WO2012073791A1 - 赤外線用光学機能膜 - Google Patents

赤外線用光学機能膜 Download PDF

Info

Publication number
WO2012073791A1
WO2012073791A1 PCT/JP2011/077097 JP2011077097W WO2012073791A1 WO 2012073791 A1 WO2012073791 A1 WO 2012073791A1 JP 2011077097 W JP2011077097 W JP 2011077097W WO 2012073791 A1 WO2012073791 A1 WO 2012073791A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical functional
film
layers
substrate
Prior art date
Application number
PCT/JP2011/077097
Other languages
English (en)
French (fr)
Inventor
悦夫 寺山
真起夫 臼井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012073791A1 publication Critical patent/WO2012073791A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Definitions

  • the present invention relates to an optical functional film for infrared rays, and more particularly to an infrared antireflection film and a bandpass filter.
  • optical functional films for infrared rays such as antireflection films and band filters effective for infrared rays in this region have been proposed.
  • Such an optical functional film for infrared rays is formed as a film having a multilayer structure in which a plurality of layers are laminated on the surface of a substrate which is a glass block such as a lens or a prism.
  • the multilayer film thus formed has a problem in terms of durability, such as peeling from the substrate or peeling between layers.
  • Patent Document 1 in order to obtain an infrared antireflection film excellent in durability without mitigating an internal stress imbalance of the entire film and causing no film peeling, a film made of ZnSe or ZnS is used.
  • a film made of ZnSe or ZnS is used in order to obtain an infrared antireflection film excellent in durability without mitigating an internal stress imbalance of the entire film and causing no film peeling.
  • Al 2 is used as a layer in direct contact with the substrate.
  • an adhesion strengthening layer selected from the group consisting of O 3 , Y 2 O 3 , Ti 2 O 3 , TiO and TiO 2 , and further provide a wear resistance enhancing layer made of Y 2 O 3 as the outermost layer. Is described.
  • an object of the present invention is to provide an infrared optical functional film having an excellent optical function as an infrared optical member and excellent in durability.
  • peeling of the multilayer film can be achieved by providing an adhesion strengthening layer between the multilayer films and forming the adhesion strengthening layer with Y 2 O 3 or HfO 2 having a high melting point.
  • Y 2 O 3 or HfO 2 having a high melting point.
  • Furthermore, between the substrate and the multilayer structure has a Y 2 O 3 layer or HfO 2 layer as an adhesion reinforcing layer, [1] the infrared optical functional film according.
  • a protective layer on the outermost surface of the substrate opposite of the multilayered structure is Y 2 O 3 layer or HfO 2 layer, [1] or [2] for infrared according Optical functional film.
  • each of the plurality of optical functional layers constituting the multilayer structure is a layer selected from the group consisting of a MgF 2 layer, a YF 3 layer, a ZnS layer, and a Ge layer, and any one of [1] to [7] The optical film for infrared rays described.
  • Each of the plurality of optical functional layers constituting the multilayer structure is an infrared optical functional film according to [11], which is a layer selected from the group consisting of a MgF 2 layer, a YF 3 layer, a ZnS layer, and a Ge layer.
  • an infrared optical functional film such as an antireflection film or a band-pass filter having excellent spectral characteristics as an infrared optical member and excellent durability.
  • the infrared optical functional film according to the first embodiment of the present invention has a multilayer structure having a plurality of optical functional layers including a ZnS layer on a substrate, and at least one layer between the plurality of optical functional layers. has a small adhesion reinforcing layer thicknesses than any layer of the plurality of optical function layer, said seal adhesion reinforcing layer is Y 2 O 3 layer or HfO 2 layer.
  • ZnS layer means a layer mainly formed of ZnS, but the layer may contain other components in addition to ZnS. The same applies to other layers such as “Y 2 O 3 layer” and “HfO 2 layer”.
  • FIG. 1 shows a schematic cross-sectional view of the optical function film for infrared rays in the first embodiment.
  • An infrared optical functional film 100 shown in FIG. 1 has a multilayer structure composed of N layers of layers 1 to N on a substrate 101.
  • the multilayer structure includes a plurality of optical functional layers including the ZnS layer N, and an adhesion strengthening layer k between the layers k-1 and k + 1 of the optical functional layer.
  • the adhesion strengthening layer k is a Y 2 O 3 layer or a HfO 2 layer.
  • the substrate is not particularly limited as long as it transmits infrared rays.
  • the substrate material include ZnSe, chalcogenide glass, Si, Ge, ZnS, and the like, and the infrared wavelength range (for example, 3 to 5 ⁇ m or 8 to 14 ⁇ m wavelength range) and desired optical performance.
  • chalcogenide glass is preferable from the viewpoint of high transmittance and cost.
  • An example of the chalcogenide glass is KG-1 manufactured by Opto Crystal Co., Ltd.
  • the optical functional layer is a layer that exhibits optical functions such as low reflectivity (antireflection), high transparency, cut in specific wavelength band, brightness / color tone correction, transmittance adjustment (half mirror), reflection (mirror), etc. is there.
  • a layer that functions as a good antireflection layer or a bandpass filter layer is preferable.
  • the optical function film for infrared rays of the present invention can be used as an antireflection film for infrared rays or a bandpass filter.
  • the low refractive index layer, the medium refractive index layer, and the high refractive index layer may each include a plurality of layers. Depending on the desired optical function, the number of layers, the stacking order, and the film thickness of each layer can be determined.
  • the above-mentioned “low refractive index”, “medium refractive index”, and “high refractive index” indicate the relative relationship in refractive index.
  • the material of the optical functional layer is not particularly limited, but examples of the material for the low refractive index layer include fluorides such as MgF 2 , YF 3 , CaF 3 , BaF 2 , and CeF 3 and low refractive index materials such as Ce 2 O 3. Can be mentioned.
  • Examples of the material for the medium refractive index layer or the high refractive index layer include medium refractive index materials such as ZnS, ZnSe, CeO 2 , and SiO.
  • Examples of the material for the high refractive index layer include a high refractive index material such as Ge.
  • MgF 2 and YF 3 are preferable.
  • As the medium refractive index material ZnS, ZnSe, and CeO 2 are preferable, ZnS or CeO 2 is more preferable, and ZnS is more preferable.
  • a ZnS layer is included as the optical functional layer.
  • a layer made of ZnS in the multilayer structure it is preferable to have a ZnS layer on the side far from the substrate, and it is more preferable that the layer farthest from the substrate (that is, the layer in contact with air) is a ZnS layer.
  • a ZnS layer may be provided on the side close to the substrate, and even when the multilayer structure has a ZnS layer on the side far from the substrate, the side closer to the substrate may be provided. May have another ZnS layer.
  • the “far side” from the substrate refers to the N / 2nd and subsequent layers when the multilayer structure is composed of N layers counted from the substrate side
  • the “near side” from the substrate refers to the N / 2th layer. It refers to the layer on the more substrate side.
  • Each of the optical functional layers in the multilayer structure is preferably a layer made of one selected from MgF 2 , YF 3 , ZnS or Ge.
  • a two-layer film in which a high refractive index layer or a medium refractive index layer and a low refractive index layer are laminated in this order from the substrate side (the thickness of each layer is relative to the design center wavelength ⁇ 0. Te, a value thickness ⁇ refractive index is almost ⁇ 0/4) which is a basic and manner.
  • the number of layers and the film thickness can be increased by an equivalent film with respect to the basic two-layer film.
  • the adhesion strengthening layer is provided in the first layer on the substrate side and provided in every other layer.
  • the number of optical functional layers, the stacking order, and the optical film thickness (physical film thickness ⁇ refractive index) of each layer can be determined according to a desired optical function.
  • the optical functional film in the first embodiment of the present invention has an adhesion enhancing layer having a smaller film thickness than any of the optical functional layers in at least one of the layers of the optical functional layer, and the adhesion enhancing layer is Y 2. O 3 layer or HfO 2 layer.
  • As the adhesion strengthening layer an HfO 2 layer is more preferable.
  • Y 2 O 3 and HfO 2 have high melting points (Y 2 O 3 is about 2410 ° C., HfO 2 is about 2758 ° C.), and when formed by vacuum deposition, the deposition temperature is 2300 ° C.
  • the optical functional layer having good adhesion examples include a ZnS layer and a Ge layer. It is also preferable to provide a Y 2 O 3 layer or an HfO 2 layer as an adhesion strengthening layer between the substrate and the multilayer structure in addition to the interlayer of the optical functional layer. Furthermore, in the case where a plurality of adhesion strengthening layers are provided, all the adhesion enhancing layers may be the same material (Y 2 O 3 or HfO 2 ) layer, or an adhesion enhancing layer made of Y 2 O 3 and An adhesion strengthening layer made of HfO 2 may be used in combination.
  • the adhesion strengthening layer is a layer having a smaller film thickness than any of the optical functional layers constituting the multilayer structure and substantially not involved in the optical function.
  • the film thickness of the adhesion-strengthening layer is preferably 5 to 60 nm, and is preferably a very thin layer compared to other layers.
  • Adhesion-enhancing layer is not substantially involved in optical function is expressed when the adhesion-enhancing layer is provided in a multilayer structure and when other configurations are the same without providing an adhesion-enhancing layer This means that there is no practical difference in the optical function (which only affects the range equal to or less than the error caused by variations in the film thickness and refractive index of the material when the optical functional film is formed). This is preferable for facilitating the design of a multilayer structure having a desired optical function.
  • each layer having a multilayer structure is not particularly limited, and examples thereof include a vacuum deposition method, an ion plating method, a sputtering method, and a CVD method. Of these, vacuum deposition is preferred from the viewpoints of film thickness control and film thickness uniformity.
  • the refractive index of each layer can also be adjusted by forming conditions (for example, degree of vacuum, heating temperature, etc.).
  • FIG. 2 shows a schematic cross-sectional view of the optical function film for infrared rays in the second embodiment.
