WO2012081111A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2012081111A1
WO2012081111A1 PCT/JP2010/072693 JP2010072693W WO2012081111A1 WO 2012081111 A1 WO2012081111 A1 WO 2012081111A1 JP 2010072693 W JP2010072693 W JP 2010072693W WO 2012081111 A1 WO2012081111 A1 WO 2012081111A1
Authority
WO
WIPO (PCT)
Prior art keywords
requested
torque
egr
throttle opening
internal combustion
Prior art date
Application number
PCT/JP2010/072693
Other languages
English (en)
French (fr)
Inventor
北東 宏之
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/817,673 priority Critical patent/US8655573B2/en
Priority to CN201080070757.8A priority patent/CN103261637B/zh
Priority to JP2012548588A priority patent/JP5387785B2/ja
Priority to PCT/JP2010/072693 priority patent/WO2012081111A1/ja
Priority to EP10860692.2A priority patent/EP2653704B1/en
Publication of WO2012081111A1 publication Critical patent/WO2012081111A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0017Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • Patent Document 1 discloses a control device for an internal combustion engine for a hybrid vehicle including an internal combustion engine and a motor as power sources.
  • a required torque required for the internal combustion engine is detected based on the accelerator depression amount, and a final intake air amount used for intake air amount control based on the accelerator depression amount is calculated.
  • the throttle opening is adjusted so that the actual intake air amount detected using the air flow meter matches the final intake air amount.
  • an internal combustion engine hybrid vehicle having a configuration in which the required throttle opening is set based on the required torque in accordance with the first relation information that defines the relationship between the required torque required for the internal combustion engine and the required (target) throttle opening.
  • Internal combustion engines or so-called torque demand internal combustion engines are known.
  • an EGR passage that communicates an intake passage and an exhaust passage and an EGR valve that opens and closes the EGR passage are used.
  • an internal combustion engine having a configuration for performing EGR control so-called external EGR control
  • problems in the internal combustion engine having these configurations will be described.
  • FIG. 10 is a diagram used for explaining the problem of the present invention. More specifically, FIG. 10A shows the required torque TQreq and the required throttle in the case of “with EGR” in which EGR control is performed (solid line) and in the case of “EGR-less” in which EGR control is not performed (broken line).
  • FIG. 10B is a diagram showing an example of setting of a requested throttle opening map (first relation information) that defines the relationship with the opening degree TAreq, and FIG. 10B is an air amount information (air amount information related to the amount of air taken into the internal combustion engine).
  • FIG. 10A shows an example of the setting of the request
  • the setting shown in FIG. 10A is for the engine speed NE corresponding to the current actual torque TQnow.
  • the required EGR opening degree EGRreq is set according to the required load factor KLreq (air amount information).
  • KLreq air amount information
  • the throttle opening degree TA is the current throttle opening degree. It changes in a stepwise manner from TAnow toward the required throttle opening degree TAreq at point B.
  • TQreq higher than the required torque TQtamax corresponding to the maximum value TAmax of the throttle opening TA is requested in the required throttle opening map shown in FIG.
  • TQreq point B
  • TQreq ′ point B ′
  • the required EGR opening degree EGRreq is determined according to the required load factor KLreq (air amount information) as described above. For this reason, the required EGR opening degree EGRreq 'at the point B' is larger than the required EGR opening degree EGRreq at the point B.
  • the present invention has been made to solve the above-described problems.
  • a configuration is provided in which the required throttle opening is set based on the required torque, the torque of the internal combustion engine increases toward the required torque.
  • Another object of the present invention is to provide a control device for an internal combustion engine that can avoid a shortage of torque due to the effect of EGR gas and prevent a poor acceleration.
  • a first invention is a control device for an internal combustion engine, Throttle valve control means for controlling the throttle opening of the throttle valve for adjusting the amount of air taken into the internal combustion engine according to the required throttle opening; EGR valve control means for controlling the EGR opening of the EGR valve responsible for opening and closing the EGR passage communicating the intake passage and the exhaust passage according to the required EGR opening; Requested torque acquisition means for acquiring required torque required for the internal combustion engine; Air amount information acquisition means for acquiring air amount information related to the air amount; Requested throttle opening setting means for setting the requested throttle opening based on the requested torque according to first relationship information that defines a relationship between the requested torque and the requested throttle opening; Requested EGR opening setting means for setting the requested EGR opening based on the air amount information according to second relationship information that defines a relationship between the air amount information and the requested EGR opening; The actual torque of the internal combustion engine shifts toward the current required torque with the required EGR opening obtained based on the air amount information and the second relationship information for the current required torque as an upper limit value.
  • the second invention is the first invention, wherein
  • the required EGR opening degree limiting means is configured when the required torque in a setting region in which the required throttle opening is reduced as the required torque increases in the first relation information is currently requested.
  • the required EGR opening degree at is limited.
  • the third invention is a control device for an internal combustion engine, Throttle valve control means for controlling the throttle opening of the throttle valve for adjusting the amount of air taken into the internal combustion engine according to the required throttle opening; EGR valve control means for controlling the EGR opening of the EGR valve responsible for opening and closing the EGR passage communicating the intake passage and the exhaust passage according to the required EGR opening; Requested torque acquisition means for acquiring required torque required for the internal combustion engine; Air amount information acquisition means for acquiring air amount information related to the air amount; Requested throttle opening setting means for setting the requested throttle opening based on the requested torque according to first relationship information that defines a relationship between the requested torque and the requested throttle opening; Requested EGR opening setting means for setting the requested EGR opening based on the air amount information according to second relationship information that defines a relationship between the air amount information and the requested EGR opening; The current requested throttle opening is limited so that the current requested throttle opening corresponding to the current requested torque does not become smaller than the requested throttle opening corresponding to the requested torque lower than the current requested torque.
  • 4th invention is set in 3rd invention,
  • the requested throttle opening setting means when the requested torque higher than the requested torque corresponding to the maximum throttle opening that is maximized in the first relation information is currently requested, The maximum throttle opening is used.
  • the fifth invention is the fourth invention, wherein An in-cylinder pressure sensor for detecting an in-cylinder pressure of the internal combustion engine; The internal combustion engine obtained by using the in-cylinder pressure sensor when the maximum throttle opening is used in a situation where a required torque higher than the required torque at the maximum throttle opening is required. EGR feedback control means for performing feedback control of the EGR opening so that the actual torque becomes the required torque; Is further provided.
  • the internal combustion engine is mounted on a hybrid vehicle including a second power source in addition to the internal combustion engine.
  • the acceleration is caused by the influence of a large amount of EGR gas.
  • the required throttle opening degree is controlled to be large, it is possible to prevent a shortage of the intake air amount during acceleration due to the influence of the EGR gas, and to achieve the required torque. It can be realized. For this reason, lack of torque can be avoided and acceleration failure can be prevented well.
  • the actual torque is adjusted to the required torque with high precision and high response. can do.
  • the control device for an internal combustion engine according to the present invention when the control device for an internal combustion engine according to the present invention is applied to a hybrid vehicle including the second power source together with the internal combustion engine, the torque of the internal combustion engine increases toward the required torque. In this case, a shortage of torque due to the influence of EGR gas can be avoided and acceleration failure can be prevented well.
  • FIG. 1 is a diagram showing a schematic configuration of a drive system for a hybrid vehicle to which the present invention is applied. It is a figure for demonstrating the system configuration
  • FIG. 1 is a diagram showing a schematic configuration of a drive system 10 for a hybrid vehicle to which the present invention is applied.
  • the drive system 10 includes a vehicle drive motor (hereinafter simply referred to as “motor”) 14 as a second power source of the vehicle together with the internal combustion engine 12.
  • the drive system 10 also includes a generator 16 that receives power and generates electric power.
  • the internal combustion engine 12, the motor 14, and the generator 16 are connected to each other via a planetary gear type power split mechanism 18.
  • a reduction gear 20 is connected to the rotating shaft of the motor 14 connected to the power split mechanism 18.
  • the speed reducer 20 connects the rotation shaft of the motor 14 and the drive shaft 24 connected to the drive wheels 22.
  • the power split mechanism 18 is a device that splits the driving force of the internal combustion engine 12 into the generator 16 side and the speed reducer 20 side. The distribution of the driving force by the power split mechanism 18 can be arbitrarily changed.
  • the drive system 10 further includes an inverter 26, a converter 28, and a high voltage battery 30.
  • Inverter 26 is connected to generator 16 and motor 14, and is also connected to high-voltage battery 30 via converter 28.
  • the electric power generated by the generator 16 can be supplied to the motor 14 via the inverter 26, or the high voltage battery 30 can be charged via the inverter 26 and the converter 28. Further, the electric power charged in the high voltage battery 30 can be supplied to the motor 14 via the converter 28 and the inverter 26.
  • the drive wheel 22 can be rotated only by the drive force of the internal combustion engine 12 with the motor 14 stopped based on a predetermined condition.
  • the driving wheel 22 can be rotated only by the driving force of the motor 14 while the motor 12 is stopped. It is also possible to operate both the motor 14 and the internal combustion engine 12 and rotate the driving wheels 22 by both driving forces. Further, the start of the internal combustion engine 12 can be controlled by driving the internal combustion engine 12 by causing the generator 16 to function as a starter.
  • the drive system 10 of the present embodiment is controlled by an ECU (Electronic Control Unit) 40.
  • the ECU 40 comprehensively controls the entire drive system 10 including the internal combustion engine 12, the motor 14, the generator 16, the power split mechanism 18, the inverter 26, the converter 28, and the like.
  • FIG. 2 is a diagram for explaining the system configuration of the internal combustion engine 12 shown in FIG.
  • An intake passage 42 and an exhaust passage 44 communicate with each other in the cylinder of the internal combustion engine 12.
  • an air flow meter 46 that outputs a signal corresponding to the flow rate of air taken into the intake passage 42 is provided.
  • a throttle valve 48 for adjusting the amount of air taken into the cylinder is provided downstream of the air flow meter 46.
  • the throttle valve 48 is an electronically controlled throttle valve that can control the throttle opening TA independently of the accelerator opening.
  • a throttle position sensor 50 for detecting the throttle opening degree TA is disposed in the vicinity of the throttle valve 48.
  • each cylinder of the internal combustion engine 12 is provided with a fuel injection valve 52 for injecting fuel into the intake port and an ignition plug 54 for igniting the air-fuel mixture. Furthermore, each cylinder is provided with an in-cylinder pressure sensor 56 for detecting the in-cylinder pressure.
  • the internal combustion engine 12 includes an EGR (Exhaust Gas Recirculation) passage 58 that connects the intake passage 42 and the exhaust passage 44 on the downstream side of the throttle valve 48.
  • An EGR valve 60 that opens and closes the EGR passage 58 is provided in the vicinity of the connection port on the intake passage 42 side in the EGR passage 58. By changing the opening degree of the EGR valve 60, the flow rate of the EGR gas flowing through the EGR passage 58 can be changed to adjust the EGR rate.
  • the input portion of the ECU 40 described above detects the operating state of the internal combustion engine 12 such as the crank angle sensor 62 for detecting the engine speed NE.
  • various sensors are connected.
  • an accelerator opening sensor 64 for detecting an accelerator opening of an accelerator pedal of a hybrid vehicle on which the internal combustion engine 12 is mounted is connected to the input portion of the ECU 40.
  • various actuators for controlling the internal combustion engine 12 such as the throttle valve 48, the fuel injection valve 52, the spark plug 54, and the EGR valve 60 are connected to the output portion of the ECU 40.
  • the ECU 40 controls the operating state of the internal combustion engine 12 based on those sensor outputs.
  • FIG. 3 is a diagram showing an operation region of the internal combustion engine 12 expressed by the relationship between the torque and the engine speed NE.
  • the curve indicated by the solid line in FIG. 3 indicates the best fuel economy torque point (the operation that can drive the internal combustion engine 12 with the highest fuel efficiency) on the regular output line at the time of normal operation of the internal combustion engine 12 (when the fuel efficiency is required).
  • the operation line obtained by connecting the dots) is shown. More specifically, as shown in FIG. 3, the operation line in this case shows that the torque and the engine speed NE are increased after the torque is greatly increased without substantially increasing the engine speed NE from the low speed and low load operation state. It can be obtained by raising both together.
  • the drive system 10 of the present embodiment by adjusting the operation of the generator 16 during operation of the internal combustion engine 12, the magnitude of the load applied from the generator 16 to the internal combustion engine 12 can be reduced. Can be adjusted. For this reason, according to the present drive system 10, by adjusting the opening of the throttle valve 48 on the internal combustion engine 12 side while adjusting the operation of the generator 16, the operation of the internal combustion engine 12 passes through the operation line. The state can be controlled.
  • the curve represented by the broken line in FIG. 3 shows an operation line when a high output request is issued to the internal combustion engine 12.
  • the operation line in this case is set so as to pass on the full load torque line after quickly increasing the torque toward the full load torque.
  • FIG. 3 shows an example of an EGR region in which EGR control (so-called external EGR control) by adjusting the EGR valve 60 is executed.
  • EGR control so-called external EGR control
  • the EGR region of the present embodiment is set to a region excluding the extremely light load region and the high load region.
  • the request (target) throttle opening degree TAreq according to the driver's output request is calculated in the following procedure. That is, the required output of the entire vehicle by the driver is acquired based on the accelerator opening. The required output for the vehicle as a whole is divided into a required output for the motor 14 and a required output for the internal combustion engine 12.
  • the fuel efficiency indicates the torque at the intersection of the equal output line at the required output that the internal combustion engine 12 bears and the operation line at the time of normal operation, that is, the required output that the internal combustion engine 12 bears.
  • the torque for realizing the best condition is calculated as the required torque TQreq when the vehicle output is requested this time.
  • FIG. 4 is a diagram showing characteristic settings of the required throttle opening degree TAreq and the required EGR opening degree EGRreq. More specifically, FIG. 4A shows the required torque TQreq for “EGR present” in which external EGR control is performed (solid line) and “EGR-less” in which external EGR control is not performed (broken line).
  • FIG. 4B is a diagram showing an example of setting of a required throttle opening map (first relation information) that defines a relationship with the required throttle opening TAreq
  • FIG. Note that the setting shown in FIG. 4A is for the engine speed NE corresponding to the current torque TQnow.
  • the required throttle opening degree TA is calculated from the current required torque TQreq according to the relationship shown in FIG. 4A, that is, the required throttle opening degree map in which the required torque TQreq and the required throttle opening degree TAreq are determined. I am trying to calculate.
  • the ECU 40 stores a required throttle opening degree map that defines a relationship as shown in FIG. More specifically, the ECU 40 stores two types of maps as an “EGR present” map (solid line) and an “EGR-less” map (broken line), depending on whether or not an external EGR control execution request is made. To switch between these maps.
  • the required throttle opening degree TAreq is set larger in the EGR region than in the case of “EGR-less” in order to satisfy the same torque request as in the case of “EGR-less”. . Further, in the map “with EGR”, the required throttle opening degree TAreq is set to increase as the required torque TQreq increases. However, in order to prevent a sudden increase in the intake air amount accompanying the decrease in the EGR gas amount in the situation where the EGR region shifts to the EGR-less region on the high load side, the map with “EGR” is shown in FIG. As shown, the required throttle opening degree TAreq is temporarily changed in the closing direction. That is, the map having “EGR” has a setting region in which the required throttle opening degree TAreq decreases as the required torque TQreq increases.
