WO2012065534A1 - 预制钢筋混凝土模板及其制造方法、以及用模板建造的剪力墙结构建筑及其建造方法 - Google Patents

预制钢筋混凝土模板及其制造方法、以及用模板建造的剪力墙结构建筑及其建造方法 Download PDF

Info

Publication number
WO2012065534A1
WO2012065534A1 PCT/CN2011/082172 CN2011082172W WO2012065534A1 WO 2012065534 A1 WO2012065534 A1 WO 2012065534A1 CN 2011082172 W CN2011082172 W CN 2011082172W WO 2012065534 A1 WO2012065534 A1 WO 2012065534A1
Authority
WO
WIPO (PCT)
Prior art keywords
formwork
reinforced concrete
hole
template
longitudinal
Prior art date
Application number
PCT/CN2011/082172
Other languages
English (en)
French (fr)
Inventor
侯建群
Original Assignee
清华大学建筑设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010554530.2A external-priority patent/CN101985856B/zh
Priority claimed from CN2010105701851A external-priority patent/CN102061803B/zh
Application filed by 清华大学建筑设计研究院有限公司 filed Critical 清华大学建筑设计研究院有限公司
Publication of WO2012065534A1 publication Critical patent/WO2012065534A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/044Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • E04B1/165Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with elongated load-supporting parts, cast in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B5/36Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
    • E04B5/38Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2/8623Walls made by casting, pouring, or tamping in situ made in permanent forms with spacers and at least one form leaf being monolithic
    • E04B2/8629Walls made by casting, pouring, or tamping in situ made in permanent forms with spacers and at least one form leaf being monolithic with both form leaves and spacers being monolithic

Definitions

  • the invention relates to the field of construction, in particular to a method for constructing a cast-in-place reinforced concrete precast reinforced concrete formwork and a manufacturing method, a building and a building. Background technique
  • cast-in-place reinforced concrete structures are mostly cast concrete using steel formwork or wood board, bamboo glue board, plastic board and the like.
  • the steel bars of the components are bundled at the site, and then the above template is spliced and assembled on site to reproduce the concrete, and the concrete is solidified and the template is removed.
  • This kind of construction method has many processes, the field workload is large, and some templates cannot be reused for a long time, resulting in material waste.
  • formwork made of plastic or plaster. After pouring concrete, the formwork divides the concrete into individual square columns. However, since it is not a concrete whole, such a formwork can only be built as a low-rise house and is not suitable for building high-rise houses, so that it is less used.
  • the present invention aims to solve at least one of the above technical problems. To this end, it is an object of the present invention to provide a prefabricated reinforced concrete formwork that is free of dismantling, which does not need to be removed and can be pre-manufactured in the factory, which increases the construction speed of the building, reduces costs, and is suitable for construction. High-rise building.
  • Another object of the present invention is to provide a method of manufacturing a prefabricated reinforced concrete formwork that is free of dismantling.
  • a further object of the present invention is to provide a building constructed using a prefabricated reinforced concrete formwork that is free of dismantling.
  • the prefabricated reinforced concrete formwork is a reinforced concrete precast board, wherein the reinforced concrete precast board is provided with longitudinal through holes parallel to each other, and transverse through holes parallel to each other, The lateral through holes respectively intersect the longitudinal through holes to form an intersecting passage in the reinforced concrete precast panel.
  • the outer peripheral side of the reinforced concrete precast panel is provided with a groove.
  • the reinforcing bars in the reinforced concrete prefabricated panels include transverse stirrups and a plurality of longitudinal steel bars that join the plurality of longitudinal steel bars together to form a steel cage.
  • one end of the reinforced concrete precast panel is provided with a lifting eye.
  • the reinforced concrete precast slab is a flat wall formwork, a T-shaped column formwork, an L-shaped column formwork, a cross-shaped column formwork, a rectangular column formwork, a beam formwork, a beam formwork, and a floor cover At least one of the templates.
  • a method of manufacturing a prefabricated precast reinforced concrete form according to an embodiment of the present invention includes the following steps:
  • the mold comprising a bottom mold, a top mold, a dies, a longitudinal steel tube and a transverse steel tube, wherein the dies are provided with through-holes arranged along a length thereof, and the top mold is provided with a top mold through hole arranged along its length,
  • the detachable precast reinforced concrete formwork and the method of manufacturing the same does not need to be removed, and can be pre-manufactured in the factory, which improves the construction speed of the building, reduces the cost, and is suitable for building a high-rise building.
  • the building shear wall structure is a single-story building composed of one building unit or a multi-story building composed of a plurality of building units, the building unit including A polyhedral space template system formed by interconnecting templates, including a flat wall template, a T-shaped column template, an L-shaped column template, a cross-shaped column template, a rectangular column template, a beam template, a beam template, and a floor template
  • the template is a detachable prefabricated reinforced concrete form according to claim 1, wherein the longitudinal through hole and the transverse through hole in the template form a hollow hole in the polyhedron space template system, and the hollow hole An additional steel bar is inserted and filled with concrete to form a cast-in-place concrete shear wall structure building unit.
  • the formwork includes a flat wall formwork, a T-shaped column formwork, an L-shaped column formwork, a cross-shaped column formwork, a rectangular column formwork, a tie beam formwork, a beam formwork and a floor cover formwork
  • the template is a dismantle-free precast reinforced concrete form according to claim 1;
  • the polyhedral space template system has a hollow hole formed by a longitudinal through hole and a horizontal through hole in the template;
  • the construction method further includes:
  • FIG. 1 is a schematic view of a shear wall structure building in accordance with an embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • FIG. 3 is a schematic view of a polyhedral space template system composed of a precast reinforced concrete formwork according to an embodiment of the present invention
  • FIG. 4 is a schematic view of a wall formwork according to an embodiment of the present invention
  • FIG. 5 is a schematic view of the steel cage in the wall formwork shown in Figure 4;
  • Figure 6 is a schematic illustration of a floor plan template in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic view of a mold for manufacturing a wall formwork and a floor form according to an embodiment of the present invention
  • FIG. 8 is a schematic view of a mold for manufacturing a wall formwork and a floor form according to an embodiment of the present invention
  • 9 is a schematic view of a T-shaped column template according to an embodiment of the present invention
  • Figure 10 is a schematic view of the steel cage in the T-shaped column template shown in Figure 9;
  • Figure 11 is a schematic view of a mold for manufacturing a T-shaped column template according to an embodiment of the present invention.
  • Figure 12 is a schematic view of a mold for manufacturing a T-shaped column template according to an embodiment of the present invention.
  • Figure 13 is a schematic illustration of an L-shaped column template in accordance with an embodiment of the present invention.
  • Figure 14 is a schematic illustration of a steel cage within an L-shaped column form in accordance with an embodiment of the present invention
  • Figure 15 is a schematic illustration of a cross-shaped column template in accordance with an embodiment of the present invention
  • Figure 16 is a schematic illustration of a steel cage within a cruciform column template in accordance with an embodiment of the present invention.
  • Figure 17 is a schematic illustration of a splicing beam formwork in accordance with an embodiment of the present invention.
  • Figure 18 is a schematic illustration of a steel cage within a coupling beam form in accordance with an embodiment of the present invention.
  • Figure 19 is a cross-sectional view showing the beam stencil of Figure 18;
  • Figure 20 is a schematic view of a mold for manufacturing a beam formwork
  • Figure 21 is a schematic view of a mold for manufacturing a beam stencil
  • Figure 11 is a schematic illustration of a beam form in accordance with an embodiment of the present invention.
  • Figure 23 is a schematic illustration of a steel cage within a beam form in accordance with an embodiment of the present invention.
  • Figure 24 is a schematic illustration of a rectangular column template in accordance with an embodiment of the present invention.
  • Figure 25 is a schematic illustration of a steel cage within a rectangular column form in accordance with an embodiment of the present invention.
  • 26 is a schematic view showing the connection between a flat wall template and an L-shaped column template
  • Figure 27 is a schematic view showing the connection of a flat wall template and a T-shaped column template
  • Figure 28 is a schematic view showing the connection of the flat wall formwork and the floor formwork G. detailed description
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise specifically defined and defined. Connected, or connected in one piece; can be mechanically connected, either directly or indirectly through an intermediate medium, which can be internal to the two elements.
  • intermediate medium which can be internal to the two elements.
  • FIG. 1 shows an eight-story building, it being understood that a shear wall structure in accordance with an embodiment of the present invention may be constructed in one or more layers.
  • the building according to an embodiment of the present invention may be divided into a flat wall template 1, a T-pillar template 3, an L-shaped column template 5, a cross-shaped column template 6, and a rectangular column template 10 (see FIG. 24).
  • the above-described division of the template of the building is merely exemplary and is not to be construed as limiting the invention.
  • the removal-free precast reinforced concrete form according to an embodiment of the present invention is described below.
  • the detachable precast reinforced concrete form according to the embodiment of the present invention can be used as the above-described formwork for a building.
  • the precast reinforced concrete formwork according to the embodiment of the present invention is a reinforced concrete precast board, and the precast reinforced concrete formwork is a reinforced concrete precast board, and the reinforced concrete precast board is provided with longitudinal through holes parallel to each other, and parallel to each other The holes, the lateral through holes respectively intersect the longitudinal through holes to form an intersecting passage in the reinforced concrete precast plate.
  • the lateral through-holes do not refer to the through-holes in one direction orthogonal to the longitudinal through-holes, but include through-holes in a plurality of directions orthogonal to the longitudinal through-holes.
  • the pre-fabricated reinforced concrete formwork according to the embodiment of the present invention can be pre-processed at the factory, and about 70% to 80% of the stressed steel bars have been placed in the prefabricated formwork, because the formwork is produced in the factory, the construction quality and the board surface.
  • the flatness is easy to guarantee, and it can be mass-produced and industrialized.
  • the prefabricated reinforced concrete slabs according to the embodiment of the present invention are small unit slabs for long-distance transportation without the need for large cranes.
  • the wall formwork and the floor formwork of each floor can be supported once, and then the concrete is cast in place, and the construction speed is accelerated.
  • the workload of tying the steel bars at the construction site is greatly reduced. It can reduce the workload and construction difficulty of the construction site support. Reduce the labor intensity of workers.
  • the pre-fabricated reinforced concrete formwork according to the embodiment of the present invention is a force-receiving member of the building, and does not need to be removed, thereby saving the formwork removal process. Since the formwork itself has a certain strength, after the pouring of one floor of the building, the next layer of construction can be quickly carried out, which shortens the construction period.
  • a method of manufacturing a detachable prefabricated reinforced concrete form according to the present invention comprises the following steps:
  • the mold comprising a bottom mold, a top mold, a dies, a longitudinal steel tube and a transverse steel tube, wherein the dies are provided with through-holes arranged along a length thereof, and the top mold is provided with a top mold through hole arranged along its length,
  • the precast reinforced concrete form according to the first embodiment of the present invention is a flat wall formwork 1 or a floor plan formwork G.
  • the flat wall formwork 1 is a reinforced concrete precast flat plate 11 which has a row of longitudinal through holes 12 and a row of transverse through holes 13 therein.
  • the longitudinal through hole 12 extends along the longitudinal direction Z of the reinforced concrete precast slab 11
  • the transverse through hole 13 extends along the lateral direction H of the reinforced concrete precast slab 11
  • the transverse through holes 13 respectively intersect the longitudinal through holes 12, thereby being in the reinforced concrete precast slab 11 Form a cross channel.
  • a reinforced concrete prefabricated plate 11 is provided with a reinforcing cage 16 which is composed of a plurality of longitudinal reinforcing bars 161 and a plurality of transverse stirrups 162 which connect the longitudinal reinforcing bars 161 into a single body.
  • the outer peripheral side of the reinforced concrete precast slab 11 is provided with grooves 14 respectively, so that when the reinforced concrete precast slabs 11 are connected to each other or to other stencils, the grooves 14 form a gap therebetween to facilitate the pouring of concrete. Improve the connection strength.
  • two lifting rings 15 are provided at the upper end of the reinforced concrete precast slab 11 for hoisting the reinforced concrete precast slabs 11.
  • the longitudinal through-holes 12 of the reinforced concrete precast slab 11 have a diameter ranging from 60 to 300 crypt.
  • the diameter of the longitudinal through-holes 12 is the thickness of the reinforced concrete precast slab 11 minus
  • the longitudinal through hole 12 has a diameter of 140 sec.
  • the lateral through hole 13 has a diameter ranging from 40 to 280 mm (normally, the diameter of the transverse through hole 13 is the diameter of the longitudinal through hole 12 minus 20 mm).
  • Fig. 6 shows the floor form G, and the floor formwork G is similar to the flat wall formwork 1 as a reinforced concrete prefabricated plate 11.
  • the floor plan G has a plurality of rows of face holes 17 perpendicular to the surface (the face 17 extends only a predetermined depth without passing through the reinforced concrete precast plate 11).
  • a method of manufacturing the flat wall form 1 according to the first embodiment of the present invention will be described with reference to Figs. 7 and 8.
  • a flat bottom mold 21, two dies 22, two top molds 23, a plurality of longitudinal steel tubes 24 and a plurality of transverse steel tubes 25 are provided as molds. component.
  • the longitudinal steel pipe 24 is provided with a longitudinal steel pipe through hole 241 penetrating in the radial direction thereof, and the transverse steel pipe 25 can pass through the longitudinal steel pipe through hole 241.
  • the die 22 and the top mold 23 are generally U-shaped steel bars with outer edges on both sides.
  • the die 22 has a row of die through holes 221 perpendicular to the bottom surface on the bottom wall.
  • the top mold 23 has a row of top mold through holes 231 perpendicular to the bottom surface on the bottom wall.
  • the diameter of the through hole 221 and the top mold through hole 231 is, for example, 60 to 300 mm.
  • the longitudinal steel pipe 24 can pass through the through hole 231, and the longitudinal steel pipe through hole 241 can have the same diameter as the through hole 221 so that the transverse steel pipe 25 can pass through the longitudinal steel pipe through hole 241 and the through hole 221 .
  • the length of the die 22 is the height of the wall formwork 1, the width of the die 22 (up and down in Fig. 7 The size of the direction is the thickness of the wall form 1. If it is the floor formwork G, the length of the die 22 is the span of the floor form G, and the width of the die 22 is the thickness of the floor form G. The width of the top mold 23 is equal to the width of the die 22.
  • the die 22 and the top mold 23 are placed on the bottom mold 21 perpendicularly and end-aligned with each other, and the steel cage 16 (Fig. 5) is placed on the bottom mold 21, and the ring 15 is mounted.
  • the plurality of longitudinal steel tubes 24 are sequentially passed through the top mold through holes 231 of the one end top mold 23, the gaps in the steel cage 16 , and the top mold through holes 231 of the other end top mold 23; and then the plurality of transverse steel tubes 25 are sequentially passed through The die through hole 221 of the side dies 22, the gap in the reinforcing cage 16, the longitudinal steel pipe through hole 241 on the longitudinal steel pipe 24, and the through hole 221 of the other side dies 22.
  • a reinforced concrete precast flat plate 11 i.e., a detachable precast reinforced concrete formwork for use as a flat wall formwork 1.
  • the above method may further comprise: 5) drilling a plate face 17 on the upper surface of the wall form 1 using a perforated drill to obtain a floor formwork G.
  • the dismantled wall form 1 and the floor form G can also manufacture a reinforced concrete prefabricated plate having only longitudinal through holes 12 by using a conventional reinforced concrete prefabricated plate production process, and then use the open The hole drill drills a transverse through hole 13 that intersects the longitudinal through hole 12, thereby obtaining a reinforced concrete precast plate 11 according to an embodiment of the present invention. Then, the plate face 17 is drilled on one surface of the reinforced concrete precast slab 11 by using a perforated drill to obtain a floor slab template G.
  • the production process of conventional reinforced concrete precast slabs is known to those of ordinary skill in the art and will not be described in detail herein. Second embodiment
  • the precast reinforced concrete form according to the second embodiment of the present invention is a T-shaped column formwork 3.
  • the T-shaped column formwork 3 is a reinforced concrete prefabricated plate 31 having a T-shaped cross section.
  • the reinforced concrete prefabricated plate 31 is provided with longitudinal through holes 32, and transverse through holes 33 respectively intersecting the longitudinal through holes 32.
  • the lateral through holes 33 are two groups, and the two sets of horizontal through holes 33 are in the same plane and are orthogonal to each other.
  • the left side surface, the right side surface, the front surface, the upper surface, and the lower surface of the reinforced concrete precast panel 31 are provided with a groove 34, and the upper end is provided with a lifting ring 35 for lifting.
  • the reinforced concrete precast panel 31 has a reinforcing cage 36. As shown in Fig.
  • the reinforcing cage 36 is composed of a plurality of longitudinal reinforcing bars 361 and a plurality of transverse stirrups 362 (T-shaped stirrups), as shown in Fig. 9.
  • the longitudinal dimension of the reinforced concrete precast slab 31 (the dimension in the up and down direction in Fig. 9) is about 2400 mm to 5000 mm (generally the height of one floor of the building), and the thickness of the reinforced concrete precast slab 31 is about 140 mm to 360 mm (generally and flat)
  • the wall template 1 has the same thickness).
  • a flat bottom mold 41 On the site of the prefabricated board production plant, according to the size requirements of the building, a flat bottom mold 41, two mutually orthogonal right angle bottom molds 42, three dies 43, two (up and down) T-shaped top molds 44 are provided.
  • a plurality of longitudinal steel pipes 45, a plurality of first transverse steel pipes 46, and a plurality of second transverse steel pipes 47 are provided as mold parts, as shown in Figs. 11 and 12.
  • the die 43 is a U-shaped steel strip with an outer edge on both sides, and the T-shaped top die 44 is formed by connecting U-shaped steel strips with outer edges on both sides, and the die 43 is provided with a through-hole 431 for the die, and the top mold 44 is provided.
  • the top mold through hole 441 has a diameter ranging from 40 to 280.
  • the top through hole 441 has a diameter ranging from 60 to 300 mm, and the upper top mold 44 is further provided with a plurality of square holes 442, square holes. 442 is used to cast concrete.
  • the longitudinal steel pipe 45 is provided with a longitudinal steel pipe through hole 451 through which the longitudinal steel pipe 45 can pass, and the first transverse steel pipe 46 and the second transverse steel pipe 47 can pass through the longitudinal steel pipe through hole 451 and the through hole 431.
  • the length of the flat bottom mold 41, the symmetrical right angle bottom mold 42 and the dies 43 (the height in Fig. 9) is the height of the reinforced concrete precast panel 31, and the width of the 43 dies is the thickness of the reinforced concrete precast panel 31.
  • the plurality of longitudinal steel tubes 45 are sequentially passed through the top mold through holes 441 of the upper top mold 44, the gaps in the steel cage 36, and the top mold through holes 441 of the lower top mold 44; the plurality of first transverse steel tubes 46 are sequentially passed through The through hole 431 of the side dies 43 , the gap of the reinforcing cage 36 , the through hole 431 of the other side of the dies 43 , and the plurality of second transverse steel pipes 47 and the first transverse steel pipe 46 and the longitudinal steel pipe 45
  • the through hole 431 of the other of the dies 43 is passed vertically, and the gap in the reinforcing cage 36 is pushed up to the longitudinal steel pipe 45.
  • an L-shaped column template 5 having an L-shaped cross section (as shown in Figs. 13 and 14) and a cross-shaped cross-shaped column template can be manufactured by selecting a suitable mold. 6 (as shown in Figures 15 and 16).
  • the L-shaped column formwork 5 is a reinforced concrete precast plate 51 having an L-shaped cross section, and has a longitudinal through hole 52, and two sets of lateral through holes 53 and a left side surface of the reinforced concrete prefabricated plate 51.
  • the front surface, the upper surface and the lower surface respectively have grooves 54.
  • the upper end of the reinforced concrete precast plate 51 has a ring 55.
  • the reinforcing cage 56 in the reinforced concrete prefabricated plate 51 is composed of a longitudinal reinforcing bar 561 and a transverse matching stirrup 562.
  • the cross-shaped column formwork 6 is a reinforced concrete precast plate 61 having a longitudinal through hole 62, four sets of lateral through holes 63, and left side and right sides of the reinforced concrete precast plate 61. Side, front, The rear surface, the upper surface and the lower surface each have a groove 64. The upper end of the reinforced concrete precast plate 61 is provided with a lifting ring 65.
  • the reinforcing cage 66 in the reinforced concrete prefabricated plate 61 is composed of a longitudinal reinforcing bar 661 and a cross-shaped transverse matching band 662.
  • the precast reinforced concrete form according to the third embodiment of the present invention may be a bridge formwork 7.
  • the beam formwork 7 is generally referred to as a beam placed above the door and window.
  • the girders template 7 is a reinforced concrete precast slab 71.
  • the reinforced concrete precast slabs 71 are provided with longitudinal through holes 72 and transverse through holes 73.
  • the reinforced concrete prefabricated plates 71 are respectively provided with grooves 74 on the three sides, as shown in Fig. 17. It is shown that the groove 74 may not be disposed on the side of the beam template 7 adjacent to the door and the window.
  • the reinforcing cage 76 in the reinforced concrete precast panel 71 is composed of a plurality of longitudinal reinforcing bars 761 and a plurality of transverse stirrups 762 which integrally join the longitudinal reinforcing bars 761, as shown in Fig. 18.
  • the transverse stirrup 762-end can be exposed for use as a lifting eye.
  • the length of the reinforced concrete precast slab 71 is generally about the size of the door and window opening plus 600mm.
  • the height of the reinforced concrete prefabricated panel 71 is the size of the door and window opening from the epithelium to the slab, and the thickness of the reinforced concrete prefabricated panel 71 is the same as the wall thickness.
  • a flat bottom mold 81 On the site of the prefabricated board production plant, according to the size requirements of the building, a flat bottom mold 81, two long dies 82, two short dies 83, a top mold 84, a plurality of longitudinal steel tubes 85, and more are provided.
  • the root transverse steel pipe 86 as a mold, is shown in Figs.
  • the short die 83 and the top die 84 are U-shaped steel bars with outer edges on both sides.
  • the short die 83 is provided with a row of short die through holes 831 (the short die through holes 831 have a diameter ranging from 60 to 300.
  • the bottom mold 81 is provided with a row of bottom mold through holes 811 (the diameter of the bottom mold through holes 811 is 40 to 280 mm), the top mold 84 is provided with a circular top mold through hole 841 at intervals (a circular top mold through hole 841 having a diameter ranging from 40 to 280 mm) and a square hole 842 for square holes.
  • a longitudinal steel pipe through hole 851 is arranged on the pipe wall of the longitudinal steel pipe 85, the transverse steel pipe 86 can pass through the longitudinal steel pipe through hole 851, and the longitudinal steel pipe 85 can pass through the short die through hole 831;
  • the long die 82 and the short die 83 and the top die 84 are placed on the bottom mold 81 perpendicularly and end-aligned.
  • the reinforcing cage 76 (Fig. 18) is placed on the bottom mold 81 in the mold;
  • the plurality of longitudinal steel tubes 85 are sequentially passed through the short die through holes 831 of the one side short mold 83, the gaps in the steel cage 76, and the other In the short die through hole 831 of the side short die 83;
  • a plurality of transverse steel pipes 86 are sequentially passed through the top die through hole 841 of the top mold 84, the gap in the steel cage 76, and the bottom mold through hole 811 of the bottom mold 81.
  • a three-side recessed groove 74 is formed to form a prefabricated reinforced concrete coupling beam formwork 7.
  • the beam formwork 9 can be manufactured according to a similar manufacturing method as described above. As shown in Figs. 22-23, the beam formwork 9 is a reinforced concrete precast plate 91, and the reinforced concrete precast plate 91 can be provided with a transverse through hole 92 that does not penetrate vertically (transverse direction). The bottom of the through hole 92 is 30 mm to 50 mm from the outer bottom surface of the beam formwork 9, and the reinforced concrete precast plate 91 is provided with a longitudinal through hole 93.
  • one end of the longitudinal reinforcing bar 961 of the reinforcing cage 96 in the reinforced concrete precast panel 91 extends beyond the concrete to be connected with other members, and the protruding length is determined according to the design requirements, and the other is similar to the coupling beam template 7, and is not detailed here. description.
  • a reinforced concrete prefabricated plate 101 can be manufactured according to the similar manufacturing method described above, and the reinforced concrete precast plate 101 has a longitudinal through hole 102 therein. And a transverse through hole 103, a lifting ring 104, and a reinforcing cage 106.
  • the steel cage 106 is composed of a plurality of longitudinal reinforcing bars 1061 and a plurality of transverse stirrups 1062 (nine-square lattice) which connect all the longitudinal reinforcing bars 1061 into one piece.
  • FIG. 1 is a schematic view showing a structure of a shear wall structure according to an embodiment of the present invention
  • Fig. 2 is a cross-sectional view taken along line A-A of Fig. 1.
  • a building shear wall structure according to an embodiment of the present invention is a single-story building composed of one building unit or a multi-story building composed of a plurality of building units, and the building unit includes a polyhedral space template system formed by interconnecting templates.
  • the template includes a flat wall template, a T-shaped column template, an L-shaped column template, a cross-shaped column template, a rectangular column template, a coupling beam template, a beam template, and a floor template, and the template may refer to the above embodiment.
  • the removable prefabricated reinforced concrete formwork, the longitudinal through hole and the transverse through hole in the formwork form a hollow hole in the polyhedral space formwork system, the hollow hole is interspersed with additional steel bars and filled with concrete to form Cast-in-place concrete shear wall structure building unit.
  • Fig. 1 The embodiment shown in Fig. 1 is composed of 10 building units horizontally combined to form a one-piece integral building unit (Fig. 2).
  • the entire building units of each layer are stacked upwards to form 8 layers of cast-in-place concrete shears formed by the above-mentioned prefabricated reinforced concrete formwork.
  • the wall of the upper unit is fixed on the wall of the lower building unit; the lower end of the bottom unit wall is fixed on the foundation B.
  • the wall of the top building unit is connected to the roof of the roof (same as the floor formwork G).
  • the template of the shear wall structure building may use the above-mentioned flat wall template 1, T-pillar template 3, L-shaped column template 5, cross-shaped column template 6, rectangular column template. 10. Coupling template 7, beam formwork 9 and floor formwork (roof) G.
  • the prefabricated reinforced concrete formwork can be prefabricated in the prefabricated factory due to the on-site pouring construction of the precast reinforced concrete formwork without dismantling and having internal intersecting holes.
  • the flat wall template 1 and the column template (the T-shaped column template 3, the L-shaped column template 5, the cross-shaped column template 6, the rectangular column template 10) are vertically placed vertically, and the lower end is fixed on the base B.
  • the additional reinforcing bars F6, F5 which are inserted into the longitudinal through holes of the column formwork and the wall formwork 1, as shown in Fig. 3;
  • the embodiment in which the L-shaped column formwork 5 is connected to the wall formwork 1 is as shown in FIG. 26, and the L-shaped column formwork 5 and the longitudinal through-holes of the wall formwork 1 (not shown) of the door and window opening are first placed.
  • the inserted additional reinforcing bar F5 which is connected to the longitudinal through-hole of the upper formwork by a conventional mechanical joint, is inserted into the transverse through-hole of the L-shaped formwork 5 and the wall formwork 1
  • concrete is poured into the gap formed between the L-shaped column formwork 5 and the wall formwork 1 by the grooves on the sides thereof and the through holes in the respective formwork.
  • the embodiment in which the T-shaped column formwork 3 is connected to the wall formwork 1 is as shown in FIG. 27, and the T-shaped column formwork 3 and the longitudinal through-holes of the wall formwork 1 (not shown) of the door and window opening are first placed.
  • the additional reinforcing steel F5 inserted is also connected to the upper formwork by a conventional mechanical joint, and the additional reinforcing bars F1 and U are inserted into the transverse through holes of the T-shaped formwork 3 and the wall formwork 1
  • the additional reinforcing steel F4 is used to connect the T-shaped column template 3 with the wall template 1.
  • concrete is poured into the gap formed between the T-pillar formwork 3 and the wall formwork 1 by the grooves on the sides thereof and the through holes in the respective formwork.
  • the construction speed can be greatly improved, and the formwork does not need to be removed, saving time and labor.

Description

预制钢筋混凝土模板及其制造方法、 以及用模板建造的剪力墙结构建筑及其建造方法 技术领域
本发明涉及建筑领域,特别涉及用于现浇钢筋混凝土预制钢筋混凝土模板及制造方法、 建筑及建造的建筑的建造方法。 背景技术
目前, 现浇钢筋混凝土结构, 大多使用钢模板或木板、 竹胶板、 塑料板等与钢框组合 模板体系浇注混凝土。施工时先分批现场绑扎构件的钢筋, 然后在现场拼接安装