  • An infrared optical functional film 200 shown in FIG. 2 has a multilayer structure composed of N layers of layers 1 to N on a substrate 101, like the infrared optical functional film 100.
  • the multilayer structure includes a plurality of optical functional layers including the layer N made of ZnS, and an adhesion enhancing layer k between the optical functional layers k-1 and k + 1.
  • a protective layer N + 1 is further provided on the outermost surface of the multilayer structure.
  • the adhesion strengthening layer k and the protective layer N + 1 are Y 2 O 3 layers or HfO 2 layers.
  • the durability can be further improved by providing the outermost layer with a Y 2 O 3 layer or an HfO 2 layer as a protective layer.
  • a protective layer is more preferably an HfO 2 layer.
  • the protective layer is preferably a layer substantially not involved in the optical function, like the adhesion enhancing layer, and the thickness of the protective layer is preferably 5 to 60 nm.
  • the infrared optical functional film according to the third embodiment of the present invention has a multilayer structure composed of a plurality of optical functional layers on a substrate, and the plurality of optical optical films are included in at least one layer of the plurality of optical functional layers. It has an adhesion strengthening layer having a smaller film thickness than any of the functional layers, and the adhesion strengthening layer is a Y 2 O 3 layer or an HfO 2 layer.
  • FIG. 3 shows a schematic cross-sectional view of the infrared optical functional film in the third embodiment.
  • the same components as those in the first and second embodiments shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted below.
  • An infrared optical functional film 300 shown in FIG. 3 has a multilayer structure composed of N layers of layers 1 to N on a substrate 101, like the infrared optical functional film 100.
  • the optical functional layers k ⁇ 1 and k + 1 are made of the same material and function as one optical functional layer K as a whole. That is, it can be considered that the adhesion enhancing layer k is inserted in the layer of the optical function layer K. Since the adhesion strengthening layer k does not participate in the optical function, the whole of the optical function layers k ⁇ 1 and k + 1 functions as the optical function layer K.
  • an adhesion enhancing layer may be provided between the optical functional layers as in the first and second embodiments.
  • a protective layer may be provided on the outermost surface of the multilayer structure as in the second embodiment.
  • the optical function film for infrared rays of the present invention can be used as an antireflection film for infrared rays or a bandpass filter by laminating a plurality of layers having different refractive indexes as optical function layers.
  • the antireflection film can be used as an antireflection film for a wavelength range of 3 to 5 ⁇ m or 8 to 14 ⁇ m.
  • the reflectance of the antireflection film in the wavelength region is preferably 1% or less, and more preferably 0.5% or less.
  • the bandpass filter can be used as a filter that transmits a wavelength range of 3 to 5 ⁇ m or 8 to 14 ⁇ m (that is, blocks infrared rays in a wavelength range other than the range).
  • the transmittance of the bandpass filter in the wavelength range is preferably 99.0% or more, and more preferably 99.5% or more.
  • Example 1 On the ZnSe substrate (diameter 30 mm, thickness 1 mm), each material shown in Table 1 was sequentially laminated at a film thickness shown in Table 1 by a vacuum deposition method to produce an antireflection film.
  • a vacuum deposition method to produce an antireflection film.
  • an adhesion strengthening layer was formed between the substrate and the first optical functional layer (second layer) and between the optical functional layers.
  • no adhesion strengthening layer was provided between the Ge layer and the ZnS layer.
  • the film thickness of each layer is indicated in the table as the ratio of the designed center wavelength lambda 0.
  • the reflectance distribution of the obtained antireflection film is shown in FIG. Good antireflection performance was obtained in the wavelength range of 3 to 5 ⁇ m.
  • Examples 2 to 4 On the ZnSe substrate (diameter 30 mm, thickness 1 mm), the materials shown in Tables 2 to 4 were sequentially laminated by the vacuum deposition method at the film thicknesses shown in Tables 2 to 4 to produce antireflection films.
  • an adhesion strengthening layer was formed between the substrate and the first optical functional layer (second layer) and between the optical functional layers.
  • no adhesion strengthening layer was provided between the Ge layer and the ZnS layer.
  • the film thickness of each layer is shown in the table as a ratio to the design center wavelength ⁇ 0 .
  • the reflectance distributions of the obtained antireflection films of Examples 2 to 4 are shown in FIGS. In each example, good antireflection performance was obtained in the wavelength region of 8 to 12 ⁇ m.
  • Examples 5 to 9, Comparative Example 1 On the chalcogenide glass substrate (diameter 30 mm, thickness 2 mm), the materials shown in Tables 5 to 10 were sequentially laminated at the film thicknesses shown in Tables 5 to 10 by vacuum vapor deposition to produce an antireflection film.
  • the adhesion strengthening layer was formed between the substrate and the first optical functional layer (second layer) and between the optical functional layers using Y 2 O 3 or HfO 2 .
  • no adhesion strengthening layer was provided between the Ge layer and the ZnS layer.
  • the film thickness of each layer is shown in the table as a ratio to the design center wavelength ⁇ 0 .
  • Examples 10 to 16 On the chalcogenide glass substrate (diameter 30 mm, thickness 2 mm), the materials shown in Tables 11 to 17 were sequentially laminated at the film thicknesses shown in Tables 11 to 17 by a vacuum deposition method to produce an antireflection film.
  • an adhesion strengthening layer was formed between the substrate and the first optical functional layer (second layer), between the optical functional layer and in the layer.
  • the adhesion enhancing layer formed in the optical functional layer is the same material as the HfO 2 layer of the fifth layer of Example 10 (in the case of Example 10, the MgF 2 layer ( The fourth layer and the sixth layer).
  • a protective layer was formed using HfO 2 as the uppermost layer.
  • each layer is shown in the table as a ratio to the design center wavelength ⁇ 0 .
  • the reflectance distributions of the antireflection films of Examples 10 to 16 obtained are shown in FIGS. In each example, good antireflection performance was obtained in the wavelength region of 8 to 12 ⁇ m.
  • the cellophane tape was applied to the surface of the antireflection film, and an adhesion test for peeling the tape was repeated three times, and the presence or absence of peeling of the film was visually confirmed.
  • the adhesion test after 24 hours the case where the film was not peeled off three times was designated as “ ⁇ ” (good adhesion).
  • the time is shown in Table 18 as “x” (adhesion failure).
  • Adhesiveness, boiling adhesiveness and wear resistance are ⁇
  • moisture-resistant adhesiveness is X after 3 hours
  • adhesiveness is ⁇
  • boiling adhesiveness and friability are any one
  • moisture-resistant adhesiveness is 12 After time has passed
  • ⁇ XX Adhesiveness and wear resistance are ⁇
  • boiling adhesiveness and moisture-resistant adhesiveness are ⁇
  • Examples 17 and 18 On the Si substrate (diameter 30 mm, thickness 1 mm), the materials shown in Tables 19 and 20 were sequentially laminated at the film thicknesses shown in Tables 19 and 20 by a vacuum deposition method to produce an antireflection film.
  • an adhesion strengthening layer was formed between the substrate and the first optical functional layer (second layer) and between the optical functional layers.
  • no adhesion strengthening layer was provided between the Ge layer and the ZnS layer.
  • the film thickness of each layer is shown in the table as a ratio to the design center wavelength ⁇ 0 . 21 and 22 show the reflectance distribution of the antireflection films of Examples 17 and 18 obtained. Good antireflection performance was obtained in a band of 3 to 5 ⁇ m.
  • Examples 19 to 24 On the Ge substrate (diameter 30 mm, thickness 1 mm), the materials shown in Tables 21 to 26 were sequentially laminated at the film thicknesses shown in Tables 21 to 26 by a vacuum deposition method to produce an antireflection film.
  • an adhesion enhancing layer was formed between the substrate and the first optical functional layer (second layer), and between and in the optical functional layer.
  • the adhesion enhancing layer formed in the optical functional layer is the same material as the Y 2 O 3 layer of the eighth layer in Example 24 (YF 3 layer in Example 24).
  • Examples 25 to 31 On the ZnS substrate (diameter 30 mm, thickness 1 mm), the materials shown in Tables 27 to 33 were sequentially laminated at the film thicknesses shown in Tables 27 to 33 by a vacuum deposition method to produce an antireflection film.
  • a vacuum deposition method to produce an antireflection film.
  • an adhesion enhancing layer was formed between the substrate and the first optical functional layer (second layer) and between or in the optical functional layer.
  • no adhesion enhancing layer was provided between the Ge layer and the ZnS layer.
  • the adhesion enhancement layer formed in the optical functional layer is a layer in which the front and rear layers are made of the same material (MgF in Example 26) like the ninth layer Y 2 O 3 layer in Example 26. refers to two layers (the eighth layer and the tenth layer).
  • the film thickness of each layer is indicated in the table as the ratio of the designed center wavelength lambda 0.
  • the reflectance distributions of the obtained antireflection films of Examples 25 to 31 are shown in FIGS. Good antireflection performance was obtained in the wavelength range of 3 to 5 ⁇ m or 8 to 12 ⁇ m.
  • Examples 6, 9, 10, 13 to 16 of the antireflection films prepared in Examples 2 (substrate ZnSe), 17 (substrate Si), 19 (substrate Ge), 21 (substrate Ge), and 25 (substrate ZnS) In the same manner as for the antireflection film of Comparative Example 1, adhesion, boiling adhesion, moisture resistance adhesion, and wear resistance were tested to evaluate durability. The evaluation results are shown in Table 34.
  • the antireflection film of the present invention has excellent adhesion even when provided on a substrate other than chalcogenide.
  • each material shown in Table 35 was laminated in order by the vacuum evaporation method with the film thickness shown in Table 35 to produce a bandpass filter.
  • an adhesion strengthening layer was formed between the substrate and the first optical functional layer (second layer) and between the optical functional layers.
  • the film thickness of each layer is shown in the table as a ratio to the design center wavelength ⁇ 0 .
  • the transmittance distribution of the obtained bandpass filter is shown in FIG. Good bandpass filter performance that selectively transmits the 3 to 5 ⁇ m band was obtained.
  • the infrared optical functional film of the present invention has excellent spectral characteristics as an infrared optical member, is excellent in durability, and can be suitably used as an antireflection film or a bandpass filter.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

 赤外線用光学部材として優れた光学機能を有し、耐久性に優れた赤外線用光学機能膜を提供すること。 基板上に、複数の光学機能層を有する多層構造の赤外線用光学機能膜であって、複数の光学機能層の層間の少なくとも一つに、前記複数の光学機能層のいずれの層より膜厚が小さい密着強化層を有し、該密着強化層がY層又はHfO層である、赤外線用光学機能膜。光学機能層としてZnS層を含むとよい。

Description

赤外線用光学機能膜
 本発明は、赤外線用光学機能膜に関し、特に、赤外反射防止膜及び帯域フィルタに関する。
 近年、赤外線カメラ、赤外線センサなど、赤外線を利用した光学機器の開発が盛んに行われている。これら赤外光学機器には、主に3~5μm帯域と8~14μm帯域の赤外線を利用する場合が多い。この領域の赤外線に有効な反射防止膜や帯域フィルタなどの赤外線用光学機能膜が種々提案されている。このような赤外線用光学機能膜は、レンズやプリズムなどのガラスブロックである基板の表面に複数の層を積層させた多層構造の膜として形成される。こうして形成された多層膜は基板から剥離したり、層間で剥離するなど耐久性の点で問題を有していた。
 特許文献1には、膜全体の内部応力の不均衡を緩和し、膜剥離などが生じることのない、耐久性に優れた赤外反射防止膜を得るために、ZnSeやZnSからなる基板上に、中間屈折率のZnS膜、低屈折率のYF3膜、中間屈折率のZnS膜及び低屈折率のYF3膜が積層された赤外反射防止膜において、前記基板に直接接する層としてAl、Y、Ti、TiO及びTiOからなる群より選ばれる密着力強化層を設け、更には最外層にYからなる耐磨耗性強化層を設けることが記載されている。
日本国特開2003-149406号公報
 赤外線を利用した光学機器は、昨今、屋外で使用される頻度も増え、多層膜の密着性、環境変化に対する耐久性などのより一層の向上が求められている。赤外線用光学部材における多層膜の剥離(基板と多層膜との剥離、多層膜内での層間剥離など)の原因の一つは、基板と多層膜との線膨張係数の違いが挙げられる。赤外線用光学部材の基板の材質としては、ZnSe、カルコゲナイドガラス、Si、Ge、ZnSなどが挙げられるが、特にカルコゲナイドガラスは線膨張係数が大きく、温度変化により多層膜の剥離が生じ易い。
 特許文献1に記載の反射防止膜では、一定の耐久性向上の効果が得られるものの、更なる改善が求められている。
 以上のような状況に鑑み、本発明の目的は、赤外線用光学部材として優れた光学機能を有し、耐久性に優れた赤外線用光学機能膜を提供することである。
 本発明者らが検討したところ、密着力強化層を多層膜の層間に設け、該密着力強化層を融点の高いYやHfOで層形成して設けることで、多層膜の剥離が抑制され、耐久性が向上することを見出した。更に多層膜に特定の材料からなる層を設けることで、多層膜の剥離が抑制される効果が高まり、耐久性が著しく向上することを見出した。
 即ち、前記課題は、以下の手段により解決することができる。
[1]
 基板上に、ZnS層を含む複数の光学機能層を有する多層構造の赤外線用光学機能膜であって、
 前記複数の光学機能層の層間の少なくとも一つに、前記複数の光学機能層のいずれの層より膜厚が小さい密着強化層を有し、該密着強化層がY層又はHfO層である、赤外線用光学機能膜。
[2]
 更に、前記基板と前記多層構造との間に、前記密着強化層としてY層又はHfO層を有する、[1]記載の赤外線用光学機能膜。
[3]
 更に、前記多層構造の前記基板と反対側の最も外側の表面に保護層を有し、該保護層がY層又はHfO層である、[1]又は[2]記載の赤外線用光学機能膜。
[4]
 前記複数の光学機能層の少なくとも一層に、Y又はHfOからなる密着強化層が挿入されている、[1]~[3]のいずれか一項記載の赤外線用光学機能膜。
[5]
 前記密着強化層の膜厚が5~60nmである、[1]~[4]のいずれか一項記載の赤外線用光学機能膜。
[6]
 前記密着強化層がHfO層である、[1]~[5]のいずれか一項記載の赤外線用光学機能膜。
[7]
 前記保護層がHfO層である、[3]~[6]のいずれか一項記載の赤外線用光学機能膜。
[8]
 前記多層構造を構成する複数の光学機能層のそれぞれは、MgF層、YF層、ZnS層及びGe層からなる群から選ばれる層である、[1]~[7]のいずれか一項記載の赤外線用光学膜。
[9]
 前記基板が、ZnSe、カルコゲナイドガラス、Si、Ge及びZnSからなる群から選ばれる1つである、[1]~[8]のいずれか一項記載の赤外線用光学機能膜。
[10]
 前記基板がカルコゲナイドガラスである、[9]記載の赤外線用光学機能膜。
[11]
 基板上に、複数の光学機能層を有する多層構造の赤外線用光学機能膜であって、
 前記複数の光学機能層の少なくとも一層の層中に、前記複数の光学機能層のいずれの層より膜厚の小さい密着強化層を有し、該密着強化層がY層又はHfO層である、赤外線用光学機能膜。
[12]
 前記多層構造を構成する複数の光学機能層のそれぞれは、MgF層、YF層、ZnS層及びGe層からなる群から選ばれる層である、[11]記載の赤外線用光学機能膜。
[13]
 前記多層構造が、反射防止膜又は帯域フィルタ膜として機能する、[1]~[12]のいずれか一項記載の赤外線用光学機能膜。
 本発明によれば、赤外線用光学部材として優れた分光特性を有し、耐久性に優れた、反射防止膜や帯域フィルタなどの赤外線用光学機能膜を提供することができる。
本発明における第一の実施形態の赤外線用光学機能膜の概略断面図である。 本発明における第二の実施形態の赤外線用光学機能膜の概略断面図である。 本発明における第三の実施形態の赤外線用光学機能膜の概略断面図である。 実施例1の反射防止膜の反射率分布を示す図である。 実施例2の反射防止膜の反射率分布を示す図である。 実施例3の反射防止膜の反射率分布を示す図である。 実施例4の反射防止膜の反射率分布を示す図である。 実施例5の反射防止膜の反射率分布を示す図である。 実施例6の反射防止膜の反射率分布を示す図である。 実施例7の反射防止膜の反射率分布を示す図である。 実施例8の反射防止膜の反射率分布を示す図である。 実施例9の反射防止膜の反射率分布を示す図である。 比較例1の反射防止膜の反射率分布を示す図である。 実施例10の反射防止膜の反射率分布を示す図である。 実施例11の反射防止膜の反射率分布を示す図である。 実施例12の反射防止膜の反射率分布を示す図である。 実施例13の反射防止膜の反射率分布を示す図である。 実施例14の反射防止膜の反射率分布を示す図である。 実施例15の反射防止膜の反射率分布を示す図である。 実施例16の反射防止膜の反射率分布を示す図である。 実施例17の反射防止膜の反射率分布を示す図である。 実施例18の反射防止膜の反射率分布を示す図である。 実施例19の反射防止膜の反射率分布を示す図である。 実施例20の反射防止膜の反射率分布を示す図である。 実施例21の反射防止膜の反射率分布を示す図である。 実施例22の反射防止膜の反射率分布を示す図である。 実施例23の反射防止膜の反射率分布を示す図である。 実施例24の反射防止膜の反射率分布を示す図である。 実施例25の反射防止膜の反射率分布を示す図である。 実施例26の反射防止膜の反射率分布を示す図である。 実施例27の反射防止膜の反射率分布を示す図である。 実施例28の反射防止膜の反射率分布を示す図である。 実施例29の反射防止膜の反射率分布を示す図である。 実施例30の反射防止膜の反射率分布を示す図である。 実施例31の反射防止膜の反射率分布を示す図である。 実施例32の帯域フィルタの透過率分布を示す図である。