  • the throttle opening degree TA is controlled to the requested throttle opening degree TAreq corresponding to the requested torque TQreq, and then the intake air amount (load Rate KL) gradually increases. Then, as the required load factor KLreq rises, the EGR gas amount is increased by increasing the EGR opening.
  • the required EGR opening degree map has a setting in which the required EGR opening degree EGRreq increases as the required load factor KLreq increases.
  • FIG. 4A when a required torque TQreq higher than the required torque TQtamax corresponding to the maximum throttle opening degree TAmax is currently requested, FIG. As shown, when the required EGR opening EGRreq at the required load ratio KLreq corresponding to the current required torque TQreq is an upper limit value, the required EGR opening in the process in which the actual torque of the internal combustion engine 12 moves toward the current required torque TQreq is shown. The degree of EGRreq was limited.
  • FIG. 5 is a flowchart showing a routine executed by the ECU 40 in the first embodiment in order to realize the above function. Note that this routine is repeatedly executed every predetermined time.
  • the current engine speed NEnow is obtained using the output of the crank angle sensor 62 (step 100).
  • the current load factor KLnow is acquired (step 102). Specifically, the current load factor KLnow is calculated based on the intake air amount acquired using the air flow meter 46 and the engine speed NE.
  • the current actual torque TQnow is acquired (step 104).
  • the actual torque TQnow of the internal combustion engine 12 can be calculated based on the control current value for controlling the torque generated by the generator 16. Note that the actual torque TQnow of the internal combustion engine 12 may be acquired using, for example, a separate torque sensor provided with the torque sensor.
  • the current required torque TQreq is acquired (step 106).
  • the required torque TQreq is calculated based on the accelerator opening as described above with reference to FIG.
  • step 110 if the determination in step 108 is not established, that is, if it can be determined that the current actual torque TQnow has reached the required torque TQreq, the required throttle opening degree TAnow corresponding to the current actual torque TQnow. Is calculated according to a predetermined required throttle opening degree map (see FIG. 4A) (step 110). More specifically, this map is set for each predetermined engine speed NE, and in this step 110, a requested throttle opening degree map corresponding to the current engine speed NEnow is referred to.
  • step 108 when the determination in step 108 is established, that is, when it can be determined that the current actual torque TQnow has not yet reached the required torque TQreq, the required throttle opening degree TAreq corresponding to the current required torque TQreq is determined. Then, it is calculated according to the required throttle opening map (step 112).
  • the maximum throttle opening degree TAmax at the current engine speed NEnow is calculated according to the requested throttle opening degree map (step 114).
  • a required torque TQtamax corresponding to the maximum throttle opening degree TAmax is calculated according to the required throttle opening degree map (step 116).
  • step 118 it is determined whether or not the current required torque TQreq is higher than the required torque TQtamax at the maximum throttle opening TAmax (step 118).
  • a required EGR opening degree EGRnow corresponding to the current load factor KLnow is calculated according to a predetermined required EGR opening degree map (step 120).
  • the required EGR opening degree map stored in the ECU 40 for the processing of this routine defines the relationship shown by the broken line in FIG. 4B (the relationship shown in FIG. 10B). And In this case, the EGR opening degree EGRnow calculated in step 120 is then set as the current required EGR opening degree (step 122).
  • step 118 if it is determined in step 118 that the current required torque TQreq is higher than the required torque TQtamax, that is, the required torque in the setting region where the required throttle opening decreases as the required torque increases. If it can be determined that the required load factor KLreq is present, the required load factor KLreq corresponding to the current required torque TQreq is calculated (step 124). Specifically, the ECU 40 stores in advance the relationship between the required torque TQreq and the required load factor KLreq. In this step 124, the required load factor KLreq is calculated using such a relationship.
  • step 124 the required EGR opening degree EGRreq corresponding to the required load factor KLreq calculated in step 124 is calculated according to the required EGR opening degree map (step 126).
  • step 126 the required EGR opening degree EGRnow corresponding to the current load factor KLnow is calculated by the same process as in step 120 (step 128).
  • step 130 it is determined whether or not the required EGR opening degree EGRnow calculated in step 128 is larger than the required EGR opening degree EGRreq calculated in step 126 (step 130).
  • the required EGR opening EGRnow is equal to or less than the required EGR opening EGRreq
  • the required EGR opening EGRnow corresponding to the current load factor KLnow is set as the current required EGR opening (step 122).
  • the required EGR opening degree EGRnow is larger than the required EGR opening degree EGRreq
  • the required EGR opening degree EGRnow is not used, and the required EGR opening degree EGRreq calculated in step 126 is the current required EGR opening degree.
  • the requested EGR opening EGRreq calculated based on the requested load factor KLreq corresponding to the current requested torque TQreq and the requested EGR opening map is set as an upper limit value.
  • the required EGR opening EGRreq in the process in which the actual torque of the internal combustion engine 12 shifts toward the current required torque TQreq is limited.
  • the ECU 40 controls the throttle opening TA of the electronically controlled throttle valve 48 in accordance with the required throttle opening TAreq, whereby the “throttle valve control means” in the first invention is provided.
  • the “EGR valve control means” in the first invention executes the processing of the above step 106 to execute “
  • the “request torque acquisition means” executes the process of step 124, so that the “air amount information acquisition means” in the first invention executes the process of step 112, thereby the “request required” in the first invention.
  • “Throttle opening setting means” performs the processing of steps 126 and 128 above.
  • the “requested EGR opening setting means” in the first invention executes the processing in step 132 or 122 in accordance with the determination result in step 130, whereby “requested EGR in the first invention”.
  • "Opening restriction means” is realized respectively.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIG. 6 and FIG.
  • the system of the present embodiment can be realized by causing the ECU 40 to execute a routine shown in FIG. 7 described later instead of the routine shown in FIG. 5 using the hardware configuration shown in FIGS. 1 and 2. is there.
  • FIG. 6 is a diagram for explaining a characteristic setting of the required throttle opening degree TAreq in the second embodiment of the present invention.
  • the required torque in the setting region in which the required throttle opening decreases as the required torque increases is currently requested. If it can be determined that the required EGR opening degree EGRreq calculated based on the required load factor KLreq corresponding to the current required torque TQreq and the required EGR opening degree map is an upper limit value, The required EGR opening EGRreq is limited in the process in which the torque shifts toward the current required torque TQreq.
  • a required throttle opening degree map that defines the relationship between the required torque TQreq and the required throttle opening degree TAreq is displayed.
  • the required throttle opening degree TAreq corresponding to the current required torque TQreq is set not to be smaller than the required throttle opening degree corresponding to the required torque lower than the current required torque TQreq. .
  • the torque value on the operation line (see FIG. 3) during normal operation (when fuel efficiency is required) is set to be equal to or less than the torque TQtamax realized at the maximum throttle opening TAmax.
  • FIG. 7 is a flowchart showing a routine executed by the ECU 40 in the second embodiment in order to realize the above function.
  • the same steps as those shown in FIG. 5 in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the current required torque TQreq is acquired. Is calculated according to a predetermined required throttle opening map (see FIG. 6) (step 200).
  • step 202 it is determined whether or not the current torque request to the internal combustion engine 12 is a high output request (step 202).
  • the determination in step 202 is executed based on whether or not the accelerator opening is equal to or smaller than a predetermined determination value. Specifically, when the accelerator opening is equal to or smaller than the above-described determination value, it is determined that the current torque request to the internal combustion engine 12 is not a high output request, that is, a fuel consumption request for performing external EGR control. .
  • step 202 If the determination in step 202 is satisfied, the maximum throttle opening degree TAmax at the current engine speed NEnow is calculated according to the required throttle opening degree map (step 204). Next, a required torque TQtamax corresponding to the maximum throttle opening degree TAmax is calculated according to the required throttle opening degree map (step 206).
  • step 208 it is determined whether or not the current (current) required torque TQreq is lower than the required torque TQtamax at the maximum throttle opening degree TAmax (step 208).
  • the required torque TQreq in the setting region that is, the required torque TQreq in which the required throttle opening increases as the required torque increases.
  • the required throttle opening degree TAreq calculated in step 200 is set as the current (current) required throttle opening degree (step 210).
  • step 208 if it is determined in step 208 that the current required torque TQreq is greater than or equal to the required torque TQtamax, the required throttle opening calculated in step 204 is determined as the current (current) required throttle opening.
  • TAmax is set (step 212).
  • the required throttle opening is fixed at the maximum throttle opening TAmax under the situation where the current required torque TQreq is equal to or higher than the required torque TQtamax.
  • the required throttle opening map in which the required torque TQreq and the required throttle opening TAreq are determined as shown in FIG. A setting region where the required throttle opening is reduced is not provided. For this reason, even when the EGR opening degree is largely controlled, it is possible to prevent the intake air amount from deficient during acceleration due to the influence of the EGR gas, and to achieve the required torque. Become. For this reason, lack of torque can be avoided and acceleration failure can be prevented well.
  • the required throttle opening is fixed at the maximum throttle opening TAmax under the situation where the current required torque TQreq is equal to or higher than the required torque TQtamax.
  • the pumping loss may be reduced, and usually the fuel efficiency of the internal combustion engine is the best under the situation where the maximum throttle opening degree TAmax is used.
  • the throttle opening at which the torque at which the fuel consumption is best is obtained under a situation where the throttle opening TA is smaller than the maximum throttle opening TAmax.
  • the required throttle opening may be fixed.
  • the ECU 40 controls the throttle opening TA of the electronically controlled throttle valve 48 in accordance with the required throttle opening TAreq, whereby the “throttle valve control means” in the third invention is provided.
  • the “EGR valve control means” in the third invention executes the processing of the above step 106, thereby “
  • the “required torque acquisition means” calculates the load factor KL based on the intake air amount acquired using the air flow meter 46 and the engine speed NE, whereby the “air amount information acquisition means” in the third invention is By executing the processing of step 200 above, “required” in the third invention
  • the “throttle opening setting means” calculates the required EGR opening EGRreq based on the load factor KL and the required EGR opening map, whereby the “required EGR opening setting means” in the third aspect of the invention is the step 208.
  • Embodiment 3 FIG. Next, Embodiment 3 of the present invention will be described with reference to FIG. 8 and FIG.
  • the system of the present embodiment can be realized by causing the ECU 40 to execute a routine shown in FIG. 9 described later instead of the routine shown in FIG. 7 using the hardware configuration shown in FIGS. 1 and 2. is there.
  • FIG. 8 is a diagram for explaining characteristic control during acceleration in the third embodiment of the present invention. Also in the present embodiment, as in the second embodiment described above, when a required torque TQreq higher than the required torque TQtamax at the maximum throttle opening TAmax is required in the EGR region, the required throttle opening is The maximum throttle opening TAmax is fixed. Hereinafter, a section in which the required throttle opening is fixed at the maximum throttle opening TAmax in this way is referred to as a “required throttle opening fixed section”.
  • the required EGR opening degree map as shown in FIG. 10 (B) defines the relationship between the required load factor KLreq and the required EGR opening degree EGRreq when the internal combustion engine 12 is in a steady state. Further, the response of the EGR valve 60 is lower than that of the throttle valve 48. Therefore, in the above-described required throttle opening fixed section, a large throttle opening TA, such as the maximum throttle opening TAmax, is used only by adjusting the opening of the EGR valve 60 using the required EGR opening map. Under such circumstances, it is difficult to adjust the actual torque TQnow toward the required torque TQreq with high precision and high response.
  • the internal combustion engine 12 shown in FIG. By providing such an in-cylinder pressure sensor 56, the actual torque of the internal combustion engine 12 can be acquired in real time. Therefore, in the present embodiment, when the required torque TQreq within the required throttle opening fixed section is currently requested, the actual torque acquired using the in-cylinder pressure sensor 56 becomes the required torque TQreq. In addition, feedback control of the EGR opening degree is performed.
  • the required throttle opening degree TAreqh calculated using the required throttle opening degree map (relation indicated by a broken line in FIG. 8) at the time of “EGR-less” is the maximum throttle opening degree.
  • the required throttle opening degree TAreqh at the time of “EGR-less” is set as the current required throttle opening degree.
  • FIG. 9 is a flowchart showing a routine executed by the ECU 40 in the third embodiment in order to realize the above function.
  • the same steps as those shown in FIG. 7 in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the current EGR opening degree EGRnow is acquired (step 300). Specifically, the current EGR opening degree EGRnow is calculated based on the current load factor KLnow.
  • the required EGR opening degree EGRreq corresponding to the required load factor KLreq is changed to a predetermined required EGR opening degree map (FIG. 10B). (Step 302).
  • TAreqh is calculated according to a predetermined required throttle opening degree map (a relationship indicated by a broken line in FIG. 8) (step 304).
  • step 208 if it is determined in step 208 that the current required torque TQreq is lower than the required torque TQtamax, the current (current) required throttle opening is calculated in step 200.
  • the requested throttle opening degree TAreq is set (step 210).
  • step 306 If it is determined in step 306 that the EGR-less required throttle opening degree TAreqh is larger than the maximum throttle opening degree TAmax, the current (current) required throttle opening degree is calculated as the present (this time) required throttle opening degree.
  • the required throttle opening degree TAreqh is set (step 308).
  • step 306 determines whether or not the EGR-less required throttle opening degree TAreqh is equal to or less than the maximum throttle opening degree TAmax.
  • the current (this time) required throttle opening degree is calculated in step 204 above.
  • Maximum throttle opening degree TAmax is set (step 310).
  • step 310 If it is determined in step 310 that the current actual torque TQnow is higher than the current required torque TQreq, the required EGR opening degree EGRreq adds a predetermined EGR correction amount EGRFB to the current EGR opening degree EGRnow. The value is corrected (step 312). On the other hand, if it is determined in step 310 that the current actual torque TQnow is less than or equal to the current required torque TQreq, it is then determined whether or not the current actual torque TQnow is lower than the current required torque TQreq. (Step 314). As a result, when the determination in step 314 is established, the required EGR opening degree EGRreq is corrected to a value obtained by subtracting the EGR correction amount EGRFB from the current EGR opening degree EGRnow (step 316).
  • the intake air amount can be reduced by increasing the required EGR opening EGRreq by the EGR correction amount EGRFB. Actual torque can be lowered.
  • the intake air amount can be increased by reducing the required EGR opening EGRreq by the EGR correction amount EGRFB, The actual torque can be increased.
  • the actual torque acquired using the in-cylinder pressure sensor 56 can be controlled to be the required torque TQreq.
  • the required throttle opening is fixed at the maximum throttle opening TAmax
  • the actual torque is adjusted to the required torque TQreq with high precision and high response. be able to.
  • the EGR gas amount can be controlled accurately and with high response, it is possible to prevent the EGR gas amount from becoming excessive and the combustion of the internal combustion engine 12 from being deteriorated.
  • the “EGR feedback control means” is realized by the ECU 40 executing the series of steps 310 to 316.
  • Embodiments 1 to 3 described above an example in which the control device for an internal combustion engine according to the present invention is applied to the internal combustion engine 12 for a hybrid vehicle provided with the motor 14 as a second power source together with the internal combustion engine 12.
  • the internal combustion engine to which the control device for an internal combustion engine of the present invention is applied is not limited to the above-described one, and is an internal combustion engine that performs torque control of the internal combustion engine in accordance with the required throttle opening based on the required torque (so-called A torque demand type internal combustion engine).

