WO2012076991A2 - Proceso para la modificación de zeolita por incorporación de fósforo en la estructura cristalina y catalizadores para oligomerización de olefinas - Google Patents

Proceso para la modificación de zeolita por incorporación de fósforo en la estructura cristalina y catalizadores para oligomerización de olefinas Download PDF

Info

Publication number
WO2012076991A2
WO2012076991A2 PCT/IB2011/052405 IB2011052405W WO2012076991A2 WO 2012076991 A2 WO2012076991 A2 WO 2012076991A2 IB 2011052405 W IB2011052405 W IB 2011052405W WO 2012076991 A2 WO2012076991 A2 WO 2012076991A2
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
phosphorus
zsm
modification process
catalysts
Prior art date
Application number
PCT/IB2011/052405
Other languages
English (en)
French (fr)
Other versions
WO2012076991A3 (es
Inventor
Alexander Guzman Monsalve
Adriana Echavarria Isaza
Juan Camilo Arroyabe Manco
Alejandra Maria Santa Arango
Original Assignee
Ecopetrol S.A.
Universidad De Antioquia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecopetrol S.A., Universidad De Antioquia filed Critical Ecopetrol S.A.
Publication of WO2012076991A2 publication Critical patent/WO2012076991A2/es
Publication of WO2012076991A3 publication Critical patent/WO2012076991A3/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • C10G2300/1092C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil

Definitions

  • This invention relates to a process for producing catalysts that are involved in the process of oligomerization of light olefins, in order to produce hydrocarbons in the range of gasoline, diesel and lubricating bases, and with catalysts obtained by said process, which are based on zeolites with phosphorus incorporated during their synthesis.
  • catalysts obtained by said process, which are based on zeolites with phosphorus incorporated during their synthesis.
  • oligomerization of olefins is a process widely used in the industry to produce fuels of the type gasoline or higher olefins that are used as precursors for plasticizers, active tensors or lubricant base additives.
  • olefins in particular C 2 -C 6 olefins
  • plasticizers active tensors or lubricant base additives.
  • lubricant base additives Approximately 70 plants in the world exist for this purpose and use as a supported solid phosphoric acid catalyst.
  • disadvantages of this type of catalysts are that they are not regenerable, have low selectivity and cause disposal problems of the spent catalyst. For this reason, the use of zeolites as catalysts has been considered as an option.
  • Zeolites are molecular sieves composed of crystalline alumino-silicates that form a three-dimensional microporous structure. This crystalline structure is formed from tetrahedra of AI0 2 and Si0 2 and is characterized by having a pore system of uniform dimensions and with high ion exchange capacity, which allows to generate different types of active sites for countless chemical reactions. These materials are normally prepared in sodium or potassium form using procedures that involve crystallization from different precursors of aluminum and silicon, which may ultimately constitute a mixture of oxides. After crystallization, which takes from a few hours to several days, the sodium zeolite is separated, washed and dried, as indicated in US Patent 3355246. Detailed descriptions of the methods of preparation and use of the zeolites can be found in US Patents 2,882,243, US 2,971,824, US 3,003,778 and US 3,247,195.
  • ZSM-5 zeolite which has an MFI type structure, which was first disclosed in US Patent 3,702,886.
  • the synthesis of the zeolite ZSM-5 is generally carried out in a basic medium in the presence of structuring agents such as tetrapropylammonium bromides or hydroxides and alkali cations.
  • structuring agents such as tetrapropylammonium bromides or hydroxides and alkali cations.
  • ZSM-5 zeolites have been obtained with Si / Al compositions of values from 10 to greater than 300.
  • Many developments related to zeolites have focused on improving their performance and catalytic stability by incorporating elements such as phosphorus, which confers thermal stability and better catalytic performance in processes that demand high temperatures and severe conditions.
  • US 5,888,921 teaches a process for obtaining a binary molecular sieve in which crystalline zeolite powder is added to a slurry comprising phosphoric acid, a source of alumina, a metal salt and an amine.
  • the slurry is mixed for up to 12 hours in a Teflon container at room temperature, taken to an autoclave and then placed in an oven to a temperature of 130 ° C for up to 168 hours in order to form the catalyst.
  • the product is then washed, dried and calcined in nitrogen at a temperature of up to 570 ° C for up to 15 hours and then, in air for up to 3 hours.
  • US Patent 5,171,921 reports a method for producing olefins using ZSM-5 type catalysts with Si / Al ratios of 20 to 60 and modified by impregnation with phosphorus compounds from phosphorus levels between 0.1 and 10% and treated in water vapor environments at temperatures from 500 to 700 ° C, pressures between 1 and 5 atm and for times between 1 and 48 hours.
  • US Patent 7,786,337 refers to an oligomerization process of an olefin characterized in that the raw material is contacted with a crystalline zeolite and with a catalyst comprising solid phosphoric acid.
  • a process for the modification of zeolites with phosphorus incorporated during its synthesis is described.
  • the modification method is carried out by incorporating an amount of phosphorus in the form of phosphoric acid or phosphate salts in the preparation step of the zeolite synthesis gel, specifically after the addition of the silicon source.
  • the pH is then adjusted in the event that phosphoric acid is used as a source of phosphorus and the zeolite in sodium form is then exchanged with ammonium for the formation of acid sites.
  • the catalyst obtained by the above process is part of the invention, which has a higher concentration of strong acid sites, which are the result of the presence of phosphorus within the crystalline structure of the zeolite.
  • the active zeolite of the present invention is preferably used in oligomer production processes in the range of gasoline, diesel and lubricant bases obtained from light olefins such as propane, butanes or higher olefins, under the reaction conditions for oligomerization. .
  • FIGURE 1 Comparison of the conversion of propylene as a function of the reaction time of impregnated catalysts versus the catalysts of the invention, comprising phosphorus incorporated during the synthesis.
  • FIGURE 2 Comparison of product yields in the range of C 3 a
  • FIGURE 3 Comparison of product yields in the range of C 8 + as a function of the reaction time of impregnated catalysts versus catalysts of the invention, which comprise phosphorus incorporated during synthesis.
  • FIGURE 4 Comparison of the conversion of propylene as a function of the reaction time of catalysts without phosphorus versus the catalysts of the invention, which comprise phosphorus incorporated during the synthesis.
  • FIGURE 5 Comparison of product yields in the range of C 3 a
  • FIGURE 6 Comparison of product yields in the range of C 8 to
  • FIGURE 7 Comparison of product yields in the range of d 2 + as a function of the reaction time of catalysts without phosphorus versus catalysts of the invention, which comprise phosphorus incorporated during synthesis.
  • the process for the modification of zeolites with phosphorus incorporated during the synthesis is based on the addition of an amount of phosphorus in the acid form phosphoric or phosphate salts in the preparation stage of the zeolite synthesis gel, specifically after the addition of the silicon source.
  • the process begins by defining the nominal Si / Al ratio that is intended to be synthesized, which allows determining the molar ratio of the synthesis gel that includes all the components that will be part of the zeolite production process.
  • the nominal Si / Al ratio is between 10 and 200.
  • the process can be carried out using different sources of the synthesis gel components.
  • the aluminum source is homogenized with water and NaOH and then the silicon source is added, maintaining the stirring until a homogeneous gel is formed, free of agglomerations, at that time the phosphorus source is added and adjusted pH with NaOH at values between 12 and 14.
  • This mixture is stirred for 3 to 8 hours, after which a structuring agent selected from tetrapropyl ammonium salts is added, preferably said agent is tetrapropyl ammonium bromide (TPABr) , and stirring is continued for another 30 to 60 minutes.
  • a structuring agent selected from tetrapropyl ammonium salts is added, preferably said agent is tetrapropyl ammonium bromide (TPABr) , and stirring is continued for another 30 to 60 minutes.
  • the gel obtained is transferred to a tightly sealed reactor, made of stainless steel with a Teflon coating, and heated for 1 to 7 days, preferably 1 to 3 days, at a temperature between 170 ° C to 200 ° C, being the optimum temperature between 185 ° C and 195 ° C, and even better 190 ° C, until the crystallized zeolite is obtained, which is then subjected to a filtration and washing stage, to remove excess residual raw materials, and dried at temperatures that They range between 60 ° C and 120 ° C.