 以下、本発明の実施の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
[第一の実施形態]
 本発明の第一の実施形態における赤外線用光学機能膜は、基板上に、ZnS層を含む複数の光学機能層を有する多層構造を有し、前記複数の光学機能層の層間の少なくとも一つに、前記複数の光学機能層のいずれの層より膜厚の小さい密着強化層を有し、該密着強化層がY層又はHfO層である。
 なお、本明細書において、「ZnS層」は、主にZnSから形成された層であることを意味するが、該層がZnS以外に他の成分を含んでもよい。「Y層」や「HfO層」など他の層についても同様なことを意味する。
 図1に、第一の実施形態における赤外線用光学機能膜の概略断面図を示す。
 図1に示す赤外線用光学機能膜100は、基板101上に、層1~層NまでのN層からなる多層構造を有する。多層構造は、ZnS層Nを含む複数の光学機能層と、光学機能層の層k-1と層k+1の層間にある密着力強化層kとを含む。密着力強化層kはY層又はHfO層である。
 基板としては赤外線を透過するものであれば特に制限されないが、基板の材料としては、ZnSe、カルコゲナイドガラス、Si、Ge、ZnSなどが挙げられ、利用する赤外線の波長域(例えば、3~5μmや8~14μmの波長域)や所望の光学性能に応じて選択することができる。
 なかでも、透過率が高く、コスト的な観点から、カルコゲナイドガラスが好ましい。カルコゲナイドガラスとしては、例えば株式会社オプトクリスタル社製 KG-1が挙げられる。
 光学機能層は、赤外線に対する低反射性(反射防止)、高透過性、特定波長帯域カット、輝度・色調補正、透過率調整(ハーフミラー)、反射(ミラー)等の光学機能を発現する層である。なかでも、良好な反射防止層又は帯域フィルタ層として機能する層であることが好ましく、屈折率の異なる層を複数層積層することなどにより、積層体全体として優れた反射防止性能や帯域フィルタ性能を発現させることができる。この場合、本発明の赤外線用光学機能膜は、赤外線用反射防止膜又は帯域フィルタとして用いることができる。
 屈折率の異なる層の積層により反射防止性能又は帯域フィルタ性能を発現させる態様としては、(1)低屈折率層、中屈折率層及び高屈折率層の積層(2)低屈折率層及び高屈折率層の積層などが挙げられる。上記(1)及び(2)において、低屈折率層、中屈折率層、高屈折率層はそれぞれ複数層含んでもよく。所望の光学機能に応じて、層数や積層順序及び各層の膜厚を決定することができる。
 なお、上記「低屈折率」、「中屈折率」、「高屈折率」とは相対的な屈折率の大小関係を示すものである。
 光学機能層の材料としては特に制限されないが、低屈折率層の材料としてはMgF、YF、CaF、BaF、CeF等のフッ化物やCeなどの低屈折率材料が挙げられる。中屈折率層又は高屈折率層の材料としては、ZnS、ZnSe、CeO、SiOなどの中屈折率材料が挙げられる。高屈折率層の材料としては、Geなどの高屈折率材料が挙げられる。
 低屈折率材料としては、MgF、YFが好ましい。中屈折率材料としては、ZnS、ZnSe、CeOが好ましく、ZnS又はCeOがより好ましく、ZnSが更に好ましい。
 本実施形態では、光学機能層としてZnS層を含む。光学機能層として多層構造中にZnSからなる層を含めることにより、層間剥離が抑制される。
 また、多層構造中、基板から遠い側にZnS層を有していることが好ましく、最も基板から遠い層(即ち、空気に接する層)がZnS層であることがより好ましい。もちろん、所望の光学性能を得るために、基板に近い側にZnS層を有していてもよいし、多層構造が基板から遠い側にZnS層を有している場合でも更に、基板に近い側に別のZnS層を有していてもよい。ここで、基板から「遠い側」とは、多層構造が基板側から数えてN層からなるとしたときN/2番目以降の層を指し、基板から「近い側」とはN/2番目の層より基板側の層を指す。
 多層構造中の光学機能層それぞれは、MgF、YF、ZnS又はGeのうちから選ばれる1つからなる層であることが好ましい。
 反射防止膜の好ましい態様としては、基板側から、高屈折率層又は中屈折率層と低屈折率層とをこの順に積層した2層膜(各層の膜厚は、設計中心波長λに対して、膜厚×屈折率がほぼλ/4となる値とする)を基本とした態様である。ここで、基本の2層膜に対して、等価膜により層数及び膜厚を増やすことができる。密着力強化層は、基板側の第一層に設け、更に一層おきに設ける態様が好ましい。
 ここで、光学機能層の層数、積層順及び各層の光学膜厚(物理的膜厚×屈折率)は所望の光学機能に応じて決定することができる。
 本発明の第一の実施形態における光学機能膜は、光学機能層の層間の少なくとも一つに光学機能層のいずれの層より膜厚の小さい密着強化層を有し、該密着強化層はY層又はHfO層である。密着力強化層としては、HfO層がより好ましい。
 密着力強化層としてY層又はHfO層を設けることにより、多層膜の剥離が抑制され、耐久性を向上させることができる。これは、Y及びHfOは融点が高く(Yが約2410℃、HfOが約2758℃)、真空蒸着法で形成する場合、蒸着温度はYが2300℃~2600℃、HfOが2750℃~2900℃程度となる。このため、層形成時に蒸着物質(Y又はHfO)が高エネルギーで蒸着面に到達し、下層を基板側へ押し込みながら蒸着され、その結果、層間の密着力が強化されるものと推測している。
 光学機能層の層間の複数に密着力強化層を設けてもよく、全ての光学機能層の層間に密着力強化層を設ける態様も好ましい態様である。ただし、密着性の良い光学機能層同士の層間には密着力強化層を設けなくてもよい。密着性の良い光学機能層としては、例えば、ZnS層とGe層が挙げられる。
 また、光学機能層の層間に加えて、基板と多層構造との間に密着力強化層としてY層又はHfO層を設けることも好ましい。
 更にまた、密着力強化層を複数層設ける場合、全ての密着力強化層が同一材料(Y又はHfO)層であってもよいし、Yからなる密着力強化層とHfOからなる密着力強化層が併用されていてもよい。
 密着力強化層は、多層構造を構成する光学機能層のいずれの層より膜厚が小さく、実質的に光学機能に関与しない層である。このため、密着力強化層の膜厚は5~60nmとし、他の層に比べて極めて薄い層であることが好ましい。「密着力強化層が実質的に光学機能に関与しない」とは、多層構造において密着力強化層を設けた場合と、密着力強化層を設けず他の構成を同じとした場合とで、発現する光学機能に実際上の差異がない(光学機能膜を構成するときの膜厚や材料の屈折率のバラツキによる誤差と同等の範囲以下の影響しか与えない)ことを意味する。このことは、所望の光学機能を有する多層構造の設計を容易にする上で好ましい。
