EP2776513A1 - Verfahren zur herstellung eines milchprotein-kunststoffes (mp - kunststoff) - Google Patents

Verfahren zur herstellung eines milchprotein-kunststoffes (mp - kunststoff)

Info

Publication number
EP2776513A1
EP2776513A1 EP12799514.0A EP12799514A EP2776513A1 EP 2776513 A1 EP2776513 A1 EP 2776513A1 EP 12799514 A EP12799514 A EP 12799514A EP 2776513 A1 EP2776513 A1 EP 2776513A1
Authority
EP
European Patent Office
Prior art keywords
milk
protein
treatment
acids
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12799514.0A
Other languages
English (en)
French (fr)
Inventor
Anke Domaske
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QMILCH IP GmbH
Original Assignee
QMILCH IP GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QMILCH IP GmbH filed Critical QMILCH IP GmbH
Publication of EP2776513A1 publication Critical patent/EP2776513A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • C08L89/005Casein
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/18Plasticising macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4732Casein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2089/00Use of proteins, e.g. casein, gelatine or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0038Plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • German Patent 202004004732 describes an edible and biodegradable, multi-layered and peelable casein composite packaging material for food and non-food.
  • the patent describes an outer plastic separation layer, a middle case separation layer, and a gel separation layer.
  • a process is described, which is characterized not only by the 3 separating layers, but also by a swelling time of 5 hours. Then the mixture is stirred again for 2 hours. Then a granulate is extruded and packed. The granules are then further processed by film blowing into films. The plastic film must be removed by the consumer before consumption.
  • German Patent 4309528 describes a process for producing casein foils or foils, processes for their preparation and their use.
  • this invention describes swelling of the casein powder for 30-90 minutes before it is extruded.
  • glutaraldehyde is described again.
  • Glutaraldehyde is a toxic substance that is harmful to the environment and to health.
  • the invention describes that films or film tubes as packaging material for non-hygroscopic, powdery products such as coffee, tea and spices, or fatty products such as lard, tallow and fatty oils, as well as for tablets and flavored, dry products, are useful as seed bands and adhesive tapes and for lamination of paper. Accordingly, the water resistance of the foils described is minimal.
  • the invention is based on the invention to eliminate the disadvantages mentioned above and to give plastics, preferably from renewable raw materials (especially protein-based) and preferably without the addition of acrylates and fossil raw materials, a necessary water or moisture resistance.
  • the invention helps to reduce the processing time and the use of chemicals and to produce the plastics preferably and largely from renewable and / or biodegradable raw materials. At the same time, water and energy consumption are to be reduced and productivity increased.
  • the present invention is directed to plastics made by a continuous or discontinuous process of a composition, preferably comprising destructured milk proteins, biodegradable thermoplastic polymers and plasticizers.
  • At least one protein obtained from milk or a protein produced by bacteria is optionally plasticized together with a plasticizer at temperatures between room temperature and 140 ° C under mechanical stress.
  • the invention is based on the finding that the milk proteins and in particular casein and its derivatives can be plasticized and polymerized in this way. It is preferably provided that the plasticizing takes place at temperatures up to 140 ° C. For an even more gentle treatment, the protein is intensively mixed or kneaded together with a plasticizer and subjected to mechanical stress. The required plasticizing temperature is significantly reduced by the plasticizer.
  • the milk protein is preferably casein or lactalbumin or soy protein.
  • the milk-derived protein can be produced in situ by precipitation from milk.
  • the milk in mixture with rennet, other suitable enzymes or acid introduced directly as a flocculated mixture in the process or the pressed flocculated protein can be used wet.
  • a separately recovered, optionally purified, pure or mixed protein, i. a protein fraction from milk are used, e.g. dried as a powder.
  • the protein fraction can also be produced by ultrafiltration or by cell cultures.
  • milk proteins for example, with additional salts such as sodium, and potassium can be modified in further processing steps, so that a casein arises.
  • the milk protein used according to the invention can be mixed with other proteins in an amount of up to 70% by weight, based on the milk protein.
  • other albumins such as ovalbumin and vegetable proteins, in particular lupine protein, soy protein or wheat proteins, in particular gluten come into question.
  • the mixture of solvent and proteins is heated, usually under pressure conditions and shear, to accelerate the crosslinking process.
  • Chemical or enzymatic agents can also be used to destructivate and crosslink the milk proteins, oxidize or derivatize, etherify, saponify, and esterify.
  • milk proteins are destructured by dissolving the milk proteins in water. Fully distucted milk proteins are formed when there are no lumps that influence polymerisation.
  • a plasticizer can be used in the present invention to destructivate the milk proteins and allow the milk proteins to flow, ie to produce thermoplastic milk proteins.
  • the same or other plasticizers can be used to increase melt processability, or two separate plasticizers can be used.
  • the plasticizers can also improve the flexibility of the final products.
  • the plasticizers are substantially compatible with the polymeric components of the present invention so that the plasticizers can effectively modify the properties of the composition.
  • substantially compatible means that the plasticizer, when heated to a temperature above the softening and / or melting temperature of the composition, is capable of forming a substantially homogeneous mixture with milk proteins.
  • the plasticizer is preferably water, which is used in an amount between 20 and 80% based on the weight of the protein, preferably in an amount of about 40 to 50 wt .-% of the protein content.
  • other plasticizers in particular alcohols, polyalcohols, carbohydrates in aqueous solution and in particular aqueous polysaccharide solutions can be used.
  • plasticizers hydrogen bridge-forming, organic compounds without hydroxyl group, eg urea and derivatives, animal proteins, eg gelatin, vegetable proteins, such as cotton soybeans, and sunburn proteins, esters of producing acids, which citric acid, adipic acid, stearic acid, oleic acid, hydrocarbon-based acids, eg ethylene acrylic acid, ethylene maleic acid, butadiene acrylic acid, butadienemalic acid, propylene acrylic acid, propylene maleic acid, sugars, eg maltose, lactose, sucrose, fructose, maltodextrin, glycerol, pentaerythritol and sugar alcohols, eg malite, mannitol, sorbitol, xyiitol, polyols, eg hexanetriol, glycols and the like, also mixtures and polymers, sugar anhydrides, eg sorbitan, esters
  • plasticizers are non-limiting examples of hydroxylic plasticizer.
  • Important influencing factors are the affinity to the proteins, the amount of protein and the molecular weight.
  • Glycerol and sugar alcohols are among the most important Softeners.
  • Parts by weight of plasticizers are, for example, 5% -55%, but may also be in the range of 2% -75%. Any of alcohols, polyols, esters and polyesters may be used in proportions by weight, preferably up to 30% in the polymer blend.
  • Theological properties are the Theological properties, so that a good processing is possible. Strain-strain solidification is necessary to form a stable polymer structure.
  • the melting temperature is usually in a temperature range of 30 ° C to 190 ° C. Additional temperatures should be lowered with diluents and plasticizers.
  • the biodegradability of the polymers i. their decomposition by living things and their enzymes is an important property of polymeric MP plastics.
  • Biodegradable thermoplastic polymers suitable for use in the present invention include, for example, lactic acid polymers, lactide polymers, glycolide polymers, including their homo- and copolymers, and mixtures thereof; aliphatic polyesters of dibasic diols / acids; aliphatic polyesteramides, aromatic polyesters, also of modified polyethylene terephthalates and polybutylene terephthalates; polycaprolactones; aliphatic / aromatic copolyesters; Poly (3-hydroxyalkanoates), including those copolymers and / or other -valerates, - hexanoates and alkanoates, polyesters and dialkanoyl polymers, polyamides and copolymers of polyethylene / vinyl alcohol.
  • thermoplastic polymer for this invention are, for example and preferably suitable: polyvinyl alcohol and copolymers, aliphatic amide and Este reo polymers consisting of monomers such as dialcohols (1, 4-butanediol, 1, 3-propanediol, 1, 6- Hexanediol, etc.) or ethylene and diethylene glycol, aliphatic polyester amides, (aliphatic esters are formed with aliphatic amides) or other reactions such as lactic acid with diamines and dicarboxylic acid dichlorides, diols with carboxylic acids, caprolactone and caprolactam, or ester prepolymers with diisocyanates, dicarboxylic acids, especially Succinic acid, oxalic acid and adipic acid and their esters, hydroxycarboxylic acids, lactones, aminoalcohols (eg ethanolamine, propanolamine), cyclic lactams, -
  • Polybuylensuccinat / adipate copolymer polyalkylene; Polypentamethylsuccinate; Polyhexamethylsuccinate; Polyheptamethylsuccinate; Polyoctamethylsuccinate; Polyalkylene oxalates, e.g. Polyethylene oxalate and polybutylene oxalate polyalkylene succinate copolymers, e.g. Polyethylene succinate / adipate copolymer and; Polyalkylene oxalate copolymers, e.g.
  • Polybutylene oxalate / succinate copolymer and polybutylene oxalate / adipate copolymer; Polybutylene oxalate / succinate adipate terpolymers; and mixtures thereof are non-limiting examples of aliphatic polyesters of dibasic acids / diols, e.g. from polymerizations of acids and alcohols or ring-opening reactions and are suitable for the production of a polymer.
  • biodegradable polymers are aliphatic / aromatic copolyesters. These are derived from dicarboxylic acids (and derivatives) such as malonic, succinic, glutaric, adipic, pimelic, azelaic, sebacic, fumaric, 2,2-dimethylglutaric, suberic, 1,3-cyclopentanedicarboxylic , 1,4-Cyclohexanedicarboxylic, 1,3-cyclohexanedicarboxylic, diglycol, itaconic, maleic, 2,5-norbornanedicarboxylic, 1,4-terephthalic, 1,3-terephthalic, 2,6-naphthoic acid -, 1, 5-naphthoic acid, ester-forming derivatives and mixtures thereof and diols, for example, ethylene glycol, diethylene glycol, triethylene glycol, tetra ethylene glycol, propylene glycol,
