WO2012081550A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2012081550A1
WO2012081550A1 PCT/JP2011/078701 JP2011078701W WO2012081550A1 WO 2012081550 A1 WO2012081550 A1 WO 2012081550A1 JP 2011078701 W JP2011078701 W JP 2011078701W WO 2012081550 A1 WO2012081550 A1 WO 2012081550A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition
partition wall
display device
support substrate
organic electroluminescence
Prior art date
Application number
PCT/JP2011/078701
Other languages
English (en)
French (fr)
Inventor
優 梶谷
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201180059829.3A priority Critical patent/CN103262655B/zh
Priority to KR1020137015090A priority patent/KR101885937B1/ko
Publication of WO2012081550A1 publication Critical patent/WO2012081550A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to a display device and a manufacturing method thereof.
  • the display device includes a support substrate and a large number of organic electroluminescence elements provided on the support substrate.
  • a partition wall for partitioning the pixel region is provided on the support substrate, and the plurality of organic electroluminescence elements are arranged in alignment with the regions partitioned by the partition wall.
  • Each organic electroluminescence element is formed by laminating a first electrode, an organic layer, and a second electrode in this order from the support substrate side.
  • the organic layer can be formed by, for example, a coating method.
  • a method for forming the organic layer 18 will be described with reference to FIGS. 16A, 16B, 16C, and 16D.
  • 16A, 16B, 16C, and 16D are views for explaining a manufacturing process of the display device.
  • the first electrode 16 and the partition wall 13 are formed on the support substrate 12.
  • the ink 17 containing the material which becomes the organic layer 18 is supplied to the region (concave portion) 15 surrounded by the partition wall 13 from the nozzle located above.
  • the supplied ink 17 is stored in a region 15 surrounded by the partition wall 13.
  • FIG. 16A first, the first electrode 16 and the partition wall 13 are formed on the support substrate 12.
  • the ink 17 containing the material which becomes the organic layer 18 is supplied to the region (concave portion) 15 surrounded by the partition wall 13 from the nozzle located above.
  • the supplied ink 17 is stored in a region 15 surrounded by the partition wall 13.
  • the organic layer 18 is then formed by vaporizing the solvent component of the ink 17.
  • the second electrode 19 is formed.
  • the second electrode 19 extends integrally over a plurality of organic electroluminescence elements, and is provided as an electrode shared by the plurality of organic electroluminescence elements.
  • the second electrode 19 connected to the plurality of organic electroluminescence elements is formed by forming a conductive thin film extending integrally on the partition wall 13 interposed between the adjacent organic electroluminescence elements. .
  • a second electrode 19, that is, a conductive thin film is formed by, for example, a vacuum deposition method.
  • the partition wall 13 when the partition wall 13 is lyophilic with respect to the ink 17, the ink 17 supplied to the specific recess 15 gets over the partition wall 13 and travels along the surface to the adjacent recess 15. May leak out.
  • a partition wall 13 having a certain degree of liquid repellency is generally provided on the support substrate 12.
  • the partition wall 13 exhibits liquid repellency
  • the ink 17 supplied to the recess 15 evaporates while being repelled by the partition wall 13, and becomes a thin film (organic layer 18). Therefore, the organic layer 18 having a non-uniform thickness may be formed.
  • the thickness of a predetermined portion in contact with the partition wall 13 of the organic layer 18 that is, the peripheral edge of the organic layer 18 is near the center of the recess 15. It may be thinner than that.
  • the electrical resistance of the peripheral portion of the organic layer 18 is lower than that of the central portion, and when the organic electroluminescence element is driven, current flows in the peripheral portion of the organic layer 18, and the central portion of the organic layer 18 It may be darker than the periphery. Conversely, since a layer having a desired thickness is not formed at the peripheral edge of the organic layer 18, the peripheral edge of the organic layer 18 may not emit light as intended.
  • FIGS. 17A, 17B and 17C are views for explaining a manufacturing process of the display device.
  • the reverse-tapered partition wall 13 has a cross-sectional shape that is separated from the support substrate 12 (first electrode 16) when cut in a direction orthogonal to the extending direction. Therefore, it is formed to be wide. Therefore, a tapered region is formed in the vicinity of a portion where the side surface of the partition wall 13 and the first electrode 16 are in contact with each other.
  • a substrate provided with a reverse-tapered partition wall 13 extends integrally over a plurality of organic electroluminescence elements and is shared by the plurality of organic electroluminescence elements.
  • the second electrode 19 is formed by a vacuum evaporation method, as shown in FIG. 17C, the second electrode 19 may be cut at the end of the partition wall when the thickness of the second electrode 19 is small. As a result, when the display device is driven, an organic electroluminescence element that does not emit light without being supplied with power as intended may be formed.
  • an object of the present invention is to provide a display device having a reverse-tapered partition wall in which a second electrode connected to a plurality of organic electroluminescence elements can be formed.
  • the present invention provides the following [1] to [5].
  • a support substrate a plurality of organic electroluminescence elements provided on the support substrate, and a partition provided so as to surround an outer periphery of the organic electroluminescence element when viewed from one side in a thickness direction of the support substrate
  • a display device comprising: The partition has a first partition provided facing a part of the outer periphery, and a second partition provided facing a remaining part of the outer periphery excluding the part.
  • the first partition wall is a forward tapered partition wall having an acute angle formed by a side surface and a bottom surface surrounding the outer periphery
  • the display device wherein the second partition wall is a reverse-tapered partition wall having an obtuse angle formed by a side surface and a bottom surface surrounding the outer periphery.
  • the first partition wall extends in a first direction orthogonal to the thickness direction of the support substrate, and has a predetermined direction in the thickness direction and a second direction orthogonal to the first direction.
  • the display device is composed of a plurality of partition members arranged at intervals,
  • the display device wherein the second partition wall is provided between the support substrate and the first partition wall at a portion where the first partition wall and the second partition wall overlap each other.
  • the organic electroluminescence element has a shape extending in a predetermined direction orthogonal to the thickness direction of the support substrate,
  • the first partition is disposed so as to surround the outer periphery of one and the other in the short direction of the organic electroluminescence element,
  • the display device according to [1] or [2], wherein the second partition wall is disposed so as to surround one outer periphery and the other outer periphery in the longitudinal direction of the organic electroluminescence element.
  • each of the first partition and the second partition is formed by patterning a layer of a photosensitive resin composition.
  • a display device having a reverse-tapered partition a display device having a second electrode that extends over a plurality of organic electroluminescence elements can be realized.
  • FIG. 1 is a sectional view schematically showing an enlarged part of the display device.
  • FIG. 2 is an enlarged cross-sectional view schematically showing the display device cut at the position of the cutting plane line AA shown in FIG.
  • FIG. 3 is an enlarged schematic cross-sectional view of the display device cut at the position of the cutting plane line BB shown in FIG.
  • FIG. 4 is an enlarged cross-sectional view schematically showing the display device cut at the position of the cutting plane line CC shown in FIG.
  • FIG. 5 is an enlarged cross-sectional view schematically showing the display device cut at the position of the cutting plane line DD shown in FIG. 6 is an enlarged cross-sectional view schematically showing the display device cut at the position of the cutting plane line EE shown in FIG.
  • FIG. 1 is a sectional view schematically showing an enlarged part of the display device.
  • FIG. 2 is an enlarged cross-sectional view schematically showing the display device cut at the position of the cutting plane line AA shown in FIG.
  • FIG. 3
  • FIG. 7A is a diagram for explaining a manufacturing process of the display device.
  • FIG. 7B is a diagram for explaining a manufacturing process of the display device.
  • FIG. 7C is a diagram for explaining a manufacturing process of the display device.
  • FIG. 8A is a diagram for explaining a manufacturing process of the display device.
  • FIG. 8B is a diagram for explaining a manufacturing process of the display device.
  • FIG. 8C is a diagram for explaining a manufacturing process of the display device.
  • FIG. 9A is a diagram for explaining a manufacturing process of the display device.
  • FIG. 9B is a diagram for explaining a manufacturing process of the display device.
  • FIG. 9C is a diagram for explaining a manufacturing process of the display device.
  • FIG. 10A is a diagram for explaining a manufacturing process of the display device.
  • FIG. 10B is a diagram for explaining a manufacturing process of the display device.
  • FIG. 10C is a diagram for explaining a manufacturing process for the display device.
  • FIG. 11A is a diagram for explaining a manufacturing process of the display device.
  • FIG. 11B is a diagram for explaining a manufacturing process of the display device.
  • FIG. 11C is a diagram for explaining a manufacturing process of the display device.
  • FIG. 12A is a diagram for explaining a manufacturing process of the display device.
  • FIG. 12B is a diagram for explaining a manufacturing process of the display device.
  • FIG. 12C is a diagram for describing a manufacturing process of the display device.
  • FIG. 13A is a diagram for explaining a manufacturing process of the display device.
  • FIG. 13B is a diagram for explaining a manufacturing process of the display device.
  • FIG. 13C is a diagram for describing a manufacturing process of the display device.
  • FIG. 14A is a diagram for explaining a manufacturing process of the display device.
  • FIG. 14B is a diagram for explaining a manufacturing process of the display device.
  • FIG. 14C is a diagram for explaining a manufacturing process for the display device.
  • FIG. 15A is a diagram for explaining a manufacturing process of the display device.
  • FIG. 15B is a diagram for explaining a manufacturing process of the display device.
  • FIG. 15C is a diagram for explaining a manufacturing process for the display device.
  • FIG. 16A is a diagram for explaining a manufacturing process of the display device.
  • FIG. 16B is a diagram for explaining a manufacturing process of the display device.
  • FIG. 16C is a diagram for describing a manufacturing process of the display device.
  • FIG. 16A is a diagram for explaining a manufacturing process of the display device.
  • FIG. 16B is a diagram for explaining a manufacturing process of the display device.
  • FIG. 16D is a diagram for describing a manufacturing process of the display device.
  • FIG. 17A is a diagram for explaining a manufacturing process of the display device.
  • FIG. 17B is a diagram for explaining a manufacturing process of the display device.
  • FIG. 17C is a diagram for describing a manufacturing process of the display device.
  • the display device of the present invention When the display device of the present invention is viewed from one of the supporting substrate, the plurality of organic electroluminescent elements provided on the supporting substrate, and the thickness direction Z of the supporting substrate of the organic electroluminescent element (in the case of “in plan view”) And a partition provided so as to surround each of the outer peripheries of the first and second partitions, and a first partition provided facing a part of the outer periphery and a part of the outer periphery
  • the first partition is a forward-tapered partition with an acute angle formed by a side surface and a bottom surface surrounding the outer periphery
  • the partition wall is a display device that is a reverse-tapered partition wall having an obtuse angle formed by a side surface and a bottom surface surrounding the outer periphery.
  • the present invention is applied to a display device in which each second electrode of a plurality of organic electroluminescence elements is formed continuously.
  • an active matrix drive type display device will be described as an example of such a display device.
  • FIG. 1 is a cross-sectional view schematically showing an enlarged part of the display device 1 of the present embodiment.
  • FIG. 2 is an enlarged cross-sectional view schematically showing the display device cut at the position of the cutting plane line AA shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view schematically showing the display device cut at the position of the cutting plane line BB shown in FIG.
  • FIG. 4 is an enlarged cross-sectional view schematically showing the display device cut at the position of the cutting plane line CC shown in FIG.
  • FIG. 5 is an enlarged cross-sectional view schematically showing the display device cut at the position of the cutting plane line DD shown in FIG.
  • FIG. 6 is an enlarged cross-sectional view schematically showing the display device cut at the position of the cutting plane line EE shown in FIG.
  • the display device 1 is mainly provided with a support substrate 2, a partition wall 3 defining a partition set in advance on the support substrate 2, and a plurality of partitions provided in the partition defined by the partition wall 3.
  • the organic electroluminescence element 4 is included.
  • the partition 3 is provided so that each outer periphery of the some organic electroluminescent element 4 may be enclosed by planar view.
  • the partition walls 3 may be provided so as to surround the outer periphery of the organic electroluminescence element 4 in plan view.
  • the partition walls 3 are provided in regions other than the region where each organic electroluminescence element 4 is provided in plan view.
  • the plurality of organic electroluminescence elements 4 are respectively arranged in a matrix (details will be described later).
  • the partition 3 is provided in the area
  • a plurality of recesses 5 defined by the partition walls 3 and the support substrate 2 are set on the support substrate 2.
  • the concave portion 5 corresponds to a section defined by the partition wall 3.
  • the plurality of recesses 5 are arranged in a matrix in a plan view. That is, the plurality of recesses 5 are provided with a predetermined interval in the row direction X and aligned in the column direction Y with a predetermined interval.
  • the shape of each recess 5 in plan view is not particularly limited.
  • the recessed part 5 is formed in a substantially rectangular shape, a substantially elliptical shape, etc. by planar view.
  • a concave portion 5 having a substantially elliptical shape in plan view which has a major axis extending in the longitudinal direction and a minor axis extending in the lateral direction orthogonal to the major axis.
  • the row direction X and the column direction Y are orthogonal to the thickness direction Z of the support substrate 2 and are also orthogonal to each other.
  • the “substantially elliptical shape” includes not only an elliptical shape but also a shape in which one end and the other end of two line segments arranged in parallel with each other are connected by a curve.
  • the partition 3 includes a first partition 3a and a second partition 3b.
  • the first partition 3 a is provided facing a part of the outer periphery of the organic electroluminescence element 4, that is, the outer periphery located in the short direction of the organic electroluminescence element 4 in plan view.
  • the second partition 3 b is provided facing the remaining part of the outer periphery of the organic electroluminescence element 4 except the part, that is, the outer periphery located in the longitudinal direction of the organic electroluminescence element 4.
  • a part of the outer periphery of the organic electroluminescence element 4 is in contact with the first partition 3a, and the remaining part other than the part is the second. It is in contact with the partition wall 3b.
  • the outer periphery of the organic electroluminescence element 4 is surrounded by the first partition 3a and the second partition 3b.
  • the partition 3 since the partition 3 is formed in a lattice shape, the partition 3 includes a plurality of partition members extending linearly in the row direction X and a plurality of partitions extending linearly in the column direction Y. Member.
  • the partition 3 in the present embodiment is composed of a plurality of first partitions 3 a extending in the column direction Y and a plurality of second partitions 3 b extending in the row direction X.
  • the plurality of first partition walls 3 a are provided between the organic electroluminescence elements 4 adjacent to each other in the row direction X.
  • the plurality of second partition walls 3 b are provided between the organic electroluminescence elements 4 adjacent to each other in the column direction Y.
  • the first partition 3 a is provided in contact with one and the other end surfaces in the row direction X of the organic electroluminescence element 4.
  • the first partition 3a is a forward tapered partition having an acute angle ⁇ 1 formed between a side surface surrounding the outer periphery of the organic electroluminescence element 4 and a bottom surface in plan view.
  • the second partition 3b is provided in contact with one and the other end faces of the organic electroluminescence element 4 in the column direction Y.
  • the second partition wall 3b is a reverse-tapered partition wall having an obtuse angle ⁇ 2 formed between a side surface surrounding the outer periphery of the organic electroluminescence element 4 and a bottom surface in plan view.
  • the bottom surface of the first partition wall 3a means a plane closest to the support substrate 2 in the outer peripheral surface of the first partition wall 3a.
  • the side surface of the first partition wall 3a refers to the surface of the outer peripheral surface of the first partition wall 3a excluding the plane (upper surface) and the bottom surface that are farthest from the support substrate 2, that is, the organic electroluminescence element 4 in plan view. It means a surface located so as to surround the outer periphery (contour).
  • the angle ⁇ 1 formed between the side surface of the first partition 3a and the bottom surface of the first partition 3a is a plane orthogonal to the extending direction of the first partition 3a (column direction Y in the present embodiment). It means an angle in a cross section when the first partition 3a is cut.
  • the bottom surface of the second partition wall 3b means a plane closest to the support substrate 2 among the outer peripheral surfaces of the second partition wall 3b.
  • the side surface of the second partition wall 3b refers to the surface of the outer peripheral surface of the second partition wall 3b excluding the plane (upper surface) and the bottom surface that are the farthest from the support substrate 2, that is, the organic electroluminescence element 4 in plan view. It means a surface located so as to surround the outer periphery (contour).
  • the angle ⁇ 2 formed between the side surface of the second partition wall 3b and the bottom surface of the second partition wall 3b is a plane orthogonal to the direction in which the first partition wall 3a extends (the row direction X in this embodiment). It means the angle in the cross section when the first partition 3b is cut.
  • the plurality of first partition walls 3a extending in the column direction Y and the plurality of second partition walls 3b extending in the row direction X overlap in plan view.
  • either the first partition 3a or the second partition 3b may be disposed closer to the support substrate 2.
  • the second partition 3b is disposed closer to the support substrate 2 than the first partition 3a. That is, it is preferable that the second partition 3b is provided between the support substrate 2 and the first partition at a portion where the first partition 3a and the second partition 3b overlap.
  • the conductive thin film 10a is provided on the first partition wall 3a as will be described later.
  • the second electrode 10 of the organic electroluminescence element 4 adjacent to the extending direction of the first partition 3a (column direction Y in the present embodiment) is removed from the conductive thin film on the first partition 3a. It continues reliably via 10a.
  • the angle ⁇ 1 is usually 10 ° to 85 °, preferably 30 ° to 60 °.
  • the angle ⁇ 2 is normally 95 ° to 170 °, preferably 110 ° to 135 °.
  • the organic electroluminescence element 4 is provided in a section defined by the partition 3 (that is, the recess 5).
  • each of the some organic electroluminescent element 4 is provided for every recessed part 5.
  • the plurality of organic electroluminescence elements 4 are arranged in a matrix like the recesses 5.
  • the plurality of organic electroluminescent elements 4 are provided on the support substrate 2 with a predetermined interval in the row direction X and aligned in the column direction Y with a predetermined interval.
