WO2022052268A1 - 镜片以及镜头组件 - Google Patents

镜片以及镜头组件 Download PDF

Info

Publication number
WO2022052268A1
WO2022052268A1 PCT/CN2020/125755 CN2020125755W WO2022052268A1 WO 2022052268 A1 WO2022052268 A1 WO 2022052268A1 CN 2020125755 W CN2020125755 W CN 2020125755W WO 2022052268 A1 WO2022052268 A1 WO 2022052268A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
lens
layers
film layer
Prior art date
Application number
PCT/CN2020/125755
Other languages
English (en)
French (fr)
Inventor
陈怀玉
王佳
Original Assignee
诚瑞光学(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(深圳)有限公司 filed Critical 诚瑞光学(深圳)有限公司
Publication of WO2022052268A1 publication Critical patent/WO2022052268A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Definitions

  • the present application relates to the technical field of optical films, and in particular, to a lens and a lens assembly.
  • an AR film is generally installed on the surface of the lens.
  • the AR film can be called an anti-reflection film or an anti-reflection film to improve the light transmittance of the lens and improve the ghost/reflection formed by the multiple reflections of light in the lens. Flare phenomenon, but the improvement effect of conventional AR films is limited.
  • the purpose of the present application is to provide a lens and a lens assembly for improving the transmittance of light.
  • the present application proposes a lens, comprising a base and a composite film disposed on the surface of the base, the composite film comprising a first film layer, a second film layer and a low-fold layer arranged in sequence, the first film layer refraction
  • the ratio is n1
  • the refractive index of the second film layer is n2
  • the refractive index of the low-refractive layer is n3; wherein, n1 ⁇ n2, n3 ⁇ n1 and n3 ⁇ 1.4.
  • the low-fold layer is disposed at the outermost side away from the base.
  • the composite film includes the first film layer of the a layer and the second film layer of the b layer, and the first film layer of the a layer and the second film layer of the b layer
  • the directions of the low-fold layers are alternately arranged; a>1 and b>1.
  • the total number of layers c of the composite film is 8, which includes four layers of the second film layer and three layers of the first film layer, the second film layers of the four layers are arranged at intervals, and the three layers are The first film layers are respectively filled between two adjacent second film layers; when the wavelength is 425-725 nm, the reflectivity of the composite film is less than 0.22%.
  • the total number of layers of the composite film is an even number.
  • the low-fold layer is a magnesium difluoride layer.
  • the first film layer is a silicon dioxide layer
  • the second film layer is a titanium dioxide layer or a titanium pentoxide layer.
  • the base is made of plastic.
  • the present application also provides a lens assembly, including the lens described in any one of the above.
  • the lens of the present application includes a substrate and a composite film disposed on the surface of the substrate.
  • the composite film includes a first film layer, a second film layer and a low-fold layer arranged in sequence, the low-fold layer, the first film layer and the low-fold layer.
  • the refractive index of the second film layer increases sequentially, and the second film layer is arranged between the first film layer and the low-refractive layer, so that the composite film has a lower reflectivity, thereby improving the light transmittance of the lens, thereby improving the
  • the ghost/Flare phenomenon is formed in the lens due to the multiple reflection of light, and the effect is good.
  • the lens assembly of the present application by arranging the above-mentioned lenses, so that the lens assembly has a better imaging effect, ghost/Flare can be improved, and the optical imaging effect can be improved.
  • FIG. 1 is a schematic diagram of the film layer structure of a prior art lens
  • FIG. 2 is a partial structural schematic diagram of a lens in an embodiment of the present application.
  • FIG. 3 is a partial structural schematic diagram of a lens in another embodiment of the present application.
  • FIG. 4 is a comparison diagram of the spectral curves of the lens in FIG. 3 and the lens of the prior art.
  • the embodiment of the present application provides a lens assembly, the lens assembly is used for optical imaging, the lens assembly includes but is not limited to imaging equipment, optical detection equipment, etc., the lens assembly includes a lens 10, and the lens 10 is used for optical imaging, see FIG. 2 As shown, the lens 10 includes a substrate 200 and a composite film 100 disposed on the substrate 200.
  • the composite film 100 can provide the effects of reducing reflection and increasing light transmittance.
  • the existing structure of the lens 10 it includes a film structure 1 and a substrate 200 .
  • the film structure 1 is generally formed by alternately stacking low-refractive-index film layers 11 and high-refractive-index film layers 12 , and along the optical path Provided on the surface of the substrate 200, specifically, the substrate 200 may be provided with a film layer structure 1 on opposite sides; please continue to refer to FIG.
  • the film 100 includes a first film layer 110, a second film layer 120 and a low-folding layer 130 that are stacked in sequence.
  • the refractive index of the first film layer 110 is n1
  • the refractive index of the second film layer 120 is n2
  • the refractive index of the folded layer 130 is n3; wherein, n1 ⁇ n2, n3 ⁇ n1 and n3 ⁇ 1.4.
  • the substrate 200 and the composite film 100 provided on the surface of the substrate 200 are included.
  • the second film layer 120 is arranged between the first film layer 110 and the low-folding layer 130, so that the first film layer 110 and the second film layer 120 form an interference film layer to cancel the interference light, and the composite film 100
  • the film layer near the outer side has a lower refractive index, so that the composite film 100 has a lower reflectivity, the light transmittance of the lens 10 is improved, and the ghost formed by the multiple reflections of light in the lens 10 is improved. /Flare phenomenon, the use effect is improved.
  • the thicknesses of the first film layer 110, the second film layer 120, and the low-fold layer 130 range from 5 nm to 100 nm, and the thickness can be selected according to actual needs. It should be noted that the first film layer 110 , the second film layer 120 and the low-folding layer 130 can be set to the same film thickness, or can be set to different film thicknesses, which are not limited here.
  • the average reflectance is mainly affected by the following conditions:
  • Refractive index of the outermost layer the lower the refractive index of the outermost layer, the lower the average reflectance, that is to say, there is a positive correlation between the refractive index of the outermost layer and the average reflectance;
  • Anti-reflection bandwidth When the anti-reflection bandwidth increases, the average reflectivity increases, that is to say, there is a positive correlation between the anti-reflection bandwidth and the average reflectivity;
  • the total number of film layers and the total thickness of the film the higher the total number of film layers and the total thickness of the film, the lower the average reflectance, that is to say, the total number of film layers, the total thickness of the film and the average reflectance There is a negative correlation between the values;
  • Refractive index difference except for the outermost layer, the greater the refractive index difference between the high-refractive-index film layer and the low-refractive-index film layer, the lower the average reflectance, that is to say, the difference between the refractive index and the reflection There is a negative correlation between the mean rates.
  • the composite film 100 in this embodiment reduces the value of the refractive index of the outermost layer, thereby reducing the average reflectance, so that the composite film 100 has a higher value than the conventional film layer structure. 1 transmittance.
  • the low-fold layer 130 is disposed at the outermost side away from the substrate 200 . 2, the low-fold layer 130 is located on the lower side of the substrate 200, and the substrate 200 is located on the upper side of the composite film 100; in the lens 10, the low-fold layer 130 is arranged on the side of the substrate 200 away from the image side In other embodiments, the low-fold layer 130 may also be disposed on the side of the substrate 200 close to the image side.
  • the composite film 100 includes a first film layer 110 of layer a and a second film layer 120 of layer b.
  • the first film layer 110 of layer a and the second film layer 120 of layer b are in a direction away from the low-fold layer 130 Alternate settings; a>1 and b>1.
  • a multi-layered interference film layer can be formed, and one end of the multi-layered interference film layer in the optical path direction is the first Two film layers 120, the second film layer 120 is connected to the low-fold layer 130, so that the outermost layer of the composite film 100 is the low-fold layer 130 with a lower refractive index; in the composite film 100 of this embodiment,
  • the total film thickness of the composite film 100 is increased, and the average reflectance of the composite film 100 is also reduced accordingly.
  • the total thickness of the film layers of the composite film 100 is increased to improve the light transmittance of the composite film 100 , and the optical performance of the lens 10 can be improved.
  • b a+1, thus setting, the second film layers 120 of layer b are arranged at intervals in sequence, and a space is formed, and the first film layer 110 of layer a fills the space with a space respectively In the space, opposite ends of the interference film layer thus formed in the optical path direction are the second film layers 120 with high refractive index, and one of the second film layers 120 at the two ends is connected to the low-refractive index layer 130 to The composite film 100 is formed.
  • the three-layer first film layers 110 are respectively filled between two adjacent second film layers 120 at intervals.
  • the lens 10 further includes a film layer structure 1 disposed on the side of the substrate 200 away from the composite film 100 , and the composite film 100 is located on the side close to the object side, the film layer The structure 1 is located on the side close to the image side;
  • L2 is the spectral curve of the lens 10 corresponding to the film layer structure 1 applied in the prior art; the L1 curve of the composite film 100 in this embodiment is applied to the lens
  • the spectral curve of one of the surfaces of 10 when the wavelength is 425-725 nm, please refer to the L10 segment in Fig. 4, the reflectivity of the lens 10 is less than 0.22%.
  • c may also be selected as any one of 6, 7, 9, and 10.
  • the total number of layers of the composite film 100 is an even number.
  • the bandwidth of the seven-layer composite film 100 is lower than that of the eight-layer composite film 100 , while the cost of the nine-layer composite film 100 is higher.
  • the low-fold layer 130 is a magnesium difluoride layer. It can be understood that the low-refractive layer 130 made of magnesium difluoride has a relatively low refractive index. Specifically, the refractive index n3 of the low-refractive layer 130 in this embodiment is 1.38, so that the outermost layer of the composite film 100 can be located. The low-refractive layer 130 has a lower refractive index, so that the composite film 100 has a lower reflectivity.
  • the first film layer 110 is a SiOx layer, including but not limited to a silicon dioxide layer. It can be understood that the first film layer 110 made of silicon dioxide has a lower refractive index than the first film layer 110 , and the specific refractive index n1 is 1.46.
  • the second film layer 120 is a TiOx layer, including but not limited to a titanium dioxide layer or a titanium pentoxide layer. It can be understood that the second film layer 120 made of TiOx has a higher refractive index, and specifically, the refractive index n2 of the second film layer 120 in this embodiment is 2.35.
  • the second film layer 120 cooperates with the first film layer 110 having a low refractive index to form an interference film layer to offset the interference light entering the composite film 100 , thereby improving the light transmittance of the composite film 100 and reducing the For the reflectivity of the composite film 100, preferably, the second film layer 120 is a titanium pentoxide layer.
  • the substrate 200 is made of plastic material.
  • plastic material for example resin etc.
  • the lens 10 of the present embodiment by disposing the composite film 100 in the above-mentioned embodiment on one side of the substrate 200, the light transmittance of the lens 10 is improved, so as to improve the light transmittance in the lens 10 caused by multiple reflections of light. ghost/Flare phenomenon, the use effect is good.
  • the lens assembly of this embodiment is provided with the lens 10 in the above embodiment, so that the lens assembly has a better imaging effect, the ghost/Flare phenomenon can be improved, and the optical imaging effect can be improved.

Abstract

一种镜片(10),包括基底(200)和设于基底(200)表面的复合膜(100),复合膜(100)包括依次层叠设置的第一膜层(110)、第二膜层(120)和低折层(130),第一膜层(110)的折射率为n1,第二膜层(120)的折射率为n2,低折层(130)的折射率为n3;其中,n1<n2,n3<n1且n3<1.4,以使复合膜(100)在靠近外侧的膜层具有更低的折射率,从而使镜片(10)具有更低的反射率。

Description

镜片以及镜头组件 技术领域
本申请涉及光学薄膜技术领域,尤其涉及一种镜片以及镜头组件。
背景技术
在光学成像过程中,光入射到例如玻璃等透明介质的表面时会产生多光束干涉,即光线在介质的入射面和出射面发生多次反射折射,从而降低了光线的透光率;在光学镜头组件中,一般会在镜片的表面设置AR膜,AR膜可以称为减反射膜或增透膜,以提高镜片的透光率,并改善镜片内由于光线经过多次反射而形成的Ghost/Flare现象,但是常规的AR膜的改善效果有限。
技术问题
因此有必要设置一种新型镜片结构,以改变现状。
技术解决方案
本申请的目的在于提供一种镜片以及镜头组件,用于提高光线的透光率。
本申请提出了一种镜片,包括基底和设于基底表面的复合膜,所述复合膜包括依次层叠设置的第一膜层、第二膜层和低折层,所述第一膜层的折射率为n1,所述第二膜层的折射率为n2,所述低折层的折射率为n3;其中,n1<n2,n3<n1且n3<1.4。
可选地,所述低折层设于远离所述基底的最外侧。
可选地,所述复合膜包括a层的所述第一膜层以及b层的所述第二膜层,a层的所述第一膜层和b层的所述第二膜层沿远离所述低折层的方向交替设置;a>1且b>1。
可选地,所述复合膜的总层数为c层,c=a+b+1,且c的范围为6-10。
可选地,所述复合膜的总层数c为8,其包括四层所述第二膜层以及三层所述第一膜层,四层的所述第二膜层间隔设置,三层的所述第一膜层分别填充于相邻的两个所述第二膜层之间;在波长为425-725nm时,所述复合膜的反射率小于0.22%。
可选地,所述复合膜的总层数为偶数。
可选地,所述低折层为二氟化镁层。
可选地,所述第一膜层为二氧化硅层,所述第二膜层为二氧化钛层或五氧化三钛层。
可选地,所述基底为塑胶材质。
本申请还提供了一种镜头组件,包括上述任意一项所述的镜片。
有益效果
本申请的有益效果在于:
在本申请的镜片中,包括基底和设于基底表面的复合膜,所述复合膜包括依次层叠设置的第一膜层、第二膜层以及低折层,低折层、第一膜层和第二膜层的折射率依次提高,并且第二膜层设于第一膜层和低折层之间,以使复合膜具有更低的反射率,从而提高镜片的光线透过率,进而改善镜片内由于光线经过多次反射而形成的Ghost/Flare现象,使用效果好。
在本申请的镜头组件中,通过设置上述镜片,以使镜头组件具有更好的成像效果,Ghost/Flare能够得以改善,光学成像效果得以提高。
附图说明
图1是现有技术镜片的膜层结构示意图;
图2是本申请的实施例中镜片的部分结构示意图;
图3是本申请的另一实施例中镜片的部分结构示意图;
图4是图3中镜片与现有技术镜片的光谱曲线对照图。
本发明的实施方式
下面结合附图和实施方式对本申请作进一步说明。
本申请实施例提供了一种镜头组件,该镜头组件用于光学成像,镜头组件包括但不限于摄像设备、光学检测设备等,镜头组件包括有镜片10,镜片10用于光学成像,参阅图2所示,镜片10包括基底200以及设于基底200上的复合膜100,复合膜100可以提供降低反射、增加透光率的效果。
参阅图1所示,在现有镜片10结构中,包括有膜层结构1以及基底200,膜层结构1一般采用低折射率膜层11和高折射率膜层12交替层叠形成,并沿光路设于基底200的表面,具体地,基底200可以在相对两侧均设置有膜层结构1;请继续参阅图2所示,相较于现有的膜层结构1,在本实施例的复合膜100中,包括有依次层叠设置的第一膜层110、第二膜层120和低折层130,第一膜层110的折射率为n1,第二膜层120的折射率为n2,低折层130的折射率为n3;其中,n1<n2,n3<n1且n3<1.4。
在本申请实施例的镜片10中,包括基底200和设于基底200表面的复合膜100,复合膜100中的低折层130、第一膜层110和第二膜层120的折射率依次提高,并且第二膜层120设于第一膜层110和低折层130之间,由此第一膜层110和第二膜层120形成干涉膜层对干涉光进行抵消,并且本复合膜100在靠近外侧的膜层具有更低的折射率,从而使复合膜100具有更低的反射率,镜片10的光线透过率得以提高,进而改善镜片10内由于光线经过多次反射而形成的Ghost/Flare现象,使用效果得以提高。
具体地,第一膜层110、第二膜层120、低折层130的膜层厚度的厚度范围为5nm-100nm,厚度的选择可以根据实际需求进行选择,需要说明的是,第一膜层110、第二膜层120、低折层130可以设置为相同的膜层厚度,也可以设置为不同的膜层厚度,在此不做唯一限定。
根据薄膜沉积理论,反射率平均值主要受到以下条件的影响:
1、最外层折射率:最外层折射率越低,反射率平均值越低,也就是说最外层折射率与反射率平均值之间为正相关关系;
2、减反带宽:当减反带宽增加,反射率平均值增加,也就是说减反带宽与反射率平均值之间为正相关关系;
3、膜系总层数、膜层总厚:膜系总层数、膜层总厚越高,反射率平均值越低,也就是说膜系总层数、膜层总厚与反射率平均值之间为负相关关系;
4、折射率差值;除最外层以外,高折射率膜层与低折射率膜层之间的折射率差值越大,反射率平均值越低,也就是说折射率差值与反射率平均值之间为负相关关系。
相较于传统的膜层结构1,本实施例中的复合膜100通过降低最外层折射率的值,反射率平均值便随之减小,从而使复合膜100具有高于传统膜层结构1的透光率。
具体地,在一实施例中,低折层130设于远离基底200的最外侧。参阅图2所示的摆放状态,低折层130位于基底200的下侧,基底200位于复合膜100的上侧;在镜片10中,低折层130设于基底200远离像侧的一侧,在其他实施例中,低折层130也可以设于基底200的靠近像侧的一侧。
进一步地,复合膜100包括a层的第一膜层110以及b层的第二膜层120,a层的第一膜层110和b层的第二膜层120沿远离低折层130的方向交替设置;a>1且b>1。
通过设置多层的第一膜层110和多层的第二膜层120相互交替组合,由此可以形成多层的干涉膜层,并且该多层的干涉膜层在光路方向上的一端为第二膜层120,该第二膜层120连接于低折层130,由此以使复合膜100的最外层为折射率较低的低折层130;在本实施例的复合膜100中,通过设置多层的第一膜层110和第二膜层120,以及低折层130的组合,复合膜100的膜层总厚得以提高,复合膜100的反射率平均值也随之降低,通过提高复合膜100的膜层总厚以提高复合膜100的透光率,镜片10的光学性能得以提高。
在一实施例中,b=a+1,由此设置,b层的第二膜层120依次间隔设置,并形成a个间隔空间,a层的第一膜层110分别填充与a个的间隔空间内,由此形成的干涉膜层在光路方向上的相对两端均为高折射率的第二膜层120,并且位于两端的第二膜层120中的一个连接于低折层130,以形成复合膜100。
在优选实施例中,复合膜100的总层数为c层,c=a+b+1,且c的范围为6-10。可以理解地是,参阅上述实施例,随着复合膜100的总层数c的提高,复合膜100的膜层总厚也随之提高。反射率平均值也随之降低,但是当复合膜100的总层数大于10层时,会导致复合膜100的工艺更复杂,成本提高;当复合膜100的总层数小于6层时,会导致减反带宽减小,影响光学性能。
在一实施例中,选取c=8,也就是复合膜100的总层数为八层,其包括四层第二膜层120以及三层第一膜层110,四层的第二膜层120间隔设置,三层的第一膜层110分别填充于相邻的两个第二膜层120之间。
进一步地,参阅图3所示,在另一实施例中,镜片10还包括设于基底200远离复合膜100一侧的膜层结构1,且复合膜100位于靠近物侧的一侧,膜层结构1位于靠近像侧的一侧;参阅图4所示,L2为现有技术中应用有膜层结构1对应的镜片10的光谱曲线;L1曲线为本实施例中的复合膜100应用于镜片10的其中一个表面时的光谱曲线,在波长为425-725nm时,参阅图4中的L10段,镜片10的反射率小于0.22%。在其他实施例中,c也可以选取为6、7、9、10中的任意一个。
具体在优选实施例中,复合膜100的总层数为偶数。为使复合膜100具有较优的成像效果,相较于八层,七层的复合膜100带宽较低,而九层的复合膜100成本较高。
在优选实施例中,低折层130为二氟化镁层。可以理解地是,二氟化镁制成的低折层130具有较低的折射率,具体本实施例中低折层130的折射率n3为1.38,由此可以使得位于复合膜100最外层的低折层130具有较低的折射率,从而使复合膜100具有较低的反射率。
在优选实施例中,第一膜层110为SiOx层,包括但不限于二氧化硅层。可以理解地是,由二氧化硅制成的第一膜层110相较于第一膜层110具有较低的折射率,具体的折射率n1为1.46。
在优选实施例中,第二膜层120为TiOx层,包括但不限于二氧化钛层或五氧化三钛层。可以理解地是,由TiOx制成的第二膜层120具有较高的折射率,具体本实施例中的第二膜层120的折射率n2为2.35。第二膜层120通过与具有低折射率的第一膜层110相配合,从而形成干涉膜层,以抵消进入复合膜100内的干涉光,进而使提高复合膜100的透光率,降低了复合膜100的反射率,优选的,第二膜层120为五氧化三钛层。
具体在一实施例中,基底200为塑胶材质。例如树脂等。
在本实施例的镜片10中,通过在基底200的一侧设置上述实施例中的复合膜100,通过提高镜片10的光线透过率,从而改善镜片10内由于光线经过多次反射而形成的Ghost/Flare现象,使用效果好。
进一步地,本实施例的镜头组件通过设置上述实施例中的镜片10,以使本镜头组件具有更好的成像效果,Ghost/Flare现象能够得以改善,光学成像效果得以提高。
以上所述的仅是本申请的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本申请创造构思的前提下,还可以做出改进,但这些均属于本申请的保护范围。

Claims (10)

  1. 一种镜片,包括基底和设于基底表面的复合膜,其特征在于,所述复合膜包括依次层叠设置的第一膜层、第二膜层和低折层,所述第一膜层的折射率为n1,所述第二膜层的折射率为n2,所述低折层的折射率为n3;其中,n1<n2,n3<n1且n3<1.4。
  2. 根据权利要求1所述的镜片,其特征在于,所述低折层设于远离所述基底的最外侧。
  3. 根据权利要求2所述的镜片,其特征在于,所述复合膜包括a层的所述第一膜层以及b层的所述第二膜层,a层的所述第一膜层和b层的所述第二膜层沿远离所述低折层的方向交替设置;a>1且b>1。
  4. 根据权利要求3所述的镜片,其特征在于,所述复合膜的总层数为c层,c=a+b+1,且c的范围为6-10。
  5. 根据权利要求4所述的镜片,其特征在于,所述复合膜的总层数c为8,其包括四层所述第二膜层以及三层所述第一膜层,四层的所述第二膜层间隔设置,三层的所述第一膜层分别填充于相邻的两个所述第二膜层之间;在波长为425-725nm时,所述复合膜的反射率小于0.22%。
  6. 根据权利要求4-5任意一项所述的镜片,其特征在于,所述复合膜的总层数为偶数。
  7. 根据权利要求1所述的镜片,其特征在于,所述低折层为二氟化镁层。
  8. 根据权利要求1所述的镜片,其特征在于,所述第一膜层为二氧化硅层,所述第二膜层为二氧化钛层或五氧化三钛层。
  9. 根据权利要求1所述的镜片,其特征在于,所述基底为塑胶材质。
  10. 一种镜头组件,其特征在于,包括权利要求1-9任意一项所述的镜片。
PCT/CN2020/125755 2020-09-14 2020-11-02 镜片以及镜头组件 WO2022052268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021989707.7U CN211741620U (zh) 2020-09-14 2020-09-14 镜片以及镜头组件
CN202021989707.7 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022052268A1 true WO2022052268A1 (zh) 2022-03-17

Family

ID=72846722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125755 WO2022052268A1 (zh) 2020-09-14 2020-11-02 镜片以及镜头组件

Country Status (2)

Country Link
CN (1) CN211741620U (zh)
WO (1) WO2022052268A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211741620U (zh) * 2020-09-14 2020-10-23 常州市瑞泰光电有限公司 镜片以及镜头组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157326A (ja) * 2013-02-18 2014-08-28 Canon Inc 反射防止膜及び光学素子
CN106054288A (zh) * 2016-07-15 2016-10-26 三明福特科光电有限公司 一种超广角半球透镜增透膜及其镀制方法
CN205880267U (zh) * 2016-07-29 2017-01-11 利达光电股份有限公司 一种易清洗的红外截止滤光片
CN106940456A (zh) * 2017-04-25 2017-07-11 舜宇光学(中山)有限公司 一种大张角玻璃镜片的减反膜及其制作工艺
CN209342954U (zh) * 2018-12-27 2019-09-03 江西凤凰光学科技有限公司 一种能消除大角度入射光学成像中鬼影的减反射膜
CN211741620U (zh) * 2020-09-14 2020-10-23 常州市瑞泰光电有限公司 镜片以及镜头组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157326A (ja) * 2013-02-18 2014-08-28 Canon Inc 反射防止膜及び光学素子
CN106054288A (zh) * 2016-07-15 2016-10-26 三明福特科光电有限公司 一种超广角半球透镜增透膜及其镀制方法
CN205880267U (zh) * 2016-07-29 2017-01-11 利达光电股份有限公司 一种易清洗的红外截止滤光片
CN106940456A (zh) * 2017-04-25 2017-07-11 舜宇光学(中山)有限公司 一种大张角玻璃镜片的减反膜及其制作工艺
CN209342954U (zh) * 2018-12-27 2019-09-03 江西凤凰光学科技有限公司 一种能消除大角度入射光学成像中鬼影的减反射膜
CN211741620U (zh) * 2020-09-14 2020-10-23 常州市瑞泰光电有限公司 镜片以及镜头组件

Also Published As

Publication number Publication date
CN211741620U (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
US10408981B2 (en) Near-infrared cut filter
TWI500978B (zh) 紅外線濾除元件
US9726797B2 (en) Near-infrared cut filter
US20100188737A1 (en) Dielectric multilayer filter
JP7215476B2 (ja) 光学フィルタ
WO2012073791A1 (ja) 赤外線用光学機能膜
TW201326880A (zh) 防反射膜及光學元件
US20070146868A1 (en) Broadband antireflection coating
JP4190773B2 (ja) 反射防止膜と光学レンズ及び光学レンズユニット
JP2005215038A (ja) 眼鏡レンズ
JP2010032867A (ja) Irカットフィルタ
TWI611199B (zh) 具有阻擋紅外線功能之光學鏡頭與其光學鏡片
CN112764135B (zh) 一种极低残余反射的窄带减反射膜
WO2022052268A1 (zh) 镜片以及镜头组件
JP2006126233A (ja) 反射防止膜付き眼鏡レンズ
KR20130047634A (ko) 반사 방지막 및 광학 소자
KR20090077489A (ko) 반사 방지 코팅
TWI629516B (zh) 抗光暈低翹曲之光學低通濾波片
TWI651542B (zh) 長波長紅外線抗反射疊層
WO2024066880A1 (zh) S偏振光透反膜、挡风窗、显示装置和交通设备
US20120200927A1 (en) Optical element having anti-reflection film
JP7332359B2 (ja) 反射防止膜
JP6247033B2 (ja) Irカットフィルタ
JP7405405B2 (ja) 反射防止膜及びこれを有する光学素子、反射防止膜の製造方法
JP7135794B2 (ja) 光学フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953053

Country of ref document: EP

Kind code of ref document: A1