  • Examples of such aliphatic / aromatic copolyesters include blends of poly (tetramethylene glutarate-co-terephthalate), poly (tetramethylene glutarate-co-terephthalate), poly (tetramethylene glutarate-co-terephthalate), poly (tetramethylene glutarate-co-terephthalate), poly (tetramethylene glutarate).
  • co-terephthalate-co-diglycolate poly (ethylene glutarate-co-terephthalate), poly (tetramethylene adipate-co-terephthalate), an 85/15 blend of poly (tetramethylene succinate-co-terephthalate), poly (tetramethylene-co-ethylene-glutarate-co terephthalate), poly (tetramethylene-co-ethylene-glutarate-co-terephthalate).
  • the processability of the protein mass can be modified by other materials to influence the physical and mechanical properties of the protein mass, but also of the final product.
  • Non-limiting examples include thermoplastic polymers, crystallization accelerators or inhibitors, odor masking agents, crosslinking agents, emulsifiers, salts, lubricants, surfactants, cyclodextrins, lubricants, other optical brighteners, antioxidants, processing aids, flame retardants, dyes, pigments, fillers, proteins, and their alkali salts. Waxes, adhesive resins, extenders and mixtures thereof. These adjuvants are bound to the protein matrix and influence their properties.
  • Salts can be added to the melt.
  • Non-limiting examples of salts include sodium chloride, potassium chloride, sodium sulfate, ammonium sulfate, and mixtures thereof.
  • Salts can affect the solubility of the protein in water, but also the mechanical properties. Salts can serve as binders between the protein molecules.
  • lubricants can affect the stability of the polymer. These can reduce the stickiness of the polymer and reduce the coefficient of friction.
  • Polyethylene would be a non-limiting example.
  • the physical properties of the polymer composition can be influenced by other proteins, e.g. vegetable proteins such as sunflower protein or animal like gelatin.
  • Water-soluble polysaccharides and water-soluble synthetic polymers, such as polyacrylic acids, can also affect the mechanical properties.
  • Monoglycerides and diglycerides and phosphatides, as well as other animal and vegetable fats can influence and promote the flow properties of the biopolymer.
  • Inorganic fillers are also among the possible additives and can be used as processing agents. Possible examples, without limiting the use, are oxides, silicates, carbonates, lime, clay, limestone and kieselguhr and inorganic salts. Stearate-based salts and rosin can be used to modify the protein mixture. Amino acids, the components of the proteins and peptides may be added to the polymer composition to enhance particular sheet structures or mechanical properties. Without limitation, glutamic acid, histidine, trytophan, etc. are mentioned as examples.
  • additives include enzymes, surfactants, acids, serpins, both phenolic plant molecules, which can contribute to crosslinking and to improve the mechanical properties, and can cause resistance in water and proteases.
  • wet strength is a necessary feature in most products. Therefore, it is necessary to add wet strength resins as a crosslinking agent.
  • natural polymers can also be added as additives. Possible examples of natural polymers, without limiting the choice, would be albumins, soy protein, zein protein, chitosan and cellulose polylactide "and" PLA ", which can be used in an amount of 0.1% -80%.
  • polyvinyl alcohol in addition to natural polymers, other synthetic polymers, such as, inter alia, polyvinyl alcohol, as well as polyesters, or ethers, such as polyethylene glycol, Aldeyhde, such as. Glutaraldehyde and acrylic acids are used.
  • thermoplastics that can be used for copolymerization, such as e.g. Polypropylene, polyethylene, polyamides, polyesters and copolymers thereof.
  • Other high molecular weight polymers are also possible.
  • Carbohydrates and polysaccharides, as well as amyloses, oligosaccharides and chenodeoxycholic acids can be used as further auxiliaries and additives.
  • Salts, carboxylic acids, dicarboxylic acids and carbonates, as well as their anhydrides, salts and esters can also be used as additional crosslinkers.
  • hydroxides, Butyl esters, as well as aliphatic hydrocarbons, are further ways to cross-link molecules and form macromolecules.
  • additives and auxiliaries such as lipophilic, hydrophobic, hydrophilic, hydroscopic additives, gloss modifiers and crosslinkers may be provided.
  • the additives and auxiliaries should overall not exceed a proportion by weight of preferably about 30% by weight, based on the protein.
  • lipophilic additives vegetable oils, alcohols, fats and can be chosen, which readily hydrophobicize the polymer composition during plasticizing.
  • waxes and greases can be used which add strength to the polymer composition. As waxes are preferred carnauba wax, beeswax, candelilla wax and other naturally derived waxes.
  • the polymer may be further treated or the bonded fabric treated.
  • a hydrophilic or hydrophobic surface treatment can be added to adjust the surface energy and chemical nature of the fabric.
  • hydrophobic resins or the polymer can be treated with wetting agents to facilitate the absorption of aqueous liquids.
  • a bonded fabric may also be treated with a topical solution containing surfactants, pigments, lubricants, salt, enzymes, or other materials to further adjust the surface properties of the plastic.
  • the polymer composition is produced according to the continuous or discontinuous process known from the literature and to the person skilled in the art, preferably by mixing or extruding a premix with the addition of additives or mixing the polymer composition by metering in the raw materials and additives during mixing or extrusion.
  • the preparation of the plastics may be known to those skilled in the method z. B. by injection molding or extrusion process.
  • the process which uses water as a solvent and plasticizer, prevents any labor law, toxicological and licensing difficulties.
  • the polymer composition corresponds to a polymer in which the materials are converted by heating in a plastic state and thus deformed.
  • the temperature exceeds the glass transition temperature of the protein, so that it passes from the amorphous to the rubbery plastic state.
  • this can be further processed directly, preferably to a plastic in the extrusion process.
  • the polymer composition can be processed further directly after leaving the nozzle or in at least one later processing step to form a shaped article.
  • the polymer composition can also pass through a bath prior to curing, this procedure is not particularly preferred and usually not required.
  • the polymer composition may be subjected to a spray treatment after exiting the nozzle.
  • Gtuschtungssch, waxes, lipophilic or crosslinking agents can be applied to the surface of the polymer composition.
  • crosslinkers those given above are preferred, that is to say generally different salt solutions, preferably calcium chloride solution, dialdehyde starch solution, or aqueous lactic acid.
  • the obtained plastic and the products made therefrom can be used for all conceivable purposes.
  • Non-limiting examples include all types of components used in automotive, construction, window, furniture, electronics, sports, toys, machinery and equipment, packaging, agriculture and the like
  • Safety technology paper, adhesives, medical technology, cosmetics, life science, for example, as dental splints, household items, artificial leather, etc. are processed.
  • the multi-constituent plastics of the present invention may be in many different configurations.
  • the "ingredient” as used herein means the chemical species or material.
  • Plastics can have a mono-component or multi-component configuration.
  • the "component” is defined as a separate part of the plastic that is in spatial relationship with another part of the plastic.
  • the resulting plastic can in turn be applied to a matrix.
  • the advantages achieved by the invention include the fact that in the manufacture of plastics according to the invention the reduction of harmful substances and environmentally harmful substances during the process and on the plastics itself is made possible.
  • the plastic is biodegradable.
  • milk protein plastics are attributed to firming structural changes (textural structure) during plasticizing.
  • the plastics are preferably made by an extrusion process to allow the highest possible productivity. All known to those skilled in the art and from the literature manufacturing method for plastics described are possible without exception.
  • Essential to the invention is the preparation of a homogeneously plasticized polymer, preferably a biogenic biopolymer, which is preferably biodegradable.
  • a homogeneously plasticized polymer preferably a biogenic biopolymer, which is preferably biodegradable.
  • no plastics could be developed on this basis to date, which are water-resistant and sufficiently proteases; -acid; and alkali-resistant.
  • the use of petroleum-based raw materials and / or organic solvents, especially in plastics for baby products, dental splints, implants and cosmetics, to name just a few examples, should be reduced or even ruled out.
  • plastics which are preferably made from renewable raw materials, with a proportion of milk proteins and are characterized by properties such as water resistance, high protease resistance, sufficient mechanical properties, such as tensile strength, tensile strength, furthermore - flame retardant, elastic, anti-allergic, antibacterial and biodegradable
  • properties such as water resistance, high protease resistance, sufficient mechanical properties, such as tensile strength, tensile strength, furthermore - flame retardant, elastic, anti-allergic, antibacterial and biodegradable
  • Example 1 Preparation of a milk protein-polymer mass.
  • the extrusion takes place with a twin-screw extruder type 30 E of the company. Collin with a diameter of 30 mm.
  • the production of the plastic takes place by means of extrusion technology.
  • the heating is carried out over 4 barrel heating temperature with the following sequence D 65 C, 74 ° C, 75 ° C, 60 ° C:
  • the casein powder is added via a vibrating trough.
  • a hose pump is used to add water.
  • the additives are added.
  • the polymer composition is processed into a plastic by an extrusion process.
  • the extrusion process and the processing of the polymer composition into a plastic is additionally illustrated by FIG.
  • a metering device 1 the raw materials are added to the extruder 2 and mixed the polymer composition.
  • the extruded polymer enters a nozzle 3 and passes through a blowing 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Es wird ein Milchproteinkunstoff mit einem nach dem Fachmann und aus der Literatur bekannten Verfahren der Kunststoffverarbeitung hergestellt, bei welchem wenigstens ein aus Milch gewonnenes, thermisch-plastifizierbares Protein mit einem Plastifizierungsmittel wie beispielsweise Wasser oder Glycerol bei Temperaturen zwischen Raumtemperatur und 140 °C unter mechanischer Beanspruchung plastifiziert und anschließend durch ein dem Fachmann und aus der Literatur bekannten Herstellungsverfahren zu Formkörpern weiterverarbeitet wird.

