる第2の工程と、
     前記基材の前記機能面と反対側の面を加工する第3の工程と、
     前記薄膜を加熱することで、前記基材を前記支持基材から脱離させる第4の工程とを有し、
     前記第4の工程において、前記基材を前記支持基材から30ppm以下の酸素濃度の非酸化性雰囲気下で脱離させた後、前記基材を冷却することを特徴とする基材の加工方法。
  2.  前記樹脂成分がノルボルネン系樹脂を主材料とする樹脂成分である、請求項1に記載の基材の加工方法。
  3.  前記第4の工程において、前記薄膜の加熱により、前記樹脂成分が熱分解して溶融または気化することで、前記基材が前記支持基材から脱離される請求項2に記載の基材の加工方法。
  4.  前記第4の工程において、前記薄膜を200℃以上に加熱して前記基材を前記支持基材から脱離させる請求項2または3に記載の基材の加工方法。
  5.  前記第4の工程において、前記基材の前記支持基材からの脱離の後、前記基材を200℃未満に冷却する請求項2ないし4のいずれかに記載の基材の加工方法。
  6.  前記第4の工程における前記非酸化性雰囲気は、不活性ガス雰囲気である請求項2ないし5のいずれかに記載の基材の加工方法。
  7.  前記第1の工程において、前記基材および前記支持基材のうちの前記支持基材に対して選択的に前記仮固定剤を供給して前記薄膜を形成する請求項2ないし6のいずれかに記載の基材の加工方法。
  8.  前記第1の工程において、前記薄膜を、その平均厚さが10~100μmの厚さとなるように形成する請求項2ないし7のいずれかに記載の基材の加工方法。
  9.  前記樹脂成分がポリカーボネート系樹脂を主材料とする樹脂成分であり、
     前記第4の工程における非酸化性雰囲気下が、0.1ppm以上、30ppm以下の酸素濃度の非酸化性雰囲気下である、請求項1に記載の基材の加工方法。
  10.  前記第4の工程において、前記薄膜を200℃以上に加熱して前記基材を前記支持基材から脱離させる請求項9に記載の基材の加工方法。
  11.  前記第4の工程において、前記基材の前記支持基材からの脱離の後、前記基材を200℃未満に冷却する請求項9または10に記載の基材の加工方法。
  12.  前記第4の工程における前記非酸化性雰囲気は、不活性ガス雰囲気である請求項9ないし11のいずれかに記載の基材の加工方法。
  13.  前記第1の工程において、前記基材および前記支持基材のうちの前記支持基材に対して選択的に前記仮固定剤を供給して前記薄膜を形成する請求項9ないし12のいずれかに記載の基材の加工方法。
  14.  前記第1の工程において、前記薄膜を、その平均厚さが10~100μmの厚さとなるように形成する請求項9ないし13のいずれかに記載の基材の加工方法。
  15.  前記樹脂成分は、前記仮固定剤への活性エネルギー線の照射により、前記熱分解する温度が低下するものであり、前記第4の工程に先立って、前記活性エネルギー線を前記薄膜に照射する請求項9ないし14のいずれかに記載の基材の加工方法。
  16.  前記樹脂成分は、酸または塩基の存在下において前記熱分解する温度が低下するものであり、前記樹脂組成物は、さらに前記活性エネルギー線の照射により酸または塩基を発生する活性剤を含有する請求項15に記載の基材の加工方法。
PCT/JP2011/078887 2010-12-14 2011-12-14 基材の加工方法 WO2012081611A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-278682 2010-12-14
JP2010278682A JP2012126801A (ja) 2010-12-14 2010-12-14 基材の加工方法
JP2010278681A JP2012129325A (ja) 2010-12-14 2010-12-14 基材の加工方法
JP2010-278681 2010-12-14

Publications (1)

Publication Number Publication Date
WO2012081611A1 true WO2012081611A1 (ja) 2012-06-21

Family

ID=46244708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078887 WO2012081611A1 (ja) 2010-12-14 2011-12-14 基材の加工方法

Country Status (2)