Abstract

 要求トルクに向けて内燃機関のトルクが上昇する際にEGRガスの影響によるトルク不足を回避して加速不良を良好に防止することのできる内燃機関の制御装置を提供する。 要求トルクTQreqと要求スロットル開度TAreqとの関係を定める要求スロットル開度マップに従って、要求トルクTQreqに基づいて要求スロットル開度TAreqを設定する。また、要求負荷率KLreqと要求EGR開度EGRreqとの関係を定める要求EGR開度マップに従って、要求負荷率KLreqに基づいて要求EGR開度EGRreqを設定する。現在の要求トルクTQreqに対する要求負荷率KLreqと要求EGR開度マップとに基づいて取得される要求EGR開度EGRreqを上限値として、内燃機関(12)の実トルクが現在の要求トルクTQreqに向けて移行する過程における要求EGR開度EGRreqを制限する。

Description

内燃機関の制御装置
 この発明は、内燃機関の制御装置に関する。
 従来、例えば特許文献1には、内燃機関とモータとを動力源として備えるハイブリッド車両用の内燃機関の制御装置が開示されている。この従来の制御装置では、アクセル踏込量に基づいて内燃機関に要求される要求トルクを検知したうえで、アクセル踏込量に基づく吸入空気量制御に用いられる最終吸気量を算出している。そして、エアフローメータを用いて検出される実際の吸入空気量が上記最終吸気量と一致するように、スロットル開度を調整するようにしている。
 尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
日本特開2000-97069号公報 日本特開平5-288123号公報 日本特開平11-36962号公報 日本特開2005-214081号公報
 ところで、内燃機関に要求される要求トルクと要求(目標)スロットル開度との関係を定めた第1関係情報に従って、要求トルクに基づいて要求スロットル開度を設定する構成を有する内燃機関(ハイブリッド車両用の内燃機関、または、いわゆるトルクデマンド型の内燃機関)が知られている。また、ポンピングロスの低減による燃費向上の目的で、内燃機関の所定の運転領域において、吸気通路と排気通路とを連通するEGR通路と当該EGR通路を開閉するEGRバルブとを利用して、筒内にEGRガスを導入するEGR制御(いわゆる外部EGR制御)を実行する構成を有する内燃機関が知られている。以下、図10を参照して、これらの構成を有する内燃機関における課題を説明する。
 図10は、本発明の課題を説明するために用いる図である。より具体的には、図10(A)は、EGR制御を行う「EGR有」の場合(実線)とEGR制御を行わない「EGRレス」の場合(破線)とについて、要求トルクTQreqと要求スロットル開度TAreqとの関係を定めた要求スロットル開度マップ(第1関係情報)の設定の一例を示す図であり、図10(B)は、内燃機関に吸入される空気量に関する空気量情報(ここでは、負荷率)とEGRバルブの要求(目標)EGR開度EGRreqとの関係を定めた要求EGR開度マップ(第2関係情報)の設定の一例を示す図である。尚、図10(A)に示す設定は、現在の実トルクTQnowに対応するエンジン回転数NEの時のものである。
 図10中の各図に示す関係を利用するシステムでは、図10(B)に示すように、要求負荷率KLreq(空気量情報)に応じて、要求EGR開度EGRreqが設定されている。燃費要求に基づいて外部EGR制御によりEGRガスを大量に導入する場合には、図10(A)に示すように、「EGRレス」の場合と比べて、同一の要求トルクTQreqにおける要求スロットル開度TAreqを大幅に大きく設定する必要がある。このような要求スロットル開度TAreqの設定を利用しながら外部EGR制御を行っているEGR領域から高負荷側のEGRレス領域に移行する状況では、スロットル開度が全開に近い開度で制御されているため、図10(B)に示すようにEGR開度を小さくしてEGRガス量を減らしただけでは、吸入空気量が劇的に増加してしまう。このため、このような状況下では、要求EGR開度EGRreqを小さくするのに合わせて、図10(A)に示すように要求スロットル開度TAreqを一旦閉じ方向に変化させるという設定を設けておく必要がある。すなわち、要求トルクTQreqの増加に伴って要求スロットル開度TAreqが小さくなる設定領域を設けておく必要がある。
 上記のような設定領域を有する場合において、現在(A点)のトルクTQnowから上記設定領域内のB点の要求トルクTQreqが要求された場合には、スロットル開度TAは、現在のスロットル開度TAnowからB点の要求スロットル開度TAreqに向けてステップ的に変化することになる。このように、図10(A)に示す要求スロットル開度マップにおいてスロットル開度TAの極大値TAmaxに対応する要求トルクTQtamaxよりも高い要求トルクTQreqが要求された場合には、対応する要求スロットル開度TAreqによって実現可能なトルクとしては、EGR開度が異なる2通りの値、すなわち、TQreq(B点)とTQreq’(B’点)とが存在することになる。要求EGR開度EGRreqは、上述したように要求負荷率KLreq(空気量情報)に応じて決定される。このため、B’点における要求EGR開度EGRreq’は、B点における要求EGR開度EGRreqよりも大きくなる。
 現在(A点)のトルクTQnowからB点の要求トルクTQreqが要求された場合には、スロットル開度TAが要求トルクTQreqに対応する要求スロットル開度TAreqに制御された後に、吸入空気量(負荷率KL)が徐々に高まっていく。そして、負荷率KLの上昇に応じてEGR開度が拡大されることにより、EGRガス量が増やされていく。その結果、内燃機関の実トルクが、EGRreqよりも大きなEGRreq’にEGR開度が制御されるTQreq’に達すると、EGRガスが大量に導入されているために吸入空気が飽和してしまい、それ以上のトルクの増大が不可能となってしまう。その結果、TQreqからTQreq’を引いた分のトルク不足が生じてしまい、加速不良となる。
 この発明は、上述のような課題を解決するためになされたもので、要求トルクに基づいて要求スロットル開度を設定する構成を備える場合において、要求トルクに向けて内燃機関のトルクが上昇する際にEGRガスの影響によるトルク不足を回避して加速不良を良好に防止することのできる内燃機関の制御装置を提供することを目的とする。
 第1の発明は、内燃機関の制御装置であって、
 要求スロットル開度に従って、内燃機関に吸入される空気量を調整するためのスロットルバルブのスロットル開度を制御するスロットルバルブ制御手段と、
 要求EGR開度に従って、吸気通路と排気通路とを連通するEGR通路の開閉を担うEGRバルブのEGR開度を制御するEGRバルブ制御手段と、
 前記内燃機関に要求される要求トルクを取得する要求トルク取得手段と、
 前記空気量に関する空気量情報を取得する空気量情報取得手段と、
 前記要求トルクと前記要求スロットル開度との関係を定める第1関係情報に従って、前記要求トルクに基づいて前記要求スロットル開度を設定する要求スロットル開度設定手段と、
 前記空気量情報と前記要求EGR開度との関係を定める第2関係情報に従って、前記空気量情報に基づいて前記要求EGR開度を設定する要求EGR開度設定手段と、
 現在の前記要求トルクに対する前記空気量情報と前記第2関係情報とに基づいて取得される前記要求EGR開度を上限値として、前記内燃機関の実トルクが前記現在の要求トルクに向けて移行する過程における前記要求EGR開度を制限する要求EGR開度制限手段と、
 を備えることを特徴とする。
 また、第2の発明は、第1の発明において、
 前記要求EGR開度制限手段は、前記第1関係情報において前記要求トルクの増加に伴って前記要求スロットル開度が小さくなる設定領域の前記要求トルクが現在要求されている場合に、この場合の前記要求トルクに対応する前記空気量情報と前記第2関係情報とに基づいて取得される前記要求EGR開度を上限値として、前記内燃機関の実トルクが前記現在の要求トルクに向けて移行する過程における前記要求EGR開度を制限することを特徴とする。
 また、第3の発明は、内燃機関の制御装置であって、
 要求スロットル開度に従って、内燃機関に吸入される空気量を調整するためのスロットルバルブのスロットル開度を制御するスロットルバルブ制御手段と、
 要求EGR開度に従って、吸気通路と排気通路とを連通するEGR通路の開閉を担うEGRバルブのEGR開度を制御するEGRバルブ制御手段と、
 前記内燃機関に要求される要求トルクを取得する要求トルク取得手段と、
 前記空気量に関する空気量情報を取得する空気量情報取得手段と、
 前記要求トルクと前記要求スロットル開度との関係を定める第1関係情報に従って、前記要求トルクに基づいて前記要求スロットル開度を設定する要求スロットル開度設定手段と、
 前記空気量情報と前記要求EGR開度との関係を定める第2関係情報に従って、前記空気量情報に基づいて前記要求EGR開度を設定する要求EGR開度設定手段と、
 現在の前記要求トルクに対応する現在の要求スロットル開度が、前記現在の要求トルクよりも低い要求トルクに対応する前記要求スロットル開度よりも小さくならないように、前記現在の要求スロットル開度を制限する要求スロットル開度制限手段と、
 を備えることを特徴とする。
 また、第4の発明は、第3の発明において、
 前記要求スロットル開度設定手段は、前記第1関係情報において極大となる極大スロットル開度に対応する前記要求トルクよりも高い要求トルクが現在要求されている場合に、前記現在の要求スロットル開度として、前記極大スロットル開度を用いることを特徴とする。
 また、第5の発明は、第4の発明において、
 前記内燃機関の筒内圧力を検知する筒内圧センサと、
 前記極大スロットル開度時の前記要求トルクよりも高い要求トルクが要求されている状況下において前記極大スロットル開度が用いられている場合に、前記筒内圧センサを用いて取得される前記内燃機関の実トルクが前記要求トルクとなるように、EGR開度のフィードバック制御を行うEGRフィードバック制御手段と、
 を更に備えることを特徴とする。
 また、第6の発明は、第1乃至第5の発明の何れかにおいて、
 前記内燃機関は、前記内燃機関に加え、第2の動力源を備えるハイブリッド車両に搭載されていることを特徴とする。
 第1および第2の発明によれば、要求トルクの増加に伴って要求スロットル開度が小さくなる設定領域の要求トルクが現在要求されている場合であっても、大量のEGRガスの影響によって加速時に吸入空気量の不足が生じないようにすることができ、要求通りのトルクを実現することが可能となる。このため、トルク不足を回避して、加速不良を良好に防止することができる。
 第3および第4の発明によれば、要求トルクと要求スロットル開度との関係を定めた第1関係情報に対して、要求トルクの増加に伴って要求スロットル開度が小さくなる設定領域が設けられなくなる。このため、本発明によれば、EGR開度が大きく制御される場合であっても、EGRガスの影響によって加速時に吸入空気量の不足が生じないようにすることができ、要求通りのトルクを実現することが可能となる。このため、トルク不足を回避して、加速不良を良好に防止することができる。
 第5の発明によれば、筒内圧センサを利用したトルクコントロールと相まって、要求スロットル開度として極大スロットル開度が用いられている場合において、実トルクを要求トルクに向けて精密かつ高応答に調整することができる。
 第6の発明によれば、内燃機関とともに第2の動力源を備えるハイブリッド車両に対して本発明における内燃機関の制御装置が適用されている場合において、要求トルクに向けて内燃機関のトルクが上昇する際にEGRガスの影響によるトルク不足を回避して加速不良を良好に防止することができる。
