WO2012067042A1 - ガラスフィルムの製造方法 - Google Patents

ガラスフィルムの製造方法 Download PDF

Info

Publication number
WO2012067042A1
WO2012067042A1 PCT/JP2011/076088 JP2011076088W WO2012067042A1 WO 2012067042 A1 WO2012067042 A1 WO 2012067042A1 JP 2011076088 W JP2011076088 W JP 2011076088W WO 2012067042 A1 WO2012067042 A1 WO 2012067042A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
unnecessary
glass film
cleaving
longitudinal direction
Prior art date
Application number
PCT/JP2011/076088
Other languages
English (en)
French (fr)
Inventor
隆也 古田
浩治 西島
森 浩一
保弘 松本
彰夫 中林
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201180044038.3A priority Critical patent/CN103118998B/zh
Priority to KR1020137000244A priority patent/KR101804193B1/ko
Priority to EP11841791.4A priority patent/EP2570394B1/en
Publication of WO2012067042A1 publication Critical patent/WO2012067042A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/0235Ribbons
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/10Glass-cutting tools, e.g. scoring tools
    • C03B33/102Glass-cutting tools, e.g. scoring tools involving a focussed radiation beam, e.g. lasers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T225/00Severing by tearing or breaking
    • Y10T225/10Methods
    • Y10T225/14Longitudinally of direction of feed

Definitions

  • This invention relates to the improvement of the manufacturing method of a glass film.
  • FPD flat panel displays
  • LCDs liquid crystal displays
  • PDPs plasma displays
  • OLEDs organic EL displays
  • organic EL is being used not only as a display for blinking the three primary colors of light by TFT, but also as a flat light source such as an LCD backlight or a light source for indoor lighting by emitting only a single color.
  • An illumination device using an organic EL as a light source can freely deform the light emitting surface if the glass plate constituting the organic EL has flexibility. Therefore, with regard to the glass plate used in this type of lighting device, further thinning is promoted from the viewpoint of ensuring sufficient flexibility.
  • a scribe with a predetermined depth is engraved on the front or back surface of the glass plate along a planned cutting line, and then the scribe is performed.
  • a glass plate is cleaved by applying a bending stress.
  • minute defects such as lateral cracks formed in the fractured surface. There may be a problem that the strength is reduced.
  • long (strip-shaped) glass films formed from molten glass by various manufacturing methods are continuously fed along the planned cutting line extending in the feeding direction (longitudinal direction) while the glass film is being fed in the longitudinal direction. It is requested to cleave. However, it is not easy to accurately apply a continuous bending stress to the band-shaped glass film being sent in the longitudinal direction.
  • the band-shaped glass film is continuously cleaved along the planned cleaving line extending in the longitudinal direction, a cleaving technique using thermal stress has been adopted instead of a cleaving technique using bending stress.
  • a cleaving technique using thermal stress has been adopted instead of a cleaving technique using bending stress.
  • the glass film is locally heated along the planned cutting line extending in the longitudinal direction while feeding the strip-shaped glass film in the longitudinal direction. This is a technique of continuously cleaving the glass film (in the longitudinal direction) by cooling the heated portion (region) and generating thermal stress.
  • the above-mentioned continuous cleaving divides the band-shaped glass film into a part that can be finished into a predetermined glass product (hereinafter referred to as a product glass part) and an unnecessary part that cannot be a glass product (hereinafter referred to as an unnecessary glass part).
  • the divided product glass portion is continuously sent to the downstream side and finished into a glass roll, a glass plate of a predetermined size, or the like.
  • the divided unnecessary glass portion is continuously sent to the downstream side, and is sequentially broken and collected into a short glass plate. The collected short glass plate may be discarded as it is, but is generally reused as a material for forming a glass film or the like.
  • an object of the present invention is to provide a glass film manufacturing method capable of obtaining a high-quality product glass portion from a strip-shaped glass film without unnecessarily increasing the size of the manufacturing line.
  • the method for producing a glass film according to the present invention is a method of local heating along a planned cutting line extending in the longitudinal direction and after local heating, while feeding a strip-shaped glass film in the longitudinal direction.
  • the glass film is divided into a product glass part and an unnecessary glass part by continuously cleaving the glass film along the planned cleaving line using the thermal stress generated with cooling, and then continued in the longitudinal direction.
  • the unnecessary glass part is executed in the thickness direction in at least one place in the longitudinal direction of the unnecessary glass part after executing the cleaving process. It is characterized in that the recovery step is executed on the downstream side of the position of the shake restriction process while the shake restriction process for restricting the shake is performed.
  • “Breaking unnecessary glass part” is intended to break a long unnecessary glass part in a strip shape into a short glass plate having a longitudinal (feed) direction dimension of about several tens to several hundreds of millimeters. “Unnecessary glass part is crushed” is intended to crush the unnecessary glass part into fine glass pieces.
  • the recovery step is performed on the downstream side of the shake regulation processing position while performing the shake regulation process for regulating the unnecessary glass portion from shaking in the thickness direction. Since it was made to execute, the vibration caused by breaking or crushing the unnecessary glass part becomes difficult to propagate to the cleaved part of the glass film (the part where the glass film is cleaved by the thermal stress). The cleaving accuracy of the film, and consequently the quality of the product glass part can be improved.
  • the shake regulation process can also be executed so as to regulate the unwanted glass portion from shaking in the thickness direction at a plurality of locations separated from each other in the longitudinal direction of the unwanted glass portion.
  • the vibration damping effect can be enhanced compared with the case where the deflection in the thickness direction of the unnecessary glass portion is restricted only at one place in the longitudinal direction, the cleaving accuracy of the glass film can be further increased, that is, the product It can be expected to further improve the quality of the glass part.
  • the separation step can be performed on the downstream side of the shake regulation processing position while performing the shake regulation process.
  • the separation process as described above is provided, the split section of the adjacent product glass part and the split section of the unnecessary glass part interfere with each other, and as a result, a minute defect occurs in the split section of the product glass part. Can be prevented as much as possible. If the separation step exhibiting such an effect is performed downstream of the shake restriction processing position while performing the shake restriction processing after the cleaving step, the separation step is performed more than the shake restriction treatment position. Compared with the case where it is executed on the upstream side, it is possible to enhance the absorption effect of vibrations that occur when the unnecessary glass portion is broken and crushed. Therefore, it is advantageous in obtaining a high-quality product glass part.
  • the shake regulation process can be executed by sandwiching the unnecessary glass portion between the first and second members respectively in contact with the front surface and the back surface of the unnecessary glass portion.
  • the roller body which can be idled in other words, the roller body which rotates when contacting the surface of the unnecessary glass part (sent in the longitudinal direction), or the state where it is in contact with the surface of the unnecessary glass part
  • the conveyance conveyor which sends an unnecessary glass part to a longitudinal direction can be used irrespective of whether the 1st member is comprised by any of the above or another means.
  • the recovery step can be a step in which a process of crushing and collecting the unnecessary glass portion into glass pieces is executed, and more specifically, the introduction port existing on one end side of the crushing passage. Then, an unnecessary glass portion is introduced into the passage, and the unnecessary glass portion is vibrated by forming an air flow in the crushing passage so as to collide with the inner wall of the crushing passage and crush into a glass piece. It can be a process.
  • the recovery process is a process in which the unnecessary glass part is crushed into glass pieces and recovered as described above
  • a mechanical movable mechanism is used to crush the unnecessary glass parts into glass pieces. It is also possible to use.
  • the mechanical movable mechanism has a problem that the mechanism is large and complex, and failure is likely to occur.
  • the unnecessary glass portion introduced into the crushing passage collides with the inner wall of the crushing passage by being forcedly vibrated by the airflow formed in the crushing passage, It will be crushed into glass pieces. Therefore, it is not necessary to arrange a mechanical movable mechanism for crushing unnecessary glass parts in the crushing passage, simplifying the production line, and reducing the frequency of failure occurrence and improving the line operation rate. be able to.
  • vibrations caused by airflow and vibrations caused by collisions with the inner wall of the crushing passage are less likely to be propagated to the cleaved portion of the glass film by performing the shake regulation process (due to the presence of the shake regulation means).
  • the cleaving precision of a glass film can be improved.
  • the above-described method for producing a glass film according to the present invention can be preferably applied when producing a glass film having a longitudinal dimension exceeding 4 m. That is, it is not easy to accurately apply bending stress when continuously cleaving such a long glass film in the longitudinal direction, and a method utilizing thermal stress is practically employed. Moreover, the manufacturing method of the glass film which concerns on this invention can be preferably applied especially when manufacturing a glass film whose thickness is 200 micrometers or less.
  • a high-quality product glass portion can be obtained from a strip-shaped glass film without unnecessarily increasing the size of the production line.
  • FIG. 2 is a cross-sectional view taken along line YY in FIG.
  • FIG. 4 is a schematic side view which shows the other example of a shake control means.
  • FIG. 4 is an enlarged view of a main part of the shake regulating means shown in FIG. 3.
  • FIG. 4 is an enlarged view of a main part of the shake regulating means shown in FIG. 3.
  • FIG. 1 is a schematic side view showing an example of a production line (manufacturing apparatus) 1 used when carrying out the method for producing a glass film according to the present invention.
  • a production line (manufacturing apparatus) 1 used when carrying out the method for producing a glass film according to the present invention.
  • A2, separation area A3, finishing area A4, and recovery area A5 are combined.
  • Molding area A1 is a molding process area for molding a long (band-shaped) glass film G having a longitudinal dimension exceeding 4 m, and is provided with a molding device 2.
  • a molding device 2 an apparatus for forming the glass film G by a so-called overflow down draw method that continuously draws molten glass vertically downward is used.
  • the overflow down draw method since the molding of the glass film G proceeds while the surface is only in contact with the outside air (atmospheric gas in the molding apparatus 2), it is possible to ensure high flatness on the surface of the glass film G. There is an advantage that you can. Therefore, when the glass film G is used as a glass substrate for FPD, for example, it becomes easy to form fine elements and wiring on the surface with high accuracy.
  • the thickness of the glass film G is exaggerated and the thickness of the actual glass film G is 300 micrometers or less. That is, the method for producing a glass film according to the present invention can be particularly suitably employed when producing a glass film G having a thickness of 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the strip-shaped glass film G formed by the forming apparatus 2 and discharged from the forming apparatus 2 is transferred to the transport apparatus 3 for transporting the glass film G in the longitudinal direction.
  • a curved conveyance unit 4 curved in an arc shape is provided at the most upstream part of the conveyance device 3, and the glass film G discharged from the forming device 2 is sent downstream along the curved conveyance unit 4.
  • the traveling direction of the glass film G is converted from the vertical direction to the horizontal direction.
  • the downstream end of the curved conveyance unit 4 is connected to the upstream end of the horizontal conveyance unit 5 constituting the conveyance device 3 together with the curved conveyance unit 4 (and an inclined conveyance unit 6 described later).
  • the glass film G sent downstream is first introduced into the cleaving area A2.
  • the horizontal conveyance part 5 which comprises the conveying apparatus 3 is comprised by connecting the conveyance conveyor 7 provided with the endless belt member 8 and the drive means 9 for driving this belt member 8 in series.
  • the driving speed of the belt member 8 can be appropriately set according to the molding speed of the glass film G (the discharging speed of the glass film G from the molding apparatus 2), but there is a speed difference between the two.
  • the glass film G may be an obstacle to the smooth conveyance toward the downstream side, so that both are basically set to be substantially the same.
  • the cleaving area A2 is obtained by continuously cleaving the glass film G that is continuously fed in the longitudinal direction along the horizontal transport unit 5 along a cleaving line (not shown) extending in the feeding direction (longitudinal direction). This is the area where the cleaving step for dividing the product glass part Ga and the unnecessary glass part Gb is performed. That is, in the method of continuously forming the glass film G from the molten glass as in the overflow downdraw method described above, the accuracy of the size and the like of the extent that the glass film G can be used as a glass product is ensured in the central region in the width direction. On the other hand, there are many cases where accuracy such as dimensions that can be used as a glass product is not ensured in the width direction end region. Therefore, the cleaving area A2 where such a cleaving process is performed is provided, and the glass film G is divided into the product glass portion Ga and the unnecessary glass portion Gb.
  • the cleaving area A2 in which the above cleaving process is performed is provided between the local heating means 12 and the cooling means 13 that are sequentially arranged along the horizontal conveyance unit 5.
  • the local heating means 12 is for locally heating the planned cutting line (existing region) extending in the longitudinal direction of the glass film G.
  • a laser irradiation device capable of irradiating a laser such as a carbon dioxide laser is used. Is done.
  • the cooling means 13 is for cooling the part heated locally by the local heating means 12 in the glass film G.
  • a cooling liquid, a cooling gas, or a mixture thereof is directed toward the glass film G.
  • a coolant capable of being injected is used.
  • a crack forming means 11 such as a diamond cutter or a laser irradiation device is provided on the upstream side of the local heating means 12.
  • the belt-shaped glass film G is continuously cleaved along the planned cleaving line extending in the longitudinal direction, and is divided into the product glass portion Ga and the unnecessary glass portion Gb. Both the product glass part Ga and the unnecessary glass part Gb are continuously sent along the horizontal conveying part 5 to the downstream side.
  • a separation area A3 is provided on the downstream side of the cleaving area A2, and in this separation area A3, separation is performed by changing the feeding direction of at least one of the product glass portion Ga and the unnecessary glass portion Gb to separate them from each other.
  • the process is executed.
  • the feed direction of the product glass portion Ga is maintained in the horizontal direction, while the feed direction of the unnecessary glass portion Gb is changed from the horizontal direction to a tilt direction inclined by a predetermined angle with respect to the horizontal direction.
  • the unnecessary glass portion Gb is sent to the downstream side along the inclined conveyance portion 6 extending from the horizontal conveyance portion 5 and extending.
  • the feeding direction of the unnecessary glass portion Gb is maintained in the horizontal direction, while the feeding direction of the product glass portion Ga may be changed, or the product glass portion Ga and unnecessary glass may be changed. You may make it change the feed direction of both parts Gb.
  • the inclined conveyance part 6 is comprised by the conveyance conveyor 7 which comprises the structure similar to the horizontal conveyance part 5.
  • the separation start point X2 of the product glass portion Ga and the unnecessary glass portion Gb is provided at a position displaced from the cleaving completion point (installation position of the cooling means 13) X1 of the glass film G by a predetermined amount downstream.
  • the separation start point X2 of the glass parts Ga and Gb and the cleaving completion point X1 of the glass film G are so close that the separation of the glass parts Ga and Gb starts immediately after the division of the product glass part Ga and the unnecessary glass part Gb is completed. This is because the initial cracks may develop in a direction different from the predetermined direction, which may adversely affect the cleaving accuracy of the glass film G and consequently the quality of the product glass portion Ga.
  • the separation start point X2 of the product glass part Ga and the unnecessary glass part Gb is provided at a position displaced about 700 mm downstream from the cleaving completion point X1 of the glass film G, for example. It is done.
  • the separation step (separation area A3) as described above is not necessarily provided, but if this is provided, the fractured surfaces of the adjacent product glass part Ga and the unwanted glass part Gb interfere with each other. As a result, it is possible to prevent the occurrence of minute defects on the fractured surface of the product glass portion Ga as much as possible. Therefore, it is advantageous in obtaining a high-quality product glass part Ga (glass product).
  • finishing area A4 a finishing process is performed for finishing the product glass portion Ga, which is separated from the unnecessary glass portion Gb and continuously sent in the longitudinal direction, into a predetermined glass product.
  • the winding apparatus which winds the strip
  • said glass product obtained in this finishing area A4 is paid out to a customer or a post process.
  • the recovery area A5 is an area where a recovery process is performed in which the unnecessary glass part Gb that is separated from the product glass part Ga and continuously sent in the longitudinal direction is sequentially broken or crushed and recovered.
  • a recovery device 10 for crushing and recovering the strip-like unnecessary glass portion Gb into fine glass pieces is provided at the downstream end of the inclined conveyance portion 6.
  • recovery apparatus 10 is reused or discarded.
  • the recovery apparatus 10 may crush the unnecessary glass portion Gb sent along the inclined conveyance unit 6 and the crushing passage that configures the space for crushing the unnecessary glass portion Gb. It comprises a suction means for sucking a glass piece generated by pulverizing the drawn unnecessary glass portion Gb and a collection box for collecting the sucked glass piece.
  • the crushing process is executed as follows. First, when the suction means is activated and the pressure in the crushing passage becomes negative, an air flow is formed that flows in the crushing passage from the crushing passage inlet (upstream opening) to the discharge port (downstream opening). Is done.
  • the unnecessary glass portion Gb introduced into the crushing passage vibrates in the thickness direction under the influence of the airflow on the crushing passage, and collides with the inner wall of the crushing passage.
  • the strip-shaped unnecessary glass portion Gb is crushed into fine glass pieces, and the glass pieces are discharged from the discharge port of the crushing passage and collected in the collection box.
  • the method for producing a glass film according to the present invention after performing the cleaving step, at least one place in the longitudinal direction of the unnecessary glass portion Gb, while performing a shake restricting process for restricting the unnecessary glass portion Gb from swinging in the thickness direction.
  • the above-described recovery process is performed downstream of the shake regulation processing position.
  • the downstream side of the cleaving area A2 is executed to perform a shake restricting process that restricts the unnecessary glass portion Gb from swinging in the thickness direction.
  • a shake restricting means 20 is provided for executing the shake restricting process upstream of the separation area A3. As shown in FIG.
  • the shake restricting means 20 includes a first member B1 and a second member B2 that sandwich the unnecessary glass portion Gb in the thickness direction.
  • the first member B1 and the second member B2 are in contact with the front surface and the back surface of the unnecessary glass portion Gb, respectively.
  • the first member B1 and the second member B2 are configured by the roller body 22 and the transport conveyor 7 respectively. Is done.
  • the roller body 22 as the first member B1 is rotatably attached to the lower end of the cylinder 21 (cylinder rod 21a) that moves forward and backward in a direction (vertical direction) orthogonal to the feeding direction of the unnecessary glass portion Gb.
  • a driving source for rotating the roller body 22 is not provided, and the roller body 22 rotates (idling) by being in contact with the surface of the unnecessary glass portion Gb sent in the longitudinal direction.
  • the shake restricting means 20 of this embodiment by adjusting the expansion / contraction amount (extension amount from the shortening limit) of the cylinder rod 21a of the cylinder 21, the clamping force of the unnecessary glass portion Gb (the shake restricting force of the unnecessary glass portion Gb). Is adjustable.
  • the reason for adopting the above configuration is as follows. That is, in the glass film production line 1 having the above-described configuration, the cleaving step in which continuous cleaving of the glass film G is executed and the unnecessary glass portion Gb are crushed except the initial stage of forming the glass film G. The collection process to collect proceeds simultaneously. While the unnecessary glass portion Gb is being crushed sequentially, as described above, vibrations that cause the unnecessary glass portion Gb that is continuously sent in the longitudinal direction to shake in the thickness direction are generated.
  • the unnecessary glass portion Gb is sequentially crushed (collected) on the downstream side of the shake restriction processing position while performing the shake restriction processing that restricts the unnecessary glass portion Gb from shaking in the thickness direction. ),
  • the vibration generated as the unnecessary glass portion Gb is crushed becomes difficult to propagate to the glass film G existing in the cleaving area A2, and the cleaving accuracy of the glass film G, and consequently the product glass portion Ga.
  • Improve the quality is obtained by restricting the shake in the thickness direction of the unnecessary glass portion Gb at one place in the longitudinal direction of the unnecessary glass portion Gb that is continuously sent in the longitudinal direction after the cleaving step. Therefore, it is possible to avoid the glass film production line 1 from becoming unnecessarily large.
  • the vibration is compared with the case where the shake regulation process is performed on the downstream side of the separation area A3. Can improve the absorption effect. Therefore, it is advantageous in obtaining a high-quality product glass portion Ga.
  • the shake regulation process is performed by sandwiching the unnecessary glass portion Gb between the first member B1 and the second member B2 that are in contact with the front surface and the back surface of the unnecessary glass portion Gb, respectively, and particularly as the second member B2. Since the conveyance conveyor 7 that continuously sends the unnecessary glass portion Gb to the downstream side is used, it is possible to regulate the occurrence of shake in the thickness direction of the unnecessary glass portion Gb with a simple means.
  • the shake control means 20 which can be employ
  • FIG. 3 is an enlarged view of another example of the run-out restricting means 20.
  • the unnecessary glass portion Gb is configured to be able to restrict the shake in the thickness direction at a plurality of locations separated from each other, and (2) unnecessary glass in cooperation with the transport conveyor 7 as the second member B2.
  • the configuration is different from that described above in that a member that moves in synchronization with the unnecessary glass part Gb while being in contact with the surface of the unnecessary glass part Gb is used. If the configuration of (1) is adopted, it is possible to effectively regulate the shake compared to the case where the unnecessary glass portion Gb is restricted from swinging in the thickness direction at only one place in the longitudinal direction of the unnecessary glass portion Gb. There is a merit that you can.
  • the first member B1 is composed of a weight 24 placed on the surface of the unnecessary glass portion Gb that is continuously sent in the longitudinal direction after the cleaving step, and the weight 24 is A plurality are provided.
  • the plurality of weights 24 are weight support / synchronous movement means 23 for supporting the weights 24 so as to be movable synchronously with the unnecessary glass portion Gb sent downstream along the horizontal conveyance unit 5 (conveyance conveyor 7). It is supported.
  • the weight support / synchronous moving means 23 is disposed at two positions separated from each other in the longitudinal direction of the unnecessary glass portion Gb, and at least one of them is at the same speed as the feeding speed of the unnecessary glass portion Gb by a drive source not shown.
  • the main part is composed of a plurality of weight support members 26 to be supported.
  • the clamping force of the unnecessary glass portion Gb (the shake restricting force of the unnecessary glass portion Gb) can be adjusted by adjusting the weight of the weight 24 as the first member B1. ing.
  • the finishing process performed in finishing area A4 is what winds the product glass part Ga in roll shape and obtains what is called a glass roll
  • the product glass continuously sent downstream after performing a cleaving process A predetermined tension is applied to the portion Ga.
  • no tension is applied to the unnecessary glass portion Gb that is continuously sent to the downstream side after the cleaving step, and the unnecessary glass portion Gb has its longitudinal ends sequentially in the recovery device 10. Since it is crushed (collected), it may not be sent to the downstream side as smoothly as the product glass portion Ga. Therefore, a difference occurs in the feed speed between the product glass portion Ga and the unnecessary glass portion Gb, and due to this difference in the feed speed, the bending C as shown in FIG.
  • the method for absorbing the bending C generated in the longitudinal direction of the unnecessary glass portion Gb is not limited to the above.
  • the roller body 22 as the first member B1 that sandwiches the unnecessary glass portion Gb in cooperation with the transport conveyor 7 as the second member B2 is arranged in the longitudinal direction of the unnecessary glass portion Gb.
  • At least one roller is used in order to avoid adversely affecting the cleaving accuracy of the glass film G due to vibration generated as the unnecessary glass portion Gb is sequentially crushed.
  • the unnecessary glass portion Gb is sandwiched between the body 22 (first member B1) and the transfer conveyor 7 (second member B2).
  • the so-called overflow downdraw method is adopted as the method for forming the glass film G in the molding area A1, but the present invention provides a method for forming the glass film G in the molding area A1, such as a slot down draw method or a float method.
  • the present invention can also be applied to the case of adopting other methods capable of forming a band-shaped glass film G from molten glass.
  • the present invention can be preferably applied to a case where a so-called redrawing method in which a solidified glass base material for secondary processing is heated and stretched as a method for forming the glass film G in the forming area A1.
  • FIG. 6 shows a specific example of this, and a cleaving step for dividing the glass film G unwound from the so-called glass roll Gr and sent in the longitudinal direction into the product glass portion Ga and the unnecessary glass portion Gb is executed. Thereafter, the recovery step of sequentially crushing and collecting the unnecessary glass portion Gb continuously sent in the longitudinal direction (and the finishing step of finishing the product glass portion Ga continuously sent in the longitudinal direction into a predetermined glass product).
  • the production line 1 of the glass film in which is implemented is shown.
  • the shake restricting means 20 shown in FIG. 1 (and FIG. 2) is adopted.
  • the shake as shown in FIGS. 3 and 5 is added to the glass film production line 1 as shown in FIG.
  • the present invention is applied when the unnecessary glass portion Gb is recovered in a process of crushing and collecting the unnecessary glass portion Gb having a band shape into fine glass pieces in the recovery step.
  • the present invention can be preferably applied to a case where a process of breaking the long unnecessary glass portion Gb having a belt shape into a short glass plate and collecting the same is performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

 製造ラインを無駄に大型化することなく、帯状のガラスフィルムから高品質の製品ガラス部を得ることのできるガラスフィルムの製造方法を提供する。 帯状のガラスフィルムGを長手方向に送りながら、熱応力を利用してガラスフィルムGを割断予定線に沿って連続的に割断することにより、ガラスフィルムGを製品ガラス部Gaと不要ガラス部Gbとに分割する割断工程を実行し、その後、長手方向に継続して送られる不要ガラス部Gbを順次破砕して回収する回収工程を実行するガラスフィルムの製造方法である。割断工程の実行後に、不要ガラス部Gbの長手方向の少なくとも一箇所で、不要ガラス部Gbがその厚み方向で振れるのを規制する振れ規制処理を行いつつ、この振れ規制処理位置よりも下流側で回収工程を行う。

Description

ガラスフィルムの製造方法
 本発明は、ガラスフィルムの製造方法の改良に関する。
 周知のように、近時における画像表示装置は、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、有機ELディスプレイ(OLED)などに代表されるフラットパネルディスプレイ(FPD)が主流となっており、これらFPDについては、一層の軽量化が推進されている。そのため、FPDの主要構成部材の一つであるガラス板は、一層の薄板化が推進されている。
 また、例えば有機ELは、光の三原色をTFTにより明滅させるディスプレイ用途のみならず、単色のみで発光させてLCDのバックライトや屋内照明の光源等の平面光源としても利用されつつある。有機ELを光源として用いた照明装置は、有機ELを構成するガラス板が可撓性を有するものであれば、発光面を自由に変形させることが可能である。そのため、この種の照明装置に使用されるガラス板についても、十分な可撓性確保の観点から、一層の薄板化が推進されている。
 上記のFPDや照明装置等に使用されるガラス板を所定サイズに割断する手法としては、ガラス板の表面又は裏面に、割断予定線に沿って所定深さのスクライブを刻設した後、スクライブに曲げ応力を作用させてガラス板を割断するというものが一般的である。しかしながら、ガラス板がガラスフィルムの状態にまで薄板化された場合には、スクライブを刻設すること自体が非常に困難であるばかりでなく、割断面に形成されるラテラルクラック等の微小欠陥によって著しい強度低下を招くという問題が生じ得る。特に、溶融ガラスから種々の製法により成形された長尺(帯状)のガラスフィルムは、これが長手方向に送られる最中に、送り方向(長手方向)に延びた割断予定線に沿って連続的に割断することが要請される。しかしながら、長手方向に送られる最中の帯状のガラスフィルムに対して連続的な曲げ応力を正確に作用させることは容易ではない。
 そこで、帯状のガラスフィルムをその長手方向に延びた割断予定線に沿って連続割断する際には、曲げ応力を利用した割断手法に替えて、熱応力を利用した割断手法が採用されるに至っている。具体的には、下記の特許文献1に記載されているように、帯状のガラスフィルムを長手方向に送りながら、長手方向に延びた割断予定線に沿ってガラスフィルムを局部加熱した後、この局部加熱された部位(領域)を冷却して熱応力を発生させることによってガラスフィルムを(長手方向に)連続的に割断する、という手法である。
 上記の連続割断が、帯状のガラスフィルムを、所定のガラス製品に仕上げられる部位(以下、製品ガラス部という)とガラス製品になり得ない不要部位(以下、不要ガラス部という)とに分割するために行われる場合、分割された製品ガラス部は継続して下流側に送られてガラスロールや所定寸法のガラス板等に仕上げられる。一方、分割された不要ガラス部は、継続して下流側に送られて順次短尺のガラス板に破断され回収される。なお、回収された短尺のガラス板は、そのまま廃棄される場合もあるが、ガラスフィルム等を成形する際の材料として再利用に供されるのが一般的である。
特開2000-335928号公報
 ところで、上記特許文献1に記載されているような製造方法では、ガラスフィルムの成形初期段階を除き、上記したガラスフィルムの連続割断と、不要ガラス部を破断して回収する回収工程とが基本的に同時進行する。また、不要ガラス部を破断している最中には、継続して送られる不要ガラス部を、主にその厚み方向で振れさせるような振動が発生する場合が多い。そのため、何ら対策を講じることなく上記の各工程が同時に行われると、不要ガラス部を破断するのに伴って生じる振動が割断中のガラスフィルムに伝搬され、その結果、ガラスフィルムの割断精度、ひいては製品ガラス部(ガラス製品)の品質に悪影響が及ぶ可能性がある。このような問題は、例えば、不要ガラス部を破断して回収する回収装置を、不要ガラス部を破断するのに伴って生じる振動が割断中のガラスフィルムに伝搬されない、若しくは伝搬され難い程度に離隔した位置に設置することで解消することができるとも考えられるが、製造ラインが無駄に大型化するという新たな問題を招来する。
 そこで、本発明は、製造ラインを無駄に大型化することなく、帯状のガラスフィルムから高品質の製品ガラス部を得ることのできるガラスフィルムの製造方法を提供することを目的とする。
 上記の目的を達成するために創案された本発明に係るガラスフィルムの製造方法は、帯状のガラスフィルムを長手方向に送りながら、長手方向に延びた割断予定線に沿う局部加熱及び局部加熱後の冷却に伴って発生する熱応力を利用してガラスフィルムを割断予定線に沿って連続的に割断することにより、ガラスフィルムを製品ガラス部と不要ガラス部とに分割し、その後、長手方向に継続して送られる不要ガラス部を順次破断又は破砕して回収する回収工程を実行するものにおいて、割断工程の実行後に、不要ガラス部の長手方向の少なくとも一箇所で、不要ガラス部がその厚み方向で振れるのを規制する振れ規制処理を行いつつ、この振れ規制処理位置よりも下流側で上記回収工程を実行することを特徴とする。なお、「不要ガラス部を破断」とは、帯状をなした長尺の不要ガラス部を、長手(送り)方向寸法が数十~数百mm程度の短尺のガラス板に破断することを意図しており、「不要ガラス部を破砕」とは、上記不要ガラス部を細かなガラス片に破砕することを意図している。
 このように、本願発明に係るガラスフィルムの製造方法では、不要ガラス部がその厚み方向で振れるのを規制する振れ規制処理を行いつつ、この振れ規制処理位置よりも下流側で上記の回収工程を実行するようにしたことから、不要ガラス部を破断又は破砕するのに伴って生じる振動が、ガラスフィルムの被割断部位(熱応力でガラスフィルムを割断している部位)に伝搬され難くなり、ガラスフィルムの割断精度、ひいては製品ガラス部の品質を向上することができる。しかも、かかる効果を、割断工程を行った後に継続して送られる不要ガラス部の長手方向の少なくとも一箇所で、不要ガラス部の厚み方向における振れ規制を実行することによって得るようにしたことから、ガラスフィルムの製造ラインが無駄に大型化するのを回避することができる。
 上記構成において、振れ規制処理は、上記不要ガラス部の長手方向の相互に離隔する複数箇所で、不要ガラス部がその厚み方向で振れるのを規制するように実行することもできる。
 このようにすれば、長手方向の一箇所のみで不要ガラス部の厚み方向における振れを規制する場合に比べて制振効果を高めることができるので、ガラスフィルムの割断精度を一層高めること、すなわち製品ガラス部の一層の高品質化を図ることが期待できる。
 上記構成において、割断工程の実行後に、製品ガラス部又は不要ガラス部の少なくとも一方の送り方向を変更して両者を互いに分離させる分離工程をさらに設けることができ、この場合、上記割断工程の実行後に上記振れ規制処理を行いつつ、この振れ規制処理位置よりも下流側で上記分離工程を実行することができる。
 上記のような分離工程を設けておけば、隣り合う製品ガラス部の割断面と不要ガラス部の割断面とが相互に干渉し、その結果、製品ガラス部の割断面に微小な欠陥が発生するのを可及的に防止することができる。かかる効果を奏する分離工程を、上記割断工程の実行後に上記振れ規制処理を行いつつ、この振れ規制処理位置よりも下流側で実行するようにしておけば、この分離工程を振れ規制処理位置よりも上流側で実行する場合に比べて、不要ガラス部を破断・破砕するのに伴って生じる振動の吸収効果を高めることができる。そのため、高品質の製品ガラス部を得る上で有利となる。
 以上の構成において、振れ規制処理は、不要ガラス部の表面及び裏面に夫々接した第1及び第2部材で不要ガラス部を挟み込むことで実行することができる。
 このような構成によれば、簡易な手段で不要ガラス部の厚み方向における振れ規制処理を実行することが、ひいてはガラスフィルムの割断精度を向上することができる。
 上記の第1部材としては、例えば、空転可能なローラ体、言い換えると(長手方向に送られる)不要ガラス部の表面に接したときに回転するローラ体、あるいは不要ガラス部の表面に接した状態で不要ガラス部と同期移動するもの、を用いることができる。一方、上記の第2部材としては、第1部材を上記の何れで構成するか、もしくは他の手段で構成するかに関わらず、不要ガラス部を長手方向に送る搬送コンベアを用いることができる。
 また、以上の構成において、回収工程は、不要ガラス部をガラス片に破砕して回収する処理が実行される工程とすることができ、より具体的には、破砕通路の一端側に存する導入口からその通路内に不要ガラス部を導入すると共に、この不要ガラス部を破砕通路内に気流を形成して振動させることにより、破砕通路の内壁に衝突させてガラス片に破砕する処理が実行される工程とすることができる。
 回収工程を、上記のように、不要ガラス部をガラス片に破砕して回収する処理が実行される工程とする場合、不要ガラス部をガラス片へと破砕するためには、機械的な可動機構を用いることも可能である。しかしながら、機械的な可動機構は、機構が大型かつ複雑で、故障も発生し易いという問題がある。これに対し、上記の構成によれば、破砕通路内に導入された不要ガラス部は、破砕通路内に形成される気流によって強制的に振動が付与されることで破砕通路の内壁に衝突し、ガラス片に破砕されることとなる。従って、破砕通路内に不要ガラス部を破砕するための機械的な可動機構を配置する必要がなくなり、製造ラインの簡素化を図ることが、また故障発生頻度を低減してライン稼働率を向上することができる。また、気流によって付与される振動や、破砕通路の内壁への衝突により生じる振動は、振れ規制処理が実行されることにより(振れ規制手段の存在により)ガラスフィルムの被割断部位に伝搬され難くなり、ガラスフィルムの割断精度を向上させることができる。
 上記した本発明に係るガラスフィルムの製造方法は、長手方向寸法が4mを超えるガラスフィルムを製造する場合に好ましく適用することができる。すなわち、このような長尺のガラスフィルムを長手方向に連続割断する際に曲げ応力を正確に作用させるのは容易ではなく、現実的には熱応力を活用する方法が採用されるからである。また、本発明に係るガラスフィルムの製造方法は、特に、厚みが200μm以下のガラスフィルムを製造する場合に好ましく適用することができる。
 以上に示すように、本発明によれば、製造ラインを無駄に大型化することなく、帯状のガラスフィルムから高品質の製品ガラス部を得ることができる。
本発明に係るガラスフィルムの製造方法を実施する際に用いる製造ラインの一例を示す概略側面図である。 図1中のY-Y線矢視断面図である。 振れ規制手段の他例を示す概略側面図である。 図3に示す振れ規制手段の要部拡大図である。 図3に示す振れ規制手段の要部拡大図である。 振れ規制手段の他例を時系列で示した概略側面図である。 振れ規制手段の他例を時系列で示した概略側面図である。 振れ規制手段の他例を時系列で示した概略側面図である。 振れ規制手段の他例を時系列で示した概略側面図である。 本発明に係るガラスフィルムの製造方法を実施する際に用いる製造ラインの他例を示す概略側面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は、本発明に係るガラスフィルムの製造方法を実施する際に用いる製造ライン(製造装置)1の一例を示す概略側面図であり、主に、以下に詳述する成形エリアA1、割断エリアA2、分離エリアA3、仕上げエリアA4および回収エリアA5を組み合わせて構成される。
 成形エリアA1は、長手方向寸法が4mを超える長尺(帯状)のガラスフィルムGを成形する成形工程エリアであり、成形装置2が設けられている。成形装置2として、ここでは、溶融ガラスを鉛直下方に連続的に引き出すいわゆるオーバーフローダウンドロー法によってガラスフィルムGを成形するものが使用される。オーバーフローダウンドロー法では、表面が外気(成形装置2中の雰囲気ガス)に接触しただけの状態でガラスフィルムGの成形が進行することから、ガラスフィルムGの表面に高い平面度を確保することができるという利点がある。そのため、ガラスフィルムGを、例えばFPD用のガラス基板として用いる場合には、表面に微細な素子や配線を精度良く形成し易くなる。
 なお、図1を含め、本発明の実施の形態を示している各図面においては、ガラスフィルムGの厚みを誇張して描いており、実際のガラスフィルムGの厚みは300μm以下である。すなわち、本発明に係るガラスフィルムの製造方法は、厚みが300μm以下、好ましくは200μm以下、さらに好ましくは100μm以下のガラスフィルムGを製造する際に特に好適に採用し得る。
 成形装置2で成形され、成形装置2から排出された帯状のガラスフィルムGは、当該ガラスフィルムGを長手方向に搬送するための搬送装置3に移載される。搬送装置3の最上流部には円弧状に湾曲した湾曲搬送部4が設けられており、成形装置2から排出されたガラスフィルムGが湾曲搬送部4に沿って下流側に送られることにより、ガラスフィルムGの進行方向が鉛直方向から水平方向に変換される。湾曲搬送部4の下流端には、湾曲搬送部4(さらには、後述する傾斜搬送部6)と共に搬送装置3を構成する水平搬送部5の上流端が繋がっており、水平搬送部5に沿って下流側に送られるガラスフィルムGは、まず割断エリアA2に導入される。
 なお、搬送装置3を構成する水平搬送部5は、無端状のベルト部材8と、このベルト部材8を駆動するための駆動手段9とを備えた搬送コンベア7を複数連ねて構成されている。ベルト部材8(搬送コンベア7)の駆動速度は、ガラスフィルムGの成形速度(成形装置2からのガラスフィルムGの排出速度)に応じて適宜設定することができるが、両者間に速度差があると、ガラスフィルムGを下流側に向けて円滑に搬送する上での障害となる可能性があるので、両者は基本的に略同一に設定される。
 割断エリアA2は、水平搬送部5に沿って長手方向に連続的に送られるガラスフィルムGを、送り方向(長手方向)に延びた図示外の割断予定線に沿って連続的に割断することにより、製品ガラス部Gaと不要ガラス部Gbとに分割する割断工程が実行されるエリアである。すなわち、上記したオーバーフローダウンドロー法のように、溶融ガラスからガラスフィルムGを連続成形する手法では、ガラスフィルムGの幅方向中央領域はガラス製品として使用可能な程度の寸法等の精度確保がなされているのに対し、幅方向端部領域はガラス製品として使用できる程の寸法等の精度確保がなされていない場合が多い。そのため、このような割断工程が実行される割断エリアA2を設けて、ガラスフィルムGを製品ガラス部Gaと不要ガラス部Gbとに分割する。
 上記の割断工程が実行される割断エリアA2は、水平搬送部5に沿って順に配設された局部加熱手段12と冷却手段13との間に設けられる。局部加熱手段12は、ガラスフィルムGの長手方向に延びる割断予定線(の存在領域)を局部加熱するためのものであって、例えば、炭酸ガスレーザー等のレーザーを照射可能なレーザー照射装置が使用される。冷却手段13は、ガラスフィルムGのうち局部加熱手段12により局部加熱された部位を冷却するためのものであって、例えば、ガラスフィルムGに向けて冷却液、冷却ガス、若しくはこれらの混合物等の冷却媒体を噴射可能なものが使用される。なお、局部加熱手段12の上流側には、例えばダイヤモンドカッター、あるいはレーザー照射装置等のクラック形成手段11が設けられている。
 上記構成において、水平搬送部5に沿って下流側に送られるガラスフィルムGの長手方向端部がクラック形成手段11の対向領域に到達すると、ガラスフィルムGの長手方向端部の幅方向所定位置に、割断始点となる初期クラックがクラック形成手段11によって形成される。初期クラックが形成されたガラスフィルムGが水平搬送部5に沿ってさらに下流側に送られて、ガラスフィルムGの長手方向端部が局部加熱手段12の対向領域に到達すると、局部加熱手段12からガラスフィルムG(の初期クラック)に向けてのレーザー照射が開始され、以降、レーザーが照射されたままの状態でガラスフィルムGがさらに下流側に送られる。これにより、ガラスフィルムGの幅方向所定部位が送り方向に沿って連続的に局部加熱される。そして、ガラスフィルムGの局部加熱された部位が冷却手段13の対向領域を通過すると、ガラスフィルムGのうちで局部加熱された部位が冷却手段13からの冷却媒体の噴射によって冷却され、これに伴って発生する熱応力により初期クラックがガラスフィルムGの搬送に伴って送り方向後方側に進展する。以上のようにして、帯状のガラスフィルムGは、その長手方向に延びた割断予定線に沿って連続的に割断され、製品ガラス部Gaと不要ガラス部Gbとに分割される。製品ガラス部Gaと不要ガラス部Gbの双方は、水平搬送部5に沿って継続して下流側に送られる。
 上記した割断エリアA2の下流側には分離エリアA3が設けられており、この分離エリアA3では、製品ガラス部Ga又は不要ガラス部Gbの少なくとも一方の送り方向を変更して両者を互いに分離させる分離工程が実行される。本実施形態では、製品ガラス部Gaの送り方向が水平方向のままで維持される一方、不要ガラス部Gbの送り方向が、水平方向から、水平方向に対して所定角度傾斜した傾斜方向に変更され、以降不要ガラス部Gbは、水平搬送部5から分岐して延びる傾斜搬送部6に沿って下流側に送られる。もちろん、本実施形態とは異なり、不要ガラス部Gbの送り方向を水平方向のままで維持する一方、製品ガラス部Gaの送り方向を変更するようにしても良いし、製品ガラス部Ga及び不要ガラス部Gbの双方の送り方向を変更するようにしても良い。なお、傾斜搬送部6は、水平搬送部5と同様の構成を具備する搬送コンベア7で構成されている。
 製品ガラス部Gaと不要ガラス部Gbの分離開始点X2は、ガラスフィルムGの割断完了点(冷却手段13の設置位置)X1から所定量下流側に変位した位置に設けられている。両ガラス部Ga,Gbの分離開始点X2とガラスフィルムGの割断完了点X1とがあまりに近接し、製品ガラス部Gaと不要ガラス部Gbの分割完了直後に両ガラス部Ga,Gbの分離が開始されると、初期クラックが所定の方向とは異なる方向に進展し、ガラスフィルムGの割断精度、ひいては製品ガラス部Gaの品質に悪影響を及ぼす可能性があるからである。従って、ガラスフィルムGの厚み等によっても異なるが、製品ガラス部Gaと不要ガラス部Gbの分離開始点X2は、例えば、ガラスフィルムGの割断完了点X1から700mm程度下流側に変位した位置に設けられる。
 なお、上記のような分離工程(分離エリアA3)を必ずしも設ける必要はないが、これを設けておけば、隣り合う製品ガラス部Gaの割断面と不要ガラス部Gbの割断面とが相互に干渉し、その結果、製品ガラス部Gaの割断面に微小な欠陥が発生するのを可及的に防止することができる。そのため、高品質の製品ガラス部Ga(ガラス製品)を得る上で有利となる。
 仕上げエリアA4では、不要ガラス部Gbと分離された上で長手方向に継続して送られる製品ガラス部Gaを、所定のガラス製品に仕上げるための仕上げ工程が行われる。この仕上げエリアA4には、詳細な図示は省略するが、例えば、長手方向に継続して送られる帯状の製品ガラス部Gaをロール状に巻き取っていわゆるガラスロールを得る巻き取り装置、あるいは、帯状の製品ガラス部Gaを順次切断して所定寸法のガラス板を得る切断装置などが設けられる。なお、この仕上げエリアA4で得られた上記のガラス製品は、客先や後工程に払い出される。
 回収エリアA5は、製品ガラス部Gaと分離された上で長手方向に継続して送られる不要ガラス部Gbを順次破断又は破砕して回収する回収工程が実行されるエリアである。ここでは、傾斜搬送部6の下流端に、帯状の不要ガラス部Gbを細かなガラス片に破砕して回収するための回収装置10が設けられている。なお、回収装置10によって回収されたガラス片は再利用されたり、廃棄されたりする。
 詳細な図示は省略するが、回収装置10は、例えば、不要ガラス部Gbを破砕するための空間を構成する破砕通路と、傾斜搬送部6に沿って送られてくる不要ガラス部Gbを破砕通路内に引き込むと共に、引き込まれた不要ガラス部Gbが破砕されることにより生成されるガラス片を吸引するための吸引手段と、吸引したガラス片を回収するための回収ボックスとを備えたもので構成され、以下のようにして破砕処理を実行する。まず、吸引手段が作動されて破砕通路内の気圧が負圧になると、破砕通路の導入口(上流側開口部)から排出口(下流側開口部)に向かって破砕通路内を流れる気流が形成される。その結果、破砕通路内に導入された不要ガラス部Gbは、破砕通路上において上記気流の影響を受けて厚み方向に振動し、破砕通路の内壁に衝突する。この衝突が繰り返されることによって帯状の不要ガラス部Gbが細かなガラス片に破砕され、ガラス片は破砕通路の排出口から排出されて回収ボックスにて回収される。
 本発明に係るガラスフィルムの製造方法では、割断工程の実行後に、不要ガラス部Gbの長手方向の少なくとも一箇所で、不要ガラス部Gbがその厚み方向で振れるのを規制する振れ規制処理を行いつつ、この振れ規制処理位置よりも下流側で上記の回収工程が実行される。本実施形態では、割断工程の実行後で、かつ分離工程の実行前に、不要ガラス部Gbがその厚み方向で振れるのを規制する振れ規制処理を実行すべく、割断エリアA2よりも下流側で、かつ分離エリアA3よりも上流側で振れ規制処理を実行するための振れ規制手段20を設けている。振れ規制手段20は、図2にも拡大して示すように、不要ガラス部Gbを厚み方向に挟み込む第1部材B1及び第2部材B2で構成される。第1部材B1及び第2部材B2は不要ガラス部Gbの表面及び裏面に夫々接するものであり、ここではローラ体22及び上記の搬送コンベア7で、第1部材B1及び第2部材B2が夫々構成される。
 第1部材B1としてのローラ体22は、不要ガラス部Gbの送り方向と直交する方向(鉛直方向)に進退移動するシリンダ21(シリンダロッド21a)の下端に回転可能に取り付けられている。ローラ体22を回転駆動させるための駆動源は設けられておらず、ローラ体22は、長手方向に送られる不要ガラス部Gbの表面に接することで回転(空転)する。この実施形態の振れ規制手段20では、シリンダ21のシリンダロッド21aの伸縮量(短縮限からの伸長量)を調整することにより、不要ガラス部Gbの挟み込み力(不要ガラス部Gbの振れ規制力)が調整可能となっている。
 上記の構成を採用したのは以下に述べる理由による。すなわち、以上で述べた構成を備えるガラスフィルムの製造ライン1においては、ガラスフィルムGの成形初期段階を除き、ガラスフィルムGの連続割断が実行される割断工程と、不要ガラス部Gbを破砕して回収する回収工程とが同時進行する。不要ガラス部Gbが順次破砕されている最中には、上述したように、長手方向に継続して送られる不要ガラス部Gbをその厚み方向で振れさせるような振動が発生するが、何ら対策を講じることなく上記の各工程が同時に実行されると、不要ガラス部Gbを破砕するのに伴って生じる振動が割断エリアA2内に存するガラスフィルムG(割断中のガラスフィルムG)に伝搬され、その結果、ガラスフィルムGの割断精度、ひいては製品ガラス部Gaの品質に悪影響を及ぼす。割断中のガラスフィルムGが厚み方向に振れると、冷却手段13による冷却によって、割断予定線に沿ってクラックを進展させた場合に、割断予定線に沿ってクラックが進展し難くなるからである。
 これに対し、本発明のように、不要ガラス部Gbがその厚み方向で振れるのを規制する振れ規制処理を行いつつ、この振れ規制処理位置よりも下流側で不要ガラス部Gbを順次破砕(回収)するようにすれば、不要ガラス部Gbが破砕されるのに伴って生じる振動が、割断エリアA2内に存するガラスフィルムGに伝搬され難くなり、ガラスフィルムGの割断精度、ひいては製品ガラス部Gaの品質が向上する。しかも、かかる効果を、割断工程の実行後に、長手方向に継続して送られる不要ガラス部Gbの長手方向の一箇所で、不要ガラス部Gbの厚み方向における振れを規制することによって得るようにしたことから、ガラスフィルムの製造ライン1が無駄に大型化するのを回避することができる。
 特に、本実施形態では、上記の振れ規制処理を割断エリアA2と分離エリアA3との間で行うようにしたことから、分離エリアA3よりも下流側で振れ規制処理を行う場合に比べて、振動の吸収効果を高めることができる。そのため、高品質の製品ガラス部Gaを得る上で有利となる。
 また、振れ規制処理を、不要ガラス部Gbの表面及び裏面に夫々接した第1部材B1及び第2部材B2で不要ガラス部Gbを挟み込むことで行うようにし、しかも、特に第2部材B2として、不要ガラス部Gbを継続的に下流側に送る搬送コンベア7を用いたことから、簡易な手段で不要ガラス部Gbの厚み方向における振れ発生を規制することができる。
 以上、本発明の一実施形態について説明を行ったが、振れ規制処理を行うために採用し得る振れ規制手段20は、上述のものに限られない。
 図3は、振れ規制手段20の他の一例を拡大して示すものであり、主に、(1)割断工程の実行後に、継続的に下流側に送られる不要ガラス部Gbの長手方向の相互に離隔する複数箇所で、不要ガラス部Gbがその厚み方向で振れるのを規制し得るように構成されている点、および(2)第2部材B2としての搬送コンベア7と協働して不要ガラス部Gbを挟み込む第1部材B1として、不要ガラス部Gbの表面に接した状態で不要ガラス部Gbと同期移動するものを用いている点、において上述したものと構成を異にしている。上記(1)の構成を採用すれば、不要ガラス部Gbの長手方向の一箇所のみで不要ガラス部Gbがその厚み方向で振れるのを規制する場合に比べ、振れを効果的に規制することができるというメリットがある。
 この実施形態において、第1部材B1は、割断工程の実行後に、長手方向に継続して送られる不要ガラス部Gbの表面上に載置されるウェイト24で構成されており、かつこのウェイト24は複数設けられている。これら複数のウェイト24は、当該ウェイト24を、水平搬送部5(搬送コンベア7)に沿って下流側に送られる不要ガラス部Gbと同期移動可能に支持するためのウェイト支持兼同期移動手段23に支持されている。ウェイト支持兼同期移動手段23は、不要ガラス部Gbの長手方向の相互に離隔した二箇所に配設され、少なくとも一方が図示外の駆動源により不要ガラス部Gbの送り速度と同一の速度にて回転駆動される回転体27,27と、両回転体27,27に掛け渡された無端状のウェイト搬送部材25と、一端がウェイト搬送部材25に固定され、他端で各ウェイト24を吊り下げ支持する複数のウェイト支持部材26とで主要部が構成されている。なお、この実施形態の振れ規制手段20では、第1部材B1としてのウェイト24の重量を調整することにより、不要ガラス部Gbの挟み込み力(不要ガラス部Gbの振れ規制力)が調整可能となっている。
 ところで、仕上げエリアA4で行われる仕上げ工程が、例えば製品ガラス部Gaをロール状に巻き取っていわゆるガラスロールを得るものである場合、割断工程を行った後に継続して下流側に送られる製品ガラス部Gaには所定のテンションが加えられている。これに対し、割断工程を行った後に継続して下流側に送られる不要ガラス部Gbにはテンションが加えられておらず、しかも不要ガラス部Gbは、その長手方向端部が回収装置10で順次破砕(回収)されるために、製品ガラス部Gaほどの滑らかさで下流側に送られない場合がある。そのため、製品ガラス部Gaと不要ガラス部Gbの送り速度に差が生じ、この送り速度差に起因して、不要ガラス部Gbの長手方向において図4aに示すような撓みCが発生する場合がある。この撓みCが何らかの拍子に割断エリアA2に存するガラスフィルムGに伝わると、ガラスフィルムGの割断精度に悪影響が生じる。これに対し、本実施形態の構成を採用すれば、上記の問題が生じるのを可及的に防止することができる。図4bに示すように、隣接する2つのウェイト24,24間で撓みCを吸収することができるからである。
 なお、不要ガラス部Gbの長手方向において発生する撓みCを吸収するための手法は、上記のものに限られない。
 例えば、図5a~図5dに示すように、第2部材B2としての搬送コンベア7と協働して不要ガラス部Gbを挟み込む第1部材B1としてのローラ体22を、不要ガラス部Gbの長手方向の相互に離隔する複数箇所(図示例では4箇所)に配置し、不要ガラス部Gbの長手方向における撓みCの存在位置に応じて、各ローラ体22が不要ガラス部Gbの表面に押し付けられるタイミングを任意に調整することによっても、製品ガラス部Gaと不要ガラス部Gbの送り速度差に起因して発生する撓みCを吸収することができる。なお、このような構成を採用する場合においても、不要ガラス部Gbが順次破砕されるのに伴って生じる振動により、ガラスフィルムGの割断精度に悪影響が及ぶのを回避するため、少なくとも一つのローラ体22(第1部材B1)と搬送コンベア7(第2部材B2)とで不要ガラス部Gbを挟み込むようにしておく。
 以上では、成形エリアA1におけるガラスフィルムGの成形手法として、いわゆるオーバーフローダウンドロー法を採用したが、本発明は、成形エリアA1におけるガラスフィルムGの成形手法として、例えばスロットダウンドロー法やフロート法等、オーバーフローダウンドロー法と同様に溶融ガラスから帯状のガラスフィルムGを成形可能なその他の方法を採用する場合にも適用することができる。さらに、本発明は、成形エリアA1におけるガラスフィルムGの成形手法として、固化した二次加工用のガラス母材を加熱して引き延ばすいわゆるリドロー法を採用する場合にも好ましく適用することができる。
 また、以上では、成形装置2(成形エリアA1)から連続的に引き出されて成形されたガラスフィルムGを製品ガラス部Gaと不要ガラス部Gbとに分割する割断工程の実行後に、長手方向に継続して送られる不要ガラス部Gbを順次破砕して回収する回収工程を実行するガラスフィルムの製造方法、言い換えると、ガラスフィルムGの成形と、ガラスフィルムGの連続割断と、不要ガラス部Gbの破砕・回収処理とを同時進行させる場合に本発明を適用したが、本発明は、ガラスフィルムGの成形工程を含まない場合においても好ましく適用することができる。
 図6は、その具体的な一例を示すものであり、いわゆるガラスロールGrから巻き出されて長手方向に送られるガラスフィルムGを製品ガラス部Gaと不要ガラス部Gbとに分割する割断工程を実行し、その後、長手方向に継続して送られる不要ガラス部Gbを順次破砕して回収する回収工程(並びに、長手方向に継続して送られる製品ガラス部Gaを所定のガラス製品に仕上げる仕上げ工程)が実行されるガラスフィルムの製造ライン1に本発明を適用した場合を示している。
 なお、図6では、図1(及び図2)に示す振れ規制手段20を採用しているが、図6に示すようなガラスフィルムの製造ライン1に、図3や図5に示すような振れ規制手段20を採用することももちろん可能である。
 また、以上では、不要ガラス部Gbの回収工程において、帯状をなした不要ガラス部Gbを細かなガラス片に破砕して回収する処理が実行される場合に本発明を適用したが、本発明は、不要ガラス部Gbの回収工程において、帯状をなした長尺の不要ガラス部Gbを短尺のガラス板に破断して回収する処理が実行される場合にも好ましく適用することができる。
 1   ガラスフィルムの製造ライン
 2   成形装置
 3   搬送装置
 4   湾曲搬送部
 5   水平搬送部
 6   傾斜搬送部
 7   搬送コンベア(第2部材)
 10  回収装置
 12  局部加熱手段
 13  冷却手段
 20  振れ規制手段
 22  ローラ体(第1部材)
 24  ウェイト(第1部材)
 A1  成形エリア
 A2  割断エリア
 A3  分離エリア
 A4  仕上げエリア
 A5  回収エリア
 B1  第1部材
 B2  第2部材
 G   ガラスフィルム
 Ga  製品ガラス部
 Gb  不要ガラス部

Claims (7)

  1.  帯状のガラスフィルムを長手方向に送りながら、前記長手方向に延びた割断予定線に沿う局部加熱及び局部加熱後の冷却に伴って発生する熱応力を利用して前記ガラスフィルムを前記割断予定線に沿って連続的に割断することにより、前記ガラスフィルムを製品ガラス部と不要ガラス部とに分割する割断工程を実行し、その後、前記長手方向に継続して送られる前記不要ガラス部を順次破断又は破砕して回収する回収工程を実行するガラスフィルムの製造方法において、
     前記割断工程の実行後に、前記不要ガラス部の前記長手方向の少なくとも一箇所で、前記不要ガラス部がその厚み方向で振れるのを規制する振れ規制処理を行いつつ、この振れ規制処理位置よりも下流側で前記回収工程を実行することを特徴とするガラスフィルムの製造方法。
  2.  前記振れ規制処理は、前記不要ガラス部の前記長手方向の相互に離隔する複数箇所で、前記不要ガラス部がその厚み方向で振れるのを規制する処理である請求項1に記載のガラスフィルムの製造方法。
  3.  前記割断工程の実行後に、前記製品ガラス部又は前記不要ガラス部の少なくとも一方の送り方向を変更して両者を互いに分離させる分離工程をさらに含み、
     前記割断工程の実行後に前記振れ規制処理を行いつつ、この振れ規制処理位置よりも下流側で前記分離工程を実行する請求項1又は2に記載のガラスフィルムの製造方法。
  4.  前記振れ規制処理は、前記不要ガラス部の表面及び裏面に夫々接した第1及び第2部材で前記不要ガラス部を挟み込むことにより、前記不要ガラス部がその厚み方向で振れるのを規制する処理である請求項1~3の何れか一項に記載のガラスフィルムの製造方法。
  5.  前記第1部材として、空転可能なローラ体を用いる請求項4に記載のガラスフィルムの製造方法。
  6.  前記第1部材として、前記不要ガラス部の表面に接した状態で前記不要ガラス部と同期移動するものを用いる請求項4に記載のガラスフィルムの製造方法。
  7.  前記回収工程は、前記不要ガラス部をガラス片に破砕して回収する処理が実行される工程であって、
     破砕通路の一端側に存する導入口からその通路内に前記不要ガラス部を導入すると共に、この不要ガラス部を前記破砕通路内に気流を形成して振動させることにより、前記破砕通路の内壁に衝突させて前記ガラス片に破砕するものである請求項1~6の何れか一項に記載のガラスフィルムの製造方法。
PCT/JP2011/076088 2010-11-19 2011-11-11 ガラスフィルムの製造方法 WO2012067042A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180044038.3A CN103118998B (zh) 2010-11-19 2011-11-11 玻璃膜的制造方法
KR1020137000244A KR101804193B1 (ko) 2010-11-19 2011-11-11 글라스 필름의 제조 방법
EP11841791.4A EP2570394B1 (en) 2010-11-19 2011-11-11 Method for producing glass film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010259034A JP5743182B2 (ja) 2010-11-19 2010-11-19 ガラスフィルムの製造方法
JP2010-259034 2010-11-19

Publications (1)

Publication Number Publication Date
WO2012067042A1 true WO2012067042A1 (ja) 2012-05-24

Family

ID=46063381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076088 WO2012067042A1 (ja) 2010-11-19 2011-11-11 ガラスフィルムの製造方法

Country Status (7)

Country Link
US (1) US9399595B2 (ja)
EP (1) EP2570394B1 (ja)
JP (1) JP5743182B2 (ja)
KR (1) KR101804193B1 (ja)
CN (1) CN103118998B (ja)
TW (1) TWI504575B (ja)
WO (1) WO2012067042A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759690B2 (en) 2015-08-10 2020-09-01 Saint-Gobain Glass France Method for cutting a thin glass layer

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8656738B2 (en) * 2008-10-31 2014-02-25 Corning Incorporated Glass sheet separating device
TW201412658A (zh) * 2012-09-26 2014-04-01 Corning Inc 用於可撓式玻璃帶之邊緣修正管理
US9216924B2 (en) * 2012-11-09 2015-12-22 Corning Incorporated Methods of processing a glass ribbon
KR20150084758A (ko) * 2012-11-13 2015-07-22 니폰 덴키 가라스 가부시키가이샤 판 유리의 제조 방법 및 제조 장치
EP2950969A4 (en) 2013-01-30 2016-10-19 Corning Inc DEVICE AND METHOD FOR CONTINUOUS LASER CUTTING OF BENDING GLASS
JP6136070B2 (ja) * 2013-08-28 2017-05-31 日本電気硝子株式会社 ガラスフィルムリボン製造方法及びガラスフィルムリボン製造装置
KR102184301B1 (ko) * 2013-08-28 2020-11-30 니폰 덴키 가라스 가부시키가이샤 유리 필름 리본 제조 방법 및 유리 필름 리본 제조 장치
KR102221540B1 (ko) * 2013-08-28 2021-03-02 니폰 덴키 가라스 가부시키가이샤 유리 필름 리본 제조 방법 및 유리 필름 리본 제조 장치
JP6402721B2 (ja) * 2013-12-25 2018-10-10 Agc株式会社 ガラス板の製造方法及び製造装置
US20150251944A1 (en) * 2014-03-10 2015-09-10 Corning Incorporated Methods and apparatuses for separating glass ribbons
KR102402499B1 (ko) * 2014-07-08 2022-05-27 코닝 인코포레이티드 가요성 유리 리본의 연속 가공
JP2016104683A (ja) * 2014-11-19 2016-06-09 坂東機工株式会社 ガラス板の折割方法及びその折割装置
CN107635932B (zh) 2015-05-18 2021-12-07 康宁股份有限公司 用于加工玻璃带的方法和系统
JP6748920B2 (ja) * 2017-03-13 2020-09-02 日本電気硝子株式会社 ガラスフィルムの製造方法
JP6839419B2 (ja) * 2017-07-31 2021-03-10 日本電気硝子株式会社 ガラスフィルムの製造方法
US20210387895A1 (en) * 2018-10-25 2021-12-16 Corning Incorporated Scrim glass management
CN113195182B (zh) * 2018-12-21 2024-02-13 日本电气硝子株式会社 玻璃板制造方法以及玻璃板制造装置
DE102019129036A1 (de) * 2019-10-28 2021-04-29 Schott Ag Verfahren zur Herstellung von Glasscheiben und verfahrensgemäß hergestellte Glasscheibe sowie deren Verwendung
JP7384046B2 (ja) * 2020-01-20 2023-11-21 日本電気硝子株式会社 ガラスフィルムの製造方法
CN111559073A (zh) * 2020-04-15 2020-08-21 南京贝迪电子有限公司 一种导光膜产品加工设备
DE102020118532A1 (de) * 2020-07-14 2022-01-20 Schott Ag Vorrichtung und Verfahren zum Längenschnitt bei Dünnstgläsern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000335928A (ja) 1999-04-27 2000-12-05 Carl Zeiss:Fa 個別のガラス板を製造する方法及び装置
JP2006321695A (ja) * 2005-05-20 2006-11-30 Central Glass Co Ltd 板ガラスの折割装置
JP2011144093A (ja) * 2010-01-18 2011-07-28 Nippon Electric Glass Co Ltd 板状ガラスの製造方法及びその装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3191857A (en) * 1959-11-02 1965-06-29 Pittsburgh Plate Glass Co Glass partitioning process and apparatus
US3215345A (en) * 1963-02-06 1965-11-02 Ferguson Fabrication Co Apparatus for severing glass articles by thermal shock
US3729302A (en) * 1970-01-02 1973-04-24 Owens Illinois Inc Removal of glass article from ribbon forming machine by vibrating force
AR205566A1 (es) * 1974-04-25 1976-05-14 Saint Gobain Aparato para cortar automaticamente los bordes de una lamina de vidrio
US4285451A (en) * 1979-12-10 1981-08-25 Ppg Industries, Inc. Method of and apparatus for severing edges of a glass sheet
US4454972A (en) * 1982-04-15 1984-06-19 Libbey-Owens-Ford Company Method of and apparatus for severing glass
US4612030A (en) * 1985-06-11 1986-09-16 Smids Ronald E Method and apparatus for making variegated, cathedral, antique or flashed glass in a continuous sheet
JP2890137B2 (ja) * 1990-07-05 1999-05-10 坂東機工株式会社 ガラス板の折割装置
US5871134A (en) * 1994-12-27 1999-02-16 Asahi Glass Company Ltd. Method and apparatus for breaking and cutting a glass ribbon
WO1997031868A1 (fr) * 1996-02-29 1997-09-04 Asahi Glass Company Ltd. Processus de formation de verre plat
JP3414227B2 (ja) * 1997-01-24 2003-06-09 セイコーエプソン株式会社 インクジェット式記録ヘッド
US6412677B1 (en) * 1998-09-16 2002-07-02 Hoya Corporation Cutting method for plate glass mother material
DE19851353C1 (de) * 1998-11-06 1999-10-07 Schott Glas Verfahren und Vorrichtung zum Schneiden eines Laminats aus einem sprödbrüchigen Werkstoff und einem Kunststoff
JP3586142B2 (ja) * 1999-07-22 2004-11-10 エヌエッチ・テクノグラス株式会社 ガラス板の製造方法、ガラス板の製造装置、及び液晶デバイス
FR2819505B1 (fr) * 2001-01-12 2003-02-28 Saint Gobain Procede de decoupe des bords d'un ruban continu de verre, dispositif de mise en oeuvre, plateau de verre decoupe selon ce procede
JP4178444B2 (ja) * 2002-07-08 2008-11-12 旭硝子株式会社 薄板ガラスの製造装置及び製造方法
FR2858815B1 (fr) * 2003-08-14 2006-03-10 Glaverbel Dispositif pour rompre les bords d'un ruban de verre plat
JP3887394B2 (ja) * 2004-10-08 2007-02-28 芝浦メカトロニクス株式会社 脆性材料の割断加工システム及びその方法
US20060261118A1 (en) * 2005-05-17 2006-11-23 Cox Judy K Method and apparatus for separating a pane of brittle material from a moving ribbon of the material
JP4987266B2 (ja) * 2005-08-08 2012-07-25 パナソニック株式会社 ガラス切断方法およびその装置
DE102006024825A1 (de) * 2006-05-23 2007-11-29 Jenoptik Automatisierungstechnik Gmbh Verfahren und Vorrichtung zum Randbeschneiden eines Floatglasbandes
CN101815682B (zh) * 2007-10-30 2013-03-27 旭硝子株式会社 玻璃-树脂复合物的制造方法
JP5228445B2 (ja) * 2007-11-01 2013-07-03 セントラル硝子株式会社 ガラスリボンの搬送補助装置
JP5435267B2 (ja) 2008-10-01 2014-03-05 日本電気硝子株式会社 ガラスロール、ガラスロールの製造装置、及びガラスロールの製造方法
US8656738B2 (en) * 2008-10-31 2014-02-25 Corning Incorporated Glass sheet separating device
US10054754B2 (en) * 2009-02-04 2018-08-21 Nikon Corporation Thermal regulation of vibration-sensitive objects with conduit circuit having liquid metal, pump, and heat exchanger
US20110126593A1 (en) * 2009-11-30 2011-06-02 Rashid Abdul-Rahman Apparatus and method for separating a glass sheet
US9027815B2 (en) * 2010-08-31 2015-05-12 Corning Incorporated Apparatus and method for making glass sheet with improved sheet stability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000335928A (ja) 1999-04-27 2000-12-05 Carl Zeiss:Fa 個別のガラス板を製造する方法及び装置
JP2006321695A (ja) * 2005-05-20 2006-11-30 Central Glass Co Ltd 板ガラスの折割装置
JP2011144093A (ja) * 2010-01-18 2011-07-28 Nippon Electric Glass Co Ltd 板状ガラスの製造方法及びその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2570394A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759690B2 (en) 2015-08-10 2020-09-01 Saint-Gobain Glass France Method for cutting a thin glass layer

Also Published As

Publication number Publication date
JP5743182B2 (ja) 2015-07-01
KR20130118287A (ko) 2013-10-29
CN103118998A (zh) 2013-05-22
KR101804193B1 (ko) 2017-12-04
US20120125967A1 (en) 2012-05-24
EP2570394B1 (en) 2015-01-14
EP2570394A1 (en) 2013-03-20
EP2570394A4 (en) 2013-12-04
CN103118998B (zh) 2015-05-20
US9399595B2 (en) 2016-07-26
TWI504575B (zh) 2015-10-21
TW201228961A (en) 2012-07-16
JP2012106898A (ja) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5743182B2 (ja) ガラスフィルムの製造方法
US9919381B2 (en) Apparatus and methods for continuous laser cutting of flexible glass
JP2019108268A (ja) ガラスシートの製造方法およびガラス製造システム
JP5679324B2 (ja) ガラスロールの製造方法および製造装置
JP5922775B2 (ja) ガラスリボンを分断する方法
TW201210958A (en) Cutting method of a glass film
WO2014077117A1 (ja) 板ガラスの製造方法、及び製造装置
JP6402721B2 (ja) ガラス板の製造方法及び製造装置
US10889519B2 (en) Method for manufacturing glass roll
JP2012096936A (ja) ガラスリボンの耳切断装置および耳切断方法とガラス製品の製造装置および製造方法
US11479496B2 (en) Method for manufacturing glass roll
JP6056711B2 (ja) 薄板ガラスの切断方法、およびガラス物品の製造方法
JP5500377B2 (ja) ガラスフィルムの製造方法及び製造装置
WO2016011114A1 (en) Methods and apparatus for controlled laser cutting of flexible glass
JP5488906B2 (ja) ガラスフィルムの製造装置及び製造方法
JP6860824B2 (ja) ガラスフィルムの製造方法
JP2019104660A (ja) ガラス板の製造装置および製造方法
JP2014125419A (ja) ガラス板製造装置、および、ガラス板製造方法
JP7492510B2 (ja) スクリムガラスの管理

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044038.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011841791

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137000244

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE