WO2012073902A1 - 高分子化合物及びその製造方法、並びに発光素子 - Google Patents

高分子化合物及びその製造方法、並びに発光素子 Download PDF

Info

Publication number
WO2012073902A1
WO2012073902A1 PCT/JP2011/077419 JP2011077419W WO2012073902A1 WO 2012073902 A1 WO2012073902 A1 WO 2012073902A1 JP 2011077419 W JP2011077419 W JP 2011077419W WO 2012073902 A1 WO2012073902 A1 WO 2012073902A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
represented
structural unit
substituted
Prior art date
Application number
PCT/JP2011/077419
Other languages
English (en)
French (fr)
Inventor
一栄 大内
雅之 曽我
後藤 修
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012073902A1 publication Critical patent/WO2012073902A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/37Metal complexes
    • C08G2261/374Metal complexes of Os, Ir, Pt, Ru, Rh, Pd
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/524Luminescence phosphorescent
    • C08G2261/5242Luminescence phosphorescent electrophosphorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to a polymer compound and a method for producing the same, a compound, a composition containing the polymer compound, a solution, a thin film and a light emitting device, and a planar light source and a display device including the light emitting device.
  • T1 energy the lowest triplet excitation energy
  • a metaphenylene-based compound containing a combination of specific structural units as a host material that has a high T1 energy and can provide excellent maximum light emission efficiency with respect to a phosphorescent compound that emits light having a shorter wavelength than red.
  • a polymer compound has been proposed (Patent Document 1).
  • a light-emitting element including a light-emitting layer using the composition as described above has characteristics that can maintain high luminance even when driven for a long time. That is, it is desirable that the luminance stability is excellent.
  • the light emitting layer is formed by applying the above-described conventional polymer compound or the like to the host material or the like, it has been difficult to obtain sufficient luminance stability.
  • the present invention has been made in view of such circumstances, and can provide high light emission efficiency when used for manufacturing a light emitting element, and is a case where the light emitting element is driven for a long time.
  • Another object of the present invention is to provide a polymer compound capable of obtaining excellent luminance stability.
  • the present invention also provides a compound suitable for obtaining such a polymer compound, a method for producing a polymer compound using this compound, a composition containing the polymer compound of the present invention, a solution, a thin film, and a light emitting device, It is another object of the present invention to provide a planar light source and a display element including a light emitting element.
  • the polymer compound of the present invention comprises a structural unit represented by formula (1), a structural unit represented by formula (2) and a structural unit represented by formula (3), and A polymer chain comprising at least one structural unit selected from the group consisting of the structural unit represented by formula (4) and the structural unit represented by formula (5), and in the polymer chain
  • the structure does not include a structure in which the structural unit represented by the formula (1) and the structural unit represented by the formula (2) are directly bonded.
  • R 1a represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an aralkyl group or a substituted amino group
  • R 1b and R 1c each independently represent a hydrogen atom or an alkyl group.
  • the two R 1c s may be the same or different.
  • Ar 2a and Ar 2b each independently represent an arylene group or a divalent aromatic heterocyclic group, and a group having a structure different from the structural unit represented by the formula (1).
  • Ar 2c represents an aryl group or a monovalent aromatic heterocyclic group.
  • the groups represented by Ar 2a , Ar 2b and Ar 2c are alkyl groups, aryl groups, monovalent aromatic heterocyclic groups, alkoxy groups, aryloxy groups, aralkyl groups, arylalkoxy groups, substituted amino groups, substituted carbonyls.
  • a group, a substituted carboxyl group, a fluorine atom or a cyano group may further be included as a substituent.
  • t 1 and t 2 are each independently 1 or 2. In the case where Ar 2a and Ar 2b there are a plurality, they may be different even in the same.
  • the structural unit represented by Formula (3) has a different structure from the structural unit represented by Formula (1).
  • Ar 3a represents an arylene group or a divalent aromatic heterocyclic group.
  • R 3a and R 3b are each independently an alkyl group, an aryl group, or a monovalent aromatic heterocyclic group, and a carbon atom adjacent to the carbon atom bonded to the polymer chain in Ar 3a It is a group bonded to
  • the group represented by Ar 3a is an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, You may further have a fluorine atom or a cyano group as a substituent.
  • the structural unit represented by formula (4) has a structure different from the structural unit represented by formula (1) and the structural unit represented by formula (3).
  • Ar 4a represents an arylene group or a divalent aromatic heterocyclic group.
  • the group represented by Ar 4a is an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, You may further have a fluorine atom or a cyano group as a substituent.
  • k is an integer of 1 to 3. When a plurality of Ar 4a are present, they may be the same or different.
  • Ar 5a , Ar 5b , Ar 5c , Ar 5d and Ar 5h each independently represent an arylene group or a divalent aromatic heterocyclic group.
  • Ar 5e , Ar 5f and Ar 5g each independently represent an aryl group or a monovalent aromatic heterocyclic group.
  • the groups represented by Ar 5a , Ar 5b , Ar 5c , Ar 5d , Ar 5e , Ar 5f , Ar 5g and Ar 5h are an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group A group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, a fluorine atom or a cyano group may further be included as a substituent.
  • R A in these formulas represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, or an aralkyl group.
  • n 1 and n 2 are each independently 0 or 1 and n 3 is 0, 1 or 2.
  • the polymer compound of the present invention comprises a structural unit represented by the formulas (1), (2) and (3) and at least one of the structural units represented by the formulas (4) and (5).
  • excellent luminous efficiency can be provided.
  • the structural unit represented by the formulas (1), (2) and (3) and at least one of the structural unit represented by (4) and (5) According to the polymer compound to be combined, high luminous efficiency can be obtained, but when the structural units of the formulas (1) and (2) are directly bonded and arranged, sufficient luminance stability cannot be obtained. There was found. This is presumed to be because if the structural units of the formulas (1) and (2) are adjacent to each other, the spread of the electron cloud in the polymer compound is easily inhibited. Therefore, the polymer compound of the present invention has structural units represented by formulas (1), (2), and (3) and at least one of structural units represented by formulas (4) and (5). In addition, since the structure in which the structural units of the formulas (1) and (2) are directly bonded is not included, it is possible to obtain both high luminous efficiency and excellent luminance stability.
  • the structural unit represented by the formula (3) is directly bonded to both sides of the structural unit represented by the formula (2), and the formula (1)
  • at least one structural unit selected from the group consisting of the structural unit represented by formula (4) and the structural unit represented by formula (5) is directly bonded to both sides of the structural unit represented by preferable.
  • the polymer compound has a structure represented by the formula (6) in which the structural unit represented by the formula (4) is directly bonded to both sides of the structural unit represented by the formula (1). It is preferable. That is, in the polymer compound, it is preferable that all the structural units of the formula (1) are included so as to have such a structure.
  • R 1a , R 1b , R 1c , Ar 4a and k are as defined above. However, two k may be the same or different from each other, and the plurality of Ar 4a may be the same or different from each other.
  • the polymer compound has such a structure
  • the polymer compound has a structure in which the structural unit represented by the formula (4) is always arranged on both sides of the structural unit represented by the formula (1).
  • the effect of luminance stability can be obtained more stably.
  • the polymer compound preferably has a structural unit represented by the formula (7) as the structural unit represented by the formula (3).
  • R 7a and R 7c each independently represent an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group
  • R 7b and R 7d each independently represents a hydrogen atom, an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, or an aralkyl.
  • the structural unit represented by formula (4) has at least one structural unit selected from the group consisting of the structural unit represented by formula (9) and the structural unit represented by formula (10). It is preferable.
  • R 9a and R 9c each independently represent an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, or an aralkyl group, and R 9a and R 9c are bonded to each other. Also good.
  • R 1a in formula (1) is preferably an alkyl group, an aryl group or an aralkyl group
  • R 1b is a hydrogen atom, an alkyl group, an aryl group or a monovalent aromatic heterocyclic group.
  • R 1c is preferably a hydrogen atom.
  • the structural unit represented by the formula (1), the structural unit represented by the formula (2), the structural unit represented by the formula (3), the formula (4) ) And the total mass ratio of the structural unit represented by the formula (5) are preferably 0.9 or more when the entire polymer compound is 1.
  • the polymer compound preferably further includes a structural unit derived from a phosphorescent compound.
  • a structural unit derived from a phosphorescent compound When the polymer compound contains such a structural unit, excellent luminous efficiency can be obtained, and doping of the phosphorescent compound with respect to the polymer compound that is a host material of the phosphorescent compound when manufacturing a light emitting device. The amount can be reduced or eliminated, and the workability in manufacturing the light emitting element can be improved.
  • the present invention also provides a compound suitable for producing the above-described polymer compound. That is, the compound of the present invention is represented by the formula (11).
  • R 1a represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an aralkyl group or a substituted amino group
  • R 1b and R 1c each independently represent a hydrogen atom or an alkyl group.
  • Two R 1c s may be the same or different.
  • Ar 4a represents an arylene group or a divalent aromatic heterocyclic group.
  • the group represented by Ar 4a is an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, You may further have a fluorine atom or a cyano group as a substituent.
  • k is an integer of 1 to 3.
  • a plurality of Ar 4a may be the same or different, and two k may be the same or different from each other.
  • X 11a represents a group selected from the following substituent (a) group or a group selected from the following substituent (b) group.
  • Two X 11a may be the same as or different from each other.
  • R 20 is an alkyl group, or aryl optionally substituted with an alkyl group, an alkoxy group, a nitro group, a fluorine atom, or a cyano group.
  • a group represented by: (Substituent (b) group) —B (OR 21 ) 2 R 21 represents a hydrogen atom or an alkyl group, and two R 21 s may be the same or different and may be bonded to each other to form a ring).
  • a group represented by —BF 4 Q 1 Q 1 represents a monovalent cation of lithium, sodium, potassium, rubidium or cesium
  • Q 1 represents a monovalent cation of lithium, sodium, potassium, rubidium or cesium
  • R 22 represents A hydrogen atom or an alkyl group, and three R 22 s, which may be the same or different and may be bonded to each other to form a ring
  • a group represented by —MgY 1 (Y 1 Represents a chlorine atom, a bromine atom or an iodine atom)
  • a group represented by —ZnY 2 Y 2 represents a chlorine atom, a bromine atom or an iodine atom).
  • the polymer compound of the present invention can be easily prepared. Can be obtained.
  • k 1 is preferable. By doing so, the obtained polymer compound can easily obtain high luminous efficiency and luminance stability.
  • the compound of the present invention is preferably a compound represented by the formula (12) or a compound represented by the formula (13). By using these compounds, it becomes easier to obtain a polymer compound having excellent effects.
  • R 1a , R 1b , R 1c , X 11a and R 9a are as defined above. However, four R 9a may be the same or different.
  • R 1a , R 1b , R 1c and X 11a are as defined above.
  • R 1a is preferably an alkyl group, an aryl group or an aralkyl group
  • R 1b is a hydrogen atom, an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, or It is preferably a substituted amino group
  • R 1c is preferably a hydrogen atom.
  • a compound represented by the formula (12-1) is also suitable as a compound suitable for producing the above-described polymer compound. By using such a compound, it becomes easier to obtain a polymer compound having excellent effects.
  • R 12a represents a methyl group
  • R 12b represents a hydrogen atom, an alkyl group, an unsubstituted or phenyl group substituted with an alkyl group or an aryl group
  • R 12c represents a hydrogen atom or a methyl group
  • R 12d represents an aryl group substituted with an alkyl group, an alkyl group or an aryl group
  • R 12e represents an aryl group substituted with an alkyl group or an aryl group.
  • the two R 12c may be the same or different from each other
  • the two R 12d may be the same or different from each other
  • the two R 12e may be the same or different from each other. May be.
  • X 11a has the same meaning as in the case of the above formula (11). Two X 11a may be the same as or different from each other.
  • R 12d is an alkyl group having 1 to 8 carbon atoms, or an aryl group substituted with one or more and three or less alkyl groups having 1 to 12 carbon atoms, and the alkyl group At least one group is an aryl group having 6 to 12 carbon atoms, and R 12e is an aryl group substituted with one or more and 3 or less alkyl groups having 1 to 12 carbon atoms.
  • at least one of the alkyl groups is an aryl group which is an alkyl group having 6 to 12 carbon atoms.
  • R 12d and R 12e are substituted with a group represented by the formula (12-2), that is, one or more and three or less alkyl groups having 1 to 12 carbon atoms.
  • the aryl group is preferably an aryl group in which at least one of the alkyl groups is an alkyl group having 6 to 12 carbon atoms.
  • R 12f , R 12g and R 12h each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. However, at least one of R 12f , R 12g and R 12h is an alkyl group having 6 to 12 carbon atoms.
  • a plurality of groups represented by the formula (12-2) may be the same or different.
  • the present invention also provides a composition comprising the polymer compound of the present invention. That is, the composition of the present invention contains the polymer compound of the present invention and at least one material selected from the group consisting of a hole transport material, an electron transport material and a light emitting material. Such a composition is extremely suitable as a material for forming a light-emitting layer in a light-emitting element, and a light-emitting element including a light-emitting layer formed using such a composition has high luminous efficiency and luminance stability. Even better.
  • the light emitting material preferably contains a phosphorescent compound.
  • the present invention provides a solution containing a polymer compound and a solvent. According to such a solution, the light emitting layer as described above can be easily formed by a simple technique such as coating.
  • the present invention provides a thin film containing the polymer compound of the present invention.
  • the thin film of the present invention can be favorably applied to a light-emitting layer such as a light-emitting element, and can improve both the light emission efficiency and the luminance stability of the light-emitting element.
  • the present invention provides a light emitting device comprising an anode, a cathode, and a light emitting layer containing the polymer compound of the present invention provided between the anode and the cathode.
  • a light-emitting element has high luminous efficiency and can exhibit excellent luminance stability because the light-emitting layer contains the polymer compound of the present invention.
  • the present invention provides a planar light source and a display device comprising the light emitting device of the present invention. Since these planar light sources and display elements include the light-emitting element of the present invention, bright illumination and display are possible, and the luminance can be well maintained over a long period of time.
  • the manufacturing method of the high molecular compound of this invention superpose
  • the total number of moles of the body mixture is 100
  • the total number of moles of the compound represented by formula (11), the compound represented by formula (14) and the compound represented by formula (15) is 60. It is characterized by being ⁇ 100.
  • R 1a , R 1b and R 1c , Ar 4a and k have the same meanings as in formulas (1) and (4). However, a plurality of Ar 4a may be the same or different, and two k may be the same or different from each other.
  • X 11a represents a group selected from the following substituent group (a) or a group selected from the following substituent group (b). Two X 11a may be the same as or different from each other.
  • R 20 is an alkyl group, or aryl optionally substituted with an alkyl group, an alkoxy group, a nitro group, a fluorine atom, or a cyano group.
  • a group represented by: (Substituent (b) group) —B (OR 21 ) 2 R 21 represents a hydrogen atom or an alkyl group, and two R 21 s may be the same or different and may be bonded to each other to form a ring).
  • a group represented by —BF 4 Q 1 Q 1 represents a monovalent cation of lithium, sodium, potassium, rubidium or cesium
  • Q 1 represents a monovalent cation of lithium, sodium, potassium, rubidium or cesium
  • R 22 represents A hydrogen atom or an alkyl group, and three R 22 s, which may be the same or different and may be bonded to each other to form a ring
  • a group represented by —MgY 1 (Y 1 Represents a chlorine atom, a bromine atom or an iodine atom)
  • a group represented by —ZnY 2 Y 2 represents a chlorine atom, a bromine atom or an iodine atom).
  • Ar 2a , Ar 2b , Ar 2c , t 1 and t 2 are respectively synonymous with those in the above-described formula (2).
  • X 14a is synonymous with X 11a .
  • a polymer compound of the present invention contains the structural units of the formulas (1), (2) and (3) shown in the polymer compound of the present invention, and the formula (1) and A polymer compound which does not contain a structure in which the structural units of (2) are directly bonded can be obtained with certainty. And the high molecular compound obtained in this way has a high luminous efficiency and luminance stability.
  • the monomer mixture preferably further includes at least one compound selected from the group consisting of a compound represented by formula (16) and a compound represented by formula (17).
  • the polymer compound of the present invention can be easily produced.
  • Ar 4a and k have the same meanings as in formula (4).
  • X 16a is synonymous with X 11a .
  • Ar 5a , Ar 5b , Ar 5c , Ar 5d , Ar 5e , Ar 5f , Ar 5g , Ar 5h , n 1 , n 2 and n 3 have the same meanings as in the formula (5), respectively. It is.
  • X 17a is synonymous with X 11a .
  • X 11a , X 14a , X 16a and X 17a are groups selected from the substituent (a) group, and X 15a is selected from the substituent (b) group.
  • X 11a , X 14a , X 16a and X 17a are groups selected from the substituent (b) group, and X 15a is a group selected from the substituent (a) group.
  • X 15a is a group selected from the substituent (a) group.
  • a polymer compound can be provided.
  • Such a polymer compound is used as a host material for a phosphorescent compound that emits light having a wavelength shorter than that of red, so that a light-emitting element having high luminous efficiency and excellent luminance stability during driving can be obtained. Can be formed.
  • a compound suitable for obtaining the polymer compound of the present invention a method for producing a polymer compound using the compound, a composition containing the polymer compound of the present invention, a solution, a thin film and a light emitting device, and light emission It becomes possible to provide a planar light source and a display element including the element.
  • structural unit means one or more units present in a polymer compound, and this structural unit is “a repeating unit” (that is, two or more units present in a polymer compound). ) Is preferably present in the polymer compound.
  • the “constitutive chain” means a structure formed by bonding two or more structural units by a single bond in a polymer compound.
  • n-valent aromatic heterocyclic group refers to n hydrogen atoms among hydrogen atoms directly bonded to an aromatic ring from a heterocyclic compound exhibiting aromaticity. It means an atomic group excluding and includes those having a condensed ring.
  • Heterocyclic compound means not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom, etc. as atoms constituting a ring among organic compounds having a cyclic structure. The compound containing the hetero atom of these.
  • “Aromatic heterocyclic compounds” include oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzosilole, dibenzophosphole Is a heterocyclic compound containing a heteroatom such as a compound in which the heterocyclic ring itself exhibits aromaticity, or a heterocyclic ring itself containing a heteroatom such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, or benzopyran Even if it does not show aromaticity, it means a compound in which an aromatic ring is condensed to a heterocyclic ring.
  • Me represents a methyl group
  • Et represents an ethyl group
  • i-Pr represents an isopropyl group
  • n-Bu represents an n-butyl group
  • tBu t-Bu
  • t-Bu t-Bu
  • t-butyl t-butyl
  • the alkyl group is linear, branched or cyclic and preferably has 1 to 20 carbon atoms.
  • the hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, an isobutyl group, a t-butyl group, a pentyl group, an isoamyl group, a hexyl group, a cyclohexyl group, a heptyl group, and an octyl group.
  • the aryl group is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon, and includes those having a condensed ring.
  • the aryl group preferably has 6 to 60 carbon atoms, more preferably 6 to 48 carbon atoms, still more preferably 6 to 20 carbon atoms, and still more preferably 6 to 14 carbon atoms.
  • the carbon number does not include the carbon number of the substituent.
  • the hydrogen atom in the aryl group includes an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, a substituted carboxyl group, and a fluorine atom. Alternatively, it may be substituted with a cyano group.
  • Examples of the aryl group include substituted or unsubstituted phenyl groups.
  • the monovalent aromatic heterocyclic group usually has 2 to 60 carbon atoms, preferably 3 to 60 carbon atoms, more preferably 3 to 20 carbon atoms. The carbon number does not include the carbon number of the substituent.
  • Examples of monovalent aromatic heterocyclic groups include 2-oxadiazolyl group, 2-thiadiazolyl group, 2-thiazolyl group, 2-oxazolyl group, 2-thienyl group, 2-pyrrolyl group, 2-furyl group, 2-pyridyl group 3-pyridyl group, 4-pyridyl group, 2-pyrazyl group, 2-pyrimidyl group, 2-triazyl group, 3-pyridazyl group, 3-carbazolyl group, 2-phenoxazinyl group, 3-phenoxazinyl group, 2-phenothiazinyl group Group, 3-phenothiazinyl group and the like.
  • the hydrogen atom in the monovalent aromatic heterocyclic group is an alkyl group, aryl group, monovalent aromatic heterocyclic group, alkoxy group, aryloxy group, aralkyl group, arylalkoxy group, substituted amino group, substituted carbonyl group, It may be substituted with a substituted carboxyl group, a fluorine atom or a cyano group.
  • alkoxy group is preferably linear, branched or cyclic and has 1 to 20 carbon atoms.
  • alkyl group moiety in the alkoxy group include the same groups as those exemplified as the alkyl group.
  • Alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, sec-butoxy, isobutoxy, t-butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyloxy Octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, dodecyloxy group, trifluoromethoxy group, pentafluoroethoxy group, perfluorobutoxy group, perfluorohexyloxy group Perfluorooctyloxy group, methoxymethyloxy group, 2-methoxyethyloxy group, 2-ethoxyethyloxy group and the like.
  • the aryloxy group preferably has 6 to 60 carbon atoms.
  • Examples of the aryl group moiety in the aryloxy group include the same groups as those exemplified as the aryl group.
  • a phenoxy group a C 1 -C 12 alkoxyphenoxy group (“C 1 -C 12 alkoxy” indicates that the alkoxy moiety has 1 to 12 carbon atoms.
  • the aralkyl group preferably has 7 to 60 carbon atoms.
  • Examples of the alkyl group moiety in the aralkyl group include groups similar to those exemplified as the alkyl group.
  • Examples of the aryl group moiety include groups similar to those exemplified as the aryl group.
  • Examples of the aralkyl group include a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl group, and the like. .
  • the arylalkoxy group preferably has 7 to 60 carbon atoms.
  • Examples of the aryl group moiety in the arylalkoxy group include the same groups as those exemplified as the aryl group.
  • Examples of the arylalkoxy group include a phenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group, and the like. It is done.
  • the substituted amino group preferably has 2 to 60 carbon atoms.
  • the substituted amino group include an amino group substituted with an alkyl group, an aryl group, an aralkyl group, or a monovalent aromatic heterocyclic group.
  • Substituted amino groups include those in which amino group substituents are bonded together directly or via a carbon atom, oxygen atom, sulfur atom or the like to form a condensed ring.
  • a dialkyl-substituted amino group and a diaryl-substituted amino group are preferable.
  • dimethylamino group, diethylamino group, diphenylamino group, di-4-tolylamino group, di-4-t-butylphenylamino group, bis (3,5-di-t-butylphenyl) amino group, N-carbazolyl group, N-phenoxazinyl group, N-acridinyl group, N-phenothiazinyl group and the like can be mentioned.
  • the substituted carbonyl group preferably has 2 to 60 carbon atoms.
  • the substituted carbonyl group is a group represented by —C ( ⁇ O) R (R is a predetermined substituent), and R is an alkyl group, an aryl group, an aralkyl group or a monovalent aromatic heterocyclic group.
  • R is a group represented by —C ( ⁇ O) R (R is a predetermined substituent), and R is an alkyl group, an aryl group, an aralkyl group or a monovalent aromatic heterocyclic group.
  • R is a predetermined substituent
  • R is an alkyl group, an aryl group, an aralkyl group or a monovalent aromatic heterocyclic group.
  • the substituted carboxyl group preferably has 2 to 60 carbon atoms.
  • the substituted carboxyl group is a group represented by —C ( ⁇ O) —O—R (R is a predetermined substituent), and R is an alkyl group, an aryl group, an aralkyl group, or a monovalent aromatic complex. Examples thereof are groups that are cyclic groups. More specifically, a methoxycarbonyl group, an ethoxycarbonyl group, a butoxycarbonyl group, a phenoxycarbonyl group, a benzyloxycarbonyl group, and the like can be given.
  • the arylene group means an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon, and includes those having a condensed ring.
  • the arylene group preferably has 6 to 60 carbon atoms.
  • the carbon number does not include the carbon number of the substituent.
  • Examples of the arylene group include a 1,4-phenylene group (a group represented by the following formula 001, the same shall apply hereinafter), a 1,3-phenylene group (formula 002), a 1,2-phenylene group (formula 003), and the like.
  • a phenylene group such as a naphthalene-1,4-diyl group (formula 004), a naphthalene-1,5-diyl group (formula 005), a naphthalene-2,6-diyl group (formula 006); A dihydrophenanthrene-2,7-diyl group (formula 007) and the like; a fluorene-3,6-diyl group (formula 008) and a fluorene-2,7-diyl group (formula 009) Yl group and the like.
  • a naphthalenediyl group such as a naphthalene-1,4-diyl group (formula 004), a naphthalene-1,5-diyl group (formula 005), a naphthalene-2,6-diyl group (formula 006);
  • the hydrogen atoms in these arylene groups are alkyl groups, aryl groups, monovalent aromatic heterocyclic groups, alkoxy groups, aryloxy groups, aralkyl groups, arylalkoxy groups, substituted amino groups, substituted carbonyl groups, substituted carboxyl groups, It may be substituted with a fluorine atom or a cyano group.
  • R is a hydrogen atom, alkyl group, aryl group, monovalent aromatic heterocyclic group, alkoxy group, aryloxy group, aralkyl group, arylalkoxy group, substituted amino group, substituted carbonyl group, substituted carboxyl group.
  • R a represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group or an aralkyl group.
  • a plurality of R present in the formula may be the same or different, and a plurality of R a may be the same or different. When a plurality of R a are present in the same group, they may be combined to form a ring structure.
  • R is preferably a hydrogen atom, an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, or a substituted amino group, and a hydrogen atom, an alkyl group, An aryl group is more preferred.
  • R a is preferably an aryl group or an alkyl group, unsubstituted or substituted with an alkyl group, alkoxy group or aryl group; unsubstituted or substituted with an alkyl group, alkoxy group or aryl group More preferred are alkyl groups.
  • the ring structure formed is, for example, a cyclopentyl ring that is unsubstituted or substituted with an alkyl group; a cyclohexyl ring that is unsubstituted or substituted with an alkyl group; an unsubstituted or alkyl group A cycloheptyl ring substituted with is preferred.
  • the arylene group having a structure in which a plurality of Ras form a ring as described above include those having a structure represented by formulas (010) to (012).
  • the divalent aromatic heterocyclic group is an atomic group obtained by removing two hydrogen atoms from an aromatic heterocyclic compound, and includes those having a condensed ring.
  • the divalent aromatic heterocyclic group usually has 2 to 60 carbon atoms, and preferably 3 to 60 carbon atoms. The carbon number does not include the carbon number of the substituent.
  • divalent aromatic heterocyclic group examples include pyridinediyl groups such as a pyridine-2,5-diyl group (formula 101) and a pyridine-2,6-diyl group (formula 102); a pyrimidine-4,6-diyl group Pyrimidinediyl groups such as (formula 103); triazine-2,4-diyl groups (formula 104); pyrazinediyl groups such as pyrazine-2,5-diyl groups (formula 105); pyridazine-3,6-diyl groups (formulas) 106) and the like; quinoline-2,6-diyl group (formula 107) and other quinoline diyl groups; isoquinoline-1,4-diyl group (formula 108) and other isoquinoline diyl groups; quinoxaline-5,8-diyl A quinoxalinediyl group such
  • the hydrogen atom in these divalent aromatic heterocyclic groups is alkyl group, aryl group, monovalent aromatic heterocyclic group, alkoxy group, aryloxy group, aralkyl group, arylalkoxy group, substituted amino group, substituted carbonyl group. It may be substituted with a group, a substituted carboxyl group, a fluorine atom or a cyano group.
  • R and R a are as defined above.
  • the high molecular compound of this embodiment has a structural unit represented by Formula (1), (2) and (3), and at least one structural unit of Formula (4) and (5). First, each structural unit will be described.
  • the group represented by R 1a is preferably an alkyl group, an aryl group, or an aralkyl group. Since the monomer used as a raw material for the structural unit exhibits good reactivity during polymerization, an alkyl group is more preferable, and a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group are more preferable. The group is particularly preferred.
  • the group represented by R 1b has a good balance between the heat resistance of the polymer compound and the solubility in an organic solvent, so a hydrogen atom, an alkyl group, an aryl group, and a monovalent aromatic group.
  • Heterocyclic group and substituted amino group are preferable, hydrogen atom, alkyl group, unsubstituted or alkyl group, aryl group, monovalent aromatic heterocyclic group or aryl group substituted with substituted amino group, unsubstituted or alkyl group, A monovalent aromatic heterocyclic group substituted with an aryl group or a monovalent aromatic heterocyclic group, or a diaryl-substituted amino group is more preferable, and a hydrogen atom, an alkyl group, an unsubstituted group, or an alkyl group or an aryl group is substituted.
  • An aryl group is more preferable, and a hydrogen atom, an alkyl group, an unsubstituted or phenyl group
  • a favorable driving voltage can be obtained with a light-emitting element obtained using a polymer compound, so that a hydrogen atom, an alkyl group, an aryl group, Aromatic heterocyclic groups and substituted amino groups are preferred, unsubstituted or alkyl groups, aryl groups, monovalent aromatic heterocyclic groups or aryl groups substituted with substituted amino groups; unsubstituted or alkyl groups, aryl groups or 1 A monovalent aromatic heterocyclic group substituted with a monovalent aromatic heterocyclic group; a diaryl-substituted amino group is more preferred; an aryl group substituted with a monovalent aromatic heterocyclic group or a substituted amino group; unsubstituted or A monovalent aromatic heterocyclic group substituted with an alkyl group, an aryl group or a monovalent aromatic heterocyclic group; a diaryl-substituted amino group is more preferred; and a monovalent
  • a 1,3,5-triazin-2-yl group substituted with a group; a pyridyl group and a diaryl-substituted amino group are particularly preferred.
  • the group represented by R 1c is a hydrogen atom, an alkyl group, an aryl group, and a monovalent aromatic heterocyclic ring because the reactivity of the monomer as a raw material becomes good.
  • Group is preferred, and a hydrogen atom is more preferred.
  • Examples of the structural unit represented by the formula (1) include structural units represented by the following formulas 1-001 to 1-017, 1-101 to 1-113, 1-201 to 1-208.
  • those represented by the formulas 1-001 to 1-017 are preferable, those represented by the 1-001 and 1-017 are more preferable, and 1- What is represented by 001 is especially preferable.
  • the group represented by Ar 2a or Ar 2b is preferably an arylene group, more preferably a 1,4-phenylene group (formula 001), and an unsubstituted 1,4-phenylene group. Is particularly preferred.
  • the group represented by Ar 2c is preferably an aryl group, and more preferably a phenyl group substituted with an alkyl group or the like. Furthermore, in the formula (2), it is preferable that both t 1 and t 2 are 1 or 2 because it facilitates the synthesis of the polymer compound.
  • R 2a represents a hydrogen atom, an alkyl group, or an aryl group.
  • a plurality of R 2a may be the same or different, but at least one R 2a represents a group other than a hydrogen atom.
  • R 2a has the same meaning as described above.
  • R 2b represents a hydrogen atom, an alkyl group, or an aryl group.
  • a plurality of R 2b may be the same or different.
  • structural units represented by the formula (2-1) structural units represented by the following formulas 2-001 to 2-008 are more preferable.
  • structural units represented by the formula (2-2) structural units represented by the following formulas 2-101 to 2-106 are more preferable.
  • the structural unit represented by the formula (2) may be contained alone or in combination of two or more in the polymer compound.
  • the group represented by R 3a and R 3b is preferably an alkyl group or an aryl group, preferably an alkyl group or a phenyl group substituted with an alkyl group, a propyl group, an isopropyl group, or a butyl group.
  • Sec-butyl group isobutyl group, t-butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group A dodecyl group is preferred.
  • the group represented by Ar 3a is preferably an arylene group, and in particular, a 1,4-phenylene group (formula 001) and a fluorene-2,7-diyl group (formula 009). ) Is more preferable.
  • R 7a represents an alkyl group, an aryl group, a monovalent aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyl group, an arylalkoxy group, a substituted amino group, a substituted carbonyl group, or a substituted carboxyl group. Represents a group or a cyano group.
  • R 7b is a hydrogen atom, alkyl group, aryl group, monovalent aromatic heterocyclic group, alkoxy group, aryloxy group, aralkyl group, arylalkoxy group, substituted amino group, substituted carbonyl group, substituted carboxyl group, fluorine atom Or represents a cyano group.
  • Two R 7a may be the same or different from each other, and two R 7b may be the same or different from each other.
  • the balance between the heat resistance of the polymer compound and the solubility in an organic solvent is improved, so that an alkyl group, an aryl group, a monovalent aromatic heterocyclic group
  • An alkoxy group, an aryloxy group, an aralkyl group and a substituted amino group are preferred, an alkyl group and an aralkyl group are more preferred, an alkyl group is more preferred, and a propyl group, an isopropyl group, a butyl group, a sec-butyl group, an isobutyl group, and a pentyl group.
  • the group represented by R 7b is a hydrogen atom because the heat resistance of the polymer compound, the solubility in an organic solvent and the reactivity of the monomer as a raw material are improved.
  • An alkyl group, an alkoxy group, an aryl group, a monovalent aromatic heterocyclic group and an aralkyl group are preferred, a hydrogen atom and an alkyl group are more preferred, and a hydrogen atom is particularly preferred.
  • structural units represented by the formula (7) structural units represented by the following formulas 7-001 to 7-019 and 7-101 to 7-105 are preferable.
  • the structural unit represented by Formula (3) (preferably the structural unit represented by Formula (7)) may be included in the polymer compound alone or in combination of two or more. .
  • the polymer compound of the present embodiment includes the structural units represented by the formulas (4) and (5). Have at least one. As a result, the polymer compound can obtain high luminous efficiency and excellent luminance stability when used as a light emitting device.
  • the structural unit represented by Formula (4) may be the same as or different from the group represented by Ar 2a or Ar 2b in the structural unit represented by Formula (2).
  • the corresponding structure is Until t 1 or t 2 in formula (2) becomes 2, it is assumed that they are included in the structural unit represented by formula (2).
  • the group represented by Ar 4a is preferably an arylene group, among which a 1,4-phenylene group (formula 001), a 1,3-phenylene group (formula 002), naphthalene-2, 6-diyl group (formula 006), 4,5-dihydrophenanthrene-2,7-diyl group (formula 007), fluorene-3,6-diyl group (formula 008), fluorene-2,7-diyl group (formula 009) is more preferable, and a 1,4-phenylene group (formula 001) and a fluorene-2,7-diyl group (formula 009) are particularly preferable.
  • k is preferably 1.
  • the structural unit represented by said Formula (9) or (10) is preferable.
  • the group represented by R 9a is preferably an aryl group or an alkyl group because the balance between the heat resistance of the polymer compound and the solubility in an organic solvent is improved.
  • An aryl group substituted with a group, an alkoxy group, an aryl group or a substituted amino group; an unsubstituted or an alkyl group substituted with an alkyl group, an alkoxy group, an aryl group or a substituted amino group is more preferred.
  • structural units represented by the formula (9) structural units represented by the following formulas 9-001 to 9-020 are preferable.
  • the structural unit represented by the formula (9) is preferable because the stability when the polymer compound is applied to a light-emitting element is further improved. .
  • the group represented by R 12d is preferably an alkyl group or an aryl group substituted with an alkyl group or an aryl group
  • the group represented by R 12e is an alkyl group.
  • an aryl group substituted with an aryl group is preferable.
  • R 12d is an alkyl group having 1 to 8 carbon atoms from the viewpoint of improving the solubility of the polymer compound and facilitating the production of a light emitting device.
  • R 12e is preferably an aryl group substituted with one to three alkyl groups having 1 to 12 carbon atoms, and at least one of the alkyl groups has 6 to 6 carbon atoms. It is preferably an aryl group that is 12 alkyl groups.
  • R 12d and R 12e are substituted with a group represented by the formula (9-2), that is, an alkyl group having 1 to 12 carbon atoms.
  • the aryl group is preferably an aryl group in which at least one of the alkyl groups is an alkyl group having 6 to 12 carbon atoms.
  • R 12f , R 12g and R 12h each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. However, in the formula (9-2), at least one of R 12f , R 12g and R 12h is an alkyl group having 6 to 12 carbon atoms.
  • a plurality of groups represented by the formula (9-2) may be the same or different.
  • the structural unit represented by the formula (9) includes those represented by the formulas 9-008 to 9-011 and those represented by the formulas 9-017 to 9-020. Particularly preferred.
  • the groups represented by Ar 5a , Ar 5b , Ar 5c , Ar 5d and Ar 5h are preferably arylene groups, and among them, 1,4-phenylene group (formula 001), fluorene-2 , 7-diyl group (formula 009) is more preferred, and 1,4-phenylene group (formula 001) is particularly preferred.
  • the group represented by Ar 5e , Ar 5f and Ar 5g is preferably an aryl group, more preferably a phenyl group substituted with an alkyl group. Moreover, as R A in Formula (5), an alkyl group is preferable.
  • the structural unit represented by the formula 5-001 is particularly preferable because the light emission efficiency of the light-emitting element using the polymer compound is improved.
  • the polymer compound of the present embodiment may further have a structural unit derived from a phosphorescent compound in addition to the above structural units.
  • the structural unit derived from the phosphorescent compound is a structural unit including a structure derived from the phosphorescent compound. For example, a residue obtained by removing one hydrogen atom from the phosphorescent compound, a phosphorescent compound, or the like.
  • An arylene group or divalent aromatic heterocyclic group having a residue obtained by removing one hydrogen atom as a substituent, a residue obtained by removing two hydrogen atoms from a phosphorescent compound, and three hydrogen atoms from a phosphorescent compound Residues that are excluded are listed.
  • the structural unit derived from the phosphorescent compound is a residue obtained by removing three hydrogen atoms from the phosphorescent compound, the polymer compound has a branched structure in the structural unit.
  • the structural unit derived from the phosphorescent compound is, for example, a monovalent group located at the end of the polymer chain, that is, a monovalent group consisting of a residue of the phosphorescent compound, such a configuration
  • the unit include a monovalent residue obtained by removing one hydrogen atom from the ligand represented by L of the phosphorescent compound represented by the formula (MM) described later.
  • the structural unit derived from the phosphorescent compound is, for example, a divalent group present in the main chain of the polymer chain, that is, a divalent group consisting of a residue of the phosphorescent compound.
  • a monovalent residue obtained by removing one hydrogen atom from a ligand represented by L of a phosphorescent compound represented by the formula (MM) described later is used as a substituent.
  • An arylene group or a divalent aromatic heterocyclic group a divalent residue obtained by removing two hydrogen atoms from one ligand represented by L of the phosphorescent compound represented by the formula (MM)
  • a divalent residue obtained by removing one hydrogen atom from each of two ligands represented by L of the phosphorescent compound represented by the formula (MM) can be given.
  • the structural unit derived from the phosphorescent compound is, for example, a trivalent group present in the main chain of the polymer chain, that is, a trivalent group consisting of a residue of the phosphorescent compound
  • a trivalent residue obtained by removing three hydrogen atoms from one ligand represented by L of the phosphorescent compound represented by the formula (MM) described later A trivalent residue obtained by removing one and two hydrogen atoms from two ligands represented by L of the phosphorescent compound represented by MM), or represented by the formula (MM)
  • Examples of the phosphorescent compound that can form a structural unit derived from the phosphorescent compound include the following compounds.
  • the phosphorescent compound a known compound such as a triplet light-emitting complex or a compound that has been conventionally used as a light-emitting material of a low-molecular light-emitting element can be used.
  • phosphorescent compound for forming a structural unit derived from the phosphorescent compound since the polymer compound of the preferred embodiment described above has a high energy level of T1, various phosphorescent compounds are used. In order to obtain higher current efficiency, the lowest excited triplet state having the same or lower energy level as the lowest excited triplet state (T 1 ) of the polymer compound may be used. It is preferable to select a phosphorescent compound having (T 1 ).
  • the energy level (TH) of the lowest triplet excited state (T1) of the polymer compound and the energy level (TM) of the lowest triplet excited state (T1) of the phosphorescent compound TH> TM-0.1 (eV)
  • TH> TM TM-0.1 (eV)
  • TH> TM TM + 0.1 (eV)
  • the phosphorescent compound is illustrated below, the applicable phosphorescent compound is not limited to the following, and the phosphorescent compound generally satisfying the relationship of (TH) and (TM) is useful. is there.
  • the sum of the squares of the orbital coefficients of the outermost shell d orbitals of the central metal in the highest occupied orbital (HOMO) of the metal complex occupies the sum of the squares of the total atomic orbital coefficients.
  • the ratio is 1/3 or more, it is preferable because high luminous efficiency can be obtained.
  • an ortho metalated complex in which the central metal is a transition metal belonging to the sixth period can be used.
  • the central metal of the triplet light emitting complex a metal having an atomic number of 50 or more and having a spin-orbit interaction in the complex and capable of causing an intersystem crossing between the singlet state and the triplet state can be mentioned.
  • the central metal is preferably gold, platinum, iridium, osmium, rhenium, tungsten, europium, terbium, thulium, dysprosium, samarium, praseodymium, gadolinium, ytterbium, and more preferably gold, platinum, iridium, osmium.
  • Rhenium more preferably gold, platinum, iridium and rhenium, particularly preferably platinum (II) and iridium (III), and particularly preferably iridium (III).
  • a compound represented by the formula (MM) can be given.
  • the compound represented by the formula (MM) has a neutral valence as a whole.
  • M is a metal atom selected from ruthenium, rhodium, palladium, osmium, iridium, platinum, and L Is neutral or monovalent to trivalent anionic that can form multidentate coordination with a metal atom represented by M by forming at least two bonds selected from a coordination bond and a covalent bond Z is a counter anion.
  • ka represents an integer of 1 or more
  • kb represents an integer of 0 or more. However, ka + kb exists so that the valence which the metal atom M has may be satisfy
  • a plurality of L and Z are present, they may be the same as or different from each other.
  • platinum (II) and iridium (III) are preferable, and iridium (III) is particularly preferable.
  • benzoquinolinol and a derivative thereof are coordinated by a covalent bond or a covalent bond between a metal atom and a nitrogen atom and an oxygen atom.
  • a ligand that binds by a coordinate bond or a covalent bond at a nitrogen atom and a carbon atom such as 2-phenyl-pyridine and a derivative thereof; for example, a coordinate bond at an oxygen atom such as acetylacetone and a derivative thereof;
  • Ligand that binds covalently for example, ligands that coordinate with nitrogen atoms, such as 2,2'-bipyridyl and its derivatives, and ligands that bind or covalently bond with phosphorus and carbon atoms. Examples include quantifiers.
  • a metal atom represented by M and a ligand bonded by a coordinate bond or a covalent bond between a nitrogen atom and a carbon atom, or a ligand coordinated by a nitrogen atom is preferable, and a nitrogen atom and a carbon atom are preferable.
  • the ligand represented by L may be used individually by 1 type in the compound represented by a formula (MM), or may be used together with a different kind.
  • the compound represented by the formula (MM) becomes a homoleptic complex, and when two or more are used, it becomes a heteroleptic complex.
  • Arbitrary hydrogen atoms in each ligand exemplified above are alkyl group, aryl group, monovalent aromatic heterocyclic group, alkoxy group, aryloxy group, aralkyl group, arylalkoxy group, substituted amino group, substituted carbonyl group. It may be substituted with a group, a substituted oxycarbonyl group, a fluorine atom or a cyano group, and may be bonded to each other via these substituents to form a further condensed ring structure.
  • the above examples include examples in which a condensed ring structure is formed in order to facilitate a more detailed understanding.
  • the ligand of the triplet light-emitting complex whose central metal is iridium is a coordinate bond or covalent bond between iridium atoms such as 8-quinolinol and its derivatives, benzoquinolinol and its derivatives, and nitrogen and oxygen atoms.
  • Ligands such as 2-phenyl-pyridine and derivatives thereof, which are coordinated or covalently bonded with nitrogen and carbon atoms, and oxygen atoms such as acetylacetone and derivatives thereof, which are coordinated or covalently bonded. Examples of the ligand to be bonded are mentioned.
  • Preferred are 2-phenyl-pyridine and derivatives thereof, acetylacetone and derivatives thereof, and more preferred are 2-phenyl-pyridine and derivatives thereof.
  • the phosphorescent compound is preferably highly compatible with the polymer compound, that is, is less likely to cause phase separation. As a result, the solution processability of the polymer compound is improved, and a film can be easily formed when applied to a light emitting device.
  • the phosphorescent compound can be added separately from the polymer compound as described later. In that case, a composition containing the phosphorescent compound may be applied to the formation of a film or the like. Even in the case of such a composition, if the phosphorescent compound is highly compatible with the polymer compound, excellent solution processability is obtained, and formation of a film or the like tends to be easy. It is in.
  • the phosphorescent compound is preferably one having an appropriate substituent for the ligand of the phosphorescent compound.
  • the substituent is preferably a substituent such as an alkyl group, an alkoxy group, an aryl group, a monovalent aromatic heterocyclic group, and an aralkyl group, and these may further have a substituent.
  • This substituent preferably has a total number of atoms other than hydrogen atoms of 3 or more, more preferably 5 or more, still more preferably 7 or more, and particularly preferably 10 or more. preferable.
  • this substituent exists for every ligand. In that case, the type of the substituent may be the same or different for each ligand.
  • a dendron composed of an aryl group or an aromatic heterocyclic group which may have a further substituent is particularly preferable.
  • the dendron has a branching structure.
  • the phosphorescent compound has improved solution processing characteristics and, for example, imparts functionality such as charge transportability.
  • a phosphorescent compound having high functionality can be obtained by appropriately adjusting the emission color.
  • Highly branched macromolecules with dendrons are sometimes referred to as dendrimers, and are disclosed, for example, in WO02 / 066655, WO02 / 066552, WO02 / 066733, and designed and synthesized for the purpose of obtaining various functions. ing.
  • examples of the phosphorescent compound include the following compounds.
  • the polymer compound has structural units represented by formulas (1), (2) and (3), and at least one structural unit of formulas (4) and (5). ) And the structure (structural chain) in which the structural unit represented by the formula (2) is directly bonded.
  • the constitutional chain represented by the following formula (A) means that the constitutional unit in which the structural unit represented by the formula (1) and the structural unit represented by the formula (2) are directly bonded is not included. It means not included.
  • a group to which a symbol or various symbols are attached is basically synonymous with the group having the same symbol or the same symbol as described above, but in the constituent chain of formula (A), R 1a is Including the case of a hydrogen atom.
  • the structural chain represented by the formula (A) includes a structure in which the formula (A) is horizontally reversed.
  • the polymer compound of the present embodiment has a plurality of types of structural units, it is difficult to completely control the polymerization reaction in the production thereof, and an unintended polymerization reaction or the like occurs, resulting in a slight amount in the compound.
  • a structural chain represented by the formula (A) is included. Therefore, in the present embodiment, among the total number of structural units arranged next to the structural unit represented by the formula (1) in the polymer compound, the number of structural units represented by the formula (2) When the ratio satisfies the condition of less than 0.05, the polymer compound is regarded as not including the constituent chain represented by the formula (A). In the polymer compound, this ratio is preferably less than 0.02, more preferably 0.
  • the polymer compound preferably has the following structure.
  • the structural unit represented by the formula (3) is directly bonded to both sides of the structural unit represented by the formula (2). That is, in the polymer compound, it is preferable that the structural unit represented by the formula (2) forms a structural chain represented by the formula (B).
  • subjected is synonymous with the group to which the same code
  • a plurality of the same symbols and groups with the same symbols in the formula may be the same or different.
  • the structural unit represented by the formula (1) forms a structural chain represented by the formula (C), (D) or (E).
  • subjected is synonymous with the group to which the same code
  • a plurality of the same symbols and groups with the same symbols in the formula may be the same or different.
  • the structure chain represented by the formula (D) includes a structure in which the following formula is horizontally reversed.
  • the structural unit represented by the formula (1) has a structural chain represented by the formula (C) among the structural chains represented by the formulas (C), (D), and (E). It is preferable. Since the structural unit represented by the formula (1) forms the structural chain represented by the formula (C), excellent luminance stability is easily obtained.
  • the structural unit represented by the formula (1) forms a structural chain represented by the formula (F), (G), or (H).
  • subjected are all synonymous with the group to which the same code
  • a plurality of the same symbols and groups with the same symbols in the formula may be the same or different.
  • the structural chain represented by the formula (G) includes a structure in which the following formula is horizontally reversed.
  • the structural unit represented by the formula (4) has a structural chain represented by the formula (H) among the structural chains represented by the formulas (F), (G), and (H). It is preferable. Since the structural unit represented by the formula (4) forms the structural chain represented by the formula (H), excellent luminance stability is easily obtained.
  • the structural unit represented by the formula (5) forms a structural chain represented by the formula (I), (J) or (K).
  • subjected are synonymous with the group to which the same code
  • a plurality of the same symbols and groups with the same symbols in the formula may be the same or different.
  • the structural chain represented by the formula (J) includes a structure in which the following formula is horizontally reversed.
  • the structural unit represented by the formula (5) has a structural chain represented by the formula (K) among the structural chains represented by the formulas (I), (J), and (K). It is preferable. Since the structural unit represented by the formula (5) forms the structural chain represented by the formula (K), excellent light emission efficiency is easily obtained.
  • the high molecular compound further improves the luminance stability of the compound itself and a light-emitting element formed using the compound, and provides a favorable driving voltage of the light-emitting element. Therefore, the structure represented by the formula (3) It is preferable that the structural chain in which the units are directly bonded is not included, and it is preferable that the structural unit in which the structural units represented by the formula (1) are directly bonded is not included, and the structure is expressed by the formula (1). It is preferable that the structural unit which the unit and the structural unit represented by Formula (3) directly bond is not included.
  • the terminal structure of the polymer compound is not limited, but if the terminal group is a polymerization active group, the light emitting efficiency and life of the light emitting device obtained when the polymer compound is used for production of the light emitting device may be reduced.
  • the terminal group is preferably a stable group that is not a polymerization active group. This terminal group is preferably conjugated to the main chain of the polymer, and examples thereof include those bonded to an aryl group or a monovalent aromatic heterocyclic group via a carbon-carbon bond.
  • the aryl group or monovalent aromatic heterocyclic group is preferably a substituted or unsubstituted phenyl group, more preferably an alkyl group, a phenyl group substituted with an aryl group, or an unsubstituted phenyl group.
  • the polymer compound of the present embodiment includes a structural unit represented by the formula (1), a structural unit represented by the formula (2), and a structural unit represented by the formula (3) in the total mass of the polymer compound.
  • the total mass ratio of the structural unit represented by formula (4) and the structural unit represented by formula (5) is preferably 0.9 or more when the entire polymer compound is 1.
  • the structural unit represented by the formulas (1) to (5) includes a phosphorescent material.
  • the total mass ratio including the structural units derived from the compound is preferably 0.9 or more when the entire polymer compound is 1.
  • the molecular weight of the polymer compound is preferably such that the polystyrene-equivalent number average molecular weight (Mn) by gel permeation chromatography (hereinafter referred to as “GPC”) is 1 ⁇ 10 3 to 1 ⁇ 10 8. More preferably 5 ⁇ 10 3 to 1 ⁇ 10 6 , and still more preferably 5 ⁇ 10 3 to 5 ⁇ 10 5 .
  • the glass transition temperature of the polymer compound is preferably 70 ° C. or more, 80 degreeC or more is more preferable.
  • the upper limit is preferably 200 ° C.
  • the form of the polymer compound of this embodiment is, for example, a linear polymer, a branched polymer, a hyperbranched polymer, a cyclic polymer, a comb polymer, a star polymer, a network polymer, or the like.
  • the polymer compound may be a polymer having an arbitrary composition and regularity such as a homopolymer, an alternating copolymer, a periodic copolymer, a random copolymer, a block copolymer, and a graft copolymer.
  • the polymer compound of the present embodiment having the structure as described above is useful as a material of a light emitting device (for example, a light emitting material or a charge transport material).
  • a light-emitting element using this polymer compound is a light-emitting element that can be driven with high luminous efficiency. Therefore, the light emitting element is useful for a display device such as a backlight of a liquid crystal display, a curved or flat light source for illumination, a segment type display element, a dot matrix flat panel display.
  • the polymer compound of the present embodiment includes a laser dye, an organic solar cell material, an organic semiconductor for an organic transistor, a conductive thin film, a conductive thin film material such as an organic semiconductor thin film, and a light emitting property that emits fluorescence or phosphorescence. It is also useful as a thin film material.
  • the polymer compound of the present embodiment includes a monomer (raw material monomer) for forming the structural unit represented by the formulas (1) to (5) constituting the polymer compound and other structural units. It can manufacture by making it react so that the structure of a high molecular compound as mentioned above may be obtained.
  • a raw material monomer two bonds bonded to the polymer chain in each structural unit were replaced with a leaving group (polymerization active group) capable of forming a bond by a polymerization reaction. What has a structure can be used.
  • the raw material monomer may be directly or directly on the ligand part of the phosphorescent compound as described above or an arylene group or 2
  • a compound into which a polymerization active group is introduced via a valent aromatic heterocyclic group can be applied.
  • the polymerization can be performed, for example, by copolymerizing monomers by applying a known polymerization method such as cross coupling.
  • a raw material monomer composite raw material monomer having a structure corresponding to the above structural chain and perform copolymerization using this.
  • the composite raw material monomer can be synthesized by a method of cross-coupling monomers for forming a structural unit included in a desired structural chain.
  • a compound represented by the formula (11) is used as a raw material monomer (composite raw material monomer).
  • a compound represented by the formula (11) is formed from the raw material monomer of the structural unit represented by the formula (1) and the raw material monomer of the structural unit represented by the formula (4).
  • the resulting polymer compound has the formula (4) in which the structural unit represented by the formula (4) is bonded to both sides of the structural unit represented by the formula (1). It has a structure (constituent chain) represented by 6).
  • the obtained polymer compound does not include the constituent chain represented by the formula (A), and easily exhibits high luminous efficiency and excellent luminance stability.
  • the polymer compound is obtained by polymerizing a monomer mixture containing a compound represented by formula (11), a compound represented by formula (14), and a compound represented by formula (15).
  • the compound represented by the formula (14) is a raw material monomer of the structural unit represented by the formula (2)
  • the compound represented by the formula (15) is a structural unit represented by the formula (3).
  • Polymerization may be performed by dissolving the monomer mixture in a solvent as necessary, and causing a polymerization (condensation polymerization) reaction such as a known cross-coupling reaction using an alkali, a catalyst, or a ligand. it can.
  • the monomer mixture has a compound represented by the formula (11), a compound represented by the formula (14), and a formula (15) when the total number of moles is 100.
  • the total number of moles of the compound represented by () is preferably 60 to 100, more preferably 70 to 100.
  • the compound represented by the formula (16) is a raw material monomer of the structural unit represented by the formula (4)
  • the compound represented by the formula (17) is a structural unit represented by the formula (5).
  • the raw material monomer By using these compounds, the proportion of the structural unit represented by the formula (4) in the polymer compound can be increased, or the structural unit represented by the formula (5) can be introduced.
  • At least one of the compound represented by Formula (12) and the compound represented by Formula (13) is preferable.
  • subjected is all synonymous with the group to which the same code
  • a plurality of the same symbols and groups with the same symbols in the formula may be the same or different.
  • the compound represented by the formula (12) is preferably a compound represented by the formula (12-1).
  • R 12a represents a methyl group
  • R 12b represents a hydrogen atom, an alkyl group, an unsubstituted or phenyl group substituted with an alkyl group or an aryl group
  • R 12c represents a hydrogen atom or a methyl group
  • R 12d represents an aryl group substituted with an alkyl group, an alkyl group or an aryl group
  • R 12e represents an aryl group substituted with an alkyl group or an aryl group.
  • the two R 12c may be the same or different from each other
  • the two R 12d may be the same or different from each other
  • the two R 12e may be the same or different from each other. May be.
  • X 11a is as defined above, and the two X 11a may be the same as or different from each other.
  • R 12d is an alkyl group having 1 to 8 carbon atoms, or an aryl group substituted with one or more and three or less alkyl groups having 1 to 12 carbon atoms
  • the alkyl group At least one group is an aryl group having 6 to 12 carbon atoms
  • R 12e is an aryl group substituted with one or more and 3 or less alkyl groups having 1 to 12 carbon atoms.
  • at least one of the alkyl groups is an aryl group which is an alkyl group having 6 to 12 carbon atoms.
  • R 12d and R 12e are groups represented by formula (12-2), that is, aryl groups substituted with one or more and three or less alkyl groups having 1 to 12 carbon atoms, and the alkyl It is preferable that at least one of the groups is an aryl group which is an alkyl group having 6 to 12 carbon atoms.
  • R 12f , R 12g and R 12h each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • at least one of R 12f , R 12g and R 12h is an alkyl group having 6 to 12 carbon atoms.
  • a plurality of groups represented by the formula (12-2) may be the same or different.
  • X 11a , X 14a , X 15a , X 16a and X 17a which are polymerization active groups at both ends of the raw material monomers as described above, are emitted by a light emitting device using the resulting polymer compound. Since the efficiency is further improved, the following combinations are preferable.
  • X 11a , X 14a , X 16a , X 17a is a group selected from the substituent (a) group
  • X 15a is a group selected from the substituent (b) group
  • X 11a , X 14a , X 16a and X 17a are preferably groups selected from the substituent (b) group
  • X 15a is preferably a group selected from the substituent (a) group.
  • the former X 11a , X 14a , X 16a , and X 17a are groups selected from the substituent (a) group
  • a combination in which X 15a is a group selected from the substituent (b) group is more preferable. .
  • the alkyl group which is an example of R 20 , R 21 and R 22 in the group represented by —Sn (R 22 ) 3 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 15 carbon atoms. Those having 1 to 10 are more preferable.
  • R20 are an aryl group optionally substituted with an alkyl group, an alkoxy group, a nitro group, a fluorine atom or a cyano group, such as phenyl group, 4-tolyl group, 4-methoxyphenyl group, 4-nitro group.
  • a phenyl group, a 3-nitrophenyl group, a 2-nitrophenyl group, and a 4-trifluoromethylphenyl group are preferable.
  • R 20 , R 21 and R 22 are these groups, the reactivity when the monomer is polymerized tends to be good, and the synthesis of the polymer compound tends to be easy.
  • Examples of the group represented by —O—S ( ⁇ O) 2 R 20 in the substituent (a) group include a methanesulfonyloxy group, a trifluoromethanesulfonyloxy group, a phenylsulfonyloxy group, and 4-methylphenylsulfonyl. Examples thereof include an oxy group and a 4-trifluoromethylphenylsulfonyloxy group.
  • Examples of the group represented by —B (OR 21 ) 2 in the substituent group (b) include groups represented by the following formulas.
  • the group represented by -BF 4 Q 1 in the substituent group (b), -BF 4 - include groups represented by K +.
  • examples of the group represented by —Sn (R 22 ) 3 in the substituent group (b) include a trimethylstannanyl group, a triethylstannanyl group, and a tributylstannanyl group.
  • the compounds represented by the formulas (11), (14), (15), (16) and (17) have high purity when these are used as raw material monomers and polymerized to form a polymer compound.
  • each compound before polymerization is also highly purified.
  • the purification of the compounds represented by the formulas (11), (14), (15), (16) and (17) is performed, for example, by purifying by a method such as distillation, sublimation purification, recrystallization and the like. Can do.
  • the area percentage value indicated by the peak of each compound is preferably 98.5% or more, and 99.0% or more. It is more preferable that it is 99.5% or more.
  • a Suzuki coupling reaction may be used as a polymerization reaction generated using the compounds represented by the formulas (11), (14), (15), (16), and (17).
  • a Suzuki coupling reaction may be used as a method using an aryl coupling reaction.
  • Polymerization method (Chemical Review (Chem. Rev.), 95, 2457-2483 (1995)), Polymerization by Grignard reaction (Bull. Chem. Soc. Jpn., 51, 2091) 1978)), polymerization with Ni (0) catalyst (Progress in Polymer Science, Vol. 17, pages 1153-1205, 1992), method using Stille coupling reaction (European Polymer Journal) (E ropean Polymer Journal), Vol. 41, pp. 2923-2933 (2005)), and the like.
  • a method of polymerizing by a Suzuki coupling reaction and a method of polymerizing by a Ni (0) catalyst are easy to synthesize raw material monomers and simple in operation during the polymerization reaction. This is preferable.
  • a polymerization method by a cross coupling reaction such as a Suzuki coupling reaction, a Grignard reaction, a Stille coupling reaction, or the like is more preferable, and a reaction by polymerization by a Suzuki coupling reaction is more preferable. Is particularly preferred.
  • X 11a , X 14a , X 15a , X 16a and X 17a which are polymerization active groups possessed by the compounds represented by formulas (11), (14), (15), (16) and (17)
  • an appropriate group may be selected according to the type of polymerization reaction.
  • these groups are preferably a bromine atom, an iodine atom, a chlorine atom, or a group represented by —B (OR 21 ) 2 , and preferably a bromine atom or —B (OR 21 )
  • the group represented by 2 is more preferable.
  • the compound represented by the formula (11-2) may be generated depending on the synthesis method.
  • the target compound (formula There is a tendency that the purification operation for taking out only the compound (11) is simplified.
  • Examples of a method for synthesizing the compound represented by the formula (11) include a method via an intermediate having a trialkylsilyl group as shown in Examples described later, a journal of American Chemical Society ( A method using a direct boronic acid esterification reaction using an iridium complex catalyst described in Journal of American Chemical Society, Vol. 124, pages 390-391 (2002) can be applied. [Wherein, R 1a , R 1b , R 1c , Ar 4a , k, and X 11a are as defined above. ]
  • the polymerization method is represented by the formulas (11), (14), (15), (16) and (17) having the above-described substituent (a) group and substituent (b) group as polymerization active groups.
  • the compound (raw material monomer) etc. which are made to react with a suitable catalyst and a suitable base as needed are mentioned.
  • the substituent (a) What is necessary is just to adjust the ratio of the mole number of the group contained in a group, and the mole number of the group contained in a substituent (b) group.
  • the ratio of the total number of moles of the group contained in the substituent (b) group to the total number of moles of the group contained in the substituent (a) group is preferably 0.90 to 1.10, preferably 0.95 to 1.05 is more preferable, and 0.98 to 1.02 is still more preferable.
  • the catalyst in the case of polymerization by Suzuki coupling reaction, for example, palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate such as palladium acetate, dichlorobistriphenylphosphine palladium, etc.
  • Transition metal complexes and ligands such as triphenylphosphine, tri (t-butyl) phosphine, tris (o-methoxyphenyl) phosphine, and tricyclohexylphosphine coordinated to these transition metal complexes as necessary.
  • a catalyst is mentioned.
  • these catalysts those synthesized in advance may be used, or those prepared in the reaction system may be used as they are. Moreover, these catalysts may be used individually by 1 type, or may use 2 or more types together.
  • the amount used may be an effective amount as a catalyst.
  • the amount of the catalyst relative to the total number of moles of monomers used is preferably 0.00001 to 3 molar equivalents, more preferably 0.00005 to 0.5 molar equivalents in terms of transition metal, and 0 More preferably, it is 0.0001 to 0.2 molar equivalent.
  • Bases include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, tripotassium phosphate, tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide, tetraethyl hydroxide
  • inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, tripotassium phosphate, tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide, tetraethyl hydroxide
  • organic bases such as ammonium and tetrabutylammonium hydroxide. These bases may be used as an aqueous solution.
  • the amount is preferably set with respect to the total number of moles of raw material monomers used, preferably 0.5 to 20 molar equivalents, and more preferably 1 to 10 molar equivalents. .
  • the polymerization reaction may be performed in the absence of a solvent or in the presence of a solvent, but it is more preferably performed in the presence of an organic solvent.
  • organic solvent include toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide and the like.
  • An organic solvent may be used individually by 1 type, or may use 2 or more types together.
  • the amount of the organic solvent used is preferably such that the total concentration of raw material monomers in the solution is 0.1 to 90% by weight, more preferably 1 to 50% by weight. The amount is more preferably 30% by weight.
  • the reaction temperature in the polymerization reaction is preferably 0 to 200 ° C, more preferably 20 to 150 ° C, still more preferably 20 to 120 ° C.
  • the reaction time is preferably 0.5 hours or more, more preferably 2 to 500 hours.
  • the polymerization reaction is preferably carried out under dehydration conditions when a group represented by —MgY 1 is applied as the group contained in the substituent group (b).
  • the polymerization reaction is a Suzuki coupling reaction
  • the base to be used may be used as an aqueous solution, or water may be added to an organic solvent as a solvent.
  • the compound represented by 19 may be further used.
  • a polymer compound in which the terminal of the polymer compound is substituted with an aryl group or a monovalent aromatic heterocyclic group can be obtained.
  • the chain terminator represented by the formula (19) may be used alone or in combination of two or more in the polymerization for producing the polymer compound.
  • Ar 19a represents an aryl group which may have a substituent or a monovalent aromatic heterocyclic group which may have a substituent.
  • X 19a represents a group selected from the above-described substituent (a) group or substituent (b) group.
  • the aryl group represented by Ar 19a and the monovalent aromatic heterocyclic group are preferably aryl groups, unsubstituted or alkyl groups, aryl groups, monovalent aromatic heterocyclic groups or substituted
  • An aryl group substituted with an amino group is more preferred, an aryl group substituted with an unsubstituted alkyl group or aryl group is further preferred, and a phenyl group unsubstituted or substituted with an alkyl group or aryl group is particularly preferred.
  • the post-treatment of the polymerization reaction can be performed by a known method. For example, it can be carried out by a method of adding a reaction solution obtained by a polymerization reaction to a lower alcohol such as methanol and precipitating the precipitate, followed by filtration and drying.
  • a reaction solution obtained by a polymerization reaction to a lower alcohol such as methanol and precipitating the precipitate, followed by filtration and drying.
  • the purity of the polymer compound thus obtained is low, it can be purified by a method such as recrystallization, continuous extraction with a Soxhlet extractor, column chromatography or the like.
  • a method such as recrystallization, continuous extraction with a Soxhlet extractor, column chromatography or the like.
  • the purity affects the performance of the device such as light-emitting properties. Therefore, it is preferable to perform purification treatment such as reprecipitation purification and fractionation by chromatography after condensation polymerization.
  • the polymer compound of the present embodiment has a controlled structure having a predetermined constituent chain.
  • a polymer compound can be synthesized by performing a polymerization reaction using a raw material monomer having a substituent suitable for the applied polymerization reaction in an appropriate ratio.
  • suitable polymer compounds include polymer compounds (EP-1) and polymer compounds (EP-2) shown in Table 1 below. These polymer compounds are obtained by polymerizing a monomer mixture in which various raw material monomers are combined in the types and mole ratios shown in Table 1.
  • the column of the type of raw material monomer indicates any of the compounds represented by the above formulas (11), (14), (15), (16) and (17) as the raw material monomer. Indicates whether it was used.
  • (Z) has shown that it is a compound different from all of the compounds represented by Formula (11), (14), (15), (16), and (17).
  • (a) and (b) in the column of the polymerization active group indicate that each raw material monomer is a polymerization active group (a group represented by X 11a , X 14a , X 15a , X 16a or X 17a ). , Which group of the substituent (a) group or the substituent (b) group described above is included.
  • the polymer compound (EP-2) is more preferable because the polymerization reaction during the synthesis is easier to control.
  • EP-2 in particular, polymer compounds (EP-21) and (EP-22) shown in Table 2 below are easy to synthesize and have excellent luminous efficiency and luminance stability. preferable.
  • the notations in Table 2 have the same meaning as in Table 1. That is, (12) is a compound represented by the formula (12), (13) is a compound represented by the formula (13), and (Z) is a formula (12), (13), (14), (15 ), (16), and (17).
  • the polymer compound (EP-21) is preferred from the viewpoint of further improving the luminance stability of a light-emitting device using the resulting polymer compound.
  • a polymer compound (EP-23) shown in Table 3 below is particularly preferable from the viewpoint of further improving the luminance stability.
  • the notations in Table 3 have the same meaning as in Table 1. That is, (12-1) is a compound represented by the formula (12-1).
  • composition contains the above-described polymer compound and at least one material selected from the group consisting of a hole transport material, an electron transport material, and a light emitting material.
  • a composition can be used as a light-emitting material, a hole transport material, or an electron transport material.
  • the polymer compound, the hole transport material, the electron transport material, and the light emitting material may be used alone or in combination of two or more.
  • the ratio of “at least one material selected from the group consisting of a hole transport material, an electron transport material and a light emitting material” to the polymer compound is as follows when the composition is used for the light emitting material. It is preferable. That is, the ratio of “at least one material selected from the group consisting of a hole transport material, an electron transport material and a light emitting material” to 100 parts by weight of the polymer compound is 0.01 to 400 parts by weight for each material. The amount is preferably 0.05 to 150 parts by weight.
  • hole transport material those known as hole transport materials for light-emitting elements can be used.
  • hole transport materials those known as hole transport materials for light-emitting elements.
  • These derivatives may have an arylene group or a divalent aromatic heterocyclic group as a copolymerization component.
  • a known material can be applied as the electron transporting material of the light emitting element.
  • oxadiazole derivatives anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives
  • Examples include diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, triaryltriazines and derivatives thereof, polyquinolines and derivatives thereof, polyquinoxalines and derivatives thereof, and polyfluorenes and derivatives thereof.
  • These derivatives may have an arylene group or a divalent aromatic heterocyclic group as a copolymerization component.
  • a material containing a phosphorescent compound as described above is preferable because excellent luminous efficiency can be obtained.
  • a fluorescent compound can be used as the light emitting material.
  • Fluorescent compounds include low molecular fluorescent materials and high molecular fluorescent materials.
  • the low-molecular fluorescent material is a material that usually has a maximum peak of fluorescence emission in a wavelength range of 400 to 700 nm.
  • the molecular weight of the low-molecular fluorescent material is preferably less than 3000, more preferably 100 to 2000, and still more preferably 100 to 1000.
  • the low-molecular fluorescent material those known as the light-emitting material of the light-emitting element can be applied.
  • central metal such as porphyrin zinc complex and europium complex, and oxadiazole, thiadiazole, phenyl as the ligand Lysine, phenylbenzimidazole, metal complex material such as a metal complex having a quinoline structure and the like.
  • polymeric fluorescent materials include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, and polyvinyl carbazole derivatives, and the like. Examples include materials obtained by polymerizing complex light emitting materials.
  • the ratio of the phosphorescent compound is preferably 0.01 to 80 parts by weight with respect to 100 parts by weight of the polymer compound. More preferably, it is ⁇ 50 parts by weight.
  • the solution of a preferred embodiment contains a polymer compound and a solvent.
  • the solution include those in which the above composition contains a solvent.
  • Such a solution is advantageous for application to a printing method or the like, and is generally sometimes referred to as an ink or an ink composition.
  • the solution of the present embodiment includes a hole transport material, an electron transport material, a light emitting material, a stabilizer, a thickener (a high molecular weight compound for increasing the viscosity), and a low molecular weight for decreasing the viscosity, as necessary.
  • These compounds, surfactants, antioxidants and the like may contain high molecular weight compounds other than the polymer compounds of the above-described embodiments.
  • each component contained in a solution may be contained individually by 1 type, or may be contained in combination of 2 or more types.
  • the ratio of the polymer compound in the solution is preferably from 0.1 to 99 parts by weight, more preferably from 0.5 to 40 parts by weight, and more preferably from 0.5 to 20 parts by weight when the total solution is 100 parts by weight. Part is more preferable.
  • the solvent that constitutes the solution is preferably a solvent that can dissolve or uniformly disperse the solid content as a solute.
  • Solvents include chloro solvents such as chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane and anisole; toluene, xylene and the like Aromatic hydrocarbon solvents such as cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, and the like; acetone, methyl ethyl ketone, Ketone solvents such as cyclohexanone, benzophenone and acetophenone; ester solvents such as eth
  • the film formability and device characteristics are improved, it is preferable to use two or more solvents in combination. Among these, it is more preferable to use 2 to 3 types in combination, and it is particularly preferable to use 2 types in combination.
  • the at least one solvent When the solution contains two types of solvents, one of the solvents may be in a solid state at 25 ° C.
  • the at least one solvent preferably has a boiling point of 180 ° C. or higher, and more preferably 200 ° C. or higher.
  • both of the two types of solvents can dissolve the polymer compound of the above embodiment at a concentration of 1% by weight or more at 60 ° C.
  • at least one of the two solvents is preferably a solvent capable of dissolving the polymer compound at a concentration of 1% by weight or more at 25 ° C.
  • the ratio of the solvent having the highest boiling point is preferably 40 to 90% by weight of the total solvent weight. 50 to 90% by weight, more preferably 65 to 85% by weight.
  • a thickener when a solution contains a thickener, a thickener should just be soluble in the same solvent as a high molecular compound, and does not inhibit light emission and electric charge transport.
  • a thickener for example, high molecular weight polystyrene, high molecular weight polymethyl methacrylate, or the like can be used.
  • the compound used as the thickener preferably has a polystyrene equivalent weight average molecular weight of 5 ⁇ 10 5 or more, more preferably 1 ⁇ 10 6 or more.
  • the antioxidant is for improving the storage stability of the solution.
  • the antioxidant is not particularly limited as long as it is soluble in the same solvent as the polymer compound and does not inhibit light emission or charge transport, or can be removed when a light emitting element is manufactured.
  • a phenolic antioxidant, a phosphorus antioxidant, etc. are mentioned.
  • the solution may further contain water, metal and a salt thereof, silicon, phosphorus, fluorine, chlorine, bromine and the like in a range of 1 to 1000 ppm by weight.
  • the metal include lithium, sodium, calcium, potassium, iron, copper, nickel, aluminum, zinc, chromium, manganese, cobalt, platinum, iridium and the like.
  • the metal and its salt, silicon, phosphorus, fluorine, chlorine, bromine and the like are preferably less than 100 ppm on a weight basis, and less than 10 ppm. More preferably, with respect to the solvent to be used, it is more preferable to further reduce the content by reducing the content in advance by carrying out distillation purification or the like.
  • the thin film of a preferred embodiment contains a polymer compound.
  • a luminescent thin film, a conductive thin film, an organic semiconductor thin film, etc. are mentioned.
  • the thin film may contain a combination of the components constituting the above-described composition according to the application.
  • the polymer compound or the composition is used as it is or in the state of the above solution, and the spin coating method, the casting method, the micro gravure coating method, the gravure coating method, the bar coating method, the roll coating method, and the wire bar coating. It can be produced by performing a method, a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, a capillary coating method, a nozzle coating method or the like.
  • baking may be performed at a temperature of 100 ° C. or higher (eg, 130 ° C. to 200 ° C.), depending on the glass transition temperature of the polymer compound contained in the solution. preferable.
  • the thin film is a light-emitting thin film
  • the luminance and light emission voltage of the light emitting device are improved, so that the quantum yield of light emission is preferably 30% or more, more preferably 40% or more, and more than 50%. More preferably, it is particularly preferably 60% or more.
  • the surface resistivity is 1 k ⁇ / sq. Or less, preferably 100 ⁇ / sq. More preferably, it is 10 ⁇ / sq. More preferably, it is as follows.
  • the electrical conductivity can be increased by doping a Lewis acid or an ionic compound. “ ⁇ / sq.” Is a unit representing surface resistivity.
  • the larger one of the electron mobility and hole mobility of the thin film may be 10 ⁇ 5 cm 2 / V / second or more.
  • it is 10 ⁇ 3 cm 2 / V / second or more, more preferably 10 ⁇ 1 cm 2 / V / second or more.
  • an organic transistor can be manufactured by forming this organic semiconductor thin film on a Si substrate on which an insulating film such as SiO 2 and a gate electrode are formed, and further forming a source electrode and a drain electrode with Au or the like. it can.
  • a light emitting device of a preferred embodiment includes an electrode composed of an anode and a cathode, and an organic layer containing the polymer compound or composition of the above embodiment provided between these electrodes.
  • the light emitting element may have only one organic layer, or may have two or more layers. When two or more organic layers are provided, at least one layer only needs to contain the polymer compound or composition of the above-described embodiment.
  • the organic layer containing the polymer compound or composition of the above embodiment can function as a light emitting layer, a hole transport layer, or an electron transport layer in a light emitting device.
  • a light emitting element consists of an organic layer in which a light emitting layer contains the polymer compound or composition of the said embodiment.
  • the light emitting element may have other layers between these layers.
  • Each layer may be composed of one layer or may be composed of two or more layers.
  • the material and compound which comprise each layer may be single 1 type, or 2 or more types may be used together.
  • examples of the layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • the layer is a hole injection layer.
  • the layer in contact with the anode is a hole injection layer, and the other layers are hole transport layers.
  • the hole injection layer is a layer having a function of improving hole injection efficiency from the cathode.
  • the hole transport layer is a layer having a function of improving hole injection from a hole injection layer or a layer closer to the anode.
  • these layers are electron blocking layers. Whether or not the target layer has a function of blocking electron transport can be confirmed by fabricating an element that allows only electron current to flow and measuring that a decrease in the current value occurs.
  • the layer provided between the cathode and the light emitting layer examples include an electron injection layer, an electron transport layer, and a hole blocking layer. In the case where only one layer is provided between the cathode and the light emitting layer, the layer is an electron injection layer. When two or more layers are provided between the cathode and the light emitting layer, the layer in contact with the cathode is an electron injection layer, and the other layers are electron transport layers.
  • the electron injection layer is a layer having a function of improving electron injection efficiency from the cathode.
  • the electron transport layer is a layer having a function of improving electron injection from an electron injection layer or a layer closer to the cathode.
  • these layers may be referred to as a hole blocking layer. Whether or not it has a function of blocking hole transport can be confirmed by preparing a device that allows only a hole current to flow and measuring that the current value decreases.
  • Examples of the structure of the light emitting device having the above-described structure include the following structures a) to d). In the following structure, “/” indicates that each layer is laminated adjacently (the same applies hereinafter).
  • a) Anode / light emitting layer / cathode b) Anode / hole transport layer / light emitting layer / cathode c) Anode / light emitting layer / electron transport layer / cathode d) Anode / hole transport layer / light emitting layer / electron transport layer / cathode
  • hole transport layer and electron transport layer provided adjacent to the electrode (cathode, anode), it has the function of improving the injection efficiency of charges (holes, electrons) from the electrode, and the drive voltage of the device Those having the effect of lowering the density may be called charge injection layers (hole injection layers, electron injection layers).
  • a charge injection layer or an insulating layer may be further provided adjacent to the electrode in order to improve adhesion to the electrode (cathode, anode) or charge injection from the electrode.
  • a thin buffer layer may be further provided at the interface between the charge transport layer and the light emitting layer in order to improve adhesion at the interface between layers or prevent mixing of constituent materials. The order and number of layers to be stacked, and the thickness of each layer can be adjusted in consideration of light emission efficiency and element lifetime.
  • examples of the structure of the light emitting device further provided with the charge injection layer include the following structures e) to p).
  • e) Anode / charge injection layer / light emitting layer / cathode f) Anode / light emitting layer / charge injection layer / cathode g) Anode / charge injection layer / light emitting layer / charge injection layer / cathode h) Anode / charge injection layer / hole Transport layer / light emitting layer / cathode i) anode / hole transport layer / light emitting layer / charge injection layer / cathode j) anode / charge injection layer / hole transport layer / light emitting layer / charge injection layer / cathode k) anode / charge Injection layer / light emitting layer / charge transport layer / cathode l) anode / light emitting layer / electron transport layer / charge injection layer / cathode m)
  • FIG. 1 shows a cross-sectional configuration of a light-emitting element having the structure j). That is, the light-emitting element 10 shown in FIG. 1 includes an anode 1, a hole injection layer (charge injection layer) 2, a hole transport layer 3, a light-emitting layer 4, an electron injection layer (charge injection layer) 6 and a substrate 0.
  • the cathode 7 has a structure in which they are stacked in this order.
  • each layer in the light emitting device having the structure as described above in a) to p) is as follows, for example.
  • the anode is usually transparent or translucent, and is composed of a metal oxide, metal sulfide or metal thin film having high electrical conductivity, and among these, it is preferably composed of a material having high transmittance.
  • a film formed using indium oxide, zinc oxide, tin oxide, and a conductive inorganic compound composed of indium tin oxide (ITO), indium zinc oxide, or the like, which is a composite thereof. , NESA, etc., gold, platinum, silver, copper, etc. are used. Of these, ITO, indium / zinc / oxide, and tin oxide are preferable.
  • anode For the production of the anode, methods such as a vacuum deposition method, a sputtering method, an ion plating method, and a plating method can be used. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an anode.
  • organic transparent conductive films such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an anode.
  • the thickness of the anode can be selected in consideration of light transmittance and electric conductivity.
  • the thickness is preferably 10 nm to 10 ⁇ m, more preferably 20 nm to 1 ⁇ m, and further preferably 40 nm to 500 nm.
  • Hol injection layer Materials used for the hole injection layer include phenylamine compounds, starburst amine compounds, phthalocyanine compounds, oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, aluminum oxide, amorphous carbon, polyaniline, and derivatives thereof. And conductive polymers such as polythiophene and derivatives thereof.
  • the hole injection layer is a conductive polymer or the polymer compound of the above-described embodiment
  • the hole injection layer may include polystyrene sulfonate ions, Anions such as alkylbenzene sulfonate ions and camphor sulfonate ions may be doped.
  • the material used for the hole transport layer examples include those exemplified as the hole transport material.
  • the material used for a positive hole transport layer is a low molecular compound, it is preferable to disperse
  • the polymer compound of the above embodiment replaces the hole transporting group (aromatic amino group, thienyl group, etc.) with the structural unit and / or substitution of the polymer compound. It is preferable to include as a group.
  • examples of the hole transport material used for the hole transport layer include polyvinyl carbazole and derivatives thereof, aromatic amine-fluorene copolymers and derivatives thereof, aromatic amine-phenylene copolymers and derivatives thereof, and polyarylamines.
  • the polymer compound of the present invention is preferred.
  • film formation using a mixed solution with a polymer binder is exemplified. In some cases, film formation using a solution containing this polymer compound can be mentioned.
  • the solvent used for film formation using a solution may be any solvent that dissolves the material used for the hole transport layer.
  • Solvents include chloro solvents such as chloroform, methylene chloride, dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate, butyl acetate, Examples include ester solvents such as ethyl cellosolve acetate.
  • a spin coating method using a solution for film formation using a solution, a spin coating method using a solution, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method, a spray coating method, Coating methods such as a screen printing method, a flexographic printing method, an offset printing method, and an inkjet printing method can be used.
  • the polymer binder to be combined with the low molecular weight compound those that do not extremely inhibit charge transport are preferable, and those that do not strongly absorb visible light are preferable.
  • the polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
  • the thickness of the hole transport layer can be selected in consideration of driving voltage and light emission efficiency. However, it is necessary to have such a thickness that pinholes do not easily occur. On the other hand, if it is too thick, the driving voltage of the light emitting element may be increased. Therefore, the thickness of the hole transport layer is preferably 1 nm to 1 ⁇ m, more preferably 2 nm to 500 nm, and further preferably 5 nm to 200 nm.
  • the light emitting layer is formed from an organic compound (low molecular compound or high molecular compound) that emits fluorescence or phosphorescence and a dopant that assists the organic compound as necessary.
  • the light emitting layer in the light emitting device of the present embodiment preferably includes the polymer compound and the light emitting material of the above-described embodiment. In the case where the light emitting material is a low molecular compound, it is preferably used by being dispersed in a polymer binder.
  • a dopant can be added to the light emitting layer in order to improve the light emission efficiency or change the light emission wavelength.
  • the dopant include anthracene derivatives, perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like.
  • the thickness of the light emitting layer can be selected in consideration of driving voltage and light emission efficiency, and is preferably 2 to 200 nm, for example.
  • a method for forming the light emitting layer a method of applying a solution containing a light emitting material on or above the substrate, a vacuum deposition method, a transfer method, or the like can be used.
  • a solution containing a light emitting material on or above the substrate
  • a vacuum deposition method e.g., a vacuum deposition method
  • a transfer method e.g., a transfer method
  • the same solvents as those exemplified in the film formation using a solution of the hole transport layer can be applied.
  • a printing method such as a spin coating method, a dip coating method, an ink jet method, a flexographic printing method, a gravure printing method, or a slit coating method can be used.
  • film formation can also be performed by a vacuum evaporation method.
  • a method of forming a light emitting layer at a desired position by laser transfer or thermal transfer can also be used.
  • Electrode transport layer Examples of the material used for the electron transport layer include the polymer compound of the above embodiment and the electron transport material described above.
  • the polymer compound of the above embodiment has an electron transporting group (oxadiazole group, oxathiadiazole group, pyridyl group, pyrimidyl group, pyridazyl group, triazyl group, etc.). It is preferable to contain as a structural unit and / or a substituent of the polymer compound.
  • the electron transport material used for the electron transport layer the polymer compound of the above embodiment, the oxadiazole derivative, benzoquinone and its derivative, anthraquinone and its derivative, a metal complex of 8-hydroxyquinoline and its derivative, Triaryltriazine and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives are preferred.
  • the material used for the electron transport layer is a low molecular compound
  • a vacuum deposition method using powder a method by film formation in a solution or a molten state, and the like can be given.
  • the material used for the electron transport layer is a polymer compound
  • a method of film formation in a solution or in a molten state can be mentioned.
  • a polymer binder may be used in combination. The film formation using the solution can be performed in the same manner as the film formation method of the hole transport layer using the solution as described above.
  • the thickness of the electron transport layer can be adjusted in consideration of driving voltage and light emission efficiency. However, it is necessary to have such a thickness that pinholes do not easily occur. On the other hand, if it is too thick, the driving voltage of the light emitting element may be increased. Therefore, the thickness of the electron transport layer is preferably 1 nm to 1 ⁇ m, more preferably 2 nm to 500 nm, and further preferably 5 nm to 200 nm.
  • the configuration of the electron injection layer can be selected according to the type of the light emitting layer.
  • an electron injection layer having a single layer structure of Ca layer, a metal of Periodic Table Group 1 and Group 2 excluding Ca, and a metal having a work function of 1.5 to 3.0 eV and an oxide of the metal The electron injection layer etc. which consist of the laminated structure of the layer formed by the 1 type (s) or 2 or more types chosen from a halide and a carbonate and a Ca layer are mentioned.
  • the metal of the periodic table 1 group having a work function of 1.5 to 3.0 eV or oxides, halides, and carbonates thereof include lithium, lithium fluoride, sodium oxide, lithium oxide, and lithium carbonate.
  • a metal belonging to Group 2 of the periodic table excluding Ca or oxides, halides and carbonates thereof, strontium, magnesium oxide, magnesium fluoride, strontium fluoride, Examples include barium fluoride, strontium oxide, and magnesium carbonate.
  • the electron injection layer can be formed by vapor deposition, sputtering, printing, or the like.
  • the thickness of the electron injection layer is preferably 1 nm to 1 ⁇ m.
  • cathode As a material for the cathode, a material having a small work function and easy electron injection into the light emitting layer is preferable.
  • a material having a small work function and easy electron injection into the light emitting layer is preferable.
  • Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the cathode has a laminate structure of two or more layers
  • a laminate structure of a metal, metal oxide, metal fluoride, or an alloy thereof and a metal such as aluminum, silver, or chromium is preferable.
  • the cathode can be formed by, for example, a vacuum deposition method, a sputtering method, a laminating method in which a metal thin film is thermocompression bonded, or the like.
  • the thickness of the cathode can be selected in consideration of electric conductivity and durability. For example, the thickness is preferably 10 nm to 10 ⁇ m, more preferably 20 nm to 1 ⁇ m, and further preferably 50 nm to 500 nm.
  • a protective layer for protecting the light emitting element may be further formed thereon.
  • a protective layer and / or a protective cover in order to protect the light emitting element from the outside.
  • a constituent material of the protective layer a high molecular weight compound, metal oxide, metal fluoride, metal boride and the like can be used.
  • a metal plate, a glass plate, a plastic plate having a surface subjected to low water permeability treatment, or the like can be used.
  • Examples of a method for protecting a light emitting element using a protective cover include a method in which the protective cover is bonded to a device substrate with a thermosetting resin or a photocurable resin and sealed. At this time, if the space is maintained using a spacer, it becomes easy to prevent damage to the element.
  • the light emitting element of the preferred embodiment described above can be used as a planar light source, a display device (segment display device, dot matrix display device), a backlight of a liquid crystal display device, and the like.
  • the planar anode and cathode may be arranged so as to overlap each other.
  • a method of obtaining pattern-like light emission a method of installing a mask provided with a pattern-like window on the surface of a planar light-emitting element, or a substantially non-light-emitting organic layer is formed by forming an extremely thick organic layer.
  • both the anode and the cathode may be formed in stripes and arranged so as to be orthogonal to each other. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix element can be driven passively or may be driven actively in combination with a TFT or the like.
  • the planar light-emitting element described above is self-luminous and thin, and can be suitably used as a planar light source for a backlight of a liquid crystal display device, a planar illumination light source, or the like.
  • the display element can be used as a display device such as a computer, a television, a mobile terminal, a mobile phone, a car navigation, a viewfinder of a video camera. Furthermore, if a flexible substrate is used, it can also be used as a curved light source or display device.
  • the number average molecular weight (Mn) in terms of polystyrene and the weight average molecular weight (Mw) in terms of polystyrene were determined by GPC (manufactured by Shimadzu Corporation, trade name: LC-10Avp). At this time, the polymer compound to be measured was dissolved in tetrahydrofuran to a concentration of about 0.05% by weight, and 10 ⁇ L was injected into GPC. Tetrahydrofuran was used for the mobile phase of GPC, and flowed at a flow rate of 2.0 ml / min. As the column, PLgel MIXED-B (manufactured by Polymer Laboratories) was used. A UV-VIS detector (manufactured by Shimadzu Corporation, trade name: SPD-10Avp) was used as the detector.
  • NMR measurement Unless otherwise specified, NMR measurement is performed by dissolving 5 to 20 mg of a measurement sample in about 0.5 ml of an organic solvent and using NMR (trade name: MERCURY 300, manufactured by Varian, Inc.). went.
  • HPLC High performance liquid chromatography
  • Kaseisorb LC ODS 2000 manufactured by Tokyo Chemical Industry Co., Ltd.
  • the detector a photodiode array detector (manufactured by Shimadzu Corporation, trade name: SPD-M20A) was used.
  • the glass transition temperature was measured by DSC (trade name: DSC2920, manufactured by TA Instruments). Each polymer compound (sample, copolymer or polymer) was heated to 200 ° C., then rapidly cooled to ⁇ 50 ° C. and held for 30 minutes. And after raising temperature to 30 degreeC, it measured to 300 degreeC with the temperature increase rate of 10 degreeC / min.
  • Monomer CM4 (2,7-dibromo-9,9-bis (4-hexylphenyl) fluorene) described below, monomer CM5 (2,7-dibromo-9,9-dioctylfluorene), Monomer CM7 (9,9-dioctyl- (1,3,2-dioxaborolan-2-yl) -fluorene), monomer CM8 (N, N-bis (4-bromophenyl) -N ′, N ′ -Bis (4-n-butylphenyl) -1,4-phenylenediamine), monomer CM9 (N, N-bis (4-bromophenyl) -N- (bicyclo [4.2.0] octa-1 , 3,5-trien-3-yl) -amine) was synthesized according to a known synthesis method and used, which showed an HPLC area percentage value (UV254 nm) of 99.5% or more.
  • the oil bath is removed, diluted with dehydrated tetrahydrofuran (400 ml), further cooled in an ice bath, and then 2-isopropyloxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ( 148.85 g, 800 mmol).
  • the ice bath was removed, and the mixture was heated in an oil bath at 80 ° C., and stirred for 1.5 hours under reflux.
  • a saturated aqueous ammonium chloride solution 50 ml was added and stirred for 30 minutes.
  • step (C2a) was performed to obtain compound CM2a, and then step (C2b) was performed to obtain monomer CM2.
  • a 10% by weight aqueous sodium hydroxide solution was cooled in an ice bath, and the resulting reaction solution was slowly added, followed by further stirring for 15 minutes.
  • the organic layer and the aqueous layer were separated by liquid separation, extracted from the aqueous layer with chloroform (100 ml), and the obtained organic layers were combined.
  • a 10 wt% aqueous sodium sulfite solution 200 ml was added, and the mixture was stirred at room temperature for 30 minutes. Stir for minutes. At this time, the color of the organic layer changed from pale yellow to almost colorless and transparent.
  • the aqueous layer is removed by liquid separation, and the obtained organic layer is washed with 15% by weight brine (200 ml), dried over anhydrous magnesium sulfate (30 g), and the solvent is distilled off by concentration under reduced pressure. Yielded about 47 g of a light yellow oil. Ethanol (15 g) was added to this, shaken and homogenized, and left in a freezer at ⁇ 10 ° C. for 3 hours to precipitate crystals, collected by filtration, washed with a small amount of methanol, and then brought to room temperature.
  • the target monomer CM2 namely 1,4-diisopropyl-2,5-bis (4,4,5,5-tetramethyl-1,3,2- Dioxaborolan-2-yl) benzene was obtained as white crystals (44.6 g, 99.8% by HPLC area percentage (ultraviolet wavelength 254 nm), yield 60%).
  • the analysis result of monomer CM2 was as follows.
  • step (C3a) was performed to obtain compound CM3a, and then step (C3b) was performed to obtain monomer CM3.
  • the above-mentioned Grignard reagent was added to a suspension of compound CM3a (12.0 g) obtained above in dehydrated tetrahydrofuran (100 ml) with stirring, and the mixture was heated to reflux. After cooling, the reaction solution was washed with dilute hydrochloric acid aqueous solution. The organic layer and the aqueous layer were separated, and the aqueous layer was extracted with diethyl ether. The obtained organic layers were combined and washed again with water. The organic layer was dehydrated with anhydrous magnesium sulfate, filtered, and concentrated.
  • the obtained white solid was purified with a silica gel column and further recrystallized to obtain the target monomer CM3 (6.5 g) as a white solid.
  • the obtained monomer CM3 showed 99.5% or more by HPLC area percentage value (UV254 nm).
  • Example 1-1 Synthesis of Monomer M1 (Compound Represented by Formula (12-1))
  • step (1a) is carried out using monomer CM4 to obtain compound M1a
  • step (1b) is carried out to obtain compound M1b
  • step (1c) is carried out to obtain the above formula (12- Monomer M1 which is a compound represented by 1) was obtained.
  • chlorotrimethylsilane (20.34 g) was slowly added to this solution over about 10 minutes, stirred at the same temperature for 10 minutes, and then slowly warmed to room temperature.
  • ion-exchanged water 8 g
  • volatile components were removed by concentration under reduced pressure to obtain about 74 g of an oily substance.
  • Hexane 500 ml was added thereto for dilution, and then impurities were removed by a silica gel short column, and further volatiles were removed by concentration under reduced pressure to obtain Compound M1a as a pale yellow oil.
  • Compound M1a was used in the next step without further purification.
  • Step (1b)> In an argon gas atmosphere, compound M1a (61 g), monomer CM1 (13.42 g), and toluene (200 ml) were mixed to obtain a uniform solution, and then a 20 wt% tetraethylammonium hydroxide aqueous solution (manufactured by Aldrich, 86.15 g) and dichlorobis (triphenylphosphine) palladium (II) (137 mg) were added, and the mixture was stirred under reflux for 8 hours while heating in an oil bath. Subsequently, after cooling to room temperature and diluting with toluene, the aqueous layer was removed, and the obtained oil layer was washed successively with ion-exchanged water and 15% by weight saline.
  • the obtained solution and toluene were sequentially passed through a silica gel short column, and the obtained solutions were combined and then concentrated under reduced pressure to obtain about 64 g of a dark brown oily substance. Hexane was added thereto and heated to 60 ° C. to obtain a uniform solution. Ethanol was added thereto, and the solid precipitated by stirring at room temperature for 3 hours was collected by filtration, washed with ethanol, and dried under reduced pressure to obtain a crude product (35 g).
  • the body M1 (10.8 g) was obtained.
  • the obtained monomer M1 showed 99.5% or more by HPLC area percentage value (UV254nm).
  • the analysis result of the monomer M1 was as follows.
  • Example 1-2 Synthesis of monomer M1d (compound represented by formula (12-1)) and monomer M1e (compound represented by formula (12-1))
  • the following steps (1d) and (1e) are carried out, and the monomer M1d which is a compound represented by the above formula (12-1) And M1e, respectively.
  • Step (1d)> Under an argon gas atmosphere, a solution obtained by dissolving the compound M1b (1 g) obtained above in dichloromethane (10 ml) was added to a boron tribromide dichloromethane solution (1 mol / l concentration, 20 ml) previously cooled to 0 ° C. Add by slowly dripping. The solution is continuously stirred at 0 ° C. After confirming disappearance of the raw material by analysis by liquid chromatography, the solvent is removed by concentration under reduced pressure. By recrystallizing the obtained solid, compound M1d is obtained.
  • Activated clay manufactured by Wako, 30 g was added to the obtained filtrate, and the mixture was stirred at room temperature for 30 minutes, and then the solid was filtered off. The filtrate was concentrated to give about 17 g of an orange oil.
  • the obtained oil was purified by medium pressure silica gel chromatography (hexane), and about 10 g of the obtained white solid was recrystallized using chloroform / methanol to obtain the target monomer M2 (3.97 g). ) Was obtained as white crystals.
  • the HPLC area percentage value (UV254 nm) of the obtained monomer M2 was 99.93%.
  • Example 2-2 Synthesis of monomer M2b (compound represented by formula (13)) The following step (2b) is performed using the monomer M2 obtained above to obtain a monomer M2b which is a compound represented by the above formula (13).
  • Step (2b)> Under an argon gas atmosphere, the compound M2, the bis (pinacolato) diboron, bis (diphenylphosphino) ferrocene, tris (dibenzylideneacetone) dipalladium (0), potassium acetate, and 1,4-dioxane obtained above were added. Mix, stir overnight under reflux with heating, remove insolubles by filtration, concentrate and redissolve in hexane / toluene mixed solvent. Thereafter, the solution obtained by passing through a silica gel short column is purified by activated carbon adsorption treatment and medium pressure silica gel column chromatography to obtain compound M2b.
  • Example 3 Synthesis of polymer compound P1
  • monomer CM2 (1.115 g), monomer M1 (0.8301 g), monomer CM3 (0.4320 g), monomer CM5 (0.7665 g), and toluene as a solvent (43 ml) was heated to about 80 ° C., and then palladium acetate (0.61 mg), tris (2-methoxyphenyl) phosphine (3.82 mg), 20 wt% tetraethylammonium hydroxide aqueous solution (9.6 g) And stirred for about 8 hours under reflux while further heating in an oil bath.
  • phenylboronic acid 116 mg
  • palladium acetate (0.61 mg)
  • tris (2-methoxyphenyl) phosphine 3.82 mg
  • a 20 wt% tetraethylammonium hydroxide aqueous solution 9.6 g
  • the organic layer was washed twice with 3.6 wt% hydrochloric acid (about 40 ml), twice with 2.5 wt% aqueous ammonia (about 40 ml), and ion-exchanged water (about 40 ml). Washed sequentially 5 times. The organic layer was added dropwise to methanol to precipitate the polymer compound, which was collected by filtration and dried to obtain a solid.
  • This solid is dissolved in toluene (about 110 ml), passed through a silica gel column and an alumina column through which toluene is passed in advance, and the resulting solution is dropped into methanol (about 760 ml) to precipitate a polymer compound, which is collected by filtration. Then, the polymer compound P1 (1.8 g) was obtained by drying.
  • Example 4 Synthesis of polymer compound P2
  • monomer CM2 1.526 g
  • monomer M2 0.3777 g
  • monomer CM3 0.5973 g
  • monomer CM5 1.060 g
  • toluene as a solvent
  • palladium acetate 0.84 mg
  • tris (2-methoxyphenyl) phosphine 5.28 mg
  • 20 wt% tetraethylammonium hydroxide aqueous solution (13.2 g)
  • phenylboronic acid (185 mg), palladium acetate (0.84 mg), tris (2-methoxyphenyl) phosphine (5.28 mg), and a 20 wt% tetraethylammonium hydroxide aqueous solution (13.2 g) were added. While further heating in an oil bath, the mixture was stirred for about 17 hours under reflux.
  • This solid is dissolved in toluene (about 110 ml), passed through a silica gel column and an alumina column through which toluene is passed in advance, and the resulting solution is dropped into methanol (about 760 ml) to precipitate a polymer compound, which is collected by filtration. Then, the polymer compound P2 (1.47 g) was obtained by drying.
  • P2c constituent chain represented by the formula (P2c)
  • phenylboronic acid 167 mg
  • palladium acetate (0.76 mg)
  • tris (2-methoxyphenyl) phosphine (4.77 mg)
  • a 20 wt% tetraethylammonium hydroxide aqueous solution (12.0 g) were added.
  • the mixture was stirred for about 23 hours under reflux while further heating in an oil bath.
  • the organic layer was washed twice with 3.6 wt% hydrochloric acid (about 40 ml), twice with 2.5 wt% aqueous ammonia (about 40 ml), and ion-exchanged water (about 40 ml). Washed sequentially 4 times. The organic layer was added dropwise to methanol to precipitate the polymer compound, which was collected by filtration and dried to obtain a solid.
  • This solid is dissolved in toluene (about 110 ml), passed through a silica gel column and an alumina column through which toluene is passed in advance, and the resulting solution is dropped into methanol (about 760 ml) to precipitate a polymer compound, which is collected by filtration.
  • the polymer compound CP1 (1.62 g) was obtained by drying.
  • the polymer compound CP1 has the structural units and molar ratios shown in Table 9 because it is obtained by the monomer charge ratio shown in Table 8. And since the raw material monomer corresponding to each structural unit was separately used for polymerization, the structural chain corresponding to the above formula (A) (the structural chain represented by the formula (CP1c)) is included. Presumed to be a polymer compound.
  • phenylboronic acid (231 mg), palladium acetate (1.05 mg), tris (2-methoxyphenyl) phosphine (6.60 mg), and a 20 wt% tetraethylammonium hydroxide aqueous solution (16.5 g) were added.
  • the mixture was stirred for about 23 hours under reflux while further heating in an oil bath.
  • This solid is dissolved in toluene (about 110 ml), passed through a silica gel column and an alumina column through which toluene is passed in advance, and the resulting solution is dropped into methanol (about 760 ml) to precipitate a polymer compound, which is collected by filtration.
  • the polymer compound CP2 (1.46 g) was obtained by drying.
  • the high molecular compound CP1 is obtained by the charging ratio of monomers shown in Table 10 below, it has structural units and molar ratios shown in Table 11 below. And since it polymerized using the raw material monomer corresponding to each structural unit separately, respectively, it is a high molecular compound containing the structural chain represented by said formula (CP1c) corresponding to Formula (A). Presumed to be.
  • phenylboronic acid (0.49 g) was added, and the mixture was stirred for about 2 hours under reflux while further heating in an oil bath.
  • the organic layer was washed with ion-exchanged water (about 520 ml) twice, 3% by weight acetic acid aqueous solution (about 52 ml) twice, and ion-exchanged water (about 520 ml) twice. did.
  • the organic layer was added dropwise to methanol to precipitate the polymer compound, which was collected by filtration and dried to obtain a solid.
  • This solid is dissolved in toluene (about 1240 ml), passed through a silica gel column and an alumina column through which toluene is passed in advance, and the resulting solution is dropped into methanol (about 6200 ml) to precipitate a polymer compound, which is collected by filtration.
  • the polymer compound CP3 (26.23 g) was obtained by drying.
  • the iridium complex (EM-A) as a light emitting material was synthesized by the following method. Such a synthesis method is in accordance with the synthesis method described in WO02 / 066552.
  • this bromo compound was dissolved in anhydrous THF, cooled to ⁇ 78 ° C., and a slight excess of tert-butyllithium was added dropwise. Under cooling, B (OC 4 H 9 ) 3 was further added dropwise and reacted at room temperature. The resulting reaction solution was post-treated with 3M aqueous hydrochloric acid to obtain a boronic acid compound represented by the following formula.
  • a composition and a solution thereof were prepared using the polymer compound and the light-emitting material obtained above, and various light-emitting elements were produced using them.
  • composition MP1 obtained by mixing the polymer compound P1 and the light emitting material EM-A at a weight ratio of 70:30 is mixed with xylene (manufactured by Kanto Chemical Co., Ltd., grade for electronic industry) with a total solid content of 1.8% by weight. It was made to melt
  • the solution thus obtained is hereinafter referred to as “1.8 wt% xylene solution of composition MP1”.
  • composition MP1 a 1.8 wt% xylene solution of composition MP1 was used to form a film at a rotational speed of 1220 rpm by spin coating.
  • the film thickness was about 80 nm.
  • This was dried on a hot plate under a nitrogen gas atmosphere at 180 ° C. for 10 minutes, and then barium was vapor-deposited at about 5 nm and then aluminum was vapor-deposited at about 120 nm as a cathode, thereby producing a light emitting device DP1.
  • the metal deposition was started after the degree of vacuum reached 1 ⁇ 10 ⁇ 4 Pa or less.
  • the element structure of the obtained light emitting element DP1 is ITO (anode) / CLEVIOS P (hole injection layer, 65 nm) / polymer compound CP3 (hole transport layer) / composition MP1 (light emitting layer) / Ba (5 nm). / Al (120 nm) (Ba and Al together are cathode).
  • composition MCP1 (Comparative Example 1) ⁇ Preparation of composition MCP1 and its solution> A composition MCP1 obtained by mixing the polymer compound CP1 and the light emitting material EM-A at a weight ratio of 70:30 is mixed with xylene (manufactured by Kanto Chemical Co., Ltd., grade for electronic industry) with a total solid concentration of 1.8 wt. % Was dissolved. The solution thus obtained is hereinafter referred to as “1.8 wt% xylene solution of composition MCP1”.
  • the polymer compound P1 used for the light emitting device DP1 obtained in Example 5 has the same structural unit as the polymer compound CP1 used for the light emitting device DCP1 obtained in Comparative Example 1, but the above formula ( A is different in that it does not have the structural chain represented by A).
  • the light-emitting element DP1 obtained in Example 5 has the same maximum luminous efficiency as the light-emitting element DCP1 obtained in Comparative Example 1, and the time required to reduce the luminance by 20% is extremely long. It was found that the luminance stability was excellent.
  • composition MP2 obtained by mixing the polymer compound P2 and the light emitting material EM-A at a weight ratio of 70:30 is mixed with xylene (manufactured by Kanto Chemical Co., Ltd., grade for electronic industry) with a total solid content concentration of 1.8 wt. % Was dissolved.
  • xylene manufactured by Kanto Chemical Co., Ltd., grade for electronic industry
  • the solution thus obtained is hereinafter referred to as “1.8 wt% xylene solution of composition MP2”.
  • composition MCP2 (Comparative Example 2) ⁇ Preparation of composition MCP2 and its solution>
  • a composition MCP2 obtained by mixing the polymer compound CP2 and the light-emitting material EM-A at a weight ratio of 70:30 is added to xylene (manufactured by Kanto Chemical Co., Ltd., grade for electronic industry) with a total solid concentration of 1.8 wt. % Was dissolved.
  • the solution thus obtained is hereinafter referred to as “a 1.8 wt% xylene solution of the composition MCP2”.
  • the polymer compound P2 used in the light-emitting device DP2 obtained in Example 6 has the same structural unit as the polymer compound CP2 used in the light-emitting device DCP2 obtained in Comparative Example 2, but the above formula ( A is different in that it does not have the structural chain represented by A).
  • the light emitting element DP2 obtained in Example 6 has the same maximum light emission efficiency as the light emitting element DCP2 obtained in Comparative Example 2, and the time required to reduce the luminance by 20% is extremely long. It was found that the luminance stability was excellent.
  • Example 7 Synthesis of polymer compound P3
  • monomer CM10 (1.0245 g)
  • monomer CM4 (0.3785 g)
  • monomer M1 (1.0743 g)
  • monomer CM3 (0.3732 g)
  • 46 ml of toluene were added.
  • a monomer solution was prepared by mixing.
  • the monomer solution is heated, 0.5 mg of palladium acetate and 2.9 mg of tris (2-methoxyphenyl) phosphine are added, and then 6.9 ml of a 20 wt% tetraethylammonium hydroxide aqueous solution is added at 100 ° C.
  • Example 8 Synthesis of polymer compound P4
  • monomer CM10 (0.8985 g)
  • monomer M1 (1.4655 g)
  • monomer CM3 (0.3820 g)
  • 47 ml of toluene were mixed to prepare a monomer solution.
  • the monomer solution is heated, 0.4 mg of palladium acetate and 2.6 mg of tris (2-methoxyphenyl) phosphine are added, and then 6.1 ml of a 20 wt% tetraethylammonium hydroxide aqueous solution is added at 100 ° C. for 30 minutes. It was dripped over.
  • Example 9 Synthesis of polymer compound P5
  • monomer CM10 (1.4949 g)
  • monomer M2 (0.3016 g)
  • monomer CM3 (0.3813 g)
  • 42 ml of toluene were mixed to prepare a monomer solution.
  • this monomer solution was heated, to which 0.7 mg of palladium acetate and 4.2 mg of tris (2-methoxyphenyl) phosphine were added, and then a 20 wt% tetraethylammonium hydroxide aqueous solution at 100 ° C. 2 ml was added dropwise.
  • Example 10 Synthesis of polymer compound P6
  • monomer CM10 (0.2492 g)
  • monomer CM4 (0.1289 g)
  • monomer M2 0.0402 g
  • monomer CM3 (0.0763 g)
  • monomer CM11 0.1256 g
  • 10 ml of toluene 10 ml
  • this monomer solution was heated, and 0.2 mg of palladium acetate and 1.4 mg of tris (2-methoxyphenyl) phosphine were added thereto, and then a 20 wt% tetraethylammonium hydroxide aqueous solution at 100 ° C.
  • a composition and a solution thereof were prepared using the polymer compound and the light-emitting material obtained above, and various light-emitting elements were produced using them.
  • composition MP3 obtained by mixing a 3.0 wt% xylene solution of the polymer compound P3 and the light emitting material EM-A at a weight ratio of 70:30 is mixed with xylene (manufactured by Kanto Chemical Co., Ltd., grade for electronic industry) It was dissolved so that the partial concentration was 1.6% by weight.
  • xylene manufactured by Kanto Chemical Co., Ltd., grade for electronic industry
  • a film having a thickness of 65 nm is formed by spin coating on a glass substrate with an ITO film having a thickness of 45 nm formed by sputtering using AQ-1200 (manufactured by Plextronics), which is a polythiophene / sulfonic acid-based hole injecting agent. It was dried at 170 ° C. for 15 minutes on a hot plate. Next, a 0.7 wt% xylene solution of the polymer compound CP3 was used to form a film by spin coating at a rotational speed of 1890 rpm, and dried at 180 ° C. for 60 minutes on a nitrogen gas atmosphere hot plate. This film thickness was about 20 nm.
  • composition MP3 a 1.6 wt% xylene solution of composition MP3 was used to form a film at a rotation speed of 2020 rpm by spin coating.
  • the film thickness was about 80 nm.
  • sodium fluoride was deposited on the composition MP3 film at a thickness of about 3 nm and then aluminum was deposited at a thickness of about 80 nm as a cathode, thereby fabricating a light emitting device DP3.
  • the element structure of the obtained light emitting element DP3 was ITO (anode) / AQ-1200 (hole injection layer, 65 nm) / polymer compound CP3 (hole transport layer) / composition MP3 (light emitting layer) / NaF (3 nm). ) / Al (80 nm) (NaF and Al together are cathode).
  • composition MP4 obtained by mixing the polymer compound P4 and the light emitting material EM-A at a weight ratio of 70:30 is mixed with xylene (manufactured by Kanto Chemical Co., Ltd., grade for electronic industry) with a total solid concentration of 3.0 wt. % Was dissolved.
  • xylene manufactured by Kanto Chemical Co., Ltd., grade for electronic industry
  • the solution thus obtained is hereinafter referred to as “a 3.0 wt% xylene solution of composition MP4”.
  • composition MP5 obtained by mixing the polymer compound P5 and the light emitting material EM-A at a weight ratio of 70:30 is mixed with xylene (manufactured by Kanto Chemical Co., Inc., grade for electronic industry) with a total solid concentration of 1.6 wt. % Was dissolved.
  • xylene manufactured by Kanto Chemical Co., Inc., grade for electronic industry
  • the solution thus obtained is hereinafter referred to as “1.6 wt% xylene solution of composition MP5”.
  • Example 14 ⁇ Preparation of solution of polymer compound P6>
  • the polymer compound P6 was dissolved in xylene (manufactured by Kanto Chemical Co., Inc., grade for electronic industry) so that the total solid content concentration was 1.6% by weight.
  • the solution thus obtained is hereinafter referred to as “1.6 wt% xylene solution of polymer compound P6”.
  • the light emitting element DP3 obtained in Example 11, the light emitting element DP4 obtained in Example 12, the light emitting element DP5 obtained in Example 13, and the light emitting element DP6 obtained in Example 14 are all represented by the above formula (A). It is a light-emitting element using a polymer compound that does not have a structural chain represented. All of the light-emitting elements exhibit high maximum light emission efficiency, and in addition, the time required to reduce the luminance by 20% is extremely long. It was found that the luminance stability was excellent. Among them, the light emitting device DP6 using the polymer compound P6 containing a structural unit derived from the phosphorescent compound has the same luminance stability as the light emitting device DP5 using the composition with the phosphorescent compound. It was found that the maximum luminous efficiency was high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 本発明は、高い発光効率を与えることができるとともに、発光素子を長時間駆動させた場合であっても優れた輝度安定性を得ることが可能な、高分子化合物を提供することを目的とする。好適な実施形態の高分子化合物は、式(1)、(2)及び(3)で表される構成単位、並びに、式(4)及び式(5)で表される構成単位のうちの少なくとも1種の構成単位を含む高分子鎖を有しており、且つ、高分子鎖中に、式(1)で表される構成単位と式(2)で表される構成単位とが直接結合した構造を含まない。[式(1)、(2)、(3)、(4)及び(5)中の基は、それぞれ、各構成単位が異なる構造となるように選択される基である。]

