WO2012079760A1 - Verfahren zur herstellung von milchproteinfasern und daraus gewonnene milchproteinfaserprodukte - Google Patents

Verfahren zur herstellung von milchproteinfasern und daraus gewonnene milchproteinfaserprodukte Download PDF

Info

Publication number
WO2012079760A1
WO2012079760A1 PCT/EP2011/006340 EP2011006340W WO2012079760A1 WO 2012079760 A1 WO2012079760 A1 WO 2012079760A1 EP 2011006340 W EP2011006340 W EP 2011006340W WO 2012079760 A1 WO2012079760 A1 WO 2012079760A1
Authority
WO
WIPO (PCT)
Prior art keywords
milk
protein
fibers
fiber
milk protein
Prior art date
Application number
PCT/EP2011/006340
Other languages
English (en)
French (fr)
Inventor
Anke Domaske
Original Assignee
Anke Domaske
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anke Domaske filed Critical Anke Domaske
Priority to US13/991,946 priority Critical patent/US20130256942A1/en
Priority to BR112013015046A priority patent/BR112013015046A2/pt
Priority to EP11804645.7A priority patent/EP2652180A1/de
Priority to NZ611910A priority patent/NZ611910A/en
Priority to JP2013543573A priority patent/JP2014503703A/ja
Priority to AU2011344795A priority patent/AU2011344795B2/en
Priority to MX2013006574A priority patent/MX2013006574A/es
Priority to CA2819267A priority patent/CA2819267C/en
Priority to UAA201308346A priority patent/UA108281C2/uk
Priority to CN201180060328.7A priority patent/CN103261495B/zh
Priority to RU2013130142/05A priority patent/RU2547747C2/ru
Publication of WO2012079760A1 publication Critical patent/WO2012079760A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • D01F4/04Monocomponent artificial filaments or the like of proteins; Manufacture thereof from casein
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof

Definitions

  • the invention relates to a process for the preparation of milk protein fibers and the like.
  • for the textile industry for hygiene products and medical products and the associated milk protein fiber products such as wadding, nonwovens, loose short fibers, yarns, woven and knitted fabrics and other products made with the fiber according to the invention.
  • Casein fibers belong to the protein fibers, to which in the broadest sense also the natural products wool and silk count. On an industrial scale, protein fibers have long been known. Casein fibers were already produced in the 1930s. Casein is a protein fraction from the milk of mammals. Casein is made from skimmed milk which is clotted at around 45 ° C with acids at pH 4.6 (the isoelectric point of casein). Alternatively, Lab coagulation is used. The solid components are separated or pressed and washed several times. Finally, C (, Römpp Chemie Lexikon, Georg-Thieme-Verlag 1989 9 at "casein”) until a residual water content of less than 10% dried at 50 to 80 °.
  • Casein is a mixture of several proteins, of which the most important are generally As the aS1, aS2, ß and ⁇ , (cow's milk) .As the white to yellowish, slightly hygroscopic casein powder is insoluble in water but soluble in alkalis, it is in the solution spinning process for the classical production method
  • CONFIRMATION COPY it is necessary to work in an alkaline environment and then expose the fiber to further treatment steps and baths.
  • the proteins are dissolved in alkalis, filtered, cleaned, pressed through nozzles into an acid bath, stretched and cured with formaldehyde or aluminum sulfate (Römpp, supra).
  • an aqueous casein solution is adjusted to a pH of 7 to 10 with sodium carbonate, stirred for 24 hours at room temperature and degassed before further processing in vacuo.
  • the solution is then extruded into a coagulation bath containing aluminum sulfate octadecahydrate, sodium chloride and sulfuric acid.
  • the milk fiber is cured for 24 hours in a hardening bath with sodium acetate trihydrate and formalin solution at a pH of 5.5.
  • the fiber is cleaned 24 hours under running water from residues of the curing bath and dried at room temperature.
  • the pollution caused by the coagulation bath and the water consumption are very high. In addition, this process is very time consuming, the process takes about 60 hours.
  • EP 0 051 423 A2 describes a method for preparing a casein-containing material. Accordingly, a plastic mass of water and a protein is extruded by means of an extruder into a gas atmosphere. In this process, it is important that the extrusion takes place at a temperature of 100 ° C, while the material must be heated during a post-treatment.
  • the end product should be used for the food sector.
  • proteins are disclosed as classification agents, that is to say in particular gluten and sources such as fish and meat are mentioned.
  • the products thus obtained are water-soluble and have no appreciable tensile strength.
  • the invention is based on the object, the above-mentioned disadvantages avoid and reduce the processing time. At the same time, the water and energy consumption should be reduced.
  • At least one milk-derived protein is plasticized together with a plasticizer at temperatures between room temperature and 140 ° C under mechanical stress and spun through a nozzle into fibers, wherein the plasticizer is selected from the group: aqueous polysaccharide solution, alcohol, polyalcohol, or mixtures this means.
  • alcohol or polysaccharide be used as plasticizer.
  • plasticizers it is possible to produce a milk protein fiber which does not have the disadvantages of the prior art.
  • the invention is based on the finding that the milk proteins and in particular casein can be plasticized by kneading in the heat and thus processed in the melt spinning process.
  • melt spinning the dried meltable raw material is plasticized by heat and preferably pressed through nozzles as a melt by means of gear pumps or extruders.
  • the melt solidifies after removal.
  • the withdrawn thread is wound up or processed as desired.
  • the stripped threads can be stretched before winding and also surface treated.
  • the protein is intensively mixed or kneaded together with a plasticizer and subjected to mechanical stress.
  • the milk protein is preferably casein or lactalbumin.
  • the milk-derived protein can be produced in situ by precipitation from milk.
  • the milk in mixture with rennet, other suitable enzymes or acid introduced directly as a flocculated mixture in the process or the pressed flocculated protein can be used wet.
  • a separate previously obtained, possibly purified pure or mixed protein, ie a protein fraction from milk are used, eg dried as a powder.
  • the milk protein used according to the invention can be mixed with other proteins in a proportion of up to a maximum of 30% by weight, based on the milk protein.
  • other albumins such as ovalbumin and vegetable proteins, in particular lupine protein, soy protein or wheat proteins, in particular gluten in question.
  • the plasticizer is preferably water, which is used in an amount between 20 and 80% based on the weight of the protein, preferably in an amount of about 40 to 50 wt .-% of the protein content.
  • other plasticizers in particular alcohols, polyalcohols, gum arabic, carbohydrates in aqueous solution and in particular aqueous polysaccharide solutions can be used.
  • the moisture content of the protein fraction may need to be considered.
  • plasticizers and associated weight fractions are particularly preferred:
  • Alcohols and polyhydric alcohols are used in proportions by weight of up to about 10% by weight, based on the protein, and glycerol (glycerol) is particularly preferred.
  • glycerol glycerol
  • other polyols such as ethylene glycol
  • Carbohydrates and polysaccharides are each used in a proportion by weight of preferably between 0.4 and 2% by weight, in each case in 70% strength aqueous solution. Preference is given to starch of various origins, carrageenan, cellulose, in particular carboxycellulose and chitosan.
  • additives and auxiliaries such as lipophilic additives, gloss modifiers and crosslinkers may be provided.
  • the additives and auxiliaries should overall not exceed a proportion by weight of at most about 30% by weight, based on the protein.
  • lipophilic additives vegetable oils can be selected which readily hydrophobize the fiber during plasticizing.
  • waxes can be used, which give the fiber additional strength.
  • waxes are preferred carnauba wax, beeswax, candelilla wax and other naturally derived waxes.
  • crosslinkers calcium salts, for example calcium chloride, dialdehyde starch and glucose- ⁇ -lactone are preferred.
  • the plasticization is carried out with the aid of an extruder, wherein all selected substances are introduced as a premix in the extruder, or initially only some substances or only the protein are given up and other substances are in the course of extrusion, i. at addition points long added to the screw.
  • the protein is introduced as a dry powder via a funnel at the beginning of the extruder, while the plasticizer and in particular water in a subsequent extrusion stage, the plasticizing zone, is abandoned. Further, it is preferable that all of the dry raw materials are premixed and initially charged while all of the liquid ingredients are admixed downstream thereof. At the exit of the extruder, the extrudate is forced through a die and thereby formed into a fiber.
  • the process is preferably carried out in such a way that drainage can take place long ago in the extruder or in the other processing apparatus.
  • the process corresponds to a melt extrusion.
  • the materials are converted by heating in a plastic state and deformed in this way. The temperature exceeds the glass transition temperature of the protein, so that it passes from the amorphous to the rubbery plastic state.
  • heat is already generated by the mechanical load, so that, if necessary, no heat has to be supplied from the outside.
  • the extrusion then takes place formally already at room temperature.
  • very specific temperature values are set in the various extruder zones, which allow optimum plasticization.
  • extruded in the extruder between 30 and 95 ° C, more preferably between 50 and 90 ° C and more preferably between about 60 and 80 ° C.
  • the shaped fiber after exiting the nozzle wound up and dried before and / or after this step.
  • the shaped fiber from the nozzle After the exit of the shaped fiber from the nozzle, it can be cut directly - for example, chopped into short fibers - or further processed into staple fibers.
  • the molded fiber may be further processed into a multiple yarn after emergence from the die directly or in at least one later processing step, in particular twisted, beaten into a batt strand, or further processed into a nonwoven web.
  • the fiber may also pass through a bath prior to winding, this procedure is not particularly preferred and usually not required.
  • the fiber may be subjected to a spray treatment after exiting the nozzle.
  • smoothing agents, waxes, lipophilic or crosslinking agents can be applied to the surface of the fiber.
  • crosslinkers those given above are preferred, ie generally different salt solutions, preferably calcium chloride solution, dialdehyde starch solution, glucose- ⁇ -lactone solution or aqueous lactic acid.
  • the obtained fibers can be used for all conceivable purposes. They can be used in the same way as conventional textile fibers and can therefore be processed into all types of textiles such as fabrics, fabrics, knitted fabrics, crocheted yarns, ropes, nonwovens, felts, etc. Also, wadding, loose fiber insulation, filters and membranes are obtainable from the fibers according to the invention.
  • the fields of application of the milk fibers according to the invention therefore include i.a. textile technology, building insulation and building materials, hygiene products and, due to their inherent antibacterial properties, medical products such as swabs, filters and membranes.
  • part of this invention is also a milk protein fiber product containing fibers containing a thermo-mechanically plasticized milk protein and obtained in particular by a method according to the invention as described above.
  • wadding or nonwovens can be produced, which can find use, for example, as filling and padding material. Particularly preferred is when the fibers are twisted into yarns. It is both possible to bind together a plurality of milk protein fibers which were produced by the method according to this invention, and also to twine the milk protein fibers with other natural or synthetic fibers in combination. Elastane, viscose, silk or wool, for example, which can also be spun and / or twisted as a mixture into multiple yarns, can be used as further fibers.
  • the fibers can be cut into short fibers or staple fibers.
  • Wovens of all types therefore also constitute milk protein fiber products according to this invention.
  • the advantages achieved by the invention are in particular that in the production of milk protein fibers by the extrusion process, the exclusion of harmful substances and polluting substances during the process and on the fiber itself is made possible. In addition, significant resources of energy, water, time and manpower can be saved, which increases environmental protection and improves profitability.
  • the particularly advantageous properties of the fibers, which are very well suited as textile fibers, are attributed to firming structural changes (textural structure) during plasticizing. More detailed knowledge about the mechanics are not yet available.
  • Example 1 Preparation of a milk protein fiber with a thickness of 20dtex.
  • the extrusion takes place with a single-screw extruder type 30 E of the company. Collin with a diameter of 30 mm.
  • Heating takes place via 4 cylinder heating zones with the following temperature sequence 65 ° C, 74 ° C, 75 ° C, 60 ° C:
  • the casein powder is added via a vibrating trough.
  • a hose pump is used to add water in a ratio of 1: 2 (water: casein).
  • the fiber strength is defined by the nozzle thickness.
  • the fiber may have a thickness of 20 dtex. With the help of a winding machine, the fibers are wound up and dried at room temperature.
  • the extrusion process is additionally illustrated by FIG.
  • the extruder 1 is filled via a funnel 2 with the casein powder.
  • the casein powder is heated in the extruder.
  • the water pump 3 the addition of water as a plasticizer.
  • the final product is pressed through a nozzle 4.
  • the fiber strand is wound up and dried at room temperature on the winder 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Peptides Or Proteins (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