Country Link
TW (1) TW201241134A (ja)
WO (1) WO2012081611A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094167A (ja) * 2018-12-11 2020-06-18 住友ベークライト株式会社 樹脂組成物および電子デバイス製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258331U (ja) * 1988-10-24 1990-04-26
JP2003297834A (ja) * 2002-03-29 2003-10-17 Toshiba Corp 半導体装置の製造方法
JP2005290146A (ja) * 2004-03-31 2005-10-20 Jsr Corp 被着体の剥離方法
JP2006041135A (ja) * 2004-07-26 2006-02-09 Sumitomo Bakelite Co Ltd 電子デバイスおよびその製造方法
JP2006193666A (ja) * 2005-01-14 2006-07-27 Sumitomo Bakelite Co Ltd 半導体用接着フィルム、半導体用接着フィルム付きキャリア材料および半導体装置
JP2010531385A (ja) * 2007-06-25 2010-09-24 ブルーワー サイエンス アイ エヌ シー. 高温スピンオン仮接合用組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258331U (ja) * 1988-10-24 1990-04-26
JP2003297834A (ja) * 2002-03-29 2003-10-17 Toshiba Corp 半導体装置の製造方法
JP2005290146A (ja) * 2004-03-31 2005-10-20 Jsr Corp 被着体の剥離方法
JP2006041135A (ja) * 2004-07-26 2006-02-09 Sumitomo Bakelite Co Ltd 電子デバイスおよびその製造方法
JP2006193666A (ja) * 2005-01-14 2006-07-27 Sumitomo Bakelite Co Ltd 半導体用接着フィルム、半導体用接着フィルム付きキャリア材料および半導体装置
JP2010531385A (ja) * 2007-06-25 2010-09-24 ブルーワー サイエンス アイ エヌ シー. 高温スピンオン仮接合用組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094167A (ja) * 2018-12-11 2020-06-18 住友ベークライト株式会社 樹脂組成物および電子デバイス製造方法
JP7287076B2 (ja) 2018-12-11 2023-06-06 住友ベークライト株式会社 樹脂組成物および電子デバイス製造方法

Also Published As

Publication number Publication date
TW201241134A (en) 2012-10-16

Similar Documents

Publication Publication Date Title
KR101693055B1 (ko) 반도체 웨이퍼의 가고정제 및 그것을 이용한 반도체 장치의 제조 방법
EP3174091B1 (en) Wafer processing laminate and method for processing wafer
JP5789974B2 (ja) 仮固定剤および基材の加工方法
KR101798687B1 (ko) 접착제 조성물, 접착 필름 및 첩부 방법
TWI496857B (zh) 黏著劑組成物
JP2012126800A (ja) 基材の加工方法
KR101472182B1 (ko) 접착제 조성물, 접착 필름 및 기판의 처리 방법
WO2012081611A1 (ja) 基材の加工方法
JP2012129325A (ja) 基材の加工方法
JP2011168663A (ja) 有機基板の仮固定剤及びそれを用いた半導体装置の製造方法
JP2012125684A (ja) 基材の加工方法
JP2012129327A (ja) 基材の加工方法
JP2012129324A (ja) 基材の加工方法
JP2012129326A (ja) 電子装置の製造方法および電子装置パッケージの製造方法
JP2012126799A (ja) 仮固定剤および基材の加工方法
JP2010248373A (ja) 樹脂組成物およびそれを用いた半導体装置
JP2012126802A (ja) 仮固定剤および基材の加工方法
TWI535815B (zh) 暫時固定劑及基材之加工方法
JP2012129328A (ja) 基材の加工方法
JP2012129323A (ja) 基材の加工方法
JP2012126801A (ja) 基材の加工方法
JP2012126798A (ja) 仮固定剤および基材の加工方法
JP5648385B2 (ja) 仮固定剤
JP2012126781A (ja) 熱分解性の樹脂組成物
WO2012070612A1 (ja) 電子装置の製造方法、電子装置、電子装置パッケージの製造方法、電子装置パッケージ、および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848162

Country of ref document: EP

Kind code of ref document: A1