本発明が適用されたハイブリッド車両の駆動システムの概略構成を示す図である。 図1に示す内燃機関のシステム構成を説明するための図である。 トルクとエンジン回転数NEとの関係で表された内燃機関の運転領域を示す図である。 要求スロットル開度TAreqおよび要求EGR開度EGRreqの特徴的な設定を示す図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 本発明の実施の形態2における要求スロットル開度TAreqの特徴的な設定を説明するための図である。 本発明の実施の形態2において実行されるルーチンのフローチャートである。 本発明の実施の形態3における加速時の特徴的な制御を説明するための図である。 本発明の実施の形態3において実行されるルーチンのフローチャートである。 本発明の課題を説明するために用いる図である。
実施の形態1.
[HVシステムの構成]
 図1は、本発明が適用されたハイブリッド車両の駆動システム10の概略構成を示す図である。この駆動システム10は、内燃機関12とともに、車両の第2の動力源として、車両駆動用モータ(以下、単に「モータ」)14を備えている。また、駆動システム10は、駆動力の供給を受けて電力を発生する発電機16も備えている。内燃機関12、モータ14、および発電機16は、遊星歯車式の動力分割機構18を介して相互に連結されている。動力分割機構18につながるモータ14の回転軸には、減速機20が接続されている。減速機20は、モータ14の回転軸と駆動輪22につながる駆動軸24とを連結している。動力分割機構18は、内燃機関12の駆動力を発電機16側と減速機20側とに分割する装置である。動力分割機構18による駆動力の配分は、任意に変更することができる。
 駆動システム10には、更に、インバータ26、コンバータ28、および高圧バッテリ30が含まれている。インバータ26は、発電機16およびモータ14に接続されているとともに、コンバータ28を介して高圧バッテリ30にも接続されている。発電機16で発電された電力は、インバータ26を介してモータ14に供給することもできるし、インバータ26およびコンバータ28を介して高圧バッテリ30に充電することもできる。また、高圧バッテリ30に充電されている電力は、コンバータ28およびインバータ26を介してモータ14に供給することができる。
 以上説明した駆動システム10によれば、所定の条件に基づいて、モータ14を停止させた状態で、内燃機関12の駆動力のみによって駆動輪22を回転させることもできるし、逆に、内燃機関12を停止させた状態で、モータ14の駆動力のみによって駆動輪22を回転させることもできる。また、モータ14と内燃機関12の双方を作動させ、双方の駆動力によって駆動輪22を回転させることもできる。更に、発電機16をスタータとして機能させて内燃機関12を駆動することで、内燃機関12の始動を制御することもできる。
 本実施形態の駆動システム10は、ECU(Electronic Control Unit)40によって制御されている。ECU40は、内燃機関12、モータ14、発電機16、動力分割機構18、インバータ26、およびコンバータ28等を含む駆動システム10の全体を総合的に制御している。
[内燃機関のシステム構成]
 図2は、図1に示す内燃機関12のシステム構成を説明するための図である。内燃機関12の筒内には、吸気通路42および排気通路44が連通している。吸気通路42の入口近傍には、吸気通路42に吸入される空気の流量に応じた信号を出力するエアフローメータ46が設けられている。エアフローメータ46の下流には、筒内に吸入される空気量を調整するためのスロットルバルブ48が設けられている。スロットルバルブ48は、アクセル開度と独立してスロットル開度TAを制御することのできる電子制御式スロットルバルブである。スロットルバルブ48の近傍には、スロットル開度TAを検出するためのスロットルポジションセンサ50が配置されている。
 また、内燃機関12の各気筒には、吸気ポートに燃料を噴射するための燃料噴射弁52、および、混合気に点火するための点火プラグ54がそれぞれ設けられている。更に、各気筒には、筒内圧力を検出するための筒内圧センサ56が設けられている。
 また、内燃機関12は、スロットルバルブ48よりも下流側の吸気通路42と、排気通路44とを接続するEGR(Exhaust Gas Recirculation)通路58を備えている。EGR通路58における吸気通路42側の接続口付近には、EGR通路58の開閉を担うEGRバルブ60が設けられている。このEGRバルブ60の開度を変えることにより、EGR通路58を流れるEGRガスの流量を変化させて、EGR率を調整することができる。
 上述したECU40の入力部には、上述したエアフローメータ46、スロットルポジションセンサ50および筒内圧センサ56とともに、エンジン回転数NEを検出するためのクランク角センサ62等の内燃機関12の運転状態を検出するための各種センサが接続されている。また、ECU40の入力部には、内燃機関12が搭載されるハイブリッド車両のアクセルペダルのアクセル開度を検出するためのアクセル開度センサ64が接続されている。また、ECU40の出力部には、上述したスロットルバルブ48、燃料噴射弁52、点火プラグ54およびEGRバルブ60等の内燃機関12を制御するための各種のアクチュエータが接続されている。ECU40は、それらのセンサ出力に基づいて、内燃機関12の運転状態を制御する。
 図3は、トルクとエンジン回転数NEとの関係で表された内燃機関12の運転領域を示す図である。
 図3において実線で表された曲線は、内燃機関12の通常運転時(燃費要求時)において、その時々の等出力線上における燃費最良トルク点(内燃機関12を最も燃費良く運転することのできる動作点)を繋げて得た動作線を示している。より具体的には、この場合の動作線は、図3に示すように、低回転数低負荷運転状態からエンジン回転数NEをほとんど上げずにトルクを大きく高めた後に、トルクとエンジン回転数NEをともに高めていくようにすることで得られるものである。本実施形態の駆動システム10によれば、既述したように、内燃機関12の運転時に発電機16の作動を調整することで、発電機16から内燃機関12に付与される負荷の大きさを調整することができる。このため、本駆動システム10によれば、発電機16の作動を調整しつつ、内燃機関12側ではスロットルバルブ48の開度調整を行うことで、上記動作線を通るように内燃機関12の運転状態を制御することができる。
 一方、図3において破線で表された曲線は、内燃機関12に高出力要求が出された場合の動作線を示している。この場合の動作線は、図3に示すように、全負荷トルクに向けてトルクを速やかに高めたうえで、全負荷トルクの線上を通るように設定されたものである。
 また、図3には、EGRバルブ60の調整によるEGR制御(いわゆる、外部EGR制御)が実行されるEGR領域の一例が示されている。本実施形態のEGR領域は、図3に示すように、極軽負荷領域と高負荷領域とを除いた領域に設定されている。
 また、上記駆動システム10を有するハイブリッド車両に搭載された内燃機関12において、運転者の出力要求に従った要求(目標)スロットル開度TAreqは、次のような手順で算出されることになる。すなわち、アクセル開度に基づいて、運転者による車両全体としての要求出力が取得される。そして、この車両全体としての要求出力が、モータ14が担う要求出力と内燃機関12が担う要求出力とに分けられる。そのうえで、燃費要求時には、図3に示すように、内燃機関12が担う要求出力での等出力線と通常運転時の動作線との交点のトルク、すなわち、内燃機関12が担う要求出力を燃費が最良な状態で実現するためのトルクが、今回の車両出力要求時の要求トルクTQreqとして算出される。
 図4は、要求スロットル開度TAreqおよび要求EGR開度EGRreqの特徴的な設定を示す図である。より具体的には、図4(A)は、外部EGR制御を行う「EGR有」の場合(実線)と外部EGR制御を行わない「EGRレス」の場合(破線)とについて、要求トルクTQreqと要求スロットル開度TAreqとの関係を定めた要求スロットル開度マップ(第1関係情報)の設定の一例を示す図であり、図4(B)は、内燃機関12に吸入される空気量に関する空気量情報(ここでは、負荷率KL)とEGRバルブ60の要求(目標)開度(要求EGR開度EGRreq)との関係を定めた要求EGR開度マップ(第2関係情報)の設定の一例を示す図である。尚、図4(A)に示す設定は、現在のトルクTQnowに対応するエンジン回転数NEの時のものである。
 本実施形態では、図4(A)に示すような関係、すなわち、要求トルクTQreqと要求スロットル開度TAreqとを定めた要求スロットル開度マップに従って、現在の要求トルクTQreqから要求スロットル開度TAを算出するようにしている。ECU40は、図4(A)に示すような関係を定めた要求スロットル開度マップを記憶している。より具体的には、ECU40は、「EGR有」のマップ(実線)と「EGRレス」のマップ(破線)として2種類のマップを記憶しており、外部EGR制御の実行要求の有無に応じて、これらのマップを切り替えるようにしている。
 「EGR有」のマップでは、EGR領域において「EGRレス」時と同様のトルク要求を満足するために、「EGRレス」時と比べて、要求スロットル開度TAreqが大きくなるように設定されている。また、「EGR有」のマップでは、要求トルクTQreqが高くなるほど、要求スロットル開度TAreqが大きくなるように設定されている。しかしながら、EGR領域から高負荷側のEGRレス領域に移行する状況においてEGRガス量を減少させることに伴う吸入空気量の急増を防止するために、「EGR有」のマップは、図4(A)に示すように、要求スロットル開度TAreqを一旦閉じ方向に変化させるという設定を有している。すなわち、「EGR有」のマップは、要求トルクTQreqの増加に伴って要求スロットル開度TAreqが小さくなる設定領域を有している。
 また、本実施形態では、図4(B)に示すように、要求負荷率KL(空気量情報)と要求EGR開度EGEreqとの関係を定めた要求EGR開度マップに従って、要求負荷率KLから要求EGR開度EGRreqを算出するようにしている。
 現在(A点)のトルクTQnowからB点の要求トルクTQreqが要求された場合には、スロットル開度TAが要求トルクTQreqに対応する要求スロットル開度TAreqに制御された後に、吸入空気量(負荷率KL)が徐々に高まっていく。そして、要求負荷率KLreqの上昇に応じて、EGR開度が拡大されることによりEGRガス量が増やされていく。このような場合に、図10(B)のように(図4(B)の破線のように)要求負荷率KLreqが高くなるにつれ要求EGR開度EGRreqが大きくなる設定を有する要求EGR開度マップが用いられていると、EGR開度が大きく制御されている状態で実現されるTQreq’に実トルクが達した際に、吸入空気が飽和してしまい、それ以上のトルクの増大が不可能となってしまう。その結果、TQreqからTQreq’を引いた分のトルク不足が生じてしまい、加速不良となる。
 そこで、本実施形態では、図4(A)に示すように、極大スロットル開度TAmaxに対応する要求トルクTQtamaxよりも高い要求トルクTQreqが現在要求されている場合には、図4(B)に示すように、現在の要求トルクTQreqに対応する要求負荷率KLreq時の要求EGR開度EGRreqを上限値として、内燃機関12の実トルクが現在の要求トルクTQreqに向けて移行する過程における要求EGR開度EGRreqを制限するようにした。
 図5は、上記の機能を実現するために、本実施の形態1においてECU40が実行するルーチンを示すフローチャートである。尚、本ルーチンは、所定時間毎に繰り返し実行されるものとする。
