WO2012077536A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2012077536A1
WO2012077536A1 PCT/JP2011/077525 JP2011077525W WO2012077536A1 WO 2012077536 A1 WO2012077536 A1 WO 2012077536A1 JP 2011077525 W JP2011077525 W JP 2011077525W WO 2012077536 A1 WO2012077536 A1 WO 2012077536A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
scattered light
amount
reagent
scattered
Prior art date
Application number
PCT/JP2011/077525
Other languages
English (en)
French (fr)
Inventor
正樹 芝
安藤 学
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to JP2012547793A priority Critical patent/JP5661124B2/ja
Priority to US13/991,467 priority patent/US20130294974A1/en
Priority to EP11847725.6A priority patent/EP2650673B1/en
Priority to CN201180058160.6A priority patent/CN103238062B/zh
Publication of WO2012077536A1 publication Critical patent/WO2012077536A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/82Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes

Definitions

  • the present invention relates to an automatic analyzer that performs qualitative and quantitative analysis of biological samples such as serum and urine.
  • a measurement target sample for example, a biological sample such as serum or urine, or a reaction mixture of these with a reagent
  • an automatic analyzer In biochemical analysis and immunological analysis, analysis of a measurement target sample (for example, a biological sample such as serum or urine, or a reaction mixture of these with a reagent) using an automatic analyzer is widely performed.
  • a measurement target sample for example, a biological sample such as serum or urine, or a reaction mixture of these with a reagent
  • the automatic analyzer measures the state of color reaction and agglutination reaction in the reaction mixture by measuring the transmitted light and scattered light when the measurement vessel is irradiated with the measurement light from the light source. There is something to do.
  • Patent Document 1 As an automatic analyzer for measuring scattered light, for example, in Patent Document 1, integrating spheres are arranged before and after the reaction vessel in the measurement light path irradiated to the reaction vessel, and the average light amounts of the forward scattered light and the publication scattered light, respectively. A technique for correcting turbidity change due to a cell position shift by measuring the above is disclosed. Patent Documents 2 and 3 disclose an automatic analyzer that separates transmitted light and scattered light using a diaphragm and simultaneously measures absorbance and scattered light.
  • the concentration is converted by measuring the transmitted light (absorbance method), or when the concentration is converted by measuring scattered light
  • the incident light amount and the received light amount for measuring transmitted light or scattered light must be suppressed in advance within a certain range.
  • the absorbance method the amount of transmitted light when water having no absorbance is dispensed into the reaction vessel is considered as the amount of light from the light source, and the light amount of light source or light receiving sensitivity is corrected. That is, in the absorbance method, it is possible to simultaneously check the light amount of the light source and confirm the baseline.
  • the amount of scattered light is ideally 0 (zero) when there is no scatterer in the reaction vessel, but in reality, weak scattered light such as scattering from the reaction vessel is measured. Is done. Further, since the scattered light amount is in a strong proportional relationship with the incident light amount, the baseline light amount of the scattered light cannot be determined unless the incident light amount is determined. Therefore, it is difficult to confirm the baseline of the scattered light, and a difference (difference between devices) has occurred between the analysis results of other analyzers.
  • the present invention has been made in view of the above, and an automatic analyzer that can correct the amount of incident light even in an analysis using scattered light and can suppress the difference between the analysis results due to the amount of incident light.
  • the purpose is to provide.
  • the present invention is provided with a light source for irradiating measurement light to a reaction vessel in which a sample to be measured and a reagent are allowed to react, and a light source that faces the light source across the reaction vessel, A transmitted light receiver for measuring the transmitted light from the reaction container, at least one scattered light receiver for measuring scattered light from the reaction container, disposed on the transmitted light receiver side of the reaction container, and the transmitted light It is assumed that light source light amount correction means for correcting the light amount of the measurement light emitted from the light source is provided based on the detection result of the light receiver.
  • the present invention it is possible to correct the amount of incident light even in an analysis using scattered light, and it is possible to suppress a difference between apparatuses in an analysis result caused by the amount of incident light.
  • FIG. 1 is a diagram schematically showing an overall configuration of an automatic analyzer according to an embodiment of the present invention. It is a figure which shows the structure of a measurement part, and the mode of a measurement process roughly. It is a figure which shows an example of the relationship of the scatterer density
  • FIG. 1 is a diagram schematically showing an overall configuration of an automatic analyzer according to the present embodiment.
  • the automatic analyzer includes a sample disk 5, first and second reagent disks 13 ⁇ / b> A and 13 ⁇ / b> B, a reaction disk 1, a sample dispensing mechanism 7 for performing a dispensing process,
  • the reagent dispensing mechanisms 12A and 12B, the measurement unit 40 that performs measurement processing of the mixed reaction solution, and other functional units including the computer 18 that controls the operation of the entire automatic analyzer are schematically configured.
  • a plurality of sample containers 6 each storing a sample to be measured (for example, a biological sample such as serum or urine) are arranged and fixed in the circumferential direction on the sample disk 5.
  • the sample disk 1 is rotated in the circumferential direction by a rotation driving mechanism (not shown) and stopped at a predetermined position.
  • the first and second reagent disks 13A and 13B are arranged in the reagent cold storages 9A and 9B, respectively, and a plurality of reagent bottles 10A and 10B corresponding to analysis processing items in the automatic analyzer are arranged in the circumferential direction. Arranged and fixed side by side.
  • the first and second reagent disks 13A and 13B are rotated in the circumferential direction by a rotation driving mechanism (not shown) and stopped at a predetermined position.
  • the first and second reagent disks 13A and 13B are provided with reading devices 34A and 34B for reading the reagent identification information provided in the reagent bottles 10A and 10B.
  • the read reagent identification information includes the first and second reagent disks 13A and 13B.
  • the position information on the second reagent disks 13A and 13B is sent to the computer 18 via the interface 19 and stored in the memory 11.
  • the reagent identification information is a barcode
  • the reading devices 34A and 34B are barcode reading devices.
  • the first and second reagent disks 13A and 13B are also loaded with first and second reference reagents used in correction processing of the measurement unit 40 described later.
  • the reaction disk 1 is disposed in a constant temperature bath 3 controlled to a predetermined temperature (for example, 37 ° C.) by a constant temperature maintaining device 4, and a plurality of reaction containers 2 for mixing a sample to be measured and a reagent are provided. Arranged and fixed side by side in the circumferential direction. The reaction disk 1 is rotated in the circumferential direction by a rotation drive mechanism (not shown) and stopped at a predetermined position. The reaction container 2 is moved to the dispensing position of the sample to be measured and the dispensing position of the reagent by the rotation of the reaction disk 1.
  • a rotation drive mechanism not shown
  • the sample to be measured is dispensed by the sample dispensing mechanism 7 at the dispensing position of the sample to be measured, and the reagent dispensing mechanism 12A is disposed at the reagent dispensing position of the first and second reagent disks 13A and 13B. , 12B dispense the reagent corresponding to the analysis item, and the stirring mechanism 33A, 33B performs the stirring process.
  • the operation of the sample dispensing mechanism 7 is controlled by the sample dispensing control unit 20, and the operation of the reagent dispensing mechanisms 12A and 12B is controlled by the reagent dispensing control unit 21.
  • the reaction disk 1 is provided with a measurement unit 40 that performs a measurement process on a mixed reaction solution of a measurement target sample and a reagent accommodated in the reaction vessel 2.
  • the measurement unit 40 includes a light source 14 (for example, LED: Light Emitting Diode) that irradiates the reaction vessel 2 with measurement light, and a photometry unit 15 that detects transmitted light and scattered light from the reaction vessel 2. The measurement is performed when the reaction vessel 2 crosses between the light source 14 and the photometry unit 15 by the rotation operation of the reaction disk 1.
  • the measurement result (analog signal) in the photometry unit 15 is digitally converted by the A / D converter 16 and sent to the computer 18 via the interface 19.
  • the reaction container 2 containing the sample (mixed reaction solution) for which the measurement has been completed is cleaned by the cleaning mechanism 17 at the cleaning position.
  • the automatic analyzer includes a keyboard 24 as an input device, a CRT display 25 as a display device, a printer 22 as a print output device, a recording medium drive 23 for recording on an external output medium such as an FD, and a memory as a storage device.
  • 11 is connected to each functional unit including the computer 18 through an interface 19.
  • the memory 11 is a storage device such as a hard disk.
  • the memory 11 stores information such as passwords set for each operator, screen display levels, analysis parameters, analysis request item contents, and calibration results. Has been.
  • FIG. 2 is a diagram schematically showing the configuration of the measurement unit 40 in FIG. 1 and the state of measurement processing. In FIG. 2, the case where the contents 102 are accommodated in the reaction container 2 is illustrated.
  • the measuring unit 40 includes a light source 14 and a photometric unit 15, and the photometric unit 15 is disposed so as to face the light source 14 with the reaction vessel 2 interposed therebetween.
  • Transmitted light receiver 15A that measures the amount of transmitted light from the object 102) and at least one that measures the scattered light from the reaction container 2 disposed on the transmitted light receiver 15A side of the reaction container 2 (this embodiment)
  • two scattered light receivers 15B and 15C are provided.
  • the transmitted light receiver 15A and the scattered light receivers 15B and 15C are, for example, a photodiode or a PMT (Photomultiplier Tube).
  • the transmitted light receiver 15A is disposed on the optical axis of the measurement light emitted from the light source 14 to the reaction vessel 2, and detects the transmitted light 14a from the reaction vessel 2 that travels along this optical axis.
  • the scattered light receiver 15 ⁇ / b> B is disposed at a position that is a predetermined angle ⁇ ⁇ b> 1 centering on the reaction container 2 from the optical axis of the measurement light emitted from the light source 14 to the reaction container 2, and the scattering generated in the reaction container 2. Of the light, the scattered light 14b is detected.
  • the LED which is a single wavelength light source was illustrated as the light source 14, for example, a multi-wavelength light source in which the wavelength of generated light is variably configured is used, and a multi-wavelength photometer is used as the transmitted light receiver 15A. Also good.
  • the scattered light receiver 15B is disposed at the position of the angle ⁇ 1 upward from the optical axis of the measurement light, but the present invention is not limited to this. Alternatively, it may be provided in any one of the up, down, left and right directions.
  • the scattered light receiver 15C is the same as the scattered light receiver 15B. That is, the scattered light receiver 15 ⁇ / b> C is disposed at a position that is a predetermined angle ⁇ ⁇ b> 2 centering on the reaction container 2 from the optical axis of the measurement light irradiated from the light source 14 to the reaction container 2. Of the scattered light, the scattered light 14c is detected.
  • the scatterer concentration in the contained material 102 (mixed reaction liquid) accommodated in the reaction vessel 2 is measured by measuring the amount of transmitted light and the amount of scattered light by such a measurement unit 40. ing.
  • FIG. 3 is a diagram illustrating an example of the relationship between the transmitted light amount and scattered light amount measured by the measurement unit 40 and the scatterer concentration in the container 102 accommodated in the reaction container 2.
  • the transmitted light amount is shown on the first vertical axis (left side)
  • the scattered light amount is shown on the second vertical axis (right side)
  • the scatterer concentration is shown on the horizontal axis (lower side).
  • the relationship between the transmitted light amount and the scatterer concentration is indicated by a solid line 51
  • the relationship between the scattered light amount and the scatterer concentration is indicated by a solid line 52.
  • the transmitted light amount (first vertical axis) represents the ratio of the transmitted light amount to the light amount of the measurement light irradiated to the reaction container 2.
  • the transmitted light amount is the light amount of the measurement light irradiated from the light source 14.
  • the ratio of the amount of light detected by the transmitted light receiver 15A is shown as a percentage.
  • the scattered light amount (second vertical axis) indicates a value obtained by normalizing the detection results of the scattered light receivers 15B and 15C according to a predetermined rule.
  • the scatterer concentration (horizontal axis) also shows a value obtained by normalizing the scatterer concentration obtained from the detection result according to a predetermined rule.
  • the scatterer concentration of the substance accommodated in the reaction container 2 is “0” (for example, when water that does not contain scatterer is accommodated: see region 50A)
  • the transmitted light amount is “100” as indicated by a point 51a of the solid line 51 indicating the relationship
  • the scattered light amount is “0” as indicated by a point 52a of the solid line 52 indicating the relationship between the scattered light amount and the scatterer concentration. From this state, as the scatterer concentration in the reaction vessel 2 gradually increases, the amount of scattered light increases and the amount of transmitted light decreases. Note that not all of the decrease in the amount of transmitted light is detected as the amount of scattered light, but there is also a portion that is absorbed and decreased in the reaction mixture 102.
  • the scatterer concentration of the substance accommodated in the reaction container 2 is “6” (that is, when a reaction mixture having a scatterer concentration of “6” is accommodated: see the region 50B)
  • the transmitted light amount is “40” as indicated by a solid line 51 point 51b indicating the scatterer concentration relationship
  • the scattered light amount is “6” as indicated by a solid line 52 point 52b indicating the scatterer concentration relationship.
  • the transmitted light amount is calculated from the detection result of the transmitted light receiver 15A
  • the scattered light amount is calculated from the detection results of the scattered light receivers 15B and 15C
  • the transmitted light amount and the scattered light amount are used.
  • the scatterer concentration of the reaction mixture 2 is calculated from the relationship shown in FIG.
  • correction processing (light source light amount correction, receiver sensitivity correction)
  • the correction process in the automatic analysis of this embodiment will be described.
  • the correction process is a process of adjusting the irradiation light amount of the light source 14 of the measurement unit 40 and the detection sensitivity of the transmitted light receiver 15A and the scattered light receivers 15B and 15C before the start of the measurement process.
  • FIG. 4 is a flowchart showing the correction processing of the present embodiment.
  • the automatic analyzer dispenses the first reference reagent into the reaction vessel 2 by the reagent dispensing mechanisms 12A, 12B and the like according to instructions from the computer 18 that controls the overall operation (step S410).