Es werden Milchproteinfasern mit einem Extrusionsverfahren u.a. für die Textilindustrie hergestellt, bei welchem wenigstens ein aus Milch gewonnenes, thermischplastifizierbares Protein mit einem Plastifizierungsmittel wie beispielsweise Wasser oder Glycerol bei Temperaturen zwischen Raumtemperatur und 140° C unter mechanischer Beanspruchung plastifiziert und durch eine Düse zu Fasern gesponnen wird.

Description

Verfahren zur Herstellung von Milchproteinfasern und daraus gewonnene
Milchproteinfaserprodukte
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Milchproteinfasem u.a. für die Textilindustrie, für Hygieneprodukte und Medizinprodukte und die zugehörigen Milchproteinfaserprodukte wie Watten, Vliese, lose Kurzfasern, Garne, gewebte und gewirkte Stoffe sowie weitere mit der erfindungsgemäßen Faser hergestellte Produkte.
Stand der Technik
Milchproteinfasern gehören zu den Eiweißfasern, zu denen im weitesten Sinne auch die Naturprodukte Wolle und Seide zählen. Im technischen Maßstab sind Eiweißfasern seit langem bekannt. Bereits in den 30iger Jahren wurden Caseinfasern produziert. Bei Casein handelt es sich um eine Eiweißfraktion aus der Milch von Säugetieren. Casein wird aus entrahmter Milch hergestellt, die bei ca. 45 °C mit Säuren um pH 4,6 (dem isoelektrischen Punkt des Caseins) zur Gerinnung gebracht werden. Alternativ wird für die Gerinnung Lab verwendet. Die festen Bestandteile werden abgetrennt bzw. abgepresst und mehrmals gewaschen. Abschließend wird bei 50 bis 80 °C bis auf einen Restwassergehalt von weniger als 10 % getrocknet (Römpp Chemielexikon, Georg-Thieme-Verlag, 19899 bei „Casein"). Casein ist eine Mischung aus mehreren Proteinen, von denen die wichtigsten im Allgemeinen als aS1 , aS2, ß und κ, bezeichnet werden (Kuhmilch). Da das weiße bis gelbliche, schwach hygroskopische Casein-Pulver in Wasser unlöslich, in Alkalien jedoch löslich ist, ist es für die klassische Herstellungsweise im Lösungsspinnverfahren
BESTÄTIGUNGSKOPIE erforderlich, im alkalischen Milieu zu arbeiten und die Faser danach noch weiteren Behandlungsschritten und Bädern auszusetzen. Die Eiweißstoffe werden in Alkalien gelöst, filtriert, gereinigt, durch Düsen in ein Säurebad gepresst, verstreckt und mit Formaldehyd oder Aluminiumsulfat gehärtet (Römpp a.a.O.)
Konkret wird bei den klassischen Naßspinnverfahren eine wässrige Caseinlösung mit Natriumcarbonat auf einen pH-Wert von 7 bis 10 eingestellt, für 24 Stunden bei Raumtemperatur gerührt und vor der Weiterverarbeitung im Vakuum entgast. Die Lösung wird dann in ein Koagulationsbad extrudiert, welches Aluminiumsulfat-octadecahydrat, Natriumchlorid und Schwefelsäure enthält. Anschließend wird die Milchfaser für 24 Stunden in einem Härtungsbad mit Natriumacetat-trihydrat und Formalinlösung bei einem pH-Wert von 5,5 gehärtet. Danach wird die Faser 24 Stunden unter fließendem Wasser von Resten des Härtungsbades gesäubert und bei Raumtemperatur getrocknet. Die Schadstoffbelastungen durch das Koagulationsbad und der Wasserverbrauch sind sehr hoch. Außerdem ist dieses Verfahren sehr zeitaufwendig, die Prozessdauer beträgt ca. 60 Stunden.
Aus der DE PS 905 418 sind beispielweise Härtungsbäder beschrieben, die dem oben Genannten entsprechen.
Aus der EP 0 051 423 A2 ist ein Verfahren zur Vorbereitung eines Casein enthaltenen Materials beschrieben. Demgemäß wird eine plastische Masse aus Wasser und einem Protein mittels eines Extruders in eine Gasatmosphäre extrudiert. Bei diesem Verfahren ist es wichtig, dass die Extrusion bei einer Temperatur von 100°C stattfindet, während das Material im Rahmen einer Nachbehandlung erwärmt werden muss.
Daraus ergeben sich verlängerte Produktionszeiten und ein zusätzlicher Energiebedarf.
Bei dem vorbekannten Verfahren soll das Endprodukt für den Food-Bereich eingesetzt werden. Als Klassifizierungsmittel werden aus diesem Grund ausschließlich Proteine offenbart, das heißt es werden insbesondere Gluten sowie Quellen wie Fisch und Fleisch genannt. Die so erhaltenen Produkte sind wasserlöslich und haben keinerlei nennenswerte Reißfestigkeit.
Aufgabe der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, die vorstehend genannten Nachteile zu vermeiden und die Verarbeitungszeit herabzusetzen. Zugleich soll der Wasser- und Energieverbrauch gesenkt werden.
Erfindungsgemäße Lösung
Die Aufgabe wird durch das Verfahren nach Anspruch 1 gelöst. Dabei wird wenigstens ein aus Milch gewonnenes Protein gemeinsam mit einem Plastifizierungsmittel bei Temperaturen zwischen Raumtemperatur und 140°C unter mechanischer Beanspruchung plastifiziert und durch eine Düse zu Fasern gesponnen, wobei das Plastifizierungsmittel ausgewählt ist aus der Gruppe: wässrige Polysaccharidlosung, Alkohol, Polyalkohol, oder Mischungen dieser Mittel.
Erfindungsgemäß wird nunmehr vorgeschlagen, dass als Plastifizierungsmittel Alkohol oder Polysaccarid verwendet werden. Durch die Verwendung dieser neu vorgeschlagenen Plastifizierungsmittel ist es möglich, eine Milchproteinfaser zu produzieren, die nicht die Nachteile des Standes der Technik aufweist.