 多層構造の各層の形成法については、特に限定されないが、例えば、真空蒸着法、イオンプレーティング法、スパッタリング法、CVD法などがあげられる。なかでも真空蒸着法が膜厚のコントロールと膜厚の均一性の点から好ましい。形成条件(例えば、真空度、加熱温度等)で各層の屈折率を調整することもできる。
[第二の実施形態]
 図2に、第二の実施形態における赤外線用光学機能膜の概略断面図を示す。なお、図2において、図1に示す第一の実施形態と同一のものについては同じ番号を付し、以下その説明は省略する。
 図2に示す赤外線用光学機能膜200は、赤外線用光学機能膜100と同じく、基板101上に、層1~層NまでのN層からなる多層構造を有する。多層構造は、ZnSからなる層Nを含む複数の光学機能層と、光学機能層の層k-1と層k+1の層間にある密着力強化層kとを含む。
 第二の実施形態における赤外線用光学機能膜200においては、多層構造の最表面に更に保護層N+1を有する。密着力強化層k及び保護層N+1はY層又はHfO層である。
 密着力強化層に加えて、最表層に保護層としてY層又はHfO層を設けることにより、耐久性を更に改善することができる。特に、耐熱性や耐湿性などを向上させることができる。
 保護層は、HfO層であることがより好ましい。
 保護層は密着力強化層と同じく実質的に光学機能に関与しない層であることが好ましく、保護層の膜厚は5~60nmであることが好ましい。
[第三の実施形態]
 本発明の第三の実施形態における赤外線用光学機能膜は基板上に、複数の光学機能層からなる多層構造を有し、前記複数の光学機能層の少なくとも一層の層中に、前記複数の光学機能層のいずれの層より膜厚の小さい密着強化層を有し、該密着強化層がY層又はHfO層である。
 図3に、第三の実施形態における赤外線用光学機能膜の概略断面図を示す。なお、図3において、図1及び図2に示す第一及び第二の実施形態と同一のものについては同じ番号を付し、以下その説明は省略する。
 図3に示す赤外線用光学機能膜300は、赤外線用光学機能膜100と同じく、基板101上に、層1~層NまでのN層からなる多層構造を有する。
 第三の実施形態における赤外線用光学機能膜300においては、光学機能層k-1とk+1とは同一材料で構成され、全体で一つの光学機能層Kとして機能する。即ち、密着力強化層kは光学機能層Kの層中に挿入されているとみなせる。密着力強化層kは光学機能に関与しないため、光学機能層k-1とk+1と合わせた全体で光学機能層Kとして機能する。
 第三の実施形態においても、光学機能層の層中に挿入される密着力強化層以外に、第一及び第二の実施形態と同じく光学機能層の層間に密着力強化層を設けてもよい。更に、第二の実施形態と同じく多層構造の最表面に保護層を設けてもよい。
[反射防止膜、帯域フィルタ]
 本発明の赤外線用光学機能膜は、光学機能層として屈折率の異なる層を複数層積層することにより、赤外線用反射防止膜又は帯域フィルタとして用いることができる。
 反射防止膜としては、3~5μmや8~14μmの波長域に対する反射防止膜として用いることができる。該反射防止膜の上記波長域における反射率は、1%以下であることが好ましく、0.5%以下であることがより好ましい。
 帯域フィルタとしては、3~5μmや8~14μmの波長域を透過する(即ち、該領域以外の波長域の赤外線を遮断する)フィルタとして用いることができる。該帯域フィルタの上記波長域における透過率は、99.0%以上であることが好ましく、99.5%以上であることがより好ましい。
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
 ZnSe基板(直径30mm、厚さ1mm)上に、表1に示す各材料を表1に記載の膜厚で順次真空蒸着法により積層して反射防止膜を作製した。ここで、Yを用いて密着力強化層を、基板と最初の光学機能層(第2層)との間、及び光学機能層の層間に形成した。ただし、Ge層とZnS層の層間には密着力強化層を設けなかった。なお、各層の膜厚は設計中心波長λに対する比として表中に示した。
 得られた反射防止膜の反射率分布を図4に示す。3~5μmの波長域で良好な反射防止性能が得られた。
Figure JPOXMLDOC01-appb-T000001
[実施例2~4]
 ZnSe基板(直径30mm、厚さ1mm)上に、表2~4に示す各材料を表2~4に記載の膜厚で順次真空蒸着法により積層して反射防止膜を作製した。ここで、Yを用いて密着力強化層を、基板と最初の光学機能層(第2層)との間、及び光学機能層の層間に形成した。ただし、Ge層とZnS層の層間には密着力強化層を設けなかった。なお、各層の膜厚は設計中心波長λに対する比として表中に示した。
 得られた実施例2~4の反射防止膜の反射率分布を図5~7に示す。各実施例とも8~12μmの波長域で良好な反射防止性能が得られた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[実施例5~9、比較例1]
 カルコゲナイドガラス基板(直径30mm、厚さ2mm)上に、表5~10に示す各材料を表5~10に記載の膜厚で順次真空蒸着法により積層して反射防止膜を作製した。ここで、Y又はHfOを用いて密着力強化層を、基板と最初の光学機能層(第2層)との間、及び光学機能層の層間に形成した。ただし、実施例7以外ではGe層とZnS層の層間には密着力強化層を設けなかった。なお、各層の膜厚は設計中心波長λに対する比として表中に示した。
 得られた実施例5~9及び比較例1の反射防止膜の反射率分布を図8~13に示す。各実施例及び比較例とも3~5μm又は8~12μmの波長域で良好な反射防止性能が得られた。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
[実施例10~16]
 カルコゲナイドガラス基板(直径30mm、厚さ2mm)上に、表11~17に示す各材料を表11~17に記載の膜厚で順次真空蒸着法により積層して反射防止膜を作製した。
 ここで、HfOを用いて密着力強化層を、基板と最初の光学機能層(第2層)との間、光学機能層の層間及び層中に形成した。光学機能層の層中に形成された密着力強化層とは、実施例10の第5層のHfO層のように、前後の層が同一材料(実施例10の場合にはMgF層(第4層及び第6層)となる層のことを指す。
 実施例11~15については、最上層にHfOを用いて保護層を形成した。
 なお、各層の膜厚は設計中心波長λに対する比として表中に示した。
 得られた実施例10~16の反射防止膜の反射率分布を図14~20に示す。各実施例とも8~12μmの波長域で良好な反射防止性能が得られた。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
[耐久性の評価]
 上記のように作製した実施例6、9、10、13~16及び比較例1の反射防止膜について、以下の試験・評価を行った。評価結果を表18に示す。
[密着性]
 作製した反射防止膜表面にセロハンテープ(商品名:セロハンテープNo.405 テープ幅18mm、製造元:ニチバン株式会社)をはりつけ、これを剥がすことを3回繰り返し、膜の剥がれの有無を目視で確認した。3回とも膜が剥がれなかった場合を「○」(密着性良好)、膜の剥がれがあった場合を「×」(密着性不良)とした。
[煮沸密着性]
 作製した反射防止膜を純水に入れ、30分間煮沸した。その後、反射防止膜表面に前記セロハンテープをはりつけ、これを剥がすことを3回繰り返し、膜の剥がれの有無を目視で確認した。3回とも膜が剥がれなかった場合を「○」(密着性良好)、膜の剥がれがあった場合を「×」(密着性不良)とした。
[耐湿密着性]
 作製した反射防止膜を50℃95%RHの環境下に入れ、3時間、12時間及び24時間保持した。各時間経過後、反射防止膜表面に前記セロハンテープをはりつけ、これを剥がす密着性テストを3回繰り返し、膜の剥がれの有無を目視で確認した。24時間経過後の密着性テストで3回とも膜が剥がれなかった場合を「○」(密着性良好)とした。また、いずれかの時間経過後の密着性テストで膜の剥がれがあった場合には「×」(密着性不良)として、その時間を表18に示す。
[摩滅性]
 作製した反射防止膜表面を専用ゴム(商品名:Eraser Insert、製造元:Summers Optical, A Division of EMS Acqisition Corp.)にて2.5ポンドの加重をかけて20回往復で擦ったとき、膜の剥がれなかったものを「○」、膜が剥がれたものを「×」として評価した。
[耐久性総合判定]
 上記の密着性、煮沸密着性、耐湿密着性及び摩滅性の結果に基づいて、以下の基準で評価した。
 ◎:密着性、煮沸密着性、耐湿密着性及び摩滅性がいずれも○
 ○:密着性、煮沸密着性及び摩滅性が○、耐湿密着性が3時間経過後までは○
 ×:密着性、煮沸密着性及び摩滅性が○、耐湿密着性が3時間経過後で×、又は密着性が○、煮沸密着性及び摩滅性のいずれか1つが×で、耐湿密着性が12時間経過後で×
 ××:密着性及び摩滅性が○で、煮沸密着性及び耐湿密着性(3時間経過後)の2つが×
 ×××:密着性が×
Figure JPOXMLDOC01-appb-T000018
 比較例1においては、密着性が不良なため、他の評価は行わなかった。
 表18から、ZnSからなる層を含む光学機能層を有し、光学機能層同士の層間にY又はHfOからなる密着強化層を有する反射防止膜(実施例6、9、10、13、15及び16)と、光学機能層の層中に密着強化層を有する反射防止膜(実施例14)は、密着性に優れることが分かる。
 また、更にY又はHfOからなる保護層を最外層に設けた反射防止膜(実施例13、14、15)では、保護層を設けない場合よりも優れた密着性を示すことが分かる。
[実施例17、18]
 Si基板(直径30mm、厚さ1mm)上に、表19及び20に示す各材料を表19及び20に記載の膜厚で順次真空蒸着法により積層して反射防止膜を作製した。ここで、Yを用いて密着力強化層を、基板と最初の光学機能層(第2層)との間、及び光学機能層の層間に形成した。ただし、Ge層とZnS層の層間には密着力強化層を設けなかった。なお、各層の膜厚は設計中心波長λに対する比として表中に示した。
 得られた実施例17及び18の反射防止膜の反射率分布を図21及び22に示す。3~5μmの帯域で良好な反射防止性能が得られた。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
[実施例19~24]
 Ge基板(直径30mm、厚さ1mm)上に、表21~26に示す各材料を表21~26に記載の膜厚で順次真空蒸着法により積層して反射防止膜を作製した。ここで、Yを用いて密着力強化層を、基板と最初の光学機能層(第2層)との間、及び光学機能層の層間及び層中に形成した。ただし、Ge層とZnS層の層間に密着力強化層を設けていない場合がある。また、光学機能層の層中に形成された密着力強化層とは、実施例24の第8層のY層のように、前後の層が同一材料(実施例24ではYF層(第7層及び第9層)となる層のことを指す。なお、各層の膜厚は設計中心波長λに対する比として表中に示した。
 得られた実施例19~24反射防止膜の反射率分布を図23~28に示す。3~5μm又は8~12μmの波長域で良好な反射防止性能が得られた。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
[実施例25~31]
 ZnS基板(直径30mm、厚さ1mm)上に、表27~33に示す各材料を表27~33に記載の膜厚で順次真空蒸着法により積層して反射防止膜を作製した。ここで、Y又はHfOを用いて密着力強化層を、基板と最初の光学機能層(第2層)との間、及び光学機能層の層間又は層中に形成した。ただし、実施例25、27及び28においてはGe層とZnS層の層間には密着力強化層を設けなかった。また、光学機能層の層中に形成された密着力強化層とは、実施例26の第9層のY層のように、前後の層が同一材料の層(実施例26ではMgF層(第8層及び第10層)を指す。なお、各層の膜厚は設計中心波長λに対する比として表中に示した。
 得られた実施例25~31反射防止膜の反射率分布を図29~35に示す。3~5μm又は8~12μmの波長域で良好な反射防止性能が得られた。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 実施例2(基板ZnSe)、17(基板Si)、19(基板Ge)、21(基板Ge)及び25(基板ZnS)で作製した反射防止膜について、実施例6、9、10、13~16及び比較例1の反射防止膜に対して行ったのと同様に、密着性、煮沸密着性、耐湿密着性、摩滅性の試験を行い、耐久性を評価した。評価結果を表34に示す。
Figure JPOXMLDOC01-appb-T000034
 表34に示すように、本発明の反射防止膜は、カルコゲナイド以外の基板上設けた場合でも、優れた密着性を有することが分かる。
[実施例32]
 Si基板上に、表35に示す各材料を表35に記載の膜厚で順次真空蒸着法により積層して帯域フィルタを作製した。ここで、Yを用いて密着力強化層を、基板と最初の光学機能層(第2層)との間、及び光学機能層の層間に形成した。なお、各層の膜厚は設計中心波長λに対する比として表中に示した。
 得られた帯域フィルタの透過率分布を図36に示す。3~5μmの帯域を選択的に透過する良好な帯域フィルタ性能が得られた。
Figure JPOXMLDOC01-appb-T000035
 本発明の赤外線用光学機能膜は、赤外線用光学部材として優れた分光特性を有し、耐久性に優れ、反射防止膜や帯域フィルタなどとして好適に用いることができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年11月30日出願の日本特許出願(特願2010-267886)、に基づくものであり、その内容はここに参照として取り込まれる。
 100、200、300 光学機能膜

