WO2012079314A1 - 一种可控高升温速率热天平 - Google Patents

一种可控高升温速率热天平 Download PDF

Info

Publication number
WO2012079314A1
WO2012079314A1 PCT/CN2011/071793 CN2011071793W WO2012079314A1 WO 2012079314 A1 WO2012079314 A1 WO 2012079314A1 CN 2011071793 W CN2011071793 W CN 2011071793W WO 2012079314 A1 WO2012079314 A1 WO 2012079314A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
temperature
heating rate
wire mesh
double
Prior art date
Application number
PCT/CN2011/071793
Other languages
English (en)
French (fr)
Inventor
李爱民
曲毅
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to JP2013543500A priority Critical patent/JP2014505237A/ja
Publication of WO2012079314A1 publication Critical patent/WO2012079314A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/27Control of temperature characterised by the use of electric means with sensing element responsive to radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/52Weighing apparatus combined with other objects, e.g. furniture

Definitions

  • the invention belongs to the field of electric heating experimental equipment, and particularly relates to a controllable high heating rate thermal balance, which is mainly suitable for rapid combustion of various solid fuels such as coal, biomass and solid waste under different atmospheres and close to actual working conditions.
  • thermochemical reaction mechanism of pyrolysis gasification and combustion of solid fuels such as coal, biomass and solid waste at high temperature and high heating rate, and to master the laws of physical and chemical processes under near real conditions.
  • solid fuels such as coal, biomass and solid waste
  • the meaning In order to simulate the reaction process of fuel combustion, gasification and pyrolysis in actual operation, an accurate prediction model is established, and the heating rate of the particles obtained during the heating process must be as high as 10 2 to 10 5 ° C / s.
  • thermodynamic balances are mainly used for the study of the mechanism of various thermochemical utilization methods of fuels.
  • Conventional thermobalances generally have a heating rate of only 10 to 40 °C. /min , far below the heating rate of the actual application. This makes the accuracy of the research to be discussed. Therefore, how to obtain the actual fuel reaction kinetic parameters under the condition that the heating rate of the particles is close to the actual working conditions, and obtain the actual fuel reaction kinetic parameters, has become the bottleneck of this kind of research.
  • invention patent 'a controllable rapid heating thermobalance reactor' with two-stage heating, the maximum heating rate is 102 °C / s , far lower than the heating rate in actual operation.
  • the heating principle of the device is that the material is placed in a high temperature and constant temperature zone, and the material is heated by a heat transfer process, so that the heating rate is low and the temperature rise process cannot be linearly controllable.
  • the technical problem to be solved by the present invention is to provide a controllable high temperature rising rate thermobalance, which can obtain sample mass change and particle temperature history of various fuels under the condition of heating rate close to actual working conditions, thereby obtaining reaction kinetic constant.
  • a controllable high temperature rising rate thermobalance which can obtain sample mass change and particle temperature history of various fuels under the condition of heating rate close to actual working conditions, thereby obtaining reaction kinetic constant.
  • the invention includes a wire mesh reaction system, a temperature acquisition and control system, and a mass acquisition system.
  • the wire mesh reaction system includes a two-layer wire mesh, a balancer, a metal electrode, and a wireless power system.
  • the wireless power system includes a wireless power supply device and a wireless power receiving device.
  • the metal electrodes are placed at both ends of the balancer, and the ends of the double-layer metal wire mesh are clamped on the metal electrodes.
  • the wireless power receiving device is connected to the metal electrode, and receives the electric energy provided by the wireless power supply device to cause a current to flow through the double-layer metal wire mesh, and uses the current to heat the material at a high heating rate.
  • the temperature acquisition and control system is equipped with a highly sensitive temperature measuring device.
  • the high-sensitivity temperature measuring device is connected to the power regulator, and the temperature measurement and control is automatically performed by a computer.
  • the particle temperature of the sample is measured by a high-sensitivity temperature measuring device, and the measured temperature signal is converted into an electrical signal through an amplifier and a filter to enter a computer for signal processing. After the temperature signal is controlled by the computer, the output control signal controls the power controller to control the heating rate.
  • the mass acquisition system uses a highly sensitive differential balance to convert the mass change of the sample into an electrical signal for transmission to an electronic control unit for continuous monitoring and storage.
  • the high-sensitivity differential balance has a displacement detector.
  • the mass change of the sample causes the balancer to shift.
  • the displacement detector converts the detected displacement into an electrical signal, and the electrical signal is amplified by the amplifier and stored in a computer for storage.
  • a sealing cover can be provided outside the device of the present invention, and experiments under different atmospheric conditions can be realized by introducing a gas into the sealing cover.
  • the reaction device has a high heating rate and a wide range.
  • the heating rate is at least 10 °C / min and the maximum is 1000 °C / s .
  • the highest heating rate is close to industrial conditions, making the study of fuel application process closer to actual conditions.
  • the temperature rise process is linearly controllable. Under linear heating conditions, the mass change and temperature history of the sample are accurately obtained. It provides conditions for simulating the reaction kinetics of fuels close to industrial conditions.
  • reaction atmosphere is controllable. Provides different purity atmosphere conditions to meet the requirements of higher atmospheric purity requirements.
  • the device adopts current heating to pass the controlled current through the double-layer metal wire mesh to generate heat required for heating.
  • Highly sensitive differential balance 1 The framework that makes up the device.
  • High-sensitivity differential balance 1 has a balancer 2, and the balancer 2 has metal electrodes 3 at both ends.
  • the double metal wire mesh 4 is clamped to the metal electrode 3
  • a stainless steel wire mesh having a hole diameter of 200 mesh is selected.
  • the wireless receiving device 5 is connected to the metal electrode 3, and receives the electrical energy transmitted by the wireless power supply device 6 to the double-layer metal wire mesh 4 The material held between the wire mesh is heated.
  • Highly sensitive temperature measuring device 7 The measured temperature signal is converted into an electrical signal through an amplifier and a filter to enter a computer for signal processing. Temperature signal acquisition frequency is 100Hz After the microprocessor performs the control operation, the output control signal controls the power controller to realize the control of the heating rate.
  • the device is provided with a sealing cover 8 having a balanced air inlet 9 and an exhaust port 10 . During the experiment, different gases can be introduced into the device from the balanced air inlet 9 according to the atmosphere of the demand.
  • the mass acquisition system uses a high-sensitivity differential balance 1 to convert the mass change of the sample into an electrical signal for transmission to a computer for continuous monitoring and storage. Since the stainless steel wire mesh with a pore size of 200 mesh is selected, the sample to be tested is made into a particle size of 100-200 ⁇ m before the experiment. The powder ensures that the sample can be evenly spread in a single particle state during placement, and the stamping of the wire mesh prevents excessive displacement of the sample. The sample to be tested is evenly laid on the double-layer metal wire mesh during the experiment 4 On one side, as the temperature increases, the mass change of the sample is converted in real time by the high sensitivity differential balance 1 to telecommunications and transmitted to the microcontroller for storage.
  • the kinetic parameters of the reaction were obtained according to the temperature change curve and the mass change curve stored in the computer, and the reaction characteristics were analyzed and the reaction mechanism was inferred.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

一种可控高升温速率热天平
技术领域
本发明属于电加热实验设备领域,具体涉及一种可控高升温速率热天平,主要适用于煤、生物质和固体废弃物等各种固体燃料在不同气氛和接近实际工况下的快速燃烧、热解和气化特性及反应动力学的实验与理论研究。
背景技术
研究高温、高升温速率下的煤、生物质和固体废弃物等固体燃料的热解、气化和燃烧等热化学反应机理 , 以及掌握其在接近真实条件下的物理化学过程变化规律具有非常重要的意义。 为了模拟实际运行中燃料燃烧、气化、热解的反应过程 , 建立准确的预测模型 , 在加热过程中获得的颗粒升温速率须高达 102 ~ 105 ℃ / s 。
目前,对燃料各种热化学利用方式的机理研究主要采用热天平。常规热天平的升温速率一般只有 10 ~ 40 ℃ /min ,远远低于实际应用的升温速率。这使得研究的准确性有待商榷。因此,如何在颗粒升温速率接近实际工况的条件下,准确获得物料的质量变化,从而获得实际的燃料反应动力学参数,成为了这类研究的瓶颈。
中国专利,公开日: 2010 年 8 月 11 日,公开号: CN101799242A ,申请号: 201010104591.9 的发明专利 ' 一种可控快速升温热天平反应炉 ' ,采用两段式加热,最高升温速率为 102 ℃ / s ,远远低于实际运行中的升温速率。该装置的加热原理是将物料放入高温恒温区,采用传热的过程对物料进行加热,因此升温速率低、升温历程无法实现线性可控。
中国专利,公开日: 2007 年 11 月 7 日,公开号: CN200972442Y ,申请号: 200620127972.8 的发明专利 ' 高温热天平 ' ,采用管式电阻炉与电子天平联合组成热天平,利用管式电阻炉对物料进行加热。这种加热方式决定了该装置加热速率低,能量消耗较大。
发明内容
本发明要解决的技术问题是提供一种可控高升温速率热天平,可在接近实际工况的升温速率条件下,获得各种燃料的样品质量变化和颗粒温度历程,从而获得反应动力学常数,为掌握各种燃料的气固反应机理和物理化学过程变化规律提供依据。
本发明为实现上述目的所采用的技术方案是:
本发明包括线网反应系统、温度采集和控制系统、质量采集系统。
线网反应系统包括双层金属线网、平衡器、金属电极和无线电源系统。无线电源系统包括无线电源供电装置和无线电源接收装置。金属电极放置在平衡器的两端,双层金属线网两端夹持在金属电极上。无线电源接收装置与金属电极相连,通过接收无线电源供电装置提供的电能使双层金属线网有电流流过,使用电流对物料进行高升温速率的加热。
温度采集和控制系统设有高灵敏测温装置,高灵敏测温装置与功率调节器相连,温度的测量与控制通过计算机自动进行。通过高灵敏测温装置测量样品的颗粒温度,测量到的温度信号经过放大器、滤波器作用转化为电信号进入计算机进行信号处理。温度信号经计算机进行控制运算后,输出控制信号对功率控制器进行控制,实现对升温速率的控制。
质量采集系统采用高灵敏微差天平,将样品的质量变化实时转化成电信号传输到电控装置中进行连续监测和存储。高灵敏微差天平有位移检测器,样品的质量变化引起平衡器位移,位移检测器将检测到的位移转化成电信号,电信号经过放大器放大,进入计算机进行存储。
本发明的装置外可以设密封罩,通过向密封罩内通入气体,实现不同气氛条件下的实验。
本发明的有益效果在于:
1 )反应装置升温速率高、范围广。升温速率最小为 10 ℃ /min ,最大为 1000 ℃ /s 。最高升温速率接近工业条件,使燃料应用过程的研究更接近实际工况。
2 )升温过程线性可控。在线性升温的条件下,准确获得样品的质量变化和温度历程。为模拟接近工业条件下的燃料的反应动力学过程提供了条件。
3 )反应气氛可控。提供不同纯度的气氛条件,满足较高气氛纯度要求条件下的实验。
附图说明
[根据细则91更正 21.06.2011] 
附图1是本发明实施例结构示意图。
图中: 1 高灵敏微差天平; 2 平衡器; 3 金属电极; 4 双层金属线网;
5 无线电源接收装置; 6 无线电源供电装置; 7 高灵敏测温装置; 8 密封罩; 9 进气口; 10 排气口。
具体实施方式
下面结合具体实施例和附图详细阐述本发明,但本发明并不局限于具体实施例。
实施例:
本装置采用电流加热的方式,将受控电流通过双层金属线网,产生升温所需热量。高灵敏微差天平 1 组成了设备的框架。高灵敏微差天平 1 有平衡器 2 ,平衡器 2 两端设金属电极 3 。运行过程中,双层金属线网 4 被夹持在金属电极 3 上,本实施例双层金属线网选取孔径为 200 目的不锈钢线网。无线接收装置 5 与金属电极 3 相连,通过接受无线供电装置 6 传输的电能对双层金属线网 4 及线网间夹持的物料进行加热。
高灵敏测温装置 7 测量到的温度信号经过放大器、滤波器作用转化为电信号进入计算机进行信号处理。温度信号采集频率为 100Hz ,经微处理器进行控制运算后,输出控制信号对功率控制器进行控制,实现对升温速率的控制。本装置设有密封罩 8 ,密封罩上有平衡进气口 9 和排气口 10 。实验时可根据需求的气氛不同,从平衡进气口 9 向装置内通入不同的气体。
质量采集系统采用高灵敏度微差天平 1 将样品的质量变化实时转化成电信号传输到计算机中进行连续监测和存储。 由于选用孔径为 200 目的不锈钢线网, 实验前将待测样品制成粒径为 100-200μm 的粉末,这样保证样品在铺放时能以单颗粒状态均匀铺开,线网的冲压印痕又防止样品的过度移位。实验时将待测样品均匀铺放于双层金属线网 4 的一侧,随着温度升高,样品的质量变化实时被高灵敏度微差天平 1 转化为电信并传输到微控制器进行存储。
实验结束后,根据储存在计算机内的温度变化曲线及质量变化曲线获得反应的动力学参数,分析反应特性、推断反应机理。

Claims (1)

1. 一种可控高升温速率热天平,包括线网反应系统、温度采集和控制系统、质量采集系统, 其特征是:
线网反应系统包括双层金属线网 (4) 、平衡器 (2) 、金属电极 (3) 和无线电源系统;无线电源系统包括无线电源供电装置 (6) 和无线电源接收装置 (5) ;金属电极放置在平衡器的两端,双层金属线网两端夹持在金属电极上;无线电源接收装置与金属电极相连,通过接收无线电源供电装置提供的电能使双层金属线网有电流流过,使用电流对物料进行高升温速率的加热;
温度采集和控制系统设有高灵敏测温装置 (7) ,高灵敏测温装置与功率调节器相连,温度的测量与控制通过计算机自动进行;
质量采集系统采用高灵敏微差天平 (1) ,将样品的质量变化实时转化成电信号传输到电控装置中进行连续监测和存储。
2 . 根据权利要求 1 所述的 一种可控高升温速率热天平 ,其特征是:在装置外设密封罩 (8) ,通过向密封罩内通入气体,实现不同气氛条件下的实验。
PCT/CN2011/071793 2010-12-16 2011-03-15 一种可控高升温速率热天平 WO2012079314A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013543500A JP2014505237A (ja) 2010-12-16 2011-03-15 一種の高加熱速度制御可能な熱天秤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010590839 CN102564887B (zh) 2010-12-16 2010-12-16 一种可控高升温速率热天平
CN201010590839.7 2010-12-16

Publications (1)

Publication Number Publication Date
WO2012079314A1 true WO2012079314A1 (zh) 2012-06-21

Family

ID=46244024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071793 WO2012079314A1 (zh) 2010-12-16 2011-03-15 一种可控高升温速率热天平

Country Status (3)

Country Link
JP (1) JP2014505237A (zh)
CN (1) CN102564887B (zh)
WO (1) WO2012079314A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374669A (zh) * 2014-11-19 2015-02-25 东北大学 一种直接还原和熔融还原联动试验装置及其使用方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568649A (zh) * 2015-01-21 2015-04-29 杨康莉 一种超细粉体灭火剂全淹没临界灭火浓度测试装置及方法
CN109900587A (zh) * 2019-03-09 2019-06-18 徐立杰 一种具有多个测量位的测量热敏物质含水量的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125687A (en) * 1998-08-20 2000-10-03 International Business Machines Corporation Apparatus for measuring outgassing of volatile materials from an object
CN2445321Y (zh) * 2000-11-22 2001-08-29 中国科学院金属研究所 多种气氛高温腐蚀热天平测量装置
WO2004051236A1 (en) * 2002-12-02 2004-06-17 The Charles Stark Draper Laboratory, Inc. Mems-based thermogravimetric analyzer
CN101382478A (zh) * 2008-08-18 2009-03-11 山东大学 一种用微波加热试样的热重分析方法和装置
CN201373831Y (zh) * 2009-02-23 2009-12-30 斯芹 加压热天平测量装置
CN101799242A (zh) * 2010-01-29 2010-08-11 华中科技大学 一种可控快速升温热天平反应炉

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418042A (en) * 1987-07-14 1989-01-20 Mitsubishi Heavy Ind Ltd Thermogravimetric and gas analyzer
JP2667021B2 (ja) * 1989-10-19 1997-10-22 株式会社ケット科学研究所 赤外線水分計における水分測定方法および装置
JPH053982U (ja) * 1991-07-05 1993-01-22 財団法人シツプ・アンド・オーシヤン財団 熱重量分析装置
JP2563852Y2 (ja) * 1993-07-09 1998-02-25 株式会社ケット科学研究所 加熱乾燥型水分計
JP3113998B2 (ja) * 1993-07-22 2000-12-04 住友化学工業株式会社 熱分析装置
US7645069B1 (en) * 2005-07-27 2010-01-12 L-3 Communications Cyterra Corporation Energetic material detector
CN200972442Y (zh) * 2006-10-24 2007-11-07 中国科学院山西煤炭化学研究所 高温热天平
JP5215744B2 (ja) * 2008-06-13 2013-06-19 株式会社エー・アンド・デイ 水分計
CN201903489U (zh) * 2010-12-16 2011-07-20 大连理工大学 一种可控高升温速率热天平

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125687A (en) * 1998-08-20 2000-10-03 International Business Machines Corporation Apparatus for measuring outgassing of volatile materials from an object
CN2445321Y (zh) * 2000-11-22 2001-08-29 中国科学院金属研究所 多种气氛高温腐蚀热天平测量装置
WO2004051236A1 (en) * 2002-12-02 2004-06-17 The Charles Stark Draper Laboratory, Inc. Mems-based thermogravimetric analyzer
CN101382478A (zh) * 2008-08-18 2009-03-11 山东大学 一种用微波加热试样的热重分析方法和装置
CN201373831Y (zh) * 2009-02-23 2009-12-30 斯芹 加压热天平测量装置
CN101799242A (zh) * 2010-01-29 2010-08-11 华中科技大学 一种可控快速升温热天平反应炉

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374669A (zh) * 2014-11-19 2015-02-25 东北大学 一种直接还原和熔融还原联动试验装置及其使用方法
CN104374669B (zh) * 2014-11-19 2017-02-22 东北大学 一种直接还原和熔融还原联动试验装置及其使用方法

Also Published As

Publication number Publication date
CN102564887A (zh) 2012-07-11
JP2014505237A (ja) 2014-02-27
CN102564887B (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
CN108120795B (zh) 自馈式加热煤堆低温氧化诱导加速自燃试验模拟装置
CN207408261U (zh) 大重量生物质压块成型燃料燃烧特性测试装置
CN111999343A (zh) 一种煤自燃特征参数测定实验平台
CN102353763A (zh) 一种测试煤炭自燃发火期小型模拟装置
WO2012079314A1 (zh) 一种可控高升温速率热天平
CN206235585U (zh) 一种煤样升温氧化测试装置
CN103710684A (zh) 一种用于化学气相沉积反应的一体化在线检测系统
CN107421987B (zh) 一种测量煤低温氧化发热率的装置与方法
CN108398022B (zh) 用于小规模生产焦炭及胶质层样品的实验焦炉及使用方法
CN106290700A (zh) 一种流化床内气固反应实时工况测量系统
CN106635084A (zh) 一种生物质坩埚焦的制备装置及方法
CN109001283B (zh) 一种自恒温电化学片式气体传感器及其制备方法
CN111189959A (zh) 测试粉体热解和燃烧特性及其火蔓延特性的综合实验平台
CN102495161B (zh) 专用于绝缘油中溶解气体分析的火焰离子化检测器
CN201903489U (zh) 一种可控高升温速率热天平
CN111781238B (zh) 粉尘层阴燃模拟研究装置及其用途
CN102230906A (zh) 煤粉自然特性测定系统及测定方法
CN202548075U (zh) 自控式粒状活性炭着火点检测装置
CN105841868A (zh) 一种单侧加热式煤结焦膨胀力检测装置及检测方法
CN206523393U (zh) 一种快速升温热重分析仪
CN105181514A (zh) 一种煤低温氧化过程中氧化反应生成水分的测量装置及方法
CN206532381U (zh) 一种火电厂安全预警装置
CN202330379U (zh) 专用于绝缘油中溶解气体分析的火焰离子化检测器
CN209117620U (zh) 催化燃烧传感器
CN107741379B (zh) 大重量生物质压块成型燃料燃烧特性测试装置及测控方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013543500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849767

Country of ref document: EP

Kind code of ref document: A1