Der Erfindung liegt die Erkenntnis zugrunde, dass die Milchproteine und insbesondere Casein durch Kneten in der Wärme plastifiziert und auf diese Weise im Schmelzspinnverfahren verarbeitet werden können. Beim Schmelzspinnen wird der getrocknete schmelzbare Rohstoff durch Wärme plastifiziert und als Schmelze mittels Zahnradpumpen oder Extruder vorzugsweise durch Düsen gepresst. Die Schmelze erstarrt nach dem Ausziehen. Der abgezogene Faden wird aufgewickelt oder wie gewünscht weiter verarbeitet. Die abgezogenen Fäden können vor dem Aufwickeln verstreckt und auch oberflächenbehandelt werden.
Für eine noch schonendere Behandlung wird das Protein gemeinsam mit einem Plastifizierungsmittel intensiv gemischt bzw. verknetet und dabei mechanisch beansprucht.
Bei dem Milchprotein handelt es sich vorzugsweise um Casein oder Lactalbumin.
Das aus Milch gewonnene Protein kann durch Ausfällen aus Milch in situ hergestellt werden. Hierfür kann gemäß einer ersten Verfahrensführung die Milch im Gemisch mit Lab, anderen geeigneten Enzymen oder Säure unmittelbar als ausgeflocktes Gemisch in das Verfahren eingeführt oder das abgepresste ausgeflockte Eiweiß kann feucht verwendet werden. Gemäß einer anderen möglichen Verfahrensführung kann ein separat zuvor gewonnenes, ggf. aufbereitetes reines oder gemischtes Protein, d.h. eine Eiweißfraktion aus Milch eingesetzt werden, z.B. getrocknet als Pulver.
Das erfindungsgemäß verwendete Milchprotein kann mit anderen Eiweißen in einem Anteil bis maximal 30 Gew.-% bezogen auf das Milchprotein vermischt werden. Hierfür kommen beispielsweise andere Albumine, wie Ovalbumin und pflanzliche Eiweiße, insbesondere Lupinenprotein, Sojaprotein oder Weizenproteine, insbesondere Gluten in Frage.
Das Plastifizierungsmittel ist bevorzugt Wasser, das in einem Anteil zwischen 20 und 80 % bezogen auf das Gewicht des Proteins, vorzugsweise in einem Anteil von etwa 40 bis 50 Gew.-% des Proteingehalts eingesetzt wird. Anstelle des Wassers oder im Gemisch mit diesem können andere Plastifizierungsmittel, insbesondere Alkohole, Polyalkohole, Gummi Arabicum, Kohlehydrate in wässriger Lösung und insbesondere wässrige Polysaccharidlösungen eingesetzt werden. Der Feuchtigkeitsgehalt der Eiweißfraktion ist ggf. zu berücksichtigen.
Im Einzelnen sind folgende Plastifizierungsmittel und zugehörige Gewichtsanteile besonders bevorzugt:
Alkohole und Polyalkohole werden in Gewichtsanteilen bis etwa 10 Gew.-% bezogen auf das Protein eingesetzt, besonders bevorzugt ist Glycerol (Glycerin). Alternativ können andere Polyole z.B Ethylenglycol verwendet werden. Kohlenhydrate und Polysaccharide werden jeweils in einem Gewichtsanteil von bevorzugt zwischen 0,4 und 2 Gew.-% jeweils in 70 %iger wässriger Lösung verwendet. Bevorzugt sind Stärke verschiedener Herkunft, Carrageenan, Cellulose, insbesondere Carboxycellulose und Chitosan.
Der Zusatz weiterer Stoffe wird nicht ausgeschlossen. Speziell können Zusatz- und Hilfsstoffe, wie lipophile Zusätze, Glanzgeber und Vernetzer vorgesehen sein. Die Zusatz- und Hilfsstoffe sollten insgesamt einen Gewichtsanteil von maximal ca. 30 Gew.-% bezogen auf das Protein nicht übersteigen. Als lipophile Zusätze können Pflanzenöle, gewählt werden, die die Faser bereits während des Plastifizierens leicht hydrophobieren. Weiterhin können Wachse verwendet werden, die der Faser zusätzlich Festigkeit verleihen. Als Wachse werden bevorzugt Carnaubawachs, Bienenwachs, Candelillawachs und andere natürlich gewonnene Wachse. Als Vernetzer werden Caiciumsalze, beispielweise Caiciumchlorid, Dialdehydstarke und Glucose-ö-Lakton bevorzugt.
In besonders bevorzugter Ausführungsweise geschieht die Plastifizierung mit Hilfe eines Extruders, wobei alle ausgewählten Stoffe als Vormischung in den Extruder aufgegeben werden, oder es werden anfangs nur einige Stoffe oder nur das Protein aufgegeben und weitere Stoffe werden im Laufe der Extrusion, d.h. an Zugabepunkten längst der Schnecke zugefügt.
In besonders bevorzugter Ausführungsform ist vorgesehen, dass das Protein als trockenes Pulver über einen Trichter eingangs des Extruders aufgegeben wird, während das Plastifizierungsmittel und insbesondere Wasser in einer darauf folgenden Extrusionsstufe, der Plastifizierungszone, aufgegeben wird. Weiter ist es bevorzugt, dass alle trockenen Ausgangsstoffe vorgemischt und anfangs aufgegeben werden, während alle flüssigen Bestandteile stromabwärts hiervon zugemischt werden. Am Ausgang des Extruders wird das Extrudat durch eine Düse gepresst und dabei zu einer Faser geformt.
Wird das Protein als geflockte Rohmasse eingesetzt, wird das Verfahren bevorzugt so geführt, dass längst des Extruders oder des sonstigen Verarbeitungsgerätes eine Entwässerung erfolgen kann.
Aufgrund der Plastifizierung entspricht der Vorgang einer Schmelzextrusion. Bei dieser thermoplastischen Extrusion werden die Materialien durch Erwärmung in einen plastischen Zustand überführt und auf diese Weise verformt. Die Temperatur überschreitet dabei die Glasübergangstemperatur des Proteins, so dass dieses vom amorphen in den gummiartig plastischen Zustand übergeht. Bei besonders starkem Walken oder Kneten entsteht bereits Wärme durch die mechanische Belastung, so dass gegebenenfalls keine Wärme von außen zugeführt werden muss. Die Extrusion erfolgt dann formal bereits bei Raumtemperatur. In der Regel werden jedoch in den verschiedenen Extruderzonen ganz bestimmte Temperaturwerte eingestellt, die eine optimale Plastifizierung ermöglichen. Bevorzugt wird in dem Extruder zwischen 30 und 95°C extrudiert, weiter bevorzugt zwischen 50 und 90 °C und besonders bevorzugt zwischen ca. 60 und 80°C.