Description

高分子化合物及びその製造方法、並びに発光素子
本発明は、高分子化合物及びその製造方法、化合物、高分子化合物を含有する組成物、溶液、薄膜及び発光素子、並びに、発光素子を備える面状光源及び表示素子に関する。
発光素子の発光層に用いる発光材料として、三重項励起状態からの発光を示す燐光発光性化合物をホスト材料にドーピングした組成物が知られている。この組成物に用いられるホスト材料の基本特性としては、最低三重項励起エネルギー(以下、「T1エネルギー」と言う。)が高いことが重要である。
例えば、赤色よりも短波長の発光色を示す燐光発光性化合物に対して、T1エネルギーが高く、優れた最大発光効率を与えることができるホスト材料として、特定の構成単位を組み合わせて含むメタフェニレン系高分子化合物が提案されている(特許文献1)。
国際公開2010/084977号パンフレット
上述したような組成物を用いた発光層を備える発光素子は、高い輝度を得ることができることに加えて、長時間駆動させた場合であっても高い輝度を維持できる特性を有していること、すなわち、輝度安定性に優れていることが望ましい。ところが、上述したような従来の高分子化合物等をホスト材料等に適用して発光層を形成した場合、これまで、十分な輝度安定性を得ることは困難であった。
そこで、本発明はこのような事情に鑑みてなされたものであり、発光素子の作製に用いた場合に、高い発光効率を与えることができるとともに、発光素子を長時間駆動させた場合であっても優れた輝度安定性を得ることが可能な、高分子化合物を提供することを目的とする。
本発明はまた、このような高分子化合物を得るのに好適な化合物、この化合物を用いた高分子化合物の製造方法、本発明の高分子化合物を含有する組成物、溶液、薄膜及び発光素子、並びに、発光素子を備える面状光源及び表示素子を提供することを目的とする。
上記目的を達成するため、本発明の高分子化合物は、式(1)で表される構成単位、式(2)で表される構成単位及び式(3)で表される構成単位、並びに、式(4)で表される構成単位及び式(5)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を含む高分子鎖を有しており、且つ、高分子鎖中に、式(1)で表される構成単位と式(2)で表される構成単位とが直接結合した構造を含まないことを特徴とする。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
式(1)中、R1aは、アルキル基、アリール基、1価の芳香族複素環基、アラルキル基又は置換アミノ基を表し、R1b及びR1cは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。なお、2つのR1cは、それぞれ同一であっても異なっていてもよい。
式(2)中、Ar2a及びAr2bは、それぞれ独立に、アリーレン基又は2価の芳香族複素環基であって、式(1)で表される構成単位とは異なる構造を有する基を表す。Ar2cは、アリール基、又は、1価の芳香族複素環基を表す。Ar2a、Ar2b及びAr2cで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。t及びtは、それぞれ独立に、1又は2である。なお、Ar2a及びAr2bが複数存在する場合、それらは同一であっても異なっていてもよい。
式(3)で表される構成単位は、式(1)で表される構成単位とは異なる構造である。式(3)中、Ar3aは、アリーレン基、又は、2価の芳香族複素環基を表す。R3a及びR3bは、それぞれ独立に、アルキル基、アリール基、又は、1価の芳香族複素環基であって、Ar3aにおける前記高分子鎖と結合している炭素原子の隣の炭素原子に結合している基である。Ar3aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を置換基として更に有していてもよい。
式(4)で表される構成単位は、式(1)で表される構成単位及び式(3)で表される構成単位とはそれぞれ異なる構造である。式(4)中、Ar4aは、アリーレン基、又は、2価の芳香族複素環基を表す。Ar4aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。kは1から3の整数である。なお、Ar4aが複数存在する場合、それらは同一であっても異なっていてもよい。
式(5)中、Ar5a、Ar5b、Ar5c、Ar5d及びAr5hは、それぞれ独立に、アリーレン基又は2価の芳香族複素環基を表す。Ar5e、Ar5f及びAr5gは、それぞれ独立に、アリール基又は1価の芳香族複素環基を表す。Ar5a、Ar5b、Ar5c、Ar5d、Ar5e、Ar5f、Ar5g及びAr5hで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。Ar5d、Ar5e、Ar5f及びAr5gで表される基は、それぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接結合するか、或いは、-O-、-S-、-C(=O)-、-C(=O)-O-、-N(R)-、-C(=O)-N(R)-、又は-C(R)2-で表される基を介して結合して、5~7員環を形成していてもよい。これらの式中のRは、アルキル基、アリール基、1価の芳香族複素環基、又はアラルキル基を表す。n及びnは、それぞれ独立に、0又は1であり、nは、0、1又は2である。
上記本発明の高分子化合物は、式(1)、(2)及び(3)で表される構成単位と、式(4)及び(5)で表される構成単位の少なくとも一方とを含む構造を有することにより、燐光発光性化合物のホスト材料として用いた場合に、優れた発光効率を与えることができる。
ここで、本発明者らが検討した結果、式(1)、(2)及び(3)で表される構成単位と、(4)及び(5)で表される構成単位の少なくとも一方とを組み合わせて有する高分子化合物によれば、高い発光効率が得られるものの、式(1)及び(2)の構成単位が直接結合して配置されている場合、輝度安定性が十分に得られないことが判明した。これは、式(1)及び(2)の構成単位が隣接していると、高分子化合物における電子雲の広がりが阻害され易いためであると推測される。そこで、本発明の高分子化合物は、式(1)、(2)及び(3)で表される構成単位と、式(4)及び(5)で表される構成単位の少なくとも一方とを有するとともに、式(1)及び(2)の構成単位が直接結合した構造が含まれないことで、高い発光効率と、優れた輝度安定性の両方を得ることが可能となる。
上述した効果がより良好に得られるので、式(2)で表される構成単位の両側に、式(3)で表される構成単位が直接結合していると好ましく、また、式(1)で表される構成単位の両側に、式(4)で表される構成単位及び式(5)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位が直接結合していると好ましい。
特に、高分子化合物は、式(1)で表される構成単位の両側に式(4)で表される構成単位が直接結合している、式(6)で表される構造が形成されていると好ましい。すなわち、高分子化合物において、式(1)の構成単位は、全てこのような構造を有するように含まれていると好適である。
Figure JPOXMLDOC01-appb-C000024
式(6)中、R1a、R1b、R1c、Ar4a及びkは、それぞれ前記と同義である。ただし、2つのkは、互いに同一であっても異なっていてもよく、複数のAr4aは、それぞれ同一であっても異なっていてもよい。
このような構造を有する場合、高分子化合物は、式(1)で表される構成単位の両側に、常に式(4)で表される構成単位が配置された構造となることから、発光効率及び輝度安定性の効果がより安定的に得られるようになる。
より具体的には、高分子化合物は、式(3)で表される構成単位として、式(7)で表される構成単位を有すると好ましい。
Figure JPOXMLDOC01-appb-C000025
式(7)中、R7a及びR7cは、それぞれ独立に、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基又はシアノ基を表し、R7b及びR7dは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。
また、式(4)で表される構成単位としては、式(9)で表される構成単位及び式(10)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を有すると好ましい。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
式(9)中、R9a及びR9cは、それぞれ独立に、アルキル基、アリール基、1価の芳香族複素環基、又はアラルキル基を表し、R9aとR9cとが互いに結合していてもよい。
高分子化合物においては、式(1)中のR1aが、アルキル基、アリール基又はアラルキル基であると好ましく、R1bが、水素原子、アルキル基、アリール基、1価の芳香族複素環基、又は置換アミノ基であると好ましく、R1cが、水素原子であると好ましい。
高分子化合物において、高分子化合物の全質量中の、式(1)で表される構成単位、式(2)で表される構成単位、式(3)で表される構成単位、式(4)で表される構成単位及び式(5)で表される構成単位の合計の質量比率は、高分子化合物全体を1としたとき、0.9以上であると好適である。このような割合で式(1)~(5)で表される構成単位を含むことで、高い発光効率と輝度安定性とを一層両立させ易くなる。
高分子化合物は、燐光発光性化合物から誘導される構成単位を更に含むと好ましい。高分子化合物がこのような構成単位を含むことで、優れた発光効率が得られるほか、発光素子を製造する際に、燐光発光性化合物のホスト材料である高分子化合物に対する燐光発光性化合物のドーピング量を低減、もしくは無くすことが可能となり、発光素子の製造における作業性を向上することも可能となる。
本発明はまた、上述した高分子化合物を製造するために好適な化合物を提供する。すなわち、本発明の化合物は、式(11)で表されることを特徴とする。
Figure JPOXMLDOC01-appb-C000028
式(11)中、R1aは、アルキル基、アリール基、1価の芳香族複素環基、アラルキル基又は置換アミノ基を表し、R1b及びR1cは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。2つのR1cは、それぞれ同一であっても異なっていてもよい。Ar4aは、アリーレン基、又は、2価の芳香族複素環基を表す。Ar4aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。kは1から3の整数である。なお、複数存在するAr4aは、それぞれ同一であっても異なっていてもよく、2つのkも、互いに同一であっても異なっていてもよい。X11aは、下記の置換基(a)群から選ばれる基、又は下記の置換基(b)群から選ばれる基を表す。2つのX11aは、互いに同一であっても異なってもよい。
(置換基(a)群)
 塩素原子、臭素原子、ヨウ素原子、-O-S(=O)20(R20はアルキル基、又はアルキル基、アルコキシ基、ニトロ基、フッ素原子若しくはシアノ基で置換されていてもよいアリール基を示す。)で表される基。
(置換基(b)群)
 -B(OR21(R21は水素原子又はアルキル基を示し、2個存在するR21は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、-BF(Qはリチウム、ナトリウム、カリウム、ルビジウム又はセシウムの1価の陽イオンを示す。)で表される基、-Sn(R22(R22は水素原子又はアルキル基を示し、3個存在するR22は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、-MgY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基、-ZnY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基。
このような化合物を、上記本発明の高分子化合物における式(1)及び式(4)で表される構成単位を形成するための出発原料として用いることにより、本発明の高分子化合物を容易に得ることが可能となる。
本発明の化合物においては、k=1であることが好ましい。こうすることで、得られる高分子化合物は、高い発光効率及び輝度安定性を得やすいものとなる。
より具体的には、本発明の化合物としては、式(12)で表される化合物、又は、式(13)で表される化合物が好ましい。これらの化合物を用いることで、上記効果に優れる高分子化合物が一層得られ易くなる。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
式(12)中、R1a、R1b、R1c、X11a及びR9aは前記と同義である。ただし、4つ存在するR9aは、それぞれ同一であっても異なっていてもよい。また、式(13)中、R1a、R1b、R1c及びX11aは前記と同義である。
式(11)~(13)において、R1aは、アルキル基、アリール基又はアラルキル基であると好ましく、R1bは、水素原子、アルキル基、アリール基、1価の芳香族複素環基、又は置換アミノ基であると好ましく、R1cは、水素原子であると好ましい。
また、上述した高分子化合物を製造するために好適な化合物としては、式(12-1)で表される化合物も好適である。このような化合物を用いることで、上記効果に優れる高分子化合物がより一層得られ易くなる。
Figure JPOXMLDOC01-appb-C000031
式(12-1)中、R12aはメチル基を表し、R12bは水素原子、アルキル基、非置換又はアルキル基若しくはアリール基で置換されたフェニル基を表し、R12cは水素原子又はメチル基を表し、R12dはアルキル基、アルキル基又はアリール基で置換されたアリール基を表し、R12eはアルキル基又はアリール基で置換されたアリール基を表す。2つのR12cは、互いに同一であっても異なっていてもよく、2つのR12dは、互いに同一であっても異なっていてもよく、2つのR12eは、互いに同一であっても異なっていてもよい。X11aは、上記式(11)の場合と同義である。2つのX11aは、互いに同一であっても異なってもよい。
式(12-1)において、R12dは、炭素数1~8のアルキル基、又は、1つ以上3つ以下の炭素数1~12のアルキル基で置換されたアリール基であって且つ該アルキル基の少なくとも1つ以上が炭素数6~12のアルキル基であるアリール基であり、R12eは、1つ以上3つ以下の炭素数1~12のアルキル基で置換されたアリール基であって且つ該アルキル基の少なくとも1つ以上が炭素数6~12のアルキル基であるアリール基であると好ましい。
また、式(12-1)において、R12d及びR12eは、式(12-2)で表される基、すなわち、1つ以上3つ以下の炭素数1~12のアルキル基で置換されたアリール基であって且つそのアルキル基の少なくとも1つ以上が炭素数6~12のアルキル基であるアリール基であると好ましい。
Figure JPOXMLDOC01-appb-C000032
式(12-2)中、R12f、R12g及びR12hは、それぞれ独立に、水素原子、又は炭素数1~12のアルキル基を表す。但し、R12f、R12g及びR12hのうちの少なくとも一つは、炭素数6~12のアルキル基である。式(12-1)において、複数存在する式(12-2)で表される基は、それぞれ同一であっても異なっていてもよい。
本発明はまた、本発明の高分子化合物を含む組成物を提供する。すなわち、本発明の組成物は、上記本発明の高分子化合物と、正孔輸送材料、電子輸送材料及び発光材料からなる群より選ばれる少なくとも1種の材料とを含有する。このような組成物は、発光素子における発光層を形成するための材料として極めて好適であり、かかる組成物により形成された発光層を備える発光素子は、高い発光効率が得られるとともに、輝度安定性にも優れるものとなる。この組成物において、発光材料は、特に燐光発光性化合物を含むと好ましい。
本発明は、高分子化合物と溶媒とを含有する溶液を提供する。かかる溶液によれば、上述したような発光層を、塗布等の簡便な手法によって容易に形成することが可能となる。
本発明は、上記本発明の高分子化合物を含有する薄膜を提供する。本発明の薄膜は、発光素子等の発光層に良好に適用することができ、発光素子の発光効率及び輝度安定性の両方を高めることが可能である。
本発明は、陽極と、陰極と、陽極と陰極との間に設けられた上記本発明の高分子化合物を含有する発光層とを備える発光素子を提供する。かかる発光素子は、発光層が本発明の高分子化合物を含有することから、高い発光効率が得られるほか、優れた輝度安定性を発揮し得るものとなる。
本発明は、本発明の発光素子を備える面状光源及び表示素子を提供する。これらの面状光源や表示素子は、本発明の発光素子を備えるので、明るい照明や表示が可能であり、しかも、輝度を長期にわたって良好に維持することが可能である。
また、本発明の高分子化合物の製造方法は、式(11)で表される化合物、式(14)で表される化合物、式(15)で表される化合物を含む単量体混合物を重合させて、式(6)で表される構造、式(2)で表される構成単位及び式(3)で表される構成単位を含む高分子化合物を得る工程を有しており、単量体混合物は、その全モル数を100としたとき、式(11)で表される化合物、式(14)で表される化合物及び式(15)で表される化合物の合計モル数が、60~100であることを特徴とする。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
式(11)及び式(6)中、R1a、R1b及びR1c、Ar4a及びkは、式(1)及び(4)の場合と同義である。ただし、複数存在するAr4aは、それぞれ同一であっても異なっていてもよく、2つのkも、互いに同一であっても異なっていてもよい。X11aは、下記置換基(a)群から選ばれる基、又は下記置換基(b)群から選ばれる基を表す。2つのX11aは、互いに同一であっても異なってもよい。
(置換基(a)群)
 塩素原子、臭素原子、ヨウ素原子、-O-S(=O)20(R20はアルキル基、又はアルキル基、アルコキシ基、ニトロ基、フッ素原子若しくはシアノ基で置換されていてもよいアリール基を示す。)で表される基。
(置換基(b)群)
 -B(OR21(R21は水素原子又はアルキル基を示し、2個存在するR21は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、-BF(Qはリチウム、ナトリウム、カリウム、ルビジウム又はセシウムの1価の陽イオンを示す。)で表される基、-Sn(R22(R22は水素原子又はアルキル基を示し、3個存在するR22は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、-MgY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基、-ZnY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基。
これらの式(14)及び式(2)において、Ar2a、Ar2b、Ar2c、t及びtは、それぞれ、上述した式(2)の場合と同義である。また、X14aは、X11aと同義である。
式(15)及び式(3)において、Ar3a、R3a及びR3bは、それぞれ、上述した式(3)の場合と同義である。また、X15aは、X11aと同義である。
このような本発明の高分子化合物の製造方法によれば、上記本発明の高分子化合物で示した式(1)、(2)及び(3)の構成単位を含むとともに、式(1)及び(2)の構成単位が直接結合した構造を含まない高分子化合物が確実に得られるようになる。そして、このようにして得られる高分子化合物は、高い発光効率及び輝度安定性を有するものとなる。
高分子化合物の製造方法において、単量体混合物は、式(16)で表される化合物及び式(17)で表される化合物からなる群より選ばれる少なくとも1種の化合物を更に含むと好ましい。こうすることで、上記本発明の高分子化合物を容易に製造することが可能となる。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
式(16)中、Ar4a及びkは、それぞれ、式(4)の場合と同義である。また、X16aは、X11aと同義である。式(17)中、Ar5a、Ar5b、Ar5c、Ar5d、Ar5e、Ar5f、Ar5g、Ar5h、n、n及びnは、それぞれ、式(5)の場合と同義である。また、X17aは、X11aと同義である。
本発明の高分子化合物の製造方法においては、X11a、X14a、X16a及びX17aが、置換基(a)群から選ばれる基であり、X15aが、置換基(b)群から選ばれる基であるか、或いは、X11a、X14a、X16a及びX17aが、置換基(b)群から選ばれる基であり、X15aが、置換基(a)群から選ばれる基であると、一層好ましい。こうすれば、各化合物(単量体化合物)同士を選択的に反応させることが可能となり、所望の構造を有する高分子化合物が得られ易くなる。
本発明によれば、発光素子の作製に用いた場合に、高い発光効率を与えることができるとともに、発光素子を長時間駆動させた場合であっても優れた輝度安定性を得ることが可能な高分子化合物を提供することが可能となる。このような高分子化合物は、特に、赤色よりも短波長の発光色を示す燐光発光性化合物のホスト材料として用いることで、発光効率が高く、しかも駆動時の輝度安定性にも優れる発光素子を形成することができる。
また、本発明の高分子化合物を得るのに好適な化合物、この化合物を用いた高分子化合物の製造方法、本発明の高分子化合物を含有する組成物、溶液、薄膜及び発光素子、並びに、発光素子を備える面状光源及び表示素子を提供することが可能となる。
好適な例に係る発光素子の断面構成を模式的に示す図である。
以下、本発明の好適な実施形態について詳細に説明する。
[用語の説明]
 まず、本明細書において用いている用語について説明する。本明細書において、「構成単位」とは、高分子化合物中に1個以上存在する単位を意味し、この構成単位は、「繰り返し単位」(即ち、高分子化合物中に2個以上存在する単位)として高分子化合物中に存在するものであると好ましい。また、「構成連鎖」とは、高分子化合物中において、2つ以上の構成単位が単結合によって結合して形成された構造を意味する。
「n価の芳香族複素環基」(nは1又は2である)とは、芳香族性を示す複素環式化合物から、芳香環に直接結合している水素原子のうちn個の水素原子を除いた原子団を意味し、縮合環を有するものも含む。「複素環式化合物」とは、環式構造を持つ有機化合物のうち、環を構成する原子として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子等のヘテロ原子を含む化合物をいう。
「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾシロール、ジベンゾホスホール等のヘテロ原子を含む複素環式化合物であり、複素環自体が芳香族性を示す化合物、或いは、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等のヘテロ原子を含む複素環それ自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
また、本明細書において、Meはメチル基を表し、Etはエチル基を表し、i-Prはイソプロピル基を表し、n-Buはn-ブチル基を表し、tBu、t-Bu及びt-ブチル基はtert-ブチル基を表す。
[置換基の説明]
 次に、本明細書に示した各種の置換基について具体的に説明する。本明細書では、特別な説明がない限り、各置換基は以下に説明されるものとする。
(アルキル基)
 アルキル基は、直鎖、分岐又は環状であり、炭素数が1~20のものが好ましい。アルキル基における水素原子は、フッ素原子で置換されていてもよい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ドデシル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。
(アリール基)
 アリール基は、芳香族炭化水素から水素原子1個を除いた原子団であり、縮合環を有するものを含む。アリール基は、炭素数が6~60のものが好ましく、6~48のものがより好ましく、6~20のものが更に好ましく、6~14のものが一層好ましい。炭素数には、置換基の炭素数は含まない。アリール基における水素原子は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基で置換されていてもよい。アリール基としては、置換又は非置換のフェニル基等が挙げられる。
(1価の芳香族複素環基)
 1価の芳香族複素環基は、炭素数が通常2~60であり、3~60のものが好ましく、3~20のものがより好ましい。炭素数には、置換基の炭素数は含まない。1価の芳香族複素環基としては、2-オキサジアゾリル基、2-チアジアゾリル基、2-チアゾリル基、2-オキサゾリル基、2-チエニル基、2-ピロリル基、2-フリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-ピラジル基、2-ピリミジル基、2-トリアジル基、3-ピリダジル基、3-カルバゾリル基、2-フェノキサジニル基、3-フェノキサジニル基、2-フェノチアジニル基、3-フェノチアジニル基等が挙げられる。1価の芳香族複素環基における水素原子は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基で置換されていてもよい。
(アルコキシ基)
 アルコキシ基は、直鎖、分岐又は環状であり、炭素数が1~20のものが好ましい。アルコキシ基におけるアルキル基部分としては、上記アルキル基として例示したものと同様の基が挙げられる。アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、sec-ブトキシ基、イソブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ドデシルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基、メトキシメチルオキシ基、2-メトキシエチルオキシ基、2-エトキシエチルオキシ基等が挙げられる。
(アリールオキシ基)
 アリールオキシ基は、炭素数が6~60のものが好ましい。アリールオキシ基におけるアリール基部分としては、上記アリール基として例示したものと同様の基が挙げられる。アリールオキシ基としては、フェノキシ基、C~C12アルコキシフェノキシ基(「C~C12アルコキシ」は、アルコキシ部分の炭素数1~12であることを示す。以下、同様の表記は同様のことを意味する。)、C~C12アルキルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基等が挙げられる。
(アラルキル基)
 アラルキル基は、炭素数が7~60のものが好ましい。アラルキル基におけるアルキル基部分としては、上記アルキル基として例示したものと同様の基が挙げられ、アリール基部分としては、上記アリール基として例示したものと同様の基が挙げられる。アラルキル基としては、フェニル-C~C12アルキル基、C~C12アルコキシフェニル-C~C12アルキル基、C~C12アルキルフェニル-C~C12アルキル基等が挙げられる。
(アリールアルコキシ基)
 アリールアルコキシ基は、炭素数が7~60のものが好ましい。アリールアルコキシ基におけるアリール基部分としては、上記アリール基として例示したものと同様の基が挙げられる。アリールアルコキシ基としては、フェニル-C~C12アルコキシ基、C~C12アルコキシフェニル-C~C12アルコキシ基、C~C12アルキルフェニル-C~C12アルコキシ基等が挙げられる。
(置換アミノ基)
 置換アミノ基は、炭素数が2~60のものが好ましい。置換アミノ基としては、アルキル基、アリール基、アラルキル基又は1価の芳香族複素環基で置換されたアミノ基が挙げられる。置換アミノ基には、アミノ基の置換基同士が直接、若しくは炭素原子、酸素原子、硫黄原子等を介して結合して縮合環を形成したものも含まれる。置換アミノ基としては、ジアルキル置換アミノ基、ジアリール置換アミノ基が好ましい。具体的には、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ジ-4-トリルアミノ基、ジ-4-t-ブチルフェニルアミノ基、ビス(3,5-ジ-t-ブチルフェニル)アミノ基、N-カルバゾリル基、N-フェノキサジニル基、N-アクリジニル基、N-フェノチアジニル基等が挙げられる。
(置換カルボニル基)
 置換カルボニル基は、炭素数が2~60のものが好ましい。置換カルボニル基としては、-C(=O)R(Rは所定の置換基)で表される基であって、Rがアルキル基、アリール基、アラルキル基又は1価の芳香族複素環基である基が挙げられる。より具体的には、アセチル基、ブチリル基、ベンゾイル基等が挙げられる。
(置換カルボキシル基)
 置換カルボキシル基は、炭素数が2~60のものが好ましい。置換カルボキシル基としては、-C(=O)-O-R(Rは所定の置換基)で表される基であって、Rがアルキル基、アリール基、アラルキル基又は1価の芳香族複素環基である基が挙げられる。より具体的には、メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基、フェノキシカルボニル基、ベンジルオキシカルボニル基等が挙げられる。
(アリーレン基)
 アリーレン基は、芳香族炭化水素から水素原子2個を除いた原子団を意味し、縮合環を有するものを含む。アリーレン基は、炭素数が6~60のものが好ましい。炭素数には、置換基の炭素数は含まない。アリーレン基としては、1,4-フェニレン基(下記の式001で表される基、以下同様。)、1,3-フェニレン基(式002)、1,2-フェニレン基(式003)等のフェニレン基;ナフタレン-1,4-ジイル基(式004)、ナフタレン-1,5-ジイル基(式005)、ナフタレン-2,6-ジイル基(式006)等のナフタレンジイル基;9,10-ジヒドロフェナントレン-2,7-ジイル基(式007)等のジヒドロフェナントレンジイル基;フルオレン-3,6-ジイル基(式008)、フルオレン-2,7-ジイル基(式009)等のフルオレンジイル基等が挙げられる。これらのアリーレン基における水素原子は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000039
これらの式中、Rは、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。Rは、アルキル基、アリール基、1価の芳香族複素環基又はアラルキル基を表す。式中に複数存在するRは、同一であっても異なっていてもよく、複数存在するRは、同一であっても異なっていてもよい。また、Rが同一基内に複数存在する場合、それらは一緒になって環構造を形成してもよい。
式001~009中、Rとしては、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、置換アミノ基が好ましく、水素原子、アルキル基、アリール基がより好ましい。
式007~009中、Rとしては、アリール基、アルキル基が好ましく、非置換又はアルキル基、アルコキシ基若しくはアリール基で置換されたアリール基;非置換又はアルキル基、アルコキシ基若しくはアリール基で置換されたアルキル基がより好ましい。
式007~009中、Rが複数存在する場合に形成する環構造としては、非置換又はアルキル基で置換されたシクロペンチル環;非置換又はアルキル基で置換されたシクロヘキシル環;非置換又はアルキル基で置換されたシクロヘプチル環が好ましい。このように複数のRが環を形成している構造を有するアリーレン基としては、式(010)~(012)で表される構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000040
(2価の芳香族複素環基)
 2価の芳香族複素環基は、芳香族複素環式化合物から水素原子2個を除いた原子団であり、縮合環を有するものも含む。2価の芳香族複素環基は、炭素数が通常2~60であり、3~60のものが好ましい。炭素数には、置換基の炭素数は含まない。2価の芳香族複素環基としては、ピリジン-2,5-ジイル基(式101)、ピリジン-2,6-ジイル基(式102)等のピリジンジイル基;ピリミジン-4,6-ジイル基(式103)等のピリミジンジイル基;トリアジン-2,4-ジイル基(式104);ピラジン-2,5-ジイル基(式105)等のピラジンジイル基;ピリダジン-3,6-ジイル基(式106)等のピリダジンジイル基;キノリン-2,6-ジイル基(式107)等のキノリンジイル基;イソキノリン-1,4-ジイル基(式108)等のイソキノリンジイル基;キノキサリン-5,8-ジイル基(式109)等のキノキサリンジイル基;カルバゾール-3,6-ジイル基(式110)、カルバゾール-2,7-ジイル基(式111)等のカルバゾールジイル基;ジベンゾフラン-2,8-ジイル基(式112)、ジベンゾフラン-3,7-ジイル基(式113)等のジベンゾフランジイル基;ジベンゾチオフェン-2,8-ジイル基(式114)、ジベンゾチオフェン-3,7-ジイル基(式115)等のジベンゾチオフェンジイル基;ジベンゾシロール-2,8-ジイル基(式116)、ジベンゾシロール-3,7-ジイル基(式117)等のジベンゾシロールジイル基;式118、式119等のフェノキサジンジイル基;式120、式121等のフェノチアジンジイル基;式122等のジヒドロアクリジンジイル基;式123で表される2価の基;ピロ-ル-2,5-ジイル基(式124)等のピロールジイル基;フラン-2,5-ジイル基(式125)等のフランジイル基;チオフェン-2,5-ジイル基(式126)等のチオフェンジイル基;ジアゾール-2,5-ジイル基(式127)等のジアゾールジイル基;トリアゾール-2,5-ジイル基(式128)等のトリアゾールジイル基;オキサゾール-2,5-ジイル基(式129)等のオキサゾールジイル基;オキサジアゾール-2,5-ジイル基(式130);チアゾール-2,5-ジイル基(式131)等のチアゾールジイル基;チアジアゾール-2,5-ジイル基(式132)等が挙げられる。
これらの2価の芳香族複素環基における水素原子は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基で置換されていてもよい。なお、下記式101~132中のR及びRは、上記と同義である。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
[高分子化合物]
 次に、好適な実施形態に係る高分子化合物について説明する。本実施形態の高分子化合物は、式(1)、(2)及び(3)で表される構成単位、並びに、式(4)及び(5)のうちの少なくとも一方の構成単位を有する。まず、各構成単位について説明する。
(式(1)で表される構成単位)
 式(1)中、R1aで表される基としては、アルキル基、アリール基、アラルキル基が好ましい。この構成単位の原料となる単量体が、重合時に良好な反応性を示すので、アルキル基がより好ましく、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基が更に好ましく、メチル基が特に好ましい。
式(1)中、R1bで表される基としては、高分子化合物の耐熱性と有機溶媒への溶解性とのバランスがよくなるので、水素原子、アルキル基、アリール基、1価の芳香族複素環基、置換アミノ基が好ましく、水素原子、アルキル基、非置換又はアルキル基、アリール基、1価の芳香族複素環基若しくは置換アミノ基で置換されたアリール基、非置換又はアルキル基、アリール基若しくは1価の芳香族複素環基で置換された1価の芳香族複素環基、ジアリール置換アミノ基がより好ましく、水素原子、アルキル基、非置換又はアルキル基若しくはアリール基で置換されたアリール基が更に好ましく、水素原子、アルキル基、非置換又はアルキル基若しくはアリール基で置換されたフェニル基が特に好ましい。
また、式(1)中、R1bで表される基としては、高分子化合物を用いて得られる発光素子で良好な駆動電圧が得られるので、水素原子、アルキル基、アリール基、1価の芳香族複素環基、置換アミノ基が好ましく、非置換又はアルキル基、アリール基、1価の芳香族複素環基若しくは置換アミノ基で置換されたアリール基;非置換又はアルキル基、アリール基若しくは1価の芳香族複素環基で置換された1価の芳香族複素環基;ジアリール置換アミノ基がより好ましく、1価の芳香族複素環基又は置換アミノ基で置換されたアリール基;非置換又はアルキル基、アリール基若しくは1価の芳香族複素環基で置換された1価の芳香族複素環基;ジアリール置換アミノ基が更に好ましく、1価の芳香族複素環基又は置換アミノ基で置換されたフェニル基;アルキル基、アリール基又は1価の芳香族複素環基で置換されたピリジル基;アルキル基、アリール基又は1価の芳香族複素環基で置換されたピラジル基;アルキル基、アリール基又は1価の芳香族複素環基で置換されたピリダジル基;アルキル基、アリール基又は1価の芳香族複素環基で置換されたピリミジル基;アルキル基、アリール基又は1価の芳香族複素環基で置換された1,3,5-トリアジン-2-イル基;ピリジル基、ジアリール置換アミノ基が特に好ましい。
式(1)中、R1cで表される基としては、原料である単量体の重合時の反応性が良好になるので、水素原子、アルキル基、アリール基、1価の芳香族複素環基が好ましく、水素原子がより好ましい。
式(1)で表される構成単位としては、下記の式1-001~1-017、1-101~1-113、1-201~1-208で表される構成単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
式(1)で表される構成単位としては、なかでも、式1-001~1-017で表されるものが好ましく、1-001、1-017で表されるものがより好ましく、1-001で表されるものが特に好ましい。
なお、式(1)で表される構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
(式(2)で表される構成単位)
 式(2)中、Ar2a、Ar2bで表される基としては、アリーレン基が好ましく、なかでも、1,4-フェニレン基(式001)がより好ましく、非置換の1,4-フェニレン基が特に好ましい。式(2)中、Ar2cで表される基としては、アリール基が好ましく、アルキル基等で置換されたフェニル基がより好ましい。さらに、式(2)中、t及びtはともに1であるか、ともに2であると、高分子化合物の合成が容易となるので好ましい。
式(2)で表される構成単位としては、下記の式2-1、2-2で表される構成単位が好ましい。
Figure JPOXMLDOC01-appb-C000051
[式2-1中、R2aは、水素原子、アルキル基、又はアリール基を表す。複数あるR2aは、それぞれ同一でも異なっていてもよいが、少なくとも一つのR2aは、水素原子以外の基を表す。式2-2中、R2aは前記と同義である。R2bは水素原子、アルキル基、又はアリール基を表す。複数あるR2bは、それぞれ同一でも異なっていてもよい。]
式(2-1)で表される構成単位としては、下記の式2-001~2-008で表される構成単位がより好ましい。
Figure JPOXMLDOC01-appb-C000052
式(2-2)で表される構成単位としては、下記の式2-101~2-106で表される構成単位がより好ましい。
Figure JPOXMLDOC01-appb-C000053
式(2)で表される構成単位は、高分子化合物中に、一種のみ含まれていても二種以上含まれていてもよい。
(式(3)で表される構成単位)
 式(3)中、R3a及びR3bで表される基としては、アルキル基又はアリール基が好ましく、アルキル基、又はアルキル基で置換されたフェニル基が好ましく、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ドデシル基が好ましい。
式(3)中、Ar3aで表される基としては、アリーレン基が好ましく、なかでも、1,4-フェニレン基(上記式001)、及び、フルオレン-2,7-ジイル基(上記式009)がより好ましい。
式(3)で表される構成単位としては、式(7)で表される構成単位が好ましい。
Figure JPOXMLDOC01-appb-C000054
[式(7)中、R7aは、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基又はシアノ基を表す。R7bは、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。2個存在するR7aは、互いに同一であっても異なっていてもよく、2個存在するR7bは、互いに同一であっても異なっていてもよい。]
式(7)中、R7aで表される基としては、高分子化合物の耐熱性と有機溶媒への溶解性とのバランスがよくなるので、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、置換アミノ基が好ましく、アルキル基、アラルキル基がより好ましく、アルキル基が更に好ましく、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、シクロヘキシルメチル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ドデシル基が特に好ましい。
式(7)中、R7bで表される基としては、高分子化合物の耐熱性、有機溶媒への溶解性や原料である単量体の重合時の反応性が良好になるので、水素原子、アルキル基、アルコキシ基、アリール基、1価の芳香族複素環基、アラルキル基が好ましく、水素原子、アルキル基がより好ましく、水素原子が特に好ましい。
式(7)で表される構成単位としては、下記の式7-001~7-019、7-101~7-105で表される構成単位が好ましい。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
式(7)で表される構成単位としては、なかでも、式7-001~7-019で表されるものがより好ましい。
なお、式(3)で表される構成単位(好ましくは式(7)で表される構成単位)は、高分子化合物中に、一種のみ含まれていても二種以上含まれていてもよい。
(式(4)、(5)で表される構成単位)
 本実施形態の高分子化合物は、上述した式(1)、(2)及び(3)で表される構成単位に加えて、式(4)及び(5)で表される構成単位のうちの少なくとも一方を有している。これによって、高分子化合物は、高い発光効率が得られるとともに、発光素子とした場合に優れた輝度安定性が得られるようになる。
なお、式(4)で表される構成単位は、式(2)で表される構成単位におけるAr2a又はAr2bで表される基と同じであってもよく、異なっていてもよい。ただし、本実施形態の高分子化合物においては、式(4)で表される構成単位と式(2)におけるAr2a又はAr2bで表される基とが同じ構造となる場合、該当する構造は、式(2)中のt又はtが2となるまでは、式(2)で表される構成単位に含まれると見なすこととする。
式(4)中、Ar4aで表される基としては、アリーレン基が好ましく、なかでも、1,4-フェニレン基(式001)、1,3-フェニレン基(式002)、ナフタレン-2,6-ジイル基(式006)、4,5-ジヒドロフェナントレン-2,7-ジイル基(式007)、フルオレン-3,6-ジイル基(式008)、フルオレン-2,7-ジイル基(式009)がより好ましく、1,4-フェニレン基(式001)、フルオレン-2,7-ジイル基(式009)が特に好ましい。また、式(4)中、kとしては、1が好ましい。
式(4)で表される構成単位としては、上記の式(9)又は(10)で表される構成単位が好ましい。式(9)中、R9aで表される基としては、高分子化合物の耐熱性や有機溶媒への溶解性の特性のバランスがよくなるので、アリール基、アルキル基が好ましく、非置換、又はアルキル基、アルコキシ基、アリール基若しくは置換アミノ基で置換されたアリール基;非置換、又はアルキル基、アルコキシ基、アリール基若しくは置換アミノ基で置換されたアルキル基がより好ましい。
式(9)で表される構成単位としては、下記の式9-001~9-020で表される構成単位が好ましい。
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
なかでも、式(9)で表される構成単位としては、式9-001~9-012で表されるものがより好ましい。
また、式(9)で表される構成単位としては、高分子化合物を発光素子に適用した際の安定性が更に向上するので、式(9-1)で表される構成単位が好適である。
Figure JPOXMLDOC01-appb-C000063
式(9-1)において、R12dで表される基は、アルキル基、又は、アルキル基若しくはアリール基で置換されたアリール基であることが好ましく、R12eで表される基は、アルキル基若しくはアリール基で置換されたアリール基であることが好ましい。
なかでも、式(9-1)で表される構成単位においては、高分子化合物の溶解性を向上させ、発光素子の作成を容易にする観点から、R12dは、炭素数1~8のアルキル基、又は、1つ以上3つ以下の炭素数1~12のアルキル基で置換されたアリール基であってかつそのアルキル基の少なくとも1つ以上が炭素数6~12のアルキル基であるアリール基であることが好ましく、また、R12eは、1つ以上3つ以下の炭素数1~12のアルキル基で置換されたアリール基であってかつそのアルキル基の少なくとも1つ以上が炭素数6~12のアルキル基であるアリール基であることが好ましい。
更に好ましくは、式(9-1)において、R12dおよびR12eは、式(9-2)で表される基、すなわち、1つ以上3つ以下の炭素数1~12のアルキル基で置換されたアリール基であってかつそのアルキル基の少なくとも1つ以上が炭素数6~12のアルキル基であるアリール基であると好ましい。
Figure JPOXMLDOC01-appb-C000064
式(9-2)において、R12f、R12g及びR12hは、それぞれ独立に、水素原子、又は炭素数1~12のアルキル基を表す。但し、式(9-2)において、R12f、R12g及びR12hのうちの少なくとも一つは、炭素数6~12のアルキル基である。式(9-1)において、複数存在する式(9-2)で表される基は同一であっても異なっていてもよい。
そして、このような観点からは、式(9)で表される構成単位としては、式9-008~9-011で表されるもの及び式9-017~9-020で表されるものが特に好ましい。
なお、式(4)で表される構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
また、式(5)中、Ar5a、Ar5b、Ar5c、Ar5d及びAr5hで表される基としては、アリーレン基が好ましく、中でも1,4-フェニレン基(式001)、フルオレン-2,7-ジイル基(式009)がより好ましく、1,4-フェニレン基(式001)が特に好ましい。
式(5)中、Ar5e、Ar5f及びAr5gで表される基としては、アリール基が好ましく、アルキル基で置換されたフェニル基がより好ましい。また、式(5)中のRとしては、アルキル基が好ましい。
式(5)で表される構成単位としては、式5-001~5-004で表される構成単位が好ましい。なお、式中のRは、上記と同義である。
Figure JPOXMLDOC01-appb-C000065
式(5)で表される構成単位としては、式5-001で表される構成単位が、高分子化合物を用いた発光素子の発光効率が向上するので、特に好ましい。
なお、式(5)で表される構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
(燐光発光性化合物から誘導される構成単位)
 本実施形態の高分子化合物は、上記の各構成単位に加えて、更に燐光発光性化合物から誘導される構成単位を有していてもよい。燐光発光性化合物から誘導される構成単位とは、燐光発光性化合物に由来する構造を含む構成単位であり、例えば、燐光発光性化合物から水素原子を1個除いた残基、燐光発光性化合物から水素原子を1個除いた残基を置換基として有するアリーレン基又は2価の芳香族複素環基、燐光発光性化合物から水素原子を2個除いた残基、燐光発光性化合物から水素原子を3個除いた残基等が挙げられる。燐光発光性化合物から誘導される構成単位が、燐光発光性化合物から水素原子を3個除いた残基である場合、高分子化合物は、この構成単位において分岐した構造を有することになる。
燐光発光性化合物から誘導される構成単位が、例えば、高分子鎖の末端に位置する1価の基、すなわち、燐光発光性化合物の残基からなる1価の基である場合、そのような構成単位としては、後述する式(MM)で表される燐光発光性化合物の有するLで表される配位子から水素原子を1個除いた1価の残基が挙げられる。
また、燐光発光性化合物から誘導される構成単位が、例えば、高分子鎖の主鎖中に存在する2価の基、すなわち、燐光発光性化合物の残基からなる2価の基である場合、そのような構成単位としては、後述する式(MM)で表される燐光発光性化合物の有するLで表される配位子から水素原子を1個取り除いた1価の残基を置換基として有するアリーレン基又は2価の芳香族複素環基、式(MM)で表される燐光発光性化合物の有するLで表される配位子1つから水素原子を2個取り除いた2価の残基、或いは、式(MM)で表される燐光発光性化合物の有するLで表される配位子2つから水素原子を各1個取り除いた2価の残基が挙げられる。
さらに、燐光発光性化合物から誘導される構成単位が、例えば、高分子鎖の主鎖中に存在する3価の基、すなわち、燐光発光性化合物の残基からなる3価の基である場合、そのような構成単位としては、後述する式(MM)で表される燐光発光性化合物の有するLで表される配位子1つから水素原子を3個取り除いた3価の残基、式(MM)で表される燐光発光性化合物の有するLで表される配位子2つから水素原子をそれぞれ1個及び2個取り除いた3価の残基、或いは、式(MM)で表される燐光発光性化合物の有するLで表される配位子3つから水素原子をそれぞれ1個取り除いた3価の残基が挙げられる。
燐光発光性化合物から誘導される構成単位を形成し得る燐光発光性化合物としては、以下の化合物が例示できる。燐光発光性化合物としては、三重項発光錯体等の公知の化合物や、従来から低分子系の発光素子の発光材料として利用されてきた化合物等を適用できる。
<燐光発光性化合物>
 燐光発光性化合物から誘導される構成単位を形成するための燐光発光性化合物としては、上述した好適な実施形態の高分子化合物が高いT1のエネルギー準位を有するために、様々な燐光発光性化合物を用いることが可能であるが、更に高い電流効率を得る為には、高分子化合物の有する最低励起三重項状態(T)と同等の、もしくは、より低いエネルギー準位の最低励起三重項状態(T)を有する燐光発光性化合物を選択することが好ましい。
より具体的には、高分子化合物が有する最低三重項励起状態(T1)のエネルギー準位(TH)と、燐光発光性化合物の有する最低三重項励起状態(T1)のエネルギー準位(TM)とが、
  TH>TM-0.1(eV)
の関係を満たすものが好ましく、
  TH>TM
の関係を満たすものがより好ましく、
  TH>TM+0.1(eV)
の関係を満たすものがさらに好ましい。
なお、下記に燐光発光性化合物を例示するが、適用可能な燐光発光性化合物は下記に限定されるものではなく、上記(TH)と(TM)の関係を満たす燐光発光性化合物全般が有用である。
例えば、燐光発光性化合物としては、Nature, (1998), 395, 151、Appl. Phys. Lett. (1999), 75(1), 4、Proc. SPIE-Int. Soc. Opt. Eng. (2001), 4105(Organic Light-Emitting Materials and DevicesIV), 119、 J. Am. Chem. Soc., (2001), 123, 4304、Appl. Phys. Lett., (1997), 71(18), 2596、Syn. Met., (1998), 94(1), 103、Syn. Met., (1999),99(2), 1361、Adv. Mater., (1999), 11(10), 852、Inorg. Chem., (2003), 42, 8609、Inorg. Chem., (2004), 43, 6513、Journal of the SID 11/1、161 (2003)、WO2002/066552、WO2004/020504、WO2004/020448等に記載されている化合物が挙げられる。
特に、燐光発光性化合物としては、金属錯体の最高被占軌道(HOMO)における、中心金属の最外殻d軌道の軌道係数の2乗の和が、全原子軌道係数の2乗の和において占める割合が1/3以上であるものを適用すると、高発光効率が得られるので好ましい。例えば、中心金属が第6周期に属する遷移金属であるオルトメタル化錯体等が挙げられる。
三重項発光錯体の中心金属としては、原子番号50以上の原子で、錯体にスピン-軌道相互作用があり、一重項状態と三重項状態間の項間交差を起こし得る金属が挙げられる。中心金属は、好ましくは、金、白金、イリジウム、オスミウム、レニウム、タングステン、ユーロピウム、テルビウム、ツリウム、ディスプロシウム、サマリウム、プラセオジム、ガドリニウム、イッテルビウムであり、より好ましくは、金、白金、イリジウム、オスミウム、レニウムであり、更に好ましくは、金、白金、イリジウム、レニウムであり、特に好ましくは、白金(II)、イリジウム(III)であり、とりわけ好ましくは、イリジウム(III)である。
このような燐光発光性化合物としては、式(MM)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000066
式(MM)で表される化合物は、全体として中性の原子価を有し、式(MM)中、Mはルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金から選ばれる金属原子であり、LはMで表される金属原子との間に、配位結合及び共有結合から選ばれる結合を少なくとも2つ形成して多座配位することが可能な、中性又は1~3価のアニオン性の配位子であり、Zはカウンターアニオンである。kaは1以上の整数を表し、kbは0以上の整数を表す。但し、ka+kbは金属原子Mが有する価数を満たすように存在する。L、Zが複数存在する場合、それらは互いに同一でも異なっていてもよい。
Mで表される金属原子としては、白金(II)、イリジウム(III)が好ましく、イリジウム(III)が特に好ましい。
上記Lで表される配位子としては、例えば、8-キノリノール及びその誘導体、ベンゾキノリノール及びその誘導体のように、金属原子と窒素原子及び酸素原子で配位結合若しくは共有結合で結合する配位子;例えば、2-フェニル-ピリジン及びその誘導体のように窒素原子及び炭素原子で配位結合若しくは共有結合で結合する配位子;例えば、アセチルアセトン及びその誘導体のように酸素原子で配位結合若しくは共有結合で結合する配位子;例えば、2,2’-ビピリジル及びその誘導体のように、窒素原子で配位結合する配位子や、リン原子及び炭素原子で配位結合若しくは共有結合する配位子等が挙げられる。
なかでも、Mで表される金属原子と、窒素原子及び炭素原子で配位結合若しくは共有結合で結合する配位子、または、窒素原子で配位結合する配位子が好ましく、窒素原子及び炭素原子で配位結合もしくは共有結合で結合するモノアニオン性のオルトメタル化配位子、又は、このモノアニオン性のオルトメタル化配位子が互いに結合してなる2価もしくは3価のオルトメタル化配位子がより好ましい。
また、Lで表される配位子は、式(MM)で表される化合物において、一種単独で用いられても、異なる種類が共存して用いられても良い。なお、一種単独で用いられる場合、式(MM)で表される化合物はホモレプティック錯体(homoleptic complex)となり、2種以上が用いられる場合、ヘテロレプティック錯体(heteroleptic complex)となる。
以下、Lとして特に好ましい窒素原子及び炭素原子で配位結合もしくは共有結合で結合するモノアニオン性のオルトメタル化配位子を例示する。
Figure JPOXMLDOC01-appb-C000067
上記に例示した各配位子における任意の水素原子は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換オキシカルボニル基、フッ素原子又はシアノ基で置換されていてもよく、また、それらの置換基を介して互いに結合することにより更なる縮合環構造を形成していてもよい。なお、上記の例示には、より詳細な理解を助ける為に、縮合環構造を形成している例も含まれている。
また、中心金属がイリジウムである三重項発光錯体の配位子としては、8-キノリノール及びその誘導体、ベンゾキノリノール及びその誘導体等のイリジウム原子と窒素原子及び酸素原子で配位結合若しくは共有結合で結合する配位子、2-フェニル-ピリジン及びその誘導体等の窒素原子及び炭素原子で配位結合若しくは共有結合で結合する配位子、アセチルアセトン及びその誘導体等の酸素原子で配位結合若しくは共有結合で結合する配位子が挙げられる。好ましくは、2-フェニル-ピリジン及びその誘導体、アセチルアセトン及びその誘導体であり、更に好ましくは、2-フェニル-ピリジン及びその誘導体である。
高分子化合物が上述したような燐光発光性化合物から誘導される構成単位を有する場合、燐光発光性化合物は、高分子化合物との相溶性が高い、すなわち相分離を生じにくいものであると好ましい。これにより、高分子化合物の溶液加工性が良好となって発光素子に適用する際に膜を形成し易くなる。なお、燐光発光性化合物は、後述するように高分子化合物とは別に添加することもできるが、その場合、それらを含む組成物が、膜等の形成に適用されることがある。そのような組成物とする場合であっても、燐光発光性化合物が高分子化合物との相溶性が高いものであると、優れた溶液加工性が得られ、膜等の形成が容易となる傾向にある。
上記の観点から、燐光発光性化合物は、当該燐光発光性化合物が有している配位子に適当な置換基を有するものであると好ましい。置換基としては、アルキル基、アルコキシ基、アリール基、1価の芳香族複素間基、アラルキル基等の置換基が好ましく、それらは更に置換基を有していてもよい。この置換基は、水素原子以外の原子の総数が3個以上であることが好ましく、5個以上であることがより好ましく、7個以上であることが更に好ましく、10個以上であることが特に好ましい。また、この置換基は、配位子毎に存在していることが好ましい。その場合、置換基の種類は、配位子毎に同一であっても異なっていてもよい。
上記の置換基としては、特に、更なる置換基を有していてもよいアリール基もしくは芳香族複素環基からなるデンドロンが好ましい。デンドロンは分枝構造(branching structure)であり、デンドロンを置換基として導入することによって、燐光発光性化合物は、溶液加工特性が向上するほか、例えば、電荷輸送性などの機能性(functinality)が付与されたり、また発光色が好適に調整されたりして、高い機能性を有する燐光発光性化合物となることができる。デンドロンを有する高度に枝分かれした巨大分子はデンドリマーと呼ばれることがあり、例えば、WO02/066575、WO02/066552、WO02/067343等に開示されており、種々の機能を得ることを目的として設計・合成されている。
燐光発光性化合物としては、より具体的には、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
また、好適な実施形態の高分子化合物が有することができる燐光発光性化合物から誘導される構成単位としては、例えば、以下の構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
(高分子化合物の構造)
 次に、上述した各構成単位によって構成される高分子化合物の構造について説明する。
高分子化合物は、式(1)、(2)及び(3)で表される構成単位、並びに式(4)及び(5)のうちの少なくとも一方の構成単位を有しており、式(1)で表される構成単位と式(2)で表される構成単位とが直接結合した構造(構成連鎖)を含まない。このような構成を有する高分子化合物によって、高い発光効率が得られるとともに、発光素子とした場合に優れた輝度安定性が得られるようになる。
ここで、式(1)で表される構成単位と式(2)で表される構成単位とが直接結合した構成連鎖を含まないとは、下記の式(A)で表される構成連鎖を含まないことを意味する。式中の符号や各種の符号が付された基は、基本的に上述した同一の符号及び同じ符号が付された基と同義であるが、式(A)の構成連鎖においては、R1aが水素原子である場合も含む。また、式(A)で表される構成連鎖には、式(A)が左右反転した構造も含まれる。
Figure JPOXMLDOC01-appb-C000073
ただし、本実施形態の高分子化合物は、複数種類の構成単位を有することから、その製造において重合反応を完全に制御することが困難であり、意図しない重合反応等が生じて化合物中にわずかに式(A)で表される構成連鎖が含まれる場合がある。したがって、本実施形態においては、高分子化合物中、式(1)で表される構成単位の隣に配置された構成単位の全個数のうち、式(2)で表される構成単位の個数の割合が、0.05未満である条件を満たす場合、高分子化合物中には、式(A)で表される構成連鎖は含まれないと見なすこととする。高分子化合物においては、この割合は0.02未満であることが好ましく、0であることがより好ましい。
このように式(A)で表される構成連鎖が含まれないことから、高分子化合物は、以下のような構造を有することが好ましい。まず、高分子化合物においては、式(2)で表される構成単位の両側に、式(3)で表される構成単位が直接結合していることが好ましい。すなわち、高分子化合物において、式(2)で表される構成単位は、式(B)で表される構成連鎖を形成していると好適である。なお、式(B)中の符号や各種の符号が付された基は、全て上述した同一の符号及び同じ符号が付された基と同義である。式中に複数存在する同一の符号及び同じ符号が付された基は、それぞれ同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000074
また、高分子化合物においては、式(1)で表される構成単位の両側に、式(4)及び(5)で表される構成単位の少なくとも一方の構成単位が直接結合していることが好ましい。すなわち、式(1)で表される構成単位は、式(C)、(D)又は(E)で表される構成連鎖を形成していると好適である。なお、式(C)、(D)、(E)中の符号や各種の符号が付された基は、全て上述した同一の符号及び同じ符号が付された基と同義である。式中に複数存在する同一の符号及び同じ符号が付された基は、それぞれ同一でも異なっていてもよい。また、式(D)で表される構成連鎖には、下記の式が左右反転した構造も含まれる。
Figure JPOXMLDOC01-appb-C000075
高分子化合物において、式(1)で表される構成単位は、式(C)、(D)及び(E)で表される構成連鎖のうち、式(C)で表される構成連鎖を有していることが好ましい。式(1)で表される構成単位が、式(C)で表される構成連鎖を形成していることで、優れた輝度安定性が得られ易くなる。
また、高分子化合物においては、式(4)で表される構成単位の両側に、式(1)及び(3)で表される構成単位のうちの少なくとも一方の構成単位が結合していることが好ましい。すなわち、式(1)で表される構成単位は、式(F)、(G)又は(H)で表される構成連鎖を形成していると好適である。なお、式(F)、(G)、(H)中の符号や各種の符号が付された基は、全て上述した同一の符号及び同じ符号が付された基と同義である。式中に複数存在する同一の符号及び同じ符号が付された基は、それぞれ同一でも異なっていてもよい。また、式(G)で表される構成連鎖には、下記の式が左右反転した構造も含まれる。
Figure JPOXMLDOC01-appb-C000076
高分子化合物において、式(4)で表される構成単位は、式(F)、(G)及び(H)で表される構成連鎖のうち、式(H)で表される構成連鎖を有していることが好ましい。式(4)で表される構成単位が、式(H)で表される構成連鎖を形成していることで、優れた輝度安定性が得られ易くなる。
さらに、高分子化合物においては、式(5)で表される構成単位の両側に、式(1)及び(3)で表される構成単位のうちの少なくとも一方の構成単位が結合していることが好ましい。すなわち、式(5)で表される構成単位は、式(I)、(J)又は(K)で表される構成連鎖を形成していると好適である。なお、式(I)、(J)、(K)中の符号や各種の符号が付された基は、全て上述した同一の符号及び同じ符号が付された基と同義である。式中に複数存在する同一の符号及び同じ符号が付された基は、それぞれ同一でも異なっていてもよい。また、式(J)で表される構成連鎖には、下記の式が左右反転した構造も含まれる。
Figure JPOXMLDOC01-appb-C000077
高分子化合物において、式(5)で表される構成単位は、式(I)、(J)及び(K)で表される構成連鎖のうち、式(K)で表される構成連鎖を有していることが好ましい。式(5)で表される構成単位が、式(K)で表される構成連鎖を形成していることで、優れた発光効率が得られ易くなる。
また、高分子化合物は、化合物自体やこれを用いて形成した発光素子の輝度安定性が更に向上し、且つ、発光素子の良好な駆動電圧が得られるので、式(3)で表される構成単位同士が直接結合した構成連鎖を含まないことが好ましく、式(1)で表される構成単位同士が直接結合した構成連鎖を含まないことが好ましく、また、式(1)で表される構成単位と式(3)で表される構成単位とが直接結合した構成連鎖を含まないことが好ましい。
高分子化合物の末端構造は限定されないが、末端基が重合活性基であると、高分子化合物を発光素子の作製に用いた場合に得られる発光素子の発光効率や寿命が低下するおそれがあるので、末端基は、重合活性基ではない安定な基が好ましい。この末端基は、高分子の主鎖と共役結合しているものが好ましく、例えば、炭素-炭素結合を介してアリール基又は1価の芳香族複素環基と結合しているものが挙げられる。このアリール基や1価の芳香族複素環基としては、置換又は無置換のフェニル基が好ましく、アルキル基、又はアリール基で置換されたフェニル基、或いは無置換のフェニル基がより好ましい。
本実施形態の高分子化合物は、高分子化合物の全質量中の、式(1)で表される構成単位、式(2)で表される構成単位、式(3)で表される構成単位、式(4)で表される構成単位、及び式(5)で表される構成単位の合計の質量比率が、高分子化合物全体を1としたとき、0.9以上であると好ましい。ただし、上述のように、高分子化合物が、燐光発光性化合物から誘導される構成単位を更に有している場合は、式(1)~(5)で表される構成単位に、燐光発光性化合物から誘導される構成単位を加えた合計の質量比率が、高分子化合物全体を1としたとき、0.9以上であることが好ましい。このような条件を満たすことによって、高い発光効率と優れた輝度安定性が得られ易くなる。
また、高分子化合物の分子量は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と言う)によるポリスチレン換算の数平均分子量(Mn)が、1×10~1×10のものであると好ましく、5×10~1×10のものであるとより好ましく、5×10~5×10のものであると更に好ましい。また、高分子化合物のGPCによるポリスチレン換算の重量平均分子量(Mw)は、1×10~1×10であると好ましく、良好な成膜性や発光効率が得られるので、1×10~5×10であるとより好ましく、1×10~1×10であると更に好ましく、1×10~5×10であると一層好ましい。
さらに、発光素子等を作製するためのプロセスにおける耐久性や、発光素子の駆動中の発熱に対する安定性や耐熱性が良好になるので、高分子化合物のガラス転移温度は、70℃以上が好ましく、80℃以上がより好ましい。また、その上限は、200℃が好ましい。
本実施形態の高分子化合物の形態は、例えば、線状ポリマー、分岐ポリマー、ハイパーブランチポリマー、環状ポリマー、櫛形ポリマー、星型ポリマー、網目ポリマー等である。また、高分子化合物は、ホモポリマー、交互コポリマー、周期コポリマー、ランダムコポリマー、ブロックコポリマー、グラフトコポリマー等の任意の組成及び規則性を有するポリマーであってもよい。
上述したような構造を有する本実施形態の高分子化合物は、発光素子の材料(例えば、発光材料、電荷輸送材料)として有用である。この高分子化合物を用いた発光素子は、高発光効率で駆動できる発光素子である。したがって、この発光素子は、液晶ディスプレイのバックライト、照明用としての曲面状や平面状の光源、セグメントタイプの表示素子、ドットマトリックスのフラットパネルディスプレイ等の表示装置に有用である。さらに、本実施形態の高分子化合物は、レーザー用色素、有機太陽電池用材料、有機トランジスタ用の有機半導体、導電性薄膜、有機半導体薄膜等の伝導性薄膜用材料、蛍光や燐光を発する発光性薄膜用材料としても有用である。
[高分子化合物の製造方法]
 本実施形態の高分子化合物は、高分子化合物を構成する式(1)~(5)で表される構成単位やその他の構成単位を形成するための単量体(原料単量体)を、上述したような高分子化合物の構造が得られるように反応させることによって製造することができる。ここで、原料単量体としては、各構成単位における高分子鎖に結合している2つの結合手が、重合反応により結合を形成することが可能な脱離基(重合活性基)に置き換わった構造を有するものを用いることができる。高分子化合物に燐光発光性化合物から誘導される構成単位を導入する場合、その原料単量体としては、上述したような燐光発光性化合物の配位子部分に、直接、又は、アリーレン基や2価の芳香族複素環基を介して、重合活性基を導入した化合物を適用することができる。重合は、例えば、公知のクロスカップリング等の重合方法を適用して単量体を共重合させることにより行うことができる。
上述したような式(A)で表される構成連鎖を含まず、しかも式(B)~(K)で表されるような好適な構成連鎖を有する高分子化合物を製造するには、予め所望の構成連鎖に対応する構造の原料単量体(複合原料単量体)を合成しておき、これを用いて共重合を行うことが好ましい。複合原料単量体は、所望とする構成連鎖に含まれる構成単位を形成するための単量体同士を、クロスカップリングさせる方法等によって合成することができる。
高分子化合物の製造においては、原料単量体(複合原料単量体)として、式(11)で表される化合物を用いることが好ましい。かかる化合物は、式(1)で表される構成単位の原料単量体と、式(4)で表される構成単位の原料単量体から形成される。式(11)で表される化合物を用いることにより、得られる高分子化合物は、式(1)で表される構成単位の両側に式(4)で表される構成単位が結合した、式(6)で表される構造(構成連鎖)を有するものとなる。その結果、得られる高分子化合物は、式(A)で表される構成連鎖を含まず、高い発光効率及び優れた輝度安定性を発揮し易いものとなる。
より好適には、高分子化合物は、式(11)で表される化合物、式(14)で表される化合物、及び式(15)で表される化合物を含む単量体混合物を重合させて製造することができる。式(14)で表される化合物は、式(2)で表される構成単位の原料単量体であり、式(15)で表される化合物は、式(3)で表される構成単位の原料単量体である。重合は、単量体混合物を必要に応じて溶媒に溶解させ、アルカリ、触媒又は配位子を用いて、公知のクロスカップリング反応等の重合(縮合重合)反応を生じさせることによって行うことができる。
このような高分子化合物の製造方法において、単量体混合物は、その全モル数を100としたとき、式(11)で表される化合物、式(14)で表される化合物及び式(15)で表される化合物の合計モル数が、60~100となるように配合することが好ましく、70~100となるように配合することがより好ましい。
式(11)、(14)及び(15)中の符号や各種の符号が付された基は、それぞれ、上述した式(1)、(2)及び(3)中の同じ符号や同じ符号が付された基と同様であり、それらの好適例としても同様のものが適用できる。
高分子化合物の製造においては、式(11)、(14)及び(15)で表される化合物に加えて、式(16)で表される化合物及び式(17)で表される化合物のうちの少なくとも一方の化合物を更に用いることができる。式(16)で表される化合物は、式(4)で表される構成単位の原料単量体であり、式(17)で表される化合物は、式(5)で表される構成単位の原料単量体である。これらの化合物を用いることによって、高分子化合物における式(4)で表される構成単位の割合を増加させたり、式(5)で表される構成単位を導入したりすることができる。
式(16)及び式(17)中の基は、それぞれ、上述した式(4)及び(5)中の同じ符号が付された基と同様であり、それらの好適例としても同様のものが適用できる。
式(11)で表される化合物としては、k=1である化合物を用いることが好ましい。これにより、当該化合物の合成が容易になるほか、この化合物を用いて重合を行う際の重合の制御が容易となる傾向にある。
なかでも、式(11)で表される化合物としては、式(12)で表される化合物及び式(13)で表される化合物のうちの少なくとも一方が好ましい。なお、これらの式中の符号や各種の符号が付された基は、いずれも上述した同一の符号や同じ符号が付された基と同義であり、それらの好適例としても、上記と同様のものが適用できる。式中に複数存在する同一の符号及び同じ符号が付された基は、それぞれ同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000078
また、式(12)で表される化合物としては、式(12-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000079
式(12-1)中、R12aはメチル基を表し、R12bは水素原子、アルキル基、非置換又はアルキル基若しくはアリール基で置換されたフェニル基を表し、R12cは水素原子又はメチル基を表し、R12dはアルキル基、アルキル基又はアリール基で置換されたアリール基を表し、R12eはアルキル基又はアリール基で置換されたアリール基を表す。2つのR12cは、互いに同一であっても異なっていてもよく、2つのR12dは、互いに同一であっても異なっていてもよく、2つのR12eは、互いに同一であっても異なっていてもよい。X11aは、いずれも上記と同義であり、2つのX11aは、互いに同一であっても異なってもよい。
式(12-1)において、R12dは、炭素数1~8のアルキル基、又は、1つ以上3つ以下の炭素数1~12のアルキル基で置換されたアリール基であって且つそのアルキル基の少なくとも1つ以上が炭素数6~12のアルキル基であるアリール基であり、R12eは、1つ以上3つ以下の炭素数1~12のアルキル基で置換されたアリール基であって且つそのアルキル基の少なくとも1つ以上が炭素数6~12のアルキル基であるアリール基であると好ましい。特に、R12d及びR12eは、式(12-2)で表される基、すなわち、1つ以上3つ以下の炭素数1~12のアルキル基で置換されたアリール基であって且つそのアルキル基の少なくとも1つ以上が炭素数6~12のアルキル基であるアリール基であると好ましい。
Figure JPOXMLDOC01-appb-C000080
[式(12-2)中、R12f、R12g及びR12hは、それぞれ独立に、水素原子、又は炭素数1~12のアルキル基を表す。但し、R12f、R12g及びR12hのうちの少なくとも一つは、炭素数6~12のアルキル基である。式(12-1)において、複数存在する式(12-2)で表される基は、それぞれ同一であっても異なっていてもよい。]
上述したような原料単量体がそれぞれ両末端に有している重合活性基であるX11a、X14a、X15a、X16a及びX17aは、得られる高分子化合物を用いた発光素子による発光効率が更に向上するので、次のような組み合わせであることが好ましい。すなわち、X11a、X14a、X16a、X17aが、置換基(a)群から選ばれる基であり、X15aが置換基(b)群から選ばれる基であること、或いは、X11a、X14a、X16a、X17aが置換基(b)群から選ばれる基であり、X15aが置換基(a)群から選ばれる基であることが好ましい。これらのうち、前者のX11a、X14a、X16a、X17aが置換基(a)群から選ばれる基であり、X15aが置換基(b)群から選ばれる基である組み合わせがより好ましい。
ここで、置換基(a)群中の-O-S(=O)20で表される基、置換基(b)群中の-B(OR21で表される基、及び-Sn(R22で表される基におけるR20、R21及びR22の一例であるアルキル基としては、炭素数が1~20であるものが好ましく、1~15であるものがより好ましく、1~10であるものが更に好ましい。また、R20の一例であるアルキル基、アルコキシ基、ニトロ基、フッ素原子若しくはシアノ基で置換されていてもよいアリール基としては、フェニル基、4-トリル基、4-メトキシフェニル基、4-ニトロフェニル基、3-ニトロフェニル基、2-ニトロフェニル基、4-トリフルオロメチルフェニル基が好ましい。R20、R21及びR22がこれらの基であると、単量体を重合させる際の反応性が良好となり、高分子化合物の合成が容易となる傾向にある。
置換基(a)群中の-O-S(=O)20で表される基としては、例えば、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、フェニルスルホニルオキシ基、4-メチルフェニルスルホニルオキシ基、4-トリフルオロメチルフェニルスルホニルオキシ基等が挙げられる。
置換基(b)群中の-B(OR21で表される基としては、以下の式で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000081
また、置換基(b)群中の-BFで表される基としては、-BF で表される基が挙げられる。さらに、置換基(b)群中の-Sn(R22で表される基としては、トリメチルスタナニル基、トリエチルスタナニル基、トリブチルスタナニル基等が挙げられる。
式(11)、(14)、(15)、(16)及び(17)で表される化合物は、これらを原料単量体として用い、重合させて高分子化合物を形成する場合、純度の高い高分子化合物を得るために、重合前の各化合物も高純度化しておくことが好ましい。高純度の高分子化合物を用いて発光素子を形成することで、発光効率や輝度安定性を高めることが可能となる。
式(11)、(14)、(15)、(16)及び(17)で表される化合物の高純度化は、例えば、蒸留、昇華精製、再結晶等の方法で精製することにより行うことができる。各化合物は、高純度であるほど望ましい。例えば、UV検出器(検出波長254nm)を用いた高速液体クロマトグラフィー(HPLC)による分析において、各化合物のピークが示す面積百分率値が98.5%以上であることが好ましく、99.0%以上であることがより好ましく、99.5%以上であることが更に好ましい。
式(11)、(14)、(15)、(16)及び(17)で表される化合物を用いて生じさせる重合反応として、例えば、アリールカップリング反応による方法としては、Suzukiカップリング反応により重合する方法(ケミカル レビュー(Chem.Rev.),第95巻,2457-2483頁(1995年))、Grignard反応により重合する方法(Bull.Chem.Soc.Jpn.,第51巻、2091頁(1978年))、Ni(0)触媒により重合する方法(プログレス イン ポリマー サイエンス(Progress in Polymer Science),第17巻,1153~1205頁,1992年)、Stilleカップリング反応を用いる方法(ヨーロピアン ポリマー ジャーナル(European Polymer Journal),第41巻,2923-2933頁(2005年))等が挙げられる。
これらのなかでも、重合方法としては、Suzukiカップリング反応により重合する方法、Ni(0)触媒により重合する方法が、原料単量体の合成がし易く、かつ、重合反応時の操作が簡便であるので、好ましい。また、高分子化合物の構造制御のし易さを考慮すると、Suzukiカップリング反応、Grignard反応、Stilleカップリング反応等のクロスカップリング反応により重合する方法がより好ましく、Suzukiカップリング反応により重合する反応が特に好ましい。
式(11)、(14)、(15)、(16)及び(17)で表される化合物が有している重合活性基であるX11a、X14a、X15a、X16a及びX17aで表される基としては、重合反応の種類に応じて適切な基を選択すればよい。例えば、Suzukiカップリング反応により重合する場合、これらの基としては、臭素原子、ヨウ素原子、塩素原子、-B(OR21)で表される基が好ましく、臭素原子又は-B(OR21)で表される基がより好ましい。重合活性基としてこれらの基を有する場合、式(11)、(14)、(15)、(16)及び(17)で表される化合物を合成することが簡便となるほか、重合の際の取り扱い性も良好となる。
なお、式(11)で表される化合物の合成においては、その合成方法にもよるが、式(11-2)で表される化合物が生じる場合がある。その場合は、X11aで表される基が、上述した置換基(b)群から選ばれる基となるように式(11)で表される化合物を合成することによって、目的とする化合物(式(11)で表される化合物)のみを取り出す精製操作が簡便となる傾向にある。そのような式(11)で表される化合物の合成方法としては、例えば、後述する実施例に示したような、トリアルキルシリル基を有する中間体を経由する方法や、ジャーナル オブ アメリカン ケミカル ソサイエティー(Journal of American Chemical Society)、第124巻、390-391頁(2002年)に記載されたイリジウム錯体触媒を用いた直接ボロン酸エステル化反応用いる方法が適用できる。
Figure JPOXMLDOC01-appb-C000082
[式中、R1a、R1b、R1c、Ar4a、k、X11aはいずれも上記と同義である。]
重合の方法としては、上述した置換基(a)群や置換基(b)群を重合活性基として有する式(11)、(14)、(15)、(16)及び(17)で表される化合物(原料単量体)等を、必要に応じて、適切な触媒や適切な塩基とともに反応させる方法が挙げられる。Suzukiカップリング反応、Grignard反応、Stilleカップリング反応等のクロスカップリング反応により重合する方法を選択する場合、所望の分子量を有する高分子化合物を得るためには、化合物全体における、置換基(a)群に含まれる基のモル数と、置換基(b)群に含まれる基のモル数との比率を調整すればよい。置換基(a)群に含まれる基の合計モル数に対する置換基(b)群に含まれる基の合計モル数の比率を、0.90~1.10とすることが好ましく、0.95~1.05とすることがより好ましく、0.98~1.02とすることが更に好ましい。
触媒としては、Suzukiカップリング反応による重合の場合、例えば、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート、ジクロロビストリフェニルホスフィンパラジウム等のパラジウム錯体等の遷移金属錯体や、これらの遷移金属錯体に、必要に応じて、トリフェニルホスフィン、トリ(t-ブチル)ホスフィン、トリス(o-メトキシフェニル)ホスフィン、トリシクロヘキシルホスフィン等の配位子が配位した触媒が挙げられる。
これらの触媒は、予め合成したものを用いてもよいし、反応系中で調製したものをそのまま用いてもよい。また、これらの触媒は、一種単独で用いても二種以上を併用してもよい。
触媒を用いる場合、その使用量は、触媒としての有効量であればよい。例えば、用いる単量体のモル数の合計に対する触媒の量は、遷移金属換算で、0.00001~3モル当量であると好ましく、0.00005~0.5モル当量であるとより好ましく、0.0001~0.2モル当量であると更に好ましい。
Suzukiカップリング反応による重合では、触媒として塩基を用いることが好ましい。塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム等の無機塩基、フッ化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等の有機塩基が挙げられる。また、これらの塩基は、水溶液として用いてもよい。
塩基を用いる場合、その量は、用いる原料単量体のモル数の合計に対して設定することが好ましく、0.5~20モル当量であると好ましく、1~10モル当量であるとより好ましい。
重合反応は、溶媒の非存在下で行っても、溶媒の存在下で行ってもよいが、有機溶媒の存在下で行うことがより好ましい。有機溶媒としては、トルエン、キシレン、メシチレン、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等が挙げられる。副反応を十分に抑制するために、溶媒には、脱酸素処理を行うことが望ましい。有機溶媒は、一種単独で用いても二種以上を併用してもよい。
有機溶媒の使用量は、溶液中の原料単量体の合計の濃度が、0.1~90重量%となる量であると好ましく、1~50重量%となる量であるとより好ましく、2~30重量%となる量であると更に好ましい。
重合反応における反応温度は、好ましくは0~200℃であり、より好ましくは20~150℃であり、更に好ましくは20~120℃である。また、反応時間は、0.5時間以上であると好ましく、2~500時間であるとより好ましい。
重合反応は、置換基(b)群に含まれる基として、-MgY1で表される基を適用する場合は、脱水条件下で行うことが好ましい。一方、重合反応がSuzukiカップリング反応である場合、使用する塩基を水溶液として用いてもよく、また、溶媒として、有機溶媒に水を加えて用いてもよい。
重合反応においては、得られる高分子化合物の末端に重合活性基(X11a、X14a、X15a、X16a、X17a等)が残存するのを避けるために、末端封止剤として、式(19)で示される化合物を更に用いてもよい。かかる化合物を加えて反応を行うことにより、高分子化合物の末端がアリール基又は1価の芳香族複素環基で置換された高分子化合物を得ることができる。式(19)で表される連鎖停止剤は、高分子化合物を製造する際の重合において、一種のみ用いても、二種以上用いてもよい。
Figure JPOXMLDOC01-appb-C000083
[式(19)中、Ar19aは、置換基を有していてもよいアリール基又は置換基を有していてもよい1価の芳香族複素環基を表す。X19aは、上述した置換基(a)群、又は置換基(b)群から選ばれる基を表す。]
式(19)中、Ar19aで表されるアリール基、1価の芳香族複素環基としては、アリール基が好ましく、非置換又はアルキル基、アリール基、1価の芳香族複素環基若しくは置換アミノ基で置換されたアリール基がより好ましく、非置換又はアルキル基若しくはアリール基で置換されたアリール基が更に好ましく、非置換又はアルキル基若しくはアリール基で置換されたフェニル基が特に好ましい。
重合反応の後処理は、公知の方法で行うことができる。例えば、メタノール等の低級アルコールに重合反応で得られた反応液を加えて析出させた沈殿を濾過、乾燥させる方法により行うことができる。
このようにして得られた高分子化合物の純度が低い場合には、再結晶、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の方法にて精製することができる。特に、高分子化合物を発光素子に用いる場合、その純度が発光特性等の素子の性能に影響を与えるため、縮合重合後、再沈精製、クロマトグラフィーによる分別等の純化処理をすることが好ましい。
本実施形態の高分子化合物は、所定の構成連鎖を有する制御された構造を有するものである。このような高分子化合物は、適用する重合反応に適した置換基を有する原料単量体を、適切な割合で用いて重合反応を行うことにより合成することが可能である。
以下、好適な高分子化合物を得るための、好適な原料単量体、その原料単量体の有する重合反応に関与する置換基の種類や、それらの原料単量体の重合反応に用いる割合について、好ましい例を説明する。
すなわち、好適な高分子化合物としては、下記表1に示す高分子化合物(EP-1)及び高分子化合物(EP-2)が挙げられる。これらの高分子化合物は、表1に示す種類及びモル数の割合で各種原料単量体を組み合わせた単量体混合物を、重合させることによって得られるものである。
表1中、原料単量体の種類の欄は、原料単量体として、上述した式(11)、(14)、(15)、(16)及び(17)で表される化合物のいずれを用いたかを示している。なお、(Z)は、式(11)、(14)、(15)、(16)及び(17)で表される化合物のいずれとも異なる化合物であることを示している。また、重合活性基の欄の(a)、(b)とは、各原料単量体が、重合活性基(X11a、X14a、X15a、X16a又はX17aで表される基)として、上述した置換基(a)群又は置換基(b)群のいずれの基を有しているかを示している。
Figure JPOXMLDOC01-appb-T000084
上述した高分子化合物のうち、その合成時の重合反応の制御がより容易であることから、高分子化合物(EP-2)がより好ましい。この高分子化合物EP-2としては、特に、下記表2に示す高分子化合物(EP-21)及び(EP-22)が、合成が容易であり、しかも発光効率及び輝度安定性が優れることから好ましい。表2中の表記は、いずれも表1と同様の意味である。すなわち、(12)は式(12)で表される化合物、(13)は式(13)で表される化合物、(Z)は、式(12)、(13)、(14)、(15)、(16)及び(17)で表される化合物のいずれとも異なる化合物であることを示している。
Figure JPOXMLDOC01-appb-T000085
 上述した高分子化合物のうち、得られる高分子化合物を用いた発光素子の輝度安定性がより一層優れる観点から、高分子化合物(EP-21)が好ましい。この高分子化合物EP-21としては、特に、下記表3に示す高分子化合物(EP-23)が、更により一層輝度安定性を高める観点から好ましい。表3中の表記は、いずれも表1と同様の意味である。すなわち、(12-1)は式(12-1)で表される化合物であることを示している。
Figure JPOXMLDOC01-appb-T000086
[組成物]
 好適な実施形態の組成物は、上述した高分子化合物と、正孔輸送材料、電子輸送材料及び発光材料からなる群から選ばれる少なくとも1種の材料とを含有する。このような組成物は、発光材料、正孔輸送材料又は電子輸送材料として用いることができる。なお、本実施形態の組成物において、高分子化合物、正孔輸送材料、電子輸送材料及び発光材料は、それぞれ、一種単独で用いても二種以上を併用してもよい。
組成物において、「正孔輸送材料、電子輸送材料及び発光材料からなる群から選ばれる少なくとも1種の材料」と高分子化合物との比率は、組成物を発光材料に用いる場合、次の通りであると好適である。すなわち、高分子化合物100重量部に対する、「正孔輸送材料、電子輸送材料及び発光材料からなる群から選ばれる少なくとも1種の材料」の割合は、材料ごとに、0.01~400重量部であると好ましく、0.05~150重量部であるとより好ましい。
正孔輸送材料としては、発光素子の正孔輸送材料として公知のものを適用できる。例えば、ポリビニルカルバゾール及びその誘導体、芳香族アミン-フルオレン共重合体及びその誘導体、芳香族アミン-フェニレン共重合体及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリアリールアミン及びその誘導体、ポリピロール及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体が挙げられる。これらの誘導体は、アリーレン基や2価の芳香族複素環基を共重合成分として有していてもよい。
電子輸送材料としては、発光素子の電子輸送材料として公知のものを適用できる。例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアンスラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、トリアリールトリアジン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体が挙げられる。これらの誘導体は、アリーレン基や2価の芳香族複素環基を共重合成分として有していてもよい。
発光材料としては、優れた発光効率が得られるので、上述したような燐光発光性化合物を含有する材料が好ましい。また、その他にも、発光材料としては、蛍光発光性化合物を用いることができる。蛍光発光性化合物には、低分子蛍光材料、高分子蛍光材料がある。低分子蛍光材料は、通常、400~700nmの波長範囲に蛍光発光の極大ピークを有する材料である。低分子蛍光材料の分子量は、3000未満であると好ましく、100~2000であるとより好ましく、100~1000であると更に好ましい。
低分子蛍光材料としては、発光素子の発光材料として公知のものが適用できる。例えば、ナフタレン誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、キナクリドン誘導体、キサンテン系色素、クマリン系色素、シアニン系色素、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、オリゴチオフェン誘導体等の色素系材料;アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体等の、中心金属に、Al、Zn、Be等又はTb、Eu、Dy等の希土類金属を有し、配位子にオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等を有する金属錯体等の金属錯体系材料が挙げられる。
高分子蛍光材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体等の、上記の低分子蛍光材料として例示した色素体や金属錯体系発光材料を高分子化した材料が挙げられる。
組成物が、燐光発光性化合物を含有する組成物である場合、燐光発光性化合物の割合は、高分子化合物100重量部に対して、0.01~80重量部であると好ましく、0.1~50重量部であるとより好ましい。
[溶液]
 好適な実施形態の溶液は、高分子化合物と溶媒とを含有するものである。溶液としては、例えば、上記の組成物が溶媒を含有してなるものも含まれる。このような溶液は、印刷法等に適用するのに有利であり、一般に、インクやインク組成物等と呼ぶことがある。本実施形態の溶液は、必要に応じて、正孔輸送材料、電子輸送材料、発光材料、安定剤、増粘剤(粘度を高めるための高分子量の化合物)、粘度を低くするための低分子量の化合物、界面活性剤、酸化防止剤等、上述した実施形態の高分子化合物以外の高分子量の化合物等を含んでいてもよい。なお、溶液に含まれる各成分は、それぞれ、一種単独で含まれていても、二種以上を組み合わせて含まれていてもよい。
溶液における高分子化合物の割合は、溶液全体を100重量部としたとき、0.1~99重量部であると好ましく、0.5~40重量部であるとより好ましく、0.5~20重量部であると更に好ましい。
溶液の粘度は、適用する印刷法の種類等に応じて調整すればよい。例えば、インクジェットプリント法等の溶液が吐出装置を経由する方法に適用する場合には、吐出時の目づまりや飛行曲がりを防止するために、25℃において、1~20mPa・sの範囲であることが好ましい。粘度は、溶媒の含有量を制御する等によって調整することができる。
溶液を構成する溶媒は、溶質となる固形分を溶解又は均一に分散できるものが好ましい。溶媒としては、クロロホルム、塩化メチレン、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール等のエーテル系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、ベンゾフェノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2-ヘキサンジオール等の多価アルコール及びその誘導体、メタノール、エタノール、プロパノール、イソプロパノール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。
溶媒は、成膜性や素子特性が良好になるので、2種以上を併用することが好ましい。なかでも、2~3種を併用することがより好ましく、2種を併用することが特に好ましい。
溶液に2種の溶媒が含まれる場合、そのうちの1種の溶媒は、25℃において固体状態のものであってもよい。良好な成膜性が得られるので、少なくとも1種の溶媒は、沸点が180℃以上であることが好ましく、200℃以上であることがより好ましい。また、好適な粘度が得られるので、2種の溶媒のいずれも、60℃において1重量%以上の濃度で上記実施形態の高分子化合物を溶解できるものであることが好ましい。また、2種の溶媒のうちの少なくとも1種の溶媒は、25℃において1重量%以上の濃度で高分子化合物が溶解できるものであることが好ましい。
溶液中に2種以上の溶媒が含まれる場合、成膜に適した粘度が得られるので、溶媒中の沸点が最も高いものの割合が、全溶媒の重量の40~90重量%であることが好ましく、50~90重量%であることがより好ましく、65~85重量%であることが更に好ましい。
また、溶液が増粘剤を含む場合、増粘剤は、高分子化合物と同じ溶媒に可溶であり、発光や電荷輸送を阻害しないものであればよい。例えば、高分子量のポリスチレン、高分子量のポリメチルメタクリレート等を用いることができる。増粘剤として用いる化合物は、ポリスチレン換算の重量平均分子量が5×10以上であるものが好ましく、1×10以上であるものがより好ましい。
さらに、酸化防止剤は、溶液の保存安定性を向上させるためのものである。酸化防止剤は、高分子化合物と同じ溶媒に可溶であり、発光や電荷輸送を阻害しないもの、又は、発光素子の作製時に除去が可能なものであればよい。例えば、フェノール系酸化防止剤、リン系酸化防止剤等が挙げられる。
溶液には、更に、水、金属及びその塩、ケイ素、リン、フッ素、塩素、臭素等を重量基準で1~1000ppmの範囲で含んでいてもよい。金属としては、リチウム、ナトリウム、カルシウム、カリウム、鉄、銅、ニッケル、アルミニウム、亜鉛、クロム、マンガン、コバルト、白金、イリジウム等が挙げられる。但し、上記溶液を発光素子の作製に用いる場合においては、上記金属及びその塩、ケイ素、リン、フッ素、塩素、臭素等は、重量基準で100ppm未満であることが好ましく、10ppm未満であることがより好ましく、用いる溶媒に関して、蒸留精製等を実施することで、それらの含有量を予め下げておくことで更なる低減を図ることが更に好ましい。
[薄膜]
 好適な実施形態の薄膜は、高分子化合物を含有するものである。例えば、発光性薄膜、導電性薄膜、有機半導体薄膜等が挙げられる。薄膜は、その用途に応じて、上述した組成物を構成する各成分を組み合わせて含んでいてもよい。
薄膜は、高分子化合物若しくは組成物をそのまま、又は、上述した溶液の状態で用いて、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、キャピラリーコート法、ノズルコート法等を行うことにより作製することができる。
例えば、上述した溶液を用いて薄膜を作製する場合は、溶液に含まれる高分子化合物のガラス転移温度にもよるが、100℃以上の温度(例えば、130℃~200℃)でベークすることが好ましい。
薄膜は、発光性薄膜である場合、発光素子の輝度や発光電圧が良好になるので、発光量子収率が30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることが更に好ましく、60%以上であることが特に好ましい。
薄膜は、導電性薄膜である場合、表面抵抗率が1kΩ/sq.以下であることが好ましく、100Ω/sq.以下であることがより好ましく、10Ω/sq.以下であることが更に好ましい。導電性薄膜の場合、ルイス酸やイオン性化合物等をドープすることによって、電気伝導度を高めることができる。なお、「Ω/sq.」は表面抵抗率を表す単位である。
さらに、薄膜は、有機半導体薄膜である場合、当該薄膜が有している電子移動度及び正孔移動度のうちの大きい方の値が、10-5cm/V/秒以上であることが好ましく、10-3cm/V/秒以上であることがより好ましく、10-1cm/V/秒以上であることが更に好ましい。例えば、SiO等の絶縁膜とゲート電極とを形成したSi基板上に、この有機半導体薄膜を形成し、さらにAu等によりソース電極及びドレイン電極を形成することによって、有機トランジスタを作製することができる。
[発光素子]
 好適な実施形態の発光素子は、陽極及び陰極からなる電極と、これらの電極間に設けられた上記実施形態の高分子化合物又は組成物を含有する有機層とを備えている。発光素子は、有機層を一層のみ有するものであってもよく、二層以上有するものであってもよい。有機層を二層以上備える場合には、少なくとも一層が上述した実施形態の高分子化合物又は組成物を含有していればよい。
上記実施形態の高分子化合物又は組成物を含有する有機層は、発光素子において、発光層、正孔輸送層や電子輸送層として機能することができる。そのため、本実施形態の発光素子は、これらの層のうちの少なくとも1つが、上記実施形態の高分子化合物又は組成物を含有する有機層により構成されることが好ましい。なかでも、発光素子は、発光層が上記実施形態の高分子化合物又は組成物を含有する有機層からなることが好ましい。発光素子は、陰極、陽極、及び発光層として機能する有機層(以下、単に「発光層」という。)以外にも、それらの層の間等に、その他の層を有していてもよい。なお、各層は、一層からなるものであっても、二層以上からなるものであってもよい。また、各層を構成している材料や化合物は、一種単独であっても二種以上が併用されていてもよい。
例えば、陽極と発光層との間に設けられる層としては、正孔注入層、正孔輸送層、電子ブロック層等が挙げられる。このような層が陽極と発光層との間に一層のみ設けられた場合には、当該層は正孔注入層である。陽極と発光層との間に二層以上設けられた場合には、陽極に接する層が正孔注入層であり、それ以外の層が正孔輸送層である。
正孔注入層は、陰極からの正孔注入効率を改善する機能を有する層である。正孔輸送層は、正孔注入層又は陽極により近い層からの正孔注入を改善する機能を有する層である。一方、これらの層が電子の輸送を堰き止める機能を有する場合、それらの層は、電子ブロック層である。対象となる層が、電子の輸送を堰き止める機能を有するかどうかは、電子電流のみを流す素子を作製し、電流値の減少が生じることを測定することによって確認することができる。
陰極と発光層との間に設けられた層としては、電子注入層、電子輸送層、正孔ブロック層等が挙げられる。このような層が陰極と発光層との間に一層のみ設けられた場合には、当該層は電子注入層である。陰極と発光層との間に二層以上設けられた場合には、陰極に接している層が電子注入層であり、それ以外の層が電子輸送層である。
電子注入層は、陰極からの電子注入効率を改善する機能を有する層である。電子輸送層は、電子注入層又は陰極により近い層からの電子注入を改善する機能を有する層である。これらの層が正孔の輸送を堰き止める機能を有する場合には、これらの層を正孔ブロック層と称することがある。正孔の輸送を堰き止める機能を有するかどうかは、正孔(ホール)電流のみを流す素子を作製し、その電流値の減少が生じることを測定することによって確認することができる。
上述した各層を備える構成を有する発光素子の構造としては、例えば、以下のa)~d)の構造が挙げられる。下記の構造中「/」は各層が隣接して積層されていることを示す(以下同様)。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/正孔輸送層/発光層/電子輸送層/陰極
なお、電極(陰極、陽極)に隣接して設けた正孔輸送層、電子輸送層のうち、電極からの電荷(正孔、電子)の注入効率を改善する機能を有し、素子の駆動電圧を低下させる効果を有するものは、電荷注入層(正孔注入層、電子注入層)と呼ばれる場合もある。
電極(陰極、陽極)との密着性の向上や、電極からの電荷注入の改善のために、電極に隣接して、電荷注入層や絶縁層を更に設けてもよい。また、電荷輸送層や発光層の界面には、層間の界面における密着性の向上や構成材料の混合の防止等のために、薄いバッファー層を更に設けてもよい。積層する層の順番や数、及び各層の厚さは、発光効率や素子寿命を勘案して調整することができる。
例えば、電荷注入層を更に設けた発光素子の構造としては、以下のe)~p)の構造が挙げられる。
e)陽極/電荷注入層/発光層/陰極
f)陽極/発光層/電荷注入層/陰極
g)陽極/電荷注入層/発光層/電荷注入層/陰極
h)陽極/電荷注入層/正孔輸送層/発光層/陰極
i)陽極/正孔輸送層/発光層/電荷注入層/陰極
j)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/発光層/電荷輸送層/陰極
l)陽極/発光層/電子輸送層/電荷注入層/陰極
m)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/正孔輸送層/発光層/電荷輸送層/陰極
o)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
p)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
一例として、上記j)の構造を有する発光素子の断面構成を図1に示す。すなわち、図1に示す発光素子10は、基板0上に、陽極1、正孔注入層(電荷注入層)2、正孔輸送層3、発光層4、電子注入層(電荷注入層)6及び陰極7がこの順に積層された構造を有している。
上述したa)~p)のような構造を有する発光素子における各層の構成は、例えば、次の通りである。
(陽極)
 陽極は、通常、透明又は半透明であり、電気伝導度の高い金属酸化物、金属硫化物や金属の薄膜から構成され、それらの中でも透過率が高い材料から構成されることが好ましい。陽極の材料としては、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性無機化合物を用いて作製された膜、NESA等や、金、白金、銀、銅等が用いられる。なかでも、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。陽極の作製には、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等の方法を用いることができる。また、陽極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
陽極の厚さは、光の透過性と電気伝導度とを考慮して選択することができる。例えば、10nm~10μmであると好ましく、20nm~1μmであるとより好ましく、40nm~500nmであると更に好ましい。
(正孔注入層)
 正孔注入層に用いられる材料としては、フェニルアミン系化合物、スターバースト型アミン系化合物、フタロシアニン系化合物、酸化バナジウム、酸化モリブデン、酸化ルテニウム、酸化アルミニウム等の酸化物、アモルファスカーボン、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の導電性高分子等が挙げられる。
正孔注入層が、導電性高分子や上述した実施形態の高分子化合物である場合、その電気伝導度を向上させるために、正孔注入層には、必要に応じて、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオン等のアニオンをドープしてもよい。
(正孔輸送層)
 正孔輸送層に用いられる材料としては、正孔輸送材料として例示したものが挙げられる。なお、正孔輸送層に用いられる材料が低分子化合物である場合には、低分子化合物を高分子バインダーに分散させて用いることが好ましい。上記実施形態の高分子化合物が正孔輸送層に用いられる場合は、高分子化合物が、正孔輸送性基(芳香族アミノ基、チエニル基等)を、高分子化合物の構成単位及び/又は置換基として含むことが好ましい。
なかでも、正孔輸送層に用いられる正孔輸送材料としては、ポリビニルカルバゾール及びその誘導体、芳香族アミン-フルオレン共重合体及びその誘導体、芳香族アミン-フェニレン共重合体及びその誘導体、ポリアリールアミン及びその誘導体のほか、本発明の高分子化合物が好ましい。
正孔輸送層の成膜方法としては、正孔輸送層に用いられる材料が低分子化合物である場合には、高分子バインダーとの混合溶液を用いた成膜が挙げられ、高分子化合物である場合には、この高分子化合物を含む溶液を用いた成膜が挙げられる。
溶液を用いた成膜に用いる溶媒は、正孔輸送層に用いられる材料を溶解させるものであればよい。溶媒としては、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が挙げられる。
溶液を用いた成膜には、溶液を用いたスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。
低分子化合物を組み合わせる高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好適である。この高分子バインダーとしては、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
正孔輸送層の厚さは、駆動電圧と発光効率を考慮して選択することができる。ただし、ピンホールが容易に発生しないような厚さを有することが必要である一方、厚過ぎると、発光素子の駆動電圧が高くなることがある。そこで、正孔輸送層の厚さは、1nm~1μmであると好ましく、2nm~500nmであるとより好ましく、5nm~200nmであると更に好ましい。
(発光層)
 発光層は、蛍光又は燐光を発する有機化合物(低分子化合物、高分子化合物)と、必要に応じてこれを補助するドーパントとから形成される。本実施形態の発光素子における発光層は、上述した実施形態の高分子化合物及び発光材料等を含むものであることが好ましい。なお、発光材料が低分子化合物である場合には、高分子バインダーに分散させて用いることが好ましい。
発光層には、発光効率を向上させたり、発光波長を変化させたりするために、ドーパントを添加することができる。ドーパントとしては、アントラセン誘導体、ペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾン等が挙げられる。
発光層の厚さは、駆動電圧と発光効率を考慮して選択することができ、例えば、2~200nmであると好ましい。
発光層の成膜方法としては、発光材料を含む溶液を基体の上又は上方に塗布する方法、真空蒸着法、転写法等を用いることができる。溶液を用いた成膜を行う場合、溶媒としては、正孔輸送層の溶液による成膜において例示したものと同様の溶媒を適用できる。発光材料を含む溶液を基体の上又は上方に塗布する方法としては、スピンコート法、ディップコート法、インクジェット法、フレキソ印刷法、グラビア印刷法、スリットコート法等の印刷法を用いることができる。発光材料が、昇華性を有する低分子化合物の場合には、真空蒸着法により成膜を行うこともできる。また、レーザーによる転写や熱転写により、所望の位置に発光層を形成する方法も用いることができる。
(電子輸送層)
 電子輸送層に用いられる材料としては、上記実施形態の高分子化合物や、上述した電子輸送材料等が挙げられる。上記実施形態の高分子化合物が電子輸送層に用いられる場合は、高分子化合物が、電子輸送性基(オキサジアゾール基、オキサチアジアゾール基、ピリジル基、ピリミジル基、ピリダジル基、トリアジル基等)を、高分子化合物の構成単位及び/又は置換基として含むことが好ましい。
これらのなかでも、電子輸送層に用いる電子輸送材料としては、上記実施形態の高分子化合物、オキサジアゾール誘導体、ベンゾキノン及びその誘導体、アントラキノン及びその誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、トリアリールトリアジン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体が好ましい。
電子輸送層の成膜方法としては、電子輸送層に用いられる材料が低分子化合物である場合、粉末を用いた真空蒸着法、溶液又は溶融状態での成膜による方法が挙げられる。一方、電子輸送層に用いられる材料が高分子化合物である場合には、溶液又は溶融状態での成膜による方法が挙げられる。溶液又は溶融状態での成膜には、高分子バインダーを併用してもよい。溶液を用いた成膜は、上述したような溶液を用いた正孔輸送層の成膜方法と同様にして行うことができる。
電子輸送層の厚さは、駆動電圧と発光効率を考慮して調整することができる。ただし、ピンホールが容易に発生しないような厚さを有することが必要である一方、厚過ぎると、発光素子の駆動電圧が高くなることがある。そこで、電子輸送層の膜厚は、1nm~1μmであると好ましく、2nm~500nmであるとより好ましく、5nm~200nmであると更に好ましい。
(電子注入層)
 電子注入層の構成は、発光層の種類に応じて選択することができる。例えば、Ca層の単層構造からなる電子注入層、Caを除いた周期表1族と2族の金属であり、かつ仕事関数が1.5~3.0eVの金属及びその金属の酸化物、ハロゲン化物及び炭酸化物から選ばれる1種又は2種以上で形成された層とCa層との積層構造からなる電子注入層等が挙げられる。仕事関数が1.5~3.0eVの、周期表1族の金属又はその酸化物、ハロゲン化物、炭酸化物としては、リチウム、フッ化リチウム、酸化ナトリウム、酸化リチウム、炭酸リチウム等が挙げられる。また、仕事関数が1.5~3.0eVの、Caを除いた周期表2族の金属又はその酸化物、ハロゲン化物、炭酸化物としては、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、フッ化ストロンチウム、フッ化バリウム、酸化ストロンチウム、炭酸マグネシウム等が挙げられる。
電子注入層は、蒸着法、スパッタリング法、印刷法等によって形成することができる。また、電子注入層の厚さは、1nm~1μmが好ましい。
(陰極)
 陰極の材料としては、仕事関数が小さく発光層への電子注入が容易な材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、若しくは上記金属のうち2種以上の合金、又はそれらのうち1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金、或いはグラファイト又はグラファイト層間化合物等が用いられる。合金としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。
陰極を2層以上の積層構造とする場合には、金属、金属酸化物、金属フッ化物、これらの合金と、アルミニウム、銀、クロム等の金属との積層構造が好ましい。
陰極は、例えば、真空蒸着法、スパッタリング法、金属薄膜を熱圧着するラミネート法等によって形成することができる。陰極の厚さは、電気伝導度や耐久性を考慮して選択することができる。例えば、10nm~10μmであると好ましく、20nm~1μmであるとより好ましく、50nm~500nmであると更に好ましい。
(保護層)
 陰極の作製後には、その上部に、発光素子を保護するための保護層を更に形成してもよい。特に、発光素子を長期安定的に用いるためには、この発光素子を外部から保護するために、保護層及び/又は保護カバーを装着することが好ましい。
保護層の構成材料としては、高分子量の化合物、金属酸化物、金属フッ化物、金属ホウ化物等を用いることができる。また、保護カバーとしては、金属板、ガラス板、表面に低透水率処理を施したプラスチック板等を用いることができる。保護カバーを用いた発光素子の保護方法としては、保護カバーを熱硬化樹脂や光硬化樹脂で素子基板と貼り合わせて密閉する方法が挙げられる。この際、スペーサーを用いて空間を維持すれば、素子の損傷を防ぐことが容易となる。さらに、この空間に窒素やアルゴンのような不活性ガスを封入すれば、陰極の酸化を防止することができる。また、酸化バリウム等の乾燥剤をこの空間内に設置すれば、製造工程で吸着した水分又は硬化樹脂を通り抜けて浸入する微量の水分が素子に損傷を与えるのを抑制することが容易となる。発光素子においては、これらのうち、いずれか1つ以上の方策を採ることが好ましい。
以上説明した好適な実施形態の発光素子は、面状光源、表示装置(セグメント表示装置、ドットマトリックス表示装置)、液晶表示装置のバックライト等として用いることができる。
例えば、発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得る方法としては、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成して実質的に非発光とする方法、陽極若しくは陰極の一方、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字や文字、簡単な記号等を表示できるセグメントタイプの表示素子が得られる。
さらに、ドットマトリックス素子とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法や、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス素子は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動させてもよい。
上述した面状の発光素子は、自発光薄型であり、液晶表示装置のバックライト用の面状光源、面状の照明用光源等として好適に用いることができる。また、上記の表示素子は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダー等の表示装置として用いることができる。さらに、フレキシブルな基板を用いれば、曲面状の光源や表示装置としても使用できる。
以上、本発明の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更することができる。
以下、実施例によって本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
[測定方法]
 以下の実施例では、数平均分子量及び重量平均分子量の測定、高速液体クロマトグラフィー(HPLC)、並びにガラス転移温度の測定を、以下のようにして実施した。
(数平均分子量及び重量平均分子量の測定)
 ポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、GPC(島津製作所製、商品名:LC-10Avp)により求めた。この際、測定する高分子化合物は、約0.05重量%の濃度になるようテトラヒドロフランに溶解させて、GPCに10μL注入した。GPCの移動相にはテトラヒドロフランを用い、2.0ml/分の流速で流した。カラムは、PLgel MIXED-B(ポリマーラボラトリーズ社製)を用いた。検出器にはUV-VIS検出器(島津製作所製、商品名:SPD-10Avp)を用いた。
(NMRの測定)
 NMRの測定は、特に記載がない限りは、測定試料5~20mgを約0.5mlの有機溶媒に溶解させて、NMR(バリアン(Varian,Inc.)製、商品名:MERCURY 300)を用いて行った。
(高速液体クロマトグラフィー(HPLC))
 化合物の純度の指標として、HPLC面積百分率の値を用いた。この値は、特に記載がない限り、高速液体クロマトグラフィー(HPLC、島津製作所製、商品名:LC-20A)による、254nmにおける値とする。この際、測定する化合物は、0.01~0.2重量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、HPLCに、濃度に応じて1~10μL注入した。HPLCの移動相には、アセトニトリル及びテトラヒドロフランを用い、1ml/分の流速で、アセトニトリル/テトラヒドロフラン=100/0~0/100(容積比)のグラジエント分析で流した。カラムは、Kaseisorb LC ODS 2000(東京化成工業製)を用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。
(ガラス転移温度の測定)
 ガラス転移温度の測定は、DSC(TA Instruments社製、商品名:DSC2920)により行った。各高分子化合物(サンプル、共重合体や重合体)を、200℃まで加熱した後、-50℃まで急冷して30分間保持した。そして、30℃まで温度を上げた後、毎分10℃の昇温速度で300℃まで測定を行った。
[原料単量体の合成]
 まず、以下の化合物や高分子化合物の製造に用いた原料単量体の合成方法について説明する。
なお、以下に記載の単量体CM4(2,7-ジブロモ-9,9-ビス(4-ヘキシルフェニル)フルオレン)、単量体CM5(2,7-ジブロモ-9,9-ジオクチルフルオレン)、単量体CM7(9,9-ジオクチル-(1,3,2-ジオキサボロラン-2-イル)-フルオレン)、単量体CM8(N,N-ビス(4-ブロモフェニル)-N’,N’-ビス(4-n-ブチルフェニル)-1,4-フェニレンジアミン)、単量体CM9(N,N-ビス(4-ブロモフェニル)-N-(ビシクロ[4.2.0]オクタ-1,3,5-トリエン-3-イル)-アミン)は公知の合成法に従い合成して、HPLC面積百分率値(UV254nm)で99.5%以上を示したものを用いた。また、単量体CM6は市販の化合物を再結晶により精製し、HPLC面積百分率値(UV254nm)で99.5%以上を示したものを用いた。
Figure JPOXMLDOC01-appb-C000087
また、以下に記載の単量体CM10(2,5-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-1,4-ジヘキシルベンゼン)、及び単量体CM11も、同様に公知の合成法に従い合成して、HPLC面積百分率値(UV254nm)で99.5%以上を示したものを用いた。
Figure JPOXMLDOC01-appb-C000088
(単量体CM1の合成)
 下記の工程(C1a)を行って、単量体CM1を合成した。
Figure JPOXMLDOC01-appb-C000089
<工程(C1a)>
 アルゴンガス雰囲気下、1000mlフラスコ中、マグネシウム小片(19.45g、800mmol)に、少量の脱水テトラヒドロフランと1,2-ジブロモエタン(1.50g、8mmol)を順次加えた。発熱と発泡により、マグネシウムが活性化されたことを確認した後に、2,6-ジブロモトルエン(49.99g、200mmol)を脱水テトラヒドロフラン(200ml)に溶解した溶液を約2時間かけて滴下した。滴下終了後、80℃のオイルバスにより加熱し、還流下で1時間攪拌した。
それから、オイルバスを外し、脱水テトラヒドロフラン(400ml)で希釈し、更に氷浴にて冷却してから、2-イソプロピルオキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(148.85g、800mmol)を加えた。氷浴をはずし、80℃のオイルバスで加熱することにより、還流下で1時間半攪拌した。オイルバスを外し、更に氷浴にて冷却してから、飽和塩化アンモニウム水溶液(50ml)を加え、30分間攪拌した。
その後、氷浴を外し、ヘキサン(1500ml)を加え、30分間激しく攪拌した。攪拌を停止し、そのまま15分間静置した後に、シリカゲルを敷き詰めたグラスフィルターによりろ過し、ヘキサン(1000ml)でシリカゲルを洗浄し、合一したろ液を減圧濃縮することにより、粗生成物(72.0g)を得た。同様の操作を再度行い、粗生成物(75.4g)を得た。
次に、粗生成物の全量(147.4g)にメタノール(740ml)を加え、85℃のオイルバスを用いて1時間加熱還流下で攪拌した。オイルバスを外し、攪拌しながら室温まで冷却した後に、固体をろ取し、メタノール(100ml)で洗浄、減圧乾燥させることにより、白色結晶を得た(59.7g)。乾燥させた結晶をイソプロパノール(780ml)に加熱溶解させた後、静置した状態でゆっくりと室温まで冷却することにより結晶を析出させ、ろ取し、メタノール(100ml)で洗浄し、さらに50℃で一晩の間減圧乾燥させることにより、目的物である単量体CM1(50.8g、HPLC面積百分率(紫外線波長254nm)で99.8%、収率37%)を白色結晶として得た。単量体CM1の分析結果は次の通りであった。
 H-NMR(300MHz、CDCl
 δ(ppm)=1.34(s、24H)、2.74(s、3H)、7.14(t、1H)、7.79(d、2H).
(単量体CM2の合成)
 下記の工程(C2a)を行って化合物CM2aを得た後、工程(C2b)を行って、単量体CM2を得た。
Figure JPOXMLDOC01-appb-C000090
<工程(C2a)>
 アルゴンガス雰囲気下、遮光した300ml丸底フラスコ中、1,4-ジイソプロピルベンゼン(24.34g、150mmol)、鉄粉(0.838g、15mmol)、脱水クロロホルム(40ml)、トリフルオロ酢酸(1.71g、15mmol)を混合攪拌し、氷浴にて冷却したところに、臭素(55.1g、345mmol)の脱水クロロホルム(92ml)希釈溶液を30分間かけて滴下し、氷浴にて冷却したまま、更に5時間攪拌し反応させて、反応液を得た。
反応終了後、10重量%水酸化ナトリウム水溶液を氷浴にて冷却したところに、得られた反応液をゆっくりと加え、更に15分間攪拌した。分液により有機層と水層を分離し、水層からクロロホルム(100ml)で抽出し、得られた有機層を合一した後に、10重量%亜硫酸ナトリウム水溶液(200ml)を加え、室温にて30分間攪拌した。この時、有機層の色は薄黄色からほぼ無色透明に変化した。
次に、水層を分液により除去し、得られた有機層を15重量%の食塩水(200ml)で洗浄し、無水硫酸マグネシウム(30g)で乾燥させ、溶媒を減圧濃縮により留去することで、薄黄色油状物約47gを得た。これにエタノール(15g)を加え、振り混ぜて均一にした後に、-10℃の冷凍庫に3時間静置することで、結晶を析出させ、ろ取し、少量のメタノールで洗浄した後、室温にて一晩の間減圧乾燥させることにより、目的物である1,4-ジブロモ-2,5-ジイソプロピルベンゼン(化合物CM2a、30.8g、収率64%)を白色結晶として得た。得られた化合物CM2aの分析結果は次の通りであった。
 H-NMR(300MHz、CDCl
 δ(ppm)=1.24(d、12H)、3.30(m、2H)、7.50(s、2H).
<工程(C2b)>
 アルゴンガス雰囲気下、1000mlフラスコ中、マグネシウム小片(9.724g、400mmol)に少量の脱水テトラヒドロフランと1,2-ジブロモエタン(0.75g、4mmol)を順次加えた。発熱と発泡により、マグネシウムが活性化されたことを確認した後に、上記で得られた化合物CM2a(32.0g、100mmol)を脱水テトラヒドロフラン(100ml)に溶解した溶液を約1時間かけて滴下した。滴下終了後、80℃のオイルバスにより加熱し、還流下で1時間攪拌した。
それから、オイルバスを外し、脱水テトラヒドロフラン(200ml)で希釈し、更に氷浴により冷却してから、2-イソプロピルオキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(74.4g、400mmol)を加えた。氷浴をはずし、80℃のオイルバスで加熱することにより、還流下で1時間半攪拌した。オイルバスを外し、更に氷浴により冷却してから、飽和塩化アンモニウム水溶液(25ml)を加え、30分間攪拌した。
その後、氷浴を外し、ヘキサン(2000ml)を加え、30分間激しく攪拌した。攪拌を停止し、そのまま15分間静置した後に、シリカゲルを敷き詰めたグラスフィルターによりろ過し、さらにこのシリカゲルをヘキサン(1000ml)で洗浄し、合一したろ液を減圧濃縮することにより、粗生成物(59.0g)を得た。同様の操作を上記の8割のスケールで再度行うことにより、粗生成物(44.8g)を得た。上記の工程を繰返し行うことで、必要量の粗生成物を得た。
粗生成物(103.8g)にメタノール(520ml)を加え、75℃のオイルバスを用いて1時間加熱還流下で攪拌した。オイルバスを外し攪拌しながら室温まで冷却した後に、固体をろ取し、メタノール(100ml)で洗浄、減圧乾燥させることにより、白色結晶を得た(48.8g、HPLC面積百分率(紫外線波長254nm)で93.3%)。乾燥させた結晶をイソプロパノール(690ml)に加熱溶解させた後、静置した状態でゆっくりと室温まで冷却することにより結晶を析出させ、ろ取し、メタノール(50ml)で洗浄し、さらに50℃で一晩の間減圧乾燥させることにより、目的物である単量体CM2、すなわち、1,4-ジイソプロピル-2,5-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンゼンを白色結晶として得た(44.6g、HPLC面積百分率(紫外線波長254nm)で99.8%、収率60%)。単量体CM2の分析結果は次の通りであった。
 H-NMR(300MHz、CDCl
 δ(ppm)=1.23(d、12H),1.34(s、24H)、3.58(m、2H)、7.61(s、2H).
(単量体CM3の合成)
 下記の工程(C3a)を行って化合物CM3aを得た後、工程(C3b)を行って、単量体CM3を得た。
Figure JPOXMLDOC01-appb-C000091
<工程(C3a)>
 窒素雰囲気下、1,4-ジブロモベンゼン(27.1g)の脱水ジエチルエーテル(217ml)溶液をドライアイス/メタノール混合浴を用いて冷却した。得られた懸濁液に2.77Mのn-ブチルリチウムのヘキサン溶液(37.2ml)をゆっくりと滴下した後、1時間攪拌し、リチウム試薬を調製した。
窒素雰囲気下、塩化シアヌル(10.0g)の脱水ジエチルエーテル(68ml)懸濁液をドライアイス/メタノール混合浴を用いて冷却し、上記のリチウム試薬をゆっくり加えた後に室温まで昇温し、室温で反応させた。得られた生成物を濾過し、減圧乾燥させた。その後、得られた固体(16.5g)を精製して、13.2gの針状結晶(化合物CM3a)を得た。
<工程(C3b)>
 窒素雰囲気下、マグネシウム(1.37g)に脱水テトラヒドロフラン(65ml)を加えた懸濁液に、4-ドデシルブロモベンゼン(14.2g)の脱水テトラヒドロフラン(15ml)溶液を少量ずつ加え、加熱して、還流下で攪拌した。放冷後、反応液にマグネシウム(0.39g)を追加し、再び加熱して、還流下で反応させ、グリニャール試薬を調製した。
窒素雰囲気下、上記で得られた化合物CM3a(12.0g)の脱水テトラヒドロフラン(100ml)懸濁液に、上記のグリニャール試薬を撹拌しながら加え、加熱還流させた。放冷後、反応液を、希塩酸水溶液で洗浄した。有機層と水層を分け、水層をジエチルエーテルで抽出した。得られた有機層を合わせて、再び水で洗浄し、有機層を無水硫酸マグネシウムで脱水させた後、濾過し、濃縮した。得られた白色固体をシリカゲルカラムで精製し、更に再結晶することによって、目的物である単量体CM3(6.5g)を白色固体として得た。得られた単量体CM3は、HPLC面積百分率値(UV254nm)で99.5%以上を示した。
[複合原料単量体の合成]
 次に、後述する高分子化合物の合成に用いた複合原料単量体の合成方法について説明する。
(実施例1-1:単量体M1(式(12-1)で表される化合物)の合成)
 単量体CM4を用いて下記の工程(1a)を行い化合物M1aを得、次いで工程(1b)を行って化合物M1bを得た後、更に工程(1c)を行って、上記の式(12-1)で表される化合物である単量体M1を得た。
Figure JPOXMLDOC01-appb-C000092
<工程(1a)>
 アルゴンガス雰囲気下、単量体CM4(60.33g)をテトラヒドロフラン(THF、750ml)に溶解させた後に、約-78℃のドライアイス/メタノールバスにより冷却したところへ、sec-ブチルリチウム(1mol/l、100ml)を約40分間かけてゆっくりと滴下することにより加えた。滴下終了後、約-30℃までゆっくりと昇温した後に、再度、約-78℃のドライアイス/メタノールバスにより冷却した。
次に、この溶液に、クロロトリメチルシラン(20.34g)を約10分間かけてゆっくりと加え、同温度で10分間攪拌した後、室温までゆっくりと昇温した。イオン交換水(8g)を加えた後に、揮発分を減圧濃縮することにより除き、約74gの油状物を得た。これにヘキサン(500ml)を加えて希釈した後に、シリカゲルショートカラムにより、不純物を除去し、さらに減圧濃縮により揮発分を除去することにより、化合物M1aを薄黄色油状物として得た。化合物M1aはこれ以上の精製はせずに、次工程に用いた。
<工程(1b)>
 アルゴンガス雰囲気下、化合物M1a(61g)、単量体CM1(13.42g)、トルエン(200ml)を混合し、均一な溶液を得た後に、20重量%テトラエチルアンモニウムヒドロキシド水溶液(Aldrich社製、86.15g)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)(137mg)を加え、オイルバスにて加熱しながら、還流下で8時間攪拌した。次いで、室温まで冷却し、トルエンで希釈した後に、水層を除去し、得られた油層をイオン交換水、及び15重量%食塩水で順次洗浄した。
得られた溶液、およびトルエンをシリカゲルショートカラムに順次通液し、得られた溶液を合一した後に減圧濃縮することにより、約64gの濃褐色油状物を得た。これにヘキサンを加え、60℃に加熱することにより均一な溶液を得た。これにエタノールを加え、室温にて3時間攪拌することにより析出した固体をろ取し、エタノールで洗浄、減圧乾燥することにより、粗生成物(35g)を得た。
得られた粗生成物にヘキサンを加え、加熱しながら還流下で1時間攪拌し、室温まで冷却した後に固体をろ取する操作を6回繰り返すことにより、化合物M1bを得た(23.16g)。化合物M1bの分析結果は次の通りであった。
 H-NMR(300MHz、THF-d
 δ(ppm)=7.86(dd,4H)、7.64(s、2H)、7.56(d,2H)、7.44(s,2H)、7.36(d,2H)、7.16(m、11H)、7.03(d,2H)、2.55(t,8H)、2.09(s、3H)、1.58(m,8H)、1.31(m,24H)、0.88(t,12H)、0.25(s,18H).
<工程(1c)>
 アルゴンガス雰囲気下、上記で得られた化合物M1b(22.9g)、N-ブロモスクシンイミド(7.1g)、N,N-ジメチルホルムアミド(DMF、570ml)、酢酸(114ml)を混合し、80℃のオイルバスにより加熱しながら、4時間攪拌した後、室温まで冷却した。得られた反応液をメタノール(1900ml)にゆっくりと加え、析出した固体をろ取、減圧乾燥することにより、固体(29g)を得た。
得られた固体を、中圧シリカゲルカラムクロマトグラフィー(ヘキサン/トルエン=100/0~70/30)で精製し、さらに、酢酸エチル/メタノールを用いて再結晶することにより、目的物である単量体M1(10.8g)を得た。得られた単量体M1はHPLC面積百分率値(UV254nm)で99.5%以上を示した。単量体M1の分析結果は次の通りであった。
 H-NMR(300MHz、THF-d
 δ(ppm)=7.87(d,2H)、7.78(d.2H)、7.60(s,2H)、7.53(d,2H)、7.42(s,2H)、7.37(d.2H)、7.17(m,11H)、7.05(d,8H)、2.56(t,8H)、2.06(s,3H)、1.59(m,8H)、1.36(m,24H)、0.88(t,12H).
(実施例1-2:単量体M1d(式(12-1)で表される化合物)、及び、単量体M1e(式(12-1)で表される化合物)の合成)
 上記工程(1a)及び(1b)により得られた化合物M1bを用いて、下記工程(1d)及び(1e)を行い、上記の式(12-1)で表される化合物である単量体M1d及びM1eをそれぞれ得る。
Figure JPOXMLDOC01-appb-C000093
<工程(1d)>
 アルゴンガス雰囲気下、上記で得られた化合物M1b(1g)をジクロロメタン(10ml)に溶解した溶液を、予め0℃に冷却した三臭化ホウ素のジクロロメタン溶液(1mol/l濃度、20ml)中に、ゆっくりと滴下することにより加える。この溶液について0℃にて攪拌を続け、液体クロマトグラフィーによる分析により原料の消失を確認した後に、減圧濃縮により溶媒を除去する。得られた固体を再結晶することにより、化合物M1dが得られる。
<工程(1e)>
 上記と同様の操作により得られる化合物M1d(1g)にピナコール(5g)、酢酸エチル(20ml)を加え、加熱還流下で攪拌した後に、トルエンで希釈し、シリカゲルショートカラムに通液した溶液を中圧シリカゲルカラムクロマトグラフィー(ヘキサン/トルエン)にて精製することにより、化合物M1eが得られる。
(実施例2-1:単量体M2(式(13)で表される化合物)の合成)
 単量体CM1を用いて下記の工程(2a)を行って、上記の式(13)で表される化合物である単量体M2を得た。
Figure JPOXMLDOC01-appb-C000094
<工程(2a)>
 アルゴンガス雰囲気下、単量体CM1(6.881g)、4-ブロモヨードベンゼン(14.15g)、テトラキストリフェニルホスフィンパラジウム(0)(0.92g)、炭酸銀(16.55g)、テトラヒドロフラン(100ml)を混合し、50℃のオイルバスで加熱しながら、5時間攪拌した後に、クロロホルム(250g)、テトラヒドロフラン(20g)で希釈し、室温にて、不溶物をろ別した。
得られたろ液に活性白土(Wako社製、30g)を加え、室温にて30分間攪拌した後に、固体をろ別した。ろ液を濃縮し、約17gのオレンジ色油状物を得た。得られた油状物を中圧シリカゲルクロマトグラフィー(ヘキサン)で精製し、得られた白色固体約10gをクロロホルム/メタノールを用いて再結晶することにより、目的物である単量体M2(3.97g)を白色結晶として得た。得られた単量体M2のHPLC面積百分率値(UV254nm)は99.93%を示した。
(実施例2-2:単量体M2b(式(13)で表される化合物)の合成)
 上記で得た単量体M2を用い下記の工程(2b)を行って、上記の式(13)で表される化合物である単量体M2bを得る。
Figure JPOXMLDOC01-appb-C000095
<工程(2b)>
 アルゴンガス雰囲気下、上記で得られた化合物M2、ビス(ピナコラート)ジボロン、ビス(ジフェニルホスフィノ)フェロセン、トリス(ジベンジリデンアセトン)ジパラジウム(0)、酢酸カリウム、及び、1,4-ジオキサンを混合し、加熱還流下で一晩攪拌し、不溶物をろ過により除去し、濃縮して、ヘキサン/トルエン混合溶媒に再溶解する。その後、シリカゲルショートカラムに通液することに得られる溶液を、活性炭吸着処理、及び、中圧シリカゲルカラムクロマトグラフィーにより精製することにより、化合物M2bが得られる。
[高分子化合物の製造]
 上記で得た原料単量体や複合原料単量体を用いて、以下に示す方法により各種の高分子化合物を製造した。
(実施例3:高分子化合物P1の合成)
 窒素雰囲気下、単量体CM2(1.115g)、単量体M1(0.8301g)、単量体CM3(0.4320g)、及び単量体CM5(0.7665g)と、溶媒となるトルエン(43ml)との混合物を約80℃に加熱した後に、酢酸パラジウム(0.61mg)、トリス(2-メトキシフェニル)ホスフィン(3.82mg)、20重量%テトラエチルアンモニウムヒドロキシド水溶液(9.6g)を加え、オイルバスで更に加熱しながら、還流下で、約8時間攪拌した。
次に、フェニルボロン酸(116mg)、酢酸パラジウム(0.61mg)、トリス(2-メトキシフェニル)ホスフィン(3.82mg)、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液(9.6g)を加え、オイルバスで更に加熱しながら、還流下で、約13時間攪拌した。
水層を分液により除去した後に、N,N-ジエチルジチオカルバミド酸ナトリウム三水和物(0.76g)をイオン交換水(15ml)に溶解した溶液を加え、85℃に加熱しながら2時間攪拌した。
有機層を水層と分離した後、有機層を3.6重量%塩酸(約40ml)で2回、2.5重量%アンモニア水溶液(約40ml)で2回、イオン交換水(約40ml)で5回、順次洗浄した。有機層をメタノールに滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、固体を得た。この固体をトルエン(約110ml)に溶解させ、予めトルエンを通液したシリカゲルカラム及びアルミナカラムに通液し、得られた溶液をメタノール(約760ml)に滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、高分子化合物P1(1.8g)を得た。
高分子化合物P1のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=7.0×10、Mw=1.8×10であり、ガラス転移温度は155℃であった。高分子化合物P1は、下記の表4に示す単量体の仕込み比により得られていることから、下記の表5に示す構成単位及びそれらのモル比率を有する。そして、高分子化合物P1は、複合原料単量体である単量体M1を用いて合成されたことから、上記式(1)で示される構成単位の両側が常に式(4)で示される構成単位である構成連鎖(式(P1c)で表される構成連鎖)を有する高分子化合物であり、そのため、上記の式(A)に該当する構成連鎖を有さないものであると推定される。
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-C000098
(実施例4:高分子化合物P2の合成)
 窒素雰囲気下、単量体CM2(1.526g)、単量体M2(0.3777g)、単量体CM3(0.5973g)、及び単量体CM5(1.060g)と、溶媒となるトルエン(38ml)との混合物を約80℃に加熱した後に、酢酸パラジウム(0.84mg)、トリス(2-メトキシフェニル)ホスフィン(5.28mg)、20重量%テトラエチルアンモニウムヒドロキシド水溶液(13.2g)を加え、オイルバスで更に加熱しながら、還流下で、約4時間攪拌した。
次に、フェニルボロン酸(185mg)、酢酸パラジウム(0.84mg)、トリス(2-メトキシフェニル)ホスフィン(5.28mg)、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液(13.2g)を加え、オイルバスで更に加熱しながら、還流下で、約17時間攪拌した。
水層を分液により除去した後に、N,N-ジエチルジチオカルバミド酸ナトリウム三水和物(1.05g)をイオン交換水(21ml)に溶解した溶液を加え、85℃に加熱しながら2時間攪拌した。
トルエン(51ml)を加えてから有機層を水層と分離した後、有機層を3.6重量%塩酸(約40ml)で2回、2.5重量%アンモニア水溶液(約40ml)で2回、イオン交換水(約40ml)で4回、順次洗浄した。有機層をメタノールに滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、固体を得た。この固体をトルエン(約110ml)に溶解させ、予めトルエンを通液したシリカゲルカラム及びアルミナカラムに通液し、得られた溶液をメタノール(約760ml)に滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、高分子化合物P2(1.47g)を得た。
高分子化合物P2のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=7.4×10、Mw=2.0×10であり、ガラス転移温度は168℃であった。高分子化合物P2は、下記の表6に示す単量体の仕込み比により得られていることから、以下の表7に示す構成単位及びそれらのモル比率を有する。そして、高分子化合物P2は、複合原料単量体である単量体M2を用いて合成されたことから、上記式(1)で示される構成単位の両側が常に式(4)で示される構成単位である構成連鎖(式(P2c)で表される構成連鎖)を有する高分子化合物であり、そのため、上記式(A)に該当する構成連鎖を有さないものであると推定される。
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-C000101
(高分子化合物CP1の合成)
 窒素雰囲気下、単量体CM2(1.1261g)、単量体CM1(0.2341g)、単量体CM4(0.8747g)、単量体CM3(0.4320g)、及び単量体CM5(0.7665g)と、溶媒となるトルエン(40ml)との混合物を約80℃に加熱した後に、酢酸パラジウム(0.76mg)、トリス(2-メトキシフェニル)ホスフィン(4.77mg)、20重量%テトラエチルアンモニウムヒドロキシド水溶液(12.0g)を加え、オイルバスで更に加熱しながら、還流下で、約4時間攪拌した。
次に、フェニルボロン酸(167mg)、酢酸パラジウム(0.76mg)、トリス(2-メトキシフェニル)ホスフィン(4.77mg)、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液(12.0g)を加え、オイルバスで更に加熱しながら、還流下で、約23時間攪拌した。
水層を分液により除去した後に、N,N-ジエチルジチオカルバミド酸ナトリウム三水和物(0.95g)をイオン交換水(19ml)に溶解した溶液を加え、85℃に加熱しながら2時間攪拌した。
有機層を水層と分離した後、有機層を3.6重量%塩酸(約40ml)で2回、2.5重量%アンモニア水溶液(約40ml)で2回、イオン交換水(約40ml)で4回、順次洗浄した。有機層をメタノールに滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、固体を得た。この固体をトルエン(約110ml)に溶解させ、予めトルエンを通液したシリカゲルカラム及びアルミナカラムに通液し、得られた溶液をメタノール(約760ml)に滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、高分子化合物CP1(1.62g)を得た。
高分子化合物CP1のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=9.0×10、Mw=2.8×10であり、ガラス転移温度は154℃であった。高分子化合物CP1は、表8に示す単量体の仕込み比により得られていることから、表9に示す構成単位及びモル比率を有する。そして、各構成単位に対応する原料単量体をそれぞれ別々に用いて重合を行ったことから、上記の式(A)に該当する構成連鎖(式(CP1c)で表される構成連鎖)を含む高分子化合物であると推定される。
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-C000104
(高分子化合物CP2の合成)
 窒素雰囲気下、単量体CM2(1.576g)、単量体CM1(0.3236g)、単量体CM6(0.4418g)、単量体CM3(0.5972g)、及び単量体CM5(1.060g)と、溶媒となるトルエン(34ml)との混合物を約80℃に加熱した後に、酢酸パラジウム(1.05mg)、トリス(2-メトキシフェニル)ホスフィン(6.60mg)、20重量%テトラエチルアンモニウムヒドロキシド水溶液(16.5g)を加え、オイルバスで更に加熱しながら、還流下で、約7時間攪拌した。
次に、フェニルボロン酸(231mg)、酢酸パラジウム(1.05mg)、トリス(2-メトキシフェニル)ホスフィン(6.60mg)、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液(16.5g)を加え、オイルバスで更に加熱しながら、還流下で、約23時間攪拌した。
水層を分液により除去した後に、N,N-ジエチルジチオカルバミド酸ナトリウム三水和物(1.32g)をイオン交換水(26ml)に溶解した溶液を加え、85℃に加熱しながら2時間攪拌した。
トルエン(56ml)を加えてから有機層を水層と分離した後、有機層を3.6重量%塩酸(約40ml)で2回、2.5重量%アンモニア水溶液(約40ml)で2回、イオン交換水(約40ml)で4回、順次洗浄した。有機層をメタノールに滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、固体を得た。この固体をトルエン(約110ml)に溶解させ、予めトルエンを通液したシリカゲルカラム及びアルミナカラムに通液し、得られた溶液をメタノール(約760ml)に滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、高分子化合物CP2(1.46g)を得た。
高分子化合物CP2のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=6.7×10、Mw=1.9×10であり、ガラス転移温度は166℃であった。高分子化合物CP1は、下記の表10に示す単量体の仕込み比により得られていることから、下記の表11に示す構成単位及びモル比率を有する。そして、各構成単位に対応する原料単量体をそれぞれ別々に用いて重合を行ったことから、式(A)に該当する上記の式(CP1c)で表される構成連鎖を含む高分子化合物であると推定される。
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000106
(高分子化合物CP3の合成)
 窒素雰囲気下、単量体CM7(21.218g)、単量体CM5(5.487g)、単量体CM8(16.377g)、単量体CM9(2.575g)、メチルトリオクチルアンモニウムクロライド(商品名:Aliquat(登録商標)336、アルドリッチ社製)(5.17g)と溶媒となるトルエン(400ml)の混合物を約80℃に加熱した後に、ビストリフェニルホスフィンパラジウムジクロリド(56.2mg)、17.5重量%炭酸ナトリウム水溶液(109ml)を加え、オイルバスで更に加熱しながら、還流下で、約6時間攪拌した。
次に、フェニルボロン酸(0.49g)、を加え、オイルバスで更に加熱しながら、還流下で、約2時間攪拌した。
水層を分液により除去した後に、N,N-ジエチルジチオカルバミド酸ナトリウム三水和物(24.3g)をイオン交換水(240ml)に溶解した溶液を加え、85℃に加熱しながら2時間攪拌した。
有機層を水層と分離した後、有機層をイオン交換水(約520ml)で2回、3重量%酢酸水溶液(約52ml)で2回、イオン交換水(約520ml)で2回、順次洗浄した。有機層をメタノールに滴下し高分子化合物を沈殿させ、ろ取し、乾燥させることにより、固体を得た。この固体をトルエン(約1240ml)に溶解させ、予めトルエンを通液したシリカゲルカラム及びアルミナカラムに通液し、得られた溶液をメタノール(約6200ml)に滴下し高分子化合物を沈殿させ、ろ取、乾燥させることにより、高分子化合物CP3(26.23g)を得た。
高分子化合物CP3のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=7.8×10、Mw=2.6×10であり、ガラス転移温度は115℃であった。この高分子化合物CP3は、表12に示す単量体の仕込み比により得られていることから、以下の表13に示す構成単位及びモル比率を有するポリマーと推定される。かかる高分子化合物CP3は、本発明の高分子化合物の構成単位の組み合わせを有しないものである。
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000108
[発光材料の調製]
 以下の方法により、発光材料であるイリジウム錯体(EM-A)の合成を行った。係る合成法は、WO02/066552に記載の合成法に従ったものである。
まず、不活性ガス雰囲気下、2-ブロモピリジンと、1.2当量の3-ブロモフェニルボロン酸とのSuzukiカップリング(触媒:テトラキス(トリフェニルホスフィン)パラジウム(0)、塩基:2M炭酸ナトリウム水溶液、溶媒:エタノール、トルエン)により、下記式で表される2-(3'-ブロモフェニル)ピリジンを得た。
Figure JPOXMLDOC01-appb-C000109
次に、不活性ガス雰囲気下、トリブロモベンゼンと、2.2当量の4-tert-ブチルフェニルボロン酸とのSuzukiカップリング(触媒:テトラキス(トリフェニルホスフィン)パラジウム(0)、塩基:2M炭酸ナトリウム水溶液、溶媒:エタノール、トルエン)により下記式で表されるブロモ化合物を得た。
Figure JPOXMLDOC01-appb-C000110
不活性ガス雰囲気下、このブロモ化合物を、無水THFに溶解後、-78℃に冷却し、やや過剰のtert-ブチルリチウムを滴下した。冷却下、B(OCを更に滴下し、室温にて反応させた。得られた反応液を3M塩酸水で後処理して、下記式で表されるボロン酸化合物を得た。
Figure JPOXMLDOC01-appb-C000111
不活性ガス雰囲気下、上記で得た2-(3'-ブロモフェニル)ピリジンと、1.2当量の上記ボロン酸化合物とのSuzukiカップリング(触媒:テトラキス(トリフェニルホスフィン)パラジウム(0)、塩基:2M炭酸ナトリウム水溶液、溶媒:エタノール、トルエン)により、下記式で表される配位子(即ち、配位子となる化合物)を得た。
Figure JPOXMLDOC01-appb-C000112
アルゴン雰囲気下、上記で得た配位子と、4当量のIrCl3・3H2O、2-エトキシエタノール、イオン交換水を仕込み、還流させた。析出した固体を吸引濾過した。得られた固体をエタノール、イオン交換水の順番で洗浄後、乾燥させ、下記式で表される黄色粉体を得た。
Figure JPOXMLDOC01-appb-C000113
そして、アルゴン雰囲気下、上記の黄色粉体に、2当量の上述した配位子を加え、グリコール系溶媒中で加熱することにより、下記式で表されるイリジウム錯体(発光材料EM-A)を得た。
Figure JPOXMLDOC01-appb-C000114
得られたイリジウム錯体の分析結果は、次の通りである。
 H NMR (300MHz,CHCl
 δ(ppm)=1.38(s,54H)、δ6.93(dd,J=6.3,6.6Hz,3H)、7.04(br,3H)、7.30(d,J=7.9Hz,3H)、7.48(d,J=7.3Hz,12H)、7.61-7.70(m,21H)、7.82(s,6H)、8.01(s,3H)、8.03(d,J=7.9Hz,3H).
LC/MS(APCI posi):[M+H]+ 1677
[発光素子の作製]
 上記で得られた高分子化合物及び発光材料を用いて組成物及びその溶液を調製し、それらを用いて各種の発光素子を作製した。
(実施例5)
<組成物MP1及びその溶液の調製>
 高分子化合物P1及び発光材料EM-Aを重量比70:30で混合してなる組成物MP1を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.8重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MP1の1.8重量%キシレン溶液」と言う。
<発光素子DP1の作製>
 スパッタ法により45nmの厚みでITO膜を付けたガラス基板に、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸の溶液(H.C.Stark社製、商品名:CLEVIOS P AI4083、以下、「CLEVIOS P」と言う)を用いてスピンコートにより65nmの厚みで成膜し、ホットプレート上で、200℃で10分間乾燥させた。次に、高分子化合物CP3の0.7重量%キシレン溶液を用いて、スピンコートにより3000rpmの回転速度で成膜し、窒素ガス雰囲気化ホットプレート上で180℃で60分間乾燥させた。この膜厚は約20nmであった。
次に、組成物MP1の1.8重量%キシレン溶液を用いてスピンコートにより1220rpmの回転速度で成膜した。その膜厚は約80nmであった。これを窒素ガス雰囲気下ホットプレート上で180℃で10分間乾燥させた後、陰極としてバリウムを約5nm、次いでアルミニウムを約120nm蒸着して、発光素子DP1を作製した。なお、金属の蒸着は、真空度が1×10-4Pa以下に到達した後に開始した。
得られた発光素子DP1の素子構成は、ITO(陽極)/CLEVIOS P(正孔注入層、65nm)/高分子化合物CP3(正孔輸送層)/組成物MP1(発光層)/Ba(5nm)/Al(120nm)(Ba及びAlを合わせて陰極)となる。
<特性評価>
 得られた発光素子DP1に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は41cd/Aであり、そのときの電圧は7.6Vであった。輝度1000cd/mでの駆動電圧は6.6Vであり、色度座標C.I.E.1931は(x,y)=(0.31,0.64)であり、そのときの発光効率は38cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は48.7時間であり、輝度半減寿命は466時間であった。
(比較例1)
<組成物MCP1及びその溶液の調製>
 高分子化合物CP1と発光材料EM-Aとを重量比70:30で混合してなる組成物MCP1を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.8重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MCP1の1.8重量%キシレン溶液」と言う。
<発光素子DCP1の作製>
 実施例5における組成物MP1の1.8重量%キシレン溶液に代えて、組成物MCP1の1.8重量%キシレン溶液を用い、さらにスピンコートの回転数を1220rpmから1800rpmに変更したこと以外は、実施例5と同様にして、発光素子DCP1を作製した。
<特性評価>
 得られた発光素子DCP1に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は42cd/Aであり、そのときの電圧は8.4Vであった。輝度1000cd/mでの駆動電圧は6.7Vであり、色度座標C.I.E.1931は(x,y)=(0.308,0.637)であり、そのときの発光効率は40cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は40.2時間であり、輝度半減寿命は393時間であった。
(DP1とDCP1との対比)
 実施例5で得た発光素子DP1及び比較例1で得た発光素子DCP1でそれぞれ得られた、最大発光効率と輝度20%減までに要した時間を比較した。「輝度20%減までに要した時間」の結果は、発光素子による輝度が経時的に低下する度合いを示す指標となる値である。この値が小さいほど、輝度が低下し難い、すなわち輝度安定性に優れることを意味し、発光素子が長寿命であることを示している。下記の表14には、DCP1で得られた結果を1としたときの、DP1で得られた結果の相対値を示した。
Figure JPOXMLDOC01-appb-T000115
実施例5で得た発光素子DP1に用いた高分子化合物P1は、比較例1で得た発光素子DCP1に用いた高分子化合物CP1と同様の構成単位を有するものであるが、上記の式(A)で表される構成連鎖を有さない点で相違するものである。そして、実施例5で得た発光素子DP1は、比較例1で得た発光素子DCP1に比べると、同程度の最大発光効率が得られるほか、輝度20%減までに要する時間が極めて長いことから、輝度安定性に優れていることが判明した。
(実施例6)
<組成物MP2及びその溶液の調製>
 高分子化合物P2と発光材料EM-Aとを重量比70:30で混合してなる組成物MP2を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.8重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MP2の1.8重量%キシレン溶液」と言う。
(発光素子DP2の作製)
 実施例5における、組成物MP1の1.8重量%キシレン溶液に代えて、組成物MP2の1.8重量%キシレン溶液を用い、さらにスピンコートの回転数を1220rpmから1830rpmに変更したこと以外は、実施例5と同様にして、発光素子DP2を作製した。
<特性評価>
 得られた発光素子DP2に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は30cd/Aであり、そのときの電圧は7.6Vであった。輝度1000cd/mでの駆動電圧は6.3Vであり、色度座標C.I.E.1931は(x,y)=(0.309,0.636)であり、そのときの発光効率は27cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は17.9時間であり、輝度半減寿命は118時間であった。
(比較例2)
<組成物MCP2及びその溶液の調製>
 高分子化合物CP2と発光材料EM-Aとを重量比70:30で混合してなる組成物MCP2を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.8重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MCP2の1.8重量%キシレン溶液」と言う。
<発光素子DCP2の作製>
 実施例5における、組成物MP1の1.8重量%キシレン溶液に代えて、組成物MCP2の1.8重量%キシレン溶液を用い、さらにスピンコートの回転数を1220rpmから1840rpmに変更したこと以外は、実施例5と同様にして、発光素子DCP2を作製した。
<特性評価>
 発光素子DCP2に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は32cd/Aであり、そのときの電圧は7.6Vであった。輝度1000cd/mでの駆動電圧は6.4Vであり、色度座標C.I.E.1931は(x,y)=(0.31,0.64)であり、そのときの発光効率は30cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は12.4時間であり、輝度半減寿命は107時間であった。
(DP2とDCP2との対比)
 実施例6で得た発光素子DP2及び比較例2で得た発光素子DCP2でそれぞれ得られた、最大発光効率と輝度20%減までに要した時間を比較した。表15には、DCP2で得られた結果を1としたときの、DP2で得られた結果の相対値を示した。
Figure JPOXMLDOC01-appb-T000116
実施例6で得た発光素子DP2に用いた高分子化合物P2は、比較例2で得た発光素子DCP2に用いた高分子化合物CP2と同様の構成単位を有するものであるが、上記の式(A)で表される構成連鎖を有さない点で相違するものである。そして、実施例6で得た発光素子DP2は、比較例2で得た発光素子DCP2に比べると、同程度の最大発光効率が得られるほか、輝度20%減までに要する時間が極めて長いことから、輝度安定性に優れていることが判明した。
[高分子化合物の製造]
(実施例7:高分子化合物P3の合成)
 窒素ガス雰囲気下、単量体CM10(1.0245g)、単量体CM4(0.3785g)、単量体M1(1.0743g)、単量体CM3(0.3732g)、及び、トルエン46mlを混合してモノマー溶液を調製した。窒素ガス雰囲気下、モノマー溶液を加熱し、酢酸パラジウム0.5mg、トリス(2-メトキシフェニル)ホスフィン2.9mgを加えた後、100℃で20重量%テトラエチルアンモニウムヒドロキシド水溶液6.9mlを20分間かけて滴下した。テトラエチルアンモニウムヒドロキシド水溶液の滴下開始から4.5時間、100℃で攪拌した。次に、得られた溶液に、フェニルボロン酸113.9mg、酢酸パラジウム0.5mg、トリス(2-メトキシフェニル)ホスフィン2.9mg、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液6.9mlを追加して、更に17.5時間攪拌した。
反応溶液から水層を除いた後、N,N-ジエチルジチオカルバミド酸ナトリウム三水和物0.58g、及び、イオン交換水12mlを加え、85℃で2時間攪拌した。得られた溶液において、有機層を水層と分離した後、有機層を3.6重量%塩酸(2回)、2.5重量%アンモニア水溶液(2回)、イオン交換水(4回)の順番で洗浄した。
有機層をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後、乾燥させ、固体を得た。この固体をトルエンに溶解させ、あらかじめトルエンを通液したシリカゲル/アルミナカラムに溶液を通液し、通液された溶出液をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後、乾燥させることにより、高分子化合物P3を得た。高分子化合物P3の収量は1.623gであった。
高分子化合物P3のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=1.0×10、Mw=2.4×10であり、ガラス転移温度は101℃であった。高分子化合物P3は、下記の表16に示す単量体の仕込み比により得られていることから、下記の表17に示す構成単位及びそれらのモル比率を有する。そして、高分子化合物P3は、複合原料単量体である単量体M1を用いて合成されたことから、上記式(1)で示される構成単位の両側が常に式(4)で示される構成単位である構成連鎖(式(P1c)で表される構成連鎖)を有する高分子化合物であり、そのため、上記の式(A)に該当する構成連鎖を有さないものであると推定される。
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
(実施例8:高分子化合物P4の合成)
 窒素ガス雰囲気下、単量体CM10(0.8985g)、単量体M1(1.4655g)、単量体CM3(0.3820g)、及び、トルエン47mlを混合してモノマー溶液を調製した。窒素ガス雰囲気下、モノマー溶液を加熱し、酢酸パラジウム0.4mg、トリス(2-メトキシフェニル)ホスフィン2.6mgを加えた後、100℃で20重量%テトラエチルアンモニウムヒドロキシド水溶液6.1mlを30分間かけて滴下した。テトラエチルアンモニウムヒドロキシド水溶液の滴下開始から4.5時間、100℃で攪拌した。次に、得られた溶液に、フェニルボロン酸111.0mg、酢酸パラジウム0.4mg、トリス(2-メトキシフェニル)ホスフィン2.6mg、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液6.1mlを追加して、更に16.5時間攪拌した。
反応溶液から水層を除いた後、N,N-ジエチルジチオカルバミド酸ナトリウム三水和物0.51g、及び、イオン交換水10mlを加え、85℃で5.5時間攪拌した。得られた溶液において、有機層を水層と分離した後、有機層を3.6重量%塩酸(2回)、2.5重量%アンモニア水溶液(2回)、イオン交換水(4回)の順番で洗浄した。
有機層をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後、乾燥させ、固体を得た。この固体をトルエンに溶解させ、あらかじめトルエンを通液したシリカゲル/アルミナカラムに溶液を通液し、通液された溶出液をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後、乾燥させて、高分子化合物P4を得た。高分子化合物P4の収量は1.643gであった。
高分子化合物P4のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=8.8×10、Mw=2.3×10であり、ガラス転移温度は110℃であった。高分子化合物P4は、下記の表18に示す単量体の仕込み比により得られていることから、下記の表19に示す構成単位及びそれらのモル比率を有する。そして、高分子化合物P4は、複合原料単量体である単量体M1を用いて合成されたことから、上記式(1)で示される構成単位の両側が常に式(4)で示される構成単位である構成連鎖(式(P1c)で表される構成連鎖)を有する高分子化合物であり、そのため、上記の式(A)に該当する構成連鎖を有さないものであると推定される。
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
(実施例9:高分子化合物P5の合成)
 窒素ガス雰囲気下、単量体CM10(1.4949g)、単量体M2(0.3016g)、単量体CM3(0.3813g)、及び、トルエン42mlを混合してモノマー溶液を調製した。窒素ガス雰囲気下、このモノマー溶液を加熱し、そこに、酢酸パラジウム0.7mg、トリス(2-メトキシフェニル)ホスフィン4.2mgを加えた後、100℃で20重量%テトラエチルアンモニウムヒドロキシド水溶液10.2mlを滴下した。テトラエチルアンモニウムヒドロキシド水溶液の滴下開始から5時間、100℃で攪拌した。次に、得られた溶液に、フェニルボロン酸36.9mg、酢酸パラジウム0.7mg、トリス(2-メトキシフェニル)ホスフィン4.2mg、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液10.2mlを追加して、更に約18時間攪拌した。
反応溶液から水層を除いた後、そこに、N,N-ジエチルジチオカルバミド酸ナトリウム三水和物0.84g、及び、イオン交換水17mlを加え、85℃で5時間攪拌した。得られた溶液において、有機層を水層と分離した後、有機層を3.6重量%塩酸(2回)、2.5重量%アンモニア水溶液(2回)、イオン交換水(6回)の順番で洗浄した。
有機層をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後乾燥させ固体を得た。この固体をトルエンに溶解させ、あらかじめトルエンを通液したシリカゲル/アルミナカラムに溶液を通液し、通液された溶出液をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後、乾燥させて、高分子化合物P5を得た。高分子化合物P5の収量は1.145gであった。
高分子化合物P5のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=2.0×105、Mw=1.3×106であり、ガラス転移温度は91℃であった。高分子化合物P5は、下記の表20に示す単量体の仕込み比により得られていることから、下記の表21に示す構成単位及びそれらのモル比率を有する。そして、高分子化合物P5は、複合原料単量体である単量体M2を用いて合成されたことから、上記式(1)で示される構成単位の両側が常に式(4)で示される構成単位である構成連鎖(式(P2c)で表される構成連鎖)を有する高分子化合物であり、そのため、上記の式(A)に該当する構成連鎖を有さないものであると推定される。
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
(実施例10:高分子化合物P6の合成)
 窒素ガス雰囲気下、単量体CM10(0.2492g)、単量体CM4(0.1289g)、単量体M2(0.0402g)、単量体CM3(0.0763g)、単量体CM11(0.1256g)、及び、トルエン10mlを混合してモノマー溶液を調製した。窒素ガス雰囲気下、このモノマー溶液を加熱し、そこに、酢酸パラジウム0.2mg、トリス(2-メトキシフェニル)ホスフィン1.4mgを加えた後、100℃で20重量%テトラエチルアンモニウムヒドロキシド水溶液2.5mlを加えた。テトラエチルアンモニウムヒドロキシド水溶液の滴下開始から4.5時間、100℃で攪拌した。次に、得られた溶液に、フェニルボロン酸12.2mg、酢酸パラジウム0.2mg、トリス(2-メトキシフェニル)ホスフィン1.4mg、及び、20重量%テトラエチルアンモニウムヒドロキシド水溶液2.5mlを追加して、更に14時間攪拌した。
反応溶液から水層を除いた後、そこに、N,N-ジエチルジチオカルバミド酸ナトリウム三水和物0.14g、及び、イオン交換水2.7mlを加え、85℃で2時間攪拌した。得られた溶液において、有機層を水層と分離した後、有機層を3.6重量%塩酸(2回)、2.5重量%アンモニア水溶液(2回)、イオン交換水(4回)の順番で洗浄した。
有機層をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後乾燥させ固体を得た。この固体をトルエンに溶解させ、あらかじめトルエンを通液したシリカゲル/アルミナカラムに溶液を通液し、通液された溶出液をメタノールに滴下したところ、固体が沈殿した。この固体を濾過後、乾燥させて、高分子化合物P6を得た。高分子化合物P6の収量は0.346gであった。
高分子化合物P6のポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、Mn=6.6×10、Mw=2.0×10であった。高分子化合物P6は、下記の表22に示す単量体の仕込み比により得られていることから、下記の表23に示す構成単位及びそれらのモル比率を有する。そして、高分子化合物P6は、複合原料単量体である単量体M2を用いて合成されたことから、上記式(1)で示される構成単位の両側が常に式(4)で示される構成単位である構成連鎖(式(P2c)で表される構成連鎖)を有する高分子化合物であり、そのため、上記の式(A)に該当する構成連鎖を有さないものであると推定される。
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
[発光素子の作製]
 上記で得られた高分子化合物及び発光材料を用いて組成物及びその溶液を調製し、それらを用いて各種の発光素子を作製した。
(実施例11)
<組成物MP3及びその溶液の調製>
 高分子化合物P3の3.0重量%キシレン溶液及び発光材料EM-Aを重量比70:30で混合してなる組成物MP3を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.6重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MP3の1.6重量%キシレン溶液」と言う。
<発光素子DP3の作製>
 スパッタ法により45nmの厚みでITO膜を付けたガラス基板に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plextronics社製)を用いてスピンコートにより65nmの厚みで成膜し、ホットプレート上で、170℃、15分間乾燥させた。次に、高分子化合物CP3の0.7重量%キシレン溶液を用いて、スピンコートにより1890rpmの回転速度で成膜し、窒素ガス雰囲気化ホットプレート上で180℃で60分間乾燥させた。この膜厚は約20nmであった。
次に、組成物MP3の1.6重量%キシレン溶液を用いてスピンコートにより2020rpmの回転速度で成膜した。その膜厚は約80nmであった。これを酸素濃度及び水分濃度が10ppm以下(重量基準)の窒素雰囲気下で、130℃、10分間乾燥させ発光層とした。1.0×10-4Pa以下にまで減圧した後、陰極として、組成物MP3膜上にフッ化ナトリウムを約3nm、次いでアルミニウムを約80nm蒸着して、発光素子DP3を作製した。
得られた発光素子DP3の素子構成は、ITO(陽極)/AQ-1200(正孔注入層、65nm)/高分子化合物CP3(正孔輸送層)/組成物MP3(発光層)/NaF(3nm)/Al(80nm)(NaF及びAlを合わせて陰極)となる。
<特性評価>
 得られた発光素子DP3について、0Vから12Vまで電圧して素子を発光させ、発光輝度、効率、色度を測定したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は40cd/Aであり、そのときの電圧は8.2Vであった。輝度1000cd/mでの駆動電圧は6.0Vであり、色度座標C.I.E.1931は(x,y)=(0.31,0.63)であり、そのときの発光効率は37cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は73.1時間であり、輝度半減寿命は663時間であった。結果を表24に示す。
(実施例12)
<組成物MP4及びその溶液の調製>
 高分子化合物P4と発光材料EM-Aとを重量比70:30で混合してなる組成物MP4を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が3.0重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MP4の3.0重量%キシレン溶液」と言う。
<発光素子DP4の作製>
 実施例11における組成物MP3の1.6重量%キシレン溶液に代えて、組成物MP4の3.0重量%キシレン溶液を用い、さらにスピンコートの回転数を2020rpmから2100rpmに変更したこと以外は、実施例11と同様にして、発光素子DP4を作製した。
<特性評価>
 得られた発光素子DP4に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は41cd/Aであり、そのときの電圧は8.0Vであった。輝度1000cd/mでの駆動電圧は5.8Vであり、色度座標C.I.E.1931は(x,y)=(0.31,0.64)であり、そのときの発光効率は38cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は88.8時間であり、輝度半減寿命は752時間であった。結果を表24に示す。
(実施例13)
<組成物MP5及びその溶液の調製>
 高分子化合物P5と発光材料EM-Aとを重量比70:30で混合してなる組成物MP5を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.6重量%となるように溶解させた。こうして得られた溶液を、以下、「組成物MP5の1.6重量%キシレン溶液」と言う。
<発光素子DP5の作製>
 実施例11における組成物MP3の1.6重量%キシレン溶液に代えて、組成物MP5の1.6重量%キシレン溶液を用い、さらにスピンコートの回転数を2020rpmから2500rpmに変更したこと以外は、実施例11と同様にして、発光素子DP5を作製した。
<特性評価>
 得られた発光素子DP5に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は43cd/Aであり、そのときの電圧は8.0Vであった。輝度1000cd/mでの駆動電圧は6.2Vであり、色度座標C.I.E.1931は(x,y)=(0.31,0.64)であり、そのときの発光効率は42cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は40.9時間であり、輝度半減寿命は385時間であった。結果を表24に示す。
(実施例14)
<高分子化合物P6の溶液の調製>
 高分子化合物P6を、キシレン(関東化学社製、電子工業用グレード)に、全固形分濃度が1.6重量%となるように溶解させた。こうして得られた溶液を、以下、「高分子化合物P6の1.6重量%キシレン溶液」と言う。
<発光素子DP6の作製>
 実施例11における組成物MP3の1.6重量%キシレン溶液に代えて、高分子化合物P6の1.6重量%キシレン溶液を用い、さらにスピンコートの回転数を2020rpmから1950rpmに変更したこと以外は、実施例11と同様にして、発光素子DP6を作製した。
<特性評価>
 得られた発光素子DP6に電圧を印加したところ、ピーク波長(EL)520nmの緑色発光を示した。最大発光効率は46cd/Aであり、そのときの電圧は8.4Vであった。輝度1000cd/mでの駆動電圧は5.8Vであり、色度座標C.I.E.1931は(x,y)=(0.31,0.64)であり、そのときの発光効率は42cd/Aであった。初期輝度を8000cd/mに設定し、定電流駆動したところ、輝度20%減までに要した時間は38.6時間であり、輝度半減寿命は385時間であった。結果を表24に示す。
Figure JPOXMLDOC01-appb-T000125
実施例11で得た発光素子DP3、実施例12で得た発光素子DP4、実施例13で得た発光素子DP5、実施例14で得た発光素子DP6は、いずれも上記の式(A)で表される構成連鎖を有さない高分子化合物を用いた発光素子であり、いずれの発光素子も、高い最大発光効率を示すのに加えて、輝度20%減までに要する時間が極めて長いことから、輝度安定性に優れていることが判明した。なかでも、燐光発光性化合物から誘導される構成単位を含む高分子化合物P6を用いた発光素子DP6は、燐光発光性化合物との組成物を用いた発光素子DP5と同様の輝度安定性を有し、高い最大発光効率を示すことが判明した。
0…基板、1…陽極、2…正孔注入層(電荷注入層)、3…正孔輸送層、4…発光層、6…電子注入層(電荷注入層)、7…陰極、10…発光素子。
 

Claims (24)

  1. 式(1)で表される構成単位、式(2)で表される構成単位及び式(3)で表される構成単位、並びに、式(4)で表される構成単位及び式(5)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を含む高分子鎖を有しており、且つ、
     前記高分子鎖中に、式(1)で表される構成単位と式(2)で表される構成単位とが直接結合した構造を含まない、高分子化合物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    [式(1)中、R1aは、アルキル基、アリール基、1価の芳香族複素環基、アラルキル基又は置換アミノ基を表し、R1b及びR1cは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。なお、2つのR1cは、それぞれ同一であっても異なっていてもよい。
     式(2)中、Ar2a及びAr2bは、それぞれ独立に、アリーレン基又は2価の芳香族複素環基であって、式(1)で表される構成単位とは異なる構造を有する基を表す。Ar2cは、アリール基、又は、1価の芳香族複素環基を表す。Ar2a、Ar2b及びAr2cで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。t及びtは、それぞれ独立に、1又は2である。なお、Ar2a及びAr2bが複数存在する場合、それらは同一であっても異なっていてもよい。
     式(3)で表される構成単位は、式(1)で表される構成単位とは異なる構造である。式(3)中、Ar3aは、アリーレン基、又は、2価の芳香族複素環基を表す。R3a及びR3bは、それぞれ独立に、アルキル基、アリール基、又は、1価の芳香族複素環基であって、Ar3aにおける前記高分子鎖と結合している炭素原子の隣の炭素原子に結合している基である。Ar3aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を置換基として更に有していてもよい。
     式(4)で表される構成単位は、式(1)で表される構成単位及び式(3)で表される構成単位とはそれぞれ異なる構造である。式(4)中、Ar4aは、アリーレン基、又は、2価の芳香族複素環基を表す。Ar4aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。kは1から3の整数である。なお、Ar4aが複数存在する場合、それらは同一であっても異なっていてもよい。
     式(5)中、Ar5a、Ar5b、Ar5c、Ar5d及びAr5hは、それぞれ独立に、アリーレン基又は2価の芳香族複素環基を表す。Ar5e、Ar5f及びAr5gは、それぞれ独立に、アリール基又は1価の芳香族複素環基を表す。Ar5a、Ar5b、Ar5c、Ar5d、Ar5e、Ar5f、Ar5g及びAr5hで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。Ar5d、Ar5e、Ar5f及びAr5gで表される基は、それぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接結合するか、或いは、-O-、-S-、-C(=O)-、-C(=O)-O-、-N(R)-、-C(=O)-N(R)-、又は-C(R)-で表される基を介して結合して、5~7員環を形成していてもよい。これらの式中のRは、アルキル基、アリール基、1価の芳香族複素環基、又はアラルキル基を表す。n及びnは、それぞれ独立に、0又は1であり、nは、0、1又は2である。]
  2.  式(2)で表される構成単位の両側に、式(3)で表される構成単位が隣接している、請求項1記載の高分子化合物。
  3.  式(1)で表される構成単位の両側に、式(4)で表される構成単位及び式(5)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位が隣接している、請求項1又は2記載の高分子化合物。
  4.  式(1)で表される構成単位の両側に式(4)で表される構成単位が隣接した、式(6)で表される構造を有する、請求項3に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000006
    [式(6)中、R1a、R1b、R1c、Ar4a及びkは、それぞれ前記と同義である。ただし、2つのkは、互いに同一であっても異なっていてもよく、複数のAr4aは、それぞれ同一であっても異なっていてもよい。]
  5.  式(3)で表される構成単位として、式(7)で表される構成単位を有する、請求項1~4のいずれか一項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000007
    [式(7)中、R7a及びR7cは、それぞれ独立に、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基又はシアノ基を表し、R7b及びR7dは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。]
  6.  式(4)で表される構成単位として、式(9)で表される構成単位及び式(10)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を有する、請求項1~5のいずれか一項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    [式(9)中、R9a及びR9cは、それぞれ独立に、アルキル基、アリール基、1価の芳香族複素環基、又はアラルキル基を表し、R9aとR9cとが互いに結合していてもよい。]
  7.  R1aが、アルキル基、アリール基又はアラルキル基である、請求項1~6のいずれか一項に記載の高分子化合物。
  8.  高分子化合物の全質量中の、式(1)で表される構成単位、式(2)で表される構成単位、式(3)で表される構成単位、式(4)で表される構成単位及び式(5)で表される構成単位の合計の質量比率が、高分子化合物全体を1としたとき、0.9以上である、請求項1~7のいずれか一項に記載の高分子化合物。
  9.  燐光発光性化合物から誘導される構成単位を更に含む、請求項1~8のいずれか一項に記載の高分子化合物。
  10.  式(12-1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000010
    [式(12-1)中、R12aはメチル基を表し、R12bは水素原子、アルキル基、非置換又はアルキル基若しくはアリール基で置換されたフェニル基を表し、R12cは水素原子又はメチル基を表し、R12dはアルキル基、アルキル基又はアリール基で置換されたアリール基を表し、R12eはアルキル基又はアリール基で置換されたアリール基を表す。2つのR12cは、互いに同一であっても異なっていてもよく、2つのR12dは、互いに同一であっても異なっていてもよく、2つのR12eは、互いに同一であっても異なっていてもよい。X11aは、下記の置換基(a)群から選ばれる基、又は下記の置換基(b)群から選ばれる基を表す。2つのX11aは、互いに同一であっても異なってもよい。
    (置換基(a)群)
     塩素原子、臭素原子、ヨウ素原子、-O-S(=O)20(R20はアルキル基、又はアルキル基、アルコキシ基、ニトロ基、フッ素原子若しくはシアノ基で置換されていてもよいアリール基を示す。)で表される基。
    (置換基(b)群)
     -B(OR21(R21は水素原子又はアルキル基を示し、2つのR21は、互いに同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、-BF(Qはリチウム、ナトリウム、カリウム、ルビジウム又はセシウムの1価の陽イオンを示す。)で表される基、-Sn(R22(R22は水素原子又はアルキル基を示し、3つのR22は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、-MgY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基、-ZnY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基。]
  11.  R12dが、炭素数1~8のアルキル基、又は、1つ以上3つ以下の炭素数1~12のアルキル基で置換されたアリール基であって且つ該アルキル基の少なくとも1つ以上が炭素数6~12のアルキル基であるアリール基であり、R12eが、1つ以上3つ以下の炭素数1~12のアルキル基で置換されたアリール基であって且つ該アルキル基の少なくとも1つ以上が炭素数6~12のアルキル基であるアリール基である、請求項10記載の化合物。
  12.  R12d及びR12eが、式(12-2)で表される基である、請求項11記載の化合物。
    Figure JPOXMLDOC01-appb-C000011
    [式(12-2)中、R12f、R12g及びR12hは、それぞれ独立に、水素原子、又は炭素数1~12のアルキル基を表す。但し、R12f、R12g及びR12hのうちの少なくとも一つは、炭素数6~12のアルキル基である。式(12-1)において、複数存在する式(12-2)で表される基は、それぞれ同一であっても異なっていてもよい。]
  13.  式(13)で表される化合物。
    Figure JPOXMLDOC01-appb-C000012
    [式(13)中、R1aは、アルキル基、アリール基、1価の芳香族複素環基、アラルキル基又は置換アミノ基を表し、R1b及びR1cは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。2つのR1cは、それぞれ同一であっても異なっていてもよい。X11aは、下記の置換基(a)群から選ばれる基、又は下記の置換基(b)群から選ばれる基を表す。2つのX11aは、互いに同一であっても異なってもよい。
    (置換基(a)群)
     塩素原子、臭素原子、ヨウ素原子、-O-S(=O)20(R20はアルキル基、又はアルキル基、アルコキシ基、ニトロ基、フッ素原子若しくはシアノ基で置換されていてもよいアリール基を示す。)で表される基。
    (置換基(b)群)
     -B(OR21(R21は水素原子又はアルキル基を示し、2個存在するR21は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、-BF(Qはリチウム、ナトリウム、カリウム、ルビジウム又はセシウムの1価の陽イオンを示す。)で表される基、-Sn(R22(R22は水素原子又はアルキル基を示し、3個存在するR22は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、-MgY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基、-ZnY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基。]
  14.  請求項1~9のいずれか一項に記載の高分子化合物と、正孔輸送材料、電子輸送材料及び発光材料からなる群より選ばれる少なくとも1種の材料と、を含有する、組成物。
  15.  前記発光材料が、燐光発光性化合物を含有する、請求項14記載の組成物。
  16.  請求項1~9のいずれか一項に記載の高分子化合物、又は、請求項14若しくは15に記載の組成物と、
     溶媒と、を含有する溶液。
  17.  請求項1~9のいずれか一項に記載の高分子化合物、又は、請求項14若しくは15に記載の組成物を含有する薄膜。
  18.  陽極と、陰極と、前記陽極と前記陰極との間に設けられた請求項1~9のいずれか一項に記載の高分子化合物、又は、請求項14若しくは15に記載の組成物を含有する有機層と、を備える発光素子。
  19.  請求項18記載の発光素子を備える面状光源。
  20.  請求項18記載の発光素子を備える表示素子。
  21.  式(11)で表される化合物、式(14)で表される化合物及び式(15)で表される化合物を含む単量体混合物を重合させて、式(6)で表される構造、式(2)で表される構成単位及び式(3)で表される構成単位を含む高分子化合物を得る工程を有しており、
     前記単量体混合物は、その全モル数を100としたとき、式(11)で表される化合物、式(14)で表される化合物及び式(15)で表される化合物の合計モル数が、60~100である、高分子化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    [式(11)及び式(6)中、R1aは、アルキル基、アリール基、1価の芳香族複素環基、アラルキル基又は置換アミノ基を表し、R1b及びR1cは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を表す。2つのR1cは、それぞれ同一であっても異なっていてもよい。Ar4aは、アリーレン基、又は、2価の芳香族複素環基を表す。Ar4aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。kは1から3の整数である。なお、複数存在するAr4aは、それぞれ同一であっても異なっていてもよく、2つのkも、互いに同一であっても異なっていてもよい。式(11)中、X11aは、下記置換基(a)群から選ばれる基、又は下記置換基(b)群から選ばれる基を表す。2つのX11aは、互いに同一であっても異なってもよい。
    (置換基(a)群)
     塩素原子、臭素原子、ヨウ素原子、-O-S(=O)20(R20はアルキル基、又はアルキル基、アルコキシ基、ニトロ基、フッ素原子若しくはシアノ基で置換されていてもよいアリール基を示す。)で表される基。
    (置換基(b)群)
     -B(OR21(R21は水素原子又はアルキル基を示し、2個存在するR21は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、-BF(Qはリチウム、ナトリウム、カリウム、ルビジウム又はセシウムの1価の陽イオンを示す。)で表される基、-Sn(R22(R22は水素原子又はアルキル基を示し、3個存在するR22は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、-MgY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基、-ZnY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基。
     式(14)及び式(2)中、Ar2a及びAr2bは、それぞれ独立に、アリーレン基又は2価の芳香族複素環基を表す。Ar2cは、アリール基、又は、1価の芳香族複素環基を表す。Ar2a、Ar2b及びAr2cで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。t及びtは、それぞれ独立に、1又は2である。なお、Ar2a及びAr2bが複数存在する場合、それらは同一であっても異なっていてもよい。式(14)中、X14aは、X11aと同義である。
     式(15)及び式(3)中、Ar3aは、アリーレン基、又は、2価の芳香族複素環基を表す。R3a及びR3bは、それぞれ独立に、アルキル基、アリール基、又は、1価の芳香族複素環基であって、Ar3aにおけるX15aと結合している炭素原子の隣の炭素原子に結合している基である。Ar3aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を置換基として更に有していてもよい。式(15)中、X15aは、X11aと同義である。]
  22.  前記単量体混合物は、式(16)で表される化合物及び式(17)で表される化合物からなる群より選ばれる少なくとも1種の化合物を更に含む、請求項21記載の高分子化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    [式(16)中、Ar4aは、アリーレン基、又は、2価の芳香族複素環基を表す。Ar4aで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。kは1から3の整数である。なお、Ar4aが複数存在する場合、それらは同一であっても異なっていてもよい。X16aは、X11aと同義である。
     式(17)中、Ar5a、Ar5b、Ar5c、Ar5d及びAr5hは、それぞれ独立に、アリーレン基又は2価の芳香族複素環基を表す。Ar5e、Ar5f及びAr5gは、それぞれ独立に、アリール基又は1価の芳香族複素環基を表す。Ar5a、Ar5b、Ar5c、Ar5d、Ar5e、Ar5f、Ar5g及びAr5hで表される基は、アルキル基、アリール基、1価の芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキル基、アリールアルコキシ基、置換アミノ基、置換カルボニル基、置換カルボキシル基、フッ素原子又はシアノ基を、置換基として更に有していてもよい。Ar5d、Ar5e、Ar5f及びAr5gで表される基は、それぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接結合するか、或いは、-O-、-S-、-C(=O)-、-C(=O)-O-、-N(R)-、-C(=O)-N(R)-、又は-C(R)-で表される基を介して結合して、5~7員環を形成していてもよい。これらの式中のRは、アルキル基、アリール基、1価の芳香族複素環基、又はアラルキル基を表す。n及びnは、それぞれ独立に、0又は1であり、nは、0、1又は2である。X17aは、X11aと同義である。]
  23.  X11a、X14a、X16a及びX17aが、前記置換基(a)群から選ばれる基であり、X15aが、前記置換基(b)群から選ばれる基である、請求項22記載の高分子化合物の製造方法。
  24.  X11a、X14a、X16a及びX17aが、前記置換基(b)群から選ばれる基であり、X15aが、前記置換基(a)群から選ばれる基である、請求項22記載の高分子化合物の製造方法。
PCT/JP2011/077419 2010-11-30 2011-11-28 高分子化合物及びその製造方法、並びに発光素子 WO2012073902A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-267684 2010-11-30
JP2010267684 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073902A1 true WO2012073902A1 (ja) 2012-06-07

Family

ID=46171834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077419 WO2012073902A1 (ja) 2010-11-30 2011-11-28 高分子化合物及びその製造方法、並びに発光素子

Country Status (3)

Country Link
JP (1) JP5859828B2 (ja)
TW (1) TW201233703A (ja)
WO (1) WO2012073902A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720097B2 (ja) 2009-01-20 2015-05-20 住友化学株式会社 メタフェニレン系高分子化合物及びそれを用いた発光素子
WO2016191171A1 (en) 2015-05-26 2016-12-01 E I Du Pont De Nemours And Company Electroactive materials
JP6972912B2 (ja) * 2016-10-28 2021-11-24 住友化学株式会社 組成物及びそれを用いた発光素子
JP7226452B2 (ja) * 2018-09-28 2023-02-21 株式会社レゾナック 有機エレクトロニクス材料及び有機エレクトロニクス素子
EP4071193A4 (en) * 2020-03-27 2023-09-13 Lg Chem, Ltd. NOVEL POLYMER AND ORGANIC ELECTROLUMINESCENT ELEMENT COMPRISING SAME
JP2022130290A (ja) * 2021-02-25 2022-09-06 住友化学株式会社 組成物及びそれを用いた発光素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183363A (ja) * 2001-09-28 2003-07-03 Samsung Sdi Co Ltd 青色電界発光高分子およびこれを用いた有機電界発光素子
WO2009131255A1 (ja) * 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
WO2010084977A1 (ja) * 2009-01-20 2010-07-29 住友化学株式会社 メタフェニレン系高分子化合物及びそれを用いた発光素子
WO2012008550A1 (ja) * 2010-07-16 2012-01-19 住友化学株式会社 高分子化合物、該高分子化合物を含有する組成物、液状組成物、薄膜及び素子、並びに該素子を備える面状光源及び表示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009020698A (ja) * 2007-07-11 2009-01-29 Sony Corp 登録装置、照合装置、データ構造及び記憶媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183363A (ja) * 2001-09-28 2003-07-03 Samsung Sdi Co Ltd 青色電界発光高分子およびこれを用いた有機電界発光素子
WO2009131255A1 (ja) * 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
WO2010084977A1 (ja) * 2009-01-20 2010-07-29 住友化学株式会社 メタフェニレン系高分子化合物及びそれを用いた発光素子
WO2012008550A1 (ja) * 2010-07-16 2012-01-19 住友化学株式会社 高分子化合物、該高分子化合物を含有する組成物、液状組成物、薄膜及び素子、並びに該素子を備える面状光源及び表示装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MALY, K.E. ET AL.: "Engineering Hydrogen-Bonded Molecular Crystals Built from Derivatives of Hexaphenylbenzene and Related Compounds", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129, no. 14, 2007, pages 4306 - 4322 *
MOORTHY, J.N. ET AL.: "De novo design for functional amorphous materials: Synthesis and thermal and light-emitting properties of twisted anthracene-functionalized bimesitylenes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 130, no. 51, 2008, pages 17320 - 17333 *
REN, S. ET AL.: "Synthesis and optical and electrochemical properties of new n-conjugated 1,3,5-triazine-containing Polymers", JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, vol. 43, no. 24, 2005, pages 6554 - 6561 *
TAKAHASHI, T. ET AL.: "A convenient preparative method of dibromoterphenyl and Bis(bromophenyl) diene monomers using zirconacyclopentadienes", CHEMISTRY LETTERS, 1999, pages 1173 - 1174 *

Also Published As

Publication number Publication date
JP2012131993A (ja) 2012-07-12
TW201233703A (en) 2012-08-16
JP5859828B2 (ja) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5720097B2 (ja) メタフェニレン系高分子化合物及びそれを用いた発光素子
JP5866189B2 (ja) 高分子化合物及びその製造方法、並びに、発光素子
JP6090317B2 (ja) 高分子化合物およびそれを用いた発光素子
JP5076433B2 (ja) 共重合体およびそれを用いた高分子発光素子
JP6090316B2 (ja) 高分子化合物およびそれを用いた発光素子
JP5955946B2 (ja) 高分子化合物およびそれを用いた発光素子
JP5353186B2 (ja) アミン系高分子化合物及びそれを用いた発光素子
JP6331617B2 (ja) 金属錯体およびそれを用いた発光素子
KR20100075830A (ko) 화합물 및 그의 제조 방법, 및 그것을 이용한 잉크 조성물, 박막, 유기 트랜지스터 및 유기 전계발광 소자
JP5859828B2 (ja) 高分子化合物及びその製造方法、並びに発光素子
KR20110095371A (ko) 아민계 고분자 화합물 및 그것을 이용한 발광 소자
KR20120061864A (ko) 고분자 화합물 및 그의 제조 방법
JP5866990B2 (ja) 高分子化合物及びその製造方法
US9255221B2 (en) Composition containing borane compound and conjugated polymer compound, and element
JP2006241347A (ja) 高分子化合物及びそれを用いた高分子発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844217

Country of ref document: EP

Kind code of ref document: A1