Description

Verfahren zur Herstellung eines Milchprotein-Kunststoffes (MP - Kunststoff)
Verfahren zur Herstellung von polymeren Kunststoffen sind in der Literatur beschrieben und dem Fachmann bekannt.
Das deutsche Patent 202004004732 beschreibt ein essbares und biologisch-abbaubares, mehrschichtiges und abziehbares Casein-Verbund-Verpackungsmaterial für Lebensmittel und Nicht-Lebensmittel. Das Patent beschreibt eine äußere Kunststofftrennschicht, eine mittlere Caseintrennschicht und eine Geltrennschicht. Es wird ein Verfahren beschrieben, was nicht nur durch die 3 Trennschichten, sondern außerdem noch durch eine Quellzeit von 5 Stunden gekennzeichnet ist. Anschließend wird das Gemisch nochmals für 2 Stunden gerührt. Dann wird ein Granulat extrudiert und verpackt. Das Granulat wird anschließend durch Folienblasen weiter zu Folien verarbeitet. Die Kunststofffolie muss vom Verbraucher vor dem Verzehr abgezogen werden.
Das deutsche Patent 4309528 beschreibt ein Verfahren zur Herstellung von Folien oder Foüenschlauchen aus Casein, Verfahren zu deren Herstellung und deren Verwendung. Diese Erfindung beschreibt jedoch eine 30 - 90 minütige Quellung des Caseinpulvers bevor es extrudiert wird. Hier wird ein unwirtschaftliches und nicht industrielles Verfahren beschrieben. Zudem wird wiederum der Einsatz von Glutaraldehyd beschrieben. Glutaraldehyd ist jedoch ein giftiger Stoff, der Umwelt - und gesundheitsschädigend ist. Zudem beschreibt die Erfindung, dass Folien bzw. Folienschläuche als Verpackungsmaterial für nicht-hygroskopische, pulvrige Produkte, wie Kaffee, Tee und Gewürze, oder fetthaltige Produkte, wie Schmalz, Talg und fette Öle, sowie für Tabletten und aromahaltige, trockene Produkte, als Samenbänder und Klebebänder und zur Kaschierung von Papier verwendbar sind. Dementsprechend ist die Wasserbeständigkeit der beschriebenen Folien minimal.
Trotz dieser bekannten Verfahren war es bisher nicht möglich, polymeren Kunststoffen aus nachwachsenden Rohstoffen (vor allem proteinbasierend) ohne den Zusatz von Acrylaten und fossilen Rohstoffen eine notwendige Wasser bzw. Feuchtigkeitsbeständigkeit zu verleihen, die für Kunststoffe vorrausetzend sind. Die Verwendung von Acrylaten und fossilen Rohstoffen sollte aus gesundheitlichen Gründen, wenn möglich weitgehend vermieden werden.
Der Erfindung liegt die A u f g a b e zugrunde, die vorstehend genannten Nachteile zu beseitigen und Kunststoffen, vorzugsweise aus nachwachsenden Rohstoffen (vor allem proteinbasierend) und vorzugsweise ohne den Zusatz von Acrylaten und fossilen Rohstoffen, eine notwendige Wasser- bzw. Feuchtigkeitsbeständigkeit zu verleihen.
Die Aufgabe wird durch das Verfahren nach den Ansprüchen gelöst.
Die Erfindung hilft dabei, die Verarbeitungszeit und den Chemikalieneinsatz herabzusetzen und die Kunststoffe vorzugsweise und weitestgehend aus nachwachsenden und/oder biologisch abbaubaren Rohstoffen herzustellen. Zugleich soll der Wasser- und Energieverbrauch gesenkt und die Produktivität gesteigert werden. Die vorliegende Erfindung ist auf Kunststoffe ausgerichtet, die durch einen kontinuierlichen oder diskontinuierlichen Prozess einer Zusammensetzung hergestellt werden, die vorzugsweise destrukturierte Milchproteine, biologisch abbaubare thermoplastische Polymere und Weichmacher umfasst.
Dabei wird wenigstens ein aus Milch gewonnenes Protein oder ein durch Bakterien erzeugtes Protein optional gemeinsam mit einem Plastifizierungsmittel bei Temperaturen zwischen Raumtemperatur und 140 °C unter mechanischer Beanspruchung plastifiziert.
Der Erfindung liegt die Erkenntnis zugrunde, dass die Milchproteine und insbesondere Casein und deren Derivate plastifiziert und auf diese Weise polymerisiert werden können. Bevorzugt ist vorgesehen, dass das Plastifizieren bei Temperaturen bis 140°C stattfindet. Für eine noch schonendere Behandlung wird das Protein gemeinsam mit einem Plastifizierungsmittel intensiv gemischt bzw. geknetet und dabei mechanisch beansprucht. Die erforderliche Plastifizierungstemperatur wird durch das Plastifizierungsmittel deutlich gesenkt.
Bei dem Milchprotein handelt es sich vorzugsweise um Casein oder Lactalbumin oder Sojaprotein.
Das aus Milch gewonnene Protein kann durch Ausfällen aus Milch in situ hergestellt werden. Hierfür kann gemäß einer ersten Verfahrensführung die Milch im Gemisch mit Lab, anderen geeigneten Enzymen oder Säure unmittelbar als ausgeflocktes Gemisch in das Verfahren eingeführt oder das abgepresste ausgeflockte Eiweiß kann feucht verwendet werden. Gemäß einer anderen möglichen Verfahrensführung kann ein separat zuvor gewonnenes, ggf. aufbereitetes, reines oder gemischtes Protein, d.h. eine Eiweißfraktion aus Milch eingesetzt werden, z.B. getrocknet als Pulver.
Die Eiweißfraktion kann auch durch Ultrafiltrieren oder durch Zellkulturen hergestellt werden. Zudem können Milchproteine beispielsweise mit zusätzlichen Salzen wie Natrium, und Kalium in weiteren Verarbeitungs schritten modifiziert werden, so dass ein Casein entsteht.
Das erfindungsgemäß verwendete Milchprotein kann mit anderen Eiweißen in einem Anteil bis 70 Gew.-% bezogen auf das Milchprotein vermischt werden. Hierfür kommen beispielsweise anderen Albumine, wie Ovalbumin und pflanzliche Eiweiße, insbesondere Lupinenprotein, Sojaprotein oder Weizenproteine, insbesondere Gluten in Frage.
Die Mischung aus Lösungsmittel und Proteine wird erwärmt, in der Regel unter Druckbedingungen und Scherung, um den Vernetzungsprozess zu beschleunigen. Chemische oder enzymatische Mittel können ebenfalls verwendet werden, um die Milchproteine zu destrukturieren und zu vernetzen, zu oxidieren oder zu derivatisieren, verethern, verseifen und verestern. Gewöhnlich werden Milchproteine durch Auflösen der Milchproteine in Wasser destrukturiert. Vollständig destrukturierte Milchproteine entstehen, wenn keine Klumpen vorhanden sind, die das Polymerisieren beeinflussen. Ein Weichmacher kann in der vorliegenden Erfindung verwendet werden, um die Milchproteine zu destrukturieren und zu ermöglichen, dass die Milchproteine fließen, d. h. thermoplastische Milchproteine zu erzeugen. Derselbe oder andere Weichmacher können verwendet werden, um die Schmelzverarbeitbarkeit zu erhöhen, oder es können zwei getrennte Weichmacher verwendet werden. Die Weichmacher können auch die Flexibilität der Endprodukte verbessern. Die Weichmacher sind im Wesentlichen mit den polymeren Bestandteilen der vorliegenden Erfindung kompatibel, so dass die Weichmacher die Eigenschaften der Zusammensetzung wirksam modifizieren können. Wie hier verwendet, bedeutet der Ausdruck "im Wesentlichen kompatibel", dass der Weichmacher bei Erwärmung auf eine Temperatur über der Erweichungs- und/oder der Schmelztemperatur der Zusammensetzung in der Lage ist, eine im Wesentlichen homogene Mischung mit Milchproteinen zu bilden.