Des Weiteren ist bevorzugt, dass die geformte Faser nach dem Austritt aus der Düse aufgewickelt und vor und/oder nach diesem Schritt getrocknet wird.
Nach dem Austritt der geformten Faser aus der Düse kann diese unmittelbar geschnitten - beispielweise zu Kurzfasern geschoppt - oder zu Stapelfasern weiter verarbeitet werden.
Die geformte Faser kann alternativ nach Austritt aus der Düse unmittelbar oder in wenigstens einem späteren Verarbeitungsschritt zu einem Mehrfachgarn weiter verarbeitet, insbesondere gezwirnt, zu einer Wattelose aufgeschossen oder zu einem Vlies weiterverarbeitet werden.
In Weiterentwicklung der Erfindung kann die Faser außerdem vor dem Aufwickeln ein Bad durchlaufen, wobei diese Verfahrensweise nicht besonders bevorzugt und in der Regel nicht erforderlich ist. Alternativ kann die Faser nach dem Austritt aus der Düse einer Sprühbehandlung unterzogen werden. Hierbei können beispielweise Glättungsmittel, Wachse, Lipophile oder Vernetzer auf die Oberfläche der Faser aufgebracht werden. Im Falle von Vernetzern sind die oben angegebenen bevorzugt, also allgemein verschiedene Salzlösungen, bevorzugt Calciumchloridlösung, Dialdehydstärkelösung, Glucose-δ- Laktonlösung oder wässrige Milchsäure.
Die erhaltenen Fasern können für alle erdenklichen Zwecke verwendet werden. Sie sind wie übliche Textilfasern einsetzbar und können daher zu allen Arten von Textilien wie Stoffen, Geweben, Gewirken, Gestricken, Garnen, Seilen, Vliesen, Filzen usw. verarbeitet werden. Auch sind Watten, lose Faserdämmstoffe, Filter und Membranen aus den erfindungsgemäßen Fasern erhältlich. Die Einsatzgebiete der erfindungsgemäßen Milchfasern umfassen daher u.a. die Textiltechnik, Baudämmung und Baustoffe, Hygieneprodukte und aufgrund inhärenter antibakterieller Eigenschaften medizinische Produkte wie Tupfer, Filter und Membranen.
Teil dieser Erfindung ist daher auch ein Milchproteinfaserprodukt, das Fasern enthält, die ein thermisch-mechanisch plastifiziertes Milchprotein enthalten und die insbesondere mit einem erfindungsgemäßen Verfahren, wie oben beschrieben, gewonnen wurden.
Durch loses Aufschießen der Fasern können beispielsweise Watten oder Vliese hergestellt werden, die beispielsweise Einsatz als Füll- und Polstermaterial finden können. Besonders bevorzugt ist, wenn die Fasern zu Garnen gezwirnt werden. Dabei ist es sowohl möglich mehrere Milchproteinfasern, die mit dem Verfahren nach dieser Erfindung hergestellt wurden, untereinander zu verzwirnen als auch die Milchproteinfasern mit weiteren natürlichen oder synthetischen Fasern in Kombination zu verzwirnen. Als weitere Fasern können beispielsweise Elastan, Viskose, Seide oder Wolle verwendet werden, die auch im Gemisch zu Mehrfachgarnen versponnen und/oder verzwirnt werden können.
Durch diskontinuierliche Verfahrensweise können Einzelfasern erhalten werden. Auch können die Fasern zu Kurzfasern oder Stapelfasern geschnitten werden.
Aus den erhaltenen Fasern, Filamenten oder Garnen, können wiederum Stoffe hergestellt werden. Web- und Wirkstoffe aller Art stellen daher ebenfalls Milchproteinfaserprodukte gemäß dieser Erfindung dar.
Vorteile der Erfindung
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass bei der Herstellung von Milchproteinfasern durch das Extrusionsverfahren der Ausschluss von gesundheitlich bedenklichen und umweltschädlichen Stoffen während des Verfahrens und an der Faser selbst ermöglicht wird. Außerdem können erhebliche Ressourcen an Energie, Wasser, Zeit und Manpower eingespart werden, was den Umweltschutz erhöht und die Wirtschaftlichkeit verbessert. Die besonders vorteilhaften Eigenschaften der Fasern, die als Textilfasern sehr gut geeignet sind, werden auf festigende Strukturveränderungen (Textiärstruktur) während des Plastifizierens zurückgeführt. Genauere Erkenntnisse über die Mechanistik liegen noch nicht vor.
Beispiele
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher beschrieben. Das Ausführungsbeispiel dient allein illustrativen Zwecken und soll die Erfindung nicht beschränken. Der Fachmann kann anhand dieses Ausführungsbeispiels und mit Hilfe seines Fachwissens weitere Ausführungsmöglichkeiten durch Variation der Parameter auffinden. Beispiel 1 : Herstellung einer Milchproteinfaser mit einer Stärke von 20dtex. Die Extrusion erfolgt mit einem Einschneckenextruder Typ 30 E der Fa. Dr. Collin mit einem Durchmesser von 30 mm. Die Heizung erfolgt über 4 Zylinderheizzonen mit folgendem Temperaturablauf 65°C, 74°C, 75°C, 60°C:
Figure imgf000010_0001
Das Caseinpulver wird über eine Rüttelrinne aufgegeben. Über eine Schlauchpumpe erfolgt die Zugabe von Wasser im Mengenverhältnis 1 :2 (Wasser:Casein). Die Faserstärke wird über die Düsenstärke definiert. Zum Beispiel kann die Faser eine Stärke von 20 dtex besitzen. Mit Hilfe einer Wickelmaschine werden die Fasern aufgewickelt und bei Raumtemperatur getrocknet.
Der Extrusionsablauf wird zusätzlich durch Figur 1 verdeutlicht.
Der Extruder 1 wird über einen Trichter 2 mit dem Caseinpulver befüllt. Das Caseinpulver wird im Extruder erhitzt. Über die Wasserpumpe 3 erfolgt die Zugabe des Wassers als Plastifizierungsmittel. Das Endprodukt wird durch eine Düse 4 gepresst. Mit einer passenden Wickeltechnologie wird der Faserstrang aufgewickelt und bei Raumtemperatur auf dem Wickler 5 getrocknet.

Claims

Verfahren zur Herstellung von Milchproteinfasern, wobei wenigstens ein aus Milch gewonnenes Protein gemeinsam mit einem Plastifizierungsmittel bei Temperaturen zwischen Raumtemperatur und 140°C unter mechanischer Beanspruchung plastifiziert und durch eine Düse zu Fasern gesponnen wird, dadurch gekennzeichnet, dass das Plastifizierungsmittel ausgewählt ist aus der Gruppe: wässrige Polysaccharidlösung, Alkohol, Polyalkohol, oder Mischungen dieser Mittel.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das aus Milch gewonnene Protein durch Ausfällen aus Milch in situ hergestellt wird.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das aus Milch gewonnene Protein in Form eines zuvor separat gewonnenen Proteins eingesetzt wird.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das aus Milch gewonnene Protein Casein ist.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das aus Milch gewonnene Protein Lactalbumin ist.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Plastifzieren bei Temperaturen bis maximal 80°C stattfindet.
Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass dem zu plastifizierenden Ausgangsstoff weitere Zusatz- und Hilfsstoffe zugefügt werden.
Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Plastifizieren mit Hilfe eines Extruders erfolgt und die Faser am Ausgang des Extruders durch einen Düse gepresst und dabei geformt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die geformte Faser aufgewickelt wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die geformte Faser getrocknet wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die geformte Faser nach dem Austritt aus der Düse unmittelbar geschnitten wird.
12. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die geformte Faser vor dem Aufwickeln ein Bad durchläuft.
13. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die geformte Faser vor dem Aufwickeln einer Sprühbehandlung unterzogen wird.
14. Milchproteinfaserprodukt, das Fasern enthält, die nach einem Verfahren
nach einem der Ansprüche 1 bis 13 hergestellt sind.
PCT/EP2011/006340 2010-12-15 2011-12-15 Verfahren zur herstellung von milchproteinfasern und daraus gewonnene milchproteinfaserprodukte WO2012079760A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US13/991,946 US20130256942A1 (en) 2010-12-15 2011-12-15 Process for Producing Milk Protein Fibers and Milk Protein Fiber Products Obtained Therefrom
BR112013015046A BR112013015046A2 (pt) 2010-12-15 2011-12-15 método para a produção de fibras de proteína de leite e produtos de fibra de proteína de leite obtidos a partir deste
EP11804645.7A EP2652180A1 (de) 2010-12-15 2011-12-15 Verfahren zur herstellung von milchproteinfasern und daraus gewonnene milchproteinfaserprodukte
NZ611910A NZ611910A (en) 2010-12-15 2011-12-15 Process for producing milk protein fibers and milk protein fiber products obtained therefrom
JP2013543573A JP2014503703A (ja) 2010-12-15 2011-12-15 ミルクタンパク繊維を生成するための方法およびその方法から得られたミルクタンパク繊維製品
AU2011344795A AU2011344795B2 (en) 2010-12-15 2011-12-15 Process for producing milk protein fibers and milk protein fiber products obtained therefrom
MX2013006574A MX2013006574A (es) 2010-12-15 2011-12-15 Proceso para producir fibras de proteína láctea y productos de fibra de proteína láctea obtenidos a partir de las mismas.
CA2819267A CA2819267C (en) 2010-12-15 2011-12-15 Method for producing milk protein fibers and milk protein fiber products obtained therefrom
UAA201308346A UA108281C2 (uk) 2010-12-15 2011-12-15 Спосіб одержання волокон молочного білка та вироби, одержані з них
CN201180060328.7A CN103261495B (zh) 2010-12-15 2011-12-15 生产乳蛋白质纤维的方法以及所述方法得到的乳蛋白质纤维
RU2013130142/05A RU2547747C2 (ru) 2010-12-15 2011-12-15 Способ производства волокон молочного белка и изделия, полученные из них

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010054661.5 2010-12-15
DE102010054661A DE102010054661A1 (de) 2010-12-15 2010-12-15 Verfahren zur Herstellung von Milchproteinfasern und daraus gewonnene Milchproteinfaserprodukte

Publications (1)

Publication Number Publication Date
WO2012079760A1 true WO2012079760A1 (de) 2012-06-21

Family

ID=45444573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/006340 WO2012079760A1 (de) 2010-12-15 2011-12-15 Verfahren zur herstellung von milchproteinfasern und daraus gewonnene milchproteinfaserprodukte

Country Status (13)