 図5に示すルーチンでは、先ず、クランク角センサ62の出力を用いて現在のエンジン回転数NEnowが取得される(ステップ100)。次いで、現在の負荷率KLnowが取得される(ステップ102)。具体的には、現在の負荷率KLnowは、エアフローメータ46を用いて取得される吸入空気量とエンジン回転数NEとに基づいて算出される。
 次に、現在の実トルクTQnowが取得される(ステップ104)。図1に示す駆動システム10を備えるハイブリッド車両においては、発電機16が発生するトルクを制御するための制御電流値に基づいて内燃機関12の実トルクTQnowを算出することができる。尚、内燃機関12の実トルクTQnowは、例えば、別途トルクセンサを備えるようにして、当該トルクセンサを用いて取得してもよい。
 次に、現在の要求トルクTQreqが取得される(ステップ106)。要求トルクTQreqは、図3を参照して上述したように、アクセル開度に基づいて算出される。次いで、要求トルクTQreqが現在の実トルクTQnowよりも高いか否かが判定される(ステップ108)。
 その結果、上記ステップ108の判定が不成立である場合、すなわち、現在の実トルクTQnowが要求トルクTQreqに到達していると判断できる場合には、現在の実トルクTQnowに対応する要求スロットル開度TAnowが、所定の要求スロットル開度マップ(図4(A)参照)に従って算出される(ステップ110)。より具体的には、当該マップは、所定のエンジン回転数NE毎に設定されており、本ステップ110では、現在のエンジン回転数NEnowと対応した要求スロットル開度マップが参照される。
 一方、上記ステップ108の判定が成立する場合、すなわち、現在の実トルクTQnowが未だ要求トルクTQreqに到達していないと判断できる場合には、現在の要求トルクTQreqに対応する要求スロットル開度TAreqが、上記要求スロットル開度マップに従って算出される(ステップ112)。
 次に、現在のエンジン回転数NEnowにおける極大スロットル開度TAmaxが、上記要求スロットル開度マップに従って算出される(ステップ114)。次いで、極大スロットル開度TAmaxに対応する要求トルクTQtamaxが、上記要求スロットル開度マップに従って算出される(ステップ116)。
 次に、現在の要求トルクTQreqが、極大スロットル開度TAmax時の要求トルクTQtamaxよりも高いか否かが判定される(ステップ118)。その結果、現在の要求トルクTQreqが上記要求トルクTQtamax以下であると判定された場合、つまり、要求トルクの増加に伴って要求スロットル開度が小さくなる設定領域(図4(A)参照)内の要求トルクが現在要求されていないと判断できる場合には、現在の負荷率KLnowに対応する要求EGR開度EGRnowが、所定の要求EGR開度マップに従って算出される(ステップ120)。尚、本ルーチンの処理のためにECU40が記憶している要求EGR開度マップは、上記図4(B)中に破線で示す関係(図10(B)に示す関係)を定めたものであるとする。この場合には、次いで、本ステップ120において算出されたEGR開度EGRnowが現在の要求EGR開度として設定される(ステップ122)。
 一方、上記ステップ118において、現在の要求トルクTQreqが上記要求トルクTQtamaxよりも高いと判定された場合、つまり、要求トルクの増加に伴って要求スロットル開度が小さくなる設定領域の要求トルクが現在要求されていると判断できる場合には、現在の要求トルクTQreqに対応する要求負荷率KLreqが算出される(ステップ124)。具体的には、ECU40には、要求トルクTQreqと要求負荷率KLreqとの関係が予め記憶されており、本ステップ124では、そのような関係を利用して、要求負荷率KLreqが算出される。
 次に、上記ステップ124において算出された要求負荷率KLreqに対応する要求EGR開度EGRreqが、要求EGR開度マップに従って算出される(ステップ126)。次いで、現在の負荷率KLnowに対応する要求EGR開度EGRnowが上記ステップ120と同様の処理によって算出される(ステップ128)。
 次に、上記ステップ128において算出された要求EGR開度EGRnowが上記ステップ126において算出された要求EGR開度EGRreqよりも大きいか否かが判定される(ステップ130)。その結果、要求EGR開度EGRnowが要求EGR開度EGRreq以下である場合には、現在の負荷率KLnowに対応する要求EGR開度EGRnowが、現在の要求EGR開度として設定される(ステップ122)。一方、要求EGR開度EGRnowが要求EGR開度EGRreqよりも大きい場合には、要求EGR開度EGRnowが使用されずに、上記ステップ126において算出された要求EGR開度EGRreqが現在の要求EGR開度として設定される(ステップ132)。
 以上説明した図5に示すルーチンによれば、現在の要求トルクTQreqが上記要求トルクTQtamaxよりも高いと判定された場合、つまり、要求トルクの増加に伴って要求スロットル開度が小さくなる設定領域の要求トルクが現在要求されていると判断できる場合には、現在の要求トルクTQreqに対応する要求負荷率KLreqと要求EGR開度マップとに基づいて算出される要求EGR開度EGRreqを上限値として、内燃機関12の実トルクが現在の要求トルクTQreqに向けて移行する過程における要求EGR開度EGRreqが制限される。これにより、要求トルクの増加に伴って要求スロットル開度が小さくなる設定領域の要求トルクTQreqが現在要求されている場合であっても、大量のEGRガスの影響によって加速時に吸入空気量の不足が生じないようにすることができ、要求通りのトルクを実現することが可能となる。このため、トルク不足を回避して、加速不良を良好に防止することができる。また、このように加速時の内燃機関12のトルク不足を解消できることにより、モータ14によってトルク不足を補う必要がなくなる。このため、モータ14による無駄な電力消費を防止することができるので、結果として、内燃機関12の燃費向上を図ることができる。
 尚、上述した実施の形態1においては、ECU40が、要求スロットル開度TAreqに従って電子制御式のスロットルバルブ48のスロットル開度TAを制御することにより前記第1の発明における「スロットルバルブ制御手段」が、要求EGR開度EGRreqに従ってEGRバルブ60のEGR開度を制御することにより前記第1の発明における「EGRバルブ制御手段」が、上記ステップ106の処理を実行することにより前記第1の発明における「要求トルク取得手段」が、上記ステップ124の処理を実行することにより前記第1の発明における「空気量情報取得手段」が、上記ステップ112の処理を実行することにより前記第1の発明における「要求スロットル開度設定手段」が、上記ステップ126および128の処理を実行することにより前記第1の発明における「要求EGR開度設定手段」が、上記ステップ130の判定結果に応じて上記ステップ132または122の処理を実行することにより前記第1の発明における「要求EGR開度制限手段」が、それぞれ実現されている。
実施の形態2.
 次に、図6および図7を参照して、本発明の実施の形態2について説明する。
 本実施形態のシステムは、図1および図2に示すハードウェア構成を用いて、ECU40に図5に示すルーチンに代えて後述の図7に示すルーチンを実行させることにより実現することができるものである。
 図6は、本発明の実施の形態2における要求スロットル開度TAreqの特徴的な設定を説明するための図である。
 上述した実施の形態1では、加速時に大量のEGRガスの影響によってトルク不足が生じないようにするために、要求トルクの増加に伴って要求スロットル開度が小さくなる設定領域の要求トルクが現在要求されていると判断できる場合には、現在の要求トルクTQreqに対応する要求負荷率KLreqと要求EGR開度マップとに基づいて算出される要求EGR開度EGRreqを上限値として、内燃機関12の実トルクが現在の要求トルクTQreqに向けて移行する過程における要求EGR開度EGRreqを制限するようにしている。
 これに対し、本実施形態では、図6に示すように、「EGR有」の場合(燃費要求時)において、要求トルクTQreqと要求スロットル開度TAreqとの関係を定めた要求スロットル開度マップに対して、次のような設定を有している。すなわち、本実施形態では、現在の要求トルクTQreqに対応する要求スロットル開度TAreqを、現在の要求トルクTQreqよりも低い要求トルクに対応する要求スロットル開度よりも小さくならないように設定するようにした。より具体的には、要求スロットル開度マップにおいて極大となる極大スロットル開度TAmaxに対応する要求トルクTQtamaxよりも高い要求トルクTQreqが現在要求されている場合に、現在の要求スロットル開度TAreqとして、極大スロットル開度TAmaxを用いるようにした。
 また、本実施形態では、上述した実施の形態1とは異なり、要求負荷率KLreq(空気量情報)に従って算出される要求EGR開度EGRreqに対して制限を設けないようにした。このため、ここでは、図示を省略しているが、本実施形態では、要求負荷率KLreq(空気量情報)と要求EGR開度EGRreqとの関係を定めた要求EGR開度マップとして、図4(B)中に破線で示す関係(図10(B)に示す関係)を定めたものが使用される。
 また、本実施形態では、内燃機関12に高出力要求が出された場合には、図6中に破線で示すように、「EGR有」の場合とは異なり、要求スロットル開度TAreqを所定開度(上記極大スロットル開度TAmax)で固定することは行わないようにした。尚、本実施形態では、通常運転時(燃費要求時)の動作線(図3参照)上のトルク値は、極大スロットル開度TAmax時に実現されるトルクTQtamax以下とされている。
 図7は、上記の機能を実現するために、本実施の形態2においてECU40が実行するルーチンを示すフローチャートである。尚、図7において、実施の形態1における図5に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
 図7に示すルーチンでは、ステップ100~106において、現在のエンジン回転数NEnow、現在の負荷率KLnow、現在の実トルクTQnow、および現在の要求トルクTQreqがそれぞれ取得された後に、現在の要求トルクTQreqに対応する要求スロットル開度TAreqが、所定の要求スロットル開度マップ(図6参照)に従って算出される(ステップ200)。
 次に、現在の内燃機関12へのトルク要求が高出力要求でないか否かが判定される(ステップ202)。本ステップ202における判定は、アクセル開度が所定の判定値以下であるか否かに基づいて実行される。具体的には、アクセル開度が上記判定値以下である場合には、現在の内燃機関12へのトルク要求が高出力要求ではない、つまり、外部EGR制御を行う燃費要求であると判断される。
 上記ステップ202の判定が成立する場合には、現在のエンジン回転数NEnowにおける極大スロットル開度TAmaxが、上記要求スロットル開度マップに従って算出される(ステップ204)。次いで、極大スロットル開度TAmaxに対応する要求トルクTQtamaxが、上記要求スロットル開度マップに従って算出される(ステップ206)。
 次に、現在(今回)の要求トルクTQreqが、極大スロットル開度TAmax時の要求トルクTQtamaxよりも低いか否かが判定される(ステップ208)。その結果、現在の要求トルクTQreqが上記要求トルクTQtamaxよりも低いと判定された場合、つまり、要求トルクの増加に伴って要求スロットル開度が大きくなる設定領域(図6参照)の要求トルクTQreqが現在要求されていると判断できる場合には、現在(今回)の要求スロットル開度として、上記ステップ200において算出された要求スロットル開度TAreqが設定される(ステップ210)。