Das Plastifizierungsmittel ist bevorzugt Wasser, das in einem Anteil zwischen 20 und 80 % bezogen auf das Gewicht des Proteins, vorzugsweise in einem Anteil von etwa 40 bis 50 Gew.-% des Proteingehalts eingesetzt wird. Anstelle des Wassers oder im Gemisch mit diesem, können andere Plastifizierungsmittel, insbesondere Alkohole, Polyalkohole, Kohlehydrate in wässriger Lösung und insbesondere wässrige Polysaccharidlösungen eingesetzt werden.
Im Einzelnen sind folgende Plastifizierungsmittel bevorzugt: -wasserstoffbrückenbildende, organische Verbindungen ohne Hydroxylgruppe, z.B. Harnstoff -und derivate, - tierische Proteine, z.B. Gelantine, - pflanzliche Proteine, wie z.B. Baumwolle.-Sojabohnen,- und Sonnenbiumenproteine, - Ester von erzeugenden Säuren, die biologisch abbaubar sind, z.B. Citronensäure, Adipinsäure, Stearinsäure, Ölsäure, -kohlenwasserstoffbasierende Säuren, z.B. Ethylenacrylsäure, Ethylenmaleinsäure, Butadienacrylsäure, Butadienmaleinsäure, Propylenacrylsäure, Propylenmaleinsäure, -Zucker, z.B. Maltose, Lactose, Saccharose, Fructose, Maltodextrose, Glycerin, Pentaerythrit und Zuckeralkohole, z.B. Malit, Mannit, Sorbit, Xyiit, - Polyole, z.B. Hexantriol, Glycole und dergleichen, auch Mischungen und Polymere, - Zuckeranhydride, z.B. Sorbitan, - Ester, wie z.B. Glycerinacetat,( mono,- di,-triacetat ) Dimethyl- und Diethylsuccinat und verwandte Ester, Glycerinpropionate,(mono,-di,-tripropionate) Butanoate, Stearate, Phthalatester. Dies sind nichteinschränkende Beispiele für Hydroxyl-weichmacher. Wichtige Einflussfaktoren sind die Affinität zu den Proteinen, Proteinmenge und Molekulargewicht. Glycerin und Zuckeralkohole gehören zu den wichtigsten Weichmachern. Gewichtsanteile von Weichmachern sind z.B. 5% - 55%, können sich aber auch im Bereich von 2% - 75% bewegen. Beliebige Alkohole, Polyole, Ester und Polyester können in Gewichtsanteilen vorzugsweise bis 30% in der Polymermischung verwendet werden.
Von besonderer Bedeutung für die Polymermischung sind die Theologischen Eigenschaften, damit eine gute Verarbeitung möglich ist. Die Verfestigung unter Dehnfluss ist notwendig, um eine stabile Polymerstruktur zu bilden. Die Schmelztemperatur liegt meist in einem Temperaturbereich von 30°C bis 190°C. Darüber hinaus liegende Temperaturen sollten mit Verdünnungsmitteln und Weichmachern gesenkt werden.
Die biologische Abbaubarkeit der Polymere, d.h. ihre Zersetzung durch Lebewesen und deren Enzyme ist eine bedeutende Eigenschaft der polymeren MP-Kunststoffe.
Für biologisch abbaubare thermoplastische Polymere, die beispielsweise zur Verwendung in der vorliegenden Erfindung geeignet sind, gehören Milchsäurepolymere, Lactidpolymere, Glycolidpolymere, einschließlich ihrer Homo- und Copolymere und Mischungen davon; aliphatische Polyester zweibasiger Diolen/ Säuren; aliphatische Polyesteramide, aromatische Polyester, auch von modifizierten Polyethylenterephthalaten und Polybutylenterephthalaten; Polycaprolactone; aliphatische/aromatische Copolyester; Poly(3-hydroxyalkanoate), einschliesslich derer Copolymere und /oder andere -valerate, - hexanoate -und alkanoate, Polyester und Dialkanoylpolymere, Polyamide und Copolymere von Polyethylen/Vinylalkohol.
Als biologisch abbaubares thermoplastisches Polymer für diese Erfindung sind beispielsweise und bevorzugt geeignet : Polyvinylalkohol und -copolymere, aliphatische Amid-und Este reo polymere , die aus Monomeren wie z.B. Dialkoholen ( 1 ,4-Butandiol, 1 ,3- Propandiol, 1 ,6-Hexandiol usw. ) oder Ethylen -und Diethylenglykol, Aliphatische Polyesteramide, ( aliphatischen Ester werden mit aliphatischen Amiden gebildet ) oder durch andere Umsetzungen wie z.B. Milchsäure mit Diaminen und Dicarbonsäuredichloriden, Diolen mit Carbonsäuren, Caprolacton und Caprolactam, oder Estervorpolymere mit Diisocyanate, Dicarbonsäuren, besonders Bernsteinsäure.Oxalsäure und Adipinsäure und deren Ester, Hydroxycarbonsäuren, Lactonen, Aminoalkoholen (z.B.Ethanolamin, Propanolamin ), cyclischen Lactamen,- Aminocarbonsäuren (z.B.Aminocapronsäure ), Dicarbonsäuren und Diaminen ( z.B. Salzmischungen von Dicarbonsäuren) und Mischungen davon. Polyester wie z.B. Oligoester können auch verwendet werden.
Polybuylensuccinat/-adipat-Copolymer; Polyalkylensuccinate; Polypentamethylsuccinate; Polyhexamethylsuccinate; Polyheptamethylsuccinate; Polyoctamethylsuccinate; Polyalkylenoxalate, wie z.B. Polyethylenoxalat und PolybutylenoxalatPolyalkylensuccinat- Copolymere, wie z.B. Polyethylensuccinat/-adipat-Copolymer und; Polyalkylenoxalat- Copolymere, wie z.B. Polybutylenoxalat/-succinat-Copolymer und Polybutylenoxalat/- adipat-Copolymer; Poiybutylenoxalat/-succinat -adipat-Terpolymere; und Mischungen davon, sind nichteinschränkende Beispiele für aliphatischen Polyester von zweibasigen Säuren/Diolen, die z.B. aus Polymerisationen von Säuren und Alkoholen oder Ringöffnungsreaktionen hergestellt werden und für die Produktion eines Polymers geeignet sind.
Eine weitere Möglichkeit des Einsatzes bei der Herstellung von biologisch abbaubaren Polymeren haben aliphatische/aromatische Copolyester. Diese werden aus Dicarbonsäuren (-und Derivaten )wie Malon-, Bernstein-, Glutar-, Adipin-, Pimelin-, Azelain-, Sebacin-, Fumar-, 2,2-Dimethylglutar-, Suberin-, 1 ,3-Cyclopentandicarbon-, 1 ,4- Cyclohexandicarbon-, 1 ,3-Cyclohexandicarbon-, Diglycol-, Itacon-, Malein-, 2,5- Norbornandicarbon-, 1 ,4-Terephthal-, 1 ,3-Terephthal-, 2,6-Naphthoe-, 1 ,5- Naphthoesäure, esterbildende Derivate und Mischungen davon und Diolen, z.B. Ethylenglycol, Diethylenglycol, Triethylenglycol, Tetra ethylenglycol, Propylenglycol, 1 ,3- Propandiol, 2,2-Dimethyl- 1 ,3 -propandiol, 1 ,3-Butandiol, 1 ,4-Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexndiol, 2,2,4-Trimethyl-1 ,6-hexandiol, Thiodiethanol, 1 ,3-Cyclohexandimethanol, 1 ,4-Cyclohexandimethanol, 2,2,4,4-Tetramethyl-1 ,3-cyclobutandiol und Kombinationen davon, bei einer Kondensationsreaktion gebildet. Beispiele für solche aliphatischen/aromatischen Copolyester schließen Mischungen aus Poly(tetramethylenglutarat-co-terephthalat), Poly(tetramethylenglutarat-co-terephthalat), Poly(tetramethylenglutarat-co-terephthalat), Poly(tetramethylenglutarat-co-terephthalat), Poly(tetramethylenglutarat-co-terephthalat-co-diglycolat), Poly(ethylenglutarat-co- terephthalat), Poly(tetramethylenadipatco-terephthalat), eine 85/15-Mischung von Poly(tetramethylensuccinat-co-terephthalat), Poly(tetramethylen-co-ethylenglutarat-co- terephthalat), Poly(tetramethylen-co-ethylenglutaratco-terephthalat) ein. Die Verarbeitbarkeit der Proteinmasse kann durch weitere Materialien modifiziert werden, um die physikalischen und mechanischen Eigenschaften der Proteinmasse, aber auch die des Endproduktes zu beeinflussen. Nichteinschränkende Beispiele schließen thermoplastische Polymere, Kristallisationsbeschleuniger - oder-hemmer, Geruchsmaskierungsmittel, Vernetzungs mittel, Emulgatoren, Salze, Gleitmittel, Tenside, Cyclodextrine, Schmiermittel, andere optische Aufheller, Antioxidationsmittel, Verarbeitungshilfsmittel, Flammenhemmstoffe, Farbstoffe, Pigmente, Füllstoffe, Proteine und ihre Alkalisalze, Wachse, Klebeharze, Streckmittel und Mischungen davon ein. Diese Hilfsstoffe werden an die Proteinmatrix gebunden und beeinflussen diese in ihren Eigenschaften.
Der Schmelze können Salze hinzugefügt werden. Nichteinschränkende Beispiele für Salze schließen Natriumchlorid, Kaliumchlorid, Natriumsulfat, Ammoniumsulfat und Mischungen davon ein. Salze können die Löslichkeit des Proteins in Wasser beeinflussen, aber auch die mechanischen Eigenschaften. Salze können als Bindemittel zwischen den Proteinmolekülen dienen.
Gleitmittel hingegen können die Stabilität des Polymers beeinflussen. Diese können die Klebrigkeit des Polymers herabsetzen und den Reibungskoeffizienten verringern. Polyethylen wäre dafür ein nicht einschränkendes Beispiel.
Die physikalischen Eigenschaften der Polymermasse können durch weitere Proteine beeinflusst werden, diese sind z.B. pflanzliche Proteine wie Sonnenblumenprotein oder tierische wie Gelantine. Wasserlösliche Polysaccharide und wasserlösliche synthetische Polymere, wie Polyacrylsäuren, können die mechanischen Eigenschaften ebenfalls beeinflussen.
Monoglyceride und Diglyceride und Phosphatide, sowie andere tierische und pflanzliche Fette können die Fließeigenschaften des Biopolymers beeinflussen und begünstigen.
Anorganische Füllstoffe gehören ebenfalls zu den möglich Zusatzstoffen und können als Verarbeitungsmittel Verwendung finden. Mögliche Beispiele, ohne den Einsatz zu beschränken, sind Oxide, Silikate, Carbonate, Kalk, Ton, Kalkstein und Kieselgur und anorganische Salze. Stearatbasierte Salze und Kolophonium können zur Modifizierung der Proteinmischung eingesetzt werden. Aminosäuren, die Bestandteile der Proteine und Peptide können der Polymermasse hinzugegeben werden, um besondere Faltblattstrukturen oder mechanische Eigenschaften zu verstärken. Ohne Einschränkung werden als Beispiele Glutaminsäure, Histidin, Trytophan usw. genannt.
Weitere Zusatzstoffe sind Enzyme, Tenside, Säuren, Serpine, sowohl phenolische Pflanzenmoleküle, die als Vernetzter und zur Verbesserung der mechanischen Eigenschaften beitragen können, sowie zur Beständigkeit in Wasser und Proteasen bewirken können.
Andere Zusatzstoffe können in Abhängigkeit von der jeweiligen Endanwendung des beabsichtigten Produkts wünschenswert sein. Beispielsweise ist in den meisten Produkten Nassfestigkeit eine notwendige Eigenschaft. Daher ist es erforderlich, nassfeste Harze als Vernetzungsmittel dazuzugeben.
Auch weitere natürliche Polymere können als Zusatzstoffe hinzugefügt werden. Mögliche Beispiele für natürliche Polymere, ohne die Auswahl zu beschränken, wären Albumine, Sojaprotein, Zeinprotein, Chitosan und Cellulose -Polylactid" und "PLA", die in einer Menge von 0,1% - 80% verwendet werden können.
Neben natürlichen Polymeren können auch andere synthetische Polymere, wie unter anderem Polyvenylalkohol, sowie Polyesther, bzw. Ether, wie Polyethylenglycol, Aldeyhde, wie z.B. Glutaraldehyd und Acrylsäuren eingesetzt werden.
Dazu zählen auch nicht abbaubare Polymere, die in Abhängigkeit der Endanwendung des Kunststoffes eingesetzt werden, auch thermoplastische Kunststoffe, die zur Copolymerisation eingesetzt werden können, wie z.B. Polypropylen, Polyethylen, Polyamide, Polyester und Copolymere daraus. Andere hochmolekulare Polymere sind ebenfalls möglich.
Kohlenhydrate und Polysaccharide, als auch Amylosen, Oligosaccharide und Chenodesoxycholsäuren können als weitere Hilfs- und Zusatzstoffe eingesetzt werden.
Als zusätzliche Vernetzter können auch Salze, Carbonsäuren, Dicarbonsäuren und Carbonate, als auch deren Anhydride, Salze und Ester eingesetzt werden. Hydroxyde, Butylester, sowie aliphatische Kohlenwasserstoffe sind weitere Möglichkeiten die Moleküle untereinander zu vernetzen und Makromoleküle zu bilden.
Der Zusatz weiterer Stoffe wird nicht ausgeschlossen. Speziell können Zusatz- und Hilfsstoffe, wie lipophile, hydrophobe, hydrophile, hydroskopische Zusätze, Glanzgeber und Vernetzer vorgesehen sein. Die Zusatz- und Hilfsstoffe sollten insgesamt einen Gewichtsanteil von vorzugsweise ca. 30 Gew.-% bezogen auf das Protein nicht übersteigen. Als lipophile Zusätze können Pflanzenöle, Alkohole, Fette und gewählt werden, die die Polymermasse bereits während des Plastifizierens leicht hydrophobieren. Weiterhin können Wachse und Fette verwendet werden, die der Polymermasse zusätzlich Festigkeit verleihen. Als Wachse werden bevorzugt Carnaubawachs, Bienenwachs, Candelillawachs und andere natürlich gewonnene Wachse.
Nach der Bildung des Kunststoffes kann das Polymer weiter behandelt werden oder der gebundene Stoff wird behandelt. Eine hydrophile oder hydrophobe Oberflächenbehandlung kann hinzugefügt werden, um die Oberflächenenergie und die chemische Beschaffenheit des Stoffs einzustellen. Beispielsweise können hydrophobe Kunststoffe oder das Polymer mit Benetzungsmitteln behandelt werden, um die Absorption von wässrigen Flüssigkeiten zu erleichtern. Ein gebundener Stoff kann auch mit einer topischen Lösung behandelt werden, die Tenside, Pigmente, Gleitmittel, Salz, Enzyme oder andere Materialien enthält, um die Oberflächeneigenschaften des Kunststoffes weiter einzustellen.
Damit der Kunststoff den erhöhten Anforderungen durch verbesserte Eigenschaften für einen bestimmten Zweck entsprechen, werden sie nach den bisher bekannten und beschriebenen Herstellungsverfahren hergestellt. Die Polymermasse wird nach dem aus der Literatur und dem Fachmann bekannten kontinuierlichen oder diskontinuierlichen Verfahren produziert, vorzugsweise durch Mischen oder Extrudieren einer Vormischung unter Zusatz von Additiven oder das Anmischen der Polymermasse durch Zudosierung der Grundstoffe und Additive während des Mischens oder Extrudierens.
Die Herstellung der Kunststoffe kann nach dem Fachmann bekannten Verfahren z. B. durch Spritzguss -oder Extrusions- Verfahren erfolgen. Das Verfahren, bei dem Wasser als Lösungs- und Plastifizierungsmittel eingesetzt wird, verhindert jegliche arbeitsrechtüche, toxikologische -und zulassungsrechtliche Schwierigkeiten.
Aufgrund der Plastifizierung entspricht die Polymermasse einem Polymer, bei dem die Materialien durch Erwärmung in einen plastischen Zustand überführt und auf diese Weise verformt werden. Die Temperatur überschreitet dabei die Glasübergangstemperatur des Proteins, so dass dieses vom amorphen in den gummiartig plastischen Zustand übergeht.
Nach dem Austritt der Polymermasse z.B. aus dem Extruder kann diese unmittelbar weiter verarbeitet werden, vorzugsweise zu einem Kunststoff im Extrusionsverfahren.
Die Polymermasse kann alternativ nach Austritt aus der Düse unmittelbar oder in wenigstens einem späteren Verarbeitungsschritt zu einem Formkörper weiterverarbeitet werden.
In Weiterentwicklung der Erfindung kann die Polymermasse außerdem vor dem Aushärten ein Bad durchlaufen, wobei diese Verfahrensweise nicht besonders bevorzugt und in der Regel nicht erforderlich ist. Alternativ kann die Polymermasse nach dem Austritt aus der Düse einer Sprühbehandlung unterzogen werden. Hierbei können beispielweise Gtättungsmittel, Wachse, Lipophile oder Vernetzer auf die Oberfläche der Polymermasse aufgebracht werden. Im Falle von Vernetzern sind die oben angegebenen bevorzugt, also allgemein verschiedene Salzlösungen, bevorzugt Calciumchloridlösung, Dialdehydstärkelösung, oder wässrige Milchsäure. Alternative einer Gasbehandlung oder einer Eisbehandlung oder einer Trockungs- und Anblasbehandlung oder einer lonenbehandlung oder einer UV- Behandlung oder einer Enzymbehandlung, sowie einer Renaturierung durch Salze oder Veresterung, Veretherung, Verseifung oder einer weiteren Vernetzung, sowie einem Nadelungs-und Wasserstrahlverfestigungsverfahren und dem Kaladrieren usw. unterzogen werden.
Der erhaltene Kunststoff und die daraus hergestellten Produkte können für alle erdenklichen Zwecke verwendet werden. Als nicht einschränkende Beispiele sind genannt- alle Arten von Bauteilen für den Fahrzeug-Flugzeugbau, die Bauindustrie, den Fensterbau, die Möbelindustrie, die Elektroindustrie, Sportgeräte, Spielzeuge, den Maschinen- und Apparatebau, die Verpackungsindustrie, die Landwirtschaft oder die Sicherheitstechnik, Papier, Klebstoffe, Medizintechnik, Kosmetik, Life Science, z.B. als Zahnschienen, Haushaltsartikel, Kunstleder usw. verarbeitet werden.
Die aus mehreren Bestandteilen bestehenden Kunststoffe der vorliegenden Erfindung können in vielen verschiedenen Konfigurationen vorliegen. Der "Bestandteil", wie hier verwendet, bedeutet definitionsgemäß, die chemische Stoffspezies oder das Material. Kunststoffe können eine Monokomponenten- oder Mehrkomponentenkonfiguration aufweisen. Die "Komponente " ist definiert als ein separater Teil des Kunststoffes, der in einer räumlichen Beziehung zu einem anderen Teil des Kunststoffes steht. Der erhaltene Kunststoff kann wiederum auf eine Matrix aufgebracht werden.
Die mit der Erfindung erzielten Vorteile bestehen unter anderem darin, dass bei der Herstellung von erfindungsgemäßen Kunststoffen die Reduzierung von gesundheitlich bedenklichen und umweltschädlichen Stoffen während des Verfahrens und an den Kunststoffen selbst ermöglicht wird. Zudem ist der Kunststoff biologisch abbaubar.
Außerdem können erhebliche Ressourcen an Energie, Wasser, Zeit und Manpower eingespart werden, was den Umweltschutz erhöht und die Wirtschaftlichkeit verbessert. Die besonders vorteilhaften Eigenschaften der Milchproteinkunststoffe werden auf festigende Strukturveränderungen (Textiärstruktur) während des Plastifizierens zurückgeführt.
Die Kunststoffe werden bevorzugt mit einem Extrusionsverfahren hergestellt, um eine höchstmögliche Produktivität zu ermöglichen. Alle dem Fachmann und aus der Literatur bekannten Herstellungsverfahren für beschriebene Kunststoffe sind ohne Ausnahme möglich. Erfindungswesentlich ist die Herstellung eines homogen plastifizierten Polymers, vorzugsweise eines biogenen Biopolymers, welches vorzugsweise biologisch abbaubar ist. Leider konnten auf dieser Basis bis heute keine Kunststoffe entwickelt werden, die wasserbeständig und hinreichend Proteasen; -säure; -und laugen-beständig sind. Bevorzugt soll die Verwendung erdölbasierender Rohstoffe und/oder organischer Lösungsmittel, besonders bei Kunststoffen für Babyartikel, Zahnschiene, Implantate und Kosmetik, um nur einige Beispiele zu nennen, reduziert oder sogar ausgeschlossen werden. Bei Kunststoffen, die vorzugsweise aus nachwachsenden Rohstoffen, mit einem Anteil von Milchproteinen hergestellt werden und mit Eigenschaften gekennzeichnet sind, wie Wasserbeständigkeit, hohe Proteasenbeständigkeit, ausreichende mechanische Eigenschaften, wie Zugfestigkeit, Zerreißfestigkeit, weiterhin - schwer entflammbar, elastisch, antiallergisch, antibakteriell und biologisch abbaubar sind, besteht außerdem die Möglichkeit, durch Veränderung der Rohstoffzugaben entsprechen der Anforderungen des Verwendungszweckes, die Eigenschaften der Proteinkunststoffen zu beeinflussen.
Beispiele
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher beschrieben. Das Ausführungsbeispiel dient allein illustrativen Zwecken und soll die Erfindung nicht beschränken. Der Fachmann kann anhand dieses Ausführungsbeispiels und mit Hilfe seines Fachwissens weitere Ausführungsmöglichkeiten durch Variation der Parameter auffinden.
Beispiel 1 : Herstellung einer Milchprotein- Polymermasse. Die Extrusion erfolgt mit einem Zweischneckenextruder Typ 30 E der Fa. Dr. Collin mit einem Durchmesser von 30 mm. Die Herstellung des Kunststoffes erfolgt mittels Extrusionstechnik.
Die Heizung erfolgt über 4 Zylinderheizzonen mit folgendem Temperaturablauf 65 DC, 74 °C, 75 °C, 60°C:
Das Caseinpulver wird über eine Rüttelrinne aufgegeben. Über eine Schlauchpumpe erfolgt die Zugabe von Wasser. Durch weitere Dosierungseinrichtungen werden die Additive zugegeben. Die Polymermasse wird über ein Extrusion-Verfahren zu einem Kunststoff verarbeitet. Der Extrusionsablauf und die Verarbeitung der Polymermasse zu einem Kunststoff wird zusätzlich durch Figur 1 verdeutlicht. Über eine Dosiereinrichtung 1 werden die Rohstoffe in den Extruder 2 zudosiert und die Polymermasse angemischt. Anschließend gelangt das extrudierte Polymer in eine Düse 3 und durchläuft eine Anblasung 4.

Claims

Verfahren zur Herstellung eines Milchprotein-Kunststoffes, gebildet aus einem homogenen Polymer auf der Basis von aus Milch gewonnenen Proteinen, die unter Zuführung von Wärme und eines Plastifizierungsmittels und unter mechanischer Beanspruchung plastifiziert werden.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Polymermasse mittels eines Extruders bearbeitet wird.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Herstellung der Milchprotein-Kunststoffe kontinuierlich oder diskontinuierlich erfolgt.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Milchprotein-Kunststoffe vorzugsweise aus nachwachsenden Rohstoffen hergestellt werden und biologisch abbaubar sind.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein aus Milch gewonnenes Protein gemeinsam mit einem Plastifizierungsmittel unter mechanischer Beanspruchung plastifiziert und weiterverarbeitet wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Plastifizieren bei Temperaturen bis 40 °C stattfindet.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das aus Milch gewonnene Protein entweder durch Ausfällen aus Milch in situ hergestellt wird oder in Form eines zuvor separat gewonnenen und ggf. aufbereiteten Proteins oder einer Eiweißfraktion eingesetzt wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aus Milch gewonnenen Proteine aus Bakterien gewonnen werden.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aus Milch gewonnenen Proteine durch Gasbehandlung oder Filtration gewonnen werden.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aus Milch gewonnenen Proteine, insbesondere Casein, Lactalbumin, oder Sojaeiweiß, aus Ziegenmilch, Schafsmilch, Kuhmilch oder Sojamilch gewonnen werden.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Plastifizierungsmittel ausgewählt ist aus der Gruppe: Wasser, wässrige Kohlenhydratlösung und insbesondere wässrige Polysaccharide, Oligosaccharide, Proteine, Alkohol, Polyalkohol, Fette, Säuren, Aminosäure, Peptide, Salze, Kationen, Enzyme oder Mischungen dieser Mittel, sowie deren Oxidation.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem zu plastifizierenden Ausgangsstoff weitere Zusatz- und Hilfsstoffe zugefügt werden, wahlweise durch Zumischen vor oder während des Plastifizierens.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kunststoff getrocknet und nachbehandelt wird, indem er ein Bad durchläuft oder einer Sprühbehandlung oder einer Gasbehandlung oder einer Eisbehandlung oder einer Trocknungs- und Anblasbehandlung oder einer lonenbehandlung, Nadelungs- und Wasserstrahlfestigungsverfahren oder einer UV-Behandlung, Infrarotbehandlung oder einer Enzymbehandlung, sowie einer Renaturierung durch Salze oder Alkohole, Ester und Ether, Veresterung, Veretherung .Verseifung oder einer weiteren Vernetzung unterzogen wird.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Biopolymere, vorzugsweise biologisch abbaubare Biopolymere, eingesetzt werden.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Polysaccharide, vorzugsweise biologisch abbaubare Polysaccharide, eingesetzt werden.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Carbonsäuren, Dicarbonsäuren und Carbonate, sowie deren Saize und Ester, sowie Fettsäuren, vorzugsweise biologisch abbaubar, für die Mischung eingesetzt werden.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polymermasse durch chemische oder enzymatische Mittel destrukturiert, oxidiert oder derivatisiert, verethert .verestert oder verseift wird.
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass entsprechende Aminosäuren für die Mischung eingesetzt werden.
19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Milchprotein-Kunststoff mittels Hinzufügen, Vor- oder Nachbehandeln mit Proteaseninhibitoren, insbesondere Enzymen, Tensiden, Säuren, Serpinen, Phenolischen Molekülen aus Pflanzen sowie Polysacchariden, in Bezug auf seine mechanischen Eigenschaften variiert wird.
20. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Milchprotein-Kunststoff zu Granulaten, Verbundwerkstoffen, insbesondere mit Fasern, insbesondere Naturfasern, Nanopartikel und Nanofasern, oder Matrixsystemen, verarbeitet wird.
21. Milchprotein-Kunststoff, der ein thermisch-mechanisch plastifiziertes Milchprotein enthält, insbesondere mit einem Verfahren nach einem der Ansprüche 1 bis 20 hergestellt.
22. Verwendung eines Milchprotein-Kunststoffes nach Anspruch 21 zur Herstellung von Bauteilen für den Fahrzeug- Flugzeugbau, die Bauindustrie, den Fensterbau, die Möbelindustrie, die Elektroindustrie, Sportgeräte, Spielzeuge, den Maschinen- und Apparatebau, die Verpackungsindustrie, die Landwirtschaft oder die Sicherheitstechnik, Papier, Klebstoffe, Medizintechnik, Kosmetik, Life Science, als Zahnschienen, Haushaltsartikel, Kunstleder.
EP12799514.0A 2011-11-12 2012-11-12 Verfahren zur herstellung eines milchprotein-kunststoffes (mp - kunststoff) Withdrawn EP2776513A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011118395 2011-11-12
PCT/EP2012/072423 WO2013068597A1 (de) 2011-11-12 2012-11-12 Verfahren zur herstellung eines milchprotein-kunststoffes (mp - kunststoff)

Publications (1)

Publication Number Publication Date
EP2776513A1 true EP2776513A1 (de) 2014-09-17

Family

ID=47355999

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12799514.0A Withdrawn EP2776513A1 (de) 2011-11-12 2012-11-12 Verfahren zur herstellung eines milchprotein-kunststoffes (mp - kunststoff)

Country Status (3)

Country Link
US (1) US20150013569A1 (de)
EP (1) EP2776513A1 (de)
WO (1) WO2013068597A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010054661A1 (de) * 2010-12-15 2012-06-28 Anke Domaske Verfahren zur Herstellung von Milchproteinfasern und daraus gewonnene Milchproteinfaserprodukte
WO2013068598A1 (de) * 2011-11-12 2013-05-16 Anke Domaske Verfahren zur herstellung von milchprotein-nanopartikeln

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523293A (en) * 1994-05-25 1996-06-04 Iowa State University Research Foundation, Inc. Soy protein-based thermoplastic composition for preparing molded articles

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK752701A (de) * 1937-03-02
US2521738A (en) * 1944-06-15 1950-09-12 Thomas L Mcmeekin Process for the production of artificial bristles and the like from proteins
NZ198737A (en) * 1980-10-29 1983-11-30 Unilever Plc Textured casein-containing material
IT1250045B (it) * 1991-11-07 1995-03-30 Butterfly Srl Procedimento per la produzione di alcool polivinilico plastificato e suo impiego per la preparazione di composizioni termoplastiche biodegradabili a base di amido.
DE4309528C2 (de) 1993-03-24 1998-05-20 Doxa Gmbh Folie oder Folienschlauch aus Casein, Verfahren zu deren Herstellung und deren Verwendung
DE19520093A1 (de) * 1995-06-01 1996-12-05 Bayer Ag Stärke und Polyurethane enthaltende Polymerblends
JP3742842B2 (ja) * 2002-06-17 2006-02-08 独立行政法人産業技術総合研究所 生分解性ポリ乳酸樹脂組成物
US20050149172A1 (en) * 2003-12-22 2005-07-07 Ashish Varma Minimal injury resorbable stent
DE202004004732U1 (de) 2004-03-24 2004-06-24 MWB Management - Wirtschaftsförderungs- und Beratungsgesellschaft mbH Essbares und biologisch-abbaubares mehrschichtiges und abziehbares Casein-Verbund-Verpackungsmaterial für Lebensmittel und Nicht-Lebensmittel
DE102010054661A1 (de) * 2010-12-15 2012-06-28 Anke Domaske Verfahren zur Herstellung von Milchproteinfasern und daraus gewonnene Milchproteinfaserprodukte

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523293A (en) * 1994-05-25 1996-06-04 Iowa State University Research Foundation, Inc. Soy protein-based thermoplastic composition for preparing molded articles

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HERNANDEZ-IZQUIERDO V M ET AL: "Thermoplastic Processing of Proteins for Film Formation-A Review", JOURNAL OF FOOD SCIENCE, WILEY-BLACKWELL PUBLISHING, INC, US, vol. 73, no. 2, 1 January 2008 (2008-01-01), pages R30 - R39, XP003026332, ISSN: 0022-1147, [retrieved on 20080124], DOI: 10.1111/J.1750-3841.2007.00636.X *
HONG S I ET AL: "Mechanical properties and biodegradability of poly-@?-caprolactone/soy protein isolate blends compatibilized by coconut oil", POLYMER DEGRADATION AND STABILITY, BARKING, GB, vol. 94, no. 10, 1 October 2009 (2009-10-01), pages 1876 - 1881, XP026719448, ISSN: 0141-3910, [retrieved on 20090508], DOI: 10.1016/J.POLYMDEGRADSTAB.2009.04.029 *
JINWEN ZHANG ET AL: "Morphology and Properties of Soy Protein and Polylactide Blends", BIOMACROMOLECULES, vol. 7, no. 5, 1 May 2006 (2006-05-01), US, pages 1551 - 1561, XP055527628, ISSN: 1525-7797, DOI: 10.1021/bm050888p *
See also references of WO2013068597A1 *

Also Published As

Publication number Publication date
US20150013569A1 (en) 2015-01-15
WO2013068597A4 (de) 2013-07-04
WO2013068597A1 (de) 2013-05-16

Similar Documents

Publication Publication Date Title
EP0906367B1 (de) Biologisch abbaubarer werkstoff, bestehend aus thermoplastischer stärke und polyesteramid.
EP0819147B1 (de) Biologisch abbaubare polymermischung
DE69321730T2 (de) Bioabbaubare polymerische zusammensetzung
EP3099744B1 (de) Polymerzusammensetzung enthaltend plla und pdla
DE69526989T2 (de) Schaumkörper von biologisch abbaubaren Kunststoffmaterialien und Verfahren zu ihrer Herstellung
EP0596437B1 (de) Biologisch abbaubare Polymermischung
EP2497797B1 (de) Polymeres Material und Verfahren zu dessen Herstellung
DE19802718C2 (de) Thermoplastische, kompostierbare Polymerzusammensetzung
WO1996031561B1 (de) Biologisch abbaubare polymermischung
WO1998006785A1 (de) Biologisch abbaubare zusammensetzung
DE69805848T2 (de) Biologisch abbaubare formkörper
EP3606999B1 (de) Biologisch abbaubare folie, transportbeutel enthaltend eine folie, verfahren zur herstellung einer folie und verwendung einer folie
EP2776614A1 (de) Verfahren zur herstellung von milchprotein-fasern
WO2013068597A1 (de) Verfahren zur herstellung eines milchprotein-kunststoffes (mp - kunststoff)
DE102007026719A1 (de) Biologisch abbaubare polymere Zusammensetzung aus natürlichen oder synthetischen Polymeren, Polyethylenoxid sowie ggf. Hilfs- und Zusatzstoffen ihre Herstellung, Weiterverarbeitung und Verwendung und hieraus hergestellte Erzeugnisse, vorzugsweise Folien
EP2776512A1 (de) Verfahren zur herstellung von milchprotein-gelen, -hydrogelen, -hydrokolloiden und -superabsorbern (mp-gele)
WO2015010748A1 (de) Proteinschaumstoff
DE202013103766U1 (de) Proteinschaumstoff
WO2013068598A1 (de) Verfahren zur herstellung von milchprotein-nanopartikeln
DE60217553T2 (de) Polymer-mischungen und verfahren zur herstellung von verpackungsmaterialien mit steuerbarer zersetzung
DE19513237A1 (de) Biologisch abbaubare Polymermischung
DE202013103765U1 (de) Geschäumtes Verpackungsmaterial
AT412646B (de) Thermoplastische masse auf naturharzbasis
WO2021005190A1 (de) Thermoplastische stärke
WO2002010283A1 (de) Thermoplastische masse auf naturharzbasis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140505

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150316

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

19U Interruption of proceedings before grant

Effective date: 20170831

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20180801

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20180601

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190601