WO2012073401A1 - ロール変位測定方法、及びそれを用いたロール変位測定装置、並びにフィルム厚測定方法、及びそれを用いたフィルム厚測定装置 - Google Patents

ロール変位測定方法、及びそれを用いたロール変位測定装置、並びにフィルム厚測定方法、及びそれを用いたフィルム厚測定装置 Download PDF

Info

Publication number
WO2012073401A1
WO2012073401A1 PCT/JP2011/004053 JP2011004053W WO2012073401A1 WO 2012073401 A1 WO2012073401 A1 WO 2012073401A1 JP 2011004053 W JP2011004053 W JP 2011004053W WO 2012073401 A1 WO2012073401 A1 WO 2012073401A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
film
displacement
hung
detection
Prior art date
Application number
PCT/JP2011/004053
Other languages
English (en)
French (fr)
Inventor
英彦 船岡
Original Assignee
野方 鉄郎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野方 鉄郎 filed Critical 野方 鉄郎
Publication of WO2012073401A1 publication Critical patent/WO2012073401A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges

Definitions

  • the present invention relates to a roll displacement measuring method for measuring the displacement of a roll on which a film-like object is hung, a roll displacement measuring apparatus using the roll displacement measuring method, and a film thickness measurement using the roll displacement measuring method.
  • the present invention relates to a method and a film thickness measuring apparatus using the film thickness measuring method.
  • a thickness measuring apparatus disclosed in Patent Document 1 as an apparatus for measuring the thickness of a film-like (sheet-like) object to be measured.
  • a thickness measuring device 50 disclosed in Patent Document 1 includes a metal roll 51 that is rotatably arranged by a driving means (not shown), and an object to be measured that is arranged on the metal roll 51. And a detection head 52 that scans the sheet 70 in the axial direction along the roll surface.
  • the detection head 52 includes a laser light generator 53, a reflection mirror 54 that reflects the laser light emitted from the laser light generator 53, a light shielding plate 55 that collects the reflected laser light and is disposed above the roll. Lenses 56 and 57 for passing a gap between the sheet 70 on the roll and a light receiver 58 for receiving laser light are provided.
  • the detection head 52 includes an eddy current sensor 59 (magnetic field utilization sensor) disposed in the vicinity of the light shielding plate 55, and the eddy current sensor 59 sets a distance (referred to as L2) between the sensor lower end and the surface of the metal roll 51. It is configured to measure.
  • the signal output from the light receiver 58 of the detection head 52 is converted into a digital signal by the counter 60 and input to the calculator 61.
  • the detection signal from the eddy current sensor 59 is amplified by the amplifier 62 and input to the calculator 61.
  • the light-shielding plate is used in the calculation unit 61 based on the magnitude of the laser beam scanned by the scanning head 52 along the axial direction of the metal roll 51 and received by the light receiver 58.
  • An average distance L1 between the lower end of 55 and the surface of the sheet 70 on the metal roll 51 is obtained.
  • the arithmetic unit 61 obtains an average distance L2 between the sensor lower end and the surface of the metal roll 51.
  • the difference between the distance L ⁇ b> 1 and the distance L ⁇ b> 2 is calculated as the thickness dimension of the sheet 70.
  • the thickness measuring device 50 disclosed in Patent Document 2 in a state where the measurement object is hung on the metal roll 51, the distance L1 from the detection head 52 to the measurement object and the roll surface. Therefore, the measurement is performed in consideration of the roll displacement when the object to be measured is hung on the roll 51.
  • the electromagnetic wave is measured.
  • a magnetic field sensor that transmits light is used. That is, distance detection is performed on a metal roll based on a method of measuring a complex impedance change of a detection coil generated on the magnetic field utilization sensor side or magnetism of a Hall element or the like.
  • this magnetic field sensor has a problem that not only the object to be measured is limited to a non-metal body, but also the measurement accuracy of the magnetic field sensor is limited, resulting in an error in the measurement result.
  • the measuring apparatus disclosed in Patent Document 1 has a problem that the measurement accuracy in consideration of the roll displacement is low, which causes an error in measuring the thickness of the object to be measured. Therefore, in the apparatus for measuring the thickness by placing the object to be measured on the roll as described above, it is required to measure the roll displacement with high accuracy.
  • the present invention has been made paying attention to the above points, and a roll displacement measuring method capable of measuring with high accuracy the displacement of a roll on which a film-like object is hung, and the roll displacement measuring method ,
  • a film thickness measuring method capable of measuring the thickness dimension of the measured object with high accuracy irrespective of the material of the measured object, and a film thickness using the film thickness measuring method It aims at providing a measuring device.
  • a roll displacement measuring method provides a roll shaft with respect to a roll that is supported so as to be rotatable around an axis and is capable of feeding a long strip film as a measurement object.
  • a proximity sensor for detecting the approach of the marking is provided in the detection head at positions facing each other across the central axis of the roll, and no film is hung on the roll. Then, the detection head is scanned along the axial direction of the rotating roll, the first detection time difference between the adjacent proximity sensors, and the roll A step of obtaining a first rotation speed, and a second film between the opposing proximity sensors by scanning the detection head along an axial direction of the rotating roll while the film is hung on the roll. Based on the difference between the detection time difference and the second rotation speed of the roll, the first and second detection time differences, and the first and second rotation speeds, the film is placed on the roll. And determining the displacement of the roll between an unhanged state and a hung state.
  • a roll displacement measuring apparatus is a roll displacement measuring apparatus that implements the roll displacement measuring method, and is a long object that is rotatably supported around an axis and is an object to be measured.
  • a roll-shaped film is provided so that it can be fed out, and a circumferential surface of the roll is provided with a plurality of magnetic or electrical markings extending in parallel with the roll axis, and in the axial direction of the rotating roll.
  • a proximity sensor that scans along the line and detects the approach of the marking is provided at a position facing each other across the center axis of the roll, and a detection signal input from the detection head, And a controller that calculates the displacement of the roll.
  • a plurality of magnetic or electrical markings extending along the roll axis are provided on the peripheral surface of the roll, and the detection head detects the proximity of the marking. Sensors are provided at positions facing each other across the central axis of the roll. Then, the roll displacement is calculated based on the change in the time difference at which the adjacent proximity sensors detect the marking and the rotation speed of the roll. That is, since the proximity sensor only needs to detect the marking, the thickness of the object to be measured can be measured with high accuracy without being affected by the material of the object to be measured in the calculation of the roll displacement. Can do.
  • the film thickness measuring method is a film thickness measuring method for determining the thickness dimension of the film using the roll displacement measuring method, and is supported rotatably around an axis.
  • a plurality of magnetic or electrical markings extending along the roll axis are provided in parallel on the peripheral surface of the roll provided so as to be able to send out a long belt-like film, and the roll is aligned with the roll axis.
  • Proximity sensors that detect the approach of the marking are provided on the scanning detection heads at positions facing each other across the central axis of the roll, and the roll rotates in a state where no film is hung on the roll.
  • the detection head is scanned along the axial direction of the first and the first detection time difference between the adjacent proximity sensors and the first rotation speed of the roll are obtained. And measuring the first distance between the roll and the detection head, and scanning the detection head along the axial direction of the rotating roll while the film is hung on the roll, Determining a second detection time difference between the opposing proximity sensors and a second rotational speed of the roll, and measuring a second distance between the film on the roll and the detection head; And, based on the difference between the first and second detection times and the first and second rotational speeds, the roll between the state where the film is not hung on the roll and the state where the film is hung. Determining the displacement; displacement of the roll between the state where the film is not hung on the roll and the state where the film is hung; the first distance; and the second distance. Characterized in that using and calculating the thickness of the film.
  • a film thickness measuring apparatus is a film thickness measuring apparatus for carrying out the above-described film thickness measuring method, and is supported so as to be rotatable around an axis, and sends out a long belt-like film as an object to be measured.
  • a plurality of magnetic or electrical markings extending along the roll axis on the circumferential surface of the roll, and a scan along the axial direction of the rotating roll.
  • Proximity sensors for detecting the approach of the markings are provided at respective positions facing each other across the center axis of the roll, and the roll and the detection head in a state where no film is hung on the roll
  • the displacement of the roll is calculated, and the calculated displacement of the roll, the first distance, and the second distance are calculated.
  • a control unit for calculating the thickness dimension of the film.
  • the thickness dimension of the measurement object can be measured with high accuracy regardless of the material of the measurement object.
  • the roll displacement measuring method which can measure the displacement of the roll with which the film-shaped to-be-measured object was hung with high precision, the roll displacement measuring apparatus using this roll displacement measuring method, and to-be-measured Regardless of the material of the object, a film thickness measuring method capable of measuring the thickness dimension of the object to be measured with high accuracy and a film thickness measuring apparatus using the film thickness measuring method can be obtained.
  • FIG. 1 is a perspective view schematically showing a roll displacement measuring apparatus according to the present invention and a film thickness measuring apparatus including the roll displacement measuring apparatus.
  • FIG. 2 is a cross-sectional view schematically showing an internal configuration of a detection head and a metal roll included in the measurement apparatus of FIG.
  • FIG. 3 is a flowchart showing an operation flow of the measuring apparatus of FIG.
  • FIG. 4 is a cross-sectional view showing the positional relationship between the detection head and the metal roll in a state where no film is hung on the metal roll.
  • FIG. 5 is a cross-sectional view showing the positional relationship between the detection head and the metal roll in a state where the film is hung on the metal roll.
  • FIG. 6 is a timing chart showing the relationship of the detection timing of the proximity sensor provided in the detection head.
  • FIG. 7 is a perspective view of a thickness measuring apparatus for performing a thickness measuring method using a conventional laser beam and magnetic field sensor.
  • FIG. 8 is a partially enlarged view of the thickness measuring apparatus of FIG.
  • FIG. 1 is a perspective view schematically showing a roll displacement measuring device and a film thickness measuring device including the roll displacement measuring device according to the present invention.
  • the film-shaped object to be measured for thickness by the film thickness measuring method and measuring apparatus according to the present invention is not particularly limited in material, and may be either metal or non-metal, It may be porous or the density is not constant.
  • a film thickness measuring apparatus 1 shown in FIG. 1 includes a metal roll 2 having a predetermined length in the axial direction, and both ends of the metal roll 2 are rotatably supported by a support frame 3.
  • the metal roll 2 and the support frame 3 are formed of the same material so as to suppress a decrease in measurement accuracy due to a difference in thermal expansion.
  • a circulation path for circulating a heat medium such as water, oil, air, or chlorofluorocarbon is formed inside the metal roll 2 and the support frame 3 to control the temperature of the metal roll 2 and the support frame 3. You may go.
  • One end of the metal roll 2 is provided with a drive motor 4 for rotating the metal roll 2 around a shaft in a predetermined direction at a predetermined speed, and the drive control thereof is performed by a control unit 10 having a calculation means and the like.
  • the A long film 20 as an object to be measured is placed on the metal roll 2, and the film 20 is sent out at a predetermined direction and at a predetermined speed by the rotating metal roll 2.
  • a portal-shaped detection head 5 is provided above the metal roll 2 so as to cover both the left and right sides of the roll 2.
  • a pair of guide rails 6 (only one is shown) are suspended on the support frame 3 along the metal roll 2 on the left and right sides of the metal roll 2, and the detection head 5 Lower end portions on both sides are supported by being slidably engaged with the guide rail 6.
  • one guide rail 6 has, for example, a ball screw mechanism (not shown), and when the drive motor 7 drives the ball screw mechanism, the detection head 5 moves along the guide rail 6 (made of metal). Along the axial direction of the roll 2), it moves at a predetermined speed.
  • the drive motor 7 is driven and controlled by the control unit 10.
  • the drive motors 4 and 7 are driven and controlled by the control unit 10 as described above, and the drive start and stop commands are input from the operation panel 26.
  • FIG. 2 is a cross-sectional view schematically showing the internal configuration of the detection head 5 and the metal roll 2.
  • the detection head 5 has a distance sensor (distance measuring means) for detecting the distance from the head to the surface of the metal roll 2 (or the surface of the film 20), and the film 20 is hung on the metal roll 2. And a sensor for detecting the roll displacement.
  • a laser light source 11 that outputs laser light of a predetermined wavelength
  • an optical deflector 13 that deflects the laser light through a reflecting mirror 12, and a deflected laser And a lens 14 for converting the light into parallel light (they constitute laser light emitting means).
  • the condensing lens 15 which condenses the laser beam (parallel light) which passes on the metal roll 2, and the light receiver 16 which receives the condensing laser beam (The laser beam receiving means is comprised by these.
  • a light shielding plate 17 is provided on the back surface of the detection head 5 to shield the upper part of the laser light passing over the metal roll 2.
  • the light receiver 16 of the detection head 5 converts the laser light into a light reception signal that is an electrical signal by photoelectric conversion and outputs the light signal to the counter 8.
  • the counter 8 converts the received light reception signal into a digital signal and outputs the result to the control unit 10.
  • the control unit 10 based on the input digital signal value and the correspondence relationship between the preset digital signal value and the distance dimension, between the lower end of the light shielding plate 17 and the upper end of the roll 2 (upper end of the film 20). The distance A is calculated.
  • the detection head 5 has magnetic proximity sensors 18 and 19 provided on the surfaces facing the left and right ends of the metal roll 2 as sensors for detecting the roll displacement.
  • a plurality of magnetic markings 2a are provided on the surface of the metal roll 2 in parallel along the axial direction at predetermined intervals in a line shape (six in the figure). In this configuration, when the metal roll 2 is rotated at a predetermined set speed S and any one of the magnetic markings 2 a approaches the proximity sensors 18 and 19, each detection signal is output to the control unit 10. Yes.
  • control unit 10 determines the thickness dimension D of the film 20 based on the distance A between the lower end of the light shielding plate 17 and the upper end of the roll 2 (upper end of the film 20) and the detection signals input from the proximity sensors 18 and 19. Is calculated, and the result is output to the display unit 25.
  • FIG. 3 is a flow showing the flow of operation of the film thickness measuring apparatus 1.
  • the metal roll 2 is rotated at a predetermined set speed (rad / s) in a state in which the film 20 as the object to be measured is not hung on the metal roll 2, that is, in an unloaded state, and the detection head 5 is made of metal.
  • the roll 2 is scanned from one end side to the other end side (step S1 in FIG. 3).
  • the control unit 10 calculates an average distance A1 (first distance) between the lower end of the light shielding plate 17 and the upper end of the metal roll 2 as shown in FIG. That is, during the scanning of the detection head 5, the laser light emitted from the laser light source 11 is allowed to pass through the gap between the lower end of the light shielding plate 17 and the upper end of the metal roll 2. Then, in the control unit 10, the average distance A1 is obtained based on the size of the laser beam received by the light receiver 16.
  • control unit 10 detects the rotation speed S1 (first rotation speed (rad / s)) of the metal roll 2 in the no-load state, for example, from the drive motor 4. Furthermore, as shown in FIG. 6 (timing diagram), the control unit 10 determines a difference T1 (first detection time difference (sec) between the detection timing of the magnetic marking 2a by the proximity sensor 18 and the detection timing of the magnetic marking 2a by the proximity sensor 19. )) Is detected. Further, the distance A1, the rotation speed S1, and the timing difference T1 obtained as described above are stored in a storage unit (not shown) included in the control unit 10 (step S2 in FIG. 3). When the marking 2a is arranged as shown in FIG. 4, the proximity sensors 18 and 19 detect the marking 2a substantially simultaneously, so the difference T1 is substantially 0 (sec).
  • the metal roll 2 is rotated at a predetermined set speed in a state where the film 20 as the object to be measured is hung on the metal roll 2, that is, in a loaded state, and the other is detected from one end side of the metal roll 2 by the detection head 5. Scan to the end side (step S3 in FIG. 3).
  • the control unit 10 calculates an average distance A ⁇ b> 2 (second distance) between the lower end of the light shielding plate 17 and the upper end of the metal roll 2.
  • the laser light emitted from the laser light source 11 is allowed to pass through the gap between the lower end of the light shielding plate 17 and the film 20 on the metal roll 2. Then, in the control unit 10, the average distance A ⁇ b> 2 is obtained based on the size of the laser light received by the light receiver 16.
  • control unit 10 detects the rotation speed S2 (second rotation speed (rad / s)) of the metal roll 2 in a loaded state from, for example, the drive motor 4. Furthermore, as shown in FIG. 6 (timing diagram), the control unit 10 determines the difference T2 (second detection time difference (sec) between the detection timing of the magnetic marking 2a by the proximity sensor 18 and the detection timing of the magnetic marking 2a by the proximity sensor 19). )) Is detected. Further, the distance A2, the rotation speed S2, and the timing difference T2 obtained as described above are stored in a storage unit (not shown) included in the control unit 10 (step S4 in FIG. 3).
  • the center axis displacement B1 of the metal roll 2 in the no-load state with respect to the metal roll 2 (that is, the center axis C1 of the metal roll 2 in the no-load state, the center of the proximity sensor 18 and the proximity sensor 19).
  • the distance from the connecting straight line L) is calculated by the formula (1) based on FIG.
  • R is the radius of the metal roll 2
  • S1 is the rotational speed of the metal roll 2
  • T1 is the difference in the detection timing of the magnetic marking 2a by the proximity sensors 18 and 19.
  • B1 R ⁇ sin (S1 ⁇ T1 ⁇ (1/2)) ⁇ R ⁇ S1 ⁇ T1 ⁇ (1/2) ⁇ ⁇ ⁇ ⁇ ⁇ Formula (1)
  • the center axis displacement B2 of the metal roll 2 in a loaded state with respect to the metal roll 2 (that is, a straight line L connecting the center axis C2 of the loaded metal roll 2 and the centers of the proximity sensor 18 and the proximity sensor 19).
  • R is the radius of the metal roll 2
  • S2 is the rotational speed of the metal roll 2
  • T2 is the difference in detection timing of the magnetic marking 2a by the proximity sensors 18 and 19.
  • B2 R ⁇ sin (S2 ⁇ T2 ⁇ (1/2)) ⁇ R ⁇ S2 ⁇ T2 ⁇ (1/2) ⁇ ⁇ ⁇ ⁇ Formula (2)
  • the control unit 10 calculates the thickness D of the film 20 by the following equation (3) (step S6 in FIG. 3).
  • Equation 3) D A1-A2 + B2-B1 (3)
  • the control unit 10 outputs the calculation result to the display unit 25 for display.
  • the state in which the film 20 as the object to be measured is not hung on the metal roll 2 (the state in which there is no load) and the state in which the film 20 is hung (the load)
  • the distance dimension between the detection head 5 and the metal roll 2 (the surface of the film 20) and the roll displacement are obtained, and the thickness of the film 20 is calculated based on them.
  • a plurality of magnetic markings 2a extending along the roll axis are provided on the peripheral surface of the metal roll 2, and the detection head 5 detects the approach of the marking 2a.
  • Proximity sensors 18 and 19 are provided at positions facing each other across the central axis of the metal roll 2.
  • the roll displacement is calculated based on the change in the time difference at which the proximity sensors 18 and 19 detect the marking 2 a and the change in the rotation speed of the metal roll 2. That is, the proximity sensors 18 and 19 only need to detect the marking 2a, and the roll displacement does not need to be obtained directly from the amount of impedance change in the proximity sensors 18 and 19 as in the prior art. Therefore, the measurement of the roll displacement can be performed accurately without being affected by the material of the object to be measured, and the thickness dimension of the object to be measured can be measured with high accuracy.
  • the marking 2a provided on the surface of the metal roll 2 is a magnetic marking
  • the proximity sensors 18 and 19 capable of detecting the marking 2a are provided on the detection head 5.
  • the present invention is not limited to the configuration.
  • the marking 2a provided on the metal roll 2 may be an electrical one charged with a positive charge and a negative charge.
  • the two proximity sensors 18 and 19 detect the marking 2a provided on the metal roll 2.
  • the number of proximity sensors is two or more, The number is not limited.
  • the configuration is not limited to the above as long as the distances A1 and A2 can be detected.
  • a laser beam scanning method (a fine laser beam irradiated in the horizontal direction is scanned in the vertical direction to detect a position where the laser beam is interrupted).
  • an optical sensor such as a laser beam reflection method (triangulation) or a contact sensor using a linear gauge may be used.
  • distance dimension A1, A2 used for calculation of film thickness in the control part 10 was made into the average value during scanning the scanning head 5 from the one end of the metal roll 2 to the other end.
  • the roll 2 supported by the support frame 3 is bent, whereby the roll cross section is slightly deformed from the original perfect circle.
  • the roll curvature in each part is further calculated from the distribution of the displacement of the central axis along the axial direction of the roll 2, and the roll cross section obtained therefrom is calculated. It is preferable to consider the deformation (displacement of the upper surface of the roll). That is, by setting a plurality of measurement positions for determining the roll displacement B along the roll axis (preferably setting a larger number of measurement positions more finely), and including the displacement of the upper surface of the roll at each measurement position, More accurate measurement can be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 被測定物が掛けられるロールの変位を高精度に測定し、被測定物の材質に拘わらず、被測定物の厚さ寸法を高精度に測定する。ロール2の周面に、ロール軸に沿って延びる複数のマーキング2aを平行に設け、検出ヘッド5に、前記マーキングの接近を検出する近接センサ18,19を、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設け、前記ロールにフィルム20が掛けられていない状態で、前記検出ヘッドを走査し、前記相対向する近接センサの間における第一の検出時間差と、前記ロールにおける第一の回転速度とを求めるステップと、前記ロールにフィルムが掛けられた状態で、前記検出ヘッドを走査し、前記相対向する近接センサの間における第二の検出時間差と、前記ロールにおける第二の回転速度とを求めるステップと、前記第一及び第二の検出時間差と、前記第一及び第二の回転速度とに基づいて、前記ロールの変位を求める。

Description

ロール変位測定方法、及びそれを用いたロール変位測定装置、並びにフィルム厚測定方法、及びそれを用いたフィルム厚測定装置
 本発明は、フィルム状の被測定物が掛けられたロールの変位を測定するロール変位測定方法、及び該ロール変位測定方法を用いたロール変位測定装置、並びにロール変位測定方法を用いたフィルム厚測定方法、及び該フィルム厚測定方法を用いたフィルム厚測定装置に関する。
 従来、フィルム状(シート状)の被測定物の厚みを測定する装置として、特許文献1に開示された厚み測定装置がある。図7に示すように、特許文献1に開示の厚み測定装置50は、駆動手段(図示せず)により回転可能に配置された金属ロール51と、この金属ロール51上に配置される被測定物のシート70の上方をロール表面に沿って軸方向に走査する検出ヘッド52とを備える。
 検出ヘッド52は、レーザ光発生器53と、レーザ光発生器53から発射されたレーザ光を反射する反射ミラー54と、反射したレーザ光を集光し、ロール上方に配置された遮光板55とロール上のシート70との間の間隙を通過させるためのレンズ56、57と、レーザ光を受光する受光器58とを備える。
 受光器58には、レーザ光が前記間隙を通過する間だけ入射されるため、受光器58は、前記間隙に比例した幅の信号を出力する。従って、受光器58が出力した信号に基づき、遮光板55下端とロール上のシート70表面との間の距離(L1とする)が測定されることになる。
 更に、検出ヘッド52は、前記遮光板55付近に配置された渦電流センサ59(磁界利用センサ)を備え、この渦電流センサ59によりセンサ下端と金属ロール51表面までの距離(L2とする)を測定するように構成されている。
 尚、検出ヘッド52の受光器58から出力される信号は、カウンタ60においてデジタル信号に変換されて演算器61に入力される。一方、渦電流センサ59による検出信号は、増幅器62によって増幅され、演算器61に入力されるように構成されている。
 このように構成された厚み測定装置50においては、走査ヘッド52が金属ロール51の軸方向に沿って走査され、受光器58で受光したレーザ光の大きさに基づき、演算部61において、遮光板55下端と金属ロール51上のシート70表面との間の平均距離L1が求められる。一方、渦電流センサ59を用いた測定により、演算部61において、センサ下端と金属ロール51表面との間の平均距離L2が求められる。
 そして、演算部61において、前記距離L1と距離L2との差分が、シート70の厚さ寸法として算出される。
 このように、特許文献2に開示される厚み測定装置50にあっては、金属ロール51に被測定物が掛けられた状態で、検出ヘッド52から被測定物までの距離L1、及びロール表面までの距離L2が求められるため、ロール51に被測定物が掛けられた際のロール変位を考慮した測定がなされる。
特開平05-231856号公報
 ところで、特許文献1に開示される厚さ測定装置にあっては、被測定物を走査するセンサと、被測定物が載置されるロール表面との間の距離測定において、電磁波を被測定物に透過させる磁界利用センサを用いている。
 即ち、金属ロールに対し、磁界利用センサ側で生じる検出コイルの複素インピーダンス変化、或いはホール素子等の磁気を測定する方法に基づき、距離検出を行っている。
 しかしながら、この磁界利用センサにあっては、被測定物が非金属体に限定されるだけでなく、磁界利用センサの測定精度に限界があり、測定結果に誤差が生じる問題があった。
 即ち、特許文献1に開示の測定装置にあっては、ロール変位を考慮した測定の精度が低いという課題を有しており、そのために被測定物の厚さ測定に誤差が生じていた。したがって、前記のようにロールに被測定物を掛けて厚み測定を行う装置にあっては、精度よくロール変位を測定することが要求されていた。
 本発明は、前記した点に着目してなされたものであり、フィルム状の被測定物が掛けられたロールの変位を高精度に測定することのできるロール変位測定方法、及び該ロール変位測定方法を用いたロール変位測定装置、並びに被測定物の材質に拘わらず、被測定物の厚さ寸法を高精度に測定することができるフィルム厚測定方法、及び該フィルム厚測定方法を用いたフィルム厚測定装置を提供することを目的とする。
 前記目的を達成するため、本発明に係るロール変位測定方法は、軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられたロールに対し、ロール軸に沿って検出ヘッドを走査し、前記ロールにフィルムが掛けられた際のロール変位を求めるロール変位測定方法であって、前記ロールの周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングを平行に設け、前記検出ヘッドに、前記マーキングの接近を検出する近接センサを、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設け、前記ロールにフィルムが掛けられていない状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第一の検出時間差と、前記ロールにおける第一の回転速度とを求めるステップと、前記ロールにフィルムが掛けられた状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第二の検出時間差と、前記ロールにおける第二の回転速度とを求めるステップと、前記第一及び第二の検出時間差と、前記第一及び第二の回転速度とに基づいて、前記ロールに前記フィルムが掛けられていない状態と掛けられた状態との間における前記ロールの変位を求めるステップとを含むことに特徴を有する。
 また、前記目的を達成するため、本発明に係るロール変位測定装置は、前記ロール変位測定方法を実施するロール変位測定装置であって、軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられると共に、その周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングが平行に設けられたロールと、回転する前記ロールの軸方向に沿って走査され、前記マーキングの接近を検出する近接センサが、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設けられた検出ヘッドと、前記検出ヘッドから入力される検出信号に基づいて、前記ロールの変位を算出する制御部とを備えることに特徴を有する。
 このようにロール変位の算出にあっては、ロールの周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングが設けられ、検出ヘッドに、前記マーキングの接近を検出する近接センサが前記ロールの中心軸を挟んで相対向する位置にそれぞれ設けられる。
 そして、前記相対向する近接センサがマーキングを検出する時間差の変化、及びロールの回転速度に基づきロール変位が算出される。
 即ち、近接センサは、マーキングの検出のみを行えばよいため、前記ロール変位の算出において、被測定物の材質に影響されることがなく、被測定物の厚さ寸法を高精度に測定することができる。
 また、本発明に係るフィルム厚測定方法は、前記ロール変位測定方法を用いて、前記フィルムの厚さ寸法を求めるフィルム厚測定方法であって、軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられたロールの周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングを平行に設け、前記ロールに対し、ロール軸に沿って走査される検出ヘッドに、前記マーキングの接近を検出する近接センサを、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設け、前記ロールにフィルムが掛けられていない状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第一の検出時間差と、前記ロールにおける第一の回転速度とを求めると共に、前記ロールと前記検出ヘッドとの間の第一の距離を測定するステップと、前記ロールにフィルムが掛けられた状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第二の検出時間差と、前記ロールにおける第二の回転速度とを求めると共に、前記ロール上のフィルムと前記検出ヘッドとの間の第二の距離を測定するステップと、前記第一及び第二の検出時間差と、前記第一及び第二の回転速度とに基づいて、前記ロールに前記フィルムが掛けられていない状態と掛けられた状態との間における前記ロールの変位を求めるステップと、前記ロールに前記フィルムが掛けられていない状態と掛けられた状態との間における前記ロールの変位と、前記第一の距離と、第二の距離とを用いてフィルムの厚さ寸法を算出するステップとを含むことに特徴を有する。
 また、本発明に係るフィルム厚測定装置は、前記のフィルム厚測定方法を実施するフィルム厚測定装置であって、軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられると共に、その周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングが平行に設けられたロールと、回転する前記ロールの軸方向に沿って走査され、前記マーキングの接近を検出する近接センサが、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設けられた検出ヘッドと、前記ロールにフィルムが掛けられていない状態で、前記ロールと前記検出ヘッドとの間の第一の距離を測定し、前記ロールにフィルムが掛けられた状態で、前記ロール上のフィルムと前記検出ヘッドとの間の第二の距離を測定する距離測定手段と、前記検出ヘッドから入力される検出信号に基づいて、前記ロールの変位を算出すると共に、前記算出されたロールの変位と、前記第一の距離と、前記第二の距離とを用いてフィルムの厚さ寸法を算出する制御部とを備えることに特徴を有する。
 このようにフィルム厚の測定にあっては、前記ロール変位測定方法を用いることによって、被測定物の材質に拘わらず、被測定物の厚さ寸法を高精度に測定することができる。
 本発明によれば、フィルム状の被測定物が掛けられたロールの変位を高精度に測定することのできるロール変位測定方法、及び該ロール変位測定方法を用いたロール変位測定装置、並びに被測定物の材質に拘わらず、被測定物の厚さ寸法を高精度に測定することができるフィルム厚測定方法、及び該フィルム厚測定方法を用いたフィルム厚測定装置を得ることができる。
図1は、本発明に係るロール変位測定装置、及びそのロール変位測定装置を備えるフィルム厚測定装置を模式的に示す斜視図である。 図2は、図1の測定装置が備える検出ヘッド及び金属製ロールの内部構成を模式的に示す断面図である。 図3は、図1の測定装置の動作の流れを示すフローである。 図4は、金属製ロールにフィルムが掛けられていない状態の、検出ヘッドと金属ロールとの位置関係を示す断面図である。 図5は、金属製ロールにフィルムが掛けられている状態の、検出ヘッドと金属ロールとの位置関係を示す断面図である。 図6は、検出ヘッドに設けられた近接センサの検出タイミングの関係を示すタイミング図である。 図7は、従来のレーザ光と磁界利用センサによる厚さ測定方法を実施する厚み測定装置の斜視図である。 図8は、図7の厚み測定装置の一部拡大図である。
 以下、本発明の実施の形態を図面に基づき説明する。図1は、本発明に係るロール変位測定装置、及びそれを備えるフィルム厚測定装置を模式的に示す斜視図である。
 尚、本発明に係るフィルム厚測定方法及び測定装置によって厚み測定されるフィルム状の被測定物は、その材質が特に限定されるものではなく、金属製、非金属製のいずれでもよく、また、多孔質のもの、或いは密度が一定でないものであってもよい。
 図1に示すフィルム厚測定装置1は、軸方向に所定の長さを有する金属製ロール2を備え、この金属製ロール2の両端が支持フレーム3によって回転自在に支持されている。金属製ロール2と支持フレーム3は、熱膨張差による測定精度の低下を抑制するよう同一材質により形成されている。尚、図示しないが、金属製ロール2と支持フレーム3の内部に、水、油、空気、フロン等の熱媒を循環させる循環路を形成し、金属製ロール2及び支持フレーム3の温度制御を行ってもよい。
 金属製ロール2の一端には、金属製ロール2を所定の速度で所定方向に軸周りに回転させるための駆動モータ4が設けられ、その駆動制御は、演算手段等を有する制御部10によってなされる。
 金属製ロール2には、被測定物である長尺のフィルム20が掛けられ、回転する金属製ロール2によってフィルム20が所定方向、及び所定速度で送り出しされるようになっている。
 また、金属製ロール2の上方には、ロール2の左右両側を覆うように、門形状の検出ヘッド5が設けられている。図1に示すように、金属製ロール2の左右側方には、金属製ロール2に沿って一対のガイドレール6(一方のみ図示)が支持フレーム3に懸架され、検出ヘッド5は、その左右両側の下端部が、ガイドレール6に摺動自在に係合することによって支持されている。
 また、一方のガイドレール6は、例えばボールねじ機構(図示せず)を有し、その駆動モータ7が前記ボールねじ機構を駆動することにより、検出ヘッド5がガイドレール6に沿って(金属製ロール2の軸方向に沿って)、所定速度で移動するようになされている。
 尚、駆動モータ7は、制御部10によって駆動制御される。また、駆動モータ4、7は、前記のように制御部10によって駆動制御されるが、その駆動の開始、及び停止命令は、操作パネル26から入力される構成となっている。
 図2は、検出ヘッド5及び金属製ロール2の内部構成を模式的に示す断面図である。検出ヘッド5は、該ヘッドから金属製ロール2の表面(或いはフィルム20表面)までの距離を検出するための距離センサ(距離測定手段)と、金属製ロール2にフィルム20が掛けられた状態でのロール変位とを検出するためのセンサを有する。
 具体的には、前記距離センサとして、図2に示すように所定波長のレーザ光を出力するレーザ光源11と、レーザ光を反射ミラー12を介して偏向する光偏向器13と、偏向されたレーザ光を平行光にするレンズ14とを有する(これらによりレーザ光発射手段が構成される)。更に、金属製ロール2上を通過するレーザ光(平行光)を集光する集光レンズ15と、集光されたレーザ光を受光する受光器16とを有する(これらによりレーザ光受光手段が構成される)。
 また、検出ヘッド5の裏面には、金属製ロール2上を通過するレーザ光の上部分を遮光するための遮光板17が設けられている。
 また、検出ヘッド5の受光器16は、レーザ光を光電変換により電気信号である受光信号に変換し、カウンタ8に出力するようになされている。カウンタ8は、入力された受光信号をデジタル信号に変換し、その結果を制御部10に出力するようになっている。制御部10では、入力されたデジタル信号値と、予め設定されたデジタル信号値の大きさと距離寸法との対応関係とに基づいて、遮光板17下端とロール2上端(フィルム20上端)との間の距離Aを算出するようになっている。
 また、図2に示すように、検出ヘッド5は、ロール変位を検出するためのセンサとして、金属製ロール2の左右両端にそれぞれ臨む面に設けられた、磁気形の近接センサ18,19を有する。
 一方、金属製ロール2の表面には、軸方向に沿ってライン状に所定間隔毎に平行に付された、複数の磁気マーキング2aが設けられている(図では6本)。
 この構成において、金属製ロール2が所定の設定速度Sで回転され、いずれかの磁気マーキング2aが近接センサ18、19に接近すると、それぞれの検出信号が制御部10に出力されるようになっている。
 また、制御部10は、前記遮光板17下端とロール2上端(フィルム20上端)との間の距離A、及び近接センサ18,19から入力される検出信号に基づき、フィルム20の厚さ寸法Dを算出し、その結果を表示部25に出力するように構成されている。
 続いて、このように構成されたフィルム厚測定装置1によるフィルム厚測定方法について図3に沿って説明する。図3は、フィルム厚測定装置1の動作の流れを示すフローである。
 先ず、金属製ロール2に被測定物であるフィルム20を掛けない状態、即ち、無負荷の状態で金属製ロール2を所定の設定速度(rad/s)で回転させ、検出ヘッド5により金属製ロール2の一端側から他端側まで走査する(図3のステップS1)。
 この検出ヘッド5の走査の間、制御部10は、図4に示すように、遮光板17下端と金属製ロール2上端との間の平均距離A1(第一の距離)を算出する。
 即ち、検出ヘッド5の走査の間、レーザ光源11から発射されたレーザ光が、遮光板17の下端と金属製ロール2の上端との間の間隙を通過させられる。そして、制御部10において、受光器16により受光したレーザ光の大きさに基づき、前記平均距離A1が求められる。
 また、制御部10は、無負荷状態での金属製ロール2の回転速度S1(第一の回転速度(rad/s))を、例えば駆動モータ4から検出する。
 更に、制御部10は、図6(タイミング図)に示すように、近接センサ18による磁気マーキング2aの検出タイミングと近接センサ19による磁気マーキング2aの検出タイミングの差分T1(第一の検出時間差(sec))を検出する。
 また、前記のように得られた距離A1、回転速度S1、及びタイミング差分T1は、制御部10が有する記憶手段(図示せず)に記憶される(図3のステップS2)。
 尚、図4に示すようにマーキング2aが配置されている場合、近接センサ18,19は略同時にマーキング2aの検出を行うため、前記差分T1は略0(sec)となる。
 次いで、金属製ロール2に被測定物であるフィルム20を掛けた状態、即ち、負荷状態で金属製ロール2を所定の設定速度で回転させ、検出ヘッド5により金属製ロール2の一端側から他端側まで走査する(図3のステップS3)。
 ここで、金属製ロール2は、フィルム20によって下方に向けて負荷を受けるため、図4に示すように、その中心軸の位置がC1からC2に変位している。
 そして、この検出ヘッド5の走査の間、制御部10は、遮光板17下端と金属製ロール2上端との間の平均距離A2(第二の距離)を算出する。
 即ち、検出ヘッド5の走査の間、レーザ光源11から発射されたレーザ光が、遮光板17の下端と金属製ロール2上のフィルム20との間の間隙を通過させられる。そして、制御部10において、受光器16により受光したレーザ光の大きさに基づき、前記平均距離A2が求められる。
 また、制御部10は、負荷状態での金属製ロール2の回転速度S2(第二の回転速度(rad/s))を、例えば駆動モータ4から検出する。
 更に、制御部10は、図6(タイミング図)に示すように、近接センサ18による磁気マーキング2aの検出タイミングと近接センサ19による磁気マーキング2aの検出タイミングの差分T2(第二の検出時間差(sec))を検出する。
 また、前記のように得られた距離A2、回転速度S2、及びタイミング差分T2は、制御部10が有する記憶手段(図示せず)に記憶される(図3のステップS4)。
 ここで、金属製ロール2に対し無負荷の状態における金属製ロール2の中心軸変位B1(即ち、無負荷状態の金属製ロール2の中心軸C1と、近接センサ18と近接センサ19の中心を結ぶ直線Lとの距離)は、図5に基づき、式(1)により算出される。
 尚、式(1)中、Rは金属製ロール2の半径 、S1は金属製ロール2の回転速度、T1は近接センサ18,19による磁気マーキング2aの検出タイミングの差分である。
(数1)
 B1=R・sin(S1・T1・(1/2))
   ≒R・S1・T1・(1/2)・・・・・式(1)
 また、金属製ロール2に対し負荷の状態における金属製ロール2の中心軸変位B2(即ち、負荷状態の金属製ロール2の中心軸C2と、近接センサ18と近接センサ19の中心を結ぶ直線Lとの距離)は、図5に基づき、式(2)により算出される(図3のステップS5)。
 尚、式(2)中、Rは金属製ロール2の半径 、S2は金属製ロール2の回転速度、T2は近接センサ18,19による磁気マーキング2aの検出タイミングの差分である。
(数2)
 B2=R・sin(S2・T2・(1/2))
   ≒R・S2・T2・(1/2)・・・・・式(2)
 また、金属製ロール2の中心軸変位B1,B2が算出されると、制御部10は、次式(3)により、フィルム20の厚さDを算出する(図3のステップS6)。
(数3)
 D=A1-A2+B2-B1・・・(3)
 このようにしてフィルム20の厚さDが算出されると、制御部10は、その算出結果を表示部25に出力して表示させる。
 以上のように本発明に係る実施の形態によれば、金属製ロール2に被測定物であるフィルム20が掛けられていない状態(負荷が無い状態)と、フィルム20が掛けられた状態(負荷がある状態)との間において、検出ヘッド5と金属製ロール2(フィルム20表面)との距離寸法、及びロール変位が求められ、それらに基づきフィルム20の厚さが算出される。
 ここで、ロール変位の算出にあっては、金属製ロール2の周面に、ロール軸に沿って延びる複数の磁気的なマーキング2aが設けられ、検出ヘッド5に、前記マーキング2aの接近を検出する近接センサ18,19が金属製ロール2の中心軸を挟んで相対向する位置にそれぞれ設けられる。
 そして、近接センサ18,19がマーキング2aを検出する時間差の変化、及び金属製ロール2の回転速度の変化に基づきロール変位が算出される。
 即ち、近接センサ18,19は、マーキング2aの検出のみを行えばよく、前記ロール変位は、従来のように近接センサ18,19におけるインピーダンス変化量から直接求める必要がない。
 したがって、被測定物の材質に影響されることがなくロール変位の測定を精度よく行うことができ、被測定物の厚さ寸法を高精度に測定することができる。
 尚、前記実施の形態においては、金属製ロール2の表面に設けるマーキング2aを磁気的マーキングとし、それを検出可能な近接センサ18,19を検出ヘッド5に設ける構成を示した。しかしながら、本発明にあっては、その構成に限定されるものではない。例えば、金属製ロール2に設けられたマーキング2aは、正電荷と負電荷とを帯電させた電気的なものでもよい。
 また、前記実施の形態においては、2つの近接センサ18,19により、金属ロール2に設けられたマーキング2aを検出するものとしたが、前記近接センサの数は、2つ以上であれば、その数は限定されない。
 また、前記実施の形態においては、前記距離A1、A2を求めるための距離測定手段として、遮光板17と金属製ロール2(或いはフィルム20)との間隙を通過させるレーザ光の強度に基づき求める構成としたが、距離A1、A2をそれぞれ検出することのできる手段であれば、前記構成に限定しなくてもよい。
 例えば、前記距離A1、A2を算出可能であれば、その距離測定手段として、レーザビーム走査方式(水平方向に照射される微細なレーザビームを垂直方向に走査し、レーザビームの途切れる位置を検出)、レーザビーム反射方式(三角測量)等の光センサ、又はリニアゲージを使用した接触式センサ等を利用するものであってもよい。
 また、前記実施の形態にあっては、制御部10においてフィルム厚の算出に用いる距離寸法A1、A2は、走査ヘッド5を金属製ロール2の一端から他端まで走査する間における平均値とした。
 しかしながら、金属製ロール2にフィルム20が掛けられているか否かに拘わらず、支持フレーム3に支持されたロール2が曲がることによって、ロール断面が本来の真円から僅かに変形する。
 このため、フィルム20の厚さDの算出にあっては、さらにロール2の軸方向に沿った中心軸の変位の分布から各部分でのロールの曲率を算出し、そこから得られたロール断面の変形(ロール上面の変位)を考慮することが好ましい。
 即ち、ロール軸に沿ってロール変位Bを求める複数の測定位置を設定し(測定位置はより細かく多数設定するのが好ましい)、各測定位置において、そのロール上面の変位を演算に含めることによって、より高精度の測定を行うことができる。
1     フィルム厚測定装置
2     金属製ロール
2a    マーキング
3     支持フレーム
5     検出ヘッド
10    制御部
18    近接センサ
19    近接センサ
20    フィルム(被測定物)

Claims (4)

  1.  軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられたロールに対し、ロール軸に沿って検出ヘッドを走査し、前記ロールにフィルムが掛けられた際のロール変位を求めるロール変位測定方法であって、
     前記ロールの周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングを平行に設け、
     前記検出ヘッドに、前記マーキングの接近を検出する近接センサを、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設け、
     前記ロールにフィルムが掛けられていない状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第一の検出時間差と、前記ロールにおける第一の回転速度とを求めるステップと、
     前記ロールにフィルムが掛けられた状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第二の検出時間差と、前記ロールにおける第二の回転速度とを求めるステップと、
     前記第一及び第二の検出時間差と、前記第一及び第二の回転速度とに基づいて、前記ロールに前記フィルムが掛けられていない状態と掛けられた状態との間における前記ロールの変位を求めるステップとを含むことを特徴とするロール変位測定方法。
  2.  前記請求項1に記載のロール変位測定方法を実施するロール変位測定装置であって、
     軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられると共に、その周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングが平行に設けられたロールと、
     回転する前記ロールの軸方向に沿って走査され、前記マーキングの接近を検出する近接センサが、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設けられた検出ヘッドと、
     前記検出ヘッドから入力される検出信号に基づいて、前記ロールの変位を算出する制御部とを備えることを特徴とするロール変位測定装置。
  3.  前記請求項1記載のロール変位測定方法を用いて、前記フィルムの厚さ寸法を求めるフィルム厚測定方法であって、
     軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられたロールの周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングを平行に設け、
     前記ロールに対し、ロール軸に沿って走査される検出ヘッドに、前記マーキングの接近を検出する近接センサを、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設け、
     前記ロールにフィルムが掛けられていない状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第一の検出時間差と、前記ロールにおける第一の回転速度とを求めると共に、前記ロールと前記検出ヘッドとの間の第一の距離を測定するステップと、
     前記ロールにフィルムが掛けられた状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第二の検出時間差と、前記ロールにおける第二の回転速度とを求めると共に、前記ロール上のフィルムと前記検出ヘッドとの間の第二の距離を測定するステップと、
     前記第一及び第二の検出時間差と、前記第一及び第二の回転速度とに基づいて、前記ロールに前記フィルムが掛けられていない状態と掛けられた状態との間における前記ロールの変位を求めるステップと、
     前記ロールに前記フィルムが掛けられていない状態と掛けられた状態との間における前記ロールの変位と、前記第一の距離と、第二の距離とを用いてフィルムの厚さ寸法を算出するステップとを含むことを特徴とするフィルム厚測定方法。
  4.  前記請求項3に記載のフィルム厚測定方法を実施するフィルム厚測定装置であって、
     軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられると共に、その周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングが平行に設けられたロールと、
     回転する前記ロールの軸方向に沿って走査され、前記マーキングの接近を検出する近接センサが、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設けられた検出ヘッドと、
     前記ロールにフィルムが掛けられていない状態で、前記ロールと前記検出ヘッドとの間の第一の距離を測定し、前記ロールにフィルムが掛けられた状態で、前記ロール上のフィルムと前記検出ヘッドとの間の第二の距離を測定する距離測定手段と、
     前記検出ヘッドから入力される検出信号に基づいて、前記ロールの変位を算出すると共に、前記算出されたロールの変位と、前記第一の距離と、前記第二の距離とを用いてフィルムの厚さ寸法を算出する制御部とを備えることを特徴とするフィルム厚測定装置。
PCT/JP2011/004053 2010-11-29 2011-07-15 ロール変位測定方法、及びそれを用いたロール変位測定装置、並びにフィルム厚測定方法、及びそれを用いたフィルム厚測定装置 WO2012073401A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-264568 2010-11-29
JP2010264568A JP5596519B2 (ja) 2010-11-29 2010-11-29 ロール変位測定方法、及びそれを用いたロール変位測定装置、並びにフィルム厚測定方法、及びそれを用いたフィルム厚測定装置

Publications (1)

Publication Number Publication Date
WO2012073401A1 true WO2012073401A1 (ja) 2012-06-07

Family

ID=46171379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004053 WO2012073401A1 (ja) 2010-11-29 2011-07-15 ロール変位測定方法、及びそれを用いたロール変位測定装置、並びにフィルム厚測定方法、及びそれを用いたフィルム厚測定装置

Country Status (2)

Country Link
JP (1) JP5596519B2 (ja)
WO (1) WO2012073401A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115428A (zh) * 2015-04-24 2015-12-02 上海工程技术大学 面向辐对称电缆切面绝缘层厚度的并行图像测量方法
CN105334391A (zh) * 2015-11-06 2016-02-17 无锡市金杨新型电源有限公司 一种电池盖帽的检测机构
CN109540003A (zh) * 2019-01-15 2019-03-29 厦门大学嘉庚学院 一种基于激光的高支模支撑架立杆水平位移实时监测系统
CN114034254A (zh) * 2021-11-22 2022-02-11 深圳市曼恩斯特科技股份有限公司 一种薄材厚度的测量方法
CN114659454A (zh) * 2022-05-24 2022-06-24 深圳市三江名创电子科技有限公司 一种手机保护膜厚度检测装置
CN115342740A (zh) * 2022-08-02 2022-11-15 江西铜博科技有限公司 一种铜箔测厚设备
CN118002496A (zh) * 2024-04-08 2024-05-10 荣成恒鑫动力科技股份有限公司 一种自动分选的电机冲片厚度检测装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286791A1 (ja) * 2021-07-13 2023-01-19 Jfeスチール株式会社 表面形状測定装置、表面形状測定方法及びコンベアベルトの管理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598304A (en) * 1979-01-19 1980-07-26 Sumitomo Metal Ind Ltd Thickness meter
JPH01291104A (ja) * 1988-05-19 1989-11-22 Sumitomo Heavy Ind Ltd 樹脂膜の膜厚計測装置
JPH03123811A (ja) * 1989-10-09 1991-05-27 Meisan Kk シート厚さ測定装置
JPH1082632A (ja) * 1996-09-06 1998-03-31 Yamabun Denki:Kk シート厚み計測装置
JPH11248425A (ja) * 1998-03-03 1999-09-17 Bridgestone Corp シート厚み計測装置
JP2002350125A (ja) * 2001-03-17 2002-12-04 Nexpress Solutions Llc 液体層の厚さを測定する方法および装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598304A (en) * 1979-01-19 1980-07-26 Sumitomo Metal Ind Ltd Thickness meter
JPH01291104A (ja) * 1988-05-19 1989-11-22 Sumitomo Heavy Ind Ltd 樹脂膜の膜厚計測装置
JPH03123811A (ja) * 1989-10-09 1991-05-27 Meisan Kk シート厚さ測定装置
JPH1082632A (ja) * 1996-09-06 1998-03-31 Yamabun Denki:Kk シート厚み計測装置
JPH11248425A (ja) * 1998-03-03 1999-09-17 Bridgestone Corp シート厚み計測装置
JP2002350125A (ja) * 2001-03-17 2002-12-04 Nexpress Solutions Llc 液体層の厚さを測定する方法および装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115428A (zh) * 2015-04-24 2015-12-02 上海工程技术大学 面向辐对称电缆切面绝缘层厚度的并行图像测量方法
CN105334391A (zh) * 2015-11-06 2016-02-17 无锡市金杨新型电源有限公司 一种电池盖帽的检测机构
CN109540003A (zh) * 2019-01-15 2019-03-29 厦门大学嘉庚学院 一种基于激光的高支模支撑架立杆水平位移实时监测系统
CN109540003B (zh) * 2019-01-15 2024-04-16 厦门大学嘉庚学院 一种基于激光的高支模支撑架立杆水平位移实时监测系统
CN114034254A (zh) * 2021-11-22 2022-02-11 深圳市曼恩斯特科技股份有限公司 一种薄材厚度的测量方法
CN114659454A (zh) * 2022-05-24 2022-06-24 深圳市三江名创电子科技有限公司 一种手机保护膜厚度检测装置
CN115342740A (zh) * 2022-08-02 2022-11-15 江西铜博科技有限公司 一种铜箔测厚设备
CN115342740B (zh) * 2022-08-02 2024-01-26 江西铜博科技股份有限公司 一种铜箔测厚设备
CN118002496A (zh) * 2024-04-08 2024-05-10 荣成恒鑫动力科技股份有限公司 一种自动分选的电机冲片厚度检测装置
CN118002496B (zh) * 2024-04-08 2024-06-11 荣成恒鑫动力科技股份有限公司 一种自动分选的电机冲片厚度检测装置

Also Published As

Publication number Publication date
JP2012112918A (ja) 2012-06-14
JP5596519B2 (ja) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5596519B2 (ja) ロール変位測定方法、及びそれを用いたロール変位測定装置、並びにフィルム厚測定方法、及びそれを用いたフィルム厚測定装置
US5714763A (en) Method and apparatus for optical alignment of a measuring head in an X-Y plane
US20210025687A1 (en) Sheet thickness measurement device
JP2010512524A (ja) 厚さ測定のための方法及び装置
JP2000230818A (ja) 車輪アライメント特性の非接触式測定方法とその測定装置
CN105783737A (zh) 一种新型小量程超高精度位移传感器及测量方法
US20100103405A1 (en) Optical measurement instrument for body height
CN210603224U (zh) 一种超精密线激光转角传感器
JP2746511B2 (ja) 単結晶インゴットのオリエンテーションフラット幅測定方法
CN105783738A (zh) 一种增量式小量程位移传感器及测量方法
JP2010197143A (ja) ポリゴンミラー用モータのシャフトの軸倒れを測定する測定装置及び測定方法
JP2011169796A (ja) 曲率測定装置
CN110763162A (zh) 一种超精密线激光转角感测方法
KR20010063525A (ko) 냉연강판용 폭측정장치
JPH06167327A (ja) キャンバ測定方法
KR100920309B1 (ko) 열연강판의 형상 측정장치
KR101129880B1 (ko) 광학식 평탄도 측정 장치
JPS6025526Y2 (ja) 非金属シート状物体の厚み測定装置
JPS61290309A (ja) 板材の平坦度測定装置
JP3444575B2 (ja) 距離計
CN105783739A (zh) 一种新型交替增量式测量微位移传感器及测量方法
JP2022180009A (ja) 表面形状測定装置及び表面形状測定方法
JPS60180610A (ja) 圧延ロ−ルクラウンの測定方法
KR20220129902A (ko) 강판 폭 측정 장치
JPH05231856A (ja) 厚み測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845827

Country of ref document: EP

Kind code of ref document: A1