  • three types of organic electroluminescence elements 4 are provided. That is, (1) red light emitting organic electroluminescence element 4R that emits red light, (2) green light emitting organic electroluminescence element 4G that emits green light, and (3) blue light emitting organic electroluminescence that emits blue light.
  • An element 4B is provided. These three types of organic electroluminescent elements 4 (4R, 4G, 4B) are arranged in the following order in the column direction Y in the following rows (I), (II), (III), for example, as shown in FIG. Consists of repeated placement. (I) A row in which a plurality of red light-emitting organic electroluminescent elements 4R are arranged in the row direction X at predetermined intervals.
  • an organic electroluminescence element that emits white light may be further provided.
  • a monochrome display device may be realized by providing only one type of organic electroluminescence element.
  • the organic electroluminescence element 4 includes a first electrode 6, an organic layer, and a second electrode 10 stacked in this order from the support substrate side.
  • the organic electroluminescence element 4 includes at least one light emitting layer as an organic layer.
  • the organic electroluminescence element 4 may further include a layer different from the light emitting layer as needed in addition to the single light emitting layer.
  • a hole injection layer, a hole transport layer, an electron block layer, an electron transport layer, an electron injection layer, and the like are provided between the first electrode 6 and the second electrode 10.
  • Two or more light emitting layers may be provided between the first electrode 6 and the second electrode 10.
  • an inorganic layer or a mixed layer containing an organic substance and an inorganic substance may be provided between the first electrode 6 and the second electrode 10.
  • the organic electroluminescence element 4 includes a first electrode 6 and a second electrode 10 as a pair of electrodes including an anode and a cathode.
  • One of the first electrode 6 and the second electrode 10 is provided as an anode, and the other electrode is provided as a cathode.
  • first electrode 6 that functions as an anode
  • first organic layer 7 that functions as a hole injection layer
  • second organic layer 9 that functions as a light emitting layer
  • second electrode 10 that functions as a cathode.
  • the organic electroluminescence element 4 configured by being stacked on the support substrate 2 in this order will be described.
  • the red light emitting organic electroluminescent element 4R includes a red light emitting layer 9R that emits red light
  • the green light emitting organic electroluminescent element 4G includes a green light emitting layer 9G that emits green light
  • the blue light emitting organic electroluminescent element 4B includes: A blue light emitting layer 9B that emits blue light is provided.
  • the first electrode 6 is provided for each organic electroluminescence element 4. That is, the same number of first electrodes 6 as the organic electroluminescence elements 4 are provided on the support substrate 2.
  • the first electrodes 6 are provided corresponding to the arrangement of the organic electroluminescence elements 4, and are arranged in a matrix like the organic electroluminescence elements 4.
  • the partition wall 3 of the present embodiment is mainly formed in a grid pattern in a region outside the first electrode 6 and covers a peripheral portion that is a part of the first electrode 6. Is formed.
  • the first organic layer 7 functioning as a hole injection layer is provided on the first electrode 6 of the recess 5.
  • the first organic layer 7 is provided with a different material or thickness depending on the type of the organic electroluminescence element 4 as necessary. From the viewpoint of the simplicity of the process of forming the first organic layer 7, it is preferable to form all the first organic layers 7 with the same material and the same thickness.
  • the second organic layer 9 functioning as a light emitting layer is provided on the first organic layer 7 in the recess 5.
  • the light emitting layer is provided according to the type of the organic electroluminescence element 4. Therefore, the red light emitting layer 9R is provided in the recess 5 where the red light emitting organic electroluminescence element 4R is provided, the green light emitting layer 9G is provided in the recess 5 where the green light emitting organic electroluminescence element 4G is provided, and the blue light emitting layer 9B is blue emitting. It is provided in the recess 5 in which the organic electroluminescence element 4B is provided.
  • the conductive thin film 10a is formed over the display area where the plurality of organic electroluminescence elements 4 are provided. That is, the conductive thin film 10 a is formed not only on the second organic layer 9 but also on the partition 3. Of the conductive thin film 10a, the one provided on the second organic layer 9 is referred to as a second electrode 10 in this specification.
  • the 2nd electrode 10 may be cut
  • the second electrode 10 is cut at an end of the second partition 3 b where the organic electroluminescence element 4 and the second partition 3 b are in contact with each other in plan view. ing.
  • the second electrode 10 is not cut at the end of the forward tapered first partition 3 a. In this way, the conductive thin film 10a formed on the first partition 3a and the second electrode 10 of the organic electroluminescence element 4 are continuously formed integrally.
  • the second electrode 10 of the organic electroluminescence element 4 adjacent in the row direction X is integrally formed continuously through the conductive thin film 10a on the first partition 3a. Furthermore, in the present embodiment, since the first partition 3a is formed extending in the column direction Y, the second electrode 10 of the organic electroluminescence element 4 adjacent in the column direction Y is on the first partition 3a.
  • the conductive thin films 10a are integrally connected to each other. Thus, the second electrodes 10 of all the organic electroluminescence elements are formed so as to be connected via the conductive thin film 10a on the first partition 3a. Therefore, the second electrode 10 functions as an electrode common to all the organic electroluminescence elements 4.
  • the partition 3 is provided in contact with the support substrate 2 so as to cover the peripheral edge of the first electrode 6.
  • an insulating film may be further provided between the partition wall 3 and the support substrate 2.
  • the insulating film is formed, for example, in a lattice shape like the partition wall 3 and covers the peripheral edge of the first electrode 6.
  • Such an insulating film is preferably formed of a material that is more lyophilic than the partition 3.
  • FIG. A is an enlarged plan view schematically showing one organic electroluminescence element being formed
  • FIG. B is one organic electroluminescence element being cut at the position of the cutting plane line AA in FIG.
  • FIG. 2C is a cross-sectional view schematically showing an enlarged luminescence element
  • FIG. C is a cross-sectional view schematically showing an enlarged organic electroluminescence element in the process of being cut at the position of the cutting plane line DD in FIG.
  • the scales of corresponding members do not necessarily correspond to each other.
  • the support substrate 2 on which the first electrode 6 is formed is prepared.
  • the support substrate 2 may be prepared by obtaining the support substrate on which the first electrode 6 is formed from the market.
  • this step may include a step of forming the first electrode 6 on the support substrate 2.
  • a substrate on which circuits for individually driving a plurality of organic electroluminescence elements are formed in advance can be used as the support substrate 2.
  • a substrate on which a TFT (Thin Film Transistor) and a capacitor are formed in advance can be used as the support substrate.
  • a plurality of first electrodes 6 are formed in a matrix on the prepared support substrate 2.
  • the first electrode 6 is formed, for example, by forming a conductive thin film on one surface of the support substrate 2 and patterning it in a matrix by a mask pattern forming process using a photolithography method and a patterning process using the formed mask pattern as a mask. By forming. Further, for example, a mask having an opening formed in a predetermined portion is disposed on the support substrate 2, and a conductive material is selectively deposited on the predetermined portion on the support substrate 2 through the mask, thereby the first electrode 6. The pattern may be formed. The material of the first electrode 6 will be described later.
  • the partition walls 3 are formed.
  • the partition walls 3 are formed by, for example, (1) patterning a layer of the photosensitive resin composition by a photolithography method, thereby forming the reverse tapered second partition walls 3b and the forward tapered first partition walls 3a.
  • each of the first partition wall 3a and the second partition wall 3b can be formed by patterning a layer of the photosensitive resin composition, and (2) a photosensitive resin by a photolithography method.
  • a reverse-tapered second partition wall 3b is formed, and then a portion of the formed reverse-tapered second partition wall 3b is left as a partition wall with the photosensitive resin composition.
  • Covering and processing the reverse taper shape into a forward taper shape by a dry etching method forms the reverse taper-shaped second partition wall 3b and the forward taper-shaped first partition wall 3a. It can be.
  • the second partition 3b is formed.
  • the photosensitive resin composition is first apply
  • the method for applying the photosensitive resin composition include spin coating and slit coating.
  • the pre-baking step is performed by heating the support substrate at a temperature of, for example, 80 ° C. to 110 ° C. for 60 seconds to 180 seconds.
  • the solvent component in the photosensitive resin composition is removed, and the second partition wall forming film 8b is formed.
  • a photomask 21b having a predetermined pattern for shielding light is disposed above the support substrate 2 on which the second partition wall formation film 8b is formed, and the second partition wall formation film is formed via the photomask 21b.
  • An exposure process for exposing the film 8b is performed.
  • the photosensitive resin that can be included in the second partition wall forming film 8b includes a positive photosensitive resin and a negative photosensitive resin, but any type of resin may be used in this step.
  • the second partition wall 3b is mainly composed of the formed second partition wall forming film 8b.
  • the light L is irradiated to the remaining part outside the part to be formed.
  • the developing process is performed.
  • the second partition 3b is patterned.
  • a post-bake process is performed.
  • the second partition wall 3b is formed by curing the second partition wall forming film 8b by heating the substrate at a temperature of 200 ° C. to 230 ° C. for 15 minutes to 60 minutes, for example.
  • the so-called reverse tapered second partition 3b is formed.
  • the angle ⁇ 2 formed by the side surface of the second partition wall 3b and the bottom surface of the second partition wall 3b can be adjusted to an arbitrary angle by appropriately adjusting the elements described later.
  • the first partition 3a is formed next in this embodiment.
  • the photosensitive resin composition is first apply
  • the method for applying the photosensitive resin composition include spin coating and slit coating.
  • a pre-baking process is usually performed.
  • the pre-baking process is performed by heating the support substrate 2 at a temperature of 80 ° C. to 110 ° C. for 60 seconds to 180 seconds, for example.
  • the solvent component is removed by this pre-baking step to form the first partition wall forming film 8a.
  • the photosensitive resin includes a positive photosensitive resin and a negative photosensitive resin.
  • any type of photosensitive resin may be used.
  • a positive type photosensitive resin when used, light L is irradiated to the remaining part of the first partition forming film 8a that is mainly outside the part where the first partition 3a is to be formed.
  • a negative photosensitive resin when used, light L is irradiated mainly on the portion where the first partition 3a is to be formed in the first partition forming film 8a.
  • a photomask 21a is disposed above the support substrate 2, and the light L is irradiated through the photomask 21a.
  • the light L is irradiated mainly on the remaining part of the first partition forming film 8a outside the part where the first partition 3a is to be formed.
  • the light L irradiated to the first partition forming film 8a is schematically shown by white arrows.
  • FIGS. 11A, 11B, and 11C a development process is performed. As a result, the first partition 3a is patterned. When developing the first partition wall forming film 8a, the developer comes into contact with the second partition wall 3b. However, as described above, since the second partition 3b is subjected to the post-baking process, the second partition 3b is not etched even if it contacts the developer.
  • the first partition wall forming film 8a is cured by heating the support substrate 2 at a temperature of 200 ° C. to 230 ° C. for 15 to 60 minutes to form the first partition wall 3a.
  • the first partition 3a having a forward taper shape is formed.
  • the angle ⁇ 1 formed by the side surface of the first partition wall 3a and the bottom surface of the first partition wall 3a can be adjusted to an arbitrary angle by appropriately adjusting the following elements.
  • the angle ⁇ 1 formed between the side surface of the first partition 3a and the bottom surface of the first partition 3a, and the angle ⁇ 2 formed between the side surface of the second partition 3b and the bottom surface of the second partition 3b are mainly used. It depends on the type of photosensitive resin to be used. Therefore, for example, a material capable of forming a forward tapered partition 3 (first partition 3a) by performing an exposure process and a development process under predetermined conditions from a plurality of types of photosensitive resins available from the market. Alternatively, a material capable of forming a reverse-tapered partition wall 3 (second partition wall 3b) is appropriately selected by performing an exposure step and a development step under predetermined conditions, and this may be used to form a partition wall. .
  • the angle formed between the side wall of the partition wall and the bottom surface of the partition wall can also be adjusted by adjusting the development time.
  • the longer the development time the more the side of the second partition 3b and the bottom of the second partition 3b are formed.
  • the angle ⁇ 2 tends to increase.
  • the angle formed between the side wall of the partition wall and the bottom surface of the partition wall can be adjusted by adjusting the exposure amount.
  • the side surface of the second partition 3b and the bottom surface of the second partition 3b are formed.
  • the angle ⁇ 2 tends to decrease.
  • the angle formed between the side wall of the partition wall and the bottom surface of the partition wall can be adjusted.
  • a negative photosensitive resin when used, when the first partition 3a having a forward tapered shape is formed as the distance between the photomask 21b and the support substrate 2 is decreased, the side surface of the first partition 3a is generally used. And the bottom surface of the first partition wall 3a tend to be large, and in the case of forming the second partition wall 3b having a reverse taper shape, generally, the side surface of the second partition wall 3b and the second partition wall 3b The angle ⁇ 2 formed with the bottom surface of the partition wall 3b tends to be small.
  • the photosensitive resin composition is generally used by blending a binder resin, a crosslinking material, a photoreaction initiator, a solvent, and other additives.
  • the binder resin is a resin polymerized in advance.
  • the binder resin include a non-polymerizable binder resin that does not have self-polymerizability and a polymerizable binder resin into which a substituent having polymerizability is introduced.
  • the binder resin has a weight average molecular weight in the range of 5,000 to 400,000 determined by gel permeation chromatography (GPC) using polystyrene as a standard.
  • binder resin examples include phenol resin, novolac resin, melamine resin, acrylic resin, epoxy resin, and polyester resin.
  • the binder resin the monomers may be used alone or in combination of two or more.
  • the proportion of the binder resin is usually 5% to 90% by mass fraction with respect to the total solid content of the photosensitive resin composition.
  • the cross-linking material is a compound that can be polymerized by an active radical, an acid, or the like generated from the photopolymerization initiator when irradiated with light.
  • the crosslinking agent include compounds having a polymerizable carbon-carbon unsaturated bond.
  • the crosslinking material may be a monofunctional compound having one polymerizable carbon-carbon unsaturated bond in the molecule, or a bifunctional or more polyfunctional compound having two or more polymerizable carbon-carbon unsaturated bonds. It may be a compound.
  • a crosslinking material is 0.1 mass part or more and 70 mass parts or less normally, when the total amount of binder resin and a crosslinking material is 100 mass parts.
  • the photoreaction initiator is usually 1 part by mass or more and 30 parts by mass or less when the total amount of the binder resin and the crosslinking material is 100 parts by mass.
  • the positive photosensitive resin is a resin in which a light irradiated portion is dissolved in a developer.
  • the positive photosensitive resin is generally constituted by combining a resin and a compound that becomes hydrophilic by a photoreaction.
  • the positive photosensitive resin it is possible to use a resin combining a resin having chemical resistance and adhesion such as novolak resin, polyhydroxystyrene, acrylic resin, methacrylic resin, polyimide, and a photodegradable compound. .
  • Examples of the developer used for development include an aqueous potassium chloride solution and an aqueous tetramethylammonium hydroxide (TMAH) solution.
  • TMAH tetramethylammonium hydroxide
  • the angle ⁇ 1 formed between the side surface of the first partition 3a and the bottom surface of the first partition 3a and the angle ⁇ 2 formed between the side surface of the second partition 3b and the bottom surface of the second partition 3b are mainly used.
  • many of the plurality of types of photosensitive resins available on the market can be used as a material for forming the forward tapered partition (first partition 3a).
  • materials manufactured by Nippon Zeon Co., Ltd. ZPN 2464, ZPN 1168
  • the shape of the partition 3 and the arrangement thereof are appropriately set according to the specifications of the display device such as the number of pixels and the resolution, the ease of manufacturing, and the like.
  • the width of the partition 3 in the row direction X or the column direction Y is about 5 ⁇ m to 50 ⁇ m
  • the height of the partition 3 is about 0.5 ⁇ m to 5 ⁇ m
  • the partition 3 adjacent in the row direction X or the column direction Y The interval, that is, the width of the recess 5 in the row direction X or the column direction Y is about 10 ⁇ m to 200 ⁇ m.
  • the width of the first electrode 6 in the row direction X or the column direction Y is about 10 ⁇ m to 200 ⁇ m, respectively.
  • an organic layer is formed.
  • at least one organic layer among the one or more organic layers is formed by a coating method.
  • the first organic layer 7 and the second organic layer 9 are formed by a coating method.
  • a first organic layer 7 that functions as a hole injection layer is formed.
  • an ink 22 containing a material that becomes the first organic layer 7 is supplied to a region (concave portion 5) surrounded by the partition walls 3.
  • the ink 22 is appropriately supplied by an optimum method in consideration of the shape of the partition wall 3, the simplicity of the film forming process, the film forming property, and the like.
  • the ink 22 is supplied to the recess 5 by, for example, an inkjet printing method, a nozzle coating method, a relief printing method, an intaglio printing method, or the like.
  • the supplied ink 22 is solidified to form the first organic layer 7.
  • the ink 22 can be solidified by, for example, natural drying, heat drying, or vacuum drying.
  • the ink 22 includes a material that is polymerized by applying energy
  • the ink 22 is supplied to the concave portion 5, and then the ink 22 is heated or irradiated with light.
  • the material constituting the organic layer may be polymerized.
  • the second organic layer 9 that functions as a light emitting layer is formed next.
  • the second organic layer 9 can be formed in the same manner as the first organic layer 7. That is, three types of inks each including a material for forming the red light emitting layer 9R, the green light emitting layer 9G, and the blue light emitting layer 9B are respectively supplied to predetermined regions (recessed portions 5) surrounded by the partition walls 3 and further solidified. As a result, a red light emitting layer 9R, a green light emitting layer 9G, and a blue light emitting layer 9B are formed.
  • the second electrode 10 is formed.
  • the conductive thin film 10a is formed on one surface (entire surface) in a display region in which at least a plurality of organic electroluminescence elements are provided.
  • the conductive thin film 10a is formed on one surface by vapor deposition.
  • a portion of the conductive thin film 10 a provided on the second organic layer 9 corresponds to the second electrode 10.
  • the second electrode 10 when the thickness of the second electrode 10 is thin, even if the conductive thin film 10a is formed on one surface, the conductive thin film is formed at the end portion on the reverse tapered second partition 3b. 10a may be cut, and therefore, the second electrode 10 of the organic electroluminescence element 4 and the conductive thin film 10a on the second partition 3b may be cut.