  • the first reference reagent has a known property of transmission and scattering with respect to the measurement light in advance, and for example, is unlikely to affect the measurement light like water (that is, it is easily transmitted and hardly scattered).
  • the transmitted light amount of the first reference reagent is confirmed by the measurement unit 40 (step S420).
  • the result of the reagent measurement at this time is 50A in FIG. 3, and the amount of transmitted light is as shown in FIG. 51a.
  • step S430 It is determined whether or not the transmitted light amount is within a predetermined reference range of the transmitted light amount (step S430). If the determination result in step S430 is NO, the light amount of the light source 14 is corrected in a direction to eliminate the difference between the reference range (for example, the median value of the reference range) and the measurement result (step S431), and the transmitted light amount is the reference. Steps S420 and S431 are repeated until the value is within the range.
  • the reference range for example, the median value of the reference range
  • step S431 the measurement result
  • step S440 the amount of scattered light of the first reference reagent is subsequently confirmed (step S440).
  • the result of measuring the reagent at this time is 50A in FIG. 3, and the amount of scattered light is as shown in FIG. 52a.
  • step S450 It is determined whether or not the scattered light amount is within a predetermined reference range of the scattered light amount (step S450).
  • the determination result in step S450 is NO, the base value of the sensitivity of the scattered light receivers 15B and 15C is corrected in a direction to eliminate the difference between the reference range (for example, the median value of the reference range) and the measurement result ( Step S431), Steps S440 and S451 are repeated until the amount of scattered light falls within the reference range.
  • the second reference reagent is dispensed into the empty reaction container 2 by the reagent dispensing mechanisms 12A, 12B, etc. (step S460).
  • the second reference reagent has a known property of transmission and scattering with respect to the measurement light in advance, and is, for example, a solution of a reference scatterer such as latex.
  • the amount of scattered light of the second reference reagent is confirmed by the measuring unit 40 (step S470).
  • the result of the reagent measurement at this time is 50B in FIG. 3, and the amount of scattered light is as shown in FIG. 52b. It is determined whether or not the scattered light amount is within a predetermined reference range of the scattered light amount (step S480).
  • step S480 If the determination result in step S480 is NO, the slope of the sensitivity of the scattered light receivers 15B and 15C is corrected in a direction to eliminate the difference between the reference range (for example, the median value of the reference range) and the measurement result (step S480). S481), Steps S470 and S481 are repeated until the amount of scattered light falls within the reference range. If the determination result in step S480 is YES, the correction process ends.
  • the reference range for example, the median value of the reference range
  • what is used as the first and second reference reagents may be solid as long as the properties of transmission and scattering with respect to the measurement light are known in advance.
  • the reaction vessel 2 is filled and solidified.
  • a thing processed into the external shape similar to the reaction container 2 may be mounted on the reaction disk 1.
  • analysis parameters relating to analysis items are input in advance by an information input device such as a keyboard 24 and stored in the memory 11.
  • the operator operates the operation function screen to select the patient ID corresponding to each sample and the requested examination item.
  • the transmitted light amount is confirmed by the measurement unit 40 with respect to the reaction container 2 into which the first reference reagent has been dispensed by the reagent dispensing mechanisms 12A and 12B.
  • a light amount correction process (light source light amount correction) of the light source 14 is performed so as to be within the range (steps S410 to S431 in FIG. 4).
  • the amount of scattered light is confirmed by the measuring unit 40, and correction processing of the sensitivity base values of the scattered light receivers 15B and 15C is performed so that the amount of scattered light falls within the reference range (steps S440 to S451 in FIG. 4).
  • the measurement unit 40 confirms the amount of scattered light with respect to the reaction container 2 into which the second reagent has been dispensed by the reagent dispensing mechanisms 12A and 12B, and receives scattered light so that the amount of scattered light falls within the reference range.
  • Correction processing of the sensitivity gradients of the devices 15B and 15C is performed (steps S460 to S481 in FIG. 4), and the correction processing ends.
  • the sample to be measured is dispensed from each sample container 6 to the reaction container 2 by the sample dispensing mechanism 7 according to the requested inspection item, and the corresponding reagent is dispensed by the reagent dispensing mechanisms 12A and 12B.
  • the reaction mixture in the reaction vessel 2 is stirred by the stirring mechanisms 33A and 33B.
  • the reaction container 2 to be measured passes through the position (measurement position) of the measurement unit 40 by the rotation of the reaction disk 1
  • the transmitted light amount and the scattered light amount are measured by the measurement unit 40, and the A / D converter 16 Digitally converted and sent to the computer 18 via the interface 19.
  • the computer 18 converts the data into concentration data based on a calibration curve measured in advance by an analysis method designated for each inspection item. Component concentration data as an analysis result of each inspection item is output to the screen of the printer 22 or CRT 25.
  • the concentration is converted by measuring the transmitted light (absorbance method), or when the concentration is converted by measuring scattered light
  • the incident light amount and the received light amount for measuring transmitted light or scattered light must be suppressed in advance within a certain range.
  • the absorbance method the amount of transmitted light when water having no absorbance is dispensed into the reaction vessel is considered as the amount of light from the light source, and the light amount of light source or light receiving sensitivity is corrected. That is, in the absorbance method, it is possible to simultaneously check the light amount of the light source and confirm the baseline.
  • the amount of scattered light is ideally 0 (zero) in the absence of scatterers in the reaction vessel, but in reality, weak scattered light such as scattering from the reaction vessel is measured.
  • the scattered light amount is in a strong proportional relationship with the incident light amount, the baseline light amount of the scattered light cannot be determined unless the incident light amount is determined. Therefore, it is difficult to confirm the baseline of the scattered light, and a difference (difference between devices) has occurred between the analysis results of other analyzers.
  • a reaction vessel that irradiates a reaction vessel with a sample to be measured and a reagent to be reacted, a light source that irradiates measurement light, and a light source across the reaction vessel are provided so as to face the light source.
  • a transmitted light receiver that measures light, at least one scattered light receiver that is disposed on the transmitted light receiver side of the reaction container and measures scattered light from the reaction container Since the light source light amount correction means for correcting the light amount of the measurement light emitted from the light source is provided, it is possible to correct the incident light amount even in the analysis using scattered light, and the difference between the analysis results due to the incident light amount Can be suppressed.
  • the angles ( ⁇ 1, ⁇ 2, etc.) of the irradiated light with respect to the optical axis are the same for at least two of the plurality of scattered light detectors. From the knowledge that scattered light receivers with the same angle ideally detect the same amount of scattered light, the difference in the amount of light received by scattered light receivers installed at the same angle from the optical axis should be outside the reference range. For example, it may be determined that the scattered light receiver is misaligned and the position of the scattered light receiver is corrected.

