WO2012070681A1 - 常磁性を有する水溶性ハイパーブランチポリマー - Google Patents

常磁性を有する水溶性ハイパーブランチポリマー Download PDF

Info

Publication number
WO2012070681A1
WO2012070681A1 PCT/JP2011/077432 JP2011077432W WO2012070681A1 WO 2012070681 A1 WO2012070681 A1 WO 2012070681A1 JP 2011077432 W JP2011077432 W JP 2011077432W WO 2012070681 A1 WO2012070681 A1 WO 2012070681A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
hyperbranched polymer
represented
carbon atoms
Prior art date
Application number
PCT/JP2011/077432
Other languages
English (en)
French (fr)
Inventor
登 古賀
悟 唐澤
蕾 薛
伊知男 青木
さやか 柴田
恒夫 佐賀
平田 修
章博 田中
理 上杉
Original Assignee
国立大学法人九州大学
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 日産化学工業株式会社 filed Critical 国立大学法人九州大学
Priority to JP2012545819A priority Critical patent/JP5802680B2/ja
Publication of WO2012070681A1 publication Critical patent/WO2012070681A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • A61K49/128Linear polymers, e.g. dextran, inulin, PEG comprising multiple complex or complex-forming groups, being either part of the linear polymeric backbone or being pending groups covalently linked to the linear polymeric backbone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules
    • C08G83/006After treatment of hyperbranched macromolecules

Definitions

  • the present invention relates to a novel water-soluble hyperbranched polymer having paramagnetism.
  • Magnetic resonance imaging which is currently used in clinical settings, is a technique for imaging the proton signal of water.
  • the position information of protons present in the living body and the surrounding contrast are two-dimensionally shaded. It is a technology to display.
  • Proton position information is obtained by using a gradient magnetic field that intentionally distorts the static magnetic field in nuclear magnetic resonance (NMR), and contrast is obtained as NMR information of protons such as water and lipid, spin density, relaxation time, Determined by diffusion rate, chemical shift, phase, etc.
  • NMR nuclear magnetic resonance
  • the relaxation time is widely used in various diagnoses because it changes depending on the relative arrangement and movement between the water molecule including the observed spin and the surrounding molecules, and well reflects the state of the surrounding tissue.
  • the MRI contrast agent used in this MRI method adds contrast between tissues having different distribution amounts by changing the relaxation time of water in a living tissue. That is, the contrast agent is indirectly detected through a change in the relaxation time of water protons.
  • a T 1 relaxation contrast agent containing gadolinium or manganese, or a T 2 relaxation contrast agent using iron oxide is used as the MRI contrast agent.
  • the longitudinal and lateral relaxation is caused by the interaction between these metal ions and water protons. Is promoted.
  • these metal ions tend to be toxic, what is actually chelated with a ligand is used to reduce the ability of living tissue to absorb. However, this chelation also reduces the relaxation ability of the metal ions, leading to a reduction in the effect as a contrast agent.
  • Non-patent Document 1 using the effect of increasing relaxation ability (paramagnetic substance relaxation promoting effect) by increasing the rotation correlation time according to the molecular size, and superparamagnetic iron oxide nanoparticles are combined with a polymer and averaged.
  • a contrast agent having a cancer cell selectivity with a particle size of about 26 nm Non-patent Document 1
  • a macromolecular contrast agent having a spacer arm from a polymer main chain structure Patent Document 2
  • Gd-DTPA diethylenetriaminepentaacetic acid
  • Gd-DTPA diethylenetriaminepentaacetic acid
  • MRI contrast agent an MRI contrast agent that has been widely used in the past
  • Gd-DTPA diethylenetriaminepentaacetic acid
  • Gd-DTPA is a low-molecular compound exhibiting water solubility and can be widely distributed in organs and tissues along the bloodstream.
  • Gd-DTPA is low in fat solubility, it is hardly taken into organs such as the liver, and since it is a low molecular weight compound, the sensitivity of cancer cell imaging is low, and there are limitations in imaging depending on the target organ and disease. is there.
  • a compound having a large average particle size has been studied with the expectation of imparting cell selectivity to cancer cells and the like, it is difficult to achieve sufficient water solubility as an MRI contrast agent. There was a problem in the synthesis to obtain an average particle size that can be expected to be selective.
  • the contrast agents proposed so far are not satisfactory in all of the mitigation ability, biological safety, target organ and disease, and further improvement in performance has been desired.
  • the present invention has been made in view of the above circumstances, that is, has sufficient relaxation ability, has no dissociation of metal ions, is excellent in biological safety, has moderate water solubility and fat solubility, and is wide. It is an object to provide a water-soluble hyperbranched polymer that can be used for a novel MRI contrast agent capable of imaging a wide range of target organs and diseases by having an organ distribution and organ uptake effect.
  • the present inventors have bound a hyperbranched polymer to the end of the hyperbranched polymer via a linking group, and binds the terminus to a water-soluble group via the linking group.
  • Core-shell type hyperbranched polymer obtained by bonding a hydrophilic site has a good balance between water-solubility and fat-solubility, expresses a large paramagnetic substance relaxation promoting effect, and has a novel MRI contrast enhancement It was found useful as an agent, and the present invention was completed.
  • the present invention provides, as a first aspect, a hyperbranched polymer having a graft chain at the molecular end, a segment A having a paramagnetic site in the graft chain, a carboxyl group, an amino group, and a hydroxy group. And a segment B having at least one functional group selected from the group consisting of sulfo groups.
  • the said segment A is related with the hyperbranched polymer as described in a 1st viewpoint represented by Formula [1], and the said segment B is represented by Formula [2].
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group
  • L 1 and L 2 each independently represent from 1 to 1 carbon atoms which may be substituted with a hydroxy group.
  • 6 represents an alkylene group
  • Pm represents a group having a paramagnetic organic group or a paramagnetic organogroup that includes a nitrogen atom or an oxygen atom bonded to L 1 at the end
  • R 3 is It represents an organic group containing at least one nitrogen atom or oxygen atom bonded to L 2 and having at least one functional group selected from the group consisting of a carboxyl group, an amino group, a hydroxy group and a sulfo group.
  • each R 4 independently represents a hydrogen atom or a methyl group
  • each A 1 independently represents a group represented by the formula [4] or the formula [5]
  • m and n are the numbers of repeating unit structures, each independently represents an integer of 1 to 100
  • each R 1 , each R 2 , each R 3 , each L 1 , each L 2 and each Pm independently represent the same meaning as described above.
  • a 2 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond
  • Y 1 , Y 2 , Y 3 and Y 4 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogen atom, a cyano group, a carboxyl group, an amino group, a nitro group, or a hydroxy group.
  • the present invention relates to the hyperbranched polymer according to the second aspect or the third aspect, wherein R 3 represents a bis (2-hydroxyethyl) amino group.
  • the present invention relates to the hyperbranched polymer according to the second aspect or the third aspect, wherein the Pm represents a manganese-porphyrin complex derivative.
  • a sixth aspect relates to the hyperbranched polymer according to the second aspect or the third aspect, wherein R 3 represents a bis (2-hydroxyethyl) amino group and Pm represents a manganese-porphyrin complex derivative.
  • the present invention relates to an MRI contrast agent comprising the hyperbranched polymer according to any one of the first aspect to the sixth aspect.
  • the present invention relates to the MRI contrast agent according to the seventh aspect, characterized in that the gastrointestinal wall is imaged.
  • the present invention relates to the MRI contrast agent according to the eighth aspect, wherein the intestinal tract wall is imaged.
  • the present invention relates to an MRI imaging method characterized by administering the hyperbranched polymer according to any one of the first to sixth aspects into the body.
  • the present invention relates to the MRI contrast method according to the tenth aspect, wherein the gastrointestinal tract wall is imaged.
  • the present invention relates to the MRI contrast method according to the eleventh aspect, wherein the intestinal tract wall is imaged.
  • the present invention relates to a method for producing a polymer.
  • each R 1 and each R 4 independently represent a hydrogen atom or a methyl group, and each R 3 contains a nitrogen atom or an oxygen atom bonded to L 1 at the end, and a carboxyl group
  • L 1 represents a 2-hydroxypropylene group
  • each Pm represents a nitrogen atom bonded to L 1
  • each A 1 is independently a group represented by the formula [4] or the formula [5]
  • K is the number of repeating unit structures and represents an integer of 2 to 100,000
  • m and n are the numbers of repeating unit structures, and each independently represents an integer of 1 to 100.
  • a 2 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond
  • Y 1 , Y 2 , Y 3 and Y 4 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogen atom, a cyano group, a carboxyl group, an amino group, a nitro group, or a hydroxy group.
  • the hyperbranched polymer having a graft chain at the molecular end represented by the formula [6] is reacted with the Pm—H or the R 3 —H and then reacted with the other.
  • the present invention relates to a hyperbranched polymer having a graft chain at the molecular end represented by the formula [6].
  • each R 1 and each R 4 independently represent a hydrogen atom or a methyl group
  • each A 1 independently represents a group represented by the formula [4] or the formula [5].
  • K is the number of repeating unit structures and represents an integer of 2 to 100,000
  • m and n are the numbers of repeating unit structures, and each independently represents an integer of 1 to 100.
  • a 2 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond
  • Y 1 , Y 2 , Y 3 and Y 4 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogen atom, a cyano group, a carboxyl group, an amino group, a nitro group, or a hydroxy group. .
  • the water-soluble hyperbranched polymer having paramagnetism of the present invention is a nonionic water-soluble polymer in which the particle size can be easily controlled and the water solubility can be easily adjusted. That is, since the water-soluble hyperbranched polymer of the present invention can have a large particle size and is water-soluble, application as a selective MRI contrast agent for cancer cells can be expected.
  • the water-soluble hyperbranched polymer of the present invention can be used as a novel contrast agent for MRI having a high relaxation ability due to a large paramagnetic substance relaxation promoting effect.
  • FIG. 1 is a diagram showing a 1 H NMR spectrum of a core-shell hyperbranched polymer (HPS200-PGMA8-H) having a hydrogen atom synthesized at Example 1 in a molecular terminal.
  • FIG. 2 is a diagram showing a 1 H NMR spectrum of a core-shell hyperbranched polymer (HPS1000-PGMA15-H) having a hydrogen atom synthesized at Example 2 at the molecular end.
  • Figure 3 is a diagram showing a particle size measurement by dynamic light scattering method HPS1000-PGMA15-MnTPPS 4 / DEA obtained in HPS200-PGMA8-MnTPPS 4 / DEA , and Example 4 obtained in Example 3 It is.
  • FIG. 1 is a diagram showing a 1 H NMR spectrum of a core-shell hyperbranched polymer (HPS200-PGMA8-H) having a hydrogen atom synthesized at Example 1 in a molecular terminal.
  • FIG. 2 is a diagram showing a
  • FIG. 4 is a transmission electron micrograph of HPS200-PGMA8-MnTPPS 4 / DEA obtained in Example 3.
  • FIG. 5 is a transmission electron micrograph of HPS1000-PGMA15-MnTPPS 4 / DEA obtained in Example 4.
  • 6 HPS200-PGMA8-MnTPPS 4 / DEA was obtained in Example 3
  • the concentration - shows the change of the reciprocal of the relaxation time T 1 It is a figure (relaxation ability r 1 ).
  • FIG. 7 shows HPS200-PGMA8-MnTPPS 4 / DEA was obtained in Example 3, and the HPS1000-PGMA15-MnTPPS 4 / DEA obtained in Example 4, the change in the inverse of relaxation time T 2 to the concentration It is a figure (relaxation capacity r 2 ).
  • FIG. 8 shows the ESR measurement results of HPS200-PGMA8-TEMPO / DEA obtained in Example 8.
  • FIG. 9 is a graph showing the particle diameter measurement result of the HPS200-PGMA8-TEMPO / DEA obtained in Example 8 by the dynamic light scattering method.
  • FIG. 10 is a graph showing changes in magnetic susceptibility with respect to the temperature of HPS200-PGMA8-TEMPO / DEA obtained in Example 8.
  • FIG. 11 is a graph showing the particle size measurement result of the HPS200-PGMA8-GdDOTA / DEA obtained in Example 12 by the dynamic light scattering method.
  • FIG. 12 shows coronal section T1-weighted images of the mouse lower abdomen taken in the MRI contrast test using HPS200-PGMA8-MnTPPS 4 / DEA in Example 15 (every hour before administration and immediately after administration until 4 hours after administration). ).
  • FIG. 13 is a diagram showing horizontal T1-weighted images (before administration and 1 hour after administration) of the abdominal cavity of mice taken in an MRI contrast test using HPS200-PGMA8-MnTPPS 4 / DEA in Example 15.
  • FIG. 12 shows coronal section T1-weighted images of the mouse lower abdomen taken in the MRI contrast test using HPS200-PGMA8-MnTPPS 4 / DEA in Example 15 (every hour before administration and immediately after administration until 4 hours after administration). ).
  • FIG. 13 is a diagram showing horizontal T1-weighte
  • FIG. 14 is a view showing a processed image by a volume rendering method of a three-dimensional T1-weighted image of a mouse abdominal cavity taken in an MRI contrast test using HPS200-PGMA8-MnTPPS 4 / DEA in Example 15.
  • FIG. 15 shows coronal section T1-weighted images of the mouse lower abdomen taken in the MRI contrast test using HPS1000-PGMA15-MnTPPS 4 / DEA of Example 16 (every hour before administration and immediately after administration until 4 hours after administration). ).
  • FIG. 16 shows coronal section T1-weighted images of the mouse lower abdomen taken in the MRI contrast test using HPS200-PGMA8-MnTPPS 4 of Comparative Example 3 (every hour before administration and immediately after administration to 4 hours after administration).
  • FIG. FIG. 17 shows horizontal T1-weighted images (before administration, immediately after administration, and 1 hour after administration) of the abdominal cavity of mice taken in an MRI contrast test using HPS200-PGMA8-MnTPPS 4 of Compar
  • the water-soluble hyperbranched polymer having paramagnetism is a hyperbranched polymer having a graft chain at the molecular end, a segment A having a paramagnetic site in the graft chain, a carboxyl group, an amino group And a segment B having at least one functional group selected from the group consisting of a hydroxy group and a sulfo group.
  • the segment A is represented by the following formula [1]
  • the segment B is represented by the following formula [2].
  • R ⁇ 1 > and R ⁇ 2 > represents a hydrogen atom or a methyl group each independently.
  • L 1 and L 2 each independently represents an alkylene group having 1 to 6 carbon atoms which may be substituted with a hydroxy group.
  • Pm represents a group having an organic group that expresses paramagnetism or a paramagnetism that expresses paramagnetism including a nitrogen atom or an oxygen atom bonded to L 1 at the terminal.
  • R 3 represents an organic group containing a nitrogen atom or oxygen atom bonded to L 2 and having at least one functional group selected from the group consisting of a carboxyl group, an amino group, a hydroxy group and a sulfo group.
  • alkylene group having 1 to 6 carbon atoms which may be substituted with the hydroxy group in L 1 or L 2 include a methylene group, an ethylene group, an n-propylene group, a 2-hydroxypropylene group, an n-butylene group, Examples thereof include n-hexylene group.
  • L 1 or L 2 is a 2-hydroxypropylene group.
  • Said Pm is a group containing a terminal nitrogen atom or oxygen atom of the side that binds to L 1, for example, -N at the end of a side that binds to L 1 (H) - group, -O- group, -C A group containing a ( ⁇ O) O— group or a —S ( ⁇ O) 2 O— group.
  • a chelate complex comprising a paramagnetic metal and a ligand such as a diethylenetriaminepentaacetic acid derivative or a porphyrin derivative, or And groups derived from compounds having an organic radical structure such as a nitroxyl group in the molecule (see, for example, Patent Document 3).
  • Gd-DTPA gadolinium complex of diethylenetriaminepentaacetic acid
  • Gd-DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid Gadolinium complex
  • Gd-DTPA-BMA gadolinium complex of diethylenetriaminopentaacetic acid bismethylamide
  • Gd-HPDO3A Gd-HPDO3A ⁇ [10- (2-hydroxypropyl) -1,4,7,10-tetraazacyclododecane ], 4,4,7-triacetic acid gadolinium complexes ⁇ and the like
  • manganese-porphyrin derivative complexes manganese-porphyrin derivative complexes.
  • examples of the organic radical structure include the following groups.
  • Pm represents a group derived from a manganese-porphyrin complex derivative, particularly from the viewpoint of water solubility and paramagnetism of the obtained hyperbranched polymer.
  • R 3 is a group containing a nitrogen atom or an oxygen atom to a terminal of a side that binds to L 2, for example, -N at the end on the side bonded to L 2 (H) - group, -O- group, - A group containing a C ( ⁇ O) O— group or a —S ( ⁇ O) 2 O— group. And it is group which has an organic group which has at least 1 functional group chosen from the group which consists of a carboxyl group, an amino group, a hydroxy group, and a sulfo group.
  • R 3 include groups of sugar derivatives such as glucuronic acid, galacturonic acid, lactobionic acid, galactosamine, as well as —OC ( ⁇ O) —L 3 —COOH, —OC ( ⁇ O) -L.
  • the water-soluble hyperbranched polymer having paramagnetism of the present invention is represented by the following formula [3].
  • each R 4 independently represents a hydrogen atom or a methyl group.
  • Each A 1 independently represents a group represented by the following formula [4] or formula [5].
  • k is the number of repeating unit structures and represents an integer of 2 to 100,000, and m and n are the numbers of repeating unit structures, each independently representing an integer of 1 to 100.
  • each R 1 , each R 2 , each R 3 , each L 1 , each L 2 and each Pm independently represent the same meaning as defined in the formula [1] or [2].
  • the structure represented by the formula [1] corresponding to the segment A and the structure represented by the formula [2] corresponding to the segment B are either random bonds or block bonds. And may include structures other than segment A and segment B.
  • the order of segment A and segment B in the graft chain is not particularly limited, and the structure bonded to the hyperbranched polymer side and the structure bonded to the hydrogen atom side may be segment A, segment B, or other structures.
  • the content ratio of the structure represented by the formula [1] (segment A) and the structure represented by the formula [2] (segment B) is The ratio is preferably 1:99 to 99: 1, more preferably 10:90 to 90:10.
  • a 2 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond
  • Y 1 , Y 2 , Y 3 and Y 4 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogen atom, a cyano group, a carboxyl group, an amino group, a nitro group, or a hydroxy group.
  • linear alkylene group in A 2 examples include a methylene group, an ethylene group, an n-propylene group, an n-butylene group, and an n-hexylene group.
  • branched alkylene group examples include isopropylene group, isobutylene group and 2-methylpropylene group.
  • the cyclic alkylene group examples include alicyclic aliphatic groups having a cyclic structure of 3 to 30 carbon atoms, such as monocyclic, polycyclic and bridged cyclic structures. Specific examples include groups having a monocyclo, bicyclo, tricyclo, tetracyclo, or pentacyclo structure having 4 or more carbon atoms.
  • the structural examples (a) to (s) of the alicyclic moiety in the alicyclic aliphatic group are shown below.
  • Examples of the alkyl group having 1 to 20 carbon atoms in Y 1 , Y 2 , Y 3 and Y 4 include a methyl group, an ethyl group, an isopropyl group, an n-pentyl group and a cyclohexyl group.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, an isopropoxy group, an n-pentyloxy group, and a cyclohexyloxy group.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • Y 1 , Y 2 , Y 3 and Y 4 are preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • a 1 in the formula [3] is preferably a structure represented by the following formula.
  • particularly preferable polymers as the water-soluble hyperbranched polymer having paramagnetism of the present invention include, for example, polymers represented by the following [a] to [d], but are not limited thereto. is not.
  • the weight average molecular weight (Mw) measured in terms of polystyrene by gel permeation chromatography in the water-soluble hyperbranched polymer having paramagnetism of the present invention is 1,000 to 1,000,000, preferably 2,000 to 800,000.
  • the weight average molecular weight (Mw) measured in polystyrene conversion by gel permeation chromatography of the hyperbranched polymer main body (corresponding to the hyperbranched polymer represented by the formula [8] described later) excluding the graft chain at the molecular end. Is 1,000 to 400,000, preferably 2,000 to 200,000.
  • the average particle diameter (by dynamic light scattering method) of primary particles or secondary particles of the water-soluble hyperbranched polymer having paramagnetism is preferably 1 nm to 1,000 nm, more preferably 5 nm to 500 nm. is there.
  • the water-soluble hyperbranched polymer having paramagnetism of the present invention can be produced, for example, by the following procedure. That is, a hyperbranched polymer having a graft chain at the molecular end represented by the following formula [6] and Pm—H (where Pm is a paramagnet having a nitrogen atom or an oxygen atom bonded to a hydrogen atom at its end) And R 3 —H (wherein R 3 contains a nitrogen atom or an oxygen atom bonded to a hydrogen atom at the end, and a carboxyl group).
  • each R 1 and each R 4 each independently represent a hydrogen atom or a methyl group.
  • each R 3 contains at least one nitrogen atom or oxygen atom bonded to L 1 and at least one functional group selected from the group consisting of a carboxyl group, an amino group, a hydroxy group, and a sulfo group.
  • each A 1 independently represents a group represented by the formula [4] or the formula [5]
  • k is the number of repeating unit structures.
  • m and n are the number of repeating unit structures, each independently representing an integer of 1 to 100.
  • the structure corresponding to the segment A and the structure corresponding to the segment B may be connected by either random bond or block bond, and other than segment A and segment B
  • the structure may be included.
  • the order of segment A and segment B in the graft chain is not particularly limited, and the structure bonded to the hyperbranched polymer side and the structure bonded to the hydrogen atom side may be segment A, segment B, or other structures.
  • the order in which Pm—H or R 3 —H is reacted with the hyperbranched polymer having a graft chain at the molecular end represented by the formula [6] is not particularly limited.
  • R 3 —H may be reacted after the reaction, or P 3 —H may be reacted after R 3 —H is reacted first. Moreover, you may make it react simultaneously.
  • the solvent used when Pm—H and R 3 —H are reacted with the hyperbranched polymer having a graft chain at the molecular end represented by the formula [6] is not particularly limited as long as these components are soluble.
  • Ether solvents such as tetrahydrofuran (THF) and 1,4-dioxane; ketone solvents such as methyl isobutyl ketone (MIBK) and cyclohexanone; halogen solvents such as chloroform, dichloromethane and 1,2-dichloroethane; N, N And amide solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP); sulfoxide solvents such as dimethyl sulfoxide (DMSO) and the like.
  • Ether solvents such as tetrahydrofuran (THF) and 1,4-dioxane
  • ketone solvents such as methyl isobutyl ketone (
  • amide solvent or a sulfoxide solvent are preferred. These solvents are in the range of 10 to 10,000 parts by mass, preferably in the range of 100 to 1,500 parts by mass with respect to 100 parts by mass of the hyperbranched polymer having a graft chain at the molecular end represented by the formula [6]. Used in.
  • the reaction between the hyperbranched polymer having a graft chain at the molecular end represented by the formula [6] and Pm—H or R 3 —H is carried out in the temperature range of ⁇ 50 to 200 ° C., preferably 20 to 100 ° C.
  • the reaction time is usually 1 to 48 hours, preferably 2 to 20 hours.
  • the charge amount of Pm—H and R 3 —H is usually 100: 1 to 1: 1,000 in molar ratio, but when Pm—H and R 3 —H are reacted stepwise, A large excess of the reagent to be reacted later may be used.
  • the present invention is also directed to a hyperbranched polymer having a graft chain at the molecular end represented by the above formula [6].
  • the hyperbranched polymer represented by the above formula [6] is obtained by reacting glycidyl (meth) acrylate with a styrene-based hyperbranched polymer having a dithiocarbamate group represented by the following formula [8] at the molecular end, The dithiocarbamate group at the molecular end is reduced to a hydrogen atom.
  • a 1 , R 1 , R 4 , k, m and n represent the meanings as defined above in formula [6].
  • the hyperbranched polymer represented by the formula [8] having a dithiocarbamate group at the molecular end is synthesized by a photopolymerization method of a styrene compound having a dithiocarbamate group (Koji Ishizu, Akihide Mori, Macromol. Rapid Commun. 21, 665-668 (2000), Koji Ishizu, Akihide Mori, Polymer ter International 50, 906-910 (2001), Koji Ishizu, Yoshihiro t Ohta, Susumu 200 Kawaul.
  • the reaction between the styrenic hyperbranched polymer represented by the formula [8] and glycidyl (meth) acrylate may be either photopolymerization or thermal polymerization, and is preferably reacted by photopolymerization. These reactions can be suitably carried out under the reaction conditions described in Patent Document 4.
  • the solvent used for the reaction is a solvent in which the hyperbranched polymer represented by the formula [8] and glycidyl (meth) acrylate are dissolved.
  • aprotic polar organic solvents N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, tetramethylurea, sulfolane, N-methyl-2-pyrrolidone, 1, 3-dimethylimidazolidinone, etc.
  • ethers diisopropyl ether, t-butyl methyl ether, tetrahydrofuran, dioxane, etc.
  • aliphatic hydrocarbons hexane, cyclohexane, n-octane, n-decane, decalin, petroleum ether, etc.
  • Aromatic hydrocarbons benzene, chlorobenzene, o-dichloro
  • Benzene nitrobenzene, toluene, xylene, mesitylene, tetralin, etc.
  • halogenated hydrocarbons chloroform, dichloromethane
  • the polymerization temperature is usually 0 to 100 ° C., preferably 20 to 50 ° C. in the case of a reaction by photopolymerization. In the case of a reaction by thermal polymerization, the polymerization temperature is usually 50 to 250 ° C., preferably 80 to 200 ° C., more preferably 100 to 150 ° C.
  • reaction time is appropriately selected depending on the length of the target graft chain; However, the reaction time is usually 1 to 80 hours, preferably 2 to 10 hours.
  • the molar ratio of the styrene hyperbranched polymer having a dithiocarbamate group represented by the above formula [8] at the molecular end and glycidyl (meth) acrylate is appropriately selected according to the length of the graft chain to be introduced.
  • the ratio of the number of moles of glycidyl (meth) acrylate to the number of moles of the dithiocarbamate group of the hyperbranched polymer represented by the formula [8] (molar ratio) is 1: 1 to 1,000: 1. Yes, or 1: 1 to 100: 1.
  • the reduction method is not particularly limited as long as it can convert a dithiocarbamate group into a hydrogen atom.
  • hydrogen hydrogen iodide, hydrogen sulfide, lithium aluminum hydride, sodium borohydride, hydrogen
  • the reduction reaction can be carried out using a known reducing agent such as tributyltin iodide, tris (trimethylsilyl) silane, thioglycolic acid or the like.
  • a reduction reaction performed by irradiating with light in a compound used for reduction under radical reaction conditions such as tributyltin hydride in an organic solvent solution is preferable.
  • the amount of the reducing agent used is 1 to 20 times molar equivalent, preferably 1.5 to 10 times molar equivalent, more preferably 1.8 to 5 times mol, based on the number of dithiocarbamate groups contained in the hyperbranched polymer.
  • the equivalent is sufficient.
  • the system may be replaced with an inert gas such as nitrogen or argon.
  • the conditions for the reduction reaction are appropriately selected from a reaction time of 0.01 to 100 hours and a reaction temperature of 0 to 200 ° C.
  • the reaction time is 0.1 to 10 hours, and the reaction temperature is 20 to 100 ° C.
  • organic solvent used for the reduction reaction those capable of dissolving the hyperbranched polymer having the dithiocarbamate group and the reducing agent are preferable, for example, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, tetrahydrofuran, Ether compounds such as diethyl ether, ketone compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, and aliphatic hydrocarbons such as normal heptane, normal hexane, and cyclohexane can be used. These solvents may be used alone or in combination of two or more.
  • aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, tetrahydrofuran
  • Ether compounds such as diethyl ether
  • ketone compounds such as acetone, methyl e
  • the light irradiation can be performed by irradiating from inside or outside the reaction system using an ultraviolet irradiation lamp such as a low pressure mercury lamp, a high pressure mercury lamp, an ultra high pressure mercury lamp, or a xenon lamp.
  • an ultraviolet irradiation lamp such as a low pressure mercury lamp, a high pressure mercury lamp, an ultra high pressure mercury lamp, or a xenon lamp.
  • the hyperbranched polymer having a graft chain at the molecular end represented by the above formula [6] thus obtained can be separated from the solvent from the reaction solution by solvent distillation or solid-liquid separation. Further, the hyperbranched polymer can be precipitated and recovered by adding the reaction solution to a poor solvent.
  • the water-soluble hyperbranched polymer having paramagnetism of the present invention is expected to be applied to various fields. Among them, the nature and size capable of supporting paramagnetic sites at high density, It is expected to have cancer cell selectivity and is useful as an MRI contrast agent. That is, the MRI contrast agent containing the paramagnetic water-soluble hyperbranched polymer of the present invention is also an object of the present invention.
  • the MRI contrast agent of the present invention is usually used in a state of being dispersed, suspended or dissolved in a solvent such as distilled water for injection, physiological saline or Ringer's solution, and further, if necessary, a pharmacologically acceptable carrier. Additives such as excipients can be included.
  • the MRI contrast agent of the present invention can be applied to cells and the like, and can be administered in vivo by intravascular (venous, arterial) administration, oral administration, rectal administration, intravaginal administration, intralymphatic administration, intraarticular administration, etc. Preferably, it is administered by intravenous administration or oral administration in the form of a solution, emulsion or suspension.
  • the additive that can be included in the MRI contrast agent varies depending on the administration form, administration route, and the like.
  • a buffer, an antibacterial agent, a stabilizer, a solubilizing agent, Excipients are used singly or in combination, and in the case of oral administration (specifically, water, syrup, emulsion, suspension, etc.), colorant, preservative, stabilizer, suspending agent , Emulsifiers, thickeners, sweeteners, fragrances and the like may be used alone or in combination.
  • colorant specifically, water, syrup, emulsion, suspension, etc.
  • Emulsifiers Emulsifiers, thickeners, sweeteners, fragrances and the like
  • the MRI contrast agent of the present invention can be administered and imaged according to a conventional MRI contrast agent. Further, the MRI contrast agent can be suitably used as a contrast agent for various animals other than humans, and its administration form, administration route, dosage and the like are appropriately selected according to the body weight and condition of the target animal.
  • GPC gel permeation chromatography
  • Equipment HLC-8320GPC manufactured by Tosoh Corporation Column: Shodex KF-804L, KF-805L Column temperature: 40 ° C
  • Solvent THF Detector: RI
  • Device Particle size, zeta potential, molecular weight measuring device manufactured by Malvern, Inc.
  • Zetasizer Nano Series (3)
  • 1 H NMR Apparatus AVANCE500 manufactured by Bruker (4)
  • Light irradiation device High pressure mercury lamp (100W) HL100C manufactured by Sen Special Light Source Co., Ltd.
  • GMA glycidyl methacrylate [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • DCDC Tetraethylthiuram disulfide [Wako Pure Chemical Industries, Ltd.]
  • S-DC N, N-diethyldithiocarbamylmethylstyrene
  • TPPS 4 Na sodium tetraphenylporphyrin tetrasulfonate
  • DEA Diethanolamine [manufactured by Aldrich]
  • Amino TEMPO 4-amino-2,2,6,6-tetramethylpiperidine 1-oxyl
  • MnPP manganese protoporphyrin [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • THF Tetrahydrofuran
  • IPE Diisopropyl ether
  • DMSO Dimethyl sulfoxide
  • the reaction was carried out by irradiating with a high pressure mercury lamp for 3 hours while stirring. Thereafter, the reaction solution was added to 1.5 L of IPE to precipitate the polymer. The precipitate was filtered under reduced pressure and dried in vacuo to obtain 31.6 g of the desired product (HPS200-PGMA8-DC).
  • the weight average molecular weight Mw measured by polystyrene conversion by GPC of the obtained target product was 67,000, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 3.3.
  • Example 1 Synthesis of a core-shell hyperbranched polymer (HPS200-PGMA8-H) having a hydrogen atom at the molecular end
  • HPS200-PGMA8-DC obtained in Synthesis Example 1, tributyltin hydride (manufactured by Aldrich) and 250 mL of THF, and stirred to obtain a uniform solution.
  • tributyltin hydride manufactured by Aldrich
  • THF 250 mL
  • the reaction solution was added to 1.5 L of IPE to precipitate the polymer.
  • the weight average molecular weight Mw measured by polystyrene conversion by GPC of the product in the reaction solution at this time was 57,000.
  • 10.0 g (38 mmol) of S-DC and 0.10 g (0.34 mmol) of DC-DC were added to the reaction solution, and after nitrogen substitution, the mixture was heated at 120 ° C. for 17 hours with stirring. Thereafter, the reaction solution was dissolved in 360 g of THF, and the obtained solution was added to 2 kg of methanol to precipitate a polymer. This precipitate was filtered under reduced pressure, and purification by reprecipitation was repeated twice using THF and methanol in the same manner.
  • the resulting precipitate was filtered under reduced pressure and dried under vacuum to obtain 24.0 g of the desired product (HPS1000) (yield 60%).
  • the weight average molecular weight Mw measured by polystyrene conversion by GPC of the obtained target product was 100,000, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 5.6.
  • Example 2 Synthesis of a core-shell hyperbranched polymer (HPS1000-PGMA15-H) having a hydrogen atom at the molecular end
  • a core-shell hyperbranched polymer HPS1000-PGMA15-H
  • tributyltin hydride manufactured by Aldrich
  • the reaction solution was added to 1.5 L of IPE to precipitate the polymer. This precipitate was filtered under reduced pressure and dried under vacuum to obtain 18.6 g of the desired product (HPS1000-PGMA15-H).
  • the 1 H NMR spectrum of the obtained target product is shown in FIG.
  • the amount of GMA introduced from this spectrum was an average of 15 molecules per molecule end of the hyperbranched polymer (corresponding to the number of repeating units represented by [] in the above formula: 15).
  • the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target product was 591,000, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 17.1.
  • the average particle size of the target product obtained by DLS analysis was 16.5 nm (THF).
  • MnTPPS 4 manganese-porphyrin complex
  • TPPS 4 Na and 1.19 g of manganese acetate tetrahydrate were dissolved in 50 mL of methanol and heated to reflux for 7 hours. After cooling the reaction solution to room temperature (approximately 25 ° C.), 100 mL of acetic acid was added, and a sticky solid precipitated.
  • Example 3 Synthesis of paramagnetic core-shell hyperbranched polymer (HPS200-PGMA8-MnTPPS 4 / DEA) 0.4 g of HPS200-PGMA8-H obtained in Example 1 and 0.52 g of MnTPPS 4 obtained in Synthesis Example 4 were dissolved in 480 mL of DMSO. This solution was stirred in an oil bath at 60 ° C. for 3 hours, and then the oil bath was removed and the solution was cooled to room temperature (approximately 25 ° C.). DEA4.0g was dripped at this reaction liquid, and it stirred at room temperature for 15 hours as it was. This reaction solution was added to 2 L of diethyl ether to precipitate a sticky solid.
  • Example 4 Synthesis of paramagnetic core-shell hyperbranched polymer (HPS1000-PGMA15-MnTPPS 4 / DEA) And HPS1000-PGMA15-H0.5g obtained in Example 2, a MnTPPS 4 0.68 g obtained in Synthesis Example 4 was dissolved in DMSO600mL. This solution was stirred in an oil bath at 60 ° C. for 3 hours, and then the oil bath was removed and the solution was cooled to room temperature (approximately 25 ° C.). DEA 5.0g was dripped at this reaction liquid, and it stirred at room temperature for 15 hours as it was. This reaction solution was added to 2 L of diethyl ether to precipitate a sticky solid.
  • Example 5 were dispersed particle diameter HPS200-PGMA8-MnTPPS 4 / DEA was obtained in the measurement example 3, and obtained in Example 4 HPS1000-PGMA15-MnTPPS 4 / DEA in deionized water, respectively, 0 A 10 mL sample of 0.02 mg / mL was prepared. The particle size of 1 mL of this sample was measured by a dynamic light scattering method. The obtained results are shown in FIG. It was confirmed that each core-shell type hyperbranched polymer formed an aggregate having a particle size distribution centered on a size of about 85 nm (Example 3) and about 200 nm (Example 4), respectively.
  • Example 6 a transmission electron microscope (TEM) HPS200-PGMA8-MnTPPS obtained by the observation in Example 3 by 4 / DEA, and obtained in Example 4 HPS1000-PGMA15-MnTPPS 4 / DEA respectively deionized Disperse in water to prepare 10 mL of a 2 mg / mL sample. 5 ⁇ L of this sample was placed on a pretreated elastic carbon support membrane [manufactured by Oken Shoji Co., Ltd. (grid pitch: 100 ⁇ m)], and the excess solution was blotted with a filter paper. In addition, as a pretreatment of the support film, a discharge treatment was performed using a hydrophilic treatment apparatus for electron microscope [HDT-400 manufactured by JEOL Ltd.].
  • TEM transmission electron microscope
  • Example 7 relaxation HPS200-PGMA8-MnTPPS 4 / DEA was obtained in the measurement example 3 times, and HPS1000-PGMA15-MnTPPS 4 / DEA obtained in Example 4, as well as in Synthesis Example 4 as a reference example
  • the obtained MnTPPS 4 was dispersed in deionized water to prepare five different concentration samples with a porphyrin concentration of 0.05 to 1.0 mM. A total of 6 samples of 0.3 mL each of five concentrations and 0.3 mL of deionized water were placed in a 10 ⁇ sample tube, respectively.
  • a pulse NMR apparatus [JNM-MU25RAN (0.59T, 25 MHz, 25, manufactured by JEOL Ltd.) C)) was used to measure the T 1 relaxation time (longitudinal relaxation) and T 2 relaxation time (lateral relaxation) for each sample.
  • the T 1 relaxation time was measured by the Inversion Recovery method
  • the T 2 relaxation time was measured by the Carr-Purcell-Meibuum-Gill (CPMG) method.
  • the vertical axis represents the relaxation time of water (reciprocal of relaxation time T 1 or T 2 ) and the horizontal axis represents the concentration, and the relaxation capacity r 1 , r 2 (mM ⁇ 1 s ⁇ 1 ) from the slope.
  • FIG. 6 longitudinal relaxation
  • r 2 13.1 mM ⁇ 1 s ⁇ 1 ) and Gd, which is a commercially available MRI contrast agent.
  • -Relaxation capacity of DTPA r 1 5.5 mM -1 s -1 (0.59T, 25 MHz, 25 ° C.), which is a large value, HPS200-PGMA8-MnTPPS 4 / DEA (Example 3) and HPS1000 -PGMA15-MnTPPS 4 / DEA (Example 4) was confirmed to be clinically applicable as an MRI contrast agent.
  • This reaction solution was added to 100 mL of diethyl ether, and the precipitated solid was filtered under reduced pressure and dried under vacuum to obtain 0.2 g of the target product (HPS200-PGMA8-MnTPPS 4 ) as a brownish green sticky solid (yield) 91%).
  • the obtained target product had a solubility in water of less than 1% by mass, and the result showed that the target product lacked water solubility for clinical application as an MRI contrast agent.
  • This reaction solution was added to 100 mL of diethyl ether, and the precipitated solid was filtered under reduced pressure and vacuum-dried to obtain 0.1 g of the desired product (HPS1000-PGMA15-MnTPPS 4 ) as a brownish green sticky solid (yield) 83%).
  • the obtained target product had a solubility in water of less than 1% by mass, and the result showed that the target product lacked water solubility for clinical application as an MRI contrast agent.
  • Example 8 Synthesis of paramagnetic core-shell hyperbranched polymer (HPS200-PGMA8-TEMPO / DEA) 0.5 g of HPS200-PGMA8-H obtained in Example 1 and 0.6 g of amino TEMPO synthesized according to a known method (for example, Eur. J. Med. Chem., 24, 335 (1989)) were added to 15 mL of DMSO. Dissolved. This solution was stirred in an oil bath at 70 ° C. for 16 hours, 4.0 g of DEA was added dropwise, and the mixture was further stirred for 6 hours. Thereafter, the oil bath was removed and the system was cooled to room temperature (approximately 25 ° C.).
  • This reaction solution was added to 200 mL of diethyl ether to precipitate a sticky solid. After removing the supernatant by decantation, the remaining sticky solid was dried under reduced pressure and dissolved in 100 g of deionized water. The solution was filtered to remove insolubles, and the resulting aqueous solution was lyophilized to obtain 0.8 g of the desired product (HPS200-PGMA8-TEMPO / DEA) as a red sticky solid (yield 57%). . The obtained target product had a solubility in water of 1% by mass.
  • the weight average molecular weight measured in pullulan conversion by the target GPC (column: TSK-GEL G600PWXL-CP + G3000PWXL-CP, eluent: 20 mM sodium nitrate aqueous solution, column temperature: 40 ° C., flow rate: 1 mL / min) Mw was 480,000.
  • Example 9 ESR measurement HPS200-PGMA8-TEMPO / DEA obtained in Example 8 was dispersed in deionized water to prepare a 1 mg / mL sample, and X-band ESR was measured. The obtained result is shown in FIG. As shown in FIG. 8, it was confirmed that HPS200-PGMA8-TEMPO / DEA contains a TEMPO radical because three lines with an ultrafine coupling constant of 14 gauss with broadening were confirmed.
  • Example 10 Particle size measurement HPS200-PGMA8-TEMPO / DEA obtained in Example 8 was dispersed in deionized water to prepare 10 mL of a 0.1 mg / mL sample. The particle size of 1 mL of this sample was measured by a dynamic light scattering method. The obtained results are shown in FIG. As shown in FIG. 9, it was confirmed that HPS200-PGMA8-TEMPO / DEA formed an aggregate having a particle size distribution centered on a size of about 10 nm.
  • Example 11 Measurement of magnetic susceptibility
  • the temperature dependence of the magnetic susceptibility of HPS200-PGMA8-TEMPO / DEA 55 mg obtained in Example 8 was measured using a SQUID magnetometer [5000 Gauss external magnetic field manufactured by Quantum Design Co., Ltd.]. did.
  • the obtained result is shown in FIG. In FIG. 10, the measurement result is indicated by a circle, and the theoretical value when 100% of the TEMPO radical is contained is indicated by a solid line. From the obtained magnetic susceptibility value, it was confirmed that 13% of TEMPO radical was contained in a 55 mg sample.
  • GdDOTA gadolinium-DOTA complex
  • Example 12 Synthesis of paramagnetic core-shell hyperbranched polymer (HPS200-PGMA8-GdDOTA / DEA) HPS200-PGMA8-H0.1 g obtained in Example 1 and GdDOTA0.2 g obtained in Synthesis Example 5 were dissolved in 10 mL DMSO. The solution was stirred in an oil bath at 70 ° C. for 6 hours, 1.0 g of DEA was added dropwise, and the solution was further stirred for 6 hours. Thereafter, the oil bath was removed and the system was cooled to room temperature (approximately 25 ° C.). This reaction solution was added to 40 mL of diethyl ether to precipitate a sticky solid.
  • the remaining sticky solid was dried under reduced pressure and dissolved in 5 g of deionized water. This solution was filtered to remove insolubles, and the resulting aqueous solution was lyophilized to obtain 0.25 g of the desired product (HPS200-PGMA8-GdDOTA / DEA) as a white sticky solid (yield 70%).
  • the gadolinium ion content of HPS200-PGMA8-GdDOTA / DEA was 2% by mass.
  • the obtained object had a solubility in water of 1% by mass.
  • Example 13 Particle size measurement HPS200-PGMA8-GdDOTA / DEA obtained in Example 12 was dispersed in deionized water to prepare a 10 mL sample of 0.1 mg / mL. The particle size of 1 mL of this sample was measured by a dynamic light scattering method. The obtained results are shown in FIG. As shown in FIG. 11, it was confirmed that HPS200-PGMA8-GdDOTA / DEA formed an aggregate having a particle size distribution centered on a size of about 10 nm.
  • Example 14 Synthesis of paramagnetic core-shell hyperbranched polymer (HPS200-PGMA8-MnPP / DEA) 0.03 g of HPS200-PGMA8-H obtained in Example 1 and 0.12 g of MnPP were dissolved in 5 mL of DMSO. This solution was stirred in an oil bath at 70 ° C. for 6 hours, 1.0 g of DEA was added dropwise, and the solution was further stirred for 6 hours. Thereafter, the oil bath was removed and the system was cooled to room temperature (approximately 25 ° C.). This reaction solution was added to 10 mL of diethyl ether to precipitate a sticky solid.
  • the obtained target product had a solubility in water of 1% by mass.
  • Example 15 HPS200-PGMA8-MnTPPS 4 / DEA to the HPS200-PGMA8-MnTPPS 4 / DEA5mg synthesized by the method described in the MRI contrast Test Example 3 was dissolved in physiological saline 200 ⁇ L using a contrast medium solution Prepared. Contrast medium in the tail vein of female nude mice [Japan SLC, BALB / c nude, 12 weeks old at the time of administration] in which colon cancer (Colon-26) cells were subcutaneously transplanted bilaterally on the dorsal side of the lower abdomen A polyethylene tube for administration was placed.
  • Contrast medium in the tail vein of female nude mice [Japan SLC, BALB / c nude, 12 weeks old at the time of administration] in which colon cancer (Colon-26) cells were subcutaneously transplanted bilaterally on the dorsal side of the lower abdomen A polyethylene tube for administration was placed.
  • Fig. 12 shows coronal section T1-weighted images of the lower abdomen of the mouse (before administration and every hour from immediately after administration to 4 hours after administration), and Fig. 12 shows horizontal T1-weighted images of the mouse abdominal cavity (before administration and 1 hour after administration).
  • Table 14 shows processed images obtained by volume rendering of the three-dimensional T1-weighted image of the mouse abdominal cavity.
  • Table 1 shows signal intensity ratios of each organ and tissue in FIG. In FIG. 12, the portion surrounded by a dotted line shows a colon cancer cell transplanted subcutaneously.
  • the contrast agent of the present invention when used, a significant increase in signal intensity is observed in the intestinal wall (gastrointestinal wall), and the intestinal wall (gastrointestinal wall) is specifically identified. It was confirmed that contrast can be performed. Furthermore, as shown in FIG. 14, by using the contrast agent of the present invention and combining with three-dimensional MRI imaging, a three-dimensional diagnosis that specifically visualizes the digestive tract wall of the whole body, which is not found in conventional diagnostic methods, can be performed. It was suggested that it would be possible. Moreover, as shown in Table 1 and FIG. 12, an increase in signal intensity was observed even in the tumor, and it was confirmed that the tumor could be imaged. Note that the increase in signal intensity in the liver and kidney is thought to be due to the discharge of contrast medium. That is, it was suggested that both the system that drains from the liver to the bile and the gastrointestinal tract and the system that drains from the kidney to the urine are involved in the discharge route of the contrast agent.
  • Example 16 HPS1000-PGMA15-MnTPPS 4 / DEA to the HPS1000-PGMA15-MnTPPS 4 /DEA4.5mg synthesized by the method described in the MRI contrast Test Example 4 was dissolved in physiological saline 120 ⁇ L using a contrast agent A solution was prepared. Thereafter, the same operation as in Example 15 was performed.
  • FIG. 15 shows coronal section T1-weighted images of the mouse lower abdomen (every hour before administration and immediately after administration to 4 hours after administration). Table 2 shows the signal intensity ratio of the tumor to the muscle in FIG. In FIG. 15, colon cancer cells transplanted subcutaneously are shown by the dotted line.
  • FIG. 16 shows coronal section T1-weighted images of the mouse lower abdomen (before administration and every hour from immediately after administration to 4 hours after administration), and FIG. 16 shows horizontal T1-weighted images of mouse abdominal sections (before administration, immediately after administration and 1 hour after administration) ) Are shown in FIG.
  • Table 3 shows signal intensity ratios to muscles of each organ and tissue in FIG. In FIG. 16, colon cancer cells transplanted subcutaneously are shown by a dotted line.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

【課題】充分な緩和能力を持つとともに、金属イオンの解離がなく生体安全性に優れ、適度な水溶性及び脂溶性を有し、広い臓器分布及び臓器への取り込み効果を有することで、幅広いターゲット臓器及び疾患の造影が可能な、新規なMRI造影剤に使用可能な水溶性ハイパーブランチポリマーを提供すること。 【解決手段】分子末端にグラフト鎖を有するハイパーブランチポリマーであって、そのグラフト鎖中に常磁性を発現する部位を有するセグメントAと、カルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有するセグメントBとを有する、ハイパーブランチポリマー、並びに該ハイパーブランチを含むMRI造影剤。

Description

常磁性を有する水溶性ハイパーブランチポリマー
 本発明は、常磁性を有する新規な水溶性ハイパーブランチポリマーに関する。
 現在、臨床現場において使用されている磁気共鳴画像(MRI)法とは、水のプロトンの信号を画像化する技術であり、生体内に存在するプロトンの位置情報と周囲のコントラストを2次元で濃淡表示する技術である。プロトンの位置情報は、核磁気共鳴(NMR)内の静磁場を意図的に歪める傾斜磁場を用いることによって得られ、コントラストは水や脂質などのプロトンのNMR情報として得られるスピン密度、緩和時間、拡散速度、化学シフト、位相などによって決定される。特に緩和時間は、観測されるスピンを含む水分子と周辺分子の間の相対的な配置や運動によって変化し、周囲の組織の状態をよく反映することから、種々の診断において広く用いられている。
 このMRI法に用いられるMRI造影剤は、生体組織中の水の緩和時間を変化させることにより、その分布量が異なる組織間にコントラストを付加する。すなわち造影剤は水プロトンの緩和時間の変化を通し間接的に検出される。
 上記MRI造影剤としては、ガドリニウムやマンガンを含有するT1緩和造影剤や、酸化鉄を用いたT2緩和造影剤が用いられており、これらの金属イオンと水プロトンの相互作用により縦横の緩和が促進される。なお、これらの金属イオンは有毒である傾向があるため、生体組織が吸収する能力を低減させるために、実際には配位子によってキレート化されているものが使用される。しかしながら、このキレート化は金属イオンが有している緩和能力をも減少させ、造影剤としての効果を低減させることにもつながっている。そこで、分子サイズに応じた回転相関時間の増大による緩和能上昇効果(常磁性体緩和促進効果)を利用した造影剤(特許文献1)、超常磁性体の酸化鉄ナノ粒子をポリマーで複合化し平均粒子径が26nm程度のガン細胞選択性を有する造影剤(非特許文献1)、ポリマー主鎖構造からスペーサーアームを付与した巨大分子造影剤(特許文献2)などが報告されている。
 従来より広く使用されているMRI造影剤であるGd-DTPA(ジエチレントリアミン五酢酸)錯体は、水溶性を示す低分子化合物であるため、血流に乗って臓器・組織に広く分布できる。
 しかしながらGd-DTPAは脂溶性が低いために肝臓などの臓器にはほとんど取り込まれず、また低分子化合物であることから、ガン細胞の造影については感度が低く、ターゲット臓器及び疾患によっては造影に限界がある。
 また、ガン細胞などへの細胞選択性の付与を期待して平均粒子径の大きな化合物の検討がなされているものの、MRI造影剤として十分な水溶性を達成することは難しく、またそもそもガン細胞などへの選択性が期待できる平均粒子径の大きさを得るには合成上に課題があった。
 このように、これまで提案された造影剤にあっては、その緩和能力、生体安全性、ターゲット臓器及び疾患の全てにおいて満足できるものではなく、さらなる性能の向上が望まれていた。
 本発明は、上記の事情に鑑みなされたものであって、すなわち、充分な緩和能力を持つとともに、金属イオンの解離がなく生体安全性に優れ、適度な水溶性及び脂溶性を有し、広い臓器分布及び臓器への取り込み効果を有することで、幅広いターゲット臓器及び疾患の造影が可能な、新規なMRI造影剤に使用可能な水溶性ハイパーブランチポリマーの提供を課題とする。
 本発明者らは、上記の課題を解決するために鋭意検討した結果、ハイパーブランチポリマーの末端に結合基を介して常磁性を発現する部位を結合させると共に、該末端に結合基を介して水溶性の部位を結合させることにより得られるコア-シェル型のハイパーブランチポリマーが、水溶性及び脂溶性のバランスに優れ、大きな常磁性体緩和促進効果を発現して高い緩和能を有する新規なMRI造影剤として有用であることを見いだし、本発明を完成させた。
 すなわち、本発明は、第1観点として、分子末端にグラフト鎖を有するハイパーブランチポリマーであって、そのグラフト鎖中に常磁性を発現する部位を有するセグメントAと、カルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有するセグメントBとを有する、ハイパーブランチポリマーに関する。
 第2観点として、前記セグメントAが式[1]で表され、かつ、前記セグメントBが式[2]で表される、第1観点に記載のハイパーブランチポリマーに関する。
Figure JPOXMLDOC01-appb-C000009
[式中、R1及びR2は、それぞれ独立して、水素原子又はメチル基を表し、L1及びL2は、それぞれ独立して、ヒドロキシ基で置換されていてもよい炭素原子数1乃至6のアルキレン基を表し、Pmは、L1に結合する窒素原子又は酸素原子を末端に含む常磁性を発現する有機基又は常磁性を発現する有機金属錯体を有する基を表し、R3は、L2に結合する窒素原子又は酸素原子を末端に含み、かつ、カルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有する有機基を表す。]
 第3観点として、式[3]で表される、第2観点に記載のハイパーブランチポリマーに関する。
Figure JPOXMLDOC01-appb-C000010
[式中、各R4は、それぞれ独立して、水素原子又はメチル基を表し、各A1は、それぞれ独立して、式[4]又は式[5]で表される基を表し、kは、繰り返し単位構造の数であって、2乃至100,000の整数を表し、m及びnは、繰り返し単位構造の数であって、それぞれ独立して、1乃至100の整数を表し、各R1、各R2、各R3、各L1、各L2及び各Pmは、それぞれ独立して、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000011
[式中、A2は、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐状又は環状のアルキレン基を表し、Y1、Y2、Y3及びY4は、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ハロゲン原子、シアノ基、カルボキシル基、アミノ基、ニトロ基又はヒドロキシ基を表す。]
 第4観点として、前記R3がビス(2-ヒドロキシエチル)アミノ基を表す、第2観点又は第3観点に記載のハイパーブランチポリマーに関する。
 第5観点として、前記Pmがマンガン-ポルフィリン錯体誘導体を表す、第2観点又は第3観点に記載のハイパーブランチポリマーに関する。
 第6観点として、前記R3がビス(2-ヒドロキシエチル)アミノ基を表し、かつ、前記Pmがマンガン-ポルフィリン錯体誘導体を表す、第2観点又は第3観点に記載のハイパーブランチポリマーに関する。
 第7観点として、第1観点乃至第6観点のうち何れか一項に記載のハイパーブランチポリマーを含むMRI造影剤に関する。
 第8観点として、消化管壁を造影することを特徴とする、第7観点に記載のMRI造影剤に関する。
 第9観点として、腸管壁を造影することを特徴とする、第8観点に記載のMRI造影剤に関する。
 第10観点として、第1観点乃至第6観点のうち何れか一項に記載のハイパーブランチポリマーを体内に投与することを特徴とする、MRI造影方法に関する。
 第11観点として、消化管壁を造影することを特徴とする、第10観点に記載のMRI造影方法に関する。
 第12観点として、腸管壁を造影することを特徴とする、第11観点に記載のMRI造影方法に関する。
 第13観点として、式[6]で表される分子末端にグラフト鎖を有するハイパーブランチポリマーと、Pm-H(ここでPmは、水素原子に結合する窒素原子又は酸素原子を末端に含む常磁性を発現する有機基又は常磁性を発現する有機金属錯体を有する基を表す。)、及びR3-H(ここでR3は、水素原子に結合する窒素原子又は酸素原子を末端に含み、かつ、カルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有する有機基を表す。)を反応させることを特徴とする、式[7]で表されるハイパーブランチポリマーの製造方法に関する。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
[式中、各R1及び各R4は、それぞれ独立して、水素原子又はメチル基を表し、各R3は、L1に結合する窒素原子又は酸素原子を末端に含み、かつ、カルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有する有機基を表し、L1は、2-ヒドロキシプロピレン基を表し、各Pmは、L1に結合する窒素原子又は酸素原子を末端に含む常磁性を発現する有機基又は常磁性を発現する有機金属錯体を表し、各A1は、それぞれ独立して、式[4]又は式[5]で表される基を表し、kは、繰り返し単位構造の数であって、2乃至100,000の整数を表し、m及びnは、繰り返し単位構造の数であって、それぞれ独立して、1乃至100の整数を表す。]
Figure JPOXMLDOC01-appb-C000014
[式中、A2は、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐状又は環状のアルキレン基を表し、Y1、Y2、Y3及びY4は、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ハロゲン原子、シアノ基、カルボキシル基、アミノ基、ニトロ基又はヒドロキシ基を表す。]
 第14観点として、前記式[6]で表される分子末端にグラフト鎖を有するハイパーブランチポリマーに、前記Pm-H又は前記R3-Hを反応させた後、他方を反応させることを特徴とする、第13観点に記載の製造方法に関する。
 第15観点として、式[6]で表される分子末端にグラフト鎖を有するハイパーブランチポリマーに関する。
Figure JPOXMLDOC01-appb-C000015
[式中、各R1及び各R4は、それぞれ独立して、水素原子又はメチル基を表し、各A1は、それぞれ独立して、式[4]又は式[5]で表される基を表し、kは、繰り返し単位構造の数であって、2乃至100,000の整数を表し、m及びnは、繰り返し単位構造の数であって、それぞれ独立して、1乃至100の整数を表す。]
Figure JPOXMLDOC01-appb-C000016
[式中、A2は、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐状又は環状のアルキレン基を表し、Y1、Y2、Y3及びY4は、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ハロゲン原子、シアノ基、カルボキシル基、アミノ基、ニトロ基又はヒドロキシ基を表す。]
 本発明の常磁性を有する水溶性ハイパーブランチポリマーは、粒径の制御が容易であり、また水溶性の調整が容易である非イオン性の水溶性ポリマーである。
 すなわち、本発明の水溶性ハイパーブランチポリマーは、大きな粒径を有し得且つ水溶性を有することから、ガン細胞に対する選択的なMRI造影剤としての応用が期待できる。
 また本発明の水溶性ハイパーブランチポリマーは、大きな常磁性体緩和促進効果により高い緩和能を有する新規なMRI用造影剤として利用可能である。
図1は、実施例1で合成した水素原子を分子末端に有するコア-シェル型ハイパーブランチポリマー(HPS200-PGMA8-H)の1H NMRスペクトルを示す図である。 図2は、実施例2で合成した水素原子を分子末端に有するコア-シェル型ハイパーブランチポリマー(HPS1000-PGMA15-H)の1H NMRスペクトルを示す図である。 図3は、実施例3で得られたHPS200-PGMA8-MnTPPS4/DEA、及び実施例4で得られたHPS1000-PGMA15-MnTPPS4/DEAの動的光散乱法による粒子径測定結果を示す図である。 図4は、実施例3で得られたHPS200-PGMA8-MnTPPS4/DEAの透過型電子顕微鏡写真を示す図である。 図5は、実施例4で得られたHPS1000-PGMA15-MnTPPS4/DEAの透過型電子顕微鏡写真を示す図である。 図6は、実施例3で得られたHPS200-PGMA8-MnTPPS4/DEA、及び実施例4で得られたHPS1000-PGMA15-MnTPPS4/DEAの、濃度-緩和時間T1の逆数の変化を示す図(緩和能r1)である。 図7は、実施例3で得られたHPS200-PGMA8-MnTPPS4/DEA、及び実施例4で得られたHPS1000-PGMA15-MnTPPS4/DEAの、濃度に対する緩和時間T2の逆数の変化を示す図(緩和能r2)である。 図8は、実施例8で得られたHPS200-PGMA8-TEMPO/DEAのESR測定結果を示す図である。 図9は、実施例8で得られたHPS200-PGMA8-TEMPO/DEAの動的光散乱法による粒子径測定結果を示す図である。 図10は、実施例8で得られたHPS200-PGMA8-TEMPO/DEAの温度に対する磁化率の変化を示す図である。 図11は、実施例12で得られたHPS200-PGMA8-GdDOTA/DEAの動的光散乱法による粒子径測定結果を示す図である。 図12は、実施例15のHPS200-PGMA8-MnTPPS4/DEAを用いたMRI造影試験で撮影したマウス下腹部の冠状断T1強調画像(投与前、及び投与直後から投与4時間後まで1時間ごと)を示す図である。 図13は、実施例15のHPS200-PGMA8-MnTPPS4/DEAを用いたMRI造影試験で撮影したマウス腹腔の水平断T1強調画像(投与前及び投与1時間後)を示す図である。 図14は、実施例15のHPS200-PGMA8-MnTPPS4/DEAを用いたMRI造影試験で撮影したマウス腹腔の三次元T1強調画像のボリュームレンダリング法による処理画像を示す図である。 図15は、実施例16のHPS1000-PGMA15-MnTPPS4/DEAを用いたMRI造影試験で撮影したマウス下腹部の冠状断T1強調画像(投与前、及び投与直後から投与4時間後まで1時間ごと)を示す図である。 図16は、比較例3のHPS200-PGMA8-MnTPPS4を用いたMRI造影試験で撮影したマウス下腹部の冠状断T1強調画像(投与前、及び投与直後から投与4時間後まで1時間ごと)を示す図である。 図17は、比較例3のHPS200-PGMA8-MnTPPS4を用いたMRI造影試験で撮影したマウス腹腔の水平断T1強調画像(投与前、投与直後及び投与1時間後)を示す図である。
[常磁性を有する水溶性ハイパーブランチポリマー]
 本発明の常磁性を有する水溶性ハイパーブランチポリマーは、分子末端にグラフト鎖を有するハイパーブランチポリマーであって、そのグラフト鎖中に常磁性を発現する部位を有するセグメントAと、カルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有するセグメントBとを有する、ハイパーブランチポリマーを対象とするものである。
 好ましくは、前記セグメントAは、下記式[1]で表されるものであり、かつ、前記セグメントBが下記式[2]で表されるものである。
Figure JPOXMLDOC01-appb-C000017
 上記式中、R1及びR2は、それぞれ独立して、水素原子又はメチル基を表す。L1及びL2は、それぞれ独立して、ヒドロキシ基で置換されていてもよい炭素原子数1乃至6のアルキレン基を表す。Pmは、L1に結合する窒素原子又は酸素原子を末端に含む常磁性を発現する有機基又は常磁性を発現する有機金属錯体を有する基を表す。R3は、L2に結合する窒素原子又は酸素原子を含み、かつ、カルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有する有機基を表す。
 上記L1又はL2におけるヒドロキシ基で置換されていてもよい炭素原子数1乃至6のアルキレン基としては、メチレン基、エチレン基、n-プロピレン基、2-ヒドロキシプロピレン基、n-ブチレン基、n-ヘキシレン基等が挙げられる。
 好ましくはL1又はL2は2-ヒドロキシプロピレン基である。
 上記Pmは、L1に結合する側の末端に窒素原子又は酸素原子を含む基であり、例えば、L1に結合する側の末端に-N(H)-基、-O-基、-C(=O)O-基、又は-S(=O)2O-基を含む基である。
 そして上記Pmにおける常磁性を発現する有機基又は常磁性を発現する有機金属錯体を有する基としては、常磁性金属と、ジエチレントリアミン五酢酸誘導体やポルフィリン誘導体等の配位子とからなるキレート錯体、或いは、ニトロキシル基等の有機ラジカル構造を分子内に有する化合物(例えば特許文献3参照)から誘導される基が挙げられる。
 具体的には、前記キレート錯体としては、Gd-DTPA[ジエチレントリアミン五酢酸のガドリニウム錯体]、Gd-DOTA[1,4,7,10-テトラアザシクロドデカン-1,4,7,10-四酢酸のガドリニウム錯体]、Gd-DTPA-BMA[ジエチレントリアミノ五酢酸ビスメチルアミドのガドリニウム錯体]や、Gd-HPDO3A{[10-(2-ヒドロキシプロピル)-1,4,7,10-テトラアザシクロドデカン]-1,4,7-三酢酸のガドリニウム錯体}などのガドリニウム錯体;マンガン-ポルフィリン誘導体錯体が挙げられる。
 また、前記有機ラジカル構造としては以下の基を挙げることができる。
Figure JPOXMLDOC01-appb-C000018
 これらの基Pmの具体例の中でも、得られるハイパーブランチポリマーの水溶性や常磁性の観点から、特にPmがマンガン-ポルフィリン錯体誘導体に由来する基を表すことが最も好ましい。
 上記R3は、L2に結合する側の末端に窒素原子又は酸素原子を含む基であり、例えば、L2に結合する側の末端に-N(H)-基、-O-基、-C(=O)O-基、又は-S(=O)2O-基を含む基である。そしてカルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有する有機基を有する基である。
 上記R3の具体例としては、例えば、グルクツロン酸、ガラクツロン酸、ラクトビオン酸、ガラクトサミン等の糖誘導体の基の他、-OC(=O)-L3-COOH、-OC(=O)-L3-NH2、-OC(=O)-L3-OH、-OC(=O)-L3-SO3H、-NH-L3-COOH、-NH-L3-NH2、-NH-L3-OH、-NH-L3-SO3H、-N(L3-COOH)2、-N(L3-NH22、-N(L3-OH)2、-N(L3-SO3H)2、-O-L3-COOH、-O-L3-NH2、-O-L3-OH、-O-L3-SO3H、-OS(O2)-L3-COOH、-OS(O2)-L3-NH2、-OS(O2)-L3-OH、-OS(O2)-L3-SO3H(ここで、L3としては、例えば、メチレン基、エチレン基、プロピレン基、-CH2CH2OCH2CH2-、-CH2CH2NHCH2CH2-などを表す。)などが挙げられる。中でも、R3がビス(2-ヒドロキシエチル)アミノ基を表すものであることが好ましい。
 好ましくは、本発明の常磁性を有する水溶性ハイパーブランチポリマーは、下記式[3]で表されるものである。
Figure JPOXMLDOC01-appb-C000019
 上記式中、各R4は、それぞれ独立して、水素原子又はメチル基を表す。また各A1は、それぞれ独立して、下記式[4]又は式[5]で表される基を表す。kは、繰り返し単位構造の数であって、2乃至100,000の整数を表し、m及びnは、繰り返し単位構造の数であって、それぞれ独立して、1乃至100の整数を表す。
 また各R1、各R2、各R3、各L1、各L2及び各Pmは、それぞれ独立して、前記式[1]又は[2]において定義したものと同じ意味を表す。
 なお、上記式[3]において、前記セグメントAに相当する式[1]で表される構造と、前記セグメントBに相当する式[2]で表される構造は、ランダム結合及びブロック結合のいずれで結合していてもよく、また、セグメントA及びセグメントB以外の構造を含んでいてもよい。また、グラフト鎖におけるセグメントAとセグメントBの順序は特に限定されず、ハイパーブランチポリマー側に結合する構造及び水素原子側に結合する構造はセグメントA、セグメントB、或いはその他の構造であってよい。
 また、本発明の常磁性を有する水溶性ハイパーブランチポリマーにおいて、式[1]で表される構造(セグメントA)と、式[2]で表される構造(セグメントB)の含有割合は、モル比で1:99~99:1、より好ましくは10:90~90:10の範囲であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 上記式中、A2は、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐状又は環状のアルキレン基を表し、Y1、Y2、Y3及びY4は、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ハロゲン原子、シアノ基、カルボキシル基、アミノ基、ニトロ基又はヒドロキシ基を表す。
 上記A2における直鎖状アルキレン基の具体例としては、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ヘキシレン基等が挙げられる。また分枝状アルキレン基の具体例としては、イソプロピレン基、イソブチレン基、2-メチルプロピレン基等が挙げられる。
 また環状アルキレン基としては、炭素数3乃至30の単環式、多環式、架橋環式の環状構造の脂環式脂肪族基が挙げられる。具体的には、炭素数4以上のモノシクロ、ビシクロ、トリシクロ、テトラシクロ、ペンタシクロ構造等を有する基を挙げることができる。以下に、脂環式脂肪族基における脂環式部分の構造例(a)ないし(s)を示す。
Figure JPOXMLDOC01-appb-C000021
 上記Y1、Y2、Y3及びY4における炭素原子数1乃至20のアルキル基としては、メチル基、エチル基、イソプロピル基、n-ペンチル基およびシクロヘキシル基等が挙げられる。
 炭素原子数1乃至20のアルコキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基、n-ペンチルオキシ基およびシクロヘキシルオキシ基等が挙げられる。
 また、ハロゲン原子としてはフッ素原子、塩素原子、臭素原子およびヨウ素原子である。
 これらのなかでも、上記Y1、Y2、Y3及びY4としては、水素原子または炭素原子数1乃至20のアルキル基が好ましい。
 また、式[3]中のA1としては、下記式で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 従って、本発明の常磁性を有する水溶性ハイパーブランチポリマーとして、特に好ましいポリマーの具体例としては、例えば下記[a]~[d]で表されるポリマーが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000023
 なお、本発明の常磁性を有する水溶性ハイパーブランチポリマーにおけるゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量(Mw)は、1,000乃至1,000,000、好ましくは2,000乃至800,000である。また、分子末端のグラフト鎖を除外したハイパーブランチポリマー本体(後述する式[8]で表されるハイパーブランチポリマーに相当する)のゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量(Mw)は、1,000乃至400,000、好ましくは2,000乃至200,000である。
 さらに、該常磁性を有する水溶性ハイパーブランチポリマーの一次粒子もしくは二次粒子の平均粒子径(動的光散乱法による)は、好ましくは1nm以上1,000nm以下、さらに好ましくは5nm以上500nm以下である。
[常磁性を有する水溶性ハイパーブランチポリマーの製造方法]
 本発明の常磁性を有する水溶性ハイパーブランチポリマーは、例えば以下の手順にて製造できる。
 すなわち、下記式[6]で表される分子末端にグラフト鎖を有するハイパーブランチポリマーと、Pm-H(ここでPmは、水素原子に結合する窒素原子又は酸素原子を末端に含む常磁性を発現する有機基又は常磁性を発現する有機金属錯体を有する基を表す。)、及びR3-H(ここでR3は、水素原子に結合する窒素原子又は酸素原子を末端に含み、かつ、カルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有する有機基を表す。)を反応させることにより、下記式[7]で表されるハイパーブランチポリマーを得ることができる。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 上記式[6]及び式[7]中、各R1及び各R4は、それぞれ独立して、水素原子又はメチル基を表す。
 上記式[7]中、各R3は、L1に結合する窒素原子又は酸素原子を末端に含み、かつ、カルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有する有機基を表し、L1は、2-ヒドロキシプロピレン基を表し、各Pmは、L1に結合する窒素原子又は酸素原子を末端に含む常磁性を発現する有機基又は常磁性を発現する有機金属錯体を表す。
 また上記式[6]及び式[7]中、各A1は、それぞれ独立して、前記式[4]又は前記式[5]で表される基を表し、kは、繰り返し単位構造の数であって、2乃至100,000の整数を表し、m及びnは、繰り返し単位構造の数であって、それぞれ独立して、1乃至100の整数を表す。
 なお、上記式[7]において、前記セグメントAに相当する構造と、前記セグメントBに相当する構造は、ランダム結合及びブロック結合のいずれで結合していてもよく、また、セグメントA及びセグメントB以外の構造を含んでいてもよい。また、グラフト鎖におけるセグメントAとセグメントBの順序は特に限定されず、ハイパーブランチポリマー側に結合する構造及び水素原子側に結合する構造はセグメントA、セグメントB、或いはその他の構造であってよい。
 ここで、前記式[6]で表される分子末端にグラフト鎖を有するハイパーブランチポリマーに、Pm-H又はR3-Hを反応させる順序は特に限定されておらず、Pm-Hを先に反応させた後にR3-Hを反応させてもよいし、或いは、R3-Hを先に反応させた後にPm-Hを反応させてもよい。また、同時に反応させても良い。
 式[6]で表される分子末端にグラフト鎖を有するハイパーブランチポリマーにPm-H及びR3-Hを反応させる際に用いる溶媒は、これら各成分が溶解する溶媒であれば特に限定されず、例えばテトラヒドロフラン(THF)、1,4-ジオキサン等のエーテル系溶媒;メチルイソブチルケトン(MIBK)、シクロヘキサノン等のケトン系溶媒;クロロホルム、ジクロロメタン、1,2-ジクロロエタン等のハロゲン系溶媒;N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)等のアミド系溶媒;ジメチルスルホキシド(DMSO)等のスルホキシド系溶媒などを挙げることができる。なかでも、アミド系溶媒、スルホキシド系溶媒の使用が好ましい。
 これら溶媒は、式[6]で表される分子末端にグラフト鎖を有するハイパーブランチポリマー100質量部に対して10~10,000質量部の範囲で、好ましくは100~1,500質量部の範囲で使用する。
 式[6]で表される分子末端にグラフト鎖を有するハイパーブランチポリマーとPm-H又はR3-Hとの反応は、いずれも-50~200℃、好ましくは20~100℃の温度範囲で実施され、通常、反応時間はいずれも1~48時間、好ましくは2~20時間である。
 また、Pm-HとR3-Hの仕込み量は、通常モル比で100:1~1:1,000であるが、Pm-HとR3-Hを段階的に反応させる場合には、後に反応させる試剤は大過剰量用いても良い。
[式[6]で表されるハイパーブランチポリマー]
 本発明は、上記式[6]で表される分子末端にグラフト鎖を有するハイパーブランチポリマーもまた対象とするものである。
 上記式[6]で表されるハイパーブランチポリマーは、下記式[8]で表されるジチオカルバメート基を分子末端に有するスチレン系ハイパーブランチポリマーに、(メタ)アクリル酸グリシジルを反応させた後、分子末端のジチオカルバメート基を還元して水素原子とする。
Figure JPOXMLDOC01-appb-C000026
 上記スキーム中、A1、R1、R4、k、m及びnは式[6]において先に定義した通りの意味を表す。
 なお、分子末端にジチオカルバメート基を有する式[8]で表されるハイパーブランチポリマーは、ジチオカーバメート基を有するスチレン化合物の光重合による合成方法(Koji Ishizu, Akihide Mori, Macromol. Rapid Commun. 21,665-668(2000)、Koji Ishizu, Akihide Mori, Polymer International 50,906-910(2001)、Koji Ishizu, Yoshihiro Ohta, Susumu Kawauchi, Macromolecules Vol.35, No.9, 3781-3784(2002))や、ジチオカルバメート基を有するアクリル化合物の光重合による合成方法(Koji Ishizu, Takeshi Shibuya, Akihide Mori, Polymer International 51,424-428(2002)、Koji Ishizu, Takeshi Shibuya, Susumu Kawauchi, Macromolecules Vol.36, No.10, 3505-3510(2002)、Koji Ishizu, Takeshi Shibuya, Jaebum Park, Satoshi Uchida, Polymer International 53,259-265(2004))によって合成できる。
 式[8]で表されるスチレン系ハイパーブランチポリマーと(メタ)アクリル酸グリシジルの反応は、光重合又は熱重合のいずれでもよく、好ましくは光重合により反応させる。これら反応は特許文献4に記載されるような反応条件にて好適に実施できる。
 具体的には、光重合・熱重合のいずれの場合においても、反応に使用する溶媒としては、式[8]で表されるハイパーブランチポリマー及び(メタ)アクリル酸グリシジルが溶解する溶媒であれば特に限定されずに使用でき、例えば非プロトン性極性有機溶媒類(N,N-ジメチルホルムアミド、ジメチルスルホキシド、N,N-ジメチルアセトアミド、テトラメチルウレア、スルホラン、N-メチル-2-ピロリドン、1,3-ジメチルイミダゾリジノン等)、エーテル類(ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン等)、脂肪族炭化水素類(ヘキサン、シクロヘキサン、n-オクタン、n-デカン、デカリン、石油エーテル等)、芳香族炭化水素類(ベンゼン、クロロベンゼン、o-ジクロロベンゼン、ニトロベンゼン、トルエン、キシレン、メシチレン、テトラリン等)、ハロゲン化炭化水素類(クロロホルム、ジクロロメタン、1,2-ジクロロエタン、四塩化炭素等)、ケトン類(アセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、アルコキシアルカン類(1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジグライム等)、などが挙げられ、これらは単独で用いてもよく、2種以上混合して用いてもよい。
 光重合・熱重合のいずれの場合も、通常、窒素、アルゴン等の不活性ガスの雰囲気下、常圧又は加圧下において行うことができる。
 重合温度は、光重合による反応の場合、通常0~100℃、好ましくは20~50℃である。また熱重合による反応の場合、重合温度は通常50~250℃、好ましくは80~200℃、さらに100~150℃であることが好ましい。
 また光重合による反応の場合、光照射は低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ等の紫外線照射ランプを使用して、反応系の内部又は外部から照射することによって行なう。
 またいずれの重合の場合も、(メタ)アクリル酸グリシジルの付加モル数(グラフト鎖の長さ)は反応時間に依存するため、目的とするグラフト鎖の長さにより反応時間を適宜選択することとなるが、通常、反応時間は1~80時間、好ましくは2~10時間である。
 なお、上記式[8]で表されるジチオカルバメート基を分子末端に有するスチレン系ハイパーブランチポリマーと、(メタ)アクリル酸グリシジルのモル比は、導入したいグラフト鎖の長さに応じて適宜選択されるが、例えば、(メタ)アクリル酸グリシジルのモル数:式[8]で表されるハイパーブランチポリマーのジチオカルバメート基のモル数の比(モル比)が1:1乃至1,000:1であり、又は1:1乃至100:1である。
 また還元の方法は、ジチオカルバメート基を水素原子に変換することができる方法であれば、特に制限はなく、例えば、水素、ヨウ化水素、硫化水素、水素化アルミニウムリチウム、水素化ホウ素ナトリウム、水素化トリブチルスズ、トリス(トリメチルシリル)シラン、チオグリコール酸等の公知の還元剤を用いて還元反応を行なうことができる。
 具体的な還元の方法としては、有機溶媒溶液中、水素化トリブチルスズ等のラジカル反応条件での還元に使用される化合物を還元剤として使用し、光照射することによって行なう還元反応が好ましい。
 上記還元剤の使用量は、ハイパーブランチポリマーに含まれるジチオカルバメート基の数に対して1乃至20倍モル当量、好ましくは1.5乃至10倍モル当量、より好ましくは1.8乃至5倍モル当量であればよい。反応開始前には反応系内の酸素を十分に除去する必要があり、窒素、アルゴンなどの不活性気体で系内を置換するとよい。還元反応の条件としては、反応時間0.01乃至100時間、反応温度0乃至200℃から、適宜選択される。好ましくは反応時間は0.1乃至10時間であり、反応温度は20乃至100℃である。
 還元反応に使用する有機溶媒としては、前記のジチオカルバメート基を有するハイパーブランチポリマーと還元剤を溶解可能なものが好ましく、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類、テトラヒドロフラン、ジエチルエーテル等のエーテル系化合物、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系化合物、ノルマルヘプタン、ノルマルヘキサン、シクロヘキサン等の脂肪族炭化水素類等が使用できる。これらの溶媒は一種を用いてもよいし、二種以上を混合して用いてもよい。
 また光照射は、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ等の紫外線照射ランプを使用して、反応系の内部又は外部から照射することによって行なうことができる。
 こうして得られた上記式[6]で表される分子末端にグラフト鎖を有するハイパーブランチポリマーは、反応溶液中から溶媒留去又は固液分離により溶媒と分離することができる。また、反応溶液を貧溶媒中へ加えることによりハイパーブランチポリマーを沈殿させて回収することもできる。
[MRI造影剤]
 本発明の常磁性を有する水溶性ハイパーブランチポリマーは、種々の分野への応用が期待されるが、中でも常磁性部位を高密度に担持できる性質や大きさから、高い常磁性体緩和促進効果とガン細胞選択性などを有することが期待され、MRI造影剤として有用である。
 すなわち、本発明の常磁性を有する水溶性ハイパーブランチポリマーを含むMRI造影剤もまた本発明の対象である。
 本発明のMRI造影剤は、通常注射用蒸留水、生理食塩水、リンゲル液等の溶媒に分散、懸濁又は溶解等の状態で用いられ、さらに必要に応じて、薬理学的に許容され得る担体、賦形剤等の添加剤を含めることができる。
 本発明の上記MRI造影剤は、細胞などに適用し得るほか、血管(静脈、動脈)内投与、経口投与、直腸内投与、腟内投与、リンパ管内投与、関節内投与等によって生体内に投与することができ、好ましくは、水剤、乳剤又は懸濁液等の形態で静脈内投与や経口投与によって投与する。
 上記MRI造影剤に含められ得る添加剤としては、その投与形態、投与経路等によっても異なるが、具体的には、注射剤の場合には緩衝剤、抗菌剤、安定化剤、溶解補助剤、賦形剤等が単独又は組み合わせて用いられ、経口投与剤(具体的には水剤、シロップ剤、乳剤、懸濁液等)の場合、着色剤、保存剤、安定化剤、懸濁化剤、乳化剤、粘稠剤、甘味剤、芳香剤等が単独又は組み合わせて用いられる。各種添加剤は、通常当分野で用いられるものが使用される。
 本発明の上記MRI造影剤は、従来のMRI用造影剤に準じて投与、造影することができる。また上記MRI造影剤は、ヒト以外にも各種動物用の造影剤としても好適に用いることができ、その投与形態、投与経路、投与量等は対象となる動物の体重や状態によって適宜選択する。
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
(1)GPC(ゲル浸透クロマトグラフィー)
 装置:東ソー(株)製 HLC-8320GPC
 カラム:Shodex KF-804L、KF-805L
 カラム温度:40℃
 溶媒:THF
 検出器:RI
(2)動的光散乱光度計(粒径測定、DLS解析とも)
 装置:マルバーン社製 粒子径・ゼータ電位・分子量測定装置 ゼータサイザーナノシリーズ
(3)1H NMR
 装置:Bruker社製 AVANCE500
(4)光照射
 装置:セン特殊光源(株)製 高圧水銀ランプ(100W) HL100C
(5)UV-visスペクトル
 装置:日本分光(株)製 V-570
(6)ESRスペクトル
 装置:Bruker社製 ESP300
(7)ICP-OES(金属元素分析)
 装置:セイコーインスツル(株)製 VISTA-PRO
(8)MRI造影試験
 装置:7テスラ水平型MRI装置[磁石:ジャパン スーパーコンダクタ テクノロジー(株)製、コンソール:ブルカー・バイオスピン(株)製]
 a)二次元T1強調画像法(スピンエコー法)
  繰返し時間:520ms
  エコー時間:9.6ms
  マトリックス数:256×256
  撮像視野:64×32mm(水平断)、32×32mm(冠状断)
  スライス厚:0.5mm
  脂肪抑制法、呼吸同期法
 b)三次元T1強調画像法(高速スピンエコー法)
  繰返し時間:500ms
  エコー時間:9.5ms(実質的エコー時間:28.5ms)
  マトリックス数:256×128×48
  撮像視野:64×32×14.4mm
  RARE factor:8
  脂肪抑制法、呼吸同期法
 また、略記号は以下の意味を表す。
GMA:メタクリル酸グリシジル[東京化成工業(株)製]
DCDC:二硫化テトラエチルチウラム[和光純薬工業(株)製]
S-DC:N,N-ジエチルジチオカルバミルメチルスチレン
TPPS4Na:テトラフェニルポルフィリンテトラスルホン酸ナトリウム[東京化成工業(株)製]
DEA:ジエタノールアミン[アルドリッチ社製]
アミノTEMPO:4-アミノ-2,2,6,6-テトラメチルピペリジン 1-オキシル
MnPP:マンガンプロトポルフィリン[東京化成工業(株)製]
THF:テトラヒドロフラン
IPE:ジイソプロピルエーテル
DMSO:ジメチルスルホキシド
[合成例1]ジチオカルバメート基を分子末端に有するコア-シェル型ハイパーブランチポリマー(HPS200-PGMA8-DC)の合成
Figure JPOXMLDOC01-appb-C000027
 500mLの光反応フラスコに、ジチオカルバメート基を分子末端に有するスチレン系ハイパーブランチポリマー[日産化学工業(株)製 ハイパーテック(登録商標)HPS-200(Mw:23,000)]2.67g、GMA71.1g(500mmol)、DCDC2.97g(10mmol)及びTHF290gを投入し、撹拌して均一な溶液とした。窒素置換した後、撹拌しながら高圧水銀ランプで3時間光照射し反応させた。その後、反応溶液をIPE1.5Lに添加してポリマーを沈殿させた。この沈殿物を減圧濾過し、真空乾燥して、目的物(HPS200-PGMA8-DC)31.6gを得た。
 得られた目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは67,000、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は3.3であった。
[実施例1]水素原子を分子末端に有するコア-シェル型ハイパーブランチポリマー(HPS200-PGMA8-H)の合成
Figure JPOXMLDOC01-appb-C000028
 500mLの光反応フラスコに、合成例1で得られたHPS200-PGMA8-DC31.6g、水素化トリブチルスズ[アルドリッチ社製]5.82g(20mmol)及びTHF250mLを投入し、撹拌して均一な溶液とした。窒素置換した後、撹拌しながら高圧水銀ランプで2時間光照射し反応させた。その後、反応溶液をIPE1.5Lに添加してポリマーを沈殿させた。この沈殿物を減圧濾過し、真空乾燥して、目的物(HPS200-PGMA8-H)8.7gを得た。
 得られた目的物の1H NMRスペクトルを図1に示す。このスペクトルから算出したGMAの導入量は、ハイパーブランチポリマーの分子末端1つ当り平均8分子(上記式の[ ]で表される繰り返し単位の数:8に相当)であった。また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは63,000、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は3.0であった。DLS解析により得られた目的物の平均粒径は8.9nm(THF)であった。
[合成例2]ジチオカルバメート基を分子末端に有するハイパーブランチポリマー(HPS1000)の合成
 S-DCは公知の方法(例えば、国際公開第2010/101252号パンフレット記載の参考例1)に倣い、以下の手順にて合成した。
 300mLの三つ口フラスコに、S-DC10.0g(38mmol)及びDCDC0.10g(0.34mmol)を投入し、窒素置換を行った後、撹拌しながら120℃で6時間加熱した。このときの反応液中の生成物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは22,000であった。
 次に、この反応液へS-DC10.0g(38mmol)及びDCDC0.10g(0.34mmol)を追加投入し、窒素置換を行った後、撹拌しながら120℃で8時間加熱した。このときの反応液中の生成物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは23,000であった。
 続けて、この反応液へS-DC10.0g(38mmol)及びDCDC0.10g(0.34mmol)をさらに追加投入し、窒素置換を行った後、撹拌しながら120℃で9時間加熱した。このときの反応液中の生成物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは57,000であった。
 最後に、この反応液へS-DC10.0g(38mmol)及びDCDC0.10g(0.34mmol)を追加投入し、窒素置換を行った後、撹拌しながら120℃で17時間加熱した。その後、反応液をTHF360gに溶解し、得られた溶液をメタノール2kgに添加してポリマーを沈殿させた。この沈殿物を減圧濾過し、同様にTHF及びメタノールを使用して再沈殿による精製を2回繰り返した。得られた沈殿物を減圧濾過し、真空乾燥して、目的物(HPS1000)24.0gを得た(収率60%)。
 得られた目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは100,000、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は5.6であった。
[合成例3]ジチオカルバメート基を分子末端に有するコア-シェル型ハイパーブランチポリマー(HPS1000-PGMA15-DC)の合成
 500mLの光反応フラスコに、合成例2で得られたHPS1000 2.67g、GMA71.1g(500mmol)、DCDC2.97g(10mmol)及びTHF290gを投入し、撹拌して均一な溶液とした。窒素置換した後、撹拌しながら高圧水銀ランプで3時間光照射し反応させた。反応溶液の1H NMRスペクトル測定により、目的の反応の進行を確認した。
[実施例2]水素原子を分子末端に有するコア-シェル型ハイパーブランチポリマー(HPS1000-PGMA15-H)の合成
Figure JPOXMLDOC01-appb-C000029
 合成例3で得られた反応溶液全量に、水素化トリブチルスズ[アルドリッチ社製]5.82g(20mmol)を加えた。窒素置換した後、撹拌しながら高圧水銀ランプで5時間光照射し反応させた。その後、反応溶液をIPE1.5Lに添加してポリマーを沈殿させた。この沈殿物を減圧濾過し、真空乾燥して、目的物(HPS1000-PGMA15-H)18.6gを得た。
 得られた目的物の1H NMRスペクトルを図2に示す。このスペクトルから算出したGMAの導入量は、ハイパーブランチポリマーの分子末端1つ当り平均15分子(上記式の[ ]で表される繰り返し単位の数:15に相当)であった。また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは591,000、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は17.1であった。DLS解析により得られた目的物の平均粒径は16.5nm(THF)であった。
[合成例4]マンガン-ポルフィリン錯体(MnTPPS4)の合成
Figure JPOXMLDOC01-appb-C000030
 MnTPPS4は、公知の方法(例えば、Chinese Journal of Organic Chemistry,29,936(2009)、Tetrahedron,50,8657(1994))に準じて、以下の手順にて合成した。
 TPPS4Na0.50g及び酢酸マンガン四水和物[ナカライテスク(株)製]1.19gをメタノール50mLに溶解させ、7時間加熱還流した。反応液を室温(およそ25℃)まで冷却後、酢酸100mLを加えたところ、粘着性の固体が析出した。上澄み液をデカンテーションで取り除いた後、残った粘着性固体を酢酸で洗浄し、水200gに溶解させた。この溶液に炭酸ナトリウムを添加し溶液のpHを10とした後、濃塩酸15gを加え茶緑色の沈殿物を得た。この沈殿物を減圧濾過し、真空乾燥して、目的物(MnTPPS4)0.45gを得た(収率93%)。
[実施例3]常磁性コア-シェル型ハイパーブランチポリマー(HPS200-PGMA8-MnTPPS4/DEA)の合成
Figure JPOXMLDOC01-appb-C000031
 実施例1で得られたHPS200-PGMA8-H0.4gと、合成例4で得られたMnTPPS4 0.52gとを、DMSO480mLに溶解させた。この溶液を、60℃のオイルバス中で3時間撹拌した後、オイルバスを外し室温(およそ25℃)まで冷却した。この反応液へ、DEA4.0gを滴下し、そのまま室温で15時間撹拌した。この反応液をジエチルエーテル2Lに添加して、粘着性の固体を析出させた。上澄み液をデカンテーションで取り除いた後、残った粘着性固体を減圧乾燥し、脱イオン水150gに溶解させた。この溶液を濾過して不溶物を除去し、得られた水溶液を凍結乾燥して、緑茶色粘着性固体の目的物(HPS200-PGMA8-MnTPPS4/DEA)0.6gを得た(収率53%)。なお得られた目的物は、水に対する溶解度が10質量%以上であった。
・UV-vis(H2O):λmax(nm)380,400,468,520,568,602
[実施例4]常磁性コア-シェル型ハイパーブランチポリマー(HPS1000-PGMA15-MnTPPS4/DEA)の合成
Figure JPOXMLDOC01-appb-C000032
 実施例2で得られたHPS1000-PGMA15-H0.5gと、合成例4で得られたMnTPPS4 0.68gとを、DMSO600mLに溶解させた。この溶液を、60℃のオイルバス中で3時間撹拌した後、オイルバスを外し室温(およそ25℃)まで冷却した。この反応液へ、DEA5.0gを滴下し、そのまま室温で15時間撹拌した。この反応液をジエチルエーテル2Lに添加して、粘着性の固体を析出させた。上澄み液をデカンテーションで取り除いた後、残った粘着性固体を減圧乾燥し、脱イオン水200gに溶解させた。この溶液を濾過して不溶物を除去し、得られた水溶液を凍結乾燥して、緑茶色粘着性固体の目的物(HPS1000-PGMA15-MnTPPS4/DEA)0.6gを得た(収率41%)。
 得られた目的物は、水に対する溶解度が10質量%であった。
・UV-vis(H2O):λmax(nm)380,400,468,520,568,602
[実施例5]粒子径測定
 実施例3で得られたHPS200-PGMA8-MnTPPS4/DEA、及び実施例4で得られたHPS1000-PGMA15-MnTPPS4/DEAをそれぞれ脱イオン水に分散させ、0.02mg/mLのサンプル10mLを調製した。このサンプル1mLを動的光散乱法により粒子径を測定した。得られた結果を図3に示す。各コア-シェル型ハイパーブランチポリマーは、それぞれおよそ85nm(実施例3)、およそ200nm(実施例4)サイズを中心とした粒度分布を有する集合体を形成していることが確認された。
[実施例6]透過型電子顕微鏡(TEM)による観察
 実施例3で得られたHPS200-PGMA8-MnTPPS4/DEA、及び実施例4で得られたHPS1000-PGMA15-MnTPPS4/DEAをそれぞれ脱イオン水に分散させ、2mg/mLのサンプル10mLを調製した。このサンプルを前処理したエラスチックカーボン支持膜[応研商事(株)製(グリッドピッチ:100μm)]に5μLのせ、余分な溶液を濾紙で吸い取った。なお、支持膜の前処理として、電子顕微鏡用親水化処理装置[日本電子(株)製 HDT-400]を用いて放電処理を行った。
 透過型電子顕微鏡(TEM)[FEI社製 Tecnai20]にて、加速電圧80KV、電流10Aの測定条件で、サンプルの形態観察を行った。それぞれ図4(実施例3)及び図5(実施例4)に示すような分散を持った集合体を形成していることが確認された(スケールバーはそれぞれ100nmを表す)。
[実施例7]緩和時間の測定
 実施例3で得られたHPS200-PGMA8-MnTPPS4/DEA、及び実施例4で得られたHPS1000-PGMA15-MnTPPS4/DEA、並びに参考例として合成例4で得られたMnTPPS4をそれぞれ脱イオン水に分散させ、ポルフィリン濃度が0.05~1.0mMとなる5つの異なる濃度サンプルを調製した。5つの各濃度のサンプル0.3mLと脱イオン水0.3mLの計6サンプルを10φのサンプル管にそれぞれ入れ、パルスNMR装置[日本電子(株)製 JNM-MU25RAN(0.59T、25MHz、25℃)]を用いて、各サンプルについてのT1緩和時間(縦緩和)及びT2緩和時間(横緩和)を測定した。なおT1緩和時間はInvertion Recovery法により、T2緩和時間はCarr-Purcell-Meibuum-Gill(CPMG)法により測定した。
 各測定法別に、縦軸に水の緩和時間(緩和時間T1又はT2の逆数)、横軸に濃度でプロットし、その傾きから緩和能r1、r2(mM-1-1)を算出した(図6:縦緩和、図7:横緩和)。これらの結果より、実施例3及び実施例4で得られた試料の緩和能r1(図6)は、それぞれ12mM-1-1(実施例3)、16mM-1-1(実施例4)という値を得た。また、実施例3及び実施例4で得られた試料の緩和能r2(図7)は、それぞれ15mM-1-1(実施例3)、20mM-1-1(実施例4)という値を得た。これらの値は、MnTPPS4(図6:r1=10.9mM-1-1、図7:r2=13.1mM-1-1)や従来市販されているMRI造影剤であるGd-DTPAの緩和能r1=5.5mM-1-1(0.59T、25MHz、25℃)と比べると、大きな値であり、HPS200-PGMA8-MnTPPS4/DEA(実施例3)及びHPS1000-PGMA15-MnTPPS4/DEA(実施例4)がMRI造影剤として臨床応用可能であることが確認された。
[比較例1]常磁性コア-シェル型ハイパーブランチポリマー(HPS200-PGMA8-MnTPPS4)の合成
Figure JPOXMLDOC01-appb-C000033
実施例1で得られたHPS200-PGMA8-H0.1gと、合成例4で得られたMnTPPS4 0.12gとを、DMSO90mLに溶解させた。この溶液を、60℃のオイルバス中で3時間撹拌した後、オイルバスを外し室温(およそ25℃)まで冷却した。この反応液をジエチルエーテル100mLに添加して、析出した固体を減圧濾過し、真空乾燥して、茶緑色粘着性固体の目的物(HPS200-PGMA8-MnTPPS4)0.2gを得た(収率91%)。得られた目的物は、水に対する溶解度が1質量%未満であり、本目的物をMRI造影剤として臨床応用するには水溶性に欠けるとする結果となった。
[比較例2]常磁性コア-シェル型ハイパーブランチポリマー(HPS1000-PGMA15-MnTPPS4)の合成
Figure JPOXMLDOC01-appb-C000034
 実施例2で得られたHPS1000-PGMA15-H0.05gと、合成例4で得られたMnTPPS4 0.12gとを、DMSO100mLに溶解させた。この溶液を、60℃のオイルバス中で3時間撹拌した後、オイルバスを外し室温(およそ25℃)まで冷却した。この反応液をジエチルエーテル100mLに添加して、析出した固体を減圧濾過し、真空乾燥して、茶緑色粘着性固体の目的物(HPS1000-PGMA15-MnTPPS4)0.1gを得た(収率83%)。得られた目的物は、水に対する溶解度が1質量%未満であり、本目的物をMRI造影剤として臨床応用するには水溶性に欠けるとする結果となった。
[実施例8]常磁性コア-シェル型ハイパーブランチポリマー(HPS200-PGMA8-TEMPO/DEA)の合成
Figure JPOXMLDOC01-appb-C000035
 実施例1で得られたHPS200-PGMA8-H0.5gと、公知の方法(例えば、Eur.J.Med.Chem.,24,335(1989))に従って合成したアミノTEMPO0.6gとを、DMSO15mLに溶解させた。この溶液を、70℃のオイルバス中で16時間撹拌した後、DEA4.0gを滴下し、さらに6時間撹拌した。その後、オイルバスを外し室温(およそ25℃)まで冷却した。この反応液をジエチルエーテル200mLに添加して、粘着性の固体を析出させた。上澄み液をデカンテーションで取り除いた後、残った粘着性固体を減圧乾燥し、脱イオン水100gに溶解させた。この溶液を濾過して不溶物を除去し、得られた水溶液を凍結乾燥して、赤色粘着性固体の目的物(HPS200-PGMA8-TEMPO/DEA)0.8gを得た(収率57%)。なお得られた目的物は、水に対する溶解度が1質量%であった。
・UV-vis(H2O):λmax(nm)440
 また、目的物のGPC(カラム:TSK-GEL G600PWXL-CP + G3000PWXL-CP、溶離液:20mM硝酸ナトリウム水溶液、カラム温度:40℃、流速:1mL/分)によるプルラン換算で測定される重量平均分子量Mwは480,000であった。
[実施例9]ESR測定
 実施例8で得られたHPS200-PGMA8-TEMPO/DEAを脱イオン水に分散させ、1mg/mLのサンプルを調製し、XバンドのESRを測定した。得られた結果を図8に示す。
 図8に示すように、ブロードニングを伴う超微細結合定数14ガウスを伴う3本線が確認されたことから、HPS200-PGMA8-TEMPO/DEAは、TEMPOラジカルを含有していることが確認された。
[実施例10]粒子径測定
 実施例8で得られたHPS200-PGMA8-TEMPO/DEAを脱イオン水に分散させ、0.1mg/mLのサンプル10mLを調製した。このサンプル1mLを動的光散乱法により粒子径を測定した。得られた結果を図9に示す。
 図9に示すように、HPS200-PGMA8-TEMPO/DEAは、およそ10nmサイズを中心とした粒度分布を有する集合体を形成していることが確認された。
[実施例11]磁化率測定
 実施例8で得られたHPS200-PGMA8-TEMPO/DEA 55mgの磁化率の温度依存性を、SQUID磁束計[カンタム・デザイン社製 5000ガウス外部磁場]を用いて測定した。得られた結果を図10に示す。図10中、測定結果を○印にて、TEMPOラジカルを100%含有した場合の理論値を実線にて示す。
 得られた磁化率の値から、55mgの試料中に13%のTEMPOラジカルが含まれていることが確認された。
[合成例5]ガドリニウム-DOTA錯体(GdDOTA)の合成
Figure JPOXMLDOC01-appb-C000036
 GdDOTAは、公知の方法(例えば、J.Am.Chem.Soc.,131,8527(2009)、Inorganic Chemistry,47,1370(2008)、J.Am.Chem.Soc.,127,12847(2005)、Bioconjugate Chem.,17,571(2006))に従って合成した。
[実施例12]常磁性コア-シェル型ハイパーブランチポリマー(HPS200-PGMA8-GdDOTA/DEA)の合成
Figure JPOXMLDOC01-appb-C000037
 実施例1で得られたHPS200-PGMA8-H0.1gと、合成例5で得られたGdDOTA0.2gとを、DMSO10mLに溶解させた。この溶液を、この溶液を、70℃のオイルバス中で6時間撹拌した後、DEA1.0gを滴下し、さらに6時間撹拌した。その後、オイルバスを外し、室温(およそ25℃)まで冷却した。この反応液をジエチルエーテル40mLに添加して、粘着性の固体を析出させた。上澄み液をデカンテーションで取り除いた後、残った粘着性固体を減圧乾燥し、脱イオン水5gに溶解させた。この溶液を濾過して不溶物を除去し、得られた水溶液を凍結乾燥して、白色粘着性固体の目的物(HPS200-PGMA8-GdDOTA/DEA)0.25gを得た(収率70%)。
 得られた目的物の元素分析から、HPS200-PGMA8-GdDOTA/DEAのガドリニウムイオン含有率は2質量%であった。また、得られた目的物は、水に対する溶解度が1質量%であった。
[実施例13]粒子径測定
 実施例12で得られたHPS200-PGMA8-GdDOTA/DEAを脱イオン水に分散させ、0.1mg/mLのサンプル10mLを調製した。このサンプル1mLを動的光散乱法により粒子径を測定した。得られた結果を図11に示す。
 図11に示すように、HPS200-PGMA8-GdDOTA/DEAは、およそ10nmサイズを中心とした粒度分布を有する集合体を形成していることが確認された。
[実施例14]常磁性コア-シェル型ハイパーブランチポリマー(HPS200-PGMA8-MnPP/DEA)の合成
Figure JPOXMLDOC01-appb-C000038
 実施例1で得られたHPS200-PGMA8-H0.03gと、MnPP0.12gとを、DMSO5mLに溶解させた。この溶液を、この溶液を、70℃のオイルバス中で6時間撹拌した後、DEA1.0gを滴下しさらに6時間撹拌した。その後、オイルバスを外し室温(およそ25℃)まで冷却した。この反応液をジエチルエーテル10mLに添加して、粘着性の固体を析出させた。上澄み液をデカンテーションで取り除いた後、残った粘着性固体を減圧乾燥し、脱イオン水50gに溶解させた。この溶液を濾過して不溶物を除去し、得られた水溶液を凍結乾燥して、緑色粘着性固体の目的物(HPS200-PGMA8-MnPP/DEA)0.1gを得た(収率59%)。なお得られた目的物は、水に対する溶解度が1質量%であった。
[実施例15]HPS200-PGMA8-MnTPPS4/DEAを用いたMRI造影試験
 実施例3に記載の方法で合成したHPS200-PGMA8-MnTPPS4/DEA5mgを生理食塩水200μLに溶解させ、造影剤溶液を調製した。
 下腹部背側に両側性に大腸ガン(Colon-26)細胞を皮下移植した雌ヌードマウス[日本エスエルシー(株)製、BALB/c nude、投与時12週齢]の尾静脈に、造影剤投与用のポリエチレンチューブを留置した。このマウスを、イソフルラン麻酔下、MRI装置の送受信ボリュームコイル(内径35mm×長さ90mm)内に設置し、温風によりマウスの体温を37~37.5℃に維持した。
 このマウスに、上述の造影剤溶液を投与し、投与前、及び投与直後から投与4時間後まで1時間ごとに撮像した。
 マウス下腹部の冠状断T1強調画像(投与前、及び投与直後から投与4時間後まで1時間ごと)を図12に、マウス腹腔の水平断T1強調画像(投与前及び投与1時間後)を図13に、マウス腹腔の三次元T1強調画像のボリュームレンダリング法による処理画像を図14に、それぞれ示す。また、図12における各臓器や組織の筋肉に対する信号強度比を表1に示す。なお図12において、点線で囲われた部分が皮下移植した大腸ガン細胞を示す。
Figure JPOXMLDOC01-appb-T000039
 表1及び図13に示したように、本発明の造影剤を使用した場合、腸管壁(消化管壁)で顕著な信号強度の上昇がみられ、腸管壁(消化管壁)を特異的に造影できることが確認された。さらに、図14に示したように、本発明の造影剤を使用し三次元MRI撮像と組合わせることで、従来の診断方法にはない全身の消化管壁を特異的に可視化した三次元診断が可能になることが示唆された。
 また、表1及び図12に示したように、腫瘍でも信号強度の上昇がみられ、腫瘍を造影できることが確認された。
 なお、肝臓や腎臓における信号強度の上昇は、造影剤の排出によるものと考えられる。すなわち、該造影剤の排出経路としては、肝臓から胆汁、消化管へ排出される系と、腎臓から尿中に排出される系の両方が関与していることが示唆された。
[実施例16]HPS1000-PGMA15-MnTPPS4/DEAを用いたMRI造影試験
 実施例4に記載の方法で合成したHPS1000-PGMA15-MnTPPS4/DEA4.5mgを生理食塩水120μLに溶解させ、造影剤溶液を調製した。
 以降、実施例15と同様に操作した。
 マウス下腹部の冠状断T1強調画像(投与前、及び投与直後から投与4時間後まで1時間ごと)を図15に示す。また、図15における腫瘍の筋肉に対する信号強度比を表2に示す。なお図15において、点線で囲われた部分が皮下移植した大腸ガン細胞を示す。
Figure JPOXMLDOC01-appb-T000040
 表2及び図15に示したように、該造影剤を使用した場合、腫瘍の辺縁部で信号強度の上昇がみられ、腫瘍を造影できることが確認された。
[比較例3]HPS200-PGMA8-MnTPPS4を用いたMRI造影試験
 比較例1に記載の方法で合成したHPS200-PGMA8-MnTPPS43mgを生理食塩水100μLに加え、溶解し切らないポリマーをフィルターで取り除き造影剤溶液を調製した。
 以降、実施例15と同様に操作した。
 マウス下腹部の冠状断T1強調画像(投与前、及び投与直後から投与4時間後まで1時間ごと)を図16に、マウス腹腔の水平断T1強調画像(投与前、投与直後及び投与1時間後)を図17に、それぞれ示す。また、図16における各臓器や組織の筋肉に対する信号強度比を表3に示す。なお図16において、点線で囲われた部分が皮下移植した大腸ガン細胞を示す。
Figure JPOXMLDOC01-appb-T000041
 表3及び図17に示したように、該造影剤を使用した場合では、腸管壁(消化管壁)で顕著な信号強度の上昇は全く見られず、腸管壁(消化管壁)を造影できないことが確認された。
 なお、腎臓における信号強度の上昇は、造影剤の排出によるものと考えられる。すなわち、該造影剤の排出経路としては、腎臓から尿中に排出される系が主要であることが示唆された。
米国特許第4,822,594号明細書 特表1997-500365号公報 国際公開第2009/054455号パンフレット 国際公開第2010/101252号パンフレット
J.Am.Chem.Soc.,2007,129(42),12739-12745

Claims (15)

  1. 分子末端にグラフト鎖を有するハイパーブランチポリマーであって、そのグラフト鎖中に常磁性を発現する部位を有するセグメントAと、カルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有するセグメントBとを有する、ハイパーブランチポリマー。
  2. 前記セグメントAが式[1]で表され、かつ、前記セグメントBが式[2]で表される、請求項1に記載のハイパーブランチポリマー。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1及びR2は、それぞれ独立して、水素原子又はメチル基を表し、L1及びL2は、それぞれ独立して、ヒドロキシ基で置換されていてもよい炭素原子数1乃至6のアルキレン基を表し、Pmは、L1に結合する窒素原子又は酸素原子を末端に含む常磁性を発現する有機基又は常磁性を発現する有機金属錯体を有する基を表し、R3は、L2に結合する窒素原子又は酸素原子を末端に含み、かつ、カルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有する有機基を表す。]
  3. 式[3]で表される、請求項2に記載のハイパーブランチポリマー。
    Figure JPOXMLDOC01-appb-C000002
    [式中、各R4は、それぞれ独立して、水素原子又はメチル基を表し、各A1は、それぞれ独立して、式[4]又は式[5]で表される基を表し、kは、繰り返し単位構造の数であって、2乃至100,000の整数を表し、m及びnは、繰り返し単位構造の数であって、それぞれ独立して、1乃至100の整数を表し、各R1、各R2、各R3、各L1、各L2及び各Pmは、それぞれ独立して、前記と同じ意味を表す。]
    Figure JPOXMLDOC01-appb-C000003
    [式中、A2は、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐状又は環状のアルキレン基を表し、Y1、Y2、Y3及びY4は、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ハロゲン原子、シアノ基、カルボキシル基、アミノ基、ニトロ基又はヒドロキシ基を表す。]
  4. 前記R3がビス(2-ヒドロキシエチル)アミノ基を表す、請求項2又は請求項3に記載のハイパーブランチポリマー。
  5. 前記Pmがマンガン-ポルフィリン錯体誘導体を表す、請求項2又は請求項3に記載のハイパーブランチポリマー。
  6. 前記R3がビス(2-ヒドロキシエチル)アミノ基を表し、かつ、前記Pmがマンガン-ポルフィリン錯体誘導体を表す、請求項2又は請求項3に記載のハイパーブランチポリマー。
  7. 請求項1乃至請求項6のうち何れか一項に記載のハイパーブランチポリマーを含むMRI造影剤。
  8. 消化管壁を造影することを特徴とする、請求項7に記載のMRI造影剤。
  9. 腸管壁を造影することを特徴とする、請求項8に記載のMRI造影剤。
  10. 請求項1乃至請求項6のうち何れか一項に記載のハイパーブランチポリマーを体内に投与することを特徴とする、MRI造影方法。
  11. 消化管壁を造影することを特徴とする、請求項10に記載のMRI造影方法。
  12. 腸管壁を造影することを特徴とする、請求項11に記載のMRI造影方法。
  13. 式[6]で表される分子末端にグラフト鎖を有するハイパーブランチポリマーと、Pm-H(ここでPmは、水素原子に結合する窒素原子又は酸素原子を末端に含む常磁性を発現する有機基又は常磁性を発現する有機金属錯体を有する基を表す。)、及びR3-H(ここでR3は、水素原子に結合する窒素原子又は酸素原子を末端に含み、かつ、カルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有する有機基を表す。)を反応させることを特徴とする、式[7]で表されるハイパーブランチポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    [式中、各R1及び各R4は、それぞれ独立して、水素原子又はメチル基を表し、各R3は、L1に結合する窒素原子又は酸素原子を末端に含み、かつ、カルボキシル基、アミノ基、ヒドロキシ基及びスルホ基からなる群から選ばれる少なくとも一つの官能基を有する有機基を表し、L1は、2-ヒドロキシプロピレン基を表し、各Pmは、L1に結合する窒素原子又は酸素原子を末端に含む常磁性を発現する有機基又は常磁性を発現する有機金属錯体を表し、各A1は、それぞれ独立して、式[4]又は式[5]で表される基を表し、kは、繰り返し単位構造の数であって、2乃至100,000の整数を表し、m及びnは、繰り返し単位構造の数であって、それぞれ独立して、1乃至100の整数を表す。]
    Figure JPOXMLDOC01-appb-C000006
    [式中、A2は、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐状又は環状のアルキレン基を表し、Y1、Y2、Y3及びY4は、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ハロゲン原子、シアノ基、カルボキシル基、アミノ基、ニトロ基又はヒドロキシ基を表す。]
  14. 前記式[6]で表される分子末端にグラフト鎖を有するハイパーブランチポリマーに、前記Pm-H又は前記R3-Hを反応させた後、他方を反応させることを特徴とする、請求項13に記載の製造方法。
  15. 式[6]で表される分子末端にグラフト鎖を有するハイパーブランチポリマー。
    Figure JPOXMLDOC01-appb-C000007
    [式中、各R1及び各R4は、それぞれ独立して、水素原子又はメチル基を表し、各A1は、それぞれ独立して、式[4]又は式[5]で表される基を表し、kは、繰り返し単位構造の数であって、2乃至100,000の整数を表し、m及びnは、繰り返し単位構造の数であって、それぞれ独立して、1乃至100の整数を表す。]
    Figure JPOXMLDOC01-appb-C000008
    [式中、A2は、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐状又は環状のアルキレン基を表し、Y1、Y2、Y3及びY4は、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ハロゲン原子、シアノ基、カルボキシル基、アミノ基、ニトロ基又はヒドロキシ基を表す。]
PCT/JP2011/077432 2010-11-26 2011-11-28 常磁性を有する水溶性ハイパーブランチポリマー WO2012070681A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012545819A JP5802680B2 (ja) 2010-11-26 2011-11-28 常磁性を有する水溶性ハイパーブランチポリマー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-264409 2010-11-26
JP2010264409 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012070681A1 true WO2012070681A1 (ja) 2012-05-31

Family

ID=46146015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077432 WO2012070681A1 (ja) 2010-11-26 2011-11-28 常磁性を有する水溶性ハイパーブランチポリマー

Country Status (2)

Country Link
JP (1) JP5802680B2 (ja)
WO (1) WO2012070681A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131492A1 (ja) * 2017-01-13 2018-07-19 マクセルホールディングス株式会社 ハイパーブランチポリマー、金属回収剤、金属回収方法及び触媒活性妨害剤
CN111468071A (zh) * 2020-04-09 2020-07-31 中冶华天工程技术有限公司 一种可磁分离复合吸附材料快速制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156402A (ja) * 2006-12-21 2008-07-10 Konica Minolta Holdings Inc ガドリニウムイオン含有ポリマー及びmri用造影剤
JP2008539223A (ja) * 2005-04-26 2008-11-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Cest活性な常磁性の錯体を含むmri造影剤
WO2009054455A1 (ja) * 2007-10-26 2009-04-30 Kyusyu University ニトロキシル基を有するハイパーブランチポリマー
JP2009221187A (ja) * 2007-11-29 2009-10-01 Kyoto Univ 化合物、その製造方法、金属錯体化合物、その製造方法及びmri造影剤
JP2009235372A (ja) * 2008-03-03 2009-10-15 Kyoto Univ デンドリマー粒子、mri用造影剤及びデンドリマー粒子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539223A (ja) * 2005-04-26 2008-11-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Cest活性な常磁性の錯体を含むmri造影剤
JP2008156402A (ja) * 2006-12-21 2008-07-10 Konica Minolta Holdings Inc ガドリニウムイオン含有ポリマー及びmri用造影剤
WO2009054455A1 (ja) * 2007-10-26 2009-04-30 Kyusyu University ニトロキシル基を有するハイパーブランチポリマー
JP2009221187A (ja) * 2007-11-29 2009-10-01 Kyoto Univ 化合物、その製造方法、金属錯体化合物、その製造方法及びmri造影剤
JP2009235372A (ja) * 2008-03-03 2009-10-15 Kyoto Univ デンドリマー粒子、mri用造影剤及びデンドリマー粒子の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7030721B2 (ja) 2017-01-13 2022-03-07 マクセル株式会社 ハイパーブランチポリマー、金属回収剤、金属回収方法及び触媒活性妨害剤
KR20220039832A (ko) * 2017-01-13 2022-03-29 맥셀 주식회사 하이퍼브랜치 폴리머, 금속 회수제, 금속 회수 방법 및 촉매 활성 방해제
KR20190103137A (ko) * 2017-01-13 2019-09-04 맥셀 홀딩스 가부시키가이샤 하이퍼브랜치 폴리머, 금속 회수제, 금속 회수 방법 및 촉매 활성 방해제
JPWO2018131492A1 (ja) * 2017-01-13 2019-11-07 マクセルホールディングス株式会社 ハイパーブランチポリマー、金属回収剤、金属回収方法及び触媒活性妨害剤
JP7354321B2 (ja) 2017-01-13 2023-10-02 マクセル株式会社 ハイパーブランチポリマー、金属回収剤、金属回収方法及び触媒活性妨害剤
US11186657B2 (en) 2017-01-13 2021-11-30 Maxell, Ltd. Hyperbranched polymer, metal recovery agent, metal recovery method, and catalytic activity inhibitor
CN109715676A (zh) * 2017-01-13 2019-05-03 麦克赛尔控股株式会社 超支化聚合物、金属回收剂、金属回收方法和催化活性妨碍剂
WO2018131492A1 (ja) * 2017-01-13 2018-07-19 マクセルホールディングス株式会社 ハイパーブランチポリマー、金属回収剤、金属回収方法及び触媒活性妨害剤
JP2022081508A (ja) * 2017-01-13 2022-05-31 マクセル株式会社 ハイパーブランチポリマー、金属回収剤、金属回収方法及び触媒活性妨害剤
CN109715676B (zh) * 2017-01-13 2022-04-15 麦克赛尔株式会社 超支化聚合物、金属回收剂、金属回收方法和催化活性妨碍剂
KR102376913B1 (ko) 2017-01-13 2022-03-21 맥셀 주식회사 하이퍼브랜치 폴리머, 금속 회수제, 금속 회수 방법 및 촉매 활성 방해제
KR102483813B1 (ko) 2017-01-13 2023-01-03 맥셀 주식회사 하이퍼브랜치 폴리머, 금속 회수제, 금속 회수 방법 및 촉매 활성 방해제
CN111468071B (zh) * 2020-04-09 2022-09-20 中冶华天工程技术有限公司 一种可磁分离复合吸附材料快速制备方法
CN111468071A (zh) * 2020-04-09 2020-07-31 中冶华天工程技术有限公司 一种可磁分离复合吸附材料快速制备方法

Also Published As

Publication number Publication date
JPWO2012070681A1 (ja) 2014-05-19
JP5802680B2 (ja) 2015-10-28

Similar Documents

Publication Publication Date Title
Esser et al. Gadolinium-functionalized nanoparticles for application as magnetic resonance imaging contrast agents via polymerization-induced self-assembly
Li et al. Macromolecular ligands for gadolinium MRI contrast agents
Liu et al. Multifunctional pH-disintegrable micellar nanoparticles of asymmetrically functionalized β-cyclodextrin-based star copolymer covalently conjugated with doxorubicin and DOTA-Gd moieties
Li et al. Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging
Galperin et al. Radiopaque iodinated polymeric nanoparticles for X-ray imaging applications
Wang et al. Biodegradable core crosslinked star polymer nanoparticles as 19 F MRI contrast agents for selective imaging
Liu et al. Mixed polymeric micelles as multifunctional scaffold for combined magnetic resonance imaging contrast enhancement and targeted chemotherapeutic drug delivery
WO1996032967A1 (en) Hybrid magnetic resonance contrast agents
Ye et al. Facile synthesis and in vivo evaluation of biodegradable dendritic MRI contrast agents
EP0822835A1 (en) Hybrid magnetic resonance contrast agents
CN108484819B (zh) 一类水溶性星形荧光聚合物及其纳米颗粒的制备方法
KR101293866B1 (ko) GO-Gd-DTPA 착물, 이의 제조 방법, 및 이것을 포함하는 MRI 조영제
JP4974222B2 (ja) 造影剤
JP5802680B2 (ja) 常磁性を有する水溶性ハイパーブランチポリマー
CN103690971B (zh) 一种具有类风湿性关节炎部位靶向作用的超顺磁性颗粒、制备方法及其用途
CN104761732A (zh) 一种肿瘤细胞靶向的纳米凝胶及其制备方法以及一种肿瘤细胞靶向的纳米凝胶载药颗粒
JP2011501761A (ja) 金属フラーレン造影剤
Huang et al. Gadolinium-conjugated star-block copolymer polylysine-modified polyethylenimine as high-performance T 1 MR imaging blood pool contrast agents
Jeong et al. Biocompatible polyhydroxyethylaspartamide-based micelles with gadolinium for MRI contrast agents
JP2009269855A (ja) 常磁性金属含有ポリアミドアミンデンドロン脂質
JP4744588B2 (ja) 樹枝状高分子およびこれを用いた磁気共鳴イメージング造影剤
CN110496231B (zh) 一种含有聚多巴氨基酸螯合三价铁离子的两亲性聚合物纳米胶束及应用
CN111603572B (zh) 纳米造影剂及其制备方法
CN114790259B (zh) 一种乳糖修饰的酶敏感支化聚合物及其制备方法和作为肝癌靶向mri对比剂的用途
CN112807441B (zh) 还原和pH超敏感的交联聚合物前药及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843570

Country of ref document: EP

Kind code of ref document: A1