  • the conductive thin film 10a is also formed on the side surface (the surface forming an angle ⁇ 1 with respect to the bottom surface of the first partition wall 3a) on the forward tapered first partition wall 3a. Therefore, the second electrode 10 is not cut at the end of the first partition 3a, and the second electrode 10 of the organic electroluminescence element 4 and the conductive thin film 10a on the first partition 3a are connected. It is formed. Therefore, the second electrodes 10 of the organic electroluminescence elements 4 adjacent in the row direction X are formed so as to be connected via the conductive thin film 10a on the first partition 3a.
  • the forward tapered first partition 3a is provided so as to face a part of the outer periphery of the organic electroluminescence element 4, the second electrode 10 and the first partition 3a of the organic electroluminescence element 4 are provided.
  • the conductive thin film 10a is formed continuously. Therefore, even if the reverse-tapered second partition 3b is provided, the second electrode 10 of the organic electroluminescence element 4 can be prevented from being cut at the end of the partition 3, and a plurality of organic electroluminescence elements 4 can be formed.
  • the second electrode 10 of the plurality of organic electroluminescence elements 4 can be connected to each other without increasing the thickness of the second electrode 10 more than necessary. It can be formed to be continuous.
  • the first partition 3 a extends in a first direction (row direction X in the present embodiment) orthogonal to the thickness direction Z of the support substrate 2.
  • a first direction row direction X in the present embodiment
  • second direction columnumn direction Y in the present embodiment
  • the second partition wall 3b is provided between the support substrate 2 and the first partition wall 3a. Therefore, in a portion where the first partition 3a and the second partition 3b overlap in plan view, the second partition 3b is covered with the first partition 3a, that is, the first partition 3a is exposed.
  • the conductive thin film 10a When the conductive thin film 10a is formed on the entire surface of the support substrate 2 provided with the first partition 3a, the second partition 3a and the second partition 3b overlap each other in plan view. Since the partition wall 3b is covered with the first partition wall 3a, the conductive thin film 10a is formed on the first partition wall 3a along the extending direction of the first partition wall 3a. In the present embodiment, since the first partition 3 a is formed to extend in the column direction Y, the second electrodes 10 of the organic electroluminescence elements 4 adjacent in the column direction Y are on the first partition 3 a. The conductive thin films 10a are connected to each other. As a result, the second electrodes 10 of all the organic electroluminescence elements are formed to be continuous with each other via the conductive thin film 10a on the first partition 3a. Therefore, the second electrode 10 functions as an electrode common to all the organic electroluminescence elements 4.
  • the reverse taper-shaped 2nd partition 3b faces the organic electroluminescent element 4, and is arrange
  • the supplied ink 22 is filled so as to be sucked into a tapered portion in the vicinity of a portion where the first electrode 16 and the second partition wall 3b are connected by capillary action. By evaporating the ink solvent while maintaining this state, an organic layer is also formed at a tapered portion near the portion where the first electrode 6 and the partition wall 3 are connected. Thereby, an organic layer having a uniform thickness can be obtained.
  • the ink 22 supplied to the region (recessed portion 5) surrounded by the partition 3 is dried while being repelled by the first partition 3a at the portion where the first electrode 6 having the forward taper shape and the first partition 3a are connected. It is possible. However, by providing the reverse tapered second partition 3b so as to face the organic electroluminescent element 4 and surround a part of the organic electroluminescent element 4, at least the entire organic layer is surrounded only by the forward tapered partition. An organic layer having a flatter and uniform thickness can be obtained than when an organic layer is formed in the recessed portion.
  • part in which the thickness of the organic layer becomes thinner in the recessed part 5 is largely dependent on the shape of the recessed part 5 in planar view.
  • an organic electroluminescence element having a shape extending in a predetermined direction perpendicular to the thickness direction of the support substrate is formed in a concave portion surrounded only by a forward-tapered partition wall, that is, in the column direction as in this embodiment
  • the ink supplied to the concave portion is either one end or the other end in the longitudinal direction (column direction Y), or the central portion in the short direction (row direction X). Tend to gather.
  • the organic layer has a thinner one of the one end side and the other end side in the longitudinal direction (column direction Y), or one end side and the other end side in the short direction (row direction X). It tends to be thinner.
  • the first partition 3a is short in the plan view (row direction X) of the organic electroluminescence element 4 in plan view as in the present embodiment.
  • the side surface surrounding the linear outer periphery in the short direction extends linearly in the longitudinal direction in plan view.
  • the second partition wall 3b faces one and the other end faces in the longitudinal direction (column direction Y) of the organic electroluminescence element 4, that is, surrounds the arc-shaped outer circumference in the longitudinal direction of the organic electroluminescence element (outer circumference). It is preferable that the side surface (which faces the surface) extends in an arc shape in the short direction in plan view.
  • the ink 22 supplied to the recess 5 is disposed on one end side and the other end side in the longitudinal direction (column direction Y) facing the side surface of the reverse tapered second partition wall 3b.
  • the thin film Since the thin film is attracted to the tapered portion by capillarity and is constrained by the side surface of the second partition wall 3b, it has a flatter and uniform thickness than the organic layer formed in the recess surrounded only by the forward-tapered partition wall. The organic layer is obtained.
  • the first partition 3 a is disposed facing one and the other end faces in the short direction (row direction X) of the organic electroluminescence element 4, and the second partition 3 b is disposed in the longitudinal direction of the organic electroluminescence element 4.
  • the second electrode 10 may be cut in a plan view in one end side and the other end side in the longitudinal direction (column direction Y).
  • the second electrode 10 is connected to the conductive thin film 10a on the partition wall 3 at one end side and the other end side (long side) in the short direction (row direction X).
  • the conductive thin film 10a on the partition wall 3 The divided region is smaller in the organic electroluminescence element 4 of the present embodiment, and the region where the conductive thin film 10a is integrally formed on the partition 3 is the region of the organic electroluminescence element 4 of the present embodiment. Therefore, the wiring resistance can be reduced.
  • the organic electroluminescence element has at least one light emitting layer as an organic layer.
  • the organic electroluminescence element may further include predetermined layers such as a hole injection layer, a hole transport layer, an electron block layer, a hole block layer, an electron transport layer, and an electron injection layer.
  • anode / light emitting layer / cathode b) anode / hole injection layer / light emitting layer / cathode c) anode / hole injection layer / light emitting layer / electron injection layer / cathode d) anode / hole injection layer / light emitting layer / Electron transport layer / cathode e) anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode f) anode / hole transport layer / light emitting layer / cathode g) anode / hole transport layer / light emitting layer / Electron injection layer / cathode h) anode / hole transport layer / light emitting layer / electron transport layer / cathode i) anode / hole transport layer / light emitting layer
  • the organic electroluminescence element 4 in which the first electrode 6 functions as an anode and the second electrode 10 functions as a cathode has been described.
  • the components a) to p) are sequentially stacked on the support substrate 2 from the anode shown on the left side.
  • each component of the layer configuration of, for example, a) to p) is formed from the cathode shown on the right side.
  • the layers are sequentially stacked on the support substrate 2.
  • ⁇ Support substrate> As the support substrate 2, those that do not change chemically in the process of manufacturing the organic electroluminescence element 4 are preferably used. For example, glass, plastic, polymer film, silicon plate, and a substrate in which these are laminated are used. It is done.
  • an electrode exhibiting optical transparency is used for the anode.
  • the electrode exhibiting light transmittance a thin film of metal oxide, metal sulfide, metal or the like can be used, and an electrode having high electrical conductivity and light transmittance is preferably used.
  • a thin film made of ITO, IZO, or tin oxide is preferably used.
  • Examples of the method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
  • a material for the cathode is preferably a material having a low work function, easy electron injection into the light emitting layer, and high electrical conductivity.
  • the material with a high reflectance with respect to visible light is preferable as a material of a cathode.
  • an alkali metal, an alkaline earth metal, a transition metal, a Group 13 metal of the periodic table, or the like can be used.
  • cathode materials include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, and ytterbium.
  • An alloy, graphite, or a graphite intercalation compound is used.
  • alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, calcium-aluminum alloys, and the like. it can.
  • a transparent conductive electrode made of a conductive metal oxide or a conductive organic material can be used.
  • the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO.
  • the conductive organic material include polyaniline or a derivative thereof, polythiophene or a derivative thereof.
  • the cathode may be composed of a laminate in which two or more layers are laminated.
  • the electron injection layer may be used as a cathode.
  • Examples of the method for producing the cathode include a vacuum deposition method and an ion plating method.
  • the thickness of the anode or cathode can be appropriately set in consideration of the required characteristics, the simplicity of the film forming process, and the like.
  • the thickness of the anode or cathode is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • hole injection materials constituting the hole injection layer include oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanine compounds, amorphous carbon, polyaniline And polythiophene derivatives.
  • Examples of the method for forming the hole injection layer include film formation from a solution containing a hole injection material.
  • the hole injection layer can be formed, for example, by coating a film containing a hole injection material by a predetermined coating method and further solidifying it.
  • the thickness of the hole injection layer is appropriately set in consideration of required characteristics, process simplicity, and the like.
  • the thickness of the hole injection layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm.
  • the hole transport material constituting the hole transport layer examples include polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene Derivative, triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, or poly (2,5-thienylene vinylene) ) Or a derivative thereof.
  • the thickness of the hole transport layer is set in consideration of the required characteristics, the simplicity of the film formation process, and the like.
  • the thickness of the hole transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm.
  • the light emitting layer is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance.
  • the dopant is added, for example, in order to improve the luminous efficiency and change the emission wavelength.
  • the organic substance which comprises a light emitting layer may be a low molecular compound or a high molecular compound, and when forming a light emitting layer by the apply
  • the number average molecular weight in terms of polystyrene of the polymer compound constituting the light emitting layer is, for example, about 10 3 to 10 8 .
  • the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
  • dye material examples include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds, Examples thereof include a pyridine ring compound, a perinone derivative, a perylene derivative, an oligothiophene derivative, an oxadiazole dimer, a pyrazoline dimer, a quinacridone derivative, and a coumarin derivative.
  • Metal complex materials examples include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Ir, Pt, and the like as a central metal, and an oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, and quinoline structure. And the like.
  • metal complex materials include metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes. , Porphyrin zinc complex, phenanthroline europium complex, and the like.
  • Polymer material examples include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, materials obtained by polymerizing the above dye materials and metal complex light emitting materials. And so on.
  • the thickness of the light emitting layer is usually about 2 nm to 200 nm.
  • Electrode transport layer As the electron transport material constituting the electron transport layer, a known material can be used. Examples of electron transport materials include oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetracyanoanthraquinodimethane or derivatives thereof, fluorenone derivatives, diphenyl Examples include dicyanoethylene or a derivative thereof, a diphenoquinone derivative, or a metal complex of 8-hydroxyquinoline or a derivative thereof, polyquinoline or a derivative thereof, polyquinoxaline or a derivative thereof, polyfluorene or a derivative thereof, and the like.
  • the thickness of the electron transport layer is appropriately set in consideration of the required characteristics, the simplicity of the film forming process, and the like.
  • the thickness of the electron transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • ⁇ Electron injection layer> As a material constituting the electron injection layer, an optimum material is appropriately selected according to the type of the light emitting layer. Examples of the material constituting the electron injection layer include alkali metals, alkaline earth metals, alloys containing at least one of alkali metals and alkaline earth metals, oxides of alkali metals or alkaline earth metals, halides , Carbonates, and mixtures of these substances.
  • alkali metals, alkali metal oxides, halides, and carbonates include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride , Rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, lithium carbonate, and the like.
  • alkaline earth metals, alkaline earth metal oxides, halides and carbonates include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium oxide, Examples thereof include barium fluoride, strontium oxide, strontium fluoride, and magnesium carbonate.
  • the electron injection layer may be composed of a laminate in which two or more layers are laminated, and examples thereof include a laminate of a LiF layer and a Ca layer.
  • the thickness of the electron injection layer is preferably about 1 nm to 1 ⁇ m.
  • Each organic layer described above can be formed by a coating method such as a nozzle printing method, an ink jet printing method, a relief printing method, an intaglio printing method, a vacuum deposition method, a sputtering method, or a CVD method.
  • a coating method such as a nozzle printing method, an ink jet printing method, a relief printing method, an intaglio printing method, a vacuum deposition method, a sputtering method, or a CVD method.
  • an ink containing an organic electroluminescent material to be each organic layer is applied and formed, and the organic layer is formed by solidifying the applied and formed ink.
  • the solvent of the ink used include chlorine solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate and acetic acid. Ester solvents such as butyl and ethyl cellosolve acetate, and water are used.
  • Example 1 A support substrate (TFT substrate) on which an ITO thin film functioning as a first electrode is formed is prepared (see FIGS. 7A, 7B, and 7C). On this support substrate, negative photosensitive resin solution 1 (ZPN2464 manufactured by Nippon Zeon Co., Ltd.) was applied and formed using a spin coater, and heated at 110 ° C. for 90 seconds on a hot plate to give a solvent by applying a prebaking process. The components are vaporized (see FIGS. 8A, 8B and 8C). Next, exposure is performed at an exposure amount of 100 mJ / cm 2 using a proximity exposure machine.
  • a developer SD-1 (TMAH 2.38% by weight) manufactured by Tokuyama Corporation
  • SD-1 TMAH 2.38% by weight
  • the resin is cured by heating at 230 ° C. for 30 minutes and a post-baking step, thereby forming a second partition wall 3b having a thickness of 0.8 ⁇ m.
  • the angle ⁇ 2 formed by the side surface of the second partition wall 3b formed in this way and the bottom surface of the second partition wall 3b is about 115 °.
  • a positive photosensitive resin solution (ZPN6216 manufactured by Nippon Zeon Co., Ltd.) is coated and formed using a spin coater, and heated at 110 ° C. for 90 seconds on a hot plate to vaporize the solvent component by applying a prebaking process ( FIG. 10A, FIG. 10B, and FIG. 10C).
  • exposure is performed with a proximity exposure machine at an exposure amount of 100 mJ / cm 2 .
  • development is performed for 70 seconds using a developer (SD-1 (TMAH 2.38 wt%) manufactured by Tokuyama Corporation) to form the first partition 3a having a forward taper shape.
  • SD-1 TMAH 2.38 wt% manufactured by Tokuyama Corporation
  • first partition wall 3a having a thickness of 1.0 ⁇ m (see FIGS. 11A, 11B, and 11C).
  • the angle ⁇ 1 formed by the side surface of the first partition 3a thus formed and the bottom surface of the second partition 3a is about 30 °.
  • the support substrate on which the partition walls are formed is subjected to a surface treatment with oxygen plasma, followed by a surface treatment with CF 4 plasma to make the ITO surface lyophilic and impart liquid repellency to the surfaces of the partition walls.
  • an ink (poly (ethylenedioxythiophene) (PEDOT) having a solid content concentration of 1.5% and an aqueous dispersion of polystyrene sulfonic acid (PSS) (AI4083 manufactured by Bayer)) is used.
  • PEDOT poly (ethylenedioxythiophene)
  • PSS polystyrene sulfonic acid
  • the ink is filled in a predetermined recess surrounded by the partition wall 3.
  • the ink flows into a tapered gap near the lower end of the side surface by capillary action along the second tapered partition wall facing the one end and the other end in the row direction X of the recess. By being attracted, it spreads uniformly in the pixels (recesses).
  • the substrate is baked at 200 ° C. to form a hole injection layer 7 having a uniform thickness (50 nm) (see FIGS. 13A, 13B, and 13C).
  • a polymer light emitting material that emits red light is mixed with an organic solvent so that its concentration is 0.8% by weight to prepare a red light emitting ink.
  • a green light emitting ink is prepared by mixing a polymer light emitting material that emits green light with an organic solvent so that its concentration is 0.8 wt%.
  • a blue light emitting ink is prepared by mixing a polymer light emitting material that emits blue light with an organic solvent so that its concentration is 0.8 wt%.
  • the ink Since the upper surface of the partition wall 3 repels ink, the ink is filled into a predetermined recess surrounded by the partition wall 3. In addition, the ink is attracted to the end portion by capillarity along the inversely tapered second partition wall facing the one end and the other end of the recess in the row direction X, and spreads uniformly in the pixels.
  • the substrate is baked at 130 ° C. to form the light emitting layer 9 having a uniform thickness (60 nm) (see FIGS. 14A, 14B, and 14C).
  • a second electrode (cathode) 10 comprising a 20 nm thick Ca layer and a 150 nm thick Al layer is formed by vacuum evaporation.
  • the second electrode (cathode) 10 may be divided at the end of the reverse tapered second partition 3b due to the step (see FIG. 15C), the end of the forward tapered first partition 3a may be divided. Since the second electrode (cathode) 10 is not divided at the portion, the second electrodes 10 of all the organic electroluminescence elements 4 are formed to be continuous. As a result, the wiring resistance can be reduced, and a plurality of organic electroluminescence elements that emit light as intended can be produced on the support substrate.
  • the electroluminescence elements emit light with the same luminance as each other, and each organic electroluminescence element emits light uniformly in the pixel individually.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 逆テーパ形状の隔壁が備えられる表示装置において、複数の有機エレクトロルミネッセンス素子にわたって連なる第2電極が形成されうる表示装置を提供する。支持基板と、支持基板上に設けられる複数の有機エレクトロルミネッセンス素子(4)と、有機エレクトロルミネッセンス素子の支持基板の厚さ方向の一方からみた場合における外周をそれぞれ囲むように設けられる隔壁(3)とを備える表示装置(1)であって、隔壁は、外周のうちの一部に面して設けられる第1の隔壁(3a)と、外周のうちの一部を除く残余の部分に面して設けられる第2の隔壁(3b)とを有し、第1の隔壁は、外周を囲む側面と底面との成す角が鋭角の順テーパ形状の隔壁であり、第2の隔壁は、外周を囲む側面と底面との成す角が鈍角の逆テーパ形状の隔壁である、表示装置。

Description

表示装置
 本発明は表示装置およびその製造方法に関する。
 表示装置にはその構成や原理を異にする種々の装置がある。そのひとつとして、画素の光源に有機エレクトロルミネッセンス素子(Organic Electroluminescent Element)を利用した表示装置が実用化されつつある。
 上記表示装置は、支持基板と、この支持基板上に設けられる多数の有機エレクトロルミネッセンス素子とを備える。支持基板上には画素領域を区画する隔壁が設けられており、上記多数の有機エレクトロルミネッセンス素子は、隔壁によって区画された領域にそれぞれ整列して配置される。
 各有機エレクトロルミネッセンス素子は、第1電極、有機層、第2電極を支持基板側からこの順で積層することにより形成される。
 上記有機層はたとえば塗布法によって形成することができる。図16A、図16B、図16C及び図16Dを参照して有機層18の形成方法について説明する。図16A、図16B、図16C及び図16Dは、表示装置の製造工程を説明するための図である。
 図16Aに示されるように、まず支持基板12上に第1電極16および隔壁13を形成する。つぎに、隔壁13に囲まれた領域(凹部)15に、有機層18となる材料を含むインク17を上方に位置するノズルから供給する。
 図16Bに示されるように、供給されたインク17は隔壁13に囲まれた領域15に収容される。
 図16Cに示されるように、その後、インク17の溶剤成分を気化させることにより、有機層18を形成する。
 図16Dに示されるように、つぎに第2電極19を形成する。この第2電極19はたとえば複数の有機エレクトロルミネッセンス素子にわたって一体的に延在し、複数の有機エレクトロルミネッセンス素子に共有される電極として設けられる。たとえば隣り合う有機エレクトロルミネッセンス素子の間に介在する隔壁13上にも一体的にまたがるように延在する導電性薄膜を形成することにより、複数の有機エレクトロルミネッセンス素子にわたって連なる第2電極19を形成する。このような第2電極19、すなわち導電性薄膜はたとえば真空蒸着法によって形成される。
 なお図16Bに示される態様において、隔壁13がインク17に対して親液性を示す場合、特定の凹部15に供給されたインク17が、隔壁13を乗り越え、その表面を伝って隣の凹部15にまで流出することがある。このようなインク17の流出を防ぐために、一般に支持基板12上にはある程度撥液性を示す隔壁13が設けられている。
 しかしながら隔壁13が撥液性を示す場合、凹部15に供給されたインク17は、隔壁13に弾かれつつ気化して、薄膜(有機層18)となる。そのため厚さが不均一な有機層18が形成されることがある。たとえば凹部15の形状によっては、有機層18の隔壁13に接する所定の部位(すなわち有機層18の周縁部)の厚さが、凹部15の中央部の近傍である有機層18の中央部の厚さに比べて薄くなることがある。そうすると、有機層18の周縁部の電気抵抗が中央部に比べて低くなり、有機エレクトロルミネッセンス素子を駆動する際に有機層18の周縁部に電流が集中して流れ、有機層18の中央部が周縁部に比べて暗くなることがある。また逆に、有機層18の周縁部に所望の厚さの層が形成されないため、有機層18の周縁部が意図したとおりには発光しないこともある。
 このような問題を解決するために、いわゆる逆テーパ形状の隔壁を設けた表示装置がある。その模式図を図17A、図17Bおよび図17Cに示す。図17A、図17Bおよび図17Cは、表示装置の製造工程を説明するための図である。
 図17A、図17Bおよび図17Cに示されるように、逆テーパ形状の隔壁13は、延在方向に直交する方向で切断した場合の断面形状が支持基板12(第1電極16)から離間するにしたがって幅広になるように形成されている。そのため隔壁13の側面と第1電極16とが接する部位の近傍に、先細状の領域が形成される。このような逆テーパ形状の隔壁13に囲まれた領域15にインクを供給すると、隔壁13の側面に接触したインクは、毛細管現象によって上記先細状の領域に吸い込まれるように充填される。この状態を維持したままインクの溶剤成分が気化すると、第1電極16と隔壁13とが接する部位の近傍にも有機層18が形成される。
 図17Bに示されるように、いわゆる逆テーパ形状の隔壁13を設けることによって、たとえ撥液性を示す隔壁13が設けられていたとしても、有機層18の周縁部の厚さが薄くなるという問題を防ぐことができる(たとえば特許文献1参照)。
特開2007-227289号公報
 図17A、図17Bおよび図17Cに示されるような逆テーパ形状の隔壁13が設けられた基板に、複数の有機エレクトロルミネッセンス素子にわたって一体的に延在し、複数の有機エレクトロルミネッセンス素子に共有される第2電極19を真空蒸着法によって形成すると、図17Cに示されるように第2電極19の厚さが薄い場合には、隔壁の端部で第2電極19が切断されることがある。その結果、表示装置を駆動する際に、意図したとおりには電力が供給されずに、発光しない有機エレクトロルミネッセンス素子が形成されることがある。
 したがって本発明の目的は、逆テーパ形状の隔壁を備える表示装置において、複数の有機エレクトロルミネッセンス素子にわたって連なる第2電極が形成されうる表示装置を提供することにある。
 本発明は、下記[1]~[5]を提供する。
[1]支持基板と、前記支持基板上に設けられる複数の有機エレクトロルミネッセンス素子と、前記有機エレクトロルミネッセンス素子の前記支持基板の厚さ方向の一方からみた場合における外周をそれぞれ囲むように設けられる隔壁とを備える表示装置であって、
 前記隔壁は、前記外周のうちの一部に面して設けられる第1の隔壁と、前記外周のうちの前記一部を除く残余の部分に面して設けられる第2の隔壁とを有し、
 前記第1の隔壁は、前記外周を囲む側面と底面との成す角が鋭角の順テーパ形状の隔壁であり、
 前記第2の隔壁は、前記外周を囲む側面と底面との成す角が鈍角の逆テーパ形状の隔壁である、表示装置。
[2]前記第1の隔壁は、前記支持基板の厚さ方向に直交する第1の方向にそれぞれ延在し、前記厚さ方向および前記第1の方向に直交する第2の方向に所定の間隔をあけて配置される複数本の隔壁部材から構成され、
 前記第1の隔壁と前記第2の隔壁とが重なる部位では、前記第2の隔壁は、前記支持基板と前記第1の隔壁との間に設けられる、[1]に記載の表示装置。
[3]前記有機エレクトロルミネッセンス素子は前記支持基板の厚さ方向に直交する所定の方向に延在する形状を有し、
 前記第1の隔壁は、前記有機エレクトロルミネッセンス素子の短手方向の一方および他方の前記外周を囲むように配置され、
 前記第2の隔壁は、前記有機エレクトロルミネッセンス素子の長手方向の一方および他方の前記外周を囲むように配置される、[1]または[2]に記載の表示装置。
[4] 前記第1の隔壁および第2の隔壁それぞれが、感光性樹脂組成物の層がパターニングされることにより形成される、[1]~[3]のいずれか1つに記載の表示装置。
[5][1]~[4]のいずれか1つに記載の表示装置の製造方法であって、
 支持基板上に隔壁を形成する工程と、
 前記支持基板上に複数の有機エレクトロルミネッセンス素子を形成する工程とを含み、
 前記隔壁を形成する工程では、フォトリソグラフィ法によって感光性樹脂組成物の層をパターニングすることにより、第1の隔壁と第2の隔壁とをそれぞれ形成する、表示装置の製造方法。
 本発明によれば、逆テーパ形状の隔壁を有する表示装置において、複数の有機エレクトロルミネッセンス素子にわたって連なる第2電極を有する表示装置を実現することができる。
図1は、表示装置の一部を拡大して模式的に示す断面図である。 図2は、図1に示す切断面線A-Aの位置で切断した表示装置を拡大して模式的に示す断面図である。 図3は、図1に示す切断面線B-Bの位置で切断した表示装置を拡大して模式的に示す断面図である。 図4は、図1に示す切断面線C-Cの位置で切断した表示装置を拡大して模式的に示す断面図である。 図5は、図1に示す切断面線D-Dの位置で切断した表示装置を拡大して模式的に示す断面図である。 図6は、図1に示す切断面線E-Eの位置で切断した表示装置を拡大して模式的に示す断面図である。 図7Aは、表示装置の製造工程を説明するための図である。 図7Bは、表示装置の製造工程を説明するための図である。 図7Cは、表示装置の製造工程を説明するための図である。 図8Aは、表示装置の製造工程を説明するための図である。 図8Bは、表示装置の製造工程を説明するための図である。 図8Cは、表示装置の製造工程を説明するための図である。 図9Aは、表示装置の製造工程を説明するための図である。 図9Bは、表示装置の製造工程を説明するための図である。 図9Cは、表示装置の製造工程を説明するための図である。 図10Aは、表示装置の製造工程を説明するための図である。 図10Bは、表示装置の製造工程を説明するための図である。 図10Cは、表示装置の製造工程を説明するための図である。 図11Aは、表示装置の製造工程を説明するための図である。 図11Bは、表示装置の製造工程を説明するための図である。 図11Cは、表示装置の製造工程を説明するための図である。 図12Aは、表示装置の製造工程を説明するための図である。 図12Bは、表示装置の製造工程を説明するための図である。 図12Cは、表示装置の製造工程を説明するための図である。 図13Aは、表示装置の製造工程を説明するための図である。 図13Bは、表示装置の製造工程を説明するための図である。 図13Cは、表示装置の製造工程を説明するための図である。 図14Aは、表示装置の製造工程を説明するための図である。 図14Bは、表示装置の製造工程を説明するための図である。 図14Cは、表示装置の製造工程を説明するための図である。 図15Aは、表示装置の製造工程を説明するための図である。 図15Bは、表示装置の製造工程を説明するための図である。 図15Cは、表示装置の製造工程を説明するための図である。 図16Aは、表示装置の製造工程を説明するための図である。 図16Bは、表示装置の製造工程を説明するための図である。 図16Cは、表示装置の製造工程を説明するための図である。 図16Dは、表示装置の製造工程を説明するための図である。 図17Aは、表示装置の製造工程を説明するための図である。 図17Bは、表示装置の製造工程を説明するための図である。 図17Cは、表示装置の製造工程を説明するための図である。
 以下、図面を参照して、本発明の実施形態について説明する。なお、各図面は、発明が理解できる程度に、構成要素の形状、大きさ及び配置が概略的に示されているに過ぎない。本発明は以下の記述によって限定されるものではなく、各構成要素は本発明の要旨を逸脱しない範囲において適宜変更可能である。以下の説明に用いる図面において、同様の構成要素については同一の符号を付して示し、重複する説明については省略する場合がある。また、本発明の実施形態にかかる構成は、必ずしも図示例の配置で、製造されたり、使用されたりするわけではない。
 本発明の表示装置は、支持基板と、支持基板上に設けられる複数の有機エレクトロルミネッセンス素子と、有機エレクトロルミネッセンス素子の支持基板の厚さ方向Zの一方からみた場合(「平面視で」という場合がある。)における外周をそれぞれ囲むように設けられる隔壁とを備える表示装置であって、隔壁は、外周のうちの一部に面して設けられる第1の隔壁と、外周のうちの一部を除く残余の部分に面して設けられる第2の隔壁とを有し、第1の隔壁は、外周を囲む側面と底面との成す角が鋭角の順テーパ形状の隔壁であり、第2の隔壁は、外周を囲む側面と底面との成す角が鈍角の逆テーパ形状の隔壁である、表示装置である。
 本発明は複数の有機エレクトロルミネッセンス素子の各第2電極が連なって形成される表示装置に適用される。このような表示装置として本実施形態では一例としてアクティブマトリクス駆動型の表示装置について説明する。
 <表示装置の構成>
 図1~図6を参照して、まず表示装置の構成について説明する。図1は本実施形態の表示装置1の一部を拡大して模式的に示す断面図である。図2は図1に示す切断面線A-Aの位置で切断した表示装置を拡大して模式的に示す断面図である。図3は図1に示す切断面線B-Bの位置で切断した表示装置を拡大して模式的に示す断面図である。図4は図1に示す切断面線C-Cの位置で切断した表示装置を拡大して模式的に示す断面図である。図5は図1に示す切断面線D-Dの位置で切断した表示装置を拡大して模式的に示す断面図である。図6は図1に示す切断面線E-Eの位置で切断した表示装置を拡大して模式的に示す断面図である。
 図1に示されるように、表示装置1は、主として支持基板2と、この支持基板2上において予め設定される区画を画成する隔壁3と、隔壁3によって画成される区画に設けられる複数の有機エレクトロルミネッセンス素子4とを含む。
 隔壁3は複数の有機エレクトロルミネッセンス素子4の外周それぞれを平面視で囲むように設けられる。隔壁3は平面視で有機エレクトロルミネッセンス素子4の外周をそれぞれ囲むように設けられればよく、たとえば平面視で各有機エレクトロルミネッセンス素子4が設けられる領域を除く領域に設けられる。
 本実施形態では複数の有機エレクトロルミネッセンス素子4はそれぞれマトリクス状に配置されている(詳細は後述する)。隔壁3は、マトリクス状に配置される有機エレクトロルミネッセンス素子4を除く領域に設けられる。そのため隔壁3は支持基板2上において格子状に形成される。
 支持基板2上には、隔壁3と支持基板2とによって規定される複数の凹部5が設定される。この凹部5が、隔壁3によって画成される区画に相当する。
 支持基板2上には格子状の隔壁3が設けられるため、本実施形態では複数の凹部5が平面視でマトリクス状に配置されている。すなわち複数の凹部5は行方向Xに所定の間隔をあけるとともに、列方向Yにも所定の間隔をあけて整列して設けられている。各凹部5の平面視における形状は特に限定されない。たとえば凹部5は、平面視で略矩形状、略楕円形状などに形成される。本実施形態では、長手方向に延在する長軸と、長軸に直交する短手方向に延在する短軸とを有している、平面視で略楕円形状の凹部5が設けられている。なお本明細書において上記の行方向Xおよび列方向Yは、支持基板2の厚さ方向Zに直交し、かつ互いに直交している。ここで「略楕円形状」には、楕円形状のみならず、例えば互いに平行に配置された2本の線分の一端同士及び他端同士を曲線で結合した形状が含まれる。
 隔壁3は、第1の隔壁3aと第2の隔壁3bとを含む。第1の隔壁3aは、平面視で、有機エレクトロルミネッセンス素子4の外周のうちの一部、すなわち有機エレクトロルミネッセンス素子4の短手方向に位置する外周に面して設けられる。第2の隔壁3bは、前記有機エレクトロルミネッセンス素子4の外周のうちの前記一部を除く残余の部分、すなわち有機エレクトロルミネッセンス素子4の長手方向に位置する外周に面して設けられる。
 特に図1、図2、図3および図5に示されるように、有機エレクトロルミネッセンス素子4の外周は、一部が第1の隔壁3aに接しており、前記一部を除く残部が第2の隔壁3bに接している。このように有機エレクトロルミネッセンス素子4の外周は、第1の隔壁3aと第2の隔壁3bとによって囲まれている。
 本実施形態では隔壁3は格子状に形成されるため、隔壁3は、行方向Xに直線的に延在する複数本の隔壁部材と、列方向Yに直線的に延在する複数本の隔壁部材とを含む。本実施形態における隔壁3は、列方向Yに延在する複数本の第1の隔壁3aと、行方向Xに延在する複数本の第2の隔壁3bとから構成される。複数本の第1の隔壁3aは、それぞれ行方向Xに隣り合う有機エレクトロルミネッセンス素子4同士の間に設けられる。
 また図2に示されるように、複数本の第2の隔壁3bは、それぞれ列方向Yに隣り合う有機エレクトロルミネッセンス素子4同士の間に設けられる。このように隔壁3を配置することにより、有機エレクトロルミネッセンス素子4の行方向Xの一方および他方の端面には第1の隔壁3aが接して設けられる。第1の隔壁3aは、平面視で有機エレクトロルミネッセンス素子4の外周を囲む側面と、底面との成す角θ1が鋭角の順テーパ形状の隔壁である。
 図3に示されるように、有機エレクトロルミネッセンス素子4の列方向Yの一方および他方の端面には、第2の隔壁3bが接して設けられる。第2の隔壁3bは、平面視で、有機エレクトロルミネッセンス素子4の外周を囲む側面と、底面との成す角θ2が鈍角の逆テーパ形状の隔壁である。
 なお第1の隔壁3aの底面とは、第1の隔壁3aの外周面のうちで最も支持基板2寄りの平面を意味する。また第1の隔壁3aの側面とは、第1の隔壁3aの外周面のうちで最も支持基板2から離間した平面(上面)と底面とを除く面、すなわち平面視で有機エレクトロルミネッセンス素子4の外周(輪郭)を囲むように位置する面を意味する。そして、第1の隔壁3aの側面と、第1の隔壁3aの底面との成す角θ1とは、第1の隔壁3aの延在する方向(本実施形態では列方向Y)に直交する平面で第1の隔壁3aを切断したときの断面における角度を意味する。
 第2の隔壁3bの底面とは、第2の隔壁3bの外周面のうちで最も支持基板2寄りの平面を意味する。また第2の隔壁3bの側面とは、第2の隔壁3bの外周面のうちで最も支持基板2から離間した平面(上面)と底面とを除く面、すなわち平面視で有機エレクトロルミネッセンス素子4の外周(輪郭)を囲むように位置する面を意味する。そして、第2の隔壁3bの側面と、第2の隔壁3bの底面との成す角θ2とは、第1の隔壁3aの延在する方向(本実施形態では行方向X)に直交する平面で第1の隔壁3bを切断したときの断面における角度を意味する。
 本実施形態では列方向Yに延在する複数本の第1の隔壁3aと行方向Xに延在する複数本の第2の隔壁3bとは平面視で重なる。第1の隔壁3aと第2の隔壁3bとが重なる部位では第1の隔壁3aと第2の隔壁3bとのうちのどちらが支持基板2寄りに配置されてもよい。第1の隔壁3aと第2の隔壁3bとが重なる部位では、第2の隔壁3bが、第1の隔壁3aよりも支持基板2寄りに配置されることが好ましい。すなわち第1の隔壁3aと第2の隔壁3bとが重なる部位では、前記第2の隔壁3bは、前記支持基板2と前記第1の隔壁との間に設けられることが好ましい。このように第1の隔壁3a及び第2の隔壁3bを配置すると、後述するように第1の隔壁3a上に導電性薄膜10aが設けられるので、形成される導電性薄膜10aが隔壁3上で切断されるおそれがなくなり、第1の隔壁3aの延在方向(本実施形態では列方向Y)に隣り合う有機エレクトロルミネッセンス素子4の第2電極10が、第1の隔壁3a上の導電性薄膜10aを介して確実に連なる。
 角θ1の角度は、通常10°~85°であり、30°~60°が好ましい。また角θ2の角度は通常95°~170°であり、110°~135°が好ましい。
 有機エレクトロルミネッセンス素子4は隔壁3によって画成される区画(すなわち凹部5)に設けられる。本実施形態のように格子状の隔壁3が設けられる場合、複数の有機エレクトロルミネッセンス素子4それぞれは凹部5ごとに設けられる。すなわち複数の有機エレクトロルミネッセンス素子4は、凹部5と同様にマトリクス状に配置される。複数の有機エレクトロルミネッセンス素子4は、支持基板2上において、行方向Xに所定の間隔をあけるとともに、列方向Yにも所定の間隔をあけて整列して設けられている。
 本実施形態では3種類の有機エレクトロルミネッセンス素子4が設けられる。すなわち(1)赤色の光を出射する赤色発光有機エレクトロルミネッセンス素子4R、(2)緑色の光を出射する緑色発光有機エレクトロルミネッセンス素子4G、および(3)青色の光を出射する青色発光有機エレクトロルミネッセンス素子4Bが設けられる。これら3種類の有機エレクトロルミネッセンス素子4(4R、4G、4B)は、図1に示されるようにたとえば以下の(I)、(II)、(III)の行を、列方向Yにこの順で繰り返して配置することによって構成される。
(I)複数の赤色発光有機エレクトロルミネッセンス素子4Rが行方向Xにそれぞれ所定の間隔をあけて配置される行。
(II)複数の緑色発光有機エレクトロルミネッセンス素子4Gが行方向Xにそれぞれ所定の間隔をあけて配置される行。
(III)複数の青色発光有機エレクトロルミネッセンス素子4Bが行方向Xにそれぞれ所定の間隔をあけて配置される行。
 なお他の実施の形態として、上記3種類の有機エレクトロルミネッセンス素子に加えて、たとえば白色の光を出射する有機エレクトロルミネッセンス素子がさらに設けられてもよい。また1種類のみの有機エレクトロルミネッセンス素子を設けることによって、モノクロ表示装置を実現してもよい。
 有機エレクトロルミネッセンス素子4は、第1電極6、有機層、第2電極10が、支持基板側からこの順で積層されて構成される。有機エレクトロルミネッセンス素子4は有機層として少なくとも1層の発光層を備える。なお有機エレクトロルミネッセンス素子4は、1層の発光層に加えて、必要に応じて発光層とは異なる層をさらに備えることもある。たとえば第1電極6と第2電極10との間には、正孔注入層、正孔輸送層、電子ブロック層、電子輸送層、および電子注入層などが設けられる。また第1電極6と第2電極10との間には2層以上の発光層が設けられることもある。さらには第1電極6と第2電極10との間には無機層、または有機物と無機物とを含む混合層が設けられることもある。
 有機エレクトロルミネッセンス素子4は、陽極および陰極からなる一対の電極として、第1電極6と第2電極10とを備える。第1電極6および第2電極10のうちの一方の電極は陽極として設けられ、他方の電極は陰極として設けられる。
 本実施形態では一例として、陽極として機能する第1電極6、正孔注入層として機能する第1の有機層7、発光層として機能する第2の有機層9、陰極として機能する第2電極10がこの順で支持基板2上に積層されて構成される有機エレクトロルミネッセンス素子4について説明する。
 本実施形態では3種類の有機エレクトロルミネッセンス素子4が設けられる。これら3種類の有機エレクトロルミネッセンス素子4は、第2の有機層(本実施形態では発光層)9の構成がそれぞれ異なる。赤色発光有機エレクトロルミネッセンス素子4Rは赤色の光を放射する赤色発光層9Rを備え、緑色発光有機エレクトロルミネッセンス素子4Gは緑色の光を放射する緑色発光層9Gを備え、青色発光有機エレクトロルミネッセンス素子4Bは青色の光を放射する青色発光層9Bを備える。
 本実施形態では第1電極6は有機エレクトロルミネッセンス素子4ごとに設けられる。すなわち有機エレクトロルミネッセンス素子4と同数の第1電極6が支持基板2上に設けられる。第1電極6は有機エレクトロルミネッセンス素子4の配置に対応して設けられ、有機エレクトロルミネッセンス素子4と同様にマトリクス状に配置される。なお図2、図3及び図5に示されるように本実施形態の隔壁3は、主として第1電極6外の領域に格子状に、かつ第1電極6の一部分である周縁部を覆うように形成されている。
 正孔注入層として機能する第1の有機層7は、凹部5の第1電極6上にそれぞれ設けられる。この第1の有機層7は、必要に応じて、有機エレクトロルミネッセンス素子4の種類ごとにその材料または厚さを異ならせて設けられる。なお第1の有機層7の形成工程の簡易さの観点からは、同じ材料、同じ厚さで全ての第1の有機層7を形成することが好ましい。
 発光層として機能する第2の有機層9は、凹部5において第1の有機層7上に設けられる。上述したように発光層は有機エレクトロルミネッセンス素子4の種類に応じて設けられる。そのため赤色発光層9Rは赤色発光有機エレクトロルミネッセンス素子4Rが設けられる凹部5に設けられ、緑色発光層9Gは緑色発光有機エレクトロルミネッセンス素子4Gが設けられる凹部5に設けられ、青色発光層9Bは青色発光有機エレクトロルミネッセンス素子4Bが設けられる凹部5に設けられる。
 本実施形態では、複数の有機エレクトロルミネッセンス素子4が設けられる表示領域にわたって導電性薄膜10aが形成される。すなわち導電性薄膜10aは、第2の有機層9上のみならず隔壁3上にもわたるように形成される。この導電性薄膜10aのうちで、第2の有機層9上に設けられるものを本明細書では第2電極10と称する。
 なお第2電極10は、逆テーパ形状の第2の隔壁3bの端部で切断されることがある。図3および図5に示されるように、たとえば平面視で有機エレクトロルミネッセンス素子4と第2の隔壁3bとが接する第2の隔壁3bの端部で、第2電極10が切断された状態を示している。他方、図2および図5に示されるように、順テーパ形状の第1の隔壁3aの端部では、第2電極10が切断されることはない。このように第1の隔壁3a上に形成された導電性薄膜10aと、有機エレクトロルミネッセンス素子4の第2電極10とは連なって一体的に形成される。そのため、行方向Xに隣り合う有機エレクトロルミネッセンス素子4の第2電極10が、第1の隔壁3a上の導電性薄膜10aを介して連なって一体的に形成されている。さらに本実施形態では第1の隔壁3aが列方向Yに延在して形成されているため、列方向Yに隣り合う有機エレクトロルミネッセンス素子4の第2電極10が、第1の隔壁3a上の導電性薄膜10aを介して一体的に連なって形成されている。これによって、第1の隔壁3a上の導電性薄膜10aを介してすべての有機エレクトロルミネッセンス素子の第2電極10が連なるように形成される。そのため第2電極10がすべての有機エレクトロルミネッセンス素子4に共通する電極として機能する。
 以上の実施形態では隔壁3は、第1電極6の周縁部を覆って、支持基板2に接して設けられている。他の実施形態として、隔壁3と支持基板2との間に、さらに絶縁膜を設けてもよい。絶縁膜はたとえば隔壁3と同様に格子状に形成され、第1電極6の周縁部を覆って形成される。このような絶縁膜は好ましくは隔壁3よりも親液性を示す材料によって形成される。
 以下、図7A~図15Cを参照しつつ表示装置の製造方法について説明する。なおA図は形成途中の1つの有機エレクトロルミネッセンス素子を拡大して模式的に示す平面図であり、B図は図1の切断面線A-Aの位置で切断した形成途中の1つの有機エレクトロルミネッセンス素子を拡大して模式的に示す断面図であり、C図は図1の切断面線D-Dの位置で切断した形成途中の1つの有機エレクトロルミネッセンス素子を拡大して模式的に示す断面図である。なお各図のA図~C図において、対応する部材の縮尺は必ずしも相互に対応しているわけではない。
 (支持基板を用意する工程)
 図7A、図7Bおよび図7Cに示されるように、本工程では第1電極6が形成された支持基板2を用意する。なお本工程では第1電極6が形成された支持基板を市場から入手することによって、支持基板2を用意する工程としてもよい。また本工程は、支持基板2上に第1電極6を形成する工程を含んでもよい。
 表示装置をアクティブマトリクス型とする場合、複数の有機エレクトロルミネッセンス素子を個別に駆動するための回路が予め形成された基板を支持基板2として用いることができる。たとえばTFT(Thin Film Transistor)およびキャパシタなどが予め形成された基板を支持基板として用いることができる。
 まず用意した支持基板2上に複数の第1電極6をマトリクス状に形成する。第1電極6は、たとえば支持基板2上の一面に導電性薄膜を形成し、これをフォトリソグラフィ法によるマスクパターンの形成工程および形成されたマスクパターンをマスクとして用いるパターニング工程によりマトリクス状にパターニングすることによって形成する。またたとえば所定の部位に開口が形成されたマスクを支持基板2上に配置し、このマスクを介して支持基板2上の所定の部位に導電性材料を選択的に堆積することにより第1電極6をパターン形成してもよい。第1電極6の材料については後述する。
 (隔壁を形成する工程)
 本工程では隔壁3を形成する。本実施形態では隔壁3は、たとえば(1)フォトリソグラフィ法によって感光性樹脂組成物の層をパターニングすることにより、逆テーパ形状の第2の隔壁3bおよび順テーパ形状の第1の隔壁3aを形成する、具体的には例えば第1の隔壁3aおよび第2の隔壁3bそれぞれを、感光性樹脂組成物の層をパターニングすることにより形成することができ、また(2)フォトリソグラフィ法で感光性樹脂組成物の層をパターニングして、まず逆テーパ形状の第2の隔壁3bを形成し、次に、形成した逆テーパ形状の第2の隔壁3bのうち隔壁として残す部分を感光性樹脂組成物で覆い、ドライエッチング法によって逆テーパ形状を順テーパ形状に加工することにより、逆テーパ形状の第2の隔壁3bおよび順テーパ形状の第1の隔壁3aを形成することができる。
 図8A、図8Bおよび図8Cに示されるように、本実施形態ではまず第2の隔壁3bを形成する。フォトリソグラフィ法によって第2の隔壁3bを形成する場合、まず感光性樹脂組成物を支持基板2上に塗布成膜する。感光性樹脂組成物の塗布方法としては、たとえばスピンコート法、スリットコート法などを挙げることができる。
 感光性樹脂組成物を前記支持基板2上に塗布成膜した後、通常はプリベーク工程を行う。プリベーク工程は、たとえば80℃~110℃の温度で、60秒間~180秒間、支持基板を加熱することによって行われる。このプリベーク工程によって、感光性樹脂組成物中の溶剤成分を除去し、第2の隔壁形成用膜8bを形成する。
 つぎに第2の隔壁形成用膜8bが形成された支持基板2の上方に、光を遮光する所定のパターンのフォトマスク21bを配置し、このフォトマスク21bを介して、第2の隔壁形成用膜8bを露光する露光工程を行う。第2の隔壁形成用膜8bが含み得る感光性樹脂としては、ポジ型の感光性樹脂およびネガ型の感光性樹脂があるが、本工程ではいずれの型の樹脂を用いてもよい。
 第2の隔壁形成用膜8bが含み得る感光性樹脂としてポジ型の感光性樹脂を使用した場合には、形成された第2の隔壁形成用膜8bのうち、主に第2の隔壁3bが形成されるべき部位外の残余の部位に光Lを照射する。また感光性樹脂としてネガ型の感光性樹脂を使用した場合には、第2の隔壁形成用膜8bのうち、第2の隔壁3bが形成されるべき部位に光Lを照射する。
 本工程では第2の隔壁形成用膜8bが含み得る感光性樹脂としてネガ型の感光性樹脂を使用した場合について説明する。
 支持基板2の上方にフォトマスク21bを配置し、このフォトマスク21bを介して光Lを照射する。これにより第2の隔壁形成用膜8bのうち、第2の隔壁3bが形成されるべき部位に光Lが照射される。図8B及び図8Cにおいて、第2の隔壁形成用膜8bに照射される光Lは模式的に白抜き矢印で示されている。
 図9に示されるように、つぎに現像工程を行う。これによって第2の隔壁3bがパターン形成される。現像工程後、ポストベーク工程を行う。ポストベーク工程は、たとえば200℃~230℃の温度で、15分間~60分間、基板を加熱することによって第2の隔壁形成用膜8bを硬化して第2の隔壁3bを形成する。このようにポストベーク工程を行うことにより、後述する第1の隔壁3aを形成する際の現像工程において、第2の隔壁3bがエッチングされることを防ぐことができる。
 本実施形態ではいわゆる逆テーパ形状の第2の隔壁3bを形成する。第2の隔壁3bの側面と第2の隔壁3bの底面との成す角θ2の角度は、後述する要素を適宜調整することによって、任意の角度に調整することができる。
 図10に示されるように、つぎに本実施形態では第1の隔壁3aを形成する。フォトリソグラフィ法によって第1の隔壁3aを形成する場合、まず感光性樹脂組成物を支持基板2上に塗布成膜する。感光性樹脂組成物の塗布方法としては、たとえばスピンコート法、スリットコート法などを挙げることができる。
 感光性樹脂組成物を支持基板2上に塗布成膜した後、通常はプリベーク工程を行う。プリベーク工程は、たとえば80℃~110℃の温度で、60秒間~180秒間、支持基板2を加熱することによって行われる。このプリベーク工程によって溶剤成分を除去し、第1の隔壁形成用膜8aを形成する。
 つぎに支持基板2の上方に所定のパターンで光を遮光するフォトマスク21aを配置し、このフォトマスク21aを介して、第1の隔壁形成用膜8aを露光する。感光性樹脂には、ポジ型の感光性樹脂およびネガ型の感光性樹脂がある。本工程ではいずれの型の感光性樹脂を用いてもよい。ポジ型の感光性樹脂を使用した場合には、第1の隔壁形成用膜8aのうち、主に第1の隔壁3aが形成されるべき部位外の残余の部位に光Lを照射する。またネガ型の感光性樹脂を使用した場合には、第1の隔壁形成用膜8aのうち、主に第1の隔壁3aが形成されるべき部位に光Lを照射する。本工程ではポジ型の感光性樹脂を使用した場合について、図10を参照して説明する。
 図10A、図10Bおよび図10Cに示されるように、支持基板2の上方にフォトマスク21aを配置し、このフォトマスク21aを介して光Lを照射する。光Lは、第1の隔壁形成用膜8aのうち、主に第1の隔壁3aが形成されるべき部位外の残余の部位に照射される。また図10Aおよび図10Bでは第1の隔壁形成用膜8aに照射される光Lを模式的に白抜き矢印で示している。
 図11A、図11Bおよび図11Cに示されるように、つぎに現像工程を行う。これによって第1の隔壁3aがパターン形成される。第1の隔壁形成用膜8aを現像する際には、現像液が第2の隔壁3bに接触することになる。しかしながら、前述したように第2の隔壁3bはポストベーク工程が施されているため、第2の隔壁3bは、たとえ現像液に接したとしてもエッチングされない。
 現像工程後、ポストベーク工程を行う。ポストベーク工程は、たとえば200℃~230℃の温度で、15分間~60分間、支持基板2を加熱することによって第1の隔壁形成用膜8aを硬化し、第1の隔壁3aを形成する。
 本実施形態では順テーパ形状の第1の隔壁3aを形成する。第1の隔壁3aの側面と第1の隔壁3aの底面との成す角θ1の角度は、以下の要素を適宜調整することによって、任意の角度に調整することができる。
 第1の隔壁3aの側面と第1の隔壁3aの底面との成す角θ1の角度、第2の隔壁3bの側面と第2の隔壁3bの底面との成す角θ2の角度は、主に使用する感光性樹脂の種類によって定まる。そこでたとえば市場から入手可能な複数の種類の感光性樹脂のなかから、所定の条件で露光工程および現像工程を行うことにより順テーパ形状の隔壁3(第1の隔壁の3a)を形成し得る材料、または所定の条件で露光工程および現像工程を行うことにより逆テーパ形状の隔壁3(第2の隔壁の3b)を形成し得る材料を適宜選択し、これを使用して隔壁を形成すればよい。
 なお現像時間を調整することによっても隔壁の側面と隔壁の底面との成す角を調整することができる。ネガ型の感光性樹脂を用いて逆テーパ形状の第2の隔壁3bを形成する場合、一般に、現像時間を長くするほど、第2の隔壁3bの側面と第2の隔壁3bの底面との成す角θ2の角度が大きくなる傾向にある。
 また露光量を調整することによっても隔壁の側面と隔壁の底面との成す角を調整することができる。ネガ型の感光性樹脂を用いて逆テーパ形状の第2の隔壁3bを形成する場合、一般に、露光量を小さくするほど、第2の隔壁3bの側面と第2の隔壁3bの底面との成す角θ2の角度が小さくなる傾向にある。
 またフォトマスク21bと支持基板2との距離を調整することによっても隔壁の側面と隔壁の底面との成す角を調整することができる。ネガ型の感光性樹脂を用いる場合、フォトマスク21bと支持基板2との距離を小さくするほど、順テーパ形状の第1の隔壁3aを形成する場合には、一般に、第1の隔壁3aの側面と第1の隔壁3aの底面との成す角θ1が大きくなる傾向にあり、また逆テーパ形状の第2の隔壁3bを形成する場合には、一般に、第2の隔壁3bの側面と第2の隔壁3bの底面との成す角θ2が小さくなる傾向にある。
 感光性樹脂組成物は、一般にバインダー樹脂、架橋材、光反応開始材、溶媒、およびその他の添加剤を配合して使用される。
 バインダー樹脂は、予め重合された樹脂である。バインダー樹脂の例としては、自ら重合性を有しない非重合性バインダー樹脂、重合性を有する置換基が導入された重合性バインダー樹脂が挙げられる。バインダー樹脂は、ポリスチレンを標準としてゲルパーミエーションクロマトグラフィ(GPC)で求められる重量平均分子量が5000~400000の範囲にある。
 バインダー樹脂としては、たとえばフェノール樹脂、ノボラック樹脂、メラミン樹脂、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂などが挙げられる。バインダー樹脂としては、単量体はそれぞれ単独または2種以上を組み合わせた共重合体を使用することもできる。バインダー樹脂の割合は、上記感光性樹脂組成物の全固形分に対して、質量分率で通常5%~90%である。
 架橋材は、光を照射することによって光重合開始剤から発生した活性ラジカル、酸などによって重合し得る化合物である。架橋剤として、たとえば、重合性炭素-炭素不飽和結合を有する化合物が挙げられる。架橋材は、分子内に重合性炭素-炭素不飽和結合を1個有する単官能の化合物であってもよいし、重合性炭素-炭素不飽和結合を2個以上有する2官能以上の多官能の化合物であってもよい。上記感光性樹脂組成物において、架橋材は、バインダー樹脂と架橋材との合計量を100質量部とすると、通常0.1質量部以上70質量部以下である。また上記感光性樹脂組成物において光反応開始材は、バインダー樹脂と架橋材との合計量を100質量部とすると、通常1質量部以上30質量部以下である。
 ポジ型感光性樹脂は、光の照射部分が現像液に対して溶解する樹脂である。ポジ型感光性樹脂は、一般的には樹脂と光反応で親水化する化合物とを複合化することで構成される。
 ポジ型感光性樹脂としては、ノボラック樹脂、ポリヒドロキシスチレン、アクリル樹脂、メタアクリル樹脂、ポリイミドなどの耐薬品性および密着性を有する樹脂と光分解性化合物とを組み合わせた樹脂を使用することができる。
 現像に使用される現像液としては、たとえば塩化カリウム水溶液、水酸化テトラメチルアンモニウム(TMAH)水溶液などを挙げることができる。
 上述したように、第1の隔壁3aの側面と第1の隔壁3aの底面との成す角θ1、第2の隔壁3bの側面と第2の隔壁3bの底面との成す角θ2は主に使用する感光性樹脂の種類によって定まるが、市場から入手可能な複数の種類の感光性樹脂のうちの多くは、順テーパ形状の隔壁(第1の隔壁3a)を形成する材料として使用することができる。なお逆テーパ形状の隔壁(第2の隔壁3b)を形成するための材料の例としては、日本ゼオン株式会社製の材料(ZPN2464、ZPN1168)などを挙げることができる。
 隔壁3の形状およびその配置は、画素数および解像度などの表示装置の仕様、製造の容易さなどに応じて適宜設定される。たとえば隔壁3の行方向Xまたは列方向Yの幅は5μm~50μm程度であり、隔壁3の高さは0.5μm~5μm程度であり、行方向Xまたは列方向Yに隣り合う隔壁3間の間隔、すなわち凹部5の行方向Xまたは列方向Yの幅は10μm~200μm程度である。また第1電極6の行方向Xまたは列方向Yの幅はそれぞれ10μm~200μm程度である。
 (有機層を形成する工程)
 本工程では有機層を形成する。本実施形態では1層以上の有機層のうち、少なくとも1層の有機層を塗布法によって形成する。本実施形態では、第1の有機層7および第2の有機層9を塗布法によって形成する。
 まず正孔注入層として機能する第1の有機層7を形成する。図12A、図12Bおよび図12Cに示されるように、まず第1の有機層7となる材料を含むインク22を隔壁3に囲まれた領域(凹部5)に供給する。インク22は、隔壁3の形状、成膜工程の簡易さ、および成膜性などを勘案して適宜最適な方法によって供給される。インク22はたとえばインクジェットプリント法、ノズルコート法、凸版印刷法、凹版印刷法などによって凹部5に供給される。
 図13A、図13Bおよび図13Cに示されるように、つぎに、供給されたインク22を固化し、第1の有機層7を形成する。
インク22の固化は、たとえば自然乾燥、加熱乾燥、真空乾燥によって行うことができる。またインク22が、エネルギーを加えることによって重合する材料を含む場合、インク22を凹部5に供給した後に、インク22を加熱したり、インク22に光を照射したりすることによって、インク22に含まれる有機層を構成する材料を重合してもよい。このように有機層を構成する材料を重合することによって、第1の有機層7を形成し、この第1の有機層7上に第2の有機層をさらに形成する際に使用するインクに対して、第1の有機層7を難溶化することができる。
 図14A、図14Bおよび図14Cに示されるように、つぎに、発光層として機能する第2の有機層9を形成する。第2の有機層9は第1の有機層7と同様に形成することができる。すなわち赤色発光層9R、緑色発光層9G、青色発光層9Bとなる材料をそれぞれ含む3種類のインクを、隔壁3に囲まれた所定の領域(凹部5)にそれぞれ供給し、さらにこれを固化することによって赤色発光層9R、緑色発光層9G、青色発光層9Bが形成される。
 (第2電極を形成する工程)
 図15A、図15Bおよび図15Cに示されるように、つぎに第2電極10を形成する。本実施形態では、少なくとも複数の有機エレクトロルミネッセンス素子が設けられる表示領域において、一面(全面)に導電性薄膜10aを形成する。たとえば蒸着法によって一面に導電性薄膜10aを形成する。上述したようにこの導電性薄膜10aのうちで、第2の有機層9上に設けられる部分が第2電極10に相当する。
 図15Cに示されるように、第2電極10の厚さが薄い場合、たとえ一面に導電性薄膜10aを形成したとしても、逆テーパ形状の第2の隔壁3b上ではその端部で導電性薄膜10aが切断されることがあり、そのために有機エレクトロルミネッセンス素子4の第2電極10と第2の隔壁3b上の導電性薄膜10aとが切断されることがある。
 図15Bに示されるように、順テーパ形状の第1の隔壁3a上では、その側面(第1の隔壁3aの底面に対して角θ1をなす面)上にも導電性薄膜10aが形成されるため、第1の隔壁3aの端部で第2電極10が切断されることがなく、有機エレクトロルミネッセンス素子4の第2電極10と第1の隔壁3a上の導電性薄膜10aとが連なるように形成される。そのため、行方向Xに隣り合う有機エレクトロルミネッセンス素子4の第2電極10同士が、第1の隔壁3a上の導電性薄膜10aを介して連なるように形成される。
 このように有機エレクトロルミネッセンス素子4の外周のうちの一部に面して順テーパ形状の第1の隔壁3aが設けられると、有機エレクトロルミネッセンス素子4の第2電極10と第1の隔壁3a上の導電性薄膜10aとが連なるように形成される。そのためたとえ逆テーパ形状の第2の隔壁3bが設けられるとしても、有機エレクトロルミネッセンス素子4の第2電極10が隔壁3の端部で切断されることを防ぐことができ、複数の有機エレクトロルミネッセンス素子4上にわたって連なる第2電極10を形成することができる。
 上述したように逆テーパ形状の隔壁3(第2の隔壁3b)が設けられる場合、第2電極10の厚さが薄いと、逆テーパ形状の隔壁3の端部で第2電極10が切断されることがあるが、順テーパ形状の第1の隔壁3aを設けることにより、第2電極10の厚さを必要以上に厚くすることなく、複数の有機エレクトロルミネッセンス素子4の第2電極10同士を連なるように形成することができる。
 また本実施形態では、第1の隔壁3aは、支持基板2の厚さ方向Zに直交する第1の方向(本実施形態では行方向X)にそれぞれ延在し、厚さ方向Zおよび第1の方向(X)にそれぞれ直交する第2の方向(本実施形態では列方向Y)に所定の間隔をあけて配置される複数本の順テーパ形状の隔壁から構成され、平面視で第1の隔壁3aと第2の隔壁3bとが重なる部位では、第2の隔壁3bは、支持基板2と第1の隔壁3aとの間に設けられる。そのため、平面視で第1の隔壁3aと第2の隔壁3bとが重なる部位では、第2の隔壁3bは第1の隔壁3aに覆われる、すなわち第1の隔壁3aが露出することになる。このような第1の隔壁3aが設けられた支持基板2上の全面に導電性薄膜10aを形成すると、平面視で第1の隔壁3aと第2の隔壁3bとが重なる部位では、第2の隔壁3bが第1の隔壁3aに覆われているため、第1の隔壁3aの延在方向に沿って、当該第1の隔壁3a上に導電性薄膜10aがひとつらなりに形成される。本実施形態では第1の隔壁3aが列方向Yに延在するように形成されているため、列方向Yに隣り合う有機エレクトロルミネッセンス素子4の第2電極10同士が、第1の隔壁3a上の導電性薄膜10aを介して連なるように形成されている。これによって、第1の隔壁3a上の導電性薄膜10aを介してすべての有機エレクトロルミネッセンス素子の第2電極10同士が連なるように形成される。そのため第2電極10がすべての有機エレクトロルミネッセンス素子4に共通する電極として機能する。
 また本実施形態では、逆テーパ形状の第2隔壁3bが有機エレクトロルミネッセンス素子4に面して有機エレクトロルミネッセンス素子4を囲むように配置されるため、隔壁3に囲まれた領域(凹部5)に供給されたインク22は、毛細管現象によって、第1電極16と第2隔壁3bとが接続される部分の近傍の先細状の部位に吸い込まれるように充填された状態となる。この状態を維持したままインクの溶媒を蒸発させることによって、第1電極6と隔壁3とが接続される部位の近傍の先細状の部位にも有機層が形成される。これによって均一な厚さの有機層を得ることができる。
 なお順テーパ形状の第1電極6と第1隔壁3aとが接続される部位では、隔壁3に囲まれた領域(凹部5)に供給されたインク22は第1隔壁3aにはじかれつつ乾燥することがありうる。しかしながら、有機エレクトロルミネッセンス素子4に面して有機エレクトロルミネッセンス素子4の一部分を囲むように逆テーパ形状の第2隔壁3bを設けることにより、少なくとも有機層全体としては、順テーパ形状の隔壁のみに囲まれた凹部に有機層を形成する場合よりも平坦で均一な厚さの有機層が得られる。
 なお凹部5において、有機層の厚さがより薄くなる部位は、平面視における凹部5の形状に大きく依存する。たとえば順テーパ形状の隔壁のみに囲まれた凹部に、支持基板の厚み方向に垂直な所定の方向に延在する形状を有する有機エレクトロルミネッセンス素子を形成する場合、すなわち本実施形態のように列方向Yに延在する有機エレクトロルミネッセンス素子を形成する場合、凹部に供給されたインキは、長手方向(列方向Y)の一端および他端のいずれか、または短手方向(行方向X)の中央部に集まる傾向がある。この場合、有機層は、長手方向(列方向Y)の一端側および他端側のうちのいずれかの厚さがより薄くなったり、短手方向(行方向X)の一端側および他端側の厚さがより薄くなったりする傾向にある。
 このように所定の方向に延在する有機エレクトロルミネッセンス素子の場合は、本実施の形態のように第1の隔壁3aは、平面視で、有機エレクトロルミネッセンス素子4の短手方向(行方向X)の一方および他方の端面に面して、すなわち有機エレクトロルミネッセンス素子の短手方向の直線的な外周を囲む(外周に面する)側面が平面視で長手方向に直線的に延在するように配置され、第2の隔壁3bは、有機エレクトロルミネッセンス素子4の長手方向(列方向Y)の一方および他方の端面に面して、すなわち有機エレクトロルミネッセンス素子の長手方向の円弧状の外周を囲む(外周に面する)側面が平面視で短手方向に円弧状に延在するように配置されることが好ましい。第2の隔壁3bをこのように配置すると、凹部5に供給されたインク22は、逆テーパ形状の第2隔壁3bの側面に面する長手方向(列方向Y)の一端側および他端側の先細状の部位に毛管現象により引き寄せられ、第2隔壁3bの側面で拘束されて薄膜となるため、順テーパ形状の隔壁のみに囲まれた凹部に形成される有機層よりも平坦で均一な厚さの有機層がえられる。
 また第1の隔壁3aが、有機エレクトロルミネッセンス素子4の短手方向(行方向X)の一方および他方の端面に面して配置され、第2の隔壁3bが、有機エレクトロルミネッセンス素子4の長手方向(列方向Y)の一方および他方の端面に面して配置されると、平面視で第2電極10が切断されるおそれがあるのは長手方向(列方向Y)の一端側と他端側(短辺)であり、第2電極10は短手方向(行方向X)の一端側と他端側(長辺)とで隔壁3上の導電性薄膜10aと接続している。このような本実施の形態と、第2電極10が短手方向(行方向X)の一端側と他端側とで切断されている形態とを比べると、隔壁3上の導電性薄膜10aと分断されている領域は本実施の形態の有機エレクトロルミネッセンス素子4の方が少なく、隔壁3上で導電性薄膜10aが一体的に構成されている領域は本実施の形態の有機エレクトロルミネッセンス素子4の方が多くなるため、配線抵抗を小さくすることができる。
 <有機エレクトロルミネッセンス素子の構成>
 以下では有機エレクトロルミネッセンス素子の構成についてさらに詳しく説明する。有機エレクトロルミネッセンス素子は、有機層として少なくとも1層の発光層を有する。有機エレクトロルミネッセンス素子は、上述したようにたとえば正孔注入層、正孔輸送層、電子ブロック層、正孔ブロック層、電子輸送層、および電子注入層などの所定の層をさらに備えることがある。
 本実施の形態の有機エレクトロルミネッセンス素子のとりうる層構成の一例を以下に示す。
a)陽極/発光層/陰極
b)陽極/正孔注入層/発光層/陰極
c)陽極/正孔注入層/発光層/電子注入層/陰極
d)陽極/正孔注入層/発光層/電子輸送層/陰極
e)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
f)陽極/正孔輸送層/発光層/陰極
g)陽極/正孔輸送層/発光層/電子注入層/陰極
h)陽極/正孔輸送層/発光層/電子輸送層/陰極
i)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
j)陽極/正孔注入層/正孔輸送層/発光層/陰極
k)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
l)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
m)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
n)陽極/発光層/電子注入層/陰極
o)陽極/発光層/電子輸送層/陰極
p)陽極/発光層/電子輸送層/電子注入層/陰極
 (ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。
以下同じ。)
 上述の実施形態では第1電極6が陽極として機能し、第2電極10が陰極として機能する有機エレクトロルミネッセンス素子4について説明した。この形態では、たとえば上記a)~p)の各構成要素は、より左側に示した陽極から順次に支持基板2上に積層される。なお第1電極6が陰極として機能し、第2電極10が陽極として機能する有機エレクトロルミネッセンス素子4では、たとえば上記a)~p)の層構成の各構成要素は、より右側に示した陰極から順次に支持基板2上に積層される。
 <支持基板>
 支持基板2には、有機エレクトロルミネッセンス素子4を製造する工程において化学的に変化しないものが好適に用いられ、たとえばガラス、プラスチック、高分子フィルム、およびシリコン板、並びにこれらを積層した基板などが用いられる。
 <陽極>
 発光層から放射される光が陽極を通って外界に出射する構成の有機エレクトロルミネッセンス素子の場合、陽極には光透過性を示す電極が用いられる。光透過性を示す電極としては、金属酸化物、金属硫化物および金属などの薄膜を用いることができ、電気伝導度および光透過率の高いものが好適に用いられる。具体的には酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(Indium Tin Oxide:ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:IZO)、金、白金、銀、および銅などから成る薄膜が用いられ、これらの中でもITO、IZO、または酸化スズから成る薄膜が好適に用いられる。
 陽極の作製方法の例としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法などを挙げることができる。また、陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。
 <陰極>
 陰極の材料としては、仕事関数が小さく、発光層への電子注入が容易で、電気伝導度の高い材料が好ましい。また陽極側から光を取出す構成の有機エレクトロルミネッセンス素子では、発光層から放射される光を陰極で陽極側に反射するために、陰極の材料としては可視光に対する反射率の高い材料が好ましい。陰極には、たとえばアルカリ金属、アルカリ土類金属、遷移金属および周期表の第13族金属などを用いることができる。陰極の材料としては、たとえばリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属、前記金属のうちの2種以上の合金、前記金属のうちの1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1種以上との合金、またはグラファイト若しくはグラファイト層間化合物などが用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金などを挙げることができる。また陰極としては導電性金属酸化物および導電性有機物などから成る透明導電性電極を用いることができる。具体的には、導電性金属酸化物の例として酸化インジウム、酸化亜鉛、酸化スズ、ITO、およびIZOを挙げることができる。導電性有機物の例としてポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などを挙げることができる。なお陰極は、2層以上を積層した積層体で構成されていてもよい。
なお電子注入層が陰極として用いられることもある。
 陰極の作製方法の例としては、真空蒸着法、イオンプレーティング法などを挙げることができる。
 陽極または陰極の厚さは、求められる特性、成膜工程の簡易さなどを考慮して適宜設定することができる。陽極または陰極の厚さは、たとえば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 <正孔注入層>
 正孔注入層を構成する正孔注入材料の例としては、酸化バナジウム、酸化モリブデン、酸化ルテニウム、および酸化アルミニウムなどの酸化物、フェニルアミン化合物、スターバースト型アミン化合物、フタロシアニン化合物、アモルファスカーボン、ポリアニリン、およびポリチオフェン誘導体などを挙げることができる。
 正孔注入層の成膜方法としては、たとえば正孔注入材料を含む溶液からの成膜を挙げることができる。正孔注入層は、たとえば正孔注入材料を含む溶液を所定の塗布法によって塗布成膜し、さらにこれを固化することによって形成することができる。
 正孔注入層の厚さは、求められる特性、工程の簡易さなどを考慮して適宜設定される。正孔注入層の厚さは、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 <正孔輸送層>
 正孔輸送層を構成する正孔輸送材料の例としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などを挙げることができる。
 正孔輸送層の厚さは、求められる特性、成膜工程の簡易さなどを考慮して設定される。正孔輸送層の厚さは、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 <発光層>
 発光層は、通常、主として蛍光及び/又はりん光を発光する有機物、または該有機物とこれを補助するドーパントとから形成される。ドーパントは、たとえば発光効率を向上させ、また発光波長を変化させるために加えられる。なお発光層を構成する有機物は、低分子化合物でも高分子化合物でもよく、塗布法によって発光層を形成する場合には、発光層は高分子化合物を含むことが好ましい。発光層を構成する高分子化合物のポリスチレン換算の数平均分子量はたとえば10~10程度である。発光層を構成する発光材料としては、たとえば以下の色素材料、金属錯体材料、高分子材料、ドーパント材料を挙げることができる。
 (色素材料)
 色素材料としては、たとえば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などを挙げることができる。
 (金属錯体材料)
 金属錯体材料としては、たとえばTb、Eu、Dyなどの希土類金属、またはAl、Zn、Be、Ir、Ptなどを中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを配位子に有する金属錯体を挙げることができる。金属錯体材料としては、たとえばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体などを挙げることができる。
 (高分子材料)
 高分子材料の例としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素材料、金属錯体発光材料を高分子化した材料などを挙げることができる。
 発光層の厚さは、通常約2nm~200nmである。
 <電子輸送層>
 電子輸送層を構成する電子輸送材料としては、公知の材料を使用することができる。電子輸送材料の例としては、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアントラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などを挙げることができる。
 電子輸送層の厚さは、求められる特性、成膜工程の簡易さなどを考慮して適宜設定される。電子輸送層の厚さは、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 <電子注入層>
 電子注入層を構成する材料としては、発光層の種類に応じて最適な材料が適宜選択される。電子注入層を構成する材料の例としては、アルカリ金属、アルカリ土類金属、アルカリ金属およびアルカリ土類金属のうちの1種類以上を含む合金、アルカリ金属若しくはアルカリ土類金属の酸化物、ハロゲン化物、炭酸塩、およびこれらの物質の混合物などを挙げることができる。
 アルカリ金属、アルカリ金属の酸化物、ハロゲン化物、および炭酸塩の例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウムなどを挙げることができる。また、アルカリ土類金属、アルカリ土類金属の酸化物、ハロゲン化物、炭酸塩の例としては、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどを挙げることができる。電子注入層は、2層以上を積層した積層体で構成されてもよく、たとえばLiF層およびCa層の積層体などを挙げることができる。
 電子注入層の厚さは、1nm~1μm程度が好ましい。
 上述の各有機層は、たとえばノズルプリンティング法、インクジェットプリンティング法、凸版印刷法、凹版印刷法などの塗布法、真空蒸着法、スパッタリング法、またはCVD法などによって形成することができる。
 なお塗布法では、各有機層となる有機エレクトロルミネッセンス材料を含むインクを塗布成膜し、さらに塗布成膜されたインクを固化することによって有機層を形成する。使用されるインクの溶媒には、たとえばクロロホルム、塩化メチレン、ジクロロエタンなどの塩素溶媒、テトラヒドロフランなどのエーテル溶媒、トルエン、キシレンなどの芳香族炭化水素溶媒、アセトン、メチルエチルケトンなどのケトン溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル溶媒、および水などが用いられる。
 本発明をさらに詳細に説明するために以下に実施例を示す。本発明は下記実施例に限定されるものではない。
(実施例1)
 第1電極として機能するITO薄膜が形成された支持基板(TFT基板)を用意する(図7A、図7Bおよび図7C参照)。この支持基板上に、ネガ型感光性樹脂溶液1(日本ゼオン株式会社製ZPN2464)をスピンコータを用いて塗布成膜し、ホットプレート上において110℃で90秒間加熱する、プリベーク工程を施すことによって溶剤成分を気化させる(図8A、図8Bおよび図8C参照)。つぎにプロキシミティ露光機を用いて露光量100mJ/cm2で露光する。さらに現像液(株式会社トクヤマ製SD-1(TMAH 2.38重量%))を用いて80秒間現像し、逆テーパ形状の第2の隔壁3bを形成する。つぎに230℃で30分間加熱し、ポストベーク工程を施すことにより樹脂を硬化させ、厚さが0.8μmの第2の隔壁3bを形成する。このようにして形成された第2の隔壁3bの側面と第2の隔壁3bの底面との成す角θ2の角度は約115°となる。
 つぎにポジ型感光性樹脂溶液(日本ゼオン株式会社製ZPN6216)をスピンコータを用いて塗布成膜し、ホットプレート上において110℃で90秒間加熱する、プリベーク工程を施すことによって溶剤成分を気化させる(図10A、図10Bおよび図10C参照)。つぎにプロキシミティ露光機によって露光量100mJ/cm2で露光する。さらに現像液(株式会社トクヤマ製SD-1(TMAH 2.38重量%))を用いて70秒間現像し、順テーパ形状の第1の隔壁3aを形成する。つぎに230℃で30分間加熱する、ポストベーク工程を施すことにより、樹脂を硬化させ、厚さが1.0μmの第1の隔壁3aを形成する(図11A、図11Bおよび図11C参照)。このようにして形成された第1の隔壁3aの側面と第2の隔壁3aの底面との成す角θ1の角度は約30°となる。
 隔壁が形成された支持基板に酸素プラズマによる表面処理を行い、続いてCFプラズマによる表面処理を行い、ITO表面を親液化し、隔壁の表面に撥液性を付与する。
 つぎにインクジェット装置(ULVAC社製 Litlex142P)を用いてインク(固形分濃度1.5%のポリ(エチレンジオキシチオフェン)(PEDOT)およびポリスチレンスルホン酸(PSS)の水分散液(バイエル社製 AI4083))を塗布する(図12A、図12Bおよび図12C参照)。隔壁3の上面はインクを弾くため、隔壁3に囲まれた所定の凹部内にインクが充填される。加えて、インクは、凹部の行方向Xの一端側および他端側に面する逆テーパ形状の第2の隔壁に沿って毛細管現象によってその端部、すなわち側面の下端部近傍の先細の間隙に引き寄せられることにより、画素(凹部)内に均一に広がる。この基板を200℃で焼成し、均一な厚さ(50nm)の正孔注入層7を形成する(図13A、図13Bおよび図13C参照)。
 つぎに赤色の光を放射する高分子発光材料を、その濃度が0.8重量%となるように有機溶媒に混合して赤色発光インクを調製する。同様に、緑色の光を放射する高分子発光材料を、その濃度が0.8重量%となるように有機溶媒に混合して緑色発光インクを調製する。さらに青色の光を放射する高分子発光材料を、その濃度が0.8重量%となるように有機溶媒に混合して青色発光インクを調製する。これら赤色発光インク、緑色発光インク、青色発光インクをそれぞれインクジェット装置(ULVAC社製 Litrex142P)を用いて所定の凹部内に塗布する。
 隔壁3の上面はインクを弾くため、隔壁3に囲まれた所定の凹部内にインクが充填される。加えて、インクは、凹部の行方向Xの一端および他端に面する逆テーパ形状の第2の隔壁に沿って毛細管現象によってその端部に引き寄せられ、画素内に均一に広がる。この基板を130℃で焼成し、均一な厚さ(60nm)の発光層9を形成する(図14A、図14Bおよび図14C参照)。
 つぎに真空蒸着法により厚さが20nmのCa層、厚さが150nmのAl層からなる第2電極(陰極)10を形成する。逆テーパ形状の第2の隔壁3bの端部ではその段差のために第2電極(陰極)10は分断されることもあるが(図15C参照)、順テーパ形状の第1の隔壁3aの端部では第2電極(陰極)10は分断することがないため、全ての有機エレクトロルミネッセンス素子4の第2電極10が連なるように形成される。これによって配線抵抗を低下させることができ、意図したとおりに発光する複数の有機エレクトロルミネッセンス素子を支持基板上に作製することができ、さらに作製された有機エレクトロルミネッセンス素子は、パネル面内において各有機エレクトロルミネッセンス素子が相互に同様の輝度で発光するとともに、各有機エレクトロルミネッセンス素子が個別に画素内において均一に発光する。
 1  表示装置
 2  支持基板
 3  隔壁
 3a  第1の隔壁
 3b  第2の隔壁
 4  有機エレクトロルミネッセンス素子
 5  凹部
 6  第1電極
 7  第1の有機層(正孔注入層)
 8  隔壁形成用膜
 9  第2の有機層(発光層)
 10  第2電極
 10a 導電性薄膜
 12  支持基板
 13  隔壁
 15  隔壁に囲まれた領域
 16  第1電極
 17  インク
 18  有機層
 19  第2電極
 21  フォトマスク
 22  インク

Claims (5)

  1.  支持基板と、前記支持基板上に設けられる複数の有機エレクトロルミネッセンス素子と、前記有機エレクトロルミネッセンス素子の前記支持基板の厚さ方向の一方からみた場合における外周をそれぞれ囲むように設けられる隔壁とを備える表示装置であって、
     前記隔壁は、前記外周のうちの一部に面して設けられる第1の隔壁と、前記外周のうちの前記一部を除く残余の部分に面して設けられる第2の隔壁とを有し、
     前記第1の隔壁は、前記外周を囲む側面と底面との成す角が鋭角の順テーパ形状の隔壁であり、
     前記第2の隔壁は、前記外周を囲む側面と底面との成す角が鈍角の逆テーパ形状の隔壁である、表示装置。
  2.  前記第1の隔壁は、前記支持基板の厚さ方向に直交する第1の方向にそれぞれ延在し、前記厚さ方向および前記第1の方向に直交する第2の方向に所定の間隔をあけて配置される複数本の隔壁部材から構成され、
     前記第1の隔壁と前記第2の隔壁とが重なる部位では、前記第2の隔壁は、前記支持基板と前記第1の隔壁との間に設けられる、請求項1に記載の表示装置。
  3.  前記有機エレクトロルミネッセンス素子は、前記支持基板の厚さ方向に直交する所定の方向に延在する形状を有し、
     前記第1の隔壁は、前記有機エレクトロルミネッセンス素子の短手方向の一方および他方の前記外周を囲むように配置され、
     前記第2の隔壁は、前記有機エレクトロルミネッセンス素子の長手方向の一方および他方の前記外周を囲むように配置される、請求項1に記載の表示装置。
  4.  前記第1の隔壁および第2の隔壁それぞれが、感光性樹脂組成物の層がパターニングされることにより形成される、請求項1に記載の表示装置。
  5.  請求項1に記載の表示装置の製造方法であって、
     支持基板上に隔壁を形成する工程と、
     前記支持基板上に複数の有機エレクトロルミネッセンス素子を形成する工程とを含み、
     前記隔壁を形成する工程では、フォトリソグラフィ法によって感光性樹脂組成物の層をパターニングすることにより、第1の隔壁と第2の隔壁とをそれぞれ形成する、表示装置の製造方法。
PCT/JP2011/078701 2010-12-16 2011-12-12 表示装置 WO2012081550A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180059829.3A CN103262655B (zh) 2010-12-16 2011-12-12 显示装置
KR1020137015090A KR101885937B1 (ko) 2010-12-16 2011-12-12 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-280207 2010-12-16
JP2010280207A JP5418487B2 (ja) 2010-12-16 2010-12-16 表示装置

Publications (1)

Publication Number Publication Date
WO2012081550A1 true WO2012081550A1 (ja) 2012-06-21

Family

ID=46244649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078701 WO2012081550A1 (ja) 2010-12-16 2011-12-12 表示装置

Country Status (5)

Country Link
JP (1) JP5418487B2 (ja)
KR (1) KR101885937B1 (ja)
CN (1) CN103262655B (ja)
TW (1) TWI544572B (ja)
WO (1) WO2012081550A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021629A (zh) * 2017-12-11 2019-07-16 乐金显示有限公司 电致发光显示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111488B2 (ja) * 2013-07-01 2017-04-12 株式会社Joled 有機el装置
JP2015050022A (ja) * 2013-08-30 2015-03-16 株式会社ジャパンディスプレイ 有機el表示装置
JP6789196B2 (ja) * 2017-09-08 2020-11-25 株式会社Joled 有機el表示パネル及び有機el表示パネルの製造方法
WO2019130480A1 (ja) * 2017-12-27 2019-07-04 シャープ株式会社 表示装置及びその製造方法
WO2022149713A1 (ko) * 2021-01-08 2022-07-14 삼성전자주식회사 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515909A (ja) * 1999-11-29 2003-05-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 有機エレクトロルミネッセント装置とその製造方法
JP2007095630A (ja) * 2005-09-30 2007-04-12 Toppan Printing Co Ltd インキ吐出印刷物
JP2008243545A (ja) * 2007-03-27 2008-10-09 Toppan Printing Co Ltd 有機エレクトロルミネッセンスディスプレイ及びその製造方法
JP2009054582A (ja) * 2007-07-31 2009-03-12 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2009135053A (ja) * 2007-11-30 2009-06-18 Sumitomo Chemical Co Ltd 電子デバイス、表示装置および電子デバイスの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372146C (zh) * 2003-06-23 2008-02-27 清华大学 一种有机电致发光器件及其制备方法
US6992326B1 (en) * 2004-08-03 2006-01-31 Dupont Displays, Inc. Electronic device and process for forming same
JP4812627B2 (ja) * 2004-10-28 2011-11-09 シャープ株式会社 有機エレクトロルミネセンスパネル及びその製造方法、並びに、カラーフィルタ基板及びその製造方法
GB0517195D0 (en) * 2005-08-23 2005-09-28 Cambridge Display Tech Ltd Molecular electronic device structures and fabrication methods
JP2007227289A (ja) 2006-02-27 2007-09-06 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法および電子機器
KR100927296B1 (ko) * 2007-05-28 2009-11-18 파나소닉 주식회사 유기 el 디바이스 및 표시장치
JP5036628B2 (ja) * 2008-05-29 2012-09-26 エルジー ディスプレイ カンパニー リミテッド 有機el表示装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515909A (ja) * 1999-11-29 2003-05-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 有機エレクトロルミネッセント装置とその製造方法
JP2007095630A (ja) * 2005-09-30 2007-04-12 Toppan Printing Co Ltd インキ吐出印刷物
JP2008243545A (ja) * 2007-03-27 2008-10-09 Toppan Printing Co Ltd 有機エレクトロルミネッセンスディスプレイ及びその製造方法
JP2009054582A (ja) * 2007-07-31 2009-03-12 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2009135053A (ja) * 2007-11-30 2009-06-18 Sumitomo Chemical Co Ltd 電子デバイス、表示装置および電子デバイスの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021629A (zh) * 2017-12-11 2019-07-16 乐金显示有限公司 电致发光显示装置

Also Published As

Publication number Publication date
KR101885937B1 (ko) 2018-08-06
JP2012129086A (ja) 2012-07-05
CN103262655A (zh) 2013-08-21
CN103262655B (zh) 2016-02-10
KR20130143602A (ko) 2013-12-31
JP5418487B2 (ja) 2014-02-19
TW201236106A (en) 2012-09-01
TWI544572B (zh) 2016-08-01

Similar Documents

Publication Publication Date Title
JP5573616B2 (ja) 表示装置
JP5572942B2 (ja) 発光装置およびその製造方法
JP5458728B2 (ja) 発光装置
JP5192828B2 (ja) 有機エレクトロルミネッセンス表示素子及びその製造方法
WO2012081550A1 (ja) 表示装置
JP2010080086A (ja) パターン塗布用基板および有機el素子
WO2012002268A1 (ja) 表示装置およびその製造方法
US20110315971A1 (en) Method for manufacturing organic electroluminescent device
WO2013168546A1 (ja) 表示装置の製造方法
WO2011122445A1 (ja) 発光装置
WO2011118654A1 (ja) 発光装置の製造方法
JP6155856B2 (ja) 表示装置
JP2010160946A (ja) 有機エレクトロルミネッセンス装置の製造方法
JP4893839B2 (ja) 発光装置の製造方法
JP2010160945A (ja) 有機エレクトロルミネッセンス装置の製造方法
WO2013035575A1 (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137015090

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849619

Country of ref document: EP

Kind code of ref document: A1