Claims (13)

  1.  基板上に、ZnS層を含む複数の光学機能層を有する多層構造の赤外線用光学機能膜であって、
     前記複数の光学機能層の層間の少なくとも一つに、前記複数の光学機能層のいずれの層より膜厚が小さい密着強化層を有し、該密着強化層がY層又はHfO層である、赤外線用光学機能膜。
  2.  更に、前記基板と前記多層構造との間に、前記密着強化層としてY層又はHfO層を有する、請求項1記載の赤外線用光学機能膜。
  3.  更に、前記多層構造の前記基板と反対側の最も外側の表面に保護層を有し、該保護層がY層又はHfO層である、請求項1又は2記載の赤外線用光学機能膜。
  4.  前記複数の光学機能層の少なくとも一層に、Y又はHfOからなる密着強化層が挿入されている、請求項1~3のいずれか一項記載の赤外線用光学機能膜。
  5.  前記密着強化層の膜厚が5~60nmである、請求項1~4のいずれか一項記載の赤外線用光学機能膜。
  6.  前記密着強化層がHfO層である、請求項1~5のいずれか一項記載の赤外線用光学機能膜。
  7.  前記保護層がHfO層である、請求項3~6のいずれか一項記載の赤外線用光学機能膜。
  8.  前記多層構造を構成する複数の光学機能層のそれぞれは、MgF層、YF層、ZnS層及びGe層からなる群から選ばれる層である、請求項1~7のいずれか一項記載の赤外線用光学膜。
  9.  前記基板が、ZnSe、カルコゲナイドガラス、Si、Ge及びZnSからなる群から選ばれる1つである、請求項1~8のいずれか一項記載の赤外線用光学機能膜。
  10.  前記基板がカルコゲナイドガラスである、請求項9記載の赤外線用光学機能膜。
  11.  基板上に、複数の光学機能層を有する多層構造の赤外線用光学機能膜であって、
     前記複数の光学機能層の少なくとも一層の層中に、前記複数の光学機能層のいずれの層より膜厚の小さい密着強化層を有し、該密着強化層がY層又はHfO層である、赤外線用光学機能膜。
  12.  前記多層構造を構成する複数の光学機能層のそれぞれは、MgF層、YF層、ZnS層及びGe層からなる群から選ばれる層である、請求項11記載の赤外線用光学機能膜。
  13.  前記多層構造が、反射防止膜又は帯域フィルタ膜として機能する、請求項1~12のいずれか一項記載の赤外線用光学機能膜。
PCT/JP2011/077097 2010-11-30 2011-11-24 赤外線用光学機能膜 WO2012073791A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010267886A JP2014032213A (ja) 2010-11-30 2010-11-30 赤外線用光学機能膜
JP2010-267886 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073791A1 true WO2012073791A1 (ja) 2012-06-07

Family

ID=46171732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077097 WO2012073791A1 (ja) 2010-11-30 2011-11-24 赤外線用光学機能膜

Country Status (2)

Country Link
JP (1) JP2014032213A (ja)
WO (1) WO2012073791A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698830A (zh) * 2013-11-29 2014-04-02 杭州麦乐克电子科技有限公司 起始通过波长5700nm的测温滤光片
EP2848968A1 (en) * 2013-09-16 2015-03-18 Humboldt Universität zu Berlin Mid-infrared bandpass interference filter and external cavity laser unit incorporating same
GB2530099A (en) * 2014-09-15 2016-03-16 Schlumberger Holdings Temperature invariant infrared filter
CN105487156A (zh) * 2015-12-30 2016-04-13 杭州麦乐克电子科技有限公司 应用于中波红外成像的红外滤光片
CN106104311A (zh) * 2014-03-13 2016-11-09 富士胶片株式会社 光学组件、红外线照相机及光学组件的制造方法
CN106443841A (zh) * 2016-11-14 2017-02-22 天津津航技术物理研究所 一种超低剩余反射率ZnS基底长波减反射薄膜
WO2019018018A3 (en) * 2017-04-12 2019-04-25 Corning Incorporated ANTIREFLECTION COATINGS FOR INFRARED OPTICAL SYSTEM
US10345480B2 (en) 2014-09-15 2019-07-09 Schlumberger Technology Corporation Mid-infrared acid sensor
US10487646B2 (en) 2014-09-15 2019-11-26 Schlumberger Technology Corporation Mid-infrared sensor
US10539500B2 (en) 2014-09-15 2020-01-21 Schlumberger Technology Corporation Active surface cleaning for a sensor
CN111630415A (zh) * 2018-01-25 2020-09-04 三菱电机株式会社 光学部件及激光加工机
US10921482B2 (en) 2014-09-15 2021-02-16 Schlumberger Technology Corporation Mid-infrared carbon dioxide sensor
CN113238311A (zh) * 2021-07-12 2021-08-10 翼捷安全设备(昆山)有限公司 一种红外滤光片及其制备方法、红外气体传感器
WO2021200550A1 (ja) * 2020-04-02 2021-10-07 浜松ホトニクス株式会社 量子カスケードレーザ素子、量子カスケードレーザ装置及び量子カスケードレーザ装置の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6155399B2 (ja) * 2014-09-30 2017-06-28 富士フイルム株式会社 反射防止膜及びカルコゲナイドガラスレンズ並びに撮像装置
WO2016052080A1 (ja) * 2014-09-30 2016-04-07 富士フイルム株式会社 反射防止膜及びレンズ並びに撮像装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313802A (ja) * 1993-04-28 1994-11-08 Topcon Corp 赤外域多層膜
JP2000019305A (ja) * 1998-07-03 2000-01-21 Minolta Co Ltd 赤外反射防止膜
JP2003149434A (ja) * 2002-09-06 2003-05-21 Mitsubishi Electric Corp 赤外域用光学膜および光学素子
JP2003302520A (ja) * 2002-04-10 2003-10-24 Sumitomo Electric Ind Ltd 赤外レーザ用反射ミラーとその製造方法
JP2006072031A (ja) * 2004-09-02 2006-03-16 Mitsubishi Electric Corp 赤外域用反射防止膜およびこれを用いた赤外線レンズ
JP2007199378A (ja) * 2006-01-26 2007-08-09 Matsushita Electric Works Ltd 赤外線フィルタ及びその製造方法
JP2008158345A (ja) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd 光学フィルターの製造方法
JP2008268277A (ja) * 2007-04-16 2008-11-06 Sei Hybrid Kk 赤外線透過構造体および赤外線センサー