Country Link
US (1) US20130256942A1 (de)
EP (1) EP2652180A1 (de)
JP (1) JP2014503703A (de)
CN (1) CN103261495B (de)
AU (1) AU2011344795B2 (de)
BR (1) BR112013015046A2 (de)
CA (1) CA2819267C (de)
DE (1) DE102010054661A1 (de)
MX (1) MX2013006574A (de)
NZ (1) NZ611910A (de)
RU (1) RU2547747C2 (de)
UA (1) UA108281C2 (de)
WO (1) WO2012079760A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013068595A1 (de) * 2011-11-12 2013-05-16 Anke Domaske Verfahren zur herstellung von milchprotein-gelen, -hydrogelen, -hydrokolloiden und -superabsorbern (mp-gele)
WO2013068598A1 (de) * 2011-11-12 2013-05-16 Anke Domaske Verfahren zur herstellung von milchprotein-nanopartikeln
WO2013068596A1 (de) * 2011-11-12 2013-05-16 Anke Domaske Verfahren zur herstellung von milchprotein-fasern
WO2013068597A1 (de) * 2011-11-12 2013-05-16 Anke Domaske Verfahren zur herstellung eines milchprotein-kunststoffes (mp - kunststoff)
WO2014169953A1 (de) * 2013-04-17 2014-10-23 Qmilch Ip Gmbh Kosmetikzusammensetzung aufweisend milchproteine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016054657A1 (en) 2014-10-03 2016-04-07 Erie Foods International, Inc. High protein food
CN104878488A (zh) * 2015-05-12 2015-09-02 长兴圣帆纺织有限公司 一种环保纤维
US20200048794A1 (en) * 2017-02-15 2020-02-13 Ecco Sko A/S Method and apparatus for manufacturing a staple fiber based on natural protein fiber, a raw wool based on the staple fiber, a fibrous yarn made of the staple fiber, a non-woven material made of the staple fiber and an item comprising the staple fiber.
US10745682B2 (en) 2017-06-14 2020-08-18 R.J. Reynolds Tobacco Company Method of producing RuBisCO protein fibers
JP2021513617A (ja) * 2018-02-14 2021-05-27 ソシエテ・デ・プロデュイ・ネスレ・エス・アー 食用繊維
WO2020192851A1 (en) * 2019-03-25 2020-10-01 Gea Process Engineering A/S Filter bag and spray drying system
CN110452401A (zh) * 2019-07-30 2019-11-15 珠海水丝新材料有限公司 一种吸水的膜材料及其制备方法
CN110887937B (zh) * 2019-12-03 2022-04-15 湖北喜康化工有限公司 一种人工模拟奶制品和奶茶饮品生产中的uht污垢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051423A2 (de) * 1980-10-29 1982-05-12 Unilever Plc Verfahren zur Herstellung eines texturierten, Lab-Kasein enthaltenden Materials, ein texturiertes Lab-Kasein enthaltendes Material und Nahrungsmittel daraus
WO1996017981A1 (en) * 1994-12-08 1996-06-13 E.I. Du Pont De Nemours And Company Process for producing zein fibers
US20060279017A1 (en) * 2003-08-30 2006-12-14 Detlef Gersching Moulded bodies, in particular fibres and the structures thereof exhibiting thermoregulation properties
WO2006138039A2 (en) * 2005-06-17 2006-12-28 Board Of Regents University Of Nebraska-Lincoln Process for the production of high quality fibers from wheat proteins and products made from wheat protein fibers
WO2008093342A2 (en) * 2007-02-01 2008-08-07 Technion Research & Development Foundation Ltd. Albumin fibers and fabrics and methods of generating and using same
WO2008124620A1 (en) * 2007-04-05 2008-10-16 Solae, Llc Colored structured protein products

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US836788A (en) * 1905-07-17 1906-11-27 Friedrich Todtenhaupt Production of artificial silk and artificial hair from casein.
US2450889A (en) * 1935-08-28 1948-10-12 Ferretti Antonio Manufacture of artificial textile fibers
DK752701A (de) 1937-03-02
US2316146A (en) * 1940-03-22 1943-04-13 Pittsburgh Plate Glass Co Casein plastics
NL66502C (de) * 1941-03-06
NL61878C (de) * 1943-01-25
US4338340A (en) * 1980-07-21 1982-07-06 General Foods Corporation Extruded protein product
JP3100095B2 (ja) * 1992-12-28 2000-10-16 喜代一 松本 カゼイン成形物及びその製造法
DE4309528C2 (de) * 1993-03-24 1998-05-20 Doxa Gmbh Folie oder Folienschlauch aus Casein, Verfahren zu deren Herstellung und deren Verwendung
JPH07305220A (ja) * 1994-05-09 1995-11-21 Kiyoichi Matsumoto カゼイン繊維及びその製造方法
JPH0873613A (ja) * 1994-09-08 1996-03-19 Riken Vitamin Co Ltd 生分解性たんぱく質成形体
DE19704737A1 (de) * 1997-02-07 1998-08-13 Kalle Nalo Gmbh Eßbare Formkörper, insbesondere Flach- und Schlauchfolien
DE10059111A1 (de) * 2000-11-28 2002-06-06 Thueringisches Inst Textil Proteinformkörper und Verfahren zu seiner Herstellung nach dem NMMO-Verfahren
US20140373748A1 (en) * 2011-11-12 2014-12-25 Qmilch Ip Gmbh Method for producing milk protein gels, -hydrogels, -hydrocolloides and -superabsorbers (milk protein gels)
WO2013068597A1 (de) * 2011-11-12 2013-05-16 Anke Domaske Verfahren zur herstellung eines milchprotein-kunststoffes (mp - kunststoff)
EP2776614A1 (de) * 2011-11-12 2014-09-17 QMilch IP GmbH Verfahren zur herstellung von milchprotein-fasern
WO2013068598A1 (de) * 2011-11-12 2013-05-16 Anke Domaske Verfahren zur herstellung von milchprotein-nanopartikeln