 一方、上記ステップ208において、現在の要求トルクTQreqが上記要求トルクTQtamax以上であると判定された場合には、現在(今回)の要求スロットル開度として、上記ステップ204において算出された要求スロットル開度TAmaxが設定される(ステップ212)。
 以上説明した図7に示すルーチンによれば、現在の要求トルクTQreqが上記要求トルクTQtamax以上となる状況下では、要求スロットル開度が極大スロットル開度TAmaxで固定されるようになる。これにより、図4(A)に示す設定とは異なり、図6に示すように要求トルクTQreqと要求スロットル開度TAreqとを定めた要求スロットル開度マップに対して、要求トルクの増加に伴って要求スロットル開度が小さくなる設定領域が設けられなくなる。このため、EGR開度が大きく制御される場合であっても、EGRガスの影響によって加速時に吸入空気量の不足が生じないようにすることができ、要求通りのトルクを実現することが可能となる。このため、トルク不足を回避して、加速不良を良好に防止することができる。
 ところで、上述した実施の形態2においては、現在の要求トルクTQreqが上記要求トルクTQtamax以上となる状況下では、要求スロットル開度を極大スロットル開度TAmaxで固定するようにしている。ポンピングロスが小さくなることもなり、このような極大スロットル開度TAmaxが使用されている状況下において、通常は、内燃機関の燃費が最も良くなる。このようなケースとは異なり、燃費最良となるトルクが上記極大スロットル開度TAmaxよりもスロットル開度TAが小さい状況下において得られる場合には、燃費最良となるトルクが得られるスロットル開度において、要求スロットル開度を固定するようにしてもよい。
 尚、上述した実施の形態2においては、ECU40が、要求スロットル開度TAreqに従って電子制御式のスロットルバルブ48のスロットル開度TAを制御することにより前記第3の発明における「スロットルバルブ制御手段」が、要求EGR開度EGRreqに従ってEGRバルブ60のEGR開度を制御することにより前記第3の発明における「EGRバルブ制御手段」が、上記ステップ106の処理を実行することにより前記第3の発明における「要求トルク取得手段」が、エアフローメータ46を用いて取得される吸入空気量とエンジン回転数NEとに基づいて負荷率KLを算出することにより前記第3の発明における「空気量情報取得手段」が、上記ステップ200の処理を実行することにより前記第3の発明における「要求スロットル開度設定手段」が、負荷率KLと要求EGR開度マップとに基づいて要求EGR開度EGRreqを算出することにより前記第3の発明における「要求EGR開度設定手段」が、上記ステップ208の判定結果に応じて上記ステップ210または212の処理を実行することにより前記第3の発明における「要求スロットル開度制限手段」が、それぞれ実現されている。
実施の形態3.
 次に、図8および図9を参照して、本発明の実施の形態3について説明する。
 本実施形態のシステムは、図1および図2に示すハードウェア構成を用いて、ECU40に図7に示すルーチンに代えて後述の図9に示すルーチンを実行させることにより実現することができるものである。
 図8は、本発明の実施の形態3における加速時の特徴的な制御を説明するための図である。
 本実施形態においても、上述した実施の形態2と同様に、EGR領域において、極大スロットル開度TAmax時の要求トルクTQtamaxよりも高い要求トルクTQreqが要求されている場合には、要求スロットル開度を極大スロットル開度TAmaxで固定するようにしている。以下、このようにして要求スロットル開度が極大スロットル開度TAmaxで固定される区間のことを、「要求スロットル開度固定区間」と称する。
 上記の要求スロットル開度固定区間では、EGR開度の制御によってEGRガス量を調整することにより、要求トルクTQreqが得られるように吸入空気量を調整する必要がある。しかしながら、上記図10(B)のような要求EGR開度マップは、内燃機関12が定常状態にある時の要求負荷率KLreqと要求EGR開度EGRreqとの関係を定めたものである。また、EGRバルブ60の応答性は、スロットルバルブ48のそれよりも低い。このため、上記の要求スロットル開度固定区間において、要求EGR開度マップを利用したEGRバルブ60の開度調整を行うだけでは、極大スロットル開度TAmaxのように大きなスロットル開度TAが用いられている状況下において、実トルクTQnowを要求トルクTQreqに向けて精密かつ高応答に調整することが難しい。
 図2に示す内燃機関12は、筒内圧センサ56を備えている。このような筒内圧センサ56を備えていることにより、内燃機関12の実トルクをリアルタイムで取得することができる。そこで、本実施形態では、上記の要求スロットル開度固定区間内の要求トルクTQreqが現在要求されている場合には、筒内圧センサ56を用いて取得される実トルクが当該要求トルクTQreqとなるように、EGR開度のフィードバック制御を行うようにした。
 また、本実施形態では、図8に示すように、「EGRレス」時に要求スロットル開度マップ(図8中に破線で示す関係)を用いて算出される要求スロットル開度TAreqhが上記極大スロットル開度TAmaxよりも大きい場合には、要求スロットル開度の固定を中止するようにした。そして、この場合には、「EGRレス」時の要求スロットル開度TAreqhを、現在の要求スロットル開度として設定するようにした。
 図9は、上記の機能を実現するために、本実施の形態3においてECU40が実行するルーチンを示すフローチャートである。尚、図9において、実施の形態2における図7に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
 図9に示すルーチンでは、ステップ200において今回の要求トルクTQreqに対応する要求スロットル開度TAreqが算出された後に、現在のEGR開度EGRnowが取得される(ステップ300)。具体的には、現在のEGR開度EGRnowは、現在の負荷率KLnowに基づいて算出される。
 次に、現在の要求トルクTQreqに対応する要求負荷率KLreqが算出されたうえで、当該要求負荷率KLreqに対応する要求EGR開度EGRreqが、所定の要求EGR開度マップ(図10(B)に示す関係)に従って算出される(ステップ302)。次いで、ステップ202において現在の内燃機関12へのトルク要求が高出力要求ではないと判定された場合には、「EGRレス」の場合の現在の要求トルクTQreqに対応するEGRレス時要求スロットル開度TAreqhが、所定の要求スロットル開度マップ(図8中に破線で示す関係)に従って算出される(ステップ304)。
 また、図9に示すルーチンでは、ステップ208において、現在の要求トルクTQreqが上記要求トルクTQtamaxよりも低いと判定された場合には、現在(今回)の要求スロットル開度として、上記ステップ200において算出された要求スロットル開度TAreqが設定される(ステップ210)。一方、現在の要求トルクTQreqが上記要求トルクTQtamax以上であると判定された場合には、次いで、EGRレス時要求スロットル開度TAreqhが極大スロットル開度TAmaxよりも大きいか否かが判定される(ステップ306)。
 上記ステップ306において、EGRレス時要求スロットル開度TAreqhが極大スロットル開度TAmaxよりも大きいと判定された場合には、現在(今回)の要求スロットル開度として、上記ステップ304において算出されたEGRレス時要求スロットル開度TAreqhが設定される(ステップ308)。
 一方、上記ステップ306において、EGRレス時要求スロットル開度TAreqhが極大スロットル開度TAmax以下であると判定された場合には、現在(今回)の要求スロットル開度として、上記ステップ204において算出された極大スロットル開度TAmaxが設定される(ステップ310)。次いで、この場合には、現在の実トルクTQnowが現在の要求トルクTQreqよりも高いか否かが判定される(ステップ310)。
 上記ステップ310において、現在の実トルクTQnowが現在の要求トルクTQreqよりも高いと判定された場合には、要求EGR開度EGRreqが、現在のEGR開度EGRnowに所定のEGR補正量EGRFBを加えた値に補正される(ステップ312)。一方、上記ステップ310において、現在の実トルクTQnowが現在の要求トルクTQreq以下であると判定された場合には、次いで、現在の実トルクTQnowが現在の要求トルクTQreqよりも低いか否かが判定される(ステップ314)。その結果、本ステップ314の判定が成立する場合には、要求EGR開度EGRreqが、現在のEGR開度EGRnowから上記EGR補正量EGRFBを引いた値に補正される(ステップ316)。
 以上説明した図9に示すルーチンによれば、現在の要求トルクTQreqが上記要求トルクTQtamax以上となり、かつ、EGRレス時要求スロットル開度TAreqhが極大スロットル開度TAmax以下となる状況下では、要求スロットル開度が極大スロットル開度TAmaxで固定されるようになる。これにより、実施の形態2において上述したように、EGR開度が大きく制御される場合であっても、EGRガスの影響によって加速時に吸入空気量の不足が生じないようにすることができ、要求通りのトルクを実現することが可能となる。このため、トルク不足を回避して、加速不良を良好に防止することができる。
 そのうえで、上記ルーチンによれば、要求スロットル開度として上記極大スロットル開度TAmaxが選択される場合には、EGR開度のフィードバック制御が行われる。これにより、現在の実トルクTQnowが現在の要求トルクTQreqよりも高いと判定された場合には、EGR補正量EGRFB分だけ要求EGR開度EGRreqを大きくすることにより、吸入空気量を減らすことができ、実トルクを下げることができる。一方、現在の実トルクTQnowが現在の要求トルクTQreq以下であると判定された場合には、EGR補正量EGRFB分だけ要求EGR開度EGRreqを小さくすることにより、吸入空気量を増やすことができ、実トルクを高めることができる。このように、上記EGR開度のフィードバック制御によれば、筒内圧センサ56を用いて取得される実トルクが当該要求トルクTQreqとなるように制御することができる。これにより、筒内圧センサ56を利用したトルクコントロールと相まって、要求スロットル開度が上記極大スロットル開度TAmaxに固定されている場合において、実トルクを要求トルクTQreqに向けて精密かつ高応答に調整することができる。また、EGRガス量を精密かつ高応答に制御できることにより、EGRガス量が過剰となって内燃機関12の燃焼が悪化するのを防止することができる。
 尚、上述した実施の形態3においては、ECU40が上記ステップ310乃至316の一連の処理を実行することにより前記第5の発明における「EGRフィードバック制御手段」が実現されている。
 ところで、上述した実施の形態1乃至3においては、内燃機関12とともにモータ14を第2の動力源として備えるハイブリッド車両用の内燃機関12に対して、本発明における内燃機関の制御装置を適用した例について説明した。しかしながら、本発明の内燃機関の制御装置の適用対象となる内燃機関は、上記のものに限定されるものではなく、要求トルクに基づく要求スロットル開度に従って内燃機関のトルク制御を行う内燃機関(いわゆる、トルクデマンド型の内燃機関)であってもよい。
10 駆動システム
12 内燃機関
14 モータ
16 発電機
18 動力分割機構
40 ECU(Electronic Control Unit)
42 吸気通路
44 排気通路
46 エアフローメータ
48 スロットルバルブ
50 スロットルポジションセンサ
52 燃料噴射弁
54 点火プラグ
56 筒内圧センサ
58 EGR通路
60 EGRバルブ
62 クランク角センサ
64 アクセル開度センサ

Claims (6)

  1.  要求スロットル開度に従って、内燃機関に吸入される空気量を調整するためのスロットルバルブのスロットル開度を制御するスロットルバルブ制御手段と、
     要求EGR開度に従って、吸気通路と排気通路とを連通するEGR通路の開閉を担うEGRバルブのEGR開度を制御するEGRバルブ制御手段と、
     前記内燃機関に要求される要求トルクを取得する要求トルク取得手段と、
     前記空気量に関する空気量情報を取得する空気量情報取得手段と、
     前記要求トルクと前記要求スロットル開度との関係を定める第1関係情報に従って、前記要求トルクに基づいて前記要求スロットル開度を設定する要求スロットル開度設定手段と、
     前記空気量情報と前記要求EGR開度との関係を定める第2関係情報に従って、前記空気量情報に基づいて前記要求EGR開度を設定する要求EGR開度設定手段と、
     現在の前記要求トルクに対する前記空気量情報と前記第2関係情報とに基づいて取得される前記要求EGR開度を上限値として、前記内燃機関の実トルクが前記現在の要求トルクに向けて移行する過程における前記要求EGR開度を制限する要求EGR開度制限手段と、
     を備えることを特徴とする内燃機関の制御装置。
  2.  前記要求EGR開度制限手段は、前記第1関係情報において前記要求トルクの増加に伴って前記要求スロットル開度が小さくなる設定領域の前記要求トルクが現在要求されている場合に、この場合の前記要求トルクに対応する前記空気量情報と前記第2関係情報とに基づいて取得される前記要求EGR開度を上限値として、前記内燃機関の実トルクが前記現在の要求トルクに向けて移行する過程における前記要求EGR開度を制限することを特徴とする請求項1記載の内燃機関の制御装置。
  3.  要求スロットル開度に従って、内燃機関に吸入される空気量を調整するためのスロットルバルブのスロットル開度を制御するスロットルバルブ制御手段と、
     要求EGR開度に従って、吸気通路と排気通路とを連通するEGR通路の開閉を担うEGRバルブのEGR開度を制御するEGRバルブ制御手段と、
     前記内燃機関に要求される要求トルクを取得する要求トルク取得手段と、
     前記空気量に関する空気量情報を取得する空気量情報取得手段と、
     前記要求トルクと前記要求スロットル開度との関係を定める第1関係情報に従って、前記要求トルクに基づいて前記要求スロットル開度を設定する要求スロットル開度設定手段と、
     前記空気量情報と前記要求EGR開度との関係を定める第2関係情報に従って、前記空気量情報に基づいて前記要求EGR開度を設定する要求EGR開度設定手段と、
     現在の前記要求トルクに対応する現在の要求スロットル開度が、前記現在の要求トルクよりも低い要求トルクに対応する前記要求スロットル開度よりも小さくならないように、前記現在の要求スロットル開度を制限する要求スロットル開度制限手段と、
     を備えることを特徴とする内燃機関の制御装置。
  4.  前記要求スロットル開度設定手段は、前記第1関係情報において極大となる極大スロットル開度に対応する前記要求トルクよりも高い要求トルクが現在要求されている場合に、前記現在の要求スロットル開度として、前記極大スロットル開度を用いることを特徴とする請求項3記載の内燃機関の制御装置。
  5.  前記内燃機関の筒内圧力を検知する筒内圧センサと、
     前記極大スロットル開度時の前記要求トルクよりも高い要求トルクが要求されている状況下において前記極大スロットル開度が用いられている場合に、前記筒内圧センサを用いて取得される前記内燃機関の実トルクが前記要求トルクとなるように、EGR開度のフィードバック制御を行うEGRフィードバック制御手段と、
     を更に備えることを特徴とする請求項4記載の内燃機関の制御装置。
  6.  前記内燃機関は、前記内燃機関に加え、第2の動力源を備えるハイブリッド車両に搭載されていることを特徴とする請求項1乃至5の何れか1項記載の内燃機関の制御装置。
PCT/JP2010/072693 2010-12-16 2010-12-16 内燃機関の制御装置 WO2012081111A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/817,673 US8655573B2 (en) 2010-12-16 2010-12-16 Control apparatus for internal combustion engine
CN201080070757.8A CN103261637B (zh) 2010-12-16 2010-12-16 内燃机的控制装置
JP2012548588A JP5387785B2 (ja) 2010-12-16 2010-12-16 内燃機関の制御装置
PCT/JP2010/072693 WO2012081111A1 (ja) 2010-12-16 2010-12-16 内燃機関の制御装置
EP10860692.2A EP2653704B1 (en) 2010-12-16 2010-12-16 Internal combustion engine control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/072693 WO2012081111A1 (ja) 2010-12-16 2010-12-16 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2012081111A1 true WO2012081111A1 (ja) 2012-06-21

Family

ID=46244238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072693 WO2012081111A1 (ja) 2010-12-16 2010-12-16 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8655573B2 (ja)
EP (1) EP2653704B1 (ja)
JP (1) JP5387785B2 (ja)
CN (1) CN103261637B (ja)
WO (1) WO2012081111A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220135114A (ko) * 2021-03-29 2022-10-06 주식회사 현대케피코 고부하 운전 시 배기가스 재순환 장치 제어 방법 및 시스템, 그리고 그 시스템을 포함하는 내연기관 차량

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9222426B2 (en) * 2012-02-17 2015-12-29 Ford Global Technologies, Llc Transient air flow control
JP5939221B2 (ja) * 2013-09-20 2016-06-22 トヨタ自動車株式会社 ハイブリッド車両の制御装置およびハイブリッド車両の制御方法
JP5765409B2 (ja) * 2013-12-05 2015-08-19 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US9759135B2 (en) 2014-04-04 2017-09-12 Ford Global Technologies, Llc Method and system for engine control
US9403524B2 (en) * 2014-09-05 2016-08-02 Ford Global Technologies, Llc Methods and system for starting a hybrid vehicle
CN111140385B (zh) * 2019-12-30 2022-04-05 潍柴动力股份有限公司 一种提升天然气发动机鲁棒性的方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136962A (ja) 1987-11-20 1989-05-30 Nissan Motor Co Ltd 被覆方法
JPH05288123A (ja) 1992-04-10 1993-11-02 Toyota Motor Corp 内燃機関の排気ガス還流装置
JPH11125137A (ja) * 1990-03-26 1999-05-11 Denso Corp 車両内燃機関系の制御装置
JP2000097069A (ja) 1998-09-21 2000-04-04 Toyota Motor Corp 内燃機関の吸気制御装置
JP2002106405A (ja) * 2000-09-29 2002-04-10 Mazda Motor Corp エンジンを搭載した車両の駆動制御装置
JP2002332884A (ja) * 2001-05-01 2002-11-22 Denso Corp 内燃機関の制御装置
JP2005214081A (ja) 2004-01-30 2005-08-11 Nissan Motor Co Ltd 内燃機関の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136962A (ja) 1997-07-18 1999-02-09 Toyota Motor Corp ディーゼルエンジンの燃料噴射量制御装置
JP3885569B2 (ja) * 2001-11-29 2007-02-21 いすゞ自動車株式会社 内燃機関のegr制御装置
JP2006161569A (ja) * 2004-12-02 2006-06-22 Mitsubishi Fuso Truck & Bus Corp 内燃機関のegr制御装置
JP4859875B2 (ja) * 2008-05-12 2012-01-25 三菱重工業株式会社 ディーゼルエンジンの排ガス再循環制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136962A (ja) 1987-11-20 1989-05-30 Nissan Motor Co Ltd 被覆方法
JPH11125137A (ja) * 1990-03-26 1999-05-11 Denso Corp 車両内燃機関系の制御装置
JPH05288123A (ja) 1992-04-10 1993-11-02 Toyota Motor Corp 内燃機関の排気ガス還流装置
JP2000097069A (ja) 1998-09-21 2000-04-04 Toyota Motor Corp 内燃機関の吸気制御装置
JP2002106405A (ja) * 2000-09-29 2002-04-10 Mazda Motor Corp エンジンを搭載した車両の駆動制御装置
JP2002332884A (ja) * 2001-05-01 2002-11-22 Denso Corp 内燃機関の制御装置
JP2005214081A (ja) 2004-01-30 2005-08-11 Nissan Motor Co Ltd 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2653704A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220135114A (ko) * 2021-03-29 2022-10-06 주식회사 현대케피코 고부하 운전 시 배기가스 재순환 장치 제어 방법 및 시스템, 그리고 그 시스템을 포함하는 내연기관 차량
KR102460277B1 (ko) * 2021-03-29 2022-10-28 주식회사 현대케피코 고부하 운전 시 배기가스 재순환 장치 제어 방법 및 시스템, 그리고 그 시스템을 포함하는 내연기관 차량
US11754009B2 (en) 2021-03-29 2023-09-12 Hyundai Kefico Corporation Method and system for controlling EGR device in high-load driving, and internal combustion engine vehicle including the system

Also Published As

Publication number Publication date
US20130247869A1 (en) 2013-09-26
EP2653704A4 (en) 2014-03-26
EP2653704B1 (en) 2016-03-16
JP5387785B2 (ja) 2014-01-15
JPWO2012081111A1 (ja) 2014-05-22
CN103261637A (zh) 2013-08-21
EP2653704A1 (en) 2013-10-23
US8655573B2 (en) 2014-02-18
CN103261637B (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5387785B2 (ja) 内燃機関の制御装置
US7150266B2 (en) Method of controlling air fuel ratio learning for dual injection internal combustion engine in hybrid vehicle
US8620499B2 (en) Hybrid vehicle and control method thereof
US10280865B2 (en) Engine control device
US8032289B2 (en) Power output apparatus, internal combustion engine system, and control methods thereof
US10605186B2 (en) Engine control device
JP2006291803A (ja) エンジンのトルク制御装置とそれを備えた車両制御システム
JPWO2014184872A1 (ja) 内燃機関の制御装置
WO2014148067A1 (ja) 内燃機関の制御装置および制御方法
JP2013252803A (ja) ハイブリッド車の制御装置
US7845333B2 (en) Internal combustion engine apparatus, vehicle and control method of internal combustion engine apparatus
JP2011017303A (ja) 車両制振制御装置
US10954876B2 (en) Vehicle system
US9309858B2 (en) Internal combustion engine control device
US20080257323A1 (en) Internal combustion engine system and vehicle, and ignition control method for internal combustion engine system
JP4483850B2 (ja) 内燃機関制御装置
US7373920B2 (en) Method for controlling an internal combustion engine
JP2007263127A (ja) エンジンの燃料制御装置,エンジンの燃料制御方法
JP2014240617A (ja) 内燃機関の熱発生率波形作成装置および燃焼状態診断装置
US20190368438A1 (en) Vehicle system
JP2006046297A (ja) ハイブリッド車の制御装置
JP2016205228A (ja) 内燃機関装置
JP2017019393A (ja) 車載制御装置
JP2013113257A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860692

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13817673

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012548588

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010860692

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE