WO2012066735A1 - ズームレンズ - Google Patents

ズームレンズ Download PDF

Info

Publication number
WO2012066735A1
WO2012066735A1 PCT/JP2011/006139 JP2011006139W WO2012066735A1 WO 2012066735 A1 WO2012066735 A1 WO 2012066735A1 JP 2011006139 W JP2011006139 W JP 2011006139W WO 2012066735 A1 WO2012066735 A1 WO 2012066735A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
group
zoom
lens group
refractive power
Prior art date
Application number
PCT/JP2011/006139
Other languages
English (en)
French (fr)
Inventor
小里 哲也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2012544089A priority Critical patent/JP5687284B2/ja
Priority to CN201180055515.6A priority patent/CN103221868B/zh
Publication of WO2012066735A1 publication Critical patent/WO2012066735A1/ja
Priority to US13/894,483 priority patent/US8699147B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses

Definitions

  • the present invention relates to a zoom lens, and more particularly to a zoom lens composed of three groups.
  • zoom lenses composed of four groups having a relatively high zoom ratio of about 5 times have been known in photographing optical systems such as digital cameras that are required to be small and have a high zoom ratio.
  • the zoom lens of Patent Document 1 includes a first lens group having negative refractive power (hereinafter also referred to as a negative first lens group), a positive second lens group, and a positive third lens group. It is arranged.
  • the first lens group includes a lens having negative refractive power (hereinafter also referred to as a negative lens), a negative lens, and a positive lens in order from the object side
  • the second lens group is a positive lens in order from the object side.
  • a positive lens, a negative lens, and a positive lens are provided, and the third lens group is provided with a positive lens.
  • This zoom lens is configured so that the refractive power of the positive lens located on the object side in the second lens group is weak because the lens on the most image side in the second lens group is a positive lens. Since it is necessary to increase the effective diameter of the lens, there is a problem that the outer diameter of the second lens group is increased.
  • the zoom lens disclosed in Patent Document 2 includes a negative first lens group, a positive second lens group, and a positive third lens group.
  • the first lens group includes a negative lens, a negative lens, and a positive lens in order from the object side
  • the second lens group includes a positive lens, a positive lens, a negative lens, and a negative lens in order from the object side
  • the third lens group includes a positive lens.
  • the zoom lens of Patent Document 3 includes a negative first lens group, a positive second lens group, and a positive third lens group.
  • the first lens group includes a negative lens, a negative lens, and a positive lens in order from the object side
  • the second lens group includes a positive lens, a positive lens, a negative lens, and a positive lens in order from the object side.
  • the third lens group includes a positive lens.
  • the most image side lens in the second lens group is a positive lens, so that the refractive power of the other positive lens in the second lens group is weakened.
  • the outer diameter of the second lens group is increased because the effective diameter of the other positive lens needs to be increased.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a zoom lens that can be reduced in size while suppressing the occurrence of aberration over the entire zoom range. To do.
  • the zoom lens according to the present invention includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. It has a stop that moves integrally with the second lens group, and performs zooming by changing the distance between the first lens group and the second lens group and the distance between the second lens group and the third lens group.
  • the first lens unit has, in order from the object side, a first lens unit having a negative refractive power with a concave surface facing the image side, and a negative refractive power with a concave surface facing the image side.
  • the first group second lens is formed by arranging a first group third lens having a positive refractive power in which at least one surface having a convex surface facing the object side is an aspheric surface, and the second lens group includes an object In order from the side, a second lens group first lens having a positive refractive power with the convex surface facing the object side, A cemented lens having a positive refractive power, and a second group fourth lens having a negative refractive power in which at least one surface having a concave surface facing the image side is an aspheric surface.
  • a second group second lens having a positive refractive power with a convex surface facing the object side and a second group third lens having a negative refractive power with a concave surface facing the image side are arranged.
  • the third lens group is formed by arranging a third lens group first lens having positive refractive power.
  • both the first group third lens and the second group fourth lens are plastic lenses, and satisfy the conditional expression (1): ⁇ 0.2 ⁇ fw / f13 + fw / f24 ⁇ 0.2 It is desirable that Where fw is the focal length of the entire zoom lens system at the wide-angle end, f13 is the focal length of the first lens unit and the third lens, and f24 is the focal length of the second lens unit and the fourth lens.
  • the third lens group first lens is preferably a plastic lens having at least one aspheric surface.
  • the zoom lens satisfies the conditional expression (2): 0 ⁇ fw / f13 + fw / f24 + fw / f31 ⁇ 0.4.
  • f31 is the focal length of the third lens unit first lens.
  • the zoom lens satisfies the conditional expression (3): ⁇ 3.0 ⁇ f1 / fw ⁇ 2.3.
  • f1 the focal length of the first lens group.
  • the zoom lens satisfies the conditional expression (4): 1.8 ⁇ LT / (fw ⁇ U ⁇ tan ⁇ ) ⁇ 2.3.
  • LT is the optical total length
  • U is the zoom ratio
  • is the half field angle at the maximum image height at the wide angle end.
  • the zoom lens may be focused by moving the third lens group.
  • only the object side lens surface can be aspherical, only the image side lens surface can be aspherical, or double-sided aspherical.
  • the zoom ratio of the zoom lens is preferably more than 4 times and less than 6 times.
  • An image pickup apparatus includes the zoom lens and an image pickup device that picks up an optical image formed by the zoom lens.
  • each lens and the focal lengths (combined focal lengths) of a plurality of lenses combined, distinguish between positive and negative.
  • the focal point is on the exit side of this lens.
  • negative when it is on the incident side of this lens.
  • the sign of the radius of curvature of the lens surface is positive when convex on the object side and negative when convex on the image side.
  • the unevenness of the lens surface, the positive / negative of the refractive power of the lens surface, the positive / negative of the radius of curvature of the lens surface, etc. shall be specified in the paraxial region.
  • the optical total length LT is the optical axis between the object-side lens surface of the first lens unit and the first lens when the zoom setting is set at the telephoto end, and the imaging surface when an infinite object is imaged through the zoom lens.
  • the spacing above. This interval is indicated by an actual distance (actual length) including the back focus, and is not an air-converted distance.
  • the zoom lens of the present invention in order from the object side, the first lens group having negative refractive power, the second lens group having positive refractive power, and the third lens group having positive refractive power are arranged, A diaphragm that moves integrally with the second lens group is provided, and zooming is performed by changing the distance between the first lens group and the second lens group and the distance between the second lens group and the third lens group.
  • the first lens unit in order from the object side, is a first lens unit having a negative refractive power with a concave surface directed toward the image side, and a negative refractive power with a concave surface directed toward the image side.
  • a second group second lens having a positive refractive power with a convex surface facing the object side and a second group third lens having a negative refractive power with a concave surface facing the image side are arranged. Since the third lens group is formed by arranging the third lens group first lens having positive refractive power, it is possible to reduce the size of the third lens group while suppressing the occurrence of aberration over the entire zoom range.
  • the lens located closest to the image side in the second group is a negative lens, it can be configured to increase the refractive power of the positive lens located on the object side in the second lens group, thereby, since the effective diameter of the lens in the second lens group can be reduced, the outer diameter of the entire second lens group can be reduced.
  • at least one surface of the lens located closest to the image side in the second lens group is an aspherical lens, generation of aberration can be more reliably suppressed over the entire zoom range.
  • the zoom lens according to the present invention if the second lens group of the zoom lens is moved in the direction orthogonal to the optical axis and the entire zoom lens is moved in the optical axis direction to be retracted in the photographing apparatus, The thickness of the zoom lens in the optical axis direction can be further reduced.
  • each lens group is moved in the optical axis direction, so that Many adopt a method of retracting the whole into the imaging apparatus.
  • each lens group is moved in the optical axis direction and retracted so that the lens group shifted in the direction perpendicular to the optical axis and other lens groups do not overlap in the optical axis direction.
  • the thickness in the optical axis direction is reduced, and the outer diameter of the lens group that is shifted in the direction orthogonal to the optical axis is reduced, so that the entire zoom lens is retracted in the imaging apparatus. It is required to reduce the outer diameter of the lens barrel.
  • the lens located closest to the image side in the second lens group is a negative lens, so that the other lens group (the first lens group or the first lens group) is located near the stop. Since the outer diameter of the second lens group smaller than the third lens group can be made smaller, the second lens group is moved in the direction perpendicular to the optical axis and the entire zoom lens is moved in the direction of the optical axis to be retracted. Then, as described above, when the zoom lens is retracted, the thickness of the entire zoom lens in the optical axis direction and the outer diameter of the lens barrel of the entire zoom lens can be reduced. A space required for collapsing in the imaging apparatus can be reduced.
  • Sectional drawing which shows schematic structure of the zoom lens and imaging device by embodiment of this invention
  • the perspective view which shows the whole imaging device carrying a zoom lens
  • the figure which shows the state before retracting a zoom lens The figure which shows the state after retracting a zoom lens
  • Sectional drawing which shows in common the state which set the zoom setting to the wide-angle end about the zoom lenses of Examples 1 to 7
  • Sectional drawing which compares and shows the case where a zoom setting is defined in the wide-angle end, the middle, and the telephoto end about the zoom lens of Example 1
  • Sectional drawing which compares and shows the case where a zoom setting is defined in the wide-angle end, the middle, and the telephoto end about the zoom lens of Example 2
  • Sectional drawing which compares and shows the case where a zoom setting is determined in the wide-angle end, the middle, and the telephoto end about the zoom lens of Example 3
  • Sectional drawing which compares and shows the case where a zoom setting is determined in the wide-angle end, the middle, and the telephoto
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a zoom lens of the present invention and an image pickup apparatus equipped with the zoom lens.
  • FIG. 2A is a perspective view showing the entire imaging apparatus equipped with the zoom lens.
  • 2B and 2C are views showing a state when the zoom lens is retracted,
  • FIG. 2B is a cross-sectional view showing a state before the zoom lens is retracted,
  • FIG. 2C is a state after the zoom lens is retracted. It is sectional drawing shown.
  • the imaging apparatus 200 shown in the figure is formed through an apparatus main body 220, a lens barrel 150 supported by the apparatus main body 220 and retractable, a zoom lens 100 disposed in the lens barrel 150, and the zoom lens 100.
  • the image pickup device 210 picks up an optical image Hk representing the subject H to be picked up, and a filter Lf made of a plane parallel plate disposed between the zoom lens 100 and the image pickup device 210.
  • the filter Lf can be a low-pass filter, an infrared cut filter, or the like.
  • the imaging apparatus 200 is configured to retract and accommodate the lens barrel 150 in which the zoom lens 100 is disposed in the apparatus main body 220.
  • the optical image Hk representing the subject H imaged on the imaging surface 210J of the image sensor 210 through the zoom lens 100 is captured by the image sensor 210. Thereafter, image data D1 representing the subject H obtained by the imaging is output from the imaging element 210.
  • the image data D1 output from the image sensor 210 is input to and stored in the storage device 230 disposed in the apparatus main body 220.
  • the imaging element 210 can be a CCD element, a CMOS element, or the like.
  • the zoom lens 100 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a positive refractive power. It comprises three groups, and further has an aperture stop St that is moved integrally with the second lens group G2.
  • the zoom lens 100 having the three-group configuration performs zooming by changing the distance between the first lens group G1 and the second lens group G2 and the distance between the second lens group G2 and the third lens group G3. It is.
  • the aperture stop St is provided so that the positional relationship with the second lens group G2, that is, the positional relationship with the lenses constituting the second lens group G2, does not change, even when zooming is performed. It is.
  • the aperture stop St is disposed further on the object side of the second lens group first lens L21 that is the lens disposed closest to the object side in the second lens group G2. It is arranged further on the image side of the second group fourth lens L24 which is the lens arranged closest to the image side in the lens group G2, or between the second group first lens L21 and the second group fourth lens L24. It can also be designed to be placed between them.
  • the first lens group G1 includes, in order from the object side, a negative first group first lens L111 having a concave surface facing the image side, a negative first group second lens L12 having a concave surface facing the image side, and a convex surface facing the object side And a positive first group third lens in which at least one surface facing the surface is an aspherical surface.
  • the second lens group G2 includes, in order from the object side, a positive second group first lens L21 having a convex surface directed toward the object side, a positive second group second lens L22 having a convex surface directed toward the object side, and a concave surface directed toward the image side Negative second group third lens L23 having a negative surface, and at least one aspherical negative second group fourth lens L24 having a concave surface facing the image side.
  • the second group second lens L22 and the second group third lens L23 constitute a cemented lens Lc having a positive refractive power as a whole.
  • the third lens group G3 includes a positive third group first lens L31.
  • the second lens group fourth lens L24 located closest to the image side in the second lens group G2 is a negative lens, so that it is in the vicinity of the aperture stop St.
  • the outer diameter of the second lens group smaller than the lens group (the first lens group or the third lens group) can be further reduced. Accordingly, the entire zoom lens 100 held by the lens barrel 150 is moved in the optical axis direction (arrow + Z direction in the figure) while moving the second lens group G2 in the direction orthogonal to the optical axis (arrow Y direction in the figure).
  • the thickness of the entire zoom lens 100 in the retracted direction in the direction of the optical axis Z1 and the outer diameter of the lens barrel can be reduced. Thereby, the area
  • the zoom lens 100 of the present invention may satisfy only one of the constituent elements that further limit these basic configurations, or may satisfy a combination of two or more. .
  • fw The focal length of the entire zoom lens system at the wide-angle end (positive when the point of condensing when a light beam passes through the zoom lens (also referred to as a condensing point or focal point) is on the exit side of the lens; Negative on the incident side)
  • f13 Focal length of first lens unit third lens f24: Focal length of second lens group fourth lens f31: Focal length of third lens group first lens f1: Focal length of first lens unit LT: Zoom setting at telephoto end The distance on the optical axis Z1 between the lens surface on the object side of the first lens in the first lens group and the image forming surface on which the optical image is formed when forming an optical image representing a subject at infinity.
  • the zoom lens 100 is preferably a zoom lens composed of three groups with a zoom ratio of about 5 times. More specifically, the zoom lens 100 is desirably a zoom lens having a three-group configuration in which the zoom ratio is more than 4 times and less than 6 times.
  • Both the first lens group third lens L13 and the second lens group fourth lens L24 may be plastic lenses. Thereby, weight reduction and cost reduction of the zoom lens 100 can be realized.
  • the third lens group first lens L31 a plastic lens having at least one aspheric surface can be adopted. Thereby, the overall length of the zoom lens 100 can be shortened, and the cost can be reduced along with the miniaturization of the zoom lens 100.
  • the second lens group fourth lens L24 can be formed such that only the object side lens surface is aspherical, only the image side lens surface is aspherical, or double-sided aspherical.
  • Conditional expression (1) ⁇ 0.2 ⁇ fw / f13 + fw / f24 ⁇ 0.2 is the relationship between the refractive power of the first lens unit third lens L13 made of a plastic lens and the second power. This relates to the refractive power of the second group fourth lens L24.
  • the plastic lens Since the plastic lens has a larger change in the refractive index due to temperature change than the glass lens, the focal distance at the time of temperature change increases when the refractive power of the plastic lens is large. However, it satisfies the conditional expression (1).
  • the zoom lens 100 By configuring the zoom lens 100, the focal point movement of the zoom lens 100 due to temperature change can be suppressed.
  • the zoom lens 100 is configured to exceed either the upper limit or the lower limit of the conditional expression (1), the combined refractive power of the first group third lens L13 and the second group fourth lens L24 increases, and the temperature There arises a problem that focusing becomes difficult because the focal distance at the time of change increases.
  • Conditional Expression (2) 0 ⁇ fw / f13 + fw / f24 + fw / f31 ⁇ 0.4 is the refractive power of the first lens group third lens L13 and the second lens group fourth lens L24. This relates to the refractive power and the refractive power of the third lens unit first lens L31.
  • the zoom lens 100 By configuring the zoom lens 100 to satisfy the conditional expression (2), it is possible to suppress the focal point movement of the zoom lens 100 due to a temperature change.
  • the lens barrel 150 is formed of a plastic material having a linear expansion coefficient larger than that of metal, as the temperature rises, the expansion of the lens barrel 150 becomes larger and the length in the optical axis direction becomes longer.
  • the distance between the imaging surface 210J and the lenses constituting the zoom lens 100 increases.
  • the refractive index of the plastic material decreases as the temperature rises, the refractive power of the plastic lens decreases.
  • the increase in back focus accompanying the temperature increase of the positive plastic lens can be compensated (offset) by the increase in the length in the optical axis direction due to the expansion of the lens barrel 150 holding the plastic lens. Therefore, the inequality that defines the combined refractive power of the three groups when the first group third lens L13, the second group fourth lens L24, and the third group first lens L31 are plastic lenses is defined by the conditional expression (2). In this range, it is possible to suppress a deviation between the position of the imaging surface 210 due to a temperature change and the position of the optical image Hk formed through the zoom lens 100 (image formation position of the subject).
  • the zoom lens 100 is configured to exceed the upper limit of the conditional expression (2), the compensation of the focal point movement due to the expansion of the lens barrel 150 when the temperature rises becomes excessive, and the imaging surface 210J. And the position of the optical image Hk imaged through the zoom lens 100, that is, it is difficult to suppress the focus movement of the imaging apparatus due to a temperature change.
  • Conditional expression (3) ⁇ 3.0 ⁇ f1 / fw ⁇ 2.3, and more desirable conditional expression (3A): ⁇ 2.8 ⁇ f1 / fw ⁇ 2. .5 relates to the focal length of the first lens group G1.
  • the zoom lens 100 is configured so as to satisfy the conditional expression (3), it is possible to suppress the occurrence of aberrations in the entire zoom range and to reduce the size.
  • the zoom lens 100 is configured so as to fall below the lower limit of the conditional expression (3), the refractive power of the first lens group G1 becomes too weak, and the total lens length increases, making it difficult to reduce the size.
  • the zoom lens 100 is configured so as to exceed the upper limit of the conditional expression (3), the refractive power of the first lens group G1 becomes too strong, making it difficult to correct aberrations over the entire zoom range. .
  • the zoom lens 100 is configured so as to satisfy the conditional expression (3A), it is possible to achieve more advanced aberration correction and further lens miniaturization.
  • Conditional expression (4) 1.8 ⁇ LT / (fw ⁇ U ⁇ tan ⁇ ) ⁇ 2.2, and more desirable conditional expression (4A): 1.9 ⁇ LT / ( fw ⁇ U ⁇ tan ⁇ ) ⁇ 2.1 is an expression relating to the optical total length of the zoom lens when the zoom setting is set at the telephoto end.
  • the zoom lens 100 can achieve a relatively large zoom ratio (magnification ratio) of about 5 times, and can achieve downsizing and suppression of aberrations in the entire zoom range. be able to.
  • the zoom lens 100 is configured so as to fall below the lower limit of the conditional expression (4), it is easier to reduce the size while realizing a relatively large zoom ratio (magnification ratio). There arises a problem that aberration correction becomes difficult.
  • the zoom lens 100 is configured to exceed the upper limit of the conditional expression (4), aberration correction such as curvature of field becomes easy, but it has a relatively large zoom ratio of about 5 times. There arises a problem that it is difficult to achieve miniaturization of the zoom lens.
  • the zoom lens 100 is configured so as to satisfy the conditional expression (4A), it is possible to achieve more advanced aberration correction and further lens miniaturization.
  • the third lens group is a single positive lens, and the third lens group is moved at the time of focusing. High-speed focusing is possible by moving the lens group. Furthermore, when the third lens group is a lightweight plastic lens, it is possible to focus at a higher speed.
  • FIG. 3 is a cross-sectional view showing in common a schematic configuration when the zoom setting is determined at the wide-angle end in the zoom lenses of Examples 1 to 7.
  • FIGS. 4 to 10 are cross-sectional views showing schematic configurations when the zoom setting is determined at the wide-angle end, the telephoto end, and the middle between the zoom lenses of Examples 1 to 7, respectively.
  • FIG. 6 is a diagram showing a state in which the zoom setting is set in the middle between the wide angle end and the telephoto end, and a state in which the zoom setting is set at the telephoto end in this order.
  • FIGS. 11 to 17 are diagrams showing various aberrations of the zoom lenses of Examples 1 to 7, and are diagrams showing aberrations in this order when the zoom setting is set to the wide-angle end, the middle, and the telephoto end.
  • the aperture stop St corresponds to the reference symbol S7
  • the object side surface of the filter Lf corresponds to the reference symbol S17
  • the image side surface of the filter Lf corresponds to the reference symbol S18
  • the other of the reference symbols S1 to S18 corresponds to the lens surface.
  • Symbols L11, L12... L31 shown in FIG. 3 and the like indicate the lenses arranged in the zoom lens.
  • the symbol Lc indicates a cemented lens formed by cementing two lenses indicated by the symbols L22 and L23.
  • Reference numeral Lf denotes an optical member such as a low-pass filter or an infrared cut filter made of a plane parallel plate. The optical member Lf is not an essential component in the zoom lens.
  • Symbols G1 to G3 shown in FIG. 3 to FIG. 10 and the like indicate lens groups arranged in the zoom lens.
  • Tables 1 to 7 are diagrams showing basic data of the zoom lenses of Examples 1 to 7, respectively.
  • Lens data is shown in the upper part of each table in Tables 1 to 7 (the column indicated by symbol (a) in the figure).
  • the * mark added to the surface number of the lens data indicates that the surface is an aspherical surface.
  • Table 8 shows each value (value calculated by the mathematical expression described in the inequality) for which the range is defined by the inequality of each of the conditional expressions (1) to (4) for the zoom lenses of Examples 1 to 7. It is shown.
  • These lens data include the aperture stop St.
  • the surface number Si corresponds to the code shown in FIG.
  • the optical member Lf which is a filter, is converted into data as a plane parallel plate on the lens data.
  • the surface spacing on the optical axis Z1 with the second surface is shown.
  • ⁇ dj represents the Abbe number based on the d-line of the j-th optical member.
  • the refractive index of the optical member for NF F line (486.1 nm)
  • the refractive index of the optical member for Nd d line (587.6 nm)
  • the refractive index of the optical member for NC C line (656.3 nm).
  • the first lens group first lens L11 corresponds to the first optical member
  • the first lens group second lens L12 corresponds to the second optical member
  • the first lens group third lens L13 corresponds to the third optical member
  • the second group first lens L21 corresponds to the fourth optical member
  • the second group second lens L22 corresponds to the fifth optical member
  • the second group third lens L23 corresponds to the sixth optical member
  • the second lens group fourth lens L24 corresponds to the seventh optical member
  • the third lens group first lens L31 corresponds to the eighth optical member
  • the filter Lf corresponds to the ninth optical member.
  • the unit of curvature radius and surface interval is mm, and the curvature radius is positive when convex on the object side and negative when convex on the image side.
  • the lenses corresponding to the symbols L13, L24, and L31 in the zoom lenses of Examples 1 to 7 can be made of plastic lenses.
  • FIGS. 11 to 17 showing various aberrations of the zoom lenses of Examples 1 to 7 show aberrations with respect to each light having a wavelength of 587.6 nm, a wavelength of 460.0 nm, and a wavelength of 615.0 nm. ing.
  • the aberration diagrams corresponding to the reference numerals (A) to (D) shown in FIGS. 11 to 17 are obtained when the zoom position is set at the wide angle end, and include spherical aberration (A) and astigmatism.
  • (B) distortion (distortion aberration)
  • C chromatic aberration of magnification
  • chromatic aberration of magnification D
  • each aberration diagram corresponding to the reference numerals (E) to (H) shown in each figure is when the zoom position is set between the wide-angle end and the telephoto end, and spherical aberration (E), astigmatism.
  • Aberration (F), distortion (distortion aberration) (G), and chromatic aberration of magnification (chromatic aberration of magnification) (H) are shown.
  • each aberration diagram corresponding to the reference numerals (I) to (L) shown in each figure is when the zoom position is set at the telephoto end, and includes spherical aberration (I), astigmatism (J), distortion. (Distortion aberration) (K) and chromatic aberration of magnification (chromatic aberration of magnification) (L) are shown.
  • the distortion diagram shows the amount of deviation from the ideal image height f ⁇ tan ⁇ using the focal length f and half angle of view ⁇ (variable treatment, 0 ⁇ ⁇ ⁇ ⁇ ) of the entire lens system.
  • the zoom lens of the present invention can be miniaturized while suppressing the occurrence of aberration over the entire zoom range.
  • this invention is not limited to said each Example, A various deformation
  • the radius of curvature, the surface interval, and the refractive index of each lens are not limited to the numerical values shown in the above tables, and may take other values.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

【課題】3群からなるズームレンズにおいて、ズーム全域に亘って収差の発生を抑制しつつ小型化する。 【解決手段】物体側から順に、負の屈折力を有する第1レンズ群(G1)、正の屈折力を有する第2レンズ群(G2)、正の屈折力を有する第3レンズ群(G3)を配置してなり、第2レンズ群(G2)と一体的に移動させる絞り(St)を有し、第1レンズ群(G1)と第2レンズ群(G2)との間隔、および第2レンズ群(G2)と第3レンズ群(G3)との間隔を変化させることにより変倍を行うズームレンズにおいて、第2レンズ群(G2)を、物体側から順に、物体側に凸面を向けた正の屈折力を有する第2群第1レンズ(L21)、全体として正の屈折力を有する接合レンズ(Lc)、像側に凹面を向けた少なくとも1面が非球面の負の屈折力を有する第2群第4レンズ(L24)を配してなるものとする。

Description

ズームレンズ
 本発明はズームレンズに関し、詳しくは、3つの群からなるズームレンズに関するものである。
 従来より、小型化、および高変倍比化が要求されるデジタルカメラ等の撮影光学系において、5倍程度の比較的高い変倍比を有する4つの群からなるズームレンズが知られている。
 また、変倍比が3倍程度でありながら、使用するレンズ枚数をさらに減らして、より小型化しようとする3つの群からなるズームレンズも知られている(特許文献1、2、3参照)。
特許第3433734号公報 特許第4245783号公報 特開2003-307677号公報
 ところで、特許文献1のズームレンズは、負の屈折力を有する第1レンズ群(以後、省略して負の第1レンズ群ともいう)、正の第2レンズ群、正の第3レンズ群を配置してなるものである。上記第1レンズ群は物体側から順に負の屈折力を有するレンズ(以後、負レンズともいう)、負レンズ、正レンズを配してなり、上記第2レンズ群は物体側から順に正レンズ、正レンズ、負レンズ、正レンズを配してなり、上記第3レンズ群は正レンズを配してなるものである。このズームレンズは、第2レンズ群の最も像側のレンズが正レンズなので、この第2レンズ群中の物体側に位置する正レンズの屈折力が弱くなるように構成されており上記他の正レンズの有効径の拡大が必要となるため、第2レンズ群の外径が大きくなるという問題がある。
 また、特許文献2のズームレンズは、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群を配置してなるものである。上記第1レンズ群は物体側から順に負レンズ、負レンズ、正レンズを配してなり、第2レンズ群は物体側から順に正レンズ、正レンズ、負レンズ、負レンズを配してなり、第3レンズ群は正レンズを配してなるものである。このように第2レンズ群の最も像側のレンズを負レンズとしたこのズームレンズは、第1レンズ群の屈折力を強くした為、ズーム比を5倍へ拡大した場合ズーム全域に亘って収差を抑制することが難しいという問題がある。
 また、特許文献3のズームレンズは、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群を配置してなるものである。上記第1レンズ群は物体側から順に負レンズ、負レンズ、正レンズを配してなり、上記第2レンズ群は物体側から順に正レンズ、正レンズ、負レンズ、正レンズを配してなり、第3レンズ群は正レンズを配してなるものである。このズームレンズは、上記特許文献1のズームレンズと同様に、第2レンズ群の最も像側のレンズが正レンズなので、この第2レンズ群中の他の正レンズの屈折力が弱くなるように構成されており上記他の正レンズの有効径の拡大が必要となるため、第2レンズ群の外径が大きくなるという問題がある。
 上記のようなことにより、変倍比が5倍程度の3群からなるズームレンズについて、ズーム全域に亘る収差の発生の抑制と、第2レンズ群の外径拡大の抑制とを両立させたいという要請がある。
 本発明は、上記事情に鑑みてなされたものであり、3群からなるズームレンズに関し、ズーム全域に亘って収差の発生を抑制しつつ小型化することができるズームレンズを提供することを目的とするものである。
 本発明のズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群を配置してなり、第2レンズ群と一体的に移動させる絞りを有し、第1レンズ群と第2レンズ群との間隔、および第2レンズ群と第3レンズ群との間隔を変化させることにより変倍を行うズームレンズであって、第1レンズ群は、物体側から順に、像側に凹面を向けた負の屈折力を有する第1群第1レンズ、像側に凹面を向けた負の屈折力を有する第1群第2レンズ、物体側に凸面を向けた少なくとも1面が非球面である正の屈折力を有する第1群第3レンズを配してなるものであり、第2レンズ群は、物体側から順に、物体側に凸面を向けた正の屈折力を有する第2群第1レンズ、全体として正の屈折力を有する接合レンズ、像側に凹面を向けた少なくとも1面が非球面の負の屈折力を有する第2群第4レンズを配してなるものであり、前記接合レンズは、物体側から順に、物体側に凸面を向けた正の屈折力を有する第2群第2レンズ、像側に凹面を向けた負の屈折力を有する第2群第3レンズを配してなるものであり、第3レンズ群は、正の屈折力を有する第3群第1レンズを配してなるものである。
 前記ズームレンズは、第1群第3レンズと第2群第4レンズとを両方共にプラスチックレンズとし、条件式(1):-0.2<fw/f13+fw/f24<0.2を満足するものであることが望ましい。ただし、fw:広角端におけるズームレンズ全系の焦点距離、f13:第1群第3レンズの焦点距離、f24:第2群第4レンズの焦点距離である。
 前記第3群第1レンズは、少なくとも1面が非球面からなるプラスチックレンズであることが望ましい。
 前記ズームレンズは、条件式(2):0<fw/f13+fw/f24+fw/f31<0.4を満足するものであることが望ましい。ただし、f31:第3群第1レンズの焦点距離とする。
 前記ズームレンズは、条件式(3):-3.0<f1/fw<-2.3を満足するものであることが望ましい。ただし、f1:第1レンズ群の焦点距離である。
 前記ズームレンズは、条件式(4):1.8<LT/(fw×U×tanω)<2.3を満足するものであることが望ましい。ただし、LT:光学全長、U:変倍比、ω:広角端における最大像高での半画角とする。
 前記ズームレンズは、第3レンズ群を移動させて合焦を行うものとすることができる。
 前記第2群第4レンズは、物体側のレンズ面のみを非球面としたり、像側のレンズ面のみを非球面としたり、あるいは両面非球面とすることができる。
 前記ズームレンズの変倍比は4倍を超え6倍未満であることが望ましい。
 本発明の撮像装置は、前記ズームレンズと、このズームレンズによって形成された光学像を撮像する撮像素子とを備えたものであることを特徴するものである。
 各レンズの焦点距離、および組み合わされた複数のレンズの焦点距離(合成焦点距離)は、正負を区別しており、レンズに光線を通したときの焦点が、このレンズの射出側にある場合を正とし、このレンズの入射側にある場合を負とする。
 レンズ面の曲率半径の符号は、物体側に凸の場合を正、像側に凸の場合を負とする。
 レンズ面が非球面の場合、レンズ面の凹凸、レンズ面の屈折力の正負、レンズ面の曲率半径の正負等は近軸領域で規定するものとする。
 光学全長LTは、ズーム設定を望遠端に定めたときにおける第1群第1レンズの物体側のレンズ面と、このズームレンズを通して無限遠被写体を結像させたときの結像面との光軸上における間隔である。なお、この間隔は、バックフォーカス分も含めて実際の距離(実長)で示されるものあり、空気換算した距離ではない。
 本発明のズームレンズによれば、物体側から順に、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群を配置し、第2レンズ群と一体的に移動させる絞りを備え、第1レンズ群と第2レンズ群との間隔、および第2レンズ群と第3レンズ群との間隔を変化させることにより変倍を行うようにしたズームレンズであって、第1レンズ群を、物体側から順に、像側に凹面を向けた負の屈折力を有する第1群第1レンズ、像側に凹面を向けた負の屈折力を有する第1群第2レンズ、物体側に凸面を向けた少なくとも1面が非球面である正の屈折力を有する第1群第3レンズを配してなるものとし、第2レンズ群を、物体側から順に、物体側に凸面を向けた正の屈折力を有する第2群第1レンズ、全体として正の屈折力を有する接合レンズ、像側に凹面を向けた少なくとも1面が非球面の負の屈折力を有する第2群第4レンズを配してなるものとし、前記接合レンズを、物体側から順に、物体側に凸面を向けた正の屈折力を有する第2群第2レンズ、像側に凹面を向けた負の屈折力を有する第2群第3レンズを配してなるものとし、第3レンズ群を、正の屈折力を有する第3群第1レンズを配してなるものとしたので、ズーム全域に亘って収差の発生を抑制しつつ小型化することができる。
 すなわち、第2群中の最も像側に位置するレンズを負レンズとしたので、この第2レンズ群中の物体側に位置する正レンズの屈折力をより強くするように構成することができ、これにより、上記第2レンズ群中のレンズの有効径を小さくすることができるので、第2レンズ群全体の外径を小さくすることができる。これとともに、上記第2レンズ群中の最も像側に位置するレンズの少なくとも1面を非球面レンズとしたので、ズーム全域に亘って収差の発生をより確実に抑制することができる。
 なお、本発明のズームレンズを、このズームレンズの第2レンズ群を光軸直交方向へ移動させるとともにズームレンズの全体を光軸方向へ移動させて撮影装置内に沈胴させるものとすれば、沈胴させたときのこのズームレンズの光軸方向における厚みをより小さくすることができる。
 すなわち、例えば、近年のデジタルカメラでは、撮像装置内にズームレンズを収容するときに、特定のレンズ群を光軸直交方向にシフトさせるとともに各レンズ群を光軸方向へ移動させて、ズームレンズの全体を撮像装置内に沈胴させる方式を採用するものが多くなっている。その場合に、光軸直交方向にシフトさせるレンズ群と他のレンズ群とが光軸方向に重ならないように各レンズ群を光軸方向へ移動させ沈胴させる。このとき、ズームレンズ全体を沈胴させたときの光軸方向の厚みを小さくするとともに、光軸直交方向にシフトさせるレンズ群の外径を小さくしてズームレンズ全体を撮像装置内に沈胴させたときのレンズ鏡筒外径を小さくすることが求められる。
 上記本発明のズームレンズの構成によれば、第2レンズ群中の最も像側に位置するレンズを負レンズとすることにより、絞り近傍であることにより他のレンズ群(第1レンズ群や第3レンズ群)より小さい第2レンズ群の外径をより小さくすることができるので、その第2レンズ群を光軸直交方向へ移動させるとともにズームレンズ全体を光軸方向へ移動させて沈胴させるようにすれば、上記のように、ズームレンズを沈胴させたときのこのズームレンズ全体の光軸方向の厚み、およびこのズームレンズ全体の鏡筒外径を小さくすることができるので、ズームレンズ全体を撮像装置内に沈胴させるのに必要なスペースを小さくすることができる。
本発明の実施の形態によるズームレンズおよび撮像装置の概略構成を示す断面図 ズームレンズを搭載した撮像装置全体を示す斜視図 ズームレンズを沈胴させる前の状態を示す図 ズームレンズを沈胴させた後の状態を示す図 実施例1~7のズームレンズについてズーム設定を広角端に定めた状態を共通に示す断面図 実施例1のズームレンズについてズーム設定を広角端、中間、望遠端に定めた場合を比較して示す断面図 実施例2のズームレンズについてズーム設定を広角端、中間、望遠端に定めた場合を比較して示す断面図 実施例3のズームレンズについてズーム設定を広角端、中間、望遠端に定めた場合を比較して示す断面図 実施例4のズームレンズについてズーム設定を広角端、中間、望遠端に定めた場合を比較して示す断面図 実施例5のズームレンズについてズーム設定を広角端、中間、望遠端に定めた場合を比較して示す断面図 実施例6のズームレンズについてズーム設定を広角端、中間、望遠端に定めた場合を比較して示す断面図 実施例7のズームレンズについてズーム設定を広角端、中間、望遠端に定めた場合を比較して示す断面図 ズーム設定を広角端、中間、望遠端に定めた場合の実施例1のズームレンズの諸収差を示す図 ズーム設定を広角端、中間、望遠端に定めた場合の実施例2のズームレンズの諸収差を示す図 ズーム設定を広角端、中間、望遠端に定めた場合の実施例3のズームレンズの諸収差を示す図 ズーム設定を広角端、中間、望遠端に定めた場合の実施例4のズームレンズの諸収差を示す図 ズーム設定を広角端、中間、望遠端に定めた場合の実施例5のズームレンズの諸収差を示す図 ズーム設定を広角端、中間、望遠端に定めた場合の実施例6のズームレンズの諸収差を示す図 ズーム設定を広角端、中間、望遠端に定めた場合の実施例7のズームレンズの諸収差を示す図
 以下、本発明のズームレンズおよびこのズームレンズを備えた撮像装置について図面を参照して説明する。
 図1は、本発明のズームレンズおよびこのズームレンズを搭載した撮像装置の概略構成を示す断面図である。図2Aは上記ズームレンズを搭載した撮像装置全体を示す斜視図である。図2B、2Cは上記ズームレンズを沈胴させるときの様子を示す図であり、図2Bは上記ズームレンズを沈胴させる前の状態を示す断面図、図2Cはズームレンズを沈胴させた後の状態を示す断面図である。
 図示の撮像装置200は、装置本体部220と、この装置本体部220に支持され沈胴可能な鏡筒150と、この鏡筒150内に配置されているズームレンズ100と、このズームレンズ100を通して形成される被写体Hを表す光学像Hkを撮像する撮像素子210と、ズームレンズ100と撮像素子210との間に配置された平行平面板からなるフィルタLfとを備えている。
 このフィルタLfには、ローパスフィルタや赤外線カットフィルタ等を採用することができる。
 この撮像装置200は、図2A~図2Cに示すように、ズームレンズ100が配置されている鏡筒150をこの装置本体部220内に沈胴させ収容するように構成されたものである。
 ズームレンズ100を通して撮像素子210の撮像面210J上に結像された被写体Hを表す光学像Hkは、撮像素子210によって撮像される。その後、この撮像で得られた被写体Hを表する画像データD1が撮像素子210から出力される。撮像素子210から出力された画像データD1は、装置本体部220内に配置された記憶装置230に入力され記憶される。
 なお、上記撮像素子210は、CCD素子やCMOS素子等とすることができる。
 以下にズームレンズの基本構成について説明する。
<ズームレンズの基本構成について>
 ズームレンズ100は、物体側から順に、負の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、正の屈折力を有する第3レンズ群G3を配置してなる3つの群からなるものであり、さらに、第2レンズ群G2と一体的に移動される開口絞りStを有するものである。
 この3群構成のズームレンズ100は、第1レンズ群G1と第2レンズ群G2との間隔、および第2レンズ群G2と第3レンズ群G3との間隔を変化させることにより変倍を行うものである。
 なお、上記開口絞りStは、変倍を行うときも含め、常に第2レンズ群G2との位置関係、すなわち第2レンズ群G2を構成するレンズとの位置関係が変化しないように設けられたものである。
 なお、この開口絞りStは、ここでは、第2レンズ群G2中の最も物体側に配されたレンズである第2群第1レンズL21のさらに物体側に配置されたものとするが、第2レンズ群G2中の最も像側に配されたレンズである第2群第4レンズL24のさらに像側に配置したり、あるいは上記第2群第1レンズL21と第2群第4レンズL24との間に配置したりするように設計することもできる。
 第1レンズ群G1は、物体側から順に、像側に凹面を向けた負の第1群第1レンズL111、像側に凹面を向けた負の第1群第2レンズL12、物体側に凸面を向けた少なくとも1面が非球面である正の第1群第3レンズを配してなるものである。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた正の第2群第1レンズL21、物体側に凸面を向けた正の第2群第2レンズL22、像側に凹面を向けた負の第2群第3レンズL23、像側に凹面を向けた少なくとも1面が非球面の負の第2群第4レンズL24を配してなるものである。
 なお、上記第2群第2レンズL22と第2群第3レンズL23とは、全体として正の屈折力を有する接合レンズLcを構成するものである。
 第3レンズ群G3は、正の第3群第1レンズL31を配してなるものである。
 このようなズームレンズ100の構成によれば、第2レンズ群G2中の最も像側に位置する第2群第4レンズL24を負レンズとすることにより、開口絞りSt近傍であることにより他のレンズ群(第1レンズ群や第3レンズ群)より小さい第2レンズ群の外径をより小さくすることができる。したがって、第2レンズ群G2を光軸直交方向(図中矢印Y方向)へ移動させつつ、鏡筒150に保持されているズームレンズ100の全体を光軸方向(図中矢印+Z方向)へ移動させて沈胴させることにより、沈胴時のズームレンズ100全体の光軸Z1方向における厚み、および鏡筒外径を小さくすることができる。これにより、デジタルカメラ本体内に撮影用レンズを沈胴させるための領域を小さくすることができる。
 つづいて、ズームレンズ100の基本構成をさらに限定する構成について説明する
<ズームレンズの基本構成をさらに限定する構成について>
 次に、上記ズームレンズ100の基本構成をさらに限定する構成要素およびその作用、効果について説明する。なお、基本構成をさらに限定するこれらの構成要素は本発明のズームレンズ100にとって必須の構成ではない。
 なお、本発明のズームレンズ100は、これらの基本構成をさらに限定する構成要素のうち、1つのみを満足するものとしてもよいし、2つ以上を組合わせたものを満足するものとしてもよい。
 はじめに、条件式(1)~(4)において記号で示す各パラメータの意味をまとめて以下に示す。
 fw:広角端におけるズームレンズ全系の焦点距離(ズームレンズに光線を通したときに集光する点(集光点、あるいは焦点ともいう)がそのレンズの射出側にある場合を正、そのレンズの入射側にある場合を負とする)
 f13:第1群第3レンズの焦点距離
 f24:第2群第4レンズの焦点距離
 f31:第3群第1レンズの焦点距離
 f1:第1レンズ群の焦点距離
 LT:ズーム設定を望遠端に定めて無限遠被写体を表す光学像を結像させるときの第1群第1レンズの物体側のレンズ面と光学像を結像させる結像面との光軸Z1上における間隔
 U:変倍比
 ω:広角端における最大像高での半画角
 上記ズームレンズ100は、変倍比が5倍程度の3群からなるズームレンズとすることが望ましい。より具体的には、ズームレンズ100は、変倍比が4倍を超え6倍未満である3群構成のズームレンズとすることが望ましい。
 第1群第3レンズL13と第2群第4レンズL24には、両方共にプラスチックレンズを採用することができる。これにより、ズームレンズ100の軽量化と低コスト化を実現することができる。
 また、第3群第1レンズL31には、少なくとも1面が非球面からなるプラスチックレンズを採用することができる。これにより、ズームレンズ100の全長を短縮でき、ズームレンズ100の小型化との低コスト化を実現することができる。
 なお、第2群第4レンズL24は、物体側のレンズ面のみを非球面としたり、像側のレンズ面のみを非球面としたり、あるいは両面非球面とすることができる。
◇条件式(1)による構成の限定
 条件式(1):-0.2<fw/f13+fw/f24<0.2は、プラスチックレンズで構成された第1群第3レンズL13の屈折力と第2群第4レンズL24の屈折力に関するものである。
 プラスチックレンズはガラスレンズと比べて温度変化による屈折率の変化が大きい為、プラスチックレンズの屈折力が大きい場合には温度変化時の焦点移動距離が増大するが、条件式(1)を満足するようにズームレンズ100を構成することにより、温度変化によるズームレンズ100の焦点移動を抑制することができる。
 しかしながら、条件式(1)の上限および下限のいずれかを超えるようにズームレンズ100を構成すると、第1群第3レンズL13と第2群第4レンズL24との合成屈折力が増大し、温度変化時の焦点移動距離が増大するため合焦が困難になるという問題が生じる。
◇条件式(2)による構成の限定
 条件式(2):0<fw/f13+fw/f24+fw/f31<0.4は、第1群第3レンズL13の屈折力、第2群第4レンズL24の屈折力、および第3群第1レンズL31の屈折力に関するものである。
 条件式(2)を満足するようにズームレンズ100を構成することにより、温度変化によるズームレンズ100の焦点移動を抑制することができる。
 すなわち、鏡筒150が、金属よりも線膨張率の大きいプラスチック材料で形成されている場合には、温度上昇にともない、鏡筒150の膨張がより大きくなり光軸方向の長さが長くなるため、撮像面210Jとズームレンズ100を構成するレンズとの間隔が増大する。また、プラスチック材料の屈折率は温度上昇にともない低下するため、プラスチックレンズの屈折力が低下する。
 そのため、上記正のプラスチックレンズの温度上昇にともなうバックフォーカスの増大を、上記プラスチックレンズを保持する鏡筒150の膨張による光軸方向の長さの増大によって補償(相殺)することができる。したがって、第1群第3レンズL13、第2群第4レンズL24、および第3群第1レンズL31をプラスチックレンズとしたときの3者の合成屈折力を、条件式(2)で規定する不等式の範囲内にすれば、温度変化による撮像面210の位置とズームレンズ100を通して結像される光学像Hkの位置(被写体の結像位置)とのズレを抑えることができる。
 しかしながら、条件式(2)の下限を下回るようにズームレンズ100を構成すると、温度上昇時の鏡筒150の膨張による焦点移動を補償することが困難となる。
 また、これとは逆に、条件式(2)の上限を上回るようにズームレンズ100を構成すると、温度上昇時の鏡筒150の膨張による焦点移動の補償が過剰になってしまい、撮像面210Jの位置とズームレンズ100を通して結像される光学像Hkの位置とのズレ、すなわち、温度変化による撮像装置のピント移動を抑えることが困難となる。
◇条件式(3)による構成の限定
 条件式(3):-3.0<f1/fw<-2.3、およびより望ましい条件式(3A):-2.8<f1/fw<-2.5は、第1レンズ群G1の焦点距離に関するものである。
 条件式(3)を満足するようにズームレンズ100を構成すれば、ズーム全域での収差発生を抑制するとともに小型化を実現することができる。
 しかしながら、条件式(3)の下限を下回るようにズームレンズ100を構成すると、第1レンズ群G1の屈折力が弱くなりすぎて、レンズ全長が増大してしまい小型化が困難となる。
 また、これとは逆に、条件式(3)の上限を上回るようにズームレンズ100を構成すると、第1レンズ群G1の屈折力が強くなりすぎて、ズーム全域での収差補正が困難となる。
 なお、条件式(3A)を満足するようにズームレンズ100を構成すれば、より高度なズーム全域での収差補正と更なるレンズの小型化を達成することができる。
◇条件式(4)による構成の限定
 条件式(4):1.8<LT/(fw×U×tanω)<2.2、およびより望ましい条件式(4A):1.9<LT/(fw×U×tanω)<2.1は、ズーム設定を望遠端に定めたときのズームレンズの光学全長に関する式である。
 条件式(4)を満足するようにズームレンズ100を構成すれば、5倍程度の比較的大きなズーム比(変倍比)を実現しながらも小型化とズーム全域での収差の抑制を達成することができる。
 しかしながら、条件式(4)の下限を下回るようにズームレンズ100を構成すると、比較的大きなズーム比(変倍比)を実現しながら小型化することはより容易となるが、像面湾曲等の収差補正が困難となるという問題が生じる。
 また、これとは逆に、条件式(4)の上限を上回るようにズームレンズ100を構成すると、像面湾曲等の収差補正は容易となるが、5倍程度の比較的大きなズーム比を持つズームレンズの小型化の達成が困難になるという問題が生じる。
 なお、条件式(4A)を満足するようにズームレンズ100を構成すれば、より高度なズーム全域での収差補正と更なるレンズの小型化を達成することができる。
 なお、デジタルカメラ200を用いた撮影においては高速な合焦が求められるが、第3レンズ群を1枚の正レンズとし、第3レンズ群を合焦時に移動させるように構成することにより、軽量のレンズ群移動による高速な合焦が可能となる。さらに、第3レンズ群を軽量のプラスチックレンズとすることにより、さらに高速の合焦が可能となる。
<具体的な実施例>
 以下、図3~17、表1~8を参照し、本発明のズームレンズの実施例1~7それぞれの数値データ等についてまとめて説明する。
 図3は、実施例1~7のズームレンズにおいてズーム設定を広角端に定めたときの概略構成を共通に示す断面図である。
 また、図4~図10は、実施例1~7のズームレンズそれぞれについてズーム設定を広角端、望遠端、およびその中間に定めた場合の概略構成を示す断面図であり、ズーム設定を広角端に定めた状態、ズーム設定を広角端と望遠端との中間に定めた状態、ズーム設定を望遠端に定めた状態をこの順に比較して示す図である。
 図11~図17は、実施例1~7の各ズームレンズの諸収差を示す図であり、ズーム設定を広角端、中間、望遠端に定めた場合の収差をこの順に示す図である。
 なお、上述の図1中のズームレンズ100を示す符号と一致する図3~10中の符号は互に対応する構成を示している。
 図3に示す符号S1~S18は、最も物体側から像側に向かうに従い順次増加するi番目(i=1、2、3、・・・)の光学面(レンズ面、開口絞りSt、フィルタ面)を示す。ここで、開口絞りStが符号S7に対応し、フィルタLfの物体側の面が符号S17に対応し、フィルタLfの像側の面が符号S18に対応し、さらに、符号S1~S18中の他の符号はレンズ面に対応している。
 図3等に示す符号L11、L12・・・L31は、ズームレンズ中に配された各レンズを指すものである。なお、符号Lcは、符号L22と符号L23とが指し示す2つのレンズを接合してなる接合レンズを指している。また、符号Lfは、平行平面板からなるローパスフィルタや赤外線カットフィルタ等の光学部材を示している。この光学部材Lfは、ズームレンズにおける必須の構成ではない。
 図3~図10等に示す符号G1~G3は、ズームレンズ中に配された各レンズ群を指すものである。
 表1~7は、実施例1~7のズームレンズそれぞれの基本的なデータを示す図である。
 表1~7の各表中の上部(図中符号(a)で示す欄)にレンズデータを示す。なお、レンズデータの面番号に付加した*印は、その面が非球面であることを示している。
 ここで用いられる非球面式を以下に示す。
Figure JPOXMLDOC01-appb-M000001
 また、表1~7の各表中の中央部(図中符号(b)で示す欄)に広角端、中間、望遠端における次に示す各値、すなわち、f:レンズ全系の焦点距離(単位mm)、Fno:Fナンバー、2ω:全画角、D6、D14、D16:各レンズ群間の間隔(単位mm)を示す。
 さらに、表1~7の各表中の下部(図中符号(c)で示す欄)に非球面係数を示す。
 また、表8は、実施例1~7のズームレンズに関し、条件式(1)~(4)それぞれの不等式によって範囲が定められる各値(不等式中に記載された数式によって算出される値)を示すものである。
 なお、実施例1~7のズームレンズについては、いずれも条件式(1)~(4)の全てを同時に満足している。
 表1~7の各レンズデータにおいて、面番号Siは、最も物体側から像側に向かうに従い順次増加するi番目(i=1、2、3、・・・)のレンズ面等の番号を示す。なお、これらのレンズデータには開口絞りStも含めて記載している。面番号Siは図3に示す符号と対応している。
 フィルターである光学部材Lfは、レンズデータ上では平行平面板としてデータ化している。
 曲率半径Riはi番目(i=1、2、3、・・・)の面の曲率半径を示し、面間隔Di(i=1、2、3、・・・)はi番目の面とi+1番目の面との光軸Z1上における面間隔を示す。レンズデータの符号Riおよび符号Diは、レンズ面等を示す符号Si(i=1、2、3、・・・)と対応している。
 なお、面間隔Di(i=1、2、3、・・・)の欄には面間隔を示す数字が記載されている場合と、符号Dn(nは数値)が記載されている場合があるが、符号Dnが記載されているところはレンズ群間の面間隔(空気間隔)に対応しており、それらの面間隔(空気間隔)はズーム倍率の変更に応じて変化する。
 Ndjは物体側から像側に向かうに従い順次増加するj番目(j=1、2、3、・・・)のレンズまたはフィルタを構成する光学部材について波長587.6nm(d線)に対する屈折率を示し、νdjはj番目の光学部材のd線を基準としたアッベ数を示す。
 なお、d線を基準とした光学部材のアッベ数νは、ν=(Nd-1)/(NF-NC)の式で求められる値である。ただし、NF:F線(486.1nm)に対する光学部材の屈折率、Nd:d線(587.6nm)に対する光学部材の屈折率、NC:C線(656.3nm)に対する光学部材の屈折率である。
 ここで、第1群第1レンズL11が1番目の光学部材に対応し、第1群第2レンズL12が2番目の光学部材に対応し、第1群第3レンズL13が3番目の光学部材に対応し、第2群第1レンズL21が4番目の光学部材に対応し、第2群第2レンズL22が5番目の光学部材に対応し、第2群第3レンズL23が6番目の光学部材に対応し、第2群第4レンズL24が7番目の光学部材に対応し、第3群第1レンズL31が8番目の光学部材に対応し、フィルタLfが9番目の光学部材に対応する。
 表1~7のレンズデータにおいて、曲率半径および面間隔の単位はmmであり、曲率半径は物体側に凸の場合を正、像側に凸の場合を負としている。
 なお、実施例1~7のズームレンズについて符号L13、L24、L31に対応するレンズはプラスチックレンズからなるものとすることができる。
 なお、表1~8は「発明を実施するための形態」における説明の最後にまとめて示す。
 上記実施例1~実施例7の各ズームレンズの諸収差を示す図11~17の各図中には、波長587.6nm、波長460.0nm、波長615.0nmの各光に関する収差が示されている。
 上記図11~図17の各図中に示す符号(A)~(D)に対応する各収差図は広角端にズーム位置を定めたときのものであり、球面収差(A)、非点収差(B)、ディストーション(歪曲収差)(C)、倍率色収差(倍率の色収差)(D)それぞれを示している。
 また、各図中に示す符号(E)~(H)に対応する各収差図は広角端と望遠端との中間にズーム位置を定めたときのものであり、球面収差(E)、非点収差(F)、ディストーション(歪曲収差)(G)、倍率色収差(倍率の色収差)(H)それぞれを示している。
 また、各図中に示す符号(I)~(L)に対応する各収差図は望遠端にズーム位置を定めたときのものであり、球面収差(I)、非点収差(J)、ディストーション(歪曲収差)(K)、倍率色収差(倍率の色収差)(L)それぞれを示している。
 なお、ディストーションの図は、レンズ全系の焦点距離f、半画角θ(変数扱い、0≦θ≦ω)を用いて、理想像高をf×tanθとし、それからのずれ量を示す。
 実施例1~7に関する数値データおよび収差図等からわかるように、本発明のズームレンズは、ズーム全域に亘って収差の発生を抑制しつつ小型化することができるものである。
 なお、本発明は、上記各実施例に限定されず、発明の要旨を変更しない限りにおいて種々の変形実施が可能である。例えば、各レンズの曲率半径、面間隔、および屈折率の値などは、上記各表中に示した数値に限定されず、他の値を取り得る。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008

Claims (12)

  1.  物体側から順に、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群を配置してなり、前記第2レンズ群と一体的に移動させる絞りを有し、前記第1レンズ群と前記第2レンズ群との間隔、および前記第2レンズ群と前記第3レンズ群との間隔を変化させることにより変倍を行うズームレンズであって、
     前記第1レンズ群は、物体側から順に、像側に凹面を向けた負の屈折力を有する第1群第1レンズ、像側に凹面を向けた負の屈折力を有する第1群第2レンズ、物体側に凸面を向けた少なくとも1面が非球面である正の屈折力を有する第1群第3レンズを配してなるものであり、
     前記第2レンズ群は、物体側から順に、物体側に凸面を向けた正の屈折力を有する第2群第1レンズ、全体として正の屈折力を有する接合レンズ、像側に凹面を向けた少なくとも1面が非球面の負の屈折力を有する第2群第4レンズを配してなるものであり、
     前記接合レンズは、物体側から順に、物体側に凸面を向けた正の屈折力を有する第2群第2レンズ、像側に凹面を向けた負の屈折力を有する第2群第3レンズを配してなるものであり、
     前記第3レンズ群は、正の屈折力を有する第3群第1レンズを配してなるものであることを特徴とするズームレンズ。
  2.  前記第1群第3レンズと第2群第4レンズとが両方共にプラスチックレンズであり、以下の条件式(1)を満足するものであることを特徴とする請求項1記載のズームレンズ。
      -0.2<fw/f13+fw/f24<0.2 ・・・(1)
    ただし、
    fw:広角端におけるズームレンズ全系の焦点距離
    f13:第1群第3レンズの焦点距離
    f24:第2群第4レンズの焦点距離
  3.  前記第3群第1レンズが、少なくとも1面が非球面からなるプラスチックレンズであることを特徴とする請求項1記載のズームレンズ。
  4.  以下の条件式(2)を満足するものであることを特徴とする請求項3記載のズームレンズ。
      0<fw/f13+fw/f24+fw/f31<0.4・・・(2)
    ただし、
    f31:第3群第1レンズの焦点距離
  5.  以下の条件式(3)を満足するものであることを特徴とする請求項1から4のいずれか1項記載のズームレンズ。
      -3.0<f1/fw<-2.3・・・(3)
    ただし、
    f1:第1レンズ群の焦点距離
  6.  以下の条件式(3A)を満足するものであることを特徴とする請求項5記載のズームレンズ。
      -2.8<f1/fw<-2.5・・・(3A)
  7.  以下の条件式(4)を満足するものであることを特徴とする請求項1から6のいずれか1項記載のズームレンズ。
      1.8<LT/(fw×U×tanω)<2.3・・・(4)
    ただし、
    LT:光学全長
    U:変倍比
    ω:広角端における最大像高での半画角
  8.  以下の条件式(4A)を満足するものであることを特徴とする請求項7記載のズームレンズ。
      1.9<LT/(fw×U×tanω)<2.1・・・(4A)
  9.  前記第3レンズ群を移動させて合焦を行うものであることを特徴とする請求項1から8のいずれか1項記載のズームレンズ。
  10.  前記第2群第4レンズが両面非球面レンズであることを特徴とする請求項3から9のいずれか1項記載のズームレンズ。
  11.  前記ズームレンズの変倍比が、4倍を超え6倍未満であることを特徴とする請求項1から10のいずれか1項記載のズームレンズ。
  12.  請求項1から11のいずれか1項記載のズームレンズと、該ズームレンズによって形成された光学像を撮像する撮像素子とを備えたことを特徴する撮像装置。
PCT/JP2011/006139 2010-11-18 2011-11-02 ズームレンズ WO2012066735A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012544089A JP5687284B2 (ja) 2010-11-18 2011-11-02 ズームレンズ
CN201180055515.6A CN103221868B (zh) 2010-11-18 2011-11-02 变焦镜头
US13/894,483 US8699147B2 (en) 2010-11-18 2013-05-15 Zoom lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010257789 2010-11-18
JP2010-257789 2010-11-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/894,483 Continuation US8699147B2 (en) 2010-11-18 2013-05-15 Zoom lens

Publications (1)

Publication Number Publication Date
WO2012066735A1 true WO2012066735A1 (ja) 2012-05-24

Family

ID=46083688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006139 WO2012066735A1 (ja) 2010-11-18 2011-11-02 ズームレンズ

Country Status (4)

Country Link
US (1) US8699147B2 (ja)
JP (1) JP5687284B2 (ja)
CN (1) CN103221868B (ja)
WO (1) WO2012066735A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150432A (ja) * 2010-12-28 2012-08-09 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
WO2013175722A1 (ja) * 2012-05-25 2013-11-28 富士フイルム株式会社 ズームレンズおよび撮像装置
JP2015215406A (ja) * 2014-05-08 2015-12-03 Hoya株式会社 ズームレンズ系
US11143836B2 (en) 2016-12-05 2021-10-12 SZ DJI Technology Co., Ltd. Zoom lens, imaging device, movable object, and system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463174B (zh) * 2013-03-19 2014-12-01 Sintai Optical Shenzhen Co Ltd 變焦鏡頭
JP6179800B2 (ja) * 2013-05-23 2017-08-16 株式会社リコー 画像読取レンズ、画像読取装置および画像形成装置
CN111527435B (zh) * 2018-02-27 2022-04-05 奥林巴斯株式会社 内窥镜用物镜光学系统
CN113163075B (zh) * 2020-01-22 2023-11-03 华为技术有限公司 镜头、摄像模组及终端设备
WO2023207204A1 (zh) * 2022-04-25 2023-11-02 Oppo广东移动通信有限公司 变焦镜头、摄像头模组及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141997A (ja) * 1999-11-12 2001-05-25 Olympus Optical Co Ltd ズームレンズ
JP2002072093A (ja) * 2000-08-31 2002-03-12 Minolta Co Ltd ズームレンズ
JP2002072091A (ja) * 2000-08-29 2002-03-12 Minolta Co Ltd ズームレンズ
JP2007114727A (ja) * 2005-09-26 2007-05-10 Konica Minolta Opto Inc ズームレンズ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095627A (ja) * 1995-06-19 1997-01-10 Nikon Corp 小型の変倍光学系
JP3684070B2 (ja) * 1998-05-15 2005-08-17 オリンパス株式会社 ズームレンズ
JP3433734B2 (ja) * 2000-03-29 2003-08-04 ミノルタ株式会社 撮像レンズ装置
US6618210B2 (en) 2000-07-07 2003-09-09 Olympus Optical Co., Ltd. Zoom lens system and image pickup apparatus having the same
JP4172197B2 (ja) 2002-04-15 2008-10-29 松下電器産業株式会社 ズームレンズおよび電子スチルカメラ
JP2012083706A (ja) * 2010-09-13 2012-04-26 Hoya Corp ズームレンズ系

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141997A (ja) * 1999-11-12 2001-05-25 Olympus Optical Co Ltd ズームレンズ
JP2002072091A (ja) * 2000-08-29 2002-03-12 Minolta Co Ltd ズームレンズ
JP2002072093A (ja) * 2000-08-31 2002-03-12 Minolta Co Ltd ズームレンズ
JP2007114727A (ja) * 2005-09-26 2007-05-10 Konica Minolta Opto Inc ズームレンズ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150432A (ja) * 2010-12-28 2012-08-09 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
WO2013175722A1 (ja) * 2012-05-25 2013-11-28 富士フイルム株式会社 ズームレンズおよび撮像装置
CN104350409A (zh) * 2012-05-25 2015-02-11 富士胶片株式会社 变焦透镜和摄像装置
JP5698869B2 (ja) * 2012-05-25 2015-04-08 富士フイルム株式会社 ズームレンズおよび撮像装置
US9297989B2 (en) 2012-05-25 2016-03-29 Fujifilm Corporation Zoom lens and imaging apparatus
JP2015215406A (ja) * 2014-05-08 2015-12-03 Hoya株式会社 ズームレンズ系
US11143836B2 (en) 2016-12-05 2021-10-12 SZ DJI Technology Co., Ltd. Zoom lens, imaging device, movable object, and system

Also Published As

Publication number Publication date
CN103221868B (zh) 2015-04-22
US8699147B2 (en) 2014-04-15
JPWO2012066735A1 (ja) 2014-05-12
CN103221868A (zh) 2013-07-24
JP5687284B2 (ja) 2015-03-18
US20130250436A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5535761B2 (ja) 変倍光学系および撮像装置
JP5687284B2 (ja) ズームレンズ
JP5273184B2 (ja) ズームレンズ、光学装置、ズームレンズの製造方法
JP5732176B2 (ja) ズームレンズおよび撮像装置
JP2008164724A (ja) ズームレンズ及び撮像装置
JP2009294304A (ja) ズームレンズ及びそれを有する撮像装置
JP2009037091A (ja) ズームレンズ系
JP5698869B2 (ja) ズームレンズおよび撮像装置
JP4280538B2 (ja) ズームレンズ
WO2017099243A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2010008917A (ja) 変倍光学系および撮像装置
JP2010008917A5 (ja)
JP2009205055A (ja) 変倍光学系および撮像装置
JP4847091B2 (ja) ズームレンズ及びそれを有する撮像装置
JP2007212537A (ja) ズームレンズ及びそれを有する撮像装置
JP2011075613A (ja) 変倍光学系および撮像装置
KR101880633B1 (ko) 줌 렌즈 및 이를 구비한 촬영 장치
JP2009276505A (ja) 変倍光学系および撮像装置
JP2011028144A (ja) ズームレンズ
WO2012176389A1 (ja) ズームレンズおよび撮像装置
JP2017107065A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6649286B2 (ja) ズームレンズおよび撮像装置
JP5462081B2 (ja) ズームレンズおよび撮像装置
JP5578412B2 (ja) 撮影レンズ、この撮影レンズを有する光学機器、及び、撮影レンズの製造方法
JP6022309B2 (ja) ズームレンズ系及びこれを備えた電子撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841972

Country of ref document: EP

Kind code of ref document: A1