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313802A (ja) * 1993-04-28 1994-11-08 Topcon Corp 赤外域多層膜
JP2000019305A (ja) * 1998-07-03 2000-01-21 Minolta Co Ltd 赤外反射防止膜
JP2003302520A (ja) * 2002-04-10 2003-10-24 Sumitomo Electric Ind Ltd 赤外レーザ用反射ミラーとその製造方法
JP2003149434A (ja) * 2002-09-06 2003-05-21 Mitsubishi Electric Corp 赤外域用光学膜および光学素子
JP2006072031A (ja) * 2004-09-02 2006-03-16 Mitsubishi Electric Corp 赤外域用反射防止膜およびこれを用いた赤外線レンズ
JP2007199378A (ja) * 2006-01-26 2007-08-09 Matsushita Electric Works Ltd 赤外線フィルタ及びその製造方法
JP2008158345A (ja) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd 光学フィルターの製造方法
JP2008268277A (ja) * 2007-04-16 2008-11-06 Sei Hybrid Kk 赤外線透過構造体および赤外線センサー

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848968A1 (en) * 2013-09-16 2015-03-18 Humboldt Universität zu Berlin Mid-infrared bandpass interference filter and external cavity laser unit incorporating same
CN103698830B (zh) * 2013-11-29 2016-02-10 杭州麦乐克电子科技有限公司 起始通过波长5700nm的测温滤光片
CN103698830A (zh) * 2013-11-29 2014-04-02 杭州麦乐克电子科技有限公司 起始通过波长5700nm的测温滤光片
CN106104311A (zh) * 2014-03-13 2016-11-09 富士胶片株式会社 光学组件、红外线照相机及光学组件的制造方法
CN106104311B (zh) * 2014-03-13 2018-04-10 富士胶片株式会社 光学组件、红外线照相机及光学组件的制造方法
US10345480B2 (en) 2014-09-15 2019-07-09 Schlumberger Technology Corporation Mid-infrared acid sensor
NO344896B1 (en) * 2014-09-15 2020-06-22 Schlumberger Technology Bv Temperature invariant infrared filter
US11221431B2 (en) 2014-09-15 2022-01-11 Schlumberger Technology Corporation Mid-infrared carbon dioxide sensor
GB2530099B (en) * 2014-09-15 2019-01-02 Schlumberger Holdings Temperature invariant infrared filter
US10921482B2 (en) 2014-09-15 2021-02-16 Schlumberger Technology Corporation Mid-infrared carbon dioxide sensor
GB2530099A (en) * 2014-09-15 2016-03-16 Schlumberger Holdings Temperature invariant infrared filter
US10451784B2 (en) 2014-09-15 2019-10-22 Schlumberger Technology Corporation Temperature invariant infrared filter
US10487646B2 (en) 2014-09-15 2019-11-26 Schlumberger Technology Corporation Mid-infrared sensor
US10539500B2 (en) 2014-09-15 2020-01-21 Schlumberger Technology Corporation Active surface cleaning for a sensor
US10865638B2 (en) 2014-09-15 2020-12-15 Schlumberger Technology Corporation Mid-infrared sensor
CN105487156A (zh) * 2015-12-30 2016-04-13 杭州麦乐克电子科技有限公司 应用于中波红外成像的红外滤光片
CN106443841A (zh) * 2016-11-14 2017-02-22 天津津航技术物理研究所 一种超低剩余反射率ZnS基底长波减反射薄膜
WO2019018018A3 (en) * 2017-04-12 2019-04-25 Corning Incorporated ANTIREFLECTION COATINGS FOR INFRARED OPTICAL SYSTEM
CN111630415A (zh) * 2018-01-25 2020-09-04 三菱电机株式会社 光学部件及激光加工机
CN111630415B (zh) * 2018-01-25 2022-03-01 三菱电机株式会社 光学部件及激光加工机
WO2021200550A1 (ja) * 2020-04-02 2021-10-07 浜松ホトニクス株式会社 量子カスケードレーザ素子、量子カスケードレーザ装置及び量子カスケードレーザ装置の製造方法
JP7411484B2 (ja) 2020-04-02 2024-01-11 浜松ホトニクス株式会社 量子カスケードレーザ素子、量子カスケードレーザ装置及び量子カスケードレーザ装置の製造方法
CN113238311A (zh) * 2021-07-12 2021-08-10 翼捷安全设备(昆山)有限公司 一种红外滤光片及其制备方法、红外气体传感器

Also Published As

Publication number Publication date
JP2014032213A (ja) 2014-02-20

Similar Documents

Publication Publication Date Title
WO2012073791A1 (ja) 赤外線用光学機能膜
JP7021156B2 (ja) 層システムおよび層システムを備える光学素子
KR100691544B1 (ko) 반사 방지 중합체 구조물 및 이것의 제조 방법
JP2009086533A (ja) 赤外用多層膜、赤外反射防止膜及び赤外レーザ用反射ミラー
CN107636495A (zh) 包括在可见光区域内针对低照度条件的减反射涂层的光学制品
JP4793259B2 (ja) 反射鏡
JP2007171735A (ja) 広帯域反射防止膜
US20160354995A1 (en) Solar control film
JP2009204577A (ja) 透光性部材およびこれを備えた時計
JPH04221901A (ja) シリコン基板またはゲルマニウム基板用反射防止膜
WO2011086511A1 (en) An infrared lens
JP2005274527A (ja) 時計用カバーガラス
US9864118B2 (en) Photochromic solar control films
KR20180094151A (ko) 안경 렌즈
JP5888124B2 (ja) 多層膜フィルタ、及び多層膜フィルタの製造方法
JP5976363B2 (ja) 光学部材
JP2005165249A (ja) 反射防止膜及びこれを備える光学レンズ並びに光学レンズユニット
JP2004334012A (ja) 反射防止膜及び光学フィルター
JP2007233345A5 (ja)
JP3894107B2 (ja) 赤外域用反射防止膜
JP2000347002A5 (ja)
JPH052101A (ja) 光学部品
US20130258278A1 (en) Lens comprising a polymeric substrate, a hardening layer and a metallic layer
JP6982951B2 (ja) 赤外線用機能性膜付シリコン基板
WO2022052268A1 (zh) 镜片以及镜头组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP