WO2012077358A1 - 液処理装置 - Google Patents

液処理装置 Download PDF

Info

Publication number
WO2012077358A1
WO2012077358A1 PCT/JP2011/050838 JP2011050838W WO2012077358A1 WO 2012077358 A1 WO2012077358 A1 WO 2012077358A1 JP 2011050838 W JP2011050838 W JP 2011050838W WO 2012077358 A1 WO2012077358 A1 WO 2012077358A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
tank
sealed tank
air supply
gas
Prior art date
Application number
PCT/JP2011/050838
Other languages
English (en)
French (fr)
Inventor
荘一郎 大崎
水野裕司
Original Assignee
株式会社ニクニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニクニ filed Critical 株式会社ニクニ
Priority to US13/992,223 priority Critical patent/US9290396B2/en
Priority to EP11846534.3A priority patent/EP2650045B1/en
Priority to TW100144825A priority patent/TWI468220B/zh
Publication of WO2012077358A1 publication Critical patent/WO2012077358A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2341Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2334Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer
    • B01F23/23341Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer with tubes surrounding the stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23762Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/53Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/54Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle provided with a pump inside the receptacle to recirculate the material within the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/86Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis co-operating with deflectors or baffles fixed to the receptacle
    • B01F27/861Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis co-operating with deflectors or baffles fixed to the receptacle the baffles being of cylindrical shape, e.g. a mixing chamber surrounding the stirrer, the baffle being displaced axially to form an interior mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/91Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237611Air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/685Devices for dosing the additives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/002Grey water, e.g. from clothes washers, showers or dishwashers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/005Black water originating from toilets

Definitions

  • the present invention relates to a liquid processing apparatus used in a lower liquid processing station, a bathhouse, and the like.
  • a liquid processing apparatus that supplies air or oxygen into a liquid in an aeration tank from a blower or an oxygen supply source when a liquid such as activated sludge water is aerated is known (see, for example, Patent Document 1).
  • the present invention has been made in view of these points, and an object of the present invention is to provide a liquid processing apparatus with high dissolution efficiency that can efficiently dissolve a gas in a liquid to be processed.
  • the invention described in claim 1 includes a sealed tank, a liquid guide cylinder that is installed vertically in the sealed tank and opens a liquid suction port at the lower end, and opens a liquid outlet at the upper end, and A liquid supply means for supplying a liquid to be processed to the liquid suction port portion of the liquid guide cylinder, and the liquid jet port provided inside the liquid guide cylinder and sucking liquid from the liquid suction port portion Pumping means for jetting liquid from the section, liquid jetting space for expanding the liquid jetted from the liquid jetting port of the liquid guide cylinder by the pumping means into the upper part of the closed tank, and the liquid An air supply means that pressurizes and supplies a gas to be dissolved into the ejection space; and a liquid is circulated from the liquid ejection space to the lower portion of the liquid guide cylinder through the space between the sealed tank and the liquid guide cylinder.
  • the treated liquid is supplied to the outside from the reflux passage and the lower part of the sealed tank A liquid processing apparatus and a treated-liquid takeout pipe issuing Ri.
  • the treated liquid extraction pipe in the liquid processing apparatus includes a liquid outlet portion opened at a lower portion in the sealed tank, and the sealed tank includes: The gas-liquid separation tank part formed between the said liquid suction inlet part of the said liquid guide cylinder and the said liquid outlet part of the said processed liquid extraction piping is equipped inside.
  • the air supply means in the liquid processing apparatus includes a plurality of air supply pipes connected to a plurality of gas supply sources for supplying a plurality of types of gases,
  • the plurality of types of gas supply valves are provided in the plurality of supply pipes so as to be freely opened and closed.
  • the liquid level sensor for detecting the liquid level in the sealed tank, and the liquid level detected by the liquid level sensor from a set value.
  • the control means for closing the air supply valve, the liquid supply pump for supplying the liquid to be processed into the sealed tank, and the hermetic seal
  • a pressure sensor for detecting the pressure in the tank, and a pump controller for variably controlling the flow rate discharged from the feed pump so that the pressure in the closed tank detected by the pressure sensor is controlled to be constant. It is equipped.
  • an air supply pipe for compressed air in which the air supply means in the liquid processing apparatus according to any one of the first to fourth aspects is connected to a compressed air supply source for supplying compressed air.
  • a compressed air supply valve provided in the compressed air supply pipe so as to be openable and closable; a carbon dioxide supply pipe connected to a carbon dioxide supply source for supplying carbon dioxide; and
  • a carbon dioxide gas supply valve is provided in the carbon dioxide gas supply pipe so as to be freely opened and closed.
  • the liquid processing apparatus is openable and closable provided in the processed liquid extraction pipe for extracting the processed liquid from the lower part of the sealed tank to an external liquid tank.
  • the treated liquid take-off valve, the pressure relief valve provided at the top of the sealed tank and capable of releasing the internal pressure in the sealed tank, the liquid supply pump and the pumping means are stopped and the processed With the liquid take-off valve closed, the pressure release valve is opened to release the internal pressure in the sealed tank, and then the treated liquid take-off valve is opened to transfer the carbon dioxide solution in the closed tank to the external liquid tank.
  • a control means having a function of taking out.
  • the liquid to be processed supplied from the liquid supply means to the liquid suction port of the liquid guide cylinder installed in the sealed tank is raised by the liquid guide cylinder and the pumping means.
  • the liquid guided cylindrical body is ejected from the liquid ejection port portion to the liquid ejection space portion, and the liquid jetted while expanding in the liquid ejection space portion at that time is mixed and stirred with the gas pressurized and supplied by the air supply means,
  • the gas in the pressurized state was dissolved in the liquid in the liquid ejection space and the reflux passage between the sealed tank and the liquid guide cylinder, and the gas was dissolved from the lower part of the sealed tank to the outside by the treated liquid discharge pipe. Since the treated liquid is taken out, the gas can be efficiently dissolved in the liquid scheduled to be processed in the sealed tank, and a liquid processing apparatus having a good dissolution efficiency without waste can be provided.
  • the gas-liquid separation tank is formed between the liquid suction port of the liquid guide cylinder and the liquid discharge port of the treated liquid discharge pipe in the sealed tank,
  • the gas mixed in the bubble state without dissolving in the gas can be separated in the gas-liquid separation tank and dissolved again in the pressurized sealed tank, which efficiently dissolved the gas in the liquid.
  • Only the processed liquid can be taken out from the liquid outlet port of the processed liquid extraction pipe, and it is not necessary to install a gas-liquid separation tank outside the sealed tank, so that the entire liquid processing apparatus can be formed compactly.
  • the gas to be dissolved is added to the liquid ejection space in the sealed tank by the plurality of types of gas supply valves provided in the plurality of supply pipes so as to be freely opened and closed. Since pressure is supplied, a plurality of gases can be selectively or efficiently dissolved in the liquid to be treated by sharing one sealed tank.
  • the liquid level sensor and the control means are used to control the liquid level in the sealed tank by controlling the opening and closing of the air supply valve, and the sealing detected by the pressure sensor by the pump controller. Since the discharge flow rate from the feed pump is variably controlled so that the pressure in the tank is controlled at a constant level, the gas to be dissolved and the liquid to be processed can be supplied into the sealed tank in a well-balanced manner. The gas can be dissolved efficiently.
  • the compressed air for the compressed air provided in the air supply pipe for compressed air is used as the gas to be dissolved that is pressurized and supplied to the liquid ejection space in the closed tank by the air supply means.
  • Air or carbon dioxide gas is selected by the air supply valve and the carbon dioxide gas supply valve provided in the carbon dioxide gas supply pipe, and the air or carbon dioxide gas is efficiently dissolved in the liquid to be treated.
  • a bubble bath with fine bubbles and a carbonated spring can be provided.
  • the control means releases the internal pressure in the sealed tank by the pressure relief valve in a quiet environment in which the liquid feed pump and the liquid raising means are stopped and the treated liquid take-off valve is closed. Since the treated liquid take-off valve is opened and the carbon dioxide solution in the sealed tank is taken out to the external liquid tank, the occurrence of a significant pressure difference when taking the carbon dioxide solution into the liquid tank can be suppressed, A phenomenon in which carbon dioxide gas is rapidly discharged from the carbon dioxide solution due to a sudden pressure change can be suppressed, and a carbon dioxide solution having a high carbon dioxide solution concentration can be supplied to an external liquid tank, thereby realizing a high concentration carbonate spring.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 1 shows the entirety of the liquid processing apparatus 11, which is configured around a cylindrical sealed tank 12 having a spherical tank lower bottom 12a and a tank canopy 12b.
  • a liquid guide cylinder 13 having upper and lower openings is vertically installed and fixedly supported by a support plate 14 arranged in a cross shape in a horizontal section as shown in FIG.
  • a liquid suction port portion 15 enlarged in a trumpet shape is opened at the lower end of the liquid guide cylinder 13, and a liquid jet port portion 16 is opened at the upper end.
  • a liquid supply means 18 is provided for supplying the liquid 17 to be processed to the liquid suction port 15 of the liquid guide cylinder 13.
  • a pipe 22 drawn out from the bottom of an external liquid tank 21 storing the liquid 17 is connected to a pump suction port 23a of a liquid supply pump 23 such as a vortex pump, and the liquid supply pump 23
  • a liquid supply pipe 25 that passes through a check valve 24 is connected to the pump discharge port 23b, and an electromagnetic liquid supply valve 26 that is electrically opened and closed is provided in the liquid supply pipe 25.
  • the liquid supply pipe 25 The liquid supply port portion 25a is opened below the liquid suction port portion 15 of the liquid guide cylinder 13.
  • a screw-type pumping means 27 is provided in the liquid guide cylinder 13 for sucking the liquid 17 from the liquid suction port 15 and for ejecting the liquid 17a from the liquid jet port 16.
  • the rotating shaft 28 of the liquid means 27 is rotatably held by a bearing 29 having a liquid-tight function provided on the tank lower bottom portion 12a of the sealed tank 12, and is fixedly disposed outside via a coupling 31.
  • the rotary shaft of the electric motor 32 is connected.
  • a liquid ejection space 33 for expanding the liquid 17a into the upper portion of the closed tank 12 is formed.
  • An air supply means 34 that pressurizes and supplies compressed air as a gas to be dissolved and an air supply means 35 that pressurizes and supplies carbon dioxide gas as a gas to be dissolved are connected to the liquid ejection space 33. Yes.
  • gas hydrogen gas, oxygen gas, ozone gas, and the like can be applied, but here, a case of compressed air and carbon dioxide gas will be described.
  • the liquid 17a ejected from the liquid ejection space 33 is formed between the sealed tank 12 and the liquid guide cylinder 13.
  • a reflux passage portion 36 is formed to circulate in the lower part of the liquid guide cylinder 13 with a gap therebetween.
  • a processed liquid extraction pipe 37 for extracting the processed liquid from the lower part of the sealed tank 12 to the external liquid tank 21 is drawn out, and in this processed liquid extraction pipe 37, an electromagnetic process that is electrically opened and closed is controlled. And a flow regulator (throttle resistance variable orifice) 39 is provided, and the extraction tip of the processed liquid extraction pipe 37 is connected to a liquid tank 21 such as a lower liquid treatment plant or a bath. .
  • a flow regulator throttle resistance variable orifice
  • the liquid supply means 18 includes a liquid supply port portion 25a that is opened immediately below the liquid suction port portion 15 of the liquid guide cylinder 13, and the processed liquid extraction pipe 37 is disposed in the sealed tank 12.
  • a liquid outlet part 37a opened at the bottom is provided, and the sealed tank 12 includes therein the liquid inlet part 15 of the liquid guide cylinder 13 and the liquid outlet part of the treated liquid outlet pipe 37.
  • the gas-liquid separation tank part 41 formed between 37a is provided.
  • a first dissolution tank 43 is formed between the tank canopy 12b and the tank liquid level 42, and a second dissolution tank 43 is formed between the tank liquid level 42 and the gas-liquid separation tank 41.
  • a dissolution tank portion 44 is formed.
  • the gas supply into the liquid 17a that has been jetted and collided with the tank canopy section 12b and the like is promoted to dissolve the gas in the liquid 17a.
  • the pressurized air supply into the liquid flow colliding with the liquid level 42 in the tank promotes the dissolution of the gas into the liquid 17a, and the gas-liquid separation tank unit 41 includes the first dissolution tank unit 43 and The gas that has not been dissolved in the liquid is separated in the second dissolution tank section 44, and the separated gas is sucked into the liquid guide cylinder 13 together with the liquid, and again the first dissolution tank section 43 and the second dissolution tank section. Dissolution treatment is performed in the dissolution tank section 44.
  • the compressed air supply means 34 includes an air filter 47, a pressure reducing valve in a compressed air supply pipe 46 connected to a compressed air supply source 45 such as an air compressor as a gas supply source for supplying compressed air. 48, a flow rate regulator (throttle resistance variable orifice) 49, a flow meter 50, a check valve 51, and an electromagnetic air supply valve 52 for compressed air that is electrically opened and closed are provided.
  • the air supply tip 46a is inserted into the liquid ejection space 33 of the closed tank 12.
  • the carbon dioxide gas supply means 35 includes a pressure reducing valve 55 in a carbon dioxide gas supply pipe 54 connected to a carbon dioxide supply source 53 such as a carbon dioxide compression cylinder as a gas supply source for supplying carbon dioxide.
  • a carbon dioxide supply source 53 such as a carbon dioxide compression cylinder as a gas supply source for supplying carbon dioxide.
  • a flow regulator (throttle resistance variable orifice) 56, a flow meter 57, a check valve 58, and an electromagnetic air supply valve 59 for carbon dioxide gas that is electrically opened and closed are provided, respectively.
  • the air tip 54a is inserted into the liquid ejection space 33 of the closed tank 12.
  • An intake pipe 61 is connected to the pipe 22 connected to the pump suction port 23a of the liquid supply pump 23 such as the vortex pump.
  • the intake pipe 61 includes a flow rate regulator (a throttle resistance variable orifice) 62, a flow rate.
  • a flow rate regulator a throttle resistance variable orifice
  • an electromagnetic intake valve 64 that is electrically opened and closed is provided, and when the air in the atmosphere is mixed in the liquid 17 sucked into the liquid supply pump 23, the electromagnetic intake valve 64 is opened. To control.
  • a liquid level sensor 71 for detecting the liquid level of the liquid level 42 in the closed tank 12 is installed on the side of the closed tank 12, and the liquid level of the liquid level 42 in the tank detected by the liquid level sensor 71 is When it is higher than the set value, when the electromagnetic air supply valve 52 for compressed air or the electromagnetic air supply valve 59 for carbon dioxide is opened and the liquid level of the liquid level 42 in the tank is lower than the set value
  • a control means 72 such as a controller for closing the electromagnetic air supply valve 52 for compressed air or the electromagnetic air supply valve 59 for carbon dioxide is provided.
  • a sensor 73 is provided, and a pump controller 74 is provided that variably controls the flow rate discharged from the liquid supply pump 23 so that the pressure in the closed tank 12 detected by the pressure sensor 73 is controlled to be constant.
  • the pump controller 74 is an inverter that controls the rotational speed of the electric motor that drives the liquid supply pump 23.
  • the tank canopy 12b of the closed tank 12 is provided with an electromagnetic pressure release valve 75 that is electrically opened and closed and capable of releasing the internal pressure in the closed tank 12.
  • the control means 72 includes the electromagnetic liquid supply valve 26, the electromagnetic processed liquid discharge valve 38, the electromagnetic air supply valve 52 for compressed air, and the electromagnetic air supply valve for carbon dioxide. 59, controls opening / closing of the electromagnetic intake valve 64 and the electromagnetic pressure release valve 75, and controls starting / stopping of the electric motor for driving the liquid supply pump 23 and the electric motor 32 of the pumping means 27 It is also possible to do.
  • the control means 72 stops the electric motor for driving the feed pump 23 and the electric motor 32 for the pumping means 27 to stop the sealing.
  • the electromagnetic pressure relief valve 75 with the electromagnetic processed liquid extraction valve 38 provided in the processed liquid extraction pipe 37 closed.
  • the internal pressure in the sealed tank 12 is released, and thereafter, the electromagnetic processed liquid take-off valve 38 is opened to take out the carbon dioxide solution in the closed tank 12 into the external liquid tank 21.
  • the compressed air supply means 34 is selected to operate the compressed air supply source 45 and supply air piping for compressed air.
  • the electromagnetic air supply valve 52 provided in 46 is opened, compressed air is pressurized and supplied to the liquid ejection space 33 in the sealed tank 12, and when the liquid tank 21 is a carbonated spring tub, The gas supply means 35 is selected, the electromagnetic supply valve 59 provided in the supply pipe 54 for carbon dioxide connected to the carbon dioxide supply source 53 is opened, and the liquid jet in the sealed tank 12 is ejected. Carbon dioxide gas is pressurized and supplied to the space 33.
  • the supply pressure of compressed air or carbon dioxide is adjusted by the pressure reducing valves 48 and 55.
  • the control means 72 controls opening / closing of the electromagnetic air supply valve 52 or 59 based on the liquid level of the liquid level 42 in the tank detected by the liquid level sensor 71, whereby the liquid level 42 in the tank in the sealed tank 12 is controlled.
  • the pump controller 74 controls the rotation speed of the drive motor of the feed pump 23 so that the pressure in the closed tank 12 detected by the pressure sensor 73 is controlled to the command pressure while controlling the liquid level of the liquid at a substantially constant level.
  • the discharge flow rate from the liquid supply pump 23 is variably controlled.
  • the liquid level of the liquid level 42 in the tank detected by the liquid level sensor 71 is higher than the set value, it is in a state of gas shortage, so that it can be opened and closed in the supply pipe 46 or 54, respectively.
  • the air supply valve 52 or 59 By opening the air supply valve 52 or 59 and pressurizing and supplying the compressed air or carbon dioxide gas to be dissolved into the liquid ejection space 33 in the sealed tank 12, the liquid level is lowered to the set value.
  • the pump controller 74 reduces the rotational speed of the feed pump 23 to reduce the discharge flow rate from the feed pump 23.
  • the pressure in the sealed tank 12 is reduced.
  • the liquid guide cylinder 13 and the pumping means 27 supply the liquid 17 to be processed supplied from the liquid supply means 18 to the liquid suction port 15 of the liquid guide cylinder 13 installed in the closed tank 12.
  • the liquid is ejected from the liquid ejection port 16 of the liquid guide cylinder 13 to the liquid ejection space 33, and is expanded and expanded in the liquid ejection space 33 and collides with the tank canopy 12b of the sealed tank 12 at that time.
  • compressed air supplied under pressure by the air supply means 34 or carbon dioxide gas supplied under pressure by the air supply means 35 is mixed and agitated and dissolved efficiently, and the tank bounces off from the tank canopy 12b.
  • the compressed air supplied under pressure by the air supply means 34 or the carbon dioxide gas supplied under pressure by the air supply means 35 is mixed and agitated and efficiently dissolved in the liquid.
  • the gas-liquid separation tank 41 is formed between the liquid inlet 15 of the liquid guide cylinder 13 in the sealed tank 12 and the liquid outlet 37a of the processed liquid outlet pipe 37, the liquid 17a The gas mixed in the bubble state without being dissolved in the gas is separated in the gas-liquid separation tank 41 and dissolved again in the pressurized sealed tank 12, and oxygen or carbon dioxide in the air is dissolved in the liquid. Only the processed liquid that has been efficiently dissolved can be taken out from the liquid outlet port 37a of the processed liquid outlet pipe 37 to the outside.
  • the flow rate regulator (throttle resistance variable orifice) 39 variably adjusts so that the internal pressure of the closed tank 12 becomes a set pressure (for example, 0.2 MPa) when the liquid supply pump 23 is driven at a set rotational speed. The subsequent aperture resistance value is not changed.
  • the liquid supply pump 23 is continuously operated so that the internal pressure of the closed tank 12 becomes the set pressure in order to cause foaming by the flow rate regulator 39, but in the case of carbon dioxide gas, the flow rate is adjusted.
  • the liquid supply pump 23 is continuously operated with a command pressure at which the internal pressure of the sealed tank 12 is lower than the set pressure.
  • a carbonated spring operation method 1 for producing carbonated springs, and a carbonated spring operation method 2 for producing a high-concentrated carbonated spring by operating the feed pump 23 with a command pressure such that the internal pressure of the sealed tank 12 becomes the set pressure. is there.
  • the control means 72 opens the compressed air supply valve 52 to supply compressed air into the sealed tank 12 and drives the pumping means 27 by the electric motor 32,
  • the liquid supply pump 23 is operated so that the internal pressure of the closed tank 12 becomes the above set pressure, and the air solution in the closed tank 12 is discharged from the treated liquid extraction pipe 37 to the outside using the set pressure in the closed tank 12.
  • the liquid tank 21 is ejected vigorously. By utilizing the rapid pressure change before and after the flow rate regulator 39 at that time, innumerable fine bubbles (that is, microbubbles) are generated in the liquid tank 21 to produce a milky white bubble bath (white ion bath: registered trademark). )I will provide a.
  • This bubble bath with fine bubbles relaxes the mind and body with negative ions released when the fine bubbles burst, massages the whole body with ultrasonic waves generated when the fine bubbles burst, warms the body by increasing blood circulation, There is an effect that fine bubbles enter the pores and wash away dirt from the back of the pores.
  • Carbon spring operation method 1 When the carbonated spring is provided, the control unit 72 opens the carbon dioxide gas supply valve 59 to supply the carbon dioxide gas into the sealed tank 12, and the electric motor 32 drives the pumping unit 27 while the sealed tank 12
  • the liquid supply pump 23 is operated at a command pressure that causes the internal pressure of the air to be lower than the above set pressure of the compressed air, and the carbon dioxide solution in the sealed tank 12 is taken out from the treated liquid extraction pipe 37 to the external liquid tank 21. Therefore, the pressure difference between the front and rear of the flow regulator 39 when taking out into the liquid tank is suppressed as much as possible, and the phenomenon in which the carbon dioxide gas suddenly escapes from the carbon dioxide solution due to a sudden pressure change is suppressed.
  • a carbonated spring that is generally considered to be effective for beauty and health is provided by supplying a solution in which carbon dioxide is sufficiently dissolved.
  • the control means 72 opens the carbon dioxide gas supply valve 59 and closes the sealed tank 12 with the electromagnetically treated liquid take-off valve 38 and the pressure relief valve 75 closed. While supplying the carbon dioxide gas and driving the pumping means 27 by the electric motor 32, the feed pump 23 is operated with the command pressure so that the internal pressure of the sealed tank 12 becomes the above set pressure equal to that in the case of compressed air.
  • the operation of the liquid supply pump 23 and the pumping means 27 is continued until the dissolved amount of carbon dioxide gas reaches a saturated state, and when the saturated state is reached, the tank internal pressure does not decrease, so the control means that detects this saturated state with the pressure sensor 73 72, in a quiet environment in which the feed pump 23 and the pumping means 27 are stopped and the electromagnetic processed liquid take-off valve 38 is closed, the electromagnetic pressure release valve 75 is opened and the internal pressure in the sealed tank 12 is increased.
  • the liquid 17 to be treated supplied from the liquid supply means 18 to the liquid suction port 15 of the liquid guide cylinder 13 installed in the sealed tank 12 is raised by the liquid guide cylinder 13 and the pumping means 27 to guide the liquid.
  • the liquid 17a was jetted from the liquid jet port 16 of the cylindrical body 13 into the liquid jet space 33 and expanded while being expanded in the liquid jet space 33, and was pressurized and supplied by the air supply means 34 and 35.
  • Gas is mixed and stirred, and the pressurized gas is dissolved in the liquid 17a in the liquid ejection space 33 and the reflux passage 36 between the sealed tank 12 and the liquid guide cylinder 13, and the treated liquid discharge pipe Since the treated liquid with dissolved gas is taken out from the lower part of the sealed tank 12 by 37, the gas can be efficiently dissolved in the liquid to be treated in the sealed tank 12, and the melting efficiency without waste Can be provided.
  • the gas-liquid separation tank 41 Since the gas-liquid separation tank 41 is formed between the liquid inlet 15 of the liquid guide cylinder 13 in the sealed tank 12 and the liquid outlet 37a of the treated liquid outlet pipe 37, it dissolves in the liquid. Gas that has been mixed in a bubble state without separation can be separated in the gas-liquid separation tank 41 and dissolved in the sealed tank 12 under pressure again, and the gas has been efficiently dissolved in the liquid. Only the liquid can be taken out from the liquid outlet part 37a of the processed liquid outlet pipe 37 to the external liquid tank 21, and it is not necessary to install a gas-liquid separation tank outside the sealed tank 12, and the entire liquid processing apparatus Can be formed compactly.
  • Gases to be dissolved are introduced into the liquid ejection space 33 in the sealed tank 12 by electromagnetic supply valves 52 and 59 for a plurality of types of gases provided in a plurality of supply pipes 46 and 54 so as to be freely opened and closed. Since the pressurized supply is performed, a single sealed tank 12 can be shared, and a plurality of gases can be selectively or efficiently dissolved in the liquid 17 to be treated.
  • the level of the liquid level 42 in the tank is controlled by opening and closing the electromagnetic air supply valves 52 and 59 by the liquid level sensor 71 and the control means 72, and the pressure sensor 73 is detected by the pump controller 74. Since the discharge flow rate from the feed pump 23 is variably controlled so that the pressure in the closed tank 12 is controlled to the command pressure, the gas to be dissolved and the liquid 17 to be processed are supplied into the closed tank 12 in a well-balanced manner. The gas can be efficiently dissolved in the liquid 17 to be treated.
  • Air or carbon dioxide gas is selected by the gas valve 52 and the electromagnetic gas supply valve 59 for carbon dioxide gas provided in the carbon dioxide gas supply pipe 54, and air or carbon dioxide in the liquid 17 to be treated is selected.
  • Carbon dioxide can be dissolved efficiently, and a bubble bath with fine bubbles and a carbonated spring can be provided.
  • the control means 72 stops the liquid supply pump 23 and the pumping means 27 and closes the electromagnetic processed liquid take-off valve 38, and the internal pressure in the sealed tank 12 is adjusted by the electromagnetic pressure release valve 75 in a quiet environment. After removal, the electromagnetically processed liquid take-off valve 38 is opened so that the carbon dioxide solution in the sealed tank 12 is taken out to the external liquid tank 21, so when the carbon dioxide solution is taken out into the liquid tank 21, It is possible to suppress the occurrence of a significant pressure difference before and after the flow regulator 39, and to suppress the phenomenon that the carbon dioxide gas suddenly escapes from the carbon dioxide solution due to a sudden pressure change. Can be supplied to the liquid tank 21 and a high concentration carbonated spring can be realized.
  • compressed air and carbon dioxide gas are exemplified as the gas dissolved in the liquid.
  • the present invention can produce hydrogen water using oxygen gas dissolved in the liquid or oxygen
  • the present invention is also applied to the case where oxygen water is produced using a gas dissolved in the liquid or ozone water is produced using ozone gas dissolved in the liquid.
  • the present invention can be used in the manufacturing industry that manufactures the liquid processing apparatus 11 and the sales industry that sells it.
  • Liquid treatment device Sealed tank 13 Liquid guide cylinder 15 Liquid inlet 16 Liquid outlet 17 Liquid to be treated 17a Liquid ejected 18 Liquid supply means 21 Liquid tank 23 Liquid pump 25a Liquid supply 27 Liquid means 33 Liquid ejection space 34 Compressed air supply means 35 Carbon dioxide gas supply means 36 Recirculation passage part 37 Treated liquid outlet pipe 37a Liquid outlet part 38 Treated liquid outlet valve 41 Gas-liquid separation tank part 45 Gas Compressed air supply source 46 Supply air piping for compressed air 52 Supply valve for compressed air 53 Carbon dioxide supply source for gas supply 54 Supply piping for carbon dioxide gas 59 Supply valve for carbon dioxide gas 71 Liquid level sensor 72 Control means 73 Pressure sensor 74 Pump controller 75 Pressure release valve

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Accessories For Mixers (AREA)

Abstract

 処理予定の液中に気体を効率良く溶解させることができる溶解効率の良い液処理装置を提供する。密閉タンク12内に液案内筒体13を設置し、液案内筒体13の液吸込口部15に対して処理予定の液17を供給する給液手段18を設け、液案内筒体13の内部にスクリュー形の揚液手段27を設ける。密閉タンク12の上部内に、揚液手段27により液噴出口部16から噴出された液17aを拡大させる液噴出空間部33を形成する。液噴出空間部33には、溶解予定の圧縮空気を加圧供給する給気手段34と、炭酸ガスを加圧供給する給気手段35とを接続する。密閉タンク12の内周面部と液案内筒体13の外周面部との間に、液噴出空間部33から液案内筒体13の下部に液を循環させる還流通路部36を形成する。密閉タンク12の下部から外部の液槽21に処理済み液を取り出す処理済み液取出配管37を引き出す。

Description

液処理装置
 本発明は、下液処理場、浴場などで用いられる液処理装置に関する。
 活性汚泥水などの液を曝気処理する際に、ブロワまたは酸素供給源から曝気槽内の液中に空気または酸素を供給する液処理装置が知られている(例えば、特許文献1参照)。
特開2002-86183号公報
 しかしながら、このような液処理装置は、大気に開放された曝気槽から放散される空気または酸素量が多く、曝気槽内の液中に酸素を効率良く溶解させることができない。
 本発明は、このような点に鑑みなされたもので、処理予定の液中に気体を効率良く溶解させることができる溶解効率の良い液処理装置を提供することを目的とする。
 請求項1に記載された発明は、密閉タンクと、上記密閉タンク内に上下方向に設置され下端に液吸込口部を開口するととも上端に液噴出口部を開口した液案内筒体と、上記液案内筒体の上記液吸込口部に対して処理予定の液を供給する給液手段と、上記液案内筒体の内部に設けられて上記液吸込口部から液を吸い込むとともに上記液噴出口部から液を噴出させる揚液手段と、上記揚液手段により上記液案内筒体の上記液噴出口部から噴出された液を上記密閉タンクの上部内に拡大させる液噴出空間部と、上記液噴出空間部に溶解予定の気体を加圧供給する給気手段と、上記液噴出空間部から上記密閉タンクと上記液案内筒体との間を経て上記液案内筒体の下部に液を循環させる還流通路部と、上記密閉タンクの下部から外部に処理済み液を取り出す処理済み液取出配管とを具備した液処理装置である。
 請求項2に記載された発明は、請求項1記載の液処理装置における上記処理済み液取出配管が、上記密閉タンク内の下部にて開口された液取出口部を備え、上記密閉タンクは、上記液案内筒体の上記液吸込口部と上記処理済み液取出配管の上記液取出口部との間に形成された気液分離槽部を内部に備えたものである。
 請求項3に記載された発明は、請求項1または2記載の液処理装置における上記給気手段が、複数種の気体を供給する複数の気体供給源に接続された複数の給気配管と、上記複数の給気配管中にそれぞれ開閉自在に設けられた上記複数種の気体用の給気弁とを具備したものである。
 請求項4に記載された発明は、請求項3記載の液処理装置において、上記密閉タンク内の液面レベルを検出する液面センサと、上記液面センサにより検出した液面レベルが設定値より高いときは上記給気弁を開くとともに上記液面レベルが設定値より低いときは上記給気弁を閉じる制御手段と、上記密閉タンク内に処理予定の液を供給する給液ポンプと、上記密閉タンク内の圧力を検出する圧力センサと、上記圧力センサで検出された上記密閉タンク内の圧力が一定に制御されるように上記給液ポンプから吐出される流量を可変制御するポンプ制御器とを具備したものである。
 請求項5に記載された発明は、請求項1乃至4のいずれか記載の液処理装置における上記給気手段が、圧縮空気を供給する圧縮空気供給源に接続された圧縮空気用の給気配管と、上記圧縮空気用の給気配管中に開閉自在に設けられた圧縮空気用の給気弁と、炭酸ガスを供給する炭酸ガス供給源に接続された炭酸ガス用の給気配管と、上記炭酸ガス用の給気配管中に開閉自在に設けられた炭酸ガス用の給気弁とを具備したものである。
 請求項6に記載された発明は、請求項5記載の液処理装置において、上記密閉タンクの下部内から外部の液槽に処理済み液を取り出す上記処理済み液取出配管中に設けられた開閉自在の処理済み液取出弁と、上記密閉タンクの上部に設けられて上記密閉タンク内の内圧を抜くことが可能な圧抜き弁と、上記給液ポンプおよび上記揚液手段を停止するとともに上記処理済み液取出弁を閉じた状態で上記圧抜き弁を開いて上記密閉タンク内の内圧を抜き、その後に上記処理済み液取出弁を開いて上記密閉タンク内の炭酸ガス溶解液を上記外部の液槽に取り出す機能を備えた制御手段とを具備したものである。
 請求項1記載の発明によれば、給液手段から密閉タンク内に設置された液案内筒体の液吸込口部に供給された処理予定の液を液案内筒体および揚液手段により上昇させて液案内筒体の液噴出口部から液噴出空間部に噴出させ、その際に液噴出空間部内で膨張しつつ噴流した液に、給気手段により加圧供給された気体を混合攪拌させ、この液噴出空間部内および密閉タンクと液案内筒体との間の還流通路部で液中に加圧状態の気体を溶解させ、処理済み液取出配管により密閉タンクの下部から外部に気体が溶解した処理済み液を取り出すようにしたので、密閉タンク内で処理予定の液中に気体を効率良く溶解させることができ、無駄のない溶解効率の良い液処理装置を提供できる。
 請求項2記載の発明によれば、密閉タンク内における液案内筒体の液吸込口部と処理済み液取出配管の液取出口部との間に気液分離槽部が形成されたので、液中に溶解することなく気泡状態で混在する気体を気液分離槽部で分離して、再度、加圧状態の密閉タンク内で溶解させることが可能となり、液中に気体を効率良く溶解させた処理済み液のみを処理済み液取出配管の液取出口部から外部に取り出すことができるとともに、密閉タンクの外部に気液分離槽を設置する必要がなく、液処理装置全体をコンパクトに形成できる。
 請求項3記載の発明によれば、複数の給気配管中にそれぞれ開閉自在に設けられた複数種の気体用の給気弁により、密閉タンク内の液噴出空間部に溶解予定の気体を加圧供給するので、1つの密閉タンクを共用して、処理予定の液中に複数の気体を選択的にまたは同時に効率良く溶解させることができる。
 請求項4記載の発明によれば、液面センサと制御手段とにより給気弁を開閉制御することで密閉タンク内の液面レベルを制御しつつ、ポンプ制御器によって圧力センサで検出された密閉タンク内の圧力が一定に制御されるように給液ポンプからの吐出流量を可変制御するので、密閉タンク内に溶解予定の気体と処理予定の液とをバランス良く供給でき、処理予定の液中に気体を効率良く溶解させることができる。
 請求項5記載の発明によれば、給気手段により密閉タンク内の液噴出空間部に加圧供給される溶解予定の気体として、圧縮空気用の給気配管中に設けられた圧縮空気用の給気弁と、炭酸ガス用の給気配管中に設けられた炭酸ガス用の給気弁とにより、空気または炭酸ガスを選択して、処理予定の液中に空気または炭酸ガスを効率良く溶解させることができ、微細気泡による泡風呂や、炭酸泉を提供できる。
 請求項6記載の発明によれば、制御手段が、給液ポンプおよび揚液手段を停止するとともに処理済み液取出弁を閉じた静かな環境下で圧抜き弁により密閉タンク内の内圧を抜いてから、処理済み液取出弁を開いて密閉タンク内の炭酸ガス溶解液を外部の液槽に取り出すようにしたので、炭酸ガス溶解液を液槽に取出す際の著しい圧力差の発生を抑制でき、急激な圧力変化により炭酸ガス溶解液から炭酸ガスが急激に抜ける現象を抑制でき、炭酸ガス溶解濃度の高い炭酸ガス溶解液を外部の液槽へ供給でき、高濃度の炭酸泉を実現できる。
本発明に係る液処理装置の一実施の形態を示す要部断面図および配管図である。 図1のII-II線断面図である。
 以下、本発明を、図1乃至図2に示された一実施の形態に基いて詳細に説明する。
 図1は、液処理装置11の全体を示し、球面状のタンク下底部12aおよびタンク天蓋部12bを有する円筒状の密閉タンク12を中心に構成されている。
 上記密閉タンク12内に上下端開口状の液案内筒体13が上下方向に設置され、図2に示されるように水平断面で十字形に配置された支持板14により固定支持されている。この液案内筒体13の下端にラッパ状に拡大された液吸込口部15が開口され、上端に液噴出口部16が開口されている。
 上記液案内筒体13の上記液吸込口部15に対して処理予定の液17を供給する給液手段18が設けられている。この給液手段18は、液17を貯留した外部の液槽21の底部から引き出された配管22が渦流ポンプなどの給液ポンプ23のポンプ吸込口部23aに接続され、この給液ポンプ23のポンプ吐出口部23bに逆止弁24を経た給液配管25が接続され、この給液配管25中に電気的に開閉制御される電磁式の給液弁26が設けられ、上記給液配管25の液供給口部25aは、上記液案内筒体13の液吸込口部15の下側にて開口されている。
 上記液案内筒体13の内部に、上記液吸込口部15から液17を吸い込むとともに上記液噴出口部16から液17aを噴出させるスクリュー形の揚液手段27が設けられ、このスクリュー形の揚液手段27の回転軸28は、上記密閉タンク12のタンク下底部12aに設けられた液密機能を備えた軸受29により回転自在に保持され、カップリング31を介して、外部に固定配置された電動モータ32の回転軸に連結されている。
 上記密閉タンク12のタンク天蓋部12bと上記液案内筒体13の液噴出口部16との間には、上記揚液手段27により上記液案内筒体13の上記液噴出口部16から噴出された液17aを上記密閉タンク12の上部内に拡大させる液噴出空間部33が形成されている。
 上記液噴出空間部33には、溶解予定の気体としての圧縮空気を加圧供給する給気手段34と、溶解予定の気体としての炭酸ガスを加圧供給する給気手段35とが接続されている。
 気体としては、水素ガス、酸素ガス、オゾンガスなどでも適用可能であるが、ここでは、圧縮空気および炭酸ガスの場合で説明する。
 上記密閉タンク12の内周面部と上記液案内筒体13の外周面部との間には、噴出された液17aを上記液噴出空間部33から上記密閉タンク12と上記液案内筒体13との間を経て上記液案内筒体13の下部に循環させる還流通路部36が形成されている。
 上記密閉タンク12の下部から外部の液槽21に処理済み液を取り出す処理済み液取出配管37が引き出され、この処理済み液取出配管37中には、電気的に開閉制御される電磁式の処理済み液取出弁38と、流量調整器(絞り抵抗可変オリフィス)39とが設けられ、この処理済み液取出配管37の取出先端は、下液処理場、浴場などの液槽21に接続されている。
 上記給液手段18は、上記液案内筒体13の上記液吸込口部15の直下にて開口された液供給口部25aを備え、上記処理済み液取出配管37は、上記密閉タンク12内の下部にて開口された液取出口部37aを備え、上記密閉タンク12は、内部に、上記液案内筒体13の上記液吸込口部15と上記処理済み液取出配管37の上記液取出口部37aとの間に形成された気液分離槽部41を備えている。
 上記密閉タンク12内は、タンク天蓋部12bとタンク内液面42との間に第1溶解槽部43が形成され、タンク内液面42と上記気液分離槽部41との間に第2溶解槽部44が形成されている。
 上記第1溶解槽部43では、噴流されてタンク天蓋部12bなどに衝突した液17a中への加圧給気により液17a中への気体の溶解が促進され、上記第2溶解槽部44では、タンク内液面42に衝突した液流中への加圧給気により液17a中への気体の溶解が促進され、そして、上記気液分離槽部41では、上記第1溶解槽部43および上記第2溶解槽部44で液中へ溶解されなかった気体が分離され、この分離された気体は、上記液案内筒体13に液とともに吸い込まれ、再度、第1溶解槽部43および第2溶解槽部44で溶解処理される。
 上記圧縮空気の給気手段34は、圧縮空気を供給する気体供給源としてのエアコンプレッサなどの圧縮空気供給源45に接続された圧縮空気用の給気配管46中に、エアフィルタ47、減圧弁48、流量調整器(絞り抵抗可変オリフィス)49、流量計50、逆止弁51、電気的に開閉制御される圧縮空気用の電磁式の給気弁52がそれぞれ設けられ、上記給気配管46の給気先端部46aが、上記密閉タンク12の上記液噴出空間部33に挿入されている。
 上記炭酸ガスの給気手段35は、炭酸ガスを供給する気体供給源としての炭酸ガス圧縮ボンベなどの炭酸ガス供給源53に接続された炭酸ガス用の給気配管54中に、減圧弁55、流量調整器(絞り抵抗可変オリフィス)56、流量計57、逆止弁58、電気的に開閉制御される炭酸ガス用の電磁式の給気弁59がそれぞれ設けられ、上記給気配管54の給気先端部54aが、上記密閉タンク12の上記液噴出空間部33に挿入されている。
 上記渦流ポンプなどの給液ポンプ23のポンプ吸込口部23aに接続された配管22には吸気配管61が接続され、この吸気配管61中には、流量調整器(絞り抵抗可変オリフィス)62、流量計63、電気的に開閉制御される電磁式の吸気弁64が設けられ、給液ポンプ23に吸い込まれる液17中に大気中の空気を混入させる場合は、上記電磁式の吸気弁64を開くように制御する。
 上記密閉タンク12内のタンク内液面42の液面レベルを検出する液面センサ71が密閉タンク12の側面に設置され、この液面センサ71により検出したタンク内液面42の液面レベルが設定値より高いときは上記圧縮空気用の電磁式の給気弁52または上記炭酸ガス用の電磁式の給気弁59を開くとともに上記タンク内液面42の液面レベルが設定値より低いときは上記圧縮空気用の電磁式の給気弁52または上記炭酸ガス用の電磁式の給気弁59を閉じるコントローラなどの制御手段72が設けられている。
 上記密閉タンク12内に処理予定の液17を供給する上記渦流ポンプなどの給液ポンプ23を制御するために、上記密閉タンク12のタンク天蓋部12bに上記密閉タンク12内の圧力を検出する圧力センサ73が設けられ、この圧力センサ73で検出された密閉タンク12内の圧力が一定に制御されるように給液ポンプ23から吐出される流量を可変制御するポンプ制御器74が設けられている。このポンプ制御器74は、給液ポンプ23を駆動する電動モータの回転速度を制御するインバータである。
 上記密閉タンク12のタンク天蓋部12bには、上記密閉タンク12内の内圧を抜くことが可能な電気的に開閉制御される電磁式の圧抜き弁75が設置されている。
 上記制御手段72は、上記電磁式の給液弁26、上記電磁式の処理済み液取出弁38、上記圧縮空気用の電磁式の給気弁52、上記炭酸ガス用の電磁式の給気弁59、上記電磁式の吸気弁64、上記電磁式の圧抜き弁75を開閉制御するとともに、上記給液ポンプ23の駆動用電動モータおよび上記揚液手段27の電動モータ32の始動・停止を制御することも可能である。
 特に、上記密閉タンク12内から炭酸ガス溶解液を取り出す場合は、上記制御手段72は、上記給液ポンプ23の駆動用電動モータおよび上記揚液手段27の電動モータ32を停止することで上記密閉タンク12内に静かな環境をつくるとともに、上記処理済み液取出配管37中に設けられた上記電磁式の処理済み液取出弁38を閉じた状態で上記電磁式の圧抜き弁75を開いて上記密閉タンク12内の内圧を抜き、その後に上記電磁式の処理済み液取出弁38を開いて上記密閉タンク12内の炭酸ガス溶解液を上記外部の液槽21に取り出す機能を備えている。
 次に図示された実施の形態の作用を説明する。
 先ず、液槽21が無数の微細気泡を発泡させる泡風呂の浴槽である場合は、圧縮空気の給気手段34を選択して、圧縮空気供給源45を稼働するとともに圧縮空気用の給気配管46中に設けられた電磁式の給気弁52を開き、密閉タンク12内の液噴出空間部33に圧縮空気を加圧供給し、また、液槽21が炭酸泉の浴槽である場合は、炭酸ガスの給気手段35を選択して、炭酸ガス供給源53に接続された炭酸ガス用の給気配管54中に設けられた電磁式の給気弁59を開き、密閉タンク12内の液噴出空間部33に炭酸ガスを加圧供給する。
 その際、圧縮空気や炭酸ガスの供給圧は、減圧弁48,55により調整する。
 制御手段72は、液面センサ71により検出したタンク内液面42の液面レベルに基づいて電磁式の給気弁52または59を開閉制御することで、密閉タンク12内のタンク内液面42の液面レベルをほぼ一定に制御しつつ、圧力センサ73で検出された密閉タンク12内の圧力が指令圧に制御されるようにポンプ制御器74によって給液ポンプ23の駆動モータ回転速度を制御することで給液ポンプ23からの吐出流量を可変制御する。
 例えば、液面センサ71により検出されたタンク内液面42の液面レベルが設定値より高い場合は、気体不足の状態であるので、給気配管46または54中にそれぞれ開閉自在に設けられた給気弁52または59を開き、密閉タンク12内の液噴出空間部33に溶解予定の圧縮空気または炭酸ガスを加圧供給することで、液面レベルを設定値まで下降させる。
 また例えば、圧力センサ73で検出された密閉タンク12内の圧力が指令圧より高い場合は、ポンプ制御器74によって給液ポンプ23の回転速度を下げ給液ポンプ23からの吐出流量を減少させることで、密閉タンク12内の圧力を低下させる。
 密閉タンク12内では、給液手段18から密閉タンク12内に設置された液案内筒体13の液吸込口部15に供給された処理予定の液17を液案内筒体13および揚液手段27により上昇させて液案内筒体13の液噴出口部16から液噴出空間部33に噴出させ、その際に液噴出空間部33内で拡大膨張され密閉タンク12のタンク天蓋部12bに衝突された噴流液17aに、給気手段34により加圧供給された圧縮空気または給気手段35により加圧供給された炭酸ガスが混合攪拌されて効率良く溶解されるとともに、タンク天蓋部12bから跳ね返ってタンク内液面42に衝突する際にも、給気手段34により加圧供給された圧縮空気または給気手段35により加圧供給された炭酸ガスが混合攪拌されて液中に効率良く溶解される。
 すなわち、液噴出空間部33で形成された第1溶解槽部43、および密閉タンク12と液案内筒体13との間の還流通路部36で形成された第2溶解槽部44において、加圧状態の圧縮空気または炭酸ガスが液中に混合攪拌されて効率良く溶解され、液中への気体溶解濃度が高くなる。
 さらに、密閉タンク12内における液案内筒体13の液吸込口部15と処理済み液取出配管37の液取出口部37aとの間に気液分離槽部41が形成されたので、液17a中に溶解することなく気泡状態で混在する気体は、この気液分離槽部41で分離して、再度、加圧状態の密閉タンク12内で溶解させ、液中に空気中の酸素または炭酸ガスを効率良く溶解させた処理済み液のみを、処理済み液取出配管37の液取出口部37aから外部に取り出すことが可能となる。
 流量調整器(絞り抵抗可変オリフィス)39は、給液ポンプ23を設定回転速度で駆動したときに上記密閉タンク12の内圧が設定圧力(例えば0.2MPa)となるように可変調整し、この調整後の絞り抵抗値は変更しない。
 そして、圧縮空気の場合は、流量調整器39で発泡させるために、上記密閉タンク12の内圧が上記設定圧力となるように給液ポンプ23を連続運転するが、炭酸ガスの場合は、流量調整器39での発泡を極力避けて炭酸泉を発泡させずに液槽21に供給するために、上記密閉タンク12の内圧が上記設定圧力より低圧となる指令圧により給液ポンプ23を連続運転して炭酸泉を製造する炭酸泉運転方式その1と、上記密閉タンク12の内圧が上記設定圧力となるような指令圧により給液ポンプ23を運転して高濃度の炭酸泉を製造する炭酸泉運転方式その2とがある。
 先ず、泡風呂を提供する場合は、制御手段72により、圧縮空気用の給気弁52を開いて密閉タンク12内に圧縮空気を供給するとともに電動モータ32により揚液手段27を駆動しつつ、密閉タンク12の内圧が上記設定圧力となるように給液ポンプ23を運転し、密閉タンク12内の上記設定圧力を利用して密閉タンク12内の空気溶解液を処理済み液取出配管37から外部の液槽21に勢いよく噴出させる。その際の流量調整器39の前後での急激な圧力変化を利用して、液槽21内に無数の微細気泡(すなわちマイクロバブル)を発泡生成させ、乳白色の泡風呂(ホワイトイオンバス:登録商標)を提供する。
 この微細気泡による泡風呂は、微細気泡の破裂時に放出されるマイナスイオンにより心身をリラックスさせるとともに、微細気泡の破裂時に発生する超音波により全身をマッサージし、血液の循環を高め身体を温めるとともに、微細な気泡が毛穴に入って毛穴の奥から汚れを洗い流す効果がある。
(炭酸泉運転方式その1)
 炭酸泉を提供する場合は、制御手段72により、炭酸ガス用の給気弁59を開いて密閉タンク12内に炭酸ガスを供給するとともに電動モータ32により揚液手段27を駆動しつつ、密閉タンク12の内圧が圧縮空気の上記設定圧力より低くなるような指令圧により給液ポンプ23を運転し、密閉タンク12内の炭酸ガス溶解液を処理済み液取出配管37から外部の液槽21に取り出すことで、液槽に取出す際の流量調整器39の前後での圧力差の発生を極力抑え、急激な圧力変化により炭酸ガス溶解液から炭酸ガスが急激に抜ける現象を抑制して、液槽21内に炭酸ガスが十分に溶解された液を供給し、一般的に美容と健康に効果があるとされている炭酸泉を提供する。
(炭酸泉運転方式その2)
 高濃度の炭酸泉を製造する場合は、制御手段72により、電磁式の処理済み液取出弁38および圧抜き弁75を閉じた密閉状態で、炭酸ガス用の給気弁59を開いて密閉タンク12内に炭酸ガスを供給するとともに電動モータ32により揚液手段27を駆動しつつ、密閉タンク12の内圧が圧縮空気の場合と等しい上記設定圧力となるような指令圧により給液ポンプ23を運転し、炭酸ガス溶解量が飽和状態となるまで給液ポンプ23および揚液手段27の運転を継続し、飽和状態に達するとタンク内圧が下がらなくなるので、この飽和状態を圧力センサ73で検出した制御手段72は、給液ポンプ23および揚液手段27を停止するとともに電磁式の処理済み液取出弁38を閉じた静かな環境下で、電磁式の圧抜き弁75を開いて密閉タンク12内の内圧を抜いてから、電磁式の処理済み液取出弁38を開いて、密閉タンク12内の炭酸ガス溶解液を密閉タンク12・液槽21間の落差のみにより外部の液槽21に静かに取り出すことで、液槽に取出す際の流量調整器(絞り抵抗可変オリフィス)39の前後での圧力差の発生を極力抑え、急激な圧力変化により炭酸ガス溶解液から炭酸ガスが急激に抜ける現象を抑制しつつ、液槽21内に高濃度の炭酸ガス溶解液を供給する。
 次に図示された実施の形態の効果を説明する。
 給液手段18から密閉タンク12内に設置された液案内筒体13の液吸込口部15に供給された処理予定の液17を液案内筒体13および揚液手段27により上昇させて液案内筒体13の液噴出口部16から液噴出空間部33に噴出させ、その際に液噴出空間部33内で膨張しつつ噴流した液17aに、給気手段34,35により加圧供給された気体を混合攪拌させ、この液噴出空間部33内および密閉タンク12と液案内筒体13との間の還流通路部36で液17a中に加圧状態の気体を溶解させ、処理済み液取出配管37により密閉タンク12の下部から外部に気体が溶解した処理済み液を取り出すようにしたので、密閉タンク12内で処理予定の液中に気体を効率良く溶解させることができ、無駄のない溶解効率の良い液処理装置11を提供できる。
 密閉タンク12内における液案内筒体13の液吸込口部15と処理済み液取出配管37の液取出口部37aとの間に気液分離槽部41が形成されたので、液中に溶解することなく気泡状態で混在する気体を気液分離槽部41で分離して、再度、加圧状態の密閉タンク12内で溶解させることが可能となり、液中に気体を効率良く溶解させた処理済み液のみを、処理済み液取出配管37の液取出口部37aから外部の液槽21に取り出すことができるとともに、密閉タンク12の外部に気液分離槽を設置する必要がなく、液処理装置全体をコンパクトに形成できる。
 複数の給気配管46,54中にそれぞれ開閉自在に設けられた複数種の気体用の電磁式の給気弁52,59により、密閉タンク12内の液噴出空間部33に溶解予定の気体を加圧供給するので、1つの密閉タンク12を共用して、処理予定の液17中に複数の気体を選択的にまたは同時に効率良く溶解させることができる。
 液面センサ71と制御手段72とにより電磁式の給気弁52,59を開閉制御することでタンク内液面42の液面レベルを制御しつつ、ポンプ制御器74によって圧力センサ73で検出された密閉タンク12内の圧力が指令圧に制御されるように給液ポンプ23からの吐出流量を可変制御するので、密閉タンク12内に溶解予定の気体と処理予定の液17とをバランス良く供給でき、処理予定の液17中に気体を効率良く溶解させることができる。
 給気手段34,35により密閉タンク12内の液噴出空間部33に加圧供給される溶解予定の気体として、圧縮空気用の給気配管46中に設けられた圧縮空気用の電磁式の給気弁52と、炭酸ガス用の給気配管54中に設けられた炭酸ガス用の電磁式の給気弁59とにより、空気または炭酸ガスを選択して、処理予定の液17中に空気または炭酸ガスを効率良く溶解させることができ、微細気泡による泡風呂や、炭酸泉を提供できる。
 制御手段72が、給液ポンプ23および揚液手段27を停止するとともに電磁式の処理済み液取出弁38を閉じた静かな環境下で電磁式の圧抜き弁75により密閉タンク12内の内圧を抜いてから、電磁式の処理済み液取出弁38を開いて密閉タンク12内の炭酸ガス溶解液を外部の液槽21に取り出すようにしたので、炭酸ガス溶解液を液槽21に取出す際の流量調整器39の前後での著しい圧力差の発生を抑制でき、急激な圧力変化により炭酸ガス溶解液から炭酸ガスが急激に抜ける現象を抑制でき、炭酸ガス溶解濃度の高い炭酸ガス溶解液を外部の液槽21へ供給でき、高濃度の炭酸泉を実現できる。
 なお、上記実施の形態では、液中に溶解される気体として、圧縮空気および炭酸ガスを例示したが、本発明は、水素ガスを液中に溶解される気体として水素水を製造したり、酸素ガスを液中に溶解される気体として酸素水を製造したり、オゾンガスを液中に溶解される気体としてオゾン水を製造する場合にも適用される。
 本発明は、上記液処理装置11を製造する製造業、販売する販売業などにおいて利用可能である。
 11  液処理装置
 12  密閉タンク
 13  液案内筒体
 15  液吸込口部
 16  液噴出口部
 17  処理予定の液
 17a  噴出された液
 18  給液手段
 21  液槽
 23  給液ポンプ
 25a  液供給口部
 27  揚液手段
 33  液噴出空間部
 34  圧縮空気の給気手段
 35  炭酸ガスの給気手段
 36  還流通路部
 37  処理済み液取出配管
 37a  液取出口部
 38  処理済み液取出弁
 41  気液分離槽部
 45  気体供給源としての圧縮空気供給源
 46  圧縮空気用の給気配管
 52  圧縮空気用の給気弁
 53  気体供給源としての炭酸ガス供給源
 54  炭酸ガス用の給気配管
 59  炭酸ガス用の給気弁
 71  液面センサ
 72  制御手段
 73  圧力センサ
 74  ポンプ制御器
 75  圧抜き弁

Claims (6)

  1.  密閉タンクと、
     上記密閉タンク内に上下方向に設置され下端に液吸込口部を開口するととも上端に液噴出口部を開口した液案内筒体と、
     上記液案内筒体の上記液吸込口部に対して処理予定の液を供給する給液手段と、
     上記液案内筒体の内部に設けられて上記液吸込口部から液を吸い込むとともに上記液噴出口部から液を噴出させる揚液手段と、
     上記揚液手段により上記液案内筒体の上記液噴出口部から噴出された液を上記密閉タンクの上部内に拡大させる液噴出空間部と、
     上記液噴出空間部に溶解予定の気体を加圧供給する給気手段と、
     上記液噴出空間部から上記密閉タンクと上記液案内筒体との間を経て上記液案内筒体の下部に液を循環させる還流通路部と、
     上記密閉タンクの下部から外部に処理済み液を取り出す処理済み液取出配管と
     を具備したことを特徴とする液処理装置。
  2.  上記処理済み液取出配管は、上記密閉タンク内の下部にて開口された液取出口部を備え、
     上記密閉タンクは、上記液案内筒体の上記液吸込口部と上記処理済み液取出配管の上記液取出口部との間に形成された気液分離槽部を内部に備えた
     ことを特徴とする請求項1記載の液処理装置。
  3.  上記給気手段は、
     複数種の気体を供給する複数の気体供給源に接続された複数の給気配管と、
     上記複数の給気配管中にそれぞれ開閉自在に設けられた上記複数種の気体用の給気弁と
     を具備したことを特徴とする請求項1または2記載の液処理装置。
  4.  上記密閉タンク内の液面レベルを検出する液面センサと、
     上記液面センサにより検出した液面レベルが設定値より高いときは上記給気弁を開くとともに上記液面レベルが設定値より低いときは上記給気弁を閉じる制御手段と、
     上記密閉タンク内に処理予定の液を供給する給液ポンプと、
     上記密閉タンク内の圧力を検出する圧力センサと、
     上記圧力センサで検出された上記密閉タンク内の圧力が一定に制御されるように上記給液ポンプから吐出される流量を可変制御するポンプ制御器と
     を具備したことを特徴とする請求項3記載の液処理装置。
  5.  上記給気手段は、
     圧縮空気を供給する圧縮空気供給源に接続された圧縮空気用の給気配管と、
     上記圧縮空気用の給気配管中に開閉自在に設けられた圧縮空気用の給気弁と、
     炭酸ガスを供給する炭酸ガス供給源に接続された炭酸ガス用の給気配管と、
     上記炭酸ガス用の給気配管中に開閉自在に設けられた炭酸ガス用の給気弁と
     を具備したことを特徴とする請求項1乃至4のいずれか記載の液処理装置。
  6.  上記密閉タンクの下部内から外部の液槽に処理済み液を取り出す上記処理済み液取出配管中に設けられた開閉自在の処理済み液取出弁と、
     上記密閉タンクの上部に設けられて上記密閉タンク内の内圧を抜くことが可能な圧抜き弁と、
     上記給液ポンプおよび上記揚液手段を停止するとともに上記処理済み液取出弁を閉じた状態で上記圧抜き弁を開いて上記密閉タンク内の内圧を抜き、その後に上記処理済み液取出弁を開いて上記密閉タンク内の炭酸ガス溶解液を上記外部の液槽に取り出す機能を備えた制御手段と
     を具備したことを特徴とする請求項5記載の液処理装置。
PCT/JP2011/050838 2010-12-06 2011-01-19 液処理装置 WO2012077358A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/992,223 US9290396B2 (en) 2010-12-06 2011-01-19 Liquid treating method
EP11846534.3A EP2650045B1 (en) 2010-12-06 2011-01-19 Liquid treatment apparatus
TW100144825A TWI468220B (zh) 2010-12-06 2011-12-06 液體處理裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-271429 2010-12-06
JP2010271429A JP5331093B2 (ja) 2010-12-06 2010-12-06 液処理装置

Publications (1)

Publication Number Publication Date
WO2012077358A1 true WO2012077358A1 (ja) 2012-06-14

Family

ID=46206868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050838 WO2012077358A1 (ja) 2010-12-06 2011-01-19 液処理装置

Country Status (5)

Country Link
US (1) US9290396B2 (ja)
EP (1) EP2650045B1 (ja)
JP (1) JP5331093B2 (ja)
TW (1) TWI468220B (ja)
WO (1) WO2012077358A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9207222B2 (en) * 2011-12-02 2015-12-08 Murthy Tata Method to adjust gas concentration in fluids
JP6393152B2 (ja) * 2014-10-31 2018-09-19 日東精工株式会社 微細気泡発生装置
DE102015108260A1 (de) * 2015-05-26 2016-12-01 EKATO Rühr- und Mischtechnik GmbH Rührwerkvorrichtung
JP6150954B1 (ja) * 2015-12-28 2017-06-21 株式会社栃木日化サービス 汚水処理装置
CN108439560A (zh) * 2018-03-20 2018-08-24 韦翠花 一种改进型的农村饮用水除砷装置
DE102019111929A1 (de) * 2019-05-08 2020-11-12 Khs Gmbh Füllmaschine und Verfahren zum Füllen von Behältern mit einem flüssigen Füllgut
JP7451972B2 (ja) * 2019-11-29 2024-03-19 株式会社リコー 液吐出ユニット、液吐出装置および液吐出方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317659U (ja) * 1976-07-27 1978-02-15
JPH08309172A (ja) * 1995-05-22 1996-11-26 Kao Corp 液体処理装置
JP2002001379A (ja) * 2000-06-27 2002-01-08 Sumitomo Heavy Ind Ltd 汚水処理装置及び方法
JP2002086183A (ja) 2000-07-12 2002-03-26 Nippon Sanso Corp 排水処理装置及び方法
JP2006116288A (ja) * 2004-09-24 2006-05-11 Tatsuo Okazaki 炭酸含有加熱水生成方法及び装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1356295A (en) * 1970-06-01 1974-06-12 Air Prod & Chem Activated sludge process and system
US3920550A (en) * 1972-09-21 1975-11-18 Environment One Corp Process and equipment for automatic chemical-biological wastewater treatment with provisions for recycle and reuse
US4207275A (en) * 1974-03-29 1980-06-10 General Signal Corporation Mixing apparatus
JPS5936638B2 (ja) 1975-02-25 1984-09-05 三菱化学株式会社 ビスジチオリウム塩類の製造法
EP0047163B1 (en) * 1980-09-01 1985-12-04 M.I.Y. Home Systems Limited Fluid gasification apparatus
US6585236B2 (en) * 2001-07-16 2003-07-01 Hitachi Kiden Kogyo, Ltd. Aerator
WO2005115598A2 (en) * 2004-05-25 2005-12-08 The Board Of Trustees Of The University Of Arkansas System and method for dissolving gases in liquids
JP5372585B2 (ja) * 2009-04-20 2013-12-18 オルガノ株式会社 気液溶解タンク

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317659U (ja) * 1976-07-27 1978-02-15
JPH08309172A (ja) * 1995-05-22 1996-11-26 Kao Corp 液体処理装置
JP2002001379A (ja) * 2000-06-27 2002-01-08 Sumitomo Heavy Ind Ltd 汚水処理装置及び方法
JP2002086183A (ja) 2000-07-12 2002-03-26 Nippon Sanso Corp 排水処理装置及び方法
JP2006116288A (ja) * 2004-09-24 2006-05-11 Tatsuo Okazaki 炭酸含有加熱水生成方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650045A4

Also Published As

Publication number Publication date
EP2650045A1 (en) 2013-10-16
EP2650045A4 (en) 2015-11-25
TWI468220B (zh) 2015-01-11
JP2012120945A (ja) 2012-06-28
TW201228718A (en) 2012-07-16
JP5331093B2 (ja) 2013-10-30
US9290396B2 (en) 2016-03-22
EP2650045B1 (en) 2017-12-06
US20130256924A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5331093B2 (ja) 液処理装置
JP2007289903A (ja) マイクロバブル発生装置及び風呂システム
JP6859573B2 (ja) 送水ポンプレス水素水製造装置及び水素水製造方法
JPWO2006088207A1 (ja) オゾン水生成装置、オゾン水生成装置に用いる気液混合構造、オゾン水生成方法及びオゾン水
KR20050099530A (ko) 기체용해량 조정 방법, 장치 및 시스템
KR101850223B1 (ko) 나노버블 발생장치
JP2010269301A (ja) 微細気泡発生装置
JP2006167175A (ja) 気泡発生装置
JP2007326101A (ja) オゾン水処理方法
JP3076100U (ja) オゾン水生成装置
JP2004298840A (ja) 気体溶解量調整器
KR200455796Y1 (ko) 오존수 및 오존공기 제조장치
JP2007289492A (ja) 炭酸泉の製造方法及び装置
KR101031030B1 (ko) 마이크로 버블 발생장치
JP2010022955A (ja) 微細気泡発生装置
JP5816605B2 (ja) 気体溶解装置
JP2011078858A (ja) マイクロバブル生成方法及びマイクロバブル生成装置
JPH042347A (ja) 浴槽内への酸素供給装置
JPS63104697A (ja) オゾン溶解水製造装置
KR100805791B1 (ko) 오존수 제조방법과 그 장치
JP3082430U (ja) オゾン水生成装置
JP2010155212A (ja) 微細気泡発生装置
KR20080001577U (ko) 가압기체용해장치
CN107381701A (zh) 一种利用恒压微气泡发生器供气的臭氧气浮装置及方法
CN109548305A (zh) 一种利用微纳米气泡技术的电路板清洗装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13992223

Country of ref document: US