  • the crystallized zeolite In order to activate the crystallized zeolite, it is subjected to an ion exchange stage in which sodium is replaced by ammonium using fresh solutions of NH 4 NO 3 . This procedure is repeated several times to reduce the amount of sodium to values less than 0.5% by weight of the total zeolite.
  • the zeolite in ammonium form is then dried in a range of temperatures between 100 ° C and 120 ° C for times from 1 to 3 hours and calcined at a heating rate of 1 ° C / min at 5 ° C / min until reaching a temperature between 520 ° C and 560 ° C, this temperature It is sustained for a period of 5 hours to 24 hours until the decomposition of ammonium is achieved.
  • the activated zeolite is subjected to an extrusion stage for which the powdered zeolite is mixed in percentages between 20% to 60% by weight of zeolite with matrices of support, preferably based on alumina or kaolin, and then with peptizing agents selected from the group consisting of nitric acid, acetic acid and formic acid, whose concentration fluctuates between 0.5% and 5%, preferably between 0.5% to 1.5% until a homogeneous paste is obtained and with good fluidity properties for subsequent extrusion.
  • the resulting extrudates which can be cylindrical or trilobular, are subsequently dried, calcined and cut.
  • the catalyst particles In order to achieve a good contact surface in the catalyst bed, the catalyst particles have a diameter of 0.1 cm to 0.2 cm and a length that fluctuates between 0.3 cm and 0.8 cm.
  • the zeolite is selected from the group consisting of ZSM-5, ZSM-1 1, ZSM-23 and ZSM-48, preferably the zeolite is ZSM-5 or ZSM-1 1.
  • the source of aluminum is selected from alumina or sodium aluminate, preferably sodium aluminate;
  • the source of silicon is chosen from the group consisting of powdered silica or colloidal silica, preferably colloidal silica;
  • the phosphorus source is phosphoric acid or phosphate salts, preferably sodium tribasic phosphate.
  • the nominal Si / Al ratio is between 30-100, the nominal amount of phosphorus in the form of P 2 0 5 added is it finds between 0.5% and 15% of the total moles of silicon oxide in the synthesis gel mixture.
  • the catalyst obtained by the above process is also part of the invention, which has as its main characteristic a higher concentration of strong acid sites, which are the result of the presence of phosphorus within the crystalline structure of the zeolite.
  • Zeolite ZSM-5 prepared using as sources of silicon and aluminum, silica and alumina, respectively and adding phosphorus during synthesis.
  • 0.2 g of ⁇ -alumina was mixed with 0.6 g of NaOH and 52.5 g of deionized water for 10 minutes with continuous stirring. Then 10.6 g of silica gel were added slowly and after 10 min of stirring 0.5 ml of H 3 PO 4 was added . To reset the pH to the measured value before the addition of H 3 P0 4 , the amount of NaOH required to maintain a pH of 13 is added. The gel formed was stirred for 6 hours and then 2.3 g of TPABr were added. After 45 minutes of stirring, the gel was transferred to a sealed stainless steel reactor with teflon coating and taken to a convection heating oven for 24 hours at 190 ° C under autogenous pressure.
  • the precipitated solid was filtered and washed with deionized water and dried at 60 ° C.
  • the zeolite in its acid form was obtained by making three consecutive ion exchanges for 3 hours, each with fresh solutions of NH 4 N0 3 0.2M, using a solution ratio to grams of zeolite of 50 mL / g and a temperature of 50 ° C.
  • the solid was then calcined at 550 ° C for 6 hours to obtain the crystallized zeolite claimed in this application.
  • Zeolite ZSM-5 prepared using as sources of silicon and aluminum, silica and alumina, respectively and adding phosphorus after synthesis.
  • a zeolite H-ZSM-5 was prepared following the procedure described in example 1, except for the addition of the amount of phosphorus source (H 3 P0 4 ) and the respective amount of NaOH necessary to adjust the pH of the initial gel.
  • the calcined HZSM-5 zeolite was mixed with deionized water in a proportion of 30% to 70% w / w, respectively, and subjected to heating and stirring at 250 to 300 rpm.
  • ZSM-5 zeolites prepared according to examples 1 and 2 were evaluated as catalysts in the propylene oligomerization reaction.
  • the catalyst particles were prepared by extrusion in a screw extruder, using 40% zeolite and 60% bohemite alumina matrix. As a peptizing agent, a 1% by weight solution of HN0 3 was used . Then, the extrudates were dried for approximately 3 hours at 10 ° C and subsequently, fractured to obtain cylindrical particles 0.1 cm to 0.2 cm in diameter and 0.3 to 0.5 cm in length. These were calcined at 550 ° C for 6 hours.
  • the catalytic evaluation was carried out in a 1.2 cm diameter stainless steel tubular reactor with temperature, pressure and mass flow controls and one gram of extruded catalyst in the isothermal zone of the reactor
  • the initial mixture contained 5% propylene in N 2 and a flow of 44mL / min was adjusted.
  • the experiments were performed at 270 ° C and 2.5 MPa with 1 g of catalyst.
  • the results of the catalytic evaluation are presented in Figures 1, 2 and 3.
  • Zeolite ZSM-5 prepared using as sources of silicon and aluminum, sodium silicate and sodium aluminate, respectively and without phosphorus addition.
  • the molar ratio of the synthesis gel is shown below (Si / Al nominal « 100).
  • the zeolite synthesis procedure was as follows: 1.4 g of sodium hydroxide were added to 60.3 ml of deionized water, then 0.25 g of sodium aluminate was added. This solution was stirred for 10 minutes; then, 60.1 g of silicon source was added, slowly to avoid agglomerations, maintaining stirring for 4 h. Finally, 4.19g of TPABr was added and stirred for an additional 45 minutes. The resulting gel was charged into a stainless steel reactor with Teflon lining and heated to 190 Q C for 24 hours for crystallization under autogenous pressure. After this time, the reactor was cooled rapidly, the solids were recovered by vacuum filtration, washed to be neutral pH and dried at 100 Q C overnight.
  • Zeolite ZSM-5 prepared using as sources of silicon and aluminum, sodium silicate and sodium aluminate, respectively and with phosphorus addition during synthesis.
  • the procedure described in example 4 was followed.
  • the molar composition of the synthesis gel is modified to maintain the Si / Al ratio of said example. This was done by reducing the amount of silicon source, for which 57, 1 g and 2.1 mL of 86% H 3 P0 4 and 3.14g NaOH were added to readjust the pH. Phosphoric acid and pH readjustment are made after the addition of the silicon source.
  • Tables 3 and 4 show the results of the elemental analysis and acidity determination obtained from the solids prepared in accordance with the provisions of Examples 4 and 5.
  • Figure 4 shows that the presence of phosphorus, specifically its incorporation during synthesis, causes a catalyst that maintains the initial activity during the total reaction time, while the phosphorus-free catalyst exhibits a low activity during the entire reaction time evaluated.
  • figures 5, 6 and 7, reflect a better performance of the catalyst of the invention with yields of products in the ranges of C 3 to C 7 , C 8 ad 2 and C12 + significantly higher than those obtained with the phosphorus-free catalyst .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La presente invención se relaciona con un proceso para producir catalizadores que intervienen en el proceso de oligomerización de olefinas livianas, a fin de producir hidrocarburos en el rango de la gasolina, el diesel y bases lubricantes, y con catalizadores obtenidos mediante dicho proceso, los cuales se basan en zeolitas con fósforo incorporado durante su síntesis. Con estos nuevos catalizadores se mejora la actividad, la selectividad y la estabilidad, toda vez que ellos presentan mayor cantidad de sitios ácidos fuertes, lo que se traduce en superior eficiencia del proceso, así como en mejor calidad del producto.

Description

PROCESO PARA LA MODIFICACIÓN DE ZEOLITA POR INCORPORACIÓN DE FÓSFORO EN LA ESTRUCTURA CRISTALINA Y CATALIZADORES PARA OLIGOMERIZACIÓN DE OLEFINAS CAMPO TECNOLÓGICO
Esta invención se relaciona con un proceso para producir catalizadores que intervienen en el proceso de oligomerización de olefinas livianas, a fin de producir hidrocarburos en el rango de la gasolina, el diesel y bases lubricantes, y con catalizadores obtenidos mediante dicho proceso, los cuales se basan en zeolitas con fósforo incorporado durante su síntesis. Con estos nuevos catalizadores se mejora la actividad, la selectividad y la estabilidad, toda vez que ellos presentan mayor cantidad de sitios ácidos fuertes, lo que se traduce en superior eficiencia del proceso, así como en mejor calidad del producto.
ESTADO DE LA TÉCNICA
La oligomerización de olefinas, en particular olefinas C2 - C6 es un proceso ampliamente usado en la industria para producir combustibles del tipo gasolinas u olefinas superiores que se usan como precursores para plastificantes, tenso activos o aditivos para bases lubricantes. Aproximadamente existen 70 plantas en el mundo con este propósito y emplean como catalizador ácido fosfórico sólido soportado. Dentro de las desventajas de este tipo de catalizadores están que no son regenerables, tienen baja selectividad y causan problemas de disposición del catalizador gastado. Por tal razón, se ha planteado como opción el empleo de zeolitas como catalizadores.
Las zeolitas son tamices moleculares compuestos de alumino-silicatos cristalinos que conforman una estructura microporosa tridimensional. Esta estructura cristalina se forma a partir de tetrahedros de AI02 y Si02 y se caracteriza por tener un sistema de poros de dimensiones uniformes y con alta capacidad de intercambio iónico, lo que permite generar diferentes tipos de sitios activos para un sinnúmero de reacciones químicas. Estos materiales se preparan normalmente en forma sódica o potásica usando procedimientos que involucran cristalización a partir de diferentes precursores de aluminio y silicio, que pueden finalmente constituir una mezcla de óxidos. Después de la cristalización, que toma desde algunas horas hasta varios días, la zeolita sódica, se separa, lava y seca, como se indica en la patente U.S 3355246. Descripciones detalladas de los métodos de preparación y uso de las zeolitas se pueden encontrar en las patentes US 2.882.243, US 2.971 .824, US 3.003.778 y US 3.247.195.
La facilidad de intercambiar metales u otros elementos en la estructura de las zeolitas permite generar materiales con composiciones altamente activas y selectivas en un sinnúmero de aplicaciones, entre ellas las que se describen en las patentes US 3.140.249 y US 3.140.253.
Una de las zeolitas de mayor interés es la zeolita ZSM-5 la cual tiene una estructura del tipo MFI, que fue divulgada por primera vez en la patente US 3.702.886. De acuerdo con lo establecido con dicho documento, la síntesis de la zeolita ZSM-5 se hace generalmente en medio básico en presencia agentes estructurantes como los bromuros o hidróxidos de tetrapropilamonio y cationes alcalinos. Aplicando este proceso se han obtenido zeolitas ZSM-5 con composiciones de Si/Al de valores de 10 a mayores de 300. Muchos desarrollos relacionados con zeolitas se han centrado en mejorar su desempeño y estabilidad catalítica mediante la incorporación de elementos como fósforo, el cual le confiere estabilidad térmica y mejor desempeño catalítico en procesos que exigen altas temperaturas y condiciones severas. A la fecha, la incorporación de fósforo se ha realizado usando métodos post síntesis, específicamente mediante impregnación de la zeolita previamente cristalizada, como se menciona en US 2001/0144514. Entre las patentes relacionadas con zeolitas y fósforo se encuentra la patente US 3.972.832, donde se usa la zeolita ZSM-5 en reacciones de conversión de parafinas. En este caso, la zeolita es tratada con soluciones de compuestos de fósforo, los cuales son incorporados por impregnación hasta lograr una concentración entre 0.78% y 4.5% de fósforo.
En este mismo contexto se encuentra la patente US 4.548.914, que describe otra modificación de la zeolita ZSM-5 que involucra impregnación con fósforo u otros elementos como magnesio y calcio. La zeolita impregnada es luego tratada bajo condiciones hidrotérmicas para mejorar su estabilidad a las altas temperaturas y a condiciones oxidantes. Otros documentos que se refieren a este tema son la solicitud de patente europea EP 296582, que divulga una modificación de un catalizador del tipo aluminosilicato mediante impregnación con compuestos de fósforo y metales como manganeso y cobalto, y la patente US 7.622.413 que enseña un aditivo multifuncional que maximiza el rendimiento de olefinas livianas y que posee tolerancia hacia los metales contaminantes y consiste de una zeolita, la cual es impregnada con fósforo y tierras raras. Por su parte, las patentes US 4.356.338 y US 4.456.780 mencionan métodos para extender la vida de catalizadores basados en la zeolita ZSM-5 mediantes tratamiento de impregnación con compuestos de fósforo en niveles entre 2 y 15 % en fósforo. Luego estos catalizadores son tratados bajo condiciones hidrotérmicas usando temperaturas de entre 250 y 1000°C y niveles de vapor de agua desde 5% a 100% de fósforo durante tiempos entre 15 minutos hasta 1000 horas.
Es más, el documento US 5.888.921 enseña un proceso para obtener un tamiz molecular binario en el que zeolita cristalina en polvo se agrega a una lechada que comprende ácido fosfórico, una fuente de alúmina, una sal metálica y una amina. La lechada es mezclada hasta por 12 horas en un recipiente de teflón a temperatura ambiente, llevada a un autoclave y luego puesta en un horno a una temperatura de 130 °C por hasta 168 horas con el fin de formar el catalizador. El producto es luego lavado, secado y calcinado en nitrógeno a una temperatura de hasta 570 °C por hasta 15 horas y luego, en aire por hasta 3 horas.
Sumada a la información se encuentra la patente US 5.171 .921 , que reporta un método para producir olefinas usando catalizadores del tipo ZSM-5 con relaciones Si/Al de 20 a 60 y modificados por impregnación con compuestos de fósforo desde niveles de fósforo entre 0.1 y 10 % y tratados en ambientes de vapor de agua a temperaturas desde 500 hasta 700 °C, presiones entre 1 y 5 atm y por tiempos entre 1 y 48 horas.
Incluso, la patente US 7.786.337 se refiere a un proceso de oligomerización de una olefina que se caracteriza porque la materia prima es contactada con una zeolita cristalina y con un catalizador que comprende ácido fosfórico sólido.
Aún cuando han sido muchos los esfuerzos para implementar el uso de la zeolita ZSM-5 en esta aplicación, gracias a su sistema poroso que permite controlar el grado de ramificación y producir oligómeros mayores en el rango del diesel o base lubricantes, incluso hasta valores superiores al 30%, los procesos industriales se realizan empleando como catalizador ácido fosfórico sólido soportado, a pesar de que sus rendimientos de destilados son del orden del 10%, pues la implementación basada en zeolitas no ha sido posible debido a la rápida desactivación que ellas presentan.
Considerando la mejor actividad de las zeolitas sobre el ácido fosfórico, sería ideal contar con catalizadores a base de zeolitas cuya estabilidad a lo largo del tiempo sea mayor y presenten una mejor actividad y selectividad.
RESUMEN DE LA INVENCIÓN En la presente invención se describe un proceso para la modificación de zeolitas con fósforo incorporado durante su síntesis. El método de modificación se lleva a cabo mediante la incorporación de una cantidad de fósforo en la forma de ácido fosfórico o sales de fosfato en la etapa de preparación del gel de síntesis de zeolita, específicamente después de la adición de la fuente de silicio. Seguido se ajusta el pH en el caso que se utilice como fuente de fósforo el ácido fosfórico y la zeolita en forma sódica es luego intercambiada con amonio para la formación de los sitios ácidos. Igualmente, hace parte de la invención el catalizador obtenido mediante el proceso anterior, el cual presenta mayor concentración de sitios ácidos fuertes, los cuales son el resultado de la presencia del fósforo dentro de la estructura cristalina de la zeolita. La zeolita activa de la presente invención se usa preferiblemente en procesos de producción de oligómeros en el rango de la gasolina, el diesel y las bases lubricantes obtenidas a partir de olefinas livianas como propano, butanos u olefinas superiores, bajo las condiciones de reacción para oligomerización.
DESCRIPCIÓN DE LAS FIGURAS
FIGURA 1. Comparación de la conversión de propileno en función del tiempo de reacción de catalizadores impregnados versus los catalizadores de la invención, que comprenden fósforo incorporado durante la síntesis.
FIGURA 2. Comparación de los rendimientos de productos en el rango de C3 a
C7 en función del tiempo de reacción de catalizadores impregnados versus los catalizadores de la invención, que comprenden fósforo incorporado durante la síntesis. FIGURA 3. Comparación de los rendimientos de productos en el rango de C8+ en función del tiempo de reacción de catalizadores impregnados versus los catalizadores de la invención, que comprenden fósforo incorporado durante la síntesis.
FIGURA 4. Comparación de la conversión de propileno en función del tiempo de reacción de catalizadores sin fósforo versus los catalizadores de la invención, que comprenden fósforo incorporado durante la síntesis.
FIGURA 5. Comparación de los rendimientos de productos en el rango de C3 a
C7 en función del tiempo de reacción de catalizadores sin fósforo versus los catalizadores de la invención, que comprenden fósforo incorporado durante la síntesis.
FIGURA 6. Comparación de los rendimientos de productos en el rango de C8 a
C12 en función del tiempo de reacción de catalizadores sin fósforo versus los catalizadores de la invención, que comprenden fósforo incorporado durante la síntesis.
FIGURA 7. Comparación de los rendimientos de productos en el rango de d2+ en función del tiempo de reacción de catalizadores sin fósforo versus los catalizadores de la invención, que comprenden fósforo incorporado durante la síntesis.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El proceso para la modificación de zeolitas con fósforo incorporado durante la síntesis se basa en la adición de una cantidad de fósforo en la forma de ácido fosfórico o sales de fosfato en la etapa de preparación del gel de síntesis de la zeolita, específicamente después de la adición de la fuente de silicio.
El proceso inicia definiendo la relación Si/Al nominal que se pretende sintetizar, lo cual permite determinar la relación molar del gel de síntesis que incluye todos los componentes que harán parte del proceso para la producción de la zeolita. De manera preferida, la relación Si/Al nominal se encuentra entre 10 y 200. El proceso se puede efectuar utilizando diferentes fuentes de los componentes del gel de síntesis.
En una primera etapa se homogeniza la fuente de aluminio con agua y NaOH y seguido se adiciona la fuente de silicio, manteniendo la agitación hasta la formación de un gel homogéneo, libre de aglomeraciones, en ese momento se adiciona la fuente de fósforo y se ajusta el pH con NaOH a valores entre 12 y 14. Esta mezcla es agitada durante 3 a 8 horas, después de lo cual se agrega un agente estructurante seleccionado a partir de sales de tetrapropil amonio, preferiblemente dicho agente es bromuro de tetrapropil amonio (TPABr), y se continua la agitación durante 30 a 60 minutos más. El gel obtenido es transferido a un reactor herméticamente cerrado, de acero inoxidable con recubrimiento de teflon, y se calienta durante 1 a 7 días, de manera preferida de 1 a 3 días, a una temperatura entre 170°C a 200 °C, estándo la temperatura óptima entre 185°C y 195°C, y aún mejor 190°C, hasta obtener la zeolita cristalizada que es entonces sometida a una etapa de filtración y lavado, para remover el exceso de materias primas residuales, y secada a temperaturas que oscilan entre 60 °C y 120°C.
Con el fin de activar la zeolita cristalizada, ésta es sometida a una etapa de intercambio iónico en la cual el sodio es reemplazado por amonio usando soluciones frescas de NH4NO3. Este procedimiento se repite varias veces hasta reducir las cantidad de sodio a valores menores de 0.5% en peso de la zeolita total. La zeolita en forma amónica es luego secada en un rango de temperaturas entre 100°C y 120°C por tiempos desde 1 a 3 horas y calcinada a un rata de calentamiento de 1 °C/min a 5°C/min hasta alcanzar una temperatura entre 520 °C y 560 °C, esta temperatura es sostenida por un periodo de 5 horas a 24 horas hasta lograr la descomposición del amonio.
En procura de obtener las partículas de catalizador que serán empleadas en el proceso de oligomerización, la zeolita activada es sometida a una etapa de extrusión para lo cual la zeolita en polvo es mezclada en porcentajes entre 20% a 60% en peso de zeolita con matrices de soporte, preferiblemente a base de alúmina o caolín, y luego, con agentes peptizantes seleccionados a partir del grupo que consiste de ácido nítrico, ácido acético y ácido fórmico, cuya concentración fluctúa entre 0,5% y 5%, de manera preferida entre 0.5% a 1 .5% hasta conseguir una pasta homogénea y con buenas propiedades de fluidez para su posterior extrusión. Los extrudados resultantes, que pueden ser cilindricos o trilobulares, son posteriormente secados, calcinados y cortados. Con el fin de lograr una buena superficie de contacto en el lecho catalítico, las partículas de catalizador tienen un diámetro de 0,1 cm a 0,2 cm y una longitud que fluctúa entre 0,3 cm y 0,8 cm. En una modalidad preferida, la zeolita se selecciona del grupo que consiste de ZSM-5, ZSM-1 1 , ZSM-23 y ZSM-48, de manera preferida la zeolita es ZSM-5 o ZSM-1 1 .
En relación con las materias primas para la producción de la zeolita, es importante que la fuente de aluminio se seleccione a partir de alúmina o aluminato de sodio, preferiblemente aluminato de sodio; la fuente de silicio es elegida del grupo que consiste de sílica en polvo o sílica coloidal, preferiblemente sílica coloidal; mientras que la fuente de fósforo es ácido fosfórico o sales de fosfato, preferiblemente fosfato tribásico de sodio.
En una alternativa preferida de la invención la relación Si/Al nominal está entre 30-100, la cantidad nominal de fósforo en forma de P205 adicionada se encuentra entre 0,5% y 15% de las moles totales de óxido de silicio en la mezcla del gel de síntesis.
También es parte de la invención el catalizador obtenido mediante el proceso anterior, el cual presenta como principal característica una mayor concentración de sitios ácidos fuertes, los cuales son el resultado de la presencia del fósforo dentro de la estructura cristalina de la zeolita.
El análisis detallado de las propiedades de la zeolita que compone el catalizador producido mediante el proceso de la invención se muestra en la tabla 1 .
Figure imgf000011_0001
A continuación se presentan seis ejemplos donde se comparan las cualidades del catalizador desarrollado mediante el proceso de la presente invención y la estabilidad, actividad y selectividad de otros catalizadores existentes en el estado de la técnica.
EJEMPLO 1
Zeolita ZSM-5 preparada usando como fuentes de silicio y aluminio, sílica y alúmina, respectivamente y adicionando fósforo durante la síntesis.
0,2 g de γ-alumina se mezclaron con 0,6 g de NaOH y 52,5 g de agua desionizada durante 10 minutos con agitación continua. Luego se adicionaron lentamente 10,6 g de sílica gel y despúes de 10 min de agitación se adicionaron 0,5 ml_ de H3PO4. Para restablecer el pH al valor medido antes de la adición del H3P04, se adiciona la cantidad de NaOH requerido para mantener un pH de 13. El gel formado se agitó durante 6 horas y luego se adicionaron 2,3 g de TPABr. Después de 45 minutos de agitación, el gel se transfirió a un reactor hermético de acero inoxidable con recubrimiento de teflon y se llevó a una estufa de calentamiento por convección durante 24 horas a 190 °C bajo presión autógena. Pasado este tiempo el sólido precipitado se filtró y lavó con agua desionizada y se secó a 60 °C. La zeolita en su forma ácida se obtuvo haciendo tres intercambios iónicos consecutivos por 3 horas, cada uno con soluciones frescas de NH4N03 0,2M, usando una relación de solución a gramos de zeolita de 50 mL/g y una temperatura de 50 °C. Luego el solidó se calcinó a 550 °C durante 6 horas para obtener la zeolita cristalizada reivindicada en esta solicitud.
EJEMPLO 2
Zeolita ZSM-5 preparada usando como fuentes de silicio y aluminio, sílica y alúmina, respectivamente y adicionando fósforo después de la síntesis.
Se preparó una zeolita H-ZSM-5 siguiendo el procedimiento descrito en el ejemplo 1 , exceptuando la adición de la cantidad de fuente de fósforo (H3P04) y la respectiva cantidad de NaOH necesaria para ajustar el pH del gel inicial. Para obtener el catalizador impregnado al 1 % de P2O5 la zeolita HZSM-5 calcinada se mezcló con agua desionizada en proporción 30% a 70% p/p, respectivamente, y se sometió a calentamiento y agitación de 250 a 300rpm. Al alcanzar una temperatura entre 80 y 85 °C se agregaron 0,016 mL de H3PO4 (Cario Erba al 85%) por gramo de zeolita, y se continuó el calentamiento hasta alcanzar una temperatura entre 95 °C a 100 QC hasta evaporación. El sólido se calcinó a 550 QC durante 6h para obtener la zeolita impregnada con fósforo. La tabla 2 muestra la composición de las zeolitas preparadas en los ejemplos 1 y 2. Na (%) Al (%) Si (%) P (%) Si/Al
Ejemplo 1 : adición de fósforo
0.03 0.40 33.1 0.003 83.4 durante la síntesis.
Ejemplo 2: adición de fósforo
después de la síntesis. 0.02 0.42 32.3 0.5 77.1
EJEMPLO 3
Las zeolitas ZSM-5 preparadas según los ejemplos 1 y 2 se evaluaron como catalizadores en la reacción de oligomerización de propileno. Las partículas de los catalizadores se prepararon por extrusión en una extrusora de tornillo, usando 40% de zeolita y 60% de matriz de alúmina tipo bohemita. Como agente peptizante se usó una solución al 1 % en peso de HN03. Luego, los extrudados se secaron por 3 horas aproximadamente a 1 10°C y posteriormente, se fracturaron hasta obtener partículas cilindricas de 0,1 cm a 0,2 cm de diámetro y 0.3 a 0.5 cm de longitud. Estas se calcinaron a 550 °C por 6 horas.
La evaluación catalítica se llevó a cabo en un reactor tubular de acero inoxidable de 1 ,2 cm de diámetro con controles de temperatura, presión y flujo másico y un gramo de catalizador extrudado en la zona isotérmica del reactor
La mezcla inicial contenía 5% de propileno en N2 y se ajustó un flujo 44mL/min. Los experimentos se realizaron a 270°C y 2,5 MPa con 1 g de catalizador. Los resultados de la evaluación catalítica se presentan en las figuras 1 , 2 y 3.
Considerando los datos reportadas en la figura 1 , se observa que la incorporación de fósforo durante la síntesis produce un catalizador que mantiene la actividad inicial durante el tiempo total de reacción, mientras el catalizador obtenido por impregnación de fósforo pierde su actividad inicial luego de la segunda hora de reacción. Esto demuestra claramente la superioridad del catalizador elaborado mediante el proceso de la invención, sobre los catalizadores impregnados de fósforo, que constituyen el estado de la técnica más cercano.
En relación con los resultados exhibidos en las figuras 2 y 3, es evidente el mejor desempeño del catalizador de la invención pues muestra mayores rendimientos de productos en los rangos de C3 a C7 especialmente.
EJEMPLO 4
Zeolita ZSM-5 preparada usando como fuentes de silicio y aluminio, silicato de sodio y aluminato de sodio, respectivamente y sin adición de fósforo.
La relación molar del gel de síntesis se muestra a continuación (Si/Al nominal « 100).
5,2Na20 : 0,6 Na2O.AI203 : 120 Si02 : 6,3 TPABr : 2275,2 H20
El procedimiento de síntesis de la zeolita fue el siguiente: 1 ,4 g de hidróxido de sodio se adicionaron a 60,3ml_ de agua desionizada, luego se añadieron 0,25g de aluminato de sodio. Esta solución se agitó durante 10 minutos; luego, se agregaron 60,1 g de fuente de silicio, lentamente para evitar aglomeraciones, manteniendo la agitación durante 4 h. Finalmente, se agregaron 4,19g de TPABr y se agitó por 45 minutos más. El gel resultante se cargó en un reactor de acero inoxidable con recubrimiento interno de teflón y se calentó a 190QC durante 24 horas para la cristalización bajo presión autógena. Pasado este tiempo, el reactor se enfrió rápidamente, los sólidos fueron recuperados por filtración al vacío, lavados hasta tener un pH neutro y secado a 100 QC durante una noche. Posteriormente, se les realizó un proceso de intercambio iónico en un rotaevaporador, para obtener la zeolita en su forma ácida. Se hacen 3 intercambios sucesivos de 3 horas, cada uno, con una solución fresca 0,2 M de nitrato de amonio y una agitación de 80 rpm, adicionando 50 ml_ de solución por cada gramo de zeolita sódica. Después del proceso de intercambio iónico los sólidos se lavaron, se secaron a 100 QC por 3 h y se calcinaron a 550QC por 6 horas para obtener la zeolita sin fósforo. EJEMPLO 5
Zeolita ZSM-5 preparada usando como fuentes de silicio y aluminio, silicato de sodio y aluminato de sodio, respectivamente y con adición de fósforo durante la síntesis. Para la incorporación de fósforo durante la síntesis se siguió el procedimiento descrito en el ejemplo 4. No obstante, la composición molar del gel de síntesis se modifica para mantener la relación Si/Al de dicho ejemplo. Esto se hizo reduciendo la cantidad de fuente de silicio, para lo cual se usaron 57, 1 g y se adicionaron 2,1 mL de H3P04 al 86% y 3,14g NaOH para reajustar el pH. El ácido fosfórico y el reajuste del pH se hacen después de la adición de la fuente de silicio.
5,2Na2O:8,3Na2O(neutralización):6P2O5:114SiO2:0,6Na2O.AI2O3:6,3TPABr:2275,2H2
O
Las tablas 3 y 4 muestran los resultados del análisis elemental y de la determinación de acidez obtenidos de los sólidos preparados de acuerdo con lo establecido en los ejemplos 4 y 5.
Tabla 3
Sólido Si (% p/p) Al (% p/p) Si/Al Na (% p/p) P (% p/p)
H- ZSM5 sin fósforo 40,26 0,6835 58,9 0,34 -
H-ZSM5 con
incorporación de fósforo 40,41 0,86546 46,7 0,33 0,0124 durante la síntesis Tabla 4
Figure imgf000016_0001
EJEMPLO 6
Las zeolitas de los ejemplos 4 y 5 fueron evaluadas en la oligomerización de propileno siguiendo las condiciones descritas en el ejemplo 3. Los resultados de esta evaluación se presentan en las figuras 4, 5, 6 y 7.
En la figura 4 se evidencia que la presencia de fósforo, específicamente su incorporación durante la síntesis, origina un catalizador que mantiene la actividad inicial durante el tiempo total de reacción, mientras el catalizador sin fósforo presenta una baja actividad durante todo el tiempo de reacción evaluado. Complementando esta información, figuras 5, 6 y 7, reflejan un mejor desempeño del catalizador de la invención con rendimientos de productos en los rangos de C3 a C7, C8 a d2 y C12+ notablemente mayores que los obtenidos con el catalizador sin fósforo.

Claims

REIVINDICACIONES
1 . Un proceso para la modificación de zeolitas con fósforo incorporado durante la síntesis caracterizado porque comprende las siguientes etapas: a. Homogenizar la fuente de aluminio con agua y NaOH,
b. Adicionar la fuente de silicio, manteniendo la agitación hasta la formación de un gel homogéneo,
c. Agregar la fuente de fósforo y ajustar el pH con NaOH a valores entre 12 y 14 y agitar la mezcla durante 3 a 8 horas,
d. Añadir el agente estructurante seleccionado a partir de sales de tetrapropil amonio y agitar durante 30 a 60 minutos,
e. Transferir el gel obtenido en el paso d) a un reactor de acero inoxidable con recubrimiento de teflon herméticamente cerrado y calentar por 1 a 7 días a temperatura entre 170°C a 200 °C hasta obtener la zeolita cristalizada, y
f. Filtrar y lavar la zeolita cristalizada y secarla a temperaturas que oscilan entre 60°C y 120°C.
2. El proceso para la modificación de zeolitas de la reivindicación 1 , caracterizado porque la zeolita producida se selecciona del grupo que consiste de ZSM-5, ZSM-1 1 , ZSM-23 y ZSM-48, de manera preferida la zeolita es ZSM-5 o ZSM-1 1 .
3. El proceso para la modificación de zeolitas de la reivindicación 1 , caracterizado porque la relación Si/Al nominal se encuentra entre 10 y 300.
4. El proceso para la modificación de zeolitas de la reivindicación 3, caracterizado porque la relación Si/Al nominal se encuentra preferiblemente entre 30 y 200.
5. El proceso para la modificación de zeolitas de la reivindicación 1 , caracterizado porque la fuente de aluminio que se adiciona en el paso a) se selecciona a partir de alúmina o aluminato de sodio, preferiblemente aluminato de sodio.
6. El proceso para la modificación de zeolitas de la reivindicación 1 , caracterizado porque la fuente de silicio que se adiciona en el paso b) es elegida del grupo que consiste de sílica o sílica coloidal.
7. El proceso para la modificación de zeolitas de la reivindicación 1 , caracterizado porque la fuente de fósforo que se adiciona en el paso c) es ácido fosfórico o sales de fosfato, preferiblemente fosfato tribásico de sodio.
8. El proceso para la modificación de zeolitas de la reivindicación 7, caracterizado porque la cantidad nominal de fósforo en forma de P205que se agrega en el paso c) se encuentra entre 0,5% y 15% de las moles totales de óxido de silicio en la mezcla del gel de síntesis.
9. El proceso para la modificación de zeolitas de la reivindicación 1 , caracterizado porque la agente estructurante del paso d) es bromuro de tetrapropil amonio (TPABr).
10. El proceso para la modificación de zeolitas de la reivindicación 1 , caracterizado porque el paso e) de calentamiento se realiza de 1 a 3 días a una temperatura óptima entre 185°C y 195°C, y aún mejor 190°C.
1 1 . El proceso para la modificación de zeolitas de acuerdo con una de las reivindicaciones anteriores, caracterizado porque además comprende los siguientes pasos para activar la zeolita: g. Intercambio iónico en la cual el sodio es reemplazado por amonio usando soluciones frescas de NH4N03,
h. Repetir la etapa g) varias veces hasta reducir las cantidad de sodio a valores menores de 0.5% en peso de la zeolita total,
i. Secar la zeolita amónica entre 100°C y 120°C por 1 a 3 horas y j. Calcinar la zeolita en forma amónica a un rata de calentamiento de 1 °C/min a 5°C/min hasta alcanzar una temperatura entre 520 °C y 560 °C por un periodo de 5 horas a 24 horas hasta lograr la descomposición del amonio.
12. El proceso para la modificación de zeolitas de la reivindicación 1 1 , caracterizado porque la zeolita activada, libre de amonio y en polvo es mezclada en porcentajes entre 20% a 60% en peso de zeolita con matrices de soporte y agentes peptizantes seleccionados a partir del grupo que consiste de ácido nítrico, ácido acético y ácido fórmico y luego extrudada, secada, calcinada y cortada, para producir el catalizador que será empleado en el proceso de oligomerización.
13. El proceso para la modificación de zeolitas de la reivindicación 12, caracterizado porque el agente peptizante es adicionado en una concentración de 0,5% a 5% de ácido.
14. El proceso para la modificación de zeolitas de la reivindicación 12, caracterizado porque los extrudados resultantes son cilindricos o trilobulares que tienen un diámetro de 0.1 cm a 0.2 cm y una longitud que fluctúa entre 0,3 cm y 0,8 cm.
15. Un catalizador a base de zeolita caracterizado porque es obtenido mediante el proceso de una cualquiera de las reivindicaciones anteriores y presenta fósforo dentro de la estructura cristalina de la zeolita, lo que origina una mayor concentración de sitios ácidos fuertes.
16. El catalizador de la reivindicación 15 caracterizado porque la zeolita que lo compone tiene una relación Si/Al entre 12 y 150 y comprende un porcentaje de fósforo desde 0.002% hasta 0.35% p/p, un contenido de sodio entre 0.015% y 0.5%, una cristalinidad relativa entre 85% y 100%, una acidez entre 300 μη"ΐοΙΝΗ3Λ3 y 1200 μη"ΐοΙΝΗ3Λ3 y un área superficial de150 m2/g a 450 m2/g.
PCT/IB2011/052405 2010-12-06 2011-05-31 Proceso para la modificación de zeolita por incorporación de fósforo en la estructura cristalina y catalizadores para oligomerización de olefinas WO2012076991A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO10-153589 2010-12-06
CO10153589A CO6460077A1 (es) 2010-12-06 2010-12-06 Proceso para modificacion de zeolita por incorporacion de fosforo en la estructura cristalina y catalizadores para oligomerizacion de olefinas

Publications (2)

Publication Number Publication Date
WO2012076991A2 true WO2012076991A2 (es) 2012-06-14
WO2012076991A3 WO2012076991A3 (es) 2012-11-01

Family

ID=46207549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/052405 WO2012076991A2 (es) 2010-12-06 2011-05-31 Proceso para la modificación de zeolita por incorporación de fósforo en la estructura cristalina y catalizadores para oligomerización de olefinas

Country Status (2)

Country Link
CO (1) CO6460077A1 (es)
WO (1) WO2012076991A2 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107792864A (zh) * 2017-10-30 2018-03-13 中海油天津化工研究设计院有限公司 一种粒径可控p‑zsm‑5分子筛的制备方法
CN111099619A (zh) * 2019-11-20 2020-05-05 延安大学 一种用于丙烯增产的稀土改性多级孔道zsm-5分子筛的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1350241A (en) * 1970-06-26 1974-04-18 Union Carbide Corp Aluminosilicophosphates
US4578371A (en) * 1982-11-16 1986-03-25 Hoechst Aktiengesellschaft Aluminosilicates having a zeolite structure, and process for the manufacture thereof
US5171921A (en) * 1991-04-26 1992-12-15 Arco Chemical Technology, L.P. Production of olefins
CN101468808A (zh) * 2007-12-25 2009-07-01 中国石油化工股份有限公司 一种含磷的zsm-5分子筛的合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1350241A (en) * 1970-06-26 1974-04-18 Union Carbide Corp Aluminosilicophosphates
US4578371A (en) * 1982-11-16 1986-03-25 Hoechst Aktiengesellschaft Aluminosilicates having a zeolite structure, and process for the manufacture thereof
US5171921A (en) * 1991-04-26 1992-12-15 Arco Chemical Technology, L.P. Production of olefins
CN101468808A (zh) * 2007-12-25 2009-07-01 中国石油化工股份有限公司 一种含磷的zsm-5分子筛的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WLADIMIR RESCHETILOWSKI ET AL.: 'Synthesis and Characterization of P-containing ZSM-5 Zeolites' ANGEWANDTE CHEMIE INTERNATIONAL EDITION ENGLISH vol. 30, no. 6, June 1991, pages 686 - 687 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107792864A (zh) * 2017-10-30 2018-03-13 中海油天津化工研究设计院有限公司 一种粒径可控p‑zsm‑5分子筛的制备方法
CN111099619A (zh) * 2019-11-20 2020-05-05 延安大学 一种用于丙烯增产的稀土改性多级孔道zsm-5分子筛的制备方法

Also Published As

Publication number Publication date
WO2012076991A3 (es) 2012-11-01
CO6460077A1 (es) 2012-06-15

Similar Documents

Publication Publication Date Title
KR101906620B1 (ko) 차바자이트형 제올라이트 및 그 제조 방법, 구리가 담지되어 있는 저실리카 제올라이트, 및 그 제올라이트를 함유하는 질소 산화물 환원 제거 촉매, 그리고, 그 촉매를 사용하는 질소 산화물 환원 제거방법
ES2360104T3 (es) Composiciones zeolíticas de aluminosilicato cristalinas uzm-8 y uzm-8hs y procesos que utilizan las composiciones.
JP2005519847A (ja) ナノ結晶性無機ベースゼオライトおよびその作成方法
CN101318666A (zh) Izm-1结晶固体和它的制备方法
KR101950552B1 (ko) 개선된 모폴로지를 갖는 zsm-5 결정의 합성
JP2020532480A (ja) 階層的メソ細孔性ゼオライトベータの生成方法
CN101279744A (zh) β沸石的制备方法
JP7076529B2 (ja) 小結晶emm-17、その製造及び使用方法
BR112014010790B1 (pt) processo para modificar um catalisador de zeólito fcc com fósforo
JP5070665B2 (ja) 多孔体及びその製造方法
US6969692B2 (en) Process for the preparation of doped pentasil-type zeolites using a doped reactant
JP7020658B2 (ja) 合成母液の組成を調節してアルミニウム含有量が制御されたゼオライトの製造方法
WO2012076991A2 (es) Proceso para la modificación de zeolita por incorporación de fósforo en la estructura cristalina y catalizadores para oligomerización de olefinas
KR20140067323A (ko) 메조기공을 갖는 mre 구조의 제올라이트 또는 유사 mre 제올라이트 물질 및 그의 제조 방법
CA2496898C (en) Process for the preparation of doped pentasil-type zeolites using a doped reactant
JP2008543711A (ja) N,n−ジメチル−n,n−ジ(3,3−ジメチルブチル)アンモニウムカチオンを含むeuo構造型ゼオライトとその製造方法
JP2010090025A (ja) Mtw構造型のゼオライトの調製方法
CN101279745B (zh) 制备mel-结构型沸石的方法
JPH0353249B2 (es)
CN1315729C (zh) 使用掺杂的八面沸石晶种制备掺杂的五元环型沸石的方法
KR101262549B1 (ko) 중형기공성 zsm-5 촉매 제조방법 및 그 촉매를 이용한 경질 올레핀 제조방법
JPS6172621A (ja) バインダ−レスゼオライト成型物及びその製造方法
JPH0232205B2 (es)
RU2745824C1 (ru) Способ получения цеолита типа zsm-12 со структурой mtw
JP7391021B2 (ja) 脂肪族有機化合物のアルキル化の方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847401

Country of ref document: EP

Kind code of ref document: A2