WO2012081461A1 - Dpfシステム - Google Patents

Dpfシステム Download PDF

Info

Publication number
WO2012081461A1
WO2012081461A1 PCT/JP2011/078281 JP2011078281W WO2012081461A1 WO 2012081461 A1 WO2012081461 A1 WO 2012081461A1 JP 2011078281 W JP2011078281 W JP 2011078281W WO 2012081461 A1 WO2012081461 A1 WO 2012081461A1
Authority
WO
WIPO (PCT)
Prior art keywords
doc
dpf
activity
temperature
catalyst activity
Prior art date
Application number
PCT/JP2011/078281
Other languages
English (en)
French (fr)
Inventor
長岡 大治
輝男 中田
裕之 遊座
智宏 是永
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2012081461A1 publication Critical patent/WO2012081461A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging

Definitions

  • the present invention relates to a DPF system that collects particulate matter from exhaust gas of a diesel engine with DPF and burns and removes it by exhaust pipe injection.
  • DPF Diesel Particulate Filter
  • PM Pulse Matter
  • DOC Diesel Oxidation Catalyst
  • Exhaust pipe injection is a method of adding unburned fuel to exhaust gas from an exhaust pipe injector provided in the exhaust pipe (see, for example, Patent Documents 1 and 2).
  • the unburned fuel added to the exhaust gas by exhaust pipe injection is decomposed into long-chain hydrocarbons that are relatively difficult to activate (not easily combusted). Therefore, when the exhaust injection amount increases, the catalytic activity of the DOC is lost. In some cases, unburned fuel may not burn (fires out).
  • the exhaust gas SV ratio ratio of the exhaust gas flow rate to the volume of the DOC in which the exhaust gas temperature is lower than the catalyst activation temperature (light-off temperature) of the DOC increases. If the operating conditions change suddenly during traveling, such as when the amount of exhaust injection increases, the catalytic activity may be lost (fire may be lost).
  • FIG. 6 is a diagram showing the relationship between changes in operating conditions and injection amount, DOC temperature, catalyst temperature, and DPF temperature in a DPF system in which DOC, catalyst, and DPF are sequentially connected from the upstream side of the exhaust pipe.
  • the DOC temperature indicates the DOC outlet temperature
  • the catalyst temperature indicates the catalyst outlet temperature
  • the DPF temperature indicates the DPF outlet temperature.
  • the exhaust gas will not rise in temperature, and there is a problem that DPF regeneration cannot be performed.
  • the unburned fuel is continuously injected after the DOC misfires, the unburned fuel is adsorbed on the DOC, and then the unburned fuel adsorbed on the DOC is recovered when the DOC is heated to recover the catalyst activity.
  • the fuel burns rapidly and melts the DOC, or flows out after the DOC and is discharged as white smoke in the process of increasing the temperature.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a DPF system capable of preventing a DOC catalyst activity failure when forced regeneration of the DPF is performed by exhaust pipe injection.
  • the present invention provides a DPF system that performs DPF forced regeneration in which fuel is injected from an exhaust pipe injector, is oxidized and burned by the DOC, and PM accumulated in the DPF is burned and removed.
  • Temperature sensor for detecting the DOC outlet temperature at the time of DPF forced regeneration and the DOC outlet temperature are input, and the DOC maintains the catalytic activity from the amount of temperature decrease per unit time of the DOC outlet temperature.
  • Misfire determination means for determining whether or not there is.
  • the misfire determination means determines that the DOC does not maintain catalyst activity when the temperature decrease amount is greater than a preset misfire limit threshold at which the DOC cannot maintain catalyst activity. And good.
  • the present invention is provided on the inlet side of the DOC, a temperature sensor for detecting the DOC inlet temperature at the time of DPF forced regeneration, the DOC inlet temperature is input, and the catalytic activity of the DOC is determined from the input DOC inlet temperature. It is preferable to further include misfire prevention means for determining whether or not the vehicle has recovered.
  • the misfire prevention means detects the catalyst activity of the DOC from the DOC inlet temperature, and when the catalyst activity is greater than a preset activity recovery threshold at which the preset DOC can recover the catalyst activity, the catalyst of the DOC It is good to judge that activity has recovered.
  • the misfire prevention means has a catalyst activity map that can refer to the catalyst activity from the DOC inlet temperature and the exhaust gas SV ratio of the DOC, and refers to the catalyst activity map to determine the catalyst activity. It is good to be made to detect.
  • the misfire prevention means may be configured such that the injection amount of the exhaust pipe injector is equal to or less than the upper limit of injection amount that allows the DOC to maintain catalytic activity.
  • the misfire prevention means has an activity upper limit injection amount map that can refer to the activity upper limit injection amount from the DOC inlet temperature and the exhaust gas SV ratio of the DOC, and refers to the activity upper limit injection amount map to activate the activity. It is preferable to determine the upper limit injection amount.
  • the misfire determination means may be configured to interrupt injection of the exhaust pipe injector when it is determined that the DOC does not maintain catalytic activity.
  • the misfire determination means interrupts injection of the exhaust pipe injector when it is determined that the DOC does not maintain catalytic activity, and the misfire prevention means, after the injection of the exhaust pipe injector is interrupted, It is preferable to determine whether or not the DOC has recovered the catalytic activity, and when it is determined that the DOC has recovered the catalytic activity, the injection of the exhaust pipe injector may be resumed.
  • FIG. 1 is a schematic diagram showing a configuration of a DPF system according to the present embodiment.
  • the DPF system 10 of the present embodiment is equipped with a turbocharger 11, and the air sucked from the air cleaner 12 is compressed by the compressor 13 of the turbocharger 11 and is pumped to the intake passage 14 and connected to the intake passage 14. From the intake manifold 15 to the engine E.
  • the intake passage 14 is provided with an intake valve 16 for adjusting the amount of air to the engine E.
  • the exhaust gas discharged from the engine E flows from the exhaust manifold 17 into the turbine 18 of the turbocharger 11 and drives the turbine 18 to be exhausted to the exhaust pipe 19.
  • the DPF system 10 returns an EGR pipe 20 that connects the intake manifold 15 and the exhaust manifold 17, an EGR cooler 21 that cools the exhaust gas that passes through the EGR pipe 20, and the exhaust manifold 17 to the intake manifold 15.
  • the exhaust pipe 19 is provided with a DOC 23, the exhaust pipe 19 upstream of the DOC 23 is provided with an exhaust pipe injector 24, and the downstream exhaust pipe 19 is provided with a DPF 25 for collecting PM from the exhaust gas. .
  • the exhaust pipe 19 is provided with temperature sensors 26 and 27 on the inlet side (upstream side) and the outlet side (downstream side) of the DOC 23.
  • Engine E intake valve 16, EGR valve 22, exhaust pipe injector 24, and temperature sensors 26, 27 are connected to an ECU (Electronic Control Unit) 28.
  • the ECU 28 receives signals from the temperature sensors 26 and 27 and controls the operation of the engine E, the opening degree of the intake valve 16 and the EGR valve 22, the exhaust pipe injection of the exhaust pipe injector 24, and the like.
  • signals from various sensors (MAF (Mass Air Flow) sensor, etc.) mounted on the vehicle are input to the ECU 28, and the exhaust gas flow rate and the exhaust gas SV ratio (ratio of the exhaust gas flow rate to the volume of the DOC 23). ) Etc.
  • MAF Mass Air Flow
  • the DOC outlet temperature T doc detected by the temperature sensor 27 during the DPF forced regeneration is input, and the DOC 23 is calculated from the temperature decrease amount dT red per unit time of the DOC outlet temperature T doc.
  • the ECU 28 is equipped with misfire determination means 29 for determining whether or not the catalyst activity is maintained.
  • the misfire determination means 29 determines that the DOC 23 does not maintain the catalyst activity when the temperature decrease amount dT red of the DOC outlet temperature T doc is greater than the preset misfire limit threshold ⁇ at which the DOC 23 cannot maintain the catalyst activity. Configured to judge.
  • misfire determination means 29 determines that the DOC 23 does not maintain the catalyst activity
  • the misfire determination means 29 interrupts the injection of the exhaust pipe injector 24 so that excess fuel is adsorbed on the DOC 23 or white smoke is released to the atmosphere. To prevent that.
  • the misfire limit threshold value ⁇ is a temperature decrease amount per unit time indicated by the DOC 23 when the catalyst activity cannot be maintained, and varies depending on the configuration of the DPF system 10 such as the exhaust amount of the engine E and the catalyst characteristics of the DOC 23.
  • the misfire limit threshold ⁇ may be obtained in advance from a test operation of the DPF system 10 or may be obtained from a model calculation simulating the DPF system 10.
  • the ECU 28 receives the DOC inlet temperature T ent detected by the temperature sensor 26 during the forced regeneration of the DPF, and prevents misfire from judging whether the catalytic activity of the DOC 23 is recovered from the inputted DOC inlet temperature T ent.
  • Means 30 are mounted.
  • the misfire prevention means 30 detects the catalyst activity a of the DOC 23 from the DOC inlet temperature T ent, and when the catalyst activity a is greater than the preset activity recovery threshold ⁇ at which the preset DOC 23 can recover the catalyst activity, It is configured to determine that the catalytic activity is restored.
  • the catalyst activity a is a value indicating the degree of catalyst activity of the DOC 23 under a predetermined exhaust gas condition, and varies in the range of 0 to 1 depending on the exhaust gas temperature and the exhaust gas SV ratio.
  • the catalyst activity a may be obtained in advance from a test operation of the DPF system 10 or may be obtained from a model calculation simulating the DPF system 10.
  • the misfire prevention means 30 has a catalyst activity map 31 that can refer to the catalyst activity from the DOC inlet temperature T ent and the exhaust gas SV ratio of the DOC 23, and refers to the catalyst activity map 31. Thus, the catalyst activity a is detected.
  • the catalyst activity map 31 represents the relationship between the exhaust gas temperature and the exhaust gas SV ratio and the catalyst activity of the DOC 23. The higher the exhaust gas temperature, the higher the catalyst activity. Further, the catalyst activity has a tendency to increase once the exhaust gas SV ratio increases and then decrease after reaching a maximum value.
  • the activity recovery threshold value ⁇ is a value for determining whether or not the DOC 23 that can no longer maintain the catalyst activity can recover the catalyst activity and burn the unburned fuel.
  • the activation recovery threshold value ⁇ is set to 0.5, but the present invention does not particularly limit the value of the activation recovery threshold value ⁇ , and can be appropriately changed according to the configuration of the DPF system 10. .
  • misfire prevention means 30 determines whether or not the DOC 23 has recovered the catalytic activity after the misfire determination means 29 interrupts the exhaust pipe injection of the exhaust pipe injector 24, and the DOC 23 has recovered the catalytic activity. When it is determined that the exhaust pipe is in the exhaust pipe injector 24, the exhaust pipe injection of the exhaust pipe injector 24 is resumed.
  • misfire prevention means 30 is configured to reduce the exhaust injection amount of the exhaust pipe injector 24 to be equal to or less than the activation upper limit injection amount Q act at which the DOC 23 can maintain the catalyst activity.
  • the activation upper limit injection amount Q act is an upper limit injection amount with which the DOC 23 can maintain the catalyst activity, and varies depending on the exhaust gas temperature and the exhaust gas SV ratio.
  • the active upper limit injection amount Q act may be obtained in advance from a test operation of the DPF system 10 or may be obtained from model calculation simulating the DPF system 10.
  • the misfire prevention means 30 has an activation upper limit injection amount map 32 that can refer to the activation upper limit injection amount from the DOC inlet temperature T ent and the exhaust gas SV ratio of the DOC 23, and the activity upper limit injection amount map 32.
  • the active upper limit injection amount Q act is determined with reference to FIG.
  • FIG. 1 shows an example of a set value of the active upper limit injection amount Q act .
  • the activity upper limit injection amount map 32 represents the relationship between the exhaust gas temperature and the exhaust gas SV ratio and the activity upper limit injection amount of the DOC 23. As the exhaust gas temperature is higher, Further, the lower the exhaust gas SV ratio, the higher the activation upper limit injection amount.
  • misfire determination means 29 and the misfire prevention means 30 are configured to repeat the following operations until the completion of the DPF forced regeneration.
  • step S21 the misfire prevention means 30 determines the active upper limit injection amount Q act with reference to the active upper limit injection amount map 32 from the input DOC inlet temperature T ent and the exhaust gas SV ratio read from the ECU 28. To do.
  • step S22 the flame-out prevention means 30, ECU 28 exhaust gas Atsushi Nobori target temperature (e.g., 400 ⁇ 500 ° C. approximately) the injection amount of the exhaust pipe injector 24 calculated from the temperature difference between the DOC outlet temperature T doc Q , And the injection amount Q is compared with the active upper limit injection amount Q act .
  • the injection amount Q is larger than the activity upper limit injection amount Q act , the process proceeds to step S23 to maintain the catalytic activity of the DOC 23, the value of the injection amount Q is changed to the value of the activity upper limit injection amount Q act , and the process proceeds to step S24.
  • the injection amount Q is equal to or less than the activation upper limit injection amount Q act , the process proceeds to step S24 without changing the value of the injection amount Q.
  • step S24 the misfire determination means 29 detects the temperature decrease amount dT red per unit time of the input DOC outlet temperature T doc , and proceeds to step S25.
  • step S25 the misfire determination means 29 compares the temperature drop amount dT red of the DOC outlet temperature T doc with the misfire limit threshold ⁇ .
  • the temperature decrease amount dT red is equal to or less than the misfire limit threshold value ⁇ , it is determined that the DOC 23 maintains the catalytic activity, and the process proceeds to step S26, and the operation returns after the exhaust pipe injection of the exhaust pipe injector 24 is executed.
  • step S27 is performed to recover the catalyst activity of the DOC 23. Proceed to
  • step S27 the misfire prevention means 30 detects the catalyst activity a by referring to the catalyst activity map 31 from the newly input DOC inlet temperature T ent and the exhaust gas SV ratio read again from the ECU 28.
  • step S28 the catalyst activity a is compared with the recovery activity threshold ⁇ to determine whether the DOC 23 has recovered the catalyst activity.
  • the catalyst activity a is greater than the recovery activity threshold ⁇ , it is determined that the catalyst activity of the DOC 23 has recovered, and the operation is returned.
  • the catalyst activity a is equal to or less than the recovery activity threshold ⁇ , it is determined that the catalyst activity of the DOC 23 has not been recovered, and the process returns to step S27.
  • the steps are performed until the operating condition is such that the catalyst activity a is greater than the recovery activity threshold value ⁇ .
  • the operations of S27 and S28 are repeated, and the fuel injection from the exhaust pipe injector 24 is interrupted.
  • the catalyst activity a becomes larger than the recovery activity threshold ⁇ , the DOC 23 recovers the catalyst activity and can burn the unburned fuel. Therefore, the operation is returned, and the exhaust pipe injection is restarted with the newly determined injection amount Q. .
  • the misfire determination means 29 for immediately suspending the exhaust pipe injection of the exhaust pipe injector 24, and the injection quantity Q of the exhaust pipe injector 24 is made equal to or less than the activation upper limit injection quantity Q act of the DOC 23, and the misfire determination means 29 causes the exhaust pipe injector 24 to When the catalyst activity a of the DOC 23 is detected from the DOC inlet temperature T ent and it is determined from the detected value that the catalyst activity of the DOC 23 is recovered, the exhaust pipe injection of the exhaust pipe injector 24 is stopped. And misfire prevention means 30 for resuming operation.
  • the DPF system 10 can also cope with changes in the catalytic activity of the DOC 23 due to changes in operating conditions and catalyst deterioration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 排気管噴射によるDPFの強制再生を行う際に、DOCの触媒活性不良を防止できるDPFシステムを提供する。 排気管インジェクタ24から燃料を噴射し、これをDOC23で酸化燃焼させてDPF25に堆積したPMを燃焼除去するDPF強制再生を行うDPFシステム10において、DOC23の出口側に設けられ、DPF強制再生時のDOC出口温度を検出する温度センサ27と、DOC出口温度が入力され、そのDOC出口温度の単位時間当たりの温度低下量から、DOC23が触媒活性を維持しているか否かを判断する失火判定手段29と、を備えたものである。

Description

DPFシステム
 本発明はディーゼルエンジンの排気ガスから粒子状物質をDPFで捕集し、これを排気管噴射により燃焼除去するDPFシステムに関する。
 近年、ディーゼルエンジンの排気ガスからPM(Particulate Matter)を浄化するためのDPF(Diesel Particulate Filter)システムの開発が行われている。このDPFシステムでは、DPFと呼ばれるフィルタを排気管に接続して排気ガスからPMを捕集すると共に、捕集したPMがDPFに堆積した場合には、排気ガスに未燃燃料を添加して、これをDPFの上流側に設けられたDOC(Diesel Oxidation Catalyst)で酸化燃焼させ、高温の排気ガスでPMを燃焼除去するDPF強制再生が行われる。
 この未燃燃料を排気ガスに添加する手段として、エンジン筒内のオイル希釈が発生せず、燃料添加時でもEGR(Exhaust Gas Recirculation)制御を掛けることができ、昇温に要する燃料消費量を低く抑えることができる排気管噴射が注目されている。排気管噴射は、排気管に設けた排気管インジェクタから未燃燃料を排気ガスに添加する方法である(例えば、特許文献1,2参照)。
特許第4417878号公報 特許第4561467号公報
 ところで、排気管噴射により排気ガスに添加される未燃燃料は、比較的活性化し難い(燃焼し難い)長鎖の炭化水素に分解されるため、排気噴射量が多くなるとDOCの触媒活性が失われ、未燃燃料が燃焼しなくなる(失火する)場合がある。
 図5に示すように、排気噴射量を約5,約10mm3/stとして排気管噴射したとき、DOCの中心温度および出口温度は略一定の値に昇温されており、DOCの触媒活性が失われることなく排気ガスを安定的に昇温できていることがわかるが、排気噴射量を約15mm3/stと増加したときには、一時的に昇温されたDOC中心温度及び出口温度が、DOCの失火により急激に低下していることがわかる。
 また、DOCで一度燃焼が開始された後でも、排気ガス温度がDOCの触媒活性温度(ライトオフ温度)より低下する、排気ガスSV比(DOCの体積に対する排気ガス流量の比)が増大する、排気噴射量が多くなる等、走行中に運転条件が急変すると触媒活性が失われる(失火する)場合がある。
 図6は、DOC,触媒,DPFを排気管の上流側から順次接続したDPFシステムにおいて、運転条件の変化と、噴射量,DOC温度,触媒温度およびDPF温度と、の関係を示す図である。ここでは、DOC温度はDOC出口温度、触媒温度は触媒出口温度、DPF温度はDPF出口温度を示している。
 図6に示すように、走行時間約1600secで車両を急加速させエンジン回転数が急激に上昇したとき、走行時間約1600sec以前では緩やかに推移していたDOC温度が急激に低下し、逆に、DOCの後段に接続された触媒の触媒温度が急激に上昇していることがわかる。これは、排気ガス流量が急増して排気ガスSV比が大きくなると共に、エンジン回転数の上昇に合わせて排気噴射量が急増したことで、DOCの触媒活性が失われ、未燃燃料の大部分がDOC上で燃焼できず、DOC後段の触媒に流入して燃焼したことを示している。
 DOCが失火すると排気ガスが昇温されないため、DPF再生が出来なくなるという問題がある。また、DOCが失火した後に未燃燃料を噴射し続けた場合には、DOCに未燃燃料が吸着し、次にDOCが昇温して触媒活性を回復した際に、DOCに吸着した未燃燃料が急激に燃焼してDOCを溶損させたり、昇温の過程でDOC後段に流出して白煙として排出されるなどの問題が発生する。
 本発明は上記課題を解決するためになされたものであり、排気管噴射によるDPFの強制再生を行う際に、DOCの触媒活性不良を防止できるDPFシステムを提供することを目的とする。
 上記目的を達成するために本発明は、排気管インジェクタから燃料を噴射し、これをDOCで酸化燃焼させてDPFに堆積したPMを燃焼除去するDPF強制再生を行うDPFシステムにおいて、前記DOCの出口側に設けられ、DPF強制再生時のDOC出口温度を検出する温度センサと、前記DOC出口温度が入力され、そのDOC出口温度の単位時間当たりの温度低下量から、前記DOCが触媒活性を維持しているか否かを判断する失火判定手段と、を備えたものである。
 前記失火判定手段は、前記温度低下量が、予め設定された前記DOCが触媒活性を維持できなくなる失火限界閾値よりも大きいとき、前記DOCが触媒活性を維持していないと判断するようにされると良い。
 また本発明は、前記DOCの入口側に設けられ、DPF強制再生時のDOC入口温度を検出する温度センサと、前記DOC入口温度が入力され、入力されたDOC入口温度から前記DOCの触媒活性が回復しているか否かを判断する失火防止手段と、を更に備えると良い。
 前記失火防止手段は、前記DOC入口温度から前記DOCの触媒活性度を検出し、その触媒活性度が予め設定された前記DOCが触媒活性を回復できる活性回復閾値よりも大きいとき、前記DOCの触媒活性が回復していると判断するようにされると良い。
 前記失火防止手段は、前記DOC入口温度と前記DOCの排気ガスSV比とから前記触媒活性度を参照可能な触媒活性度マップを有し、前記触媒活性度マップを参照して前記触媒活性度を検出するようにされると良い。
 前記失火防止手段は、前記排気管インジェクタの噴射量を、前記DOCが触媒活性を維持できる活性上限噴射量以下とさせるようにされると良い。
 前記失火防止手段は、前記DOC入口温度と前記DOCの排気ガスSV比とから前記活性上限噴射量を参照可能な活性上限噴射量マップを有し、前記活性上限噴射量マップを参照して前記活性上限噴射量を決定するようにされると良い。
 前記失火判定手段は、前記DOCが触媒活性を維持していないと判断したとき、前記排気管インジェクタの噴射を中断させるようにされると良い。
 前記失火判定手段は、前記DOCが触媒活性を維持していないと判断したとき、前記排気管インジェクタの噴射を中断させ、前記失火防止手段は、前記排気管インジェクタの噴射が中断された後、前記DOCが触媒活性を回復しているか否かを判断し、前記DOCが触媒活性を回復していると判断したとき、前記排気管インジェクタの噴射を再開させるようにされると良い。
 本発明によれば、排気管噴射によるDPFの強制再生を行う際に、DOCの触媒活性不良を防止できるDPFシステムを提供できる。
本発明のDPFシステムの構成を示す概略図である。 本発明のDPFシステムの動作を示す流れ図である。 触媒活性度マップを示す図である。 活性上限噴射マップを示す図である。 排気管噴射中のDPFシステムにおいて、DOCの温度変化を示す図である。 DOC,触媒,DPFを排気管の上流側から順次接続したDPFシステムにおいて、運転条件の急変により走行中にDOCが触媒活性を失ったことを説明する図である。
 以下に、本発明の好適な実施の形態について図面に基づき説明する。
 図1は、本実施の形態に係るDPFシステムの構成を示す概略図である。
 本実施の形態のDPFシステム10はターボチャージャ11を搭載しており、エアクリーナ12から吸入される空気はターボチャージャ11のコンプレッサ13で圧縮されると共に吸気通路14に圧送され、吸気通路14に接続された吸気マニホールド15からエンジンEに供給される。吸気通路14には、エンジンEへの空気量を調節するための吸気バルブ16が設けられる。
 エンジンEから排出される排気ガスは排気マニホールド17からターボチャージャ11のタービン18に流入すると共にタービン18を駆動させ、排気管19に排気される。
 このDPFシステム10は、吸気マニホールド15と排気マニホールド17とを接続するEGR管20と、EGR管20を通過する排気ガスを冷却するためのEGRクーラ21と、排気マニホールド17から吸気マニホールド15へ還流させる排気ガス量を調節するためのEGRバルブ22と、を備え、排気ガスの一部を吸気側へ還流させてエンジンアウトのNOx量を低減させるEGR制御を行う。
 排気管19にはDOC23が配設され、そのDOC23の上流側の排気管19には排気管インジェクタ24が、下流側の排気管19には排気ガスからPMを捕集するためのDPF25が設けられる。
 さらに排気管19には、DOC23の入口側(上流側)および出口側(下流側)に、温度センサ26,27が設けられる。
 エンジンE、吸気バルブ16、EGRバルブ22、排気管インジェクタ24、温度センサ26,27はECU(Electronical Control Unit)28と接続される。ECU28は温度センサ26,27からの信号が入力されると共に、エンジンEの運転、吸気バルブ16およびEGRバルブ22の開度、排気管インジェクタ24の排気管噴射等を制御する。この他にも、ECU28には車両に搭載される各種センサ(MAF(Mass Air Flow)センサなど)からの信号が入力され、排気ガス流量や排気ガスSV比(DOC23の体積に対する排気ガス流量の比)などの計算を行う。
 このDPFシステム10では、DPF25に堆積したPMが一定量以上となったとき、エンジンEを制御してエンジンアウトの排気ガス温度を上昇させると共に、排気管インジェクタ24から燃料を噴射し、この燃料をDOC23で燃焼させて排気ガス温度を更に上昇させ、高温の排気ガスでPMを燃焼除去するDPF強制再生が行われる。
 このとき、排気管インジェクタ24の噴射量が急激に増大したり、車両の運転条件が急変して排気ガスSV比が変化したりすると、DOC23の触媒活性が失われて排気ガスが昇温されず、DPF25の強制再生が出来なくなる虞がある。
 そこで本実施の形態に係るDPFシステム10は、DPF強制再生時に温度センサ27が検出するDOC出口温度Tdocが入力され、そのDOC出口温度Tdocの単位時間当たりの温度低下量dTredから、DOC23が触媒活性を維持しているか否かを判断する失火判定手段29が、ECU28に搭載される。失火判定手段29は、DOC出口温度Tdocの温度低下量dTredが、予め設定されたDOC23が触媒活性を維持できなくなる失火限界閾値κよりも大きいとき、DOC23が触媒活性を維持していないと判断するように構成される。また、失火判定手段29は、DOC23が触媒活性を維持していないと判断したときには、排気管インジェクタ24の噴射を中断させ、余分の燃料がDOC23に吸着したり、白煙が大気に放出されることを防止する。
 失火限界閾値κは、触媒活性を維持できなくなったときのDOC23が示す単位時間当たりの温度低下量であり、エンジンEの排気量やDOC23の触媒特性など、DPFシステム10の構成により変化する。失火限界閾値κは、予めDPFシステム10の試験運転から求めても良く、DPFシステム10を模したモデル計算から求めても良い。
 さらにECU28には、DPF強制再生時に温度センサ26が検出するDOC入口温度Tentが入力され、入力されたDOC入口温度Tentから、DOC23の触媒活性が回復しているか否かを判断する失火防止手段30が搭載される。失火防止手段30は、DOC入口温度TentからDOC23の触媒活性度aを検出し、その触媒活性度aが予め設定されたDOC23が触媒活性を回復できる活性回復閾値ηよりも大きいとき、DOC23の触媒活性が回復していると判断するように構成される。
 触媒活性度aは、所定の排気ガス条件におけるDOC23の触媒活性の度合いを示す値であり、排気ガス温度、排気ガスSV比により0~1の範囲で変化する。触媒活性度aは、予めDPFシステム10の試験運転から求めても良く、DPFシステム10を模したモデル計算から求めても良い。本実施の形態では、失火防止手段30は、DOC入口温度TentとDOC23の排気ガスSV比とから触媒活性度を参照可能な触媒活性度マップ31を有し、触媒活性度マップ31を参照して触媒活性度aを検出するようにされる。
 触媒活性度マップ31の一例を図3に示す。触媒活性度マップ31は、図3に示すように、排気ガス温度および排気ガスSV比と、DOC23の触媒活性度との関係を表すものであり、排気ガス温度が高いほど触媒活性度は高い。また触媒活性度は、排気ガスSV比が高くなるに伴い、一旦増加して極大値となった後に減少する傾向を有する。
 活性回復閾値ηは、触媒活性を維持できなくなったDOC23が、その後、触媒活性を回復して未燃燃料を燃焼可能であるか否かを判断するための値である。本実施の形態では、活性回復閾値ηは0.5に設定されるが、本発明は活性回復閾値ηの値を特に限定するものではなく、DPFシステム10の構成に合わせて適宜変更可能である。
 また、失火防止手段30は、失火判定手段29が排気管インジェクタ24の排気管噴射を中断させた後、DOC23が触媒活性を回復しているか否かを判断し、DOC23が触媒活性を回復していると判断したときには、排気管インジェクタ24の排気管噴射を再開させるように構成される。
 さらに、失火防止手段30は、排気管インジェクタ24の排気噴射量を、DOC23が触媒活性を維持できる活性上限噴射量Qact以下とさせるように構成される。
 活性上限噴射量Qactは、DOC23が触媒活性を維持できる上限の噴射量であり、排気ガス温度、排気ガスSV比により変化する。活性上限噴射量Qactは、予めDPFシステム10の試験運転から求めても良く、DPFシステム10を模したモデル計算から求めても良い。本実施の形態では、失火防止手段30は、DOC入口温度TentとDOC23の排気ガスSV比とから活性上限噴射量を参照可能な活性上限噴射量マップ32を有し、活性上限噴射量マップ32を参照して活性上限噴射量Qactを決定するようにされる。
 活性上限噴射量マップ32の一例を図4に示す。また、活性上限噴射量Qactの設定値の一例を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 活性上限噴射量マップ32は、図4および表1に示すように、排気ガス温度および排気ガスSV比と、DOC23の活性上限噴射量との関係を表すものであり、排気ガス温度が高いほど、また排気ガスSV比が低いほど活性上限噴射量は高い。
 次に、この失火判定手段29および失火防止手段30の動作について図2を用いて説明する。
 DPF25にPMが堆積していると判断したECU28がPMを燃焼除去すべくDPFを強制再生する際、失火判定手段29および失火防止手段30は以下の動作をDPF強制再生の完了まで繰り返すようにされる。
 先ずステップS21において、失火防止手段30が、入力されたDOC入口温度Tentと、ECU28から読み込んだ排気ガスSV比とから、活性上限噴射量マップ32を参照して活性上限噴射量Qactを決定する。
 次にステップS22において、失火防止手段30は、ECU28が排気ガス昇温目標温度(例えば、400~500℃程度)とDOC出口温度Tdocとの温度差から求めた排気管インジェクタ24の噴射量Qを読込み、噴射量Qと活性上限噴射量Qactとを比較する。噴射量Qが活性上限噴射量Qactより大きいときには、DOC23の触媒活性を維持すべくステップS23に進んで噴射量Qの値を活性上限噴射量Qactの値に変更させ、ステップS24に進む。他方、噴射量Qが活性上限噴射量Qact以下であるときには、噴射量Qの値を変更させることなくステップS24に進む。
 ステップS24では、失火判定手段29が、入力されるDOC出口温度Tdocの単位時間当たりの温度低下量dTredを検出し、ステップS25に進む。
 ステップS25では、失火判定手段29がDOC出口温度Tdocの温度低下量dTredと失火限界閾値κとを比較する。温度低下量dTredが失火限界閾値κ以下であるときには、DOC23が触媒活性を維持していると判断してステップS26に進み、排気管インジェクタ24の排気管噴射が実行された後に動作をリターンする。他方、温度低下量dTredが失火限界閾値κより大きいときには、DOC23が触媒活性を維持していない(すなわち、DOC23が失火している)と判断して、DOC23の触媒活性を回復させるべくステップS27に進む。
 ステップS27では、失火防止手段30が、改めて入力されたDOC入口温度Tentと、ECU28から改めて読み込んだ排気ガスSV比とから、触媒活性度マップ31を参照して触媒活性度aを検出する。
 次いでステップS28では、触媒活性度aと回復活性閾値ηとを比較し、DOC23が触媒活性を回復しているか否かを判断する。触媒活性度aが回復活性閾値ηより大きいとき、DOC23の触媒活性が回復したと判断して動作をリターンする。他方、触媒活性度aが回復活性閾値η以下であるとき、DOC23の触媒活性は回復していないと判断してステップS27に戻る。
 つまり、温度低下量dTredが失火限界閾値κより大きくなり、DOC23が触媒活性を維持していないと判断したときには、触媒活性度aが回復活性閾値ηより大きくなるような運転条件となるまでステップS27,S28の動作を繰返して、排気管インジェクタ24からの燃料の噴射を中断する。触媒活性度aが回復活性閾値ηより大きくなるときには、DOC23が触媒活性を回復して未燃燃料を燃焼可能であるので、動作をリターンし、改めて決定した噴射量Qで排気管噴射を再開する。
 以上要するに、本実施の形態に係るDPFシステム10では、DOC出口温度Tdocの単位時間当たりの温度低下量dTredを検出し、その検出値からDOC23の触媒活性が維持されていないと判断したときには、排気管インジェクタ24の排気管噴射を直ちに中断させる失火判定手段29と、排気管インジェクタ24の噴射量QをDOC23の活性上限噴射量Qact以下とさせると共に、失火判定手段29により排気管インジェクタ24の噴射が中断された後、DOC入口温度TentからDOC23の触媒活性度aを検出し、その検出値からDOC23の触媒活性が回復していると判断したときには、排気管インジェクタ24の排気管噴射を再開させる失火防止手段30と、が搭載される。
 このようにされることで、本実施の形態に係るDPFシステム10では、簡便な構成により、排気管噴射時のDOC23の触媒活性不良を防止でき、DOC23に吸着した未燃燃料の異常燃焼によるDOC溶損や、昇温時の白煙の発生を効果的に防止できる。
 また、このDPFシステム10は、運転条件変化や触媒劣化によるDOC23の触媒活性の変化にも対応できる。
 なお、本発明は上記実施の形態に限られるものではなく、種々の変更を加え得ることは言うまでもない。
 10 DPFシステム
 23 DOC
 24 排気管インジェクタ
 25 DPF
 27 温度センサ
 29 失火判定手段

Claims (9)

  1.  排気管インジェクタから燃料を噴射し、これをDOCで酸化燃焼させてDPFに堆積したPMを燃焼除去するDPF強制再生を行うDPFシステムにおいて、
     前記DOCの出口側に設けられ、DPF強制再生時のDOC出口温度を検出する温度センサと、
     前記DOC出口温度が入力され、そのDOC出口温度の単位時間当たりの温度低下量から、前記DOCが触媒活性を維持しているか否かを判断する失火判定手段と、
     を備えたことを特徴とするDPFシステム。
  2.  前記失火判定手段は、前記温度低下量が、予め設定された前記DOCが触媒活性を維持できなくなる失火限界閾値よりも大きいとき、前記DOCが触媒活性を維持していないと判断する請求項1記載のDPFシステム。
  3.  前記DOCの入口側に設けられ、DPF強制再生時のDOC入口温度を検出する温度センサと、
     前記DOC入口温度が入力され、入力されたDOC入口温度から前記DOCの触媒活性が回復しているか否かを判断する失火防止手段と、
     を更に備える請求項1又は2記載のDPFシステム。
  4.  前記失火防止手段は、前記DOC入口温度から前記DOCの触媒活性度を検出し、その触媒活性度が予め設定された前記DOCが触媒活性を回復できる活性回復閾値よりも大きいとき、前記DOCの触媒活性が回復していると判断する請求項3記載のDPFシステム。
  5.  前記失火防止手段は、前記DOC入口温度と前記DOCの排気ガスSV比とから前記触媒活性度を参照可能な触媒活性度マップを有し、
     前記触媒活性度マップを参照して前記触媒活性度を検出する請求項4記載のDPFシステム。
  6.  前記失火防止手段は、前記排気管インジェクタの噴射量を、前記DOCが触媒活性を維持できる活性上限噴射量以下とさせる請求項3~5いずれかに記載のDPFシステム。
  7.  前記失火防止手段は、前記DOC入口温度と前記DOCの排気ガスSV比とから前記活性上限噴射量を参照可能な活性上限噴射量マップを有し、
     前記活性上限噴射量マップを参照して前記活性上限噴射量を決定する請求項6記載のDPFシステム。
  8.  前記失火判定手段は、前記DOCが触媒活性を維持していないと判断したとき、前記排気管インジェクタの噴射を中断させる請求項1~7いずれかに記載のDPFシステム。
  9.  前記失火判定手段は、前記DOCが触媒活性を維持していないと判断したとき、前記排気管インジェクタの噴射を中断させ、
     前記失火防止手段は、前記排気管インジェクタの噴射が中断された後、前記DOCが触媒活性を回復しているか否かを判断し、前記DOCが触媒活性を回復していると判断したとき、前記排気管インジェクタの噴射を再開させる請求項3~7いずれかに記載のDPFシステム。
PCT/JP2011/078281 2010-12-16 2011-12-07 Dpfシステム WO2012081461A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010280885A JP5673065B2 (ja) 2010-12-16 2010-12-16 Dpfシステム
JP2010-280885 2010-12-16

Publications (1)

Publication Number Publication Date
WO2012081461A1 true WO2012081461A1 (ja) 2012-06-21

Family

ID=46244568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078281 WO2012081461A1 (ja) 2010-12-16 2011-12-07 Dpfシステム

Country Status (2)

Country Link
JP (1) JP5673065B2 (ja)
WO (1) WO2012081461A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110630355A (zh) * 2019-09-23 2019-12-31 南京科益环保科技有限公司 Dpf温度控制系统及其控制方法
CN113339150A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种汽油机颗粒捕集器再生控制方法
CN114233438A (zh) * 2021-12-22 2022-03-25 凯龙高科技股份有限公司 一种柴油机尾气后处理方法和装置
CN115163267A (zh) * 2022-08-26 2022-10-11 潍柴动力股份有限公司 一种doc诊断方法及后处理系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013011806A1 (de) * 2013-07-16 2015-01-22 Man Truck & Bus Ag Verfahren zur Regeneration eines Partikelfilters und Brennkraftmaschine mit Partikelfilter
JP6244241B2 (ja) * 2014-03-26 2017-12-06 ヤンマー株式会社 排気浄化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303232A (ja) * 1995-05-02 1996-11-19 Nippondenso Co Ltd 内燃機関の窒素酸化物浄化装置
JP2010043587A (ja) * 2008-08-11 2010-02-25 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010043583A (ja) * 2008-08-11 2010-02-25 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010203238A (ja) * 2009-02-27 2010-09-16 Denso Corp 触媒異常検出装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264313A (ja) * 2008-04-28 2009-11-12 Toyota Motor Corp 内燃機関の排気浄化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303232A (ja) * 1995-05-02 1996-11-19 Nippondenso Co Ltd 内燃機関の窒素酸化物浄化装置
JP2010043587A (ja) * 2008-08-11 2010-02-25 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010043583A (ja) * 2008-08-11 2010-02-25 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010203238A (ja) * 2009-02-27 2010-09-16 Denso Corp 触媒異常検出装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110630355A (zh) * 2019-09-23 2019-12-31 南京科益环保科技有限公司 Dpf温度控制系统及其控制方法
CN110630355B (zh) * 2019-09-23 2020-09-15 南京科益环保科技有限公司 Dpf温度控制系统及其控制方法
CN113339150A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种汽油机颗粒捕集器再生控制方法
CN113339150B (zh) * 2021-07-22 2023-03-17 中国第一汽车股份有限公司 一种汽油机颗粒捕集器再生控制方法
CN114233438A (zh) * 2021-12-22 2022-03-25 凯龙高科技股份有限公司 一种柴油机尾气后处理方法和装置
CN114233438B (zh) * 2021-12-22 2022-10-21 凯龙高科技股份有限公司 一种柴油机尾气后处理方法和装置
CN115163267A (zh) * 2022-08-26 2022-10-11 潍柴动力股份有限公司 一种doc诊断方法及后处理系统
CN115163267B (zh) * 2022-08-26 2023-11-17 潍柴动力股份有限公司 一种doc诊断方法及后处理系统

Also Published As

Publication number Publication date
JP5673065B2 (ja) 2015-02-18
JP2012127299A (ja) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5905427B2 (ja) Dpf再生制御装置
JP3988776B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
WO2012081463A1 (ja) Dpfシステム
WO2012081461A1 (ja) Dpfシステム
WO2012081460A1 (ja) Dpfシステム
JP2010101200A (ja) 排ガス後処理装置及び排ガス後処理方法
WO2011155585A1 (ja) 排気ガス浄化システム
JP6007489B2 (ja) 排気ガス浄化システムと排気ガス浄化方法
JP5724223B2 (ja) Dpfシステム
WO2013084890A1 (ja) エンジン
US9046026B2 (en) Particulate oxidation catalyst with dual pressure-drop sensors
JP2020033971A (ja) Dpf再生制御装置及びdpf再生制御方法
KR100785751B1 (ko) 내연 기관용 배기 정화 장치
JP2012072686A (ja) エンジンの排ガス浄化装置および浄化方法
JP4613787B2 (ja) 内燃機関の排気浄化装置
WO2016132875A1 (ja) 内燃機関の排気ガス浄化システム、内燃機関及び内燃機関の排気ガス浄化方法
WO2013084889A1 (ja) エンジン
US20120102921A1 (en) System and method for controlling regeneration of an exhaust after-treatment device
JP6070941B2 (ja) 内燃機関の排気浄化装置
JP7384114B2 (ja) フィルタ状態検知装置
JP6056267B2 (ja) エンジンの排気浄化装置
KR101278925B1 (ko) 연소가스 재순환을 이용한 디젤엔진 매연필터의 연소식 재생시스템
EP1512849A2 (en) Exhaust purifying apparatus and method for purifying exhaust
KR101619540B1 (ko) 저압 배기가스 재순환 장치의 비상 필터의 클리닝 방법
JP2008267159A (ja) 内燃機関の排出ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849804

Country of ref document: EP

Kind code of ref document: A1