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051423A2 (de) * 1980-10-29 1982-05-12 Unilever Plc Verfahren zur Herstellung eines texturierten, Lab-Kasein enthaltenden Materials, ein texturiertes Lab-Kasein enthaltendes Material und Nahrungsmittel daraus
WO1996017981A1 (en) * 1994-12-08 1996-06-13 E.I. Du Pont De Nemours And Company Process for producing zein fibers
US20060279017A1 (en) * 2003-08-30 2006-12-14 Detlef Gersching Moulded bodies, in particular fibres and the structures thereof exhibiting thermoregulation properties
WO2006138039A2 (en) * 2005-06-17 2006-12-28 Board Of Regents University Of Nebraska-Lincoln Process for the production of high quality fibers from wheat proteins and products made from wheat protein fibers
WO2008093342A2 (en) * 2007-02-01 2008-08-07 Technion Research & Development Foundation Ltd. Albumin fibers and fabrics and methods of generating and using same
WO2008124620A1 (en) * 2007-04-05 2008-10-16 Solae, Llc Colored structured protein products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V.M. HERNANDEZ-IZQUIERDO ET AL: "Thermal Transitions and Extrusion of Glycerol-Plasticized Whey Protein Mixtures", JOURNAL OF FOOD SCIENCE, vol. 73, no. 4, 11 April 2008 (2008-04-11), pages E169 - E175, XP055022370, ISSN: 0022-1147, DOI: 10.1111/j.1750-3841.2008.00735.x *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013068595A1 (de) * 2011-11-12 2013-05-16 Anke Domaske Verfahren zur herstellung von milchprotein-gelen, -hydrogelen, -hydrokolloiden und -superabsorbern (mp-gele)
WO2013068598A1 (de) * 2011-11-12 2013-05-16 Anke Domaske Verfahren zur herstellung von milchprotein-nanopartikeln
WO2013068596A1 (de) * 2011-11-12 2013-05-16 Anke Domaske Verfahren zur herstellung von milchprotein-fasern
WO2013068597A1 (de) * 2011-11-12 2013-05-16 Anke Domaske Verfahren zur herstellung eines milchprotein-kunststoffes (mp - kunststoff)
US20140373748A1 (en) * 2011-11-12 2014-12-25 Qmilch Ip Gmbh Method for producing milk protein gels, -hydrogels, -hydrocolloides and -superabsorbers (milk protein gels)
WO2014169953A1 (de) * 2013-04-17 2014-10-23 Qmilch Ip Gmbh Kosmetikzusammensetzung aufweisend milchproteine

Also Published As

Publication number Publication date
UA108281C2 (uk) 2015-04-10
BR112013015046A2 (pt) 2017-12-19
AU2011344795B2 (en) 2015-11-05
MX2013006574A (es) 2013-09-13
CN103261495B (zh) 2015-03-25
US20130256942A1 (en) 2013-10-03
CA2819267C (en) 2015-10-13
RU2013130142A (ru) 2015-03-10
EP2652180A1 (de) 2013-10-23
CN103261495A (zh) 2013-08-21
NZ611910A (en) 2015-06-26
DE102010054661A1 (de) 2012-06-28
CA2819267A1 (en) 2012-06-21
JP2014503703A (ja) 2014-02-13
RU2547747C2 (ru) 2015-04-10
AU2011344795A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
WO2012079760A1 (de) Verfahren zur herstellung von milchproteinfasern und daraus gewonnene milchproteinfaserprodukte
DE3020611C2 (de) Verfahren zur Herstellung von Kollagenmaterial für chirurgische Zwecke
AT505511B1 (de) Füllfaser mit verbessertem öffnungsverhalten, verfahren zu deren herstellung und deren verwendung
DE4136694C2 (de) Stärkefaser oder Stärke-modifizierte Faser, Verfahren zu ihrer Herstellung sowie ihre Verwendung
AT501931A1 (de) Cellulosestapelfaser und ihre verwendung
EP0319832B1 (de) Glasmattenverstärktes thermoplastisches Halbzeug
EP0797696B1 (de) Verfahren zur herstellung cellulosischer fasern
EP3511449B1 (de) Wiederverwendung von lyocell-cellulose für lyocell-verfahren
WO2019138094A1 (de) Verfahren zum wiederverwenden eines cellulose und synthetischen kunststoff aufweisenden mischtextils
WO2001086041A1 (de) Verfahren und vorrichtung zur zugspannungsfreien förderung von endlosformkörpern
DE2556130A1 (de) Verfahren zur herstellung von fibrillierten polytetrafluoraethylenprodukten
WO2020245058A1 (de) Verfahren zum kontinuierlichen bereitstellen eines celluloseaufweisenden aufbereiteten ausgangsstoffs
WO2019138093A1 (de) Formkörper der in cellulose inkorporiertes elastan aufweist und herstellungsverfahren
DE1619303C3 (de) Verfahren zur Herstellung von synthetischem Leder
WO2015049040A1 (de) Verfahren zur herstellung von formkörpern
EP0079398B1 (de) Verfahren zur Herstellung von Kollagenmaterial für chirurgische Zwecke
AT262224B (de) Verfahren zur Herstellung von Kunstleder
DE2505710A1 (de) Fasergebilde aus folienfasern, verfahren und vorrichtung zu ihrer herstellung und ihre verwendung auf dem textil- und anderen gebieten
DE702236C (de) Verfahren zur Herstellung von Gespinsten, Geweben oder anderen Textilien aus aus tierischem Hautmaterial gewonnenen Faeden
AT130200B (de) Verfahren zur Herstellung von künstlichen Fäden oder anderen Produkten.
DE2141025B2 (de) Verfahren zum herstellen pulpeartiger werkstoffe aus thermoplastischen kunststoffen
DE1945527B2 (de) Verfahren und vorrichtung zur herstellung eines filmfoermigen kollagenmaterials
DE1494756A1 (de) Verfahren zur Herstellung von Reyonfaeden von hohem Nassmodul
CH150016A (de) Verfahren zur Herstellung von künstlichen Gebilden, insbesondere Kunstleder.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11804645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2819267

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011804645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13991946

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/006574

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013543573

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013130142

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201308346

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2011344795

Country of ref document: AU

Date of ref document: 20111215

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013015046

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013015046

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130617