Abstract

 測定対象試料と試薬とを入れて反応させる反応容器2に光源14から測定光を照射し、反応容器2を挟んで光源14に対向するよう設けられた透過光受光器15Aにより反応容器2からの透過光14aを測定するとともに、反応容器2の透過光受光器15A側に配置された散乱光受光器15B,15Cにより反応容器2からの散乱光14b、14cを測定し、透過光受光器15B,15Cの検出結果に基づいて、光源14から照射される測定光の光量を補正する。これにより、散乱光を用いる分析においても入射光量の補正を可能とし、入射光量が起因となる分析結果の装置間差を抑制することができる。

Description

自動分析装置
 本発明は、血清や尿等の生体試料の定性・定量分析を行う自動分析装置に関する。
 生化学分析や免疫分析などにおいては、自動分析装置を用いた測定対象試料(例えば、血清や尿などの生体試料、或いは、それらと試薬との反応混合液)の分析が広く行われている。
 測定対象試料の分析には、生化学分析のように基質と酵素との呈色反応を測定するものや、免疫分析のように抗原と抗体との凝集反応を測定するものがある。そして自動分析装置には、光源から反応混合液を収容した反応容器に測定光を照射したときの透過光や散乱光を測定することにより、反応混合液における呈色反応や凝集反応の状態を測定するものがある。
 散乱光を測定する自動分析装置として、例えば、特許文献1には、反応容器に照射される測定光進路の反応容器前後に積分球を配置し、前方散乱光と公報散乱光のそれぞれの平均光量を測定してセル位置ずれによる濁度変化を補正する技術が開示されている。また、特許文献2,3には、ダイアフラムを用いて透過光と散乱光とを分離し、吸光度と散乱光を同時に測定する自動分析装置が開示されている。
特開平10-332582号公報 特開2001-141654号公報 特開2008-8794号公報
 従来技術のように、測定対象物である反応混合液に光を入射し、その透過光を測定することで濃度換算する場合(吸光度法)、或いは、散乱光を測定することで濃度換算する場合、入射光量および透過光あるいは散乱光を測定する受光光量は予め一定の範囲内のバラつきに抑える必要がある。吸光度法を用いる場合には、反応容器に吸光度の無い水を分注した時の透過光量を光源の光量として考え、光源光量あるいは受光感度の補正を行なっている。つまり吸光度法では光源の光量のチェックとベースラインの確認を同時に行うことが可能である。
 一方で、散乱光を用いる場合には、反応容器に散乱体の無い状態では散乱光量は理想的には0(ゼロ)であるが、実際には反応容器からの散乱など微弱な散乱光が測定される。また散乱光量は入射光量と強い比例関係にあるため、入射光量が確定しないと散乱光のベースライン光量も確定できない。したがって、散乱光のベースラインを確認することが困難であり、別の分析装置の分析結果との間に差(装置間差)が生じてしまっていた。
 本発明は上記に鑑みてなされたものであり、散乱光を用いる分析においても入射光量の補正を可能とし、入射光量が起因となる分析結果の装置間差を抑制することができる自動分析装置を提供することを目的とする。
 上記目的を達成するために、本発明は、測定対象試料と試薬とを入れて反応させる反応容器に測定光を照射する光源と、前記反応容器を挟んで前記光源に対向するよう設けられ、前記反応容器からの透過光を測定する透過光受光器と、前記反応容器の前記透過光受光器側に配置され、前記反応容器からの散乱光を測定する少なくとも1つの散乱光受光器と、前記透過光受光器の検出結果に基づいて、前記光源から照射される測定光の光量を補正する光源光量補正手段とを供えたものとする。
 本発明によれば、散乱光を用いる分析においても入射光量の補正を可能とし、入射光量が起因となる分析結果の装置間差を抑制することができる。
本発明の一実施の形態に係る自動分析装置の全体構成を概略的に示す図である。 測定部の構成及び測定処理の様子を概略的に示す図である。 測定部で測定される透過光量および散乱光量と反応容器に収容された収容物中の散乱体濃度の関係の一例を示す図である。 本実施の形態の補正処理を示すフローチャートである。
 以下、本発明の一実施の形態を図面を参照しつつ説明する。
 (1)自動分析装置の構成
  図1は、本実施の形態に係る自動分析装置の全体構成を概略的に示す図である。
 図1において、自動分析装置は、間欠回転可能に設けられたサンプルディスク5、第1,第2試薬ディスク13A,13B、及び、反応ディスク1と、分注処理を行う試料分注機構7、及び、試薬分注機構12A,12Bと、混合反応液の測定処理を行う測定部40と、自動分析装置全体の動作を制御するコンピュータ18を含むその他の機能部とから概略構成されている。
 サンプルディスク5には、測定対象試料(例えば、血清や尿などの生体試料)が収容された複数の試料容器6が周方向並べて配置され固定されている。サンプルディスク1は図示しない回転駆動機構により周方向に回転され、所定の位置に停止される。
 第1及び第2試薬ディスク13A,13Bは、それぞれ、試薬保冷庫9A,9B内に配置されており、自動分析装置における分析処理の処理項目に対応した複数の試薬ボトル10A,10Bが周方向に並べて配置され固定されている。第1及び第2試薬ディスク13A,13Bは図示しない回転駆動機構により周方向に回転され、所定の位置に停止される。また、第1及び第2試薬ディスク13A,13Bには、試薬ボトル10A,10Bに設けられた試薬識別情報を読み取る読取装置34A,34Bが設けられており、読み取った試薬識別情報は、第1及び第2試薬ディスク13A,13B上のポジション情報とともにインタフェース19を介してコンピュータ18に送られ、メモリ11に記憶される。例えば、試薬識別情報はバーコードであり、読取装置34A,34Bはバーコード読取装置である。なお、第1及び第2試薬ディスク13A,13Bには、後述する測定部40の補正処理で用いる第1及び第2基準試薬も載置されている。
 反応ディスク1は、恒温維持装置4によって所定の温度(例えば、37℃)に制御された恒温槽3内に配置されており、測定対象試料と試薬とを混合するための複数の反応容器2が周方向に並べて配置され固定されている。反応ディスク1は図示しない回転駆動機構により周方向に回転され、所定の位置に停止される。そして、反応容器2は反応ディスク1の回転により測定対象試料の分注位置および試薬の分注位置に移動される。反応容器2には、測定対象試料の分注位置においてサンプル分注機構7により測定対象試料が分注され、第1及び第2試薬ディスク13A,13Bの試薬の分注位置において試薬分注機構12A,12Bにより分析項目に対応する試薬が分注され、攪拌機構33A,33Bにより攪拌処理が行われる。サンプル分注機構7の動作はサンプル分注制御部20によって制御され、試薬分注機構12A,12Bの動作は試薬分注制御部21によって制御される。
 反応ディスク1には、反応容器2に収容された測定対象試料と試薬との混合反応液に対して測定処理を行う測定部40が設けられている。測定部40は、反応容器2に対して測定光を照射する光源14(例えば、LED:Light Emitting Diode)と、反応容器2からの透過光および散乱光を検出する測光部15とを有しており(後に詳述)、反応ディスク1の回転動作によって光源14と測光部15の間を反応容器2が横切るときに測定を行う。測光部15での測定結果(アナログ信号)はA/D変換器16によりディジタル変換され、インタフェース19を介してコンピュータ18に送られる。
 測定の終了した試料(混合反応液)が収容された反応容器2は洗浄位置で洗浄機構17により洗浄処理される。
 また、自動分析装置には、入力装置としてのキーボード24、表示装置としてのCRTディスプレイ25、印刷出力装置としてのプリンタ22、FDなどの外部出力メディアに記録する記録媒体ドライブ23、記憶装置としてのメモリ11がインタフェース19を介してコンピュータ18を含む各機能部と接続されている。メモリ11は、ハードディスクなどの記憶装置であり、には、分析結果のほか、オペレータ毎に設定されたパスワードや、画面の表示レベル、分析パラメータ、分析依頼項目内容、キャリブレーション結果などの情報が記憶されている。
 ここで、本実施の形態における測定処理について説明する。
 図2は、図1における測定部40の構成及び測定処理の様子を概略的に示す図である。図2では、反応容器2に収容物102が収容されている場合を例示している。
 図2に示すように、測定部40は、光源14と測光部15とを備えており、さらに測光部15は、反応容器2を挟んで光源14に対向するように配置され反応容器2(収容物102を含む)からの透過光量を測定する透過光受光器15Aと、反応容器2の透過光受光器15A側に配置され反応容器2からの散乱光を測定する少なくとも1つ(本実施の形態では2つ)の散乱光受光器15B,15Cとを備えている。透過光受光器15Aおよび散乱光受光器15B,15Cは、例えば、フォトダイオードやPMT(Photomultiplier Tube)などである。
 透過光受光器15Aは、光源14から反応容器2に照射される測定光の光軸上に配置されており、この光軸に沿って進む反応容器2からの透過光14aを検出する。散乱光受光器15Bは、光源14から反応容器2に照射される測定光の光軸から反応容器2を中心として予め定めた角度θ1となる位置に配置されており、反応容器2で生じた散乱光のうち散乱光14bを検出する。
 なお、光源14としては、単波長光源であるLEDを例示したが、例えば、発生する光の波長を可変に構成された多波長光源を用い、透過光受光器15Aとして多波長光度計を用いても良い。
 また、図2においては、測定光の光軸から上方向に角度θ1の位置に散乱光受光器15Bを配置した場合を例示したが、これに限られず、透過光の進行方向に向いて左右、或いは、斜めの上下左右方向の何れかの方向に設けても良い。散乱光受光器15Cについても散乱光受光器15Bと同様である。すなわち、散乱光受光器15Cは、光源14から反応容器2に照射される測定光の光軸から反応容器2を中心として予め定めた角度θ2となる位置に配置されており、反応容器2で生じた散乱光のうち散乱光14cを検出する。
 本実施の形態の自動分析装置では、このような測定部40によって透過光量および散乱光量を測定することにより、反応容器2に収容された収容物102(混合反応液)における散乱体濃度を測定している。
 (2)散乱体濃度の算出原理
  測定部40で検出される透過光量や散乱光量から収容物102中の散乱体濃度を算出する原理の概要を説明する。本実施の形態では、検査項目毎に指定された分析法により予め測定しておいた検量線に基づき、濃度データに変換される。
 図3は、測定部40で測定される透過光量および散乱光量と反応容器2に収容された収容物102中の散乱体濃度の関係の一例を示す図である。図3では、第1縦軸(左側)には透過光量、第2縦軸(右側)には散乱光量、横軸(下側)には散乱体濃度がそれぞれ示されている。また、図3には、透過光量と散乱体濃度の関係を実線51、散乱光量と散乱体濃度の関係を実線52でそれぞれ示している。
 なお、図3において透過光量(第1縦軸)は、反応容器2に照射された測定光の光量に対する透過光量の割合を表しており、一例として、光源14から照射された測定光の光量に対する透過光受光器15Aでの検出光量の割合を百分率で示している。また、散乱光量(第2縦軸)は、散乱光受光器15B,15Cでの検出結果を予め定めた規則に従って正規化した値を示している。また、散乱体濃度(横軸)も同様に、検出結果より得られた散乱体濃度を予め定められた規則に従って正規化した値を示している。
 例えば、反応容器2に収容された物質の散乱体濃度が“0”の場合(例えば、散乱体が含まれていない水などが収容された場合:領域50A参照)、透過光量と散乱体濃度の関係を示す実線51の点51aのように透過光量は“100”となり、散乱光量と散乱体濃度の関係を示す実線52の点52aのように散乱光量は“0”となる。この状態から、反応容器2中の散乱体濃度が徐々に増えていくと散乱光量は増加し、透過光量は減少する。なお、透過光量の減少分の全てが散乱光量として検出される訳ではなく、反応混合液102中で吸光されて減少している分もある。そして、例えば、反応容器2に収容された物質の散乱体濃度が“6”の場合(つまり、散乱体濃度が“6”の反応混合液が収容された場合:領域50B参照)、透過光量と散乱体濃度の関係を示す実線51の点51bのように透過光量は“40”となり、散乱光量と散乱体濃度の関係を示す実線52の点52bのように散乱光量は“6”となる。
 本実施の形態の測定処理では、透過光受光器15Aの検出結果から透過光量を算出するとともに、散乱光受光器15B,15Cの検出結果から散乱光量を算出し、これら透過光量、散乱光量を用いて図3の関係から反応混合液2の散乱体濃度を算出する。
 (3)補正処理(光源光量補正、受光器感度補正)
  本実施の形態の自動分析における補正処理について説明する。補正処理は、測定処理の開始前に、測定部40の光源14の照射光量、及び、透過光受光器15Aや散乱光受光器15B,15Cの検出感度を調整する処理のことである。
 図4は、本実施の形態の補正処理を示すフローチャートである。
 自動分析装置は、全体の動作を制御するコンピュータ18からの指示に従って、試薬分注機構12A,12Bなどにより、反応容器2に第1基準試薬を分注する(ステップS410)。第1基準試薬は、予め測定光に対する透過や散乱の性質が分かっているものであり、例えば、水のように測定光対して影響しにくい(つまり、透過しやすく散乱しにくい)ものである。続いて、測定部40により第1基準試薬の透過光量を確認する(ステップS420)。このときの試薬測定した結果は図3の50Aであり、透過光量は同図51aのようになる。この透過光量が予め定めた透過光量の基準範囲内であるかどうかを判定する(ステップS430)。ステップS430での判定結果がNOの場合は、基準範囲(例えば、基準範囲の中央値)と測定結果との差を解消する方向に光源14の光量を補正し(ステップS431)、透過光量が基準範囲内になるまでステップS420とステップS431の処理を繰り返す。
 ステップS430での判定結果がYESの場合は、続いて、第1基準試薬の散乱光量を確認し(ステップS440)。このときの試薬測定した結果は図3の50Aであり、散乱光量は同図52aのようになる。その散乱光量が予め定めた散乱光量の基準範囲内であるかどうかを判定する(ステップS450)。ステップS450での判定結果がNOの場合は、基準範囲(例えば、基準範囲の中央値)と測定結果との差を解消する方向に散乱光受光器15B,15Cの感度のベース値を補正し(ステップS431)、散乱光量が基準範囲内になるまでステップS440とステップS451の処理を繰り返す。
 ステップS450での判定結果がYESの場合は、試薬分注機構12A,12Bなどにより、空の反応容器2に第2基準試薬を分注する(ステップS460)。第2基準試薬は、予め測定光に対する透過や散乱の性質が分かっているものであり、例えば、ラテックスなどの基準散乱体の溶液である。続いて、測定部40により、第2基準試薬の散乱光量を確認する(ステップS470)。このときの試薬測定した結果は図3の50Bであり、散乱光量は同図52bのようになる。その散乱光量が予め定めた散乱光量の基準範囲内であるかどうかを判定する(ステップS480)。ステップS480での判定結果がNOの場合は、基準範囲(例えば、基準範囲の中央値)と測定結果との差を解消する方向に散乱光受光器15B,15Cの感度の傾きを補正し(ステップS481)、散乱光量が基準範囲内になるまでステップS470とステップS481の処理を繰り返す。ステップS480での判定結果がYESの場合は、補正処理を終了する。
 なお、第1および第2基準試薬として用いるものは、予め測定光に対する透過や散乱の性質が分かっているものであれば固体であっても良く、例えば、反応容器2に充填して固化させたものや、反応容器2と同様の外形に加工したものを反応ディスク1に載置するようにしても良い。
 (4)動作
  以上のように構成した本実施の形態における動作を説明する。
 自動分析装置においては、予めキーボード24等の情報入力装置により、分析項目に関する分析パラメータが入力されており、メモリ11に記憶されている。オペレータは、操作機能画面を操作して、各サンプルに対応する患者IDや依頼されている検査項目を選択する。
 オペレータにより分析処理の実行が指示されると、必要に応じて補正処理が実行され、続いて測定処理が実行される。
 補正処理では、コンピュータ18からの指示に従って、試薬分注機構12A,12Bにより第1基準試薬が分注された反応容器2に対し、測定部40により透過光量の確認を行い、その透過光量が基準範囲内になるように光源14の光量の補正処理(光源光量補正)を行う(図4のステップS410~S431)。その後、測定部40により散乱光量の確認を行い、その散乱光量が基準範囲内になるように散乱光受光器15B,15Cの感度ベース値の補正処理を行う(図4のステップS440~S451)。続いて、試薬分注機構12A,12Bにより第2試薬が分注された反応容器2に対し、測定部40により散乱光量の確認を行い、その散乱光量が基準範囲内になるように散乱光受光器15B,15Cの感度の傾きの補正処理を行い(図4のステップS460~S481)、補正処理を終了する。
 測定処理では、依頼されている検査項目に応じて、各試料容器6からサンプル分注機構7により反応容器2に測定対象試料が分注され、試薬分注機構12A,12Bにより対応する試薬が分注され、攪拌機構33A,33Bにより反応容器2内の反応混合液が攪拌される。そして、反応ディスク1の回転により測定対象の反応容器2が測定部40の位置(測定位置)を通過するときに、測定部40により透過光量および散乱光量が測定され、A/D変換器16によりディジタル変換され、インタフェース19を介してコンピュータ18に送られる。コンピュータ18では、検査項目毎に指定された分析法により予め測定しておいた検量線に基づき、濃度データに変換される。各検査項目の分析結果としての成分濃度データは、プリンタ22やCRT25の画面に出力される。
 (5)効果
  以上のように構成した本実施の形態における効果を説明する。
 従来技術のように、測定対象物である反応混合液に光を入射し、その透過光を測定することで濃度換算する場合(吸光度法)、或いは、散乱光を測定することで濃度換算する場合、入射光量および透過光あるいは散乱光を測定する受光光量は予め一定の範囲内のバラつきに抑える必要がある。吸光度法を用いる場合には、反応容器に吸光度の無い水を分注した時の透過光量を光源の光量として考え、光源光量あるいは受光感度の補正を行なっている。つまり吸光度法では光源の光量のチェックとベースラインの確認を同時に行うことが可能である。一方、散乱光を用いる場合には、反応容器に散乱体の無い状態では散乱光量は理想的には0(ゼロ)であるが、実際には反応容器からの散乱など微弱な散乱光が測定される。また散乱光量は入射光量と強い比例関係にあるため、入射光量が確定しないと散乱光のベースライン光量も確定できない。したがって、散乱光のベースラインを確認することが困難であり、別の分析装置の分析結果との間に差(装置間差)が生じてしまっていた。
 これに対し本実施の形態においては、測定対象試料と試薬とを入れて反応させる反応容器に測定光を照射する光源と、反応容器を挟んで光源に対向するよう設けられ、反応容器からの透過光を測定する透過光受光器と、反応容器の透過光受光器側に配置され、反応容器からの散乱光を測定する少なくとも1つの散乱光受光器と、透過光受光器の検出結果に基づいて、光源から照射される測定光の光量を補正する光源光量補正手段とを供えたので、散乱光を用いる分析においても入射光量の補正を可能とし、入射光量が起因となる分析結果の装置間差を抑制することができる。
 なお、本実施の形態のように、複数の散乱光検出器を設けた場合において、例えば、照射光の光軸に対する角度(θ1,θ2等)を複数の散乱光検出器の少なくとも2つについて同角度とし、同角度の散乱光受光器では理想的には同じの散乱光量を検出するという知見から、光軸から同角度に設置された散乱光受光器の受光量の差が基準範囲外であれば散乱光受光器の位置ずれと判定し、散乱光受光器の位置補正を行う構成としても良い。
1 反応ディスク
2 反応容器
3 恒温槽
4 高温維持装置
5 サンプルディスク
6 試料容器
7 サンプル分注機構
8 ピペットノズル
9A,9B 試薬保冷庫
10A,10B 試薬ボトル
11 メモリ
12A,12B 試薬分注機構
13A,13B 試薬ディスク
14 光源
15 測光部
16 A/D変換器
18 コンピュータ
19 インタフェース
20 サンプル分注制御部
21 試薬分注制御部
22 プリンタ
23 FD
24 キーボード
25 CRT
33A,33B 攪拌機構
34A,34B 読取装置
40 測定部

Claims (3)

  1.  測定対象試料と試薬とを入れて反応させる反応容器に測定光を照射する光源と、
     前記反応容器を挟んで前記光源に対向するよう設けられ、前記反応容器からの透過光を測定する透過光受光器と、
     前記反応容器の前記透過光受光器側に配置され、前記反応容器からの散乱光を測定する少なくとも1つの散乱光受光器と、
     前記透過光受光器の検出結果に基づいて、前記光源から照射される測定光の光量を補正する光源光量補正手段と
    を備えたことを特徴とする自動分析装置。
  2.  請求項1記載の自動分析装置において、
     前記散乱光受光器の検出結果に基づいて、前記散乱光受光器の検出感度を補正する散乱光受光器補正手段を備えたことを特徴とする自動分析装置。
  3.  請求項1記載の自動分析装置において、
     前記散乱光受光器は、前記光源から照射される測定光の光軸を囲むように円環状に配置されたことを特徴とする自動分析装置。
PCT/JP2011/077525 2010-12-08 2011-11-29 自動分析装置 WO2012077536A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012547793A JP5661124B2 (ja) 2010-12-08 2011-11-29 自動分析装置
US13/991,467 US20130294974A1 (en) 2010-12-08 2011-11-29 Automatic analyzer
EP11847725.6A EP2650673B1 (en) 2010-12-08 2011-11-29 Automatic analytical apparatus
CN201180058160.6A CN103238062B (zh) 2010-12-08 2011-11-29 自动分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-273437 2010-12-08
JP2010273437 2010-12-08

Publications (1)

Publication Number Publication Date
WO2012077536A1 true WO2012077536A1 (ja) 2012-06-14

Family

ID=46207027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077525 WO2012077536A1 (ja) 2010-12-08 2011-11-29 自動分析装置

Country Status (5)

Country Link
US (1) US20130294974A1 (ja)
EP (1) EP2650673B1 (ja)
JP (1) JP5661124B2 (ja)
CN (1) CN103238062B (ja)
WO (1) WO2012077536A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135310A (ja) * 2014-01-20 2015-07-27 株式会社日立ハイテクノロジーズ 血液凝固分析装置
EP2876429A4 (en) * 2012-07-20 2016-03-30 Hitachi High Tech Corp AUTOMATIC ANALYSIS DEVICE
EP3012618A4 (en) * 2013-06-19 2017-03-22 Hitachi High-Technologies Corporation Automatic analysis device and automatic analysis method
JP2018146431A (ja) * 2017-03-07 2018-09-20 株式会社日立ハイテクノロジーズ 自動分析装置及び自動分析方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281284A (zh) * 2016-07-19 2021-08-20 株式会社日立高新技术 自动分析装置及自动分析方法
CN112779146A (zh) * 2019-11-08 2021-05-11 广州中国科学院先进技术研究所 一种自适应亮度调节的生物量在线检测装置
KR102281786B1 (ko) * 2019-11-14 2021-07-27 한국기계연구원 다위치 반응영역을 가지는 센서의 신호보정 시스템 및 이를 이용한 신호보정 방법
CN111323393A (zh) * 2020-04-07 2020-06-23 宁波普瑞柏生物技术股份有限公司 一种联合散射比浊法和透射比浊法的测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332582A (ja) 1997-05-28 1998-12-18 Kyowa Medex Co Ltd 濁度測定装置
JP2001141654A (ja) 1999-10-08 2001-05-25 Dade Behring Marburg Gmbh 分光光度・比濁検出ユニット
JP2002181725A (ja) * 2000-12-11 2002-06-26 Mitsubishi Electric Corp 微小異物解析方法、分析装置、半導体装置の製造方法および液晶表示装置の製造方法
JP2006125953A (ja) * 2004-10-28 2006-05-18 Jeol Ltd 生化学自動分析装置
JP2007519906A (ja) * 2004-01-27 2007-07-19 ワグナー アラーム ウント ジッヒェルングジュステーム ゲーエムベーハー 散乱光信号を評価する方法およびその方法を実施するための散乱光検出器
JP2008008794A (ja) 2006-06-29 2008-01-17 Olympus Corp 分析装置
JP2008216054A (ja) * 2007-03-05 2008-09-18 Hitachi High-Technologies Corp 被検査物の検査装置及び被検査物の検査方法
JP2009092600A (ja) * 2007-10-11 2009-04-30 Olympus Corp 光源装置および自動分析装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2057795A5 (ja) * 1969-08-05 1971-05-21 Environment One Corp
JPS5639465A (en) * 1979-09-10 1981-04-15 Olympus Optical Co Ltd Detecting method of immunological agglutination
JPS58174833A (ja) * 1982-04-07 1983-10-13 Hitachi Ltd 蛍光光度計
JPH0765933B2 (ja) * 1986-08-01 1995-07-19 株式会社日立製作所 分光蛍光光度計
US5715173A (en) * 1994-06-27 1998-02-03 Dainippon Screen Mfg. Co., Ltd. Concentration controlling method and a substate treating apparatus utilizing same
US5467187A (en) * 1994-09-29 1995-11-14 Hf Scientific, Inc. Automatic calibration system for turbidimeters using a pulsing fluid flow to reciprocate a standard in a cuvette
JP2866604B2 (ja) * 1994-11-10 1999-03-08 株式会社コスモ総合研究所 油中の不溶解分濃度測定方法及びその装置
JPH09281045A (ja) * 1996-04-10 1997-10-31 Kdk Corp メバロン酸の光学的測定方法
US6087182A (en) * 1998-08-27 2000-07-11 Abbott Laboratories Reagentless analysis of biological samples
DE60032853T2 (de) * 1999-10-28 2007-11-15 Matsushita Electric Industrial Co., Ltd., Kadoma Verfahren zur Messung der Konzentration einer Lösung
JP3603019B2 (ja) * 2000-12-15 2004-12-15 株式会社日立製作所 生化学自動分析装置
US6628386B2 (en) * 2001-12-12 2003-09-30 Pointsource Technologies, Llc Particle detection beam
US6807874B2 (en) * 2002-01-21 2004-10-26 Shimadzu Corporation Collecting apparatus of floating dusts in atmosphere
US20040016686A1 (en) * 2002-07-24 2004-01-29 Wyatt Philip J. Absolute measurement centrifuge
US7427508B2 (en) * 2003-10-09 2008-09-23 Organotek Defense System Corporation Method for assaying multi-component mixtures
US7417722B2 (en) * 2004-12-19 2008-08-26 Kla-Tencor Technologies Corporation System and method for controlling light scattered from a workpiece surface in a surface inspection system
US8180422B2 (en) * 2005-04-15 2012-05-15 Bayer Healthcare Llc Non-invasive system and method for measuring an analyte in the body
JP2009527333A (ja) * 2006-02-22 2009-07-30 ヴィヴァム ネクサス エルエルシー 検体測定装置及び方法
JP2008064594A (ja) * 2006-09-07 2008-03-21 Yokogawa Electric Corp 濁度計
JP2008180640A (ja) * 2007-01-25 2008-08-07 Olympus Corp 自動分析装置、発注管理システムおよび発注管理方法
US8175665B2 (en) * 2007-03-09 2012-05-08 Nellcor Puritan Bennett Llc Method and apparatus for spectroscopic tissue analyte measurement
JP2008281392A (ja) * 2007-05-09 2008-11-20 Olympus Corp 測光装置及び自動分析装置
US7843560B2 (en) * 2007-08-31 2010-11-30 Dow Global Technologies Inc. Stable turbidity calibration standards
EP2240758A4 (en) * 2008-01-03 2011-04-13 Univ Central Florida Res Found DETECTION OF ANALYTES USING METAL NANOPARTICLE PROBES AND DYNAMIC LIGHT TRANSPORT
US20090185188A1 (en) * 2008-01-22 2009-07-23 Cummins Filtration Ip, Inc. Pass-fail tool for testing particulate contamination level in a fluid
JP2009281930A (ja) * 2008-05-23 2009-12-03 Yokogawa Electric Corp 粒子濃度測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332582A (ja) 1997-05-28 1998-12-18 Kyowa Medex Co Ltd 濁度測定装置
JP2001141654A (ja) 1999-10-08 2001-05-25 Dade Behring Marburg Gmbh 分光光度・比濁検出ユニット
JP2002181725A (ja) * 2000-12-11 2002-06-26 Mitsubishi Electric Corp 微小異物解析方法、分析装置、半導体装置の製造方法および液晶表示装置の製造方法
JP2007519906A (ja) * 2004-01-27 2007-07-19 ワグナー アラーム ウント ジッヒェルングジュステーム ゲーエムベーハー 散乱光信号を評価する方法およびその方法を実施するための散乱光検出器
JP2006125953A (ja) * 2004-10-28 2006-05-18 Jeol Ltd 生化学自動分析装置
JP2008008794A (ja) 2006-06-29 2008-01-17 Olympus Corp 分析装置
JP2008216054A (ja) * 2007-03-05 2008-09-18 Hitachi High-Technologies Corp 被検査物の検査装置及び被検査物の検査方法
JP2009092600A (ja) * 2007-10-11 2009-04-30 Olympus Corp 光源装置および自動分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650673A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2876429A4 (en) * 2012-07-20 2016-03-30 Hitachi High Tech Corp AUTOMATIC ANALYSIS DEVICE
US9658237B2 (en) 2012-07-20 2017-05-23 Hitachi High-Technologies Corporation Automatic analyzer
EP3012618A4 (en) * 2013-06-19 2017-03-22 Hitachi High-Technologies Corporation Automatic analysis device and automatic analysis method
JP2015135310A (ja) * 2014-01-20 2015-07-27 株式会社日立ハイテクノロジーズ 血液凝固分析装置
JP2018146431A (ja) * 2017-03-07 2018-09-20 株式会社日立ハイテクノロジーズ 自動分析装置及び自動分析方法

Also Published As

Publication number Publication date
US20130294974A1 (en) 2013-11-07
JPWO2012077536A1 (ja) 2014-05-19
JP5661124B2 (ja) 2015-01-28
CN103238062A (zh) 2013-08-07
CN103238062B (zh) 2016-04-20
EP2650673A4 (en) 2017-08-23
EP2650673A1 (en) 2013-10-16
EP2650673B1 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
JP5661124B2 (ja) 自動分析装置
US9658237B2 (en) Automatic analyzer
US11674970B2 (en) Automatic analysis device and automatic analysis method
JP6013796B2 (ja) 自動分析装置及び試料測定方法
JP5939833B2 (ja) 自動分析装置
EP2587251B1 (en) Automated analysis device and automated analysis method
EP2799882B1 (en) Automatic analysis device and detection method for measurement value abnormalities
JP5481402B2 (ja) 自動分析装置
EP2587250B1 (en) Automatic analysis device
JP6104746B2 (ja) 自動分析装置および分析方法
JP5952180B2 (ja) 自動分析装置、プログラムおよび記録媒体ならびに検体の自動分析方法
US11971425B2 (en) Automatic analysis device and automatic analysis method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180058160.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012547793

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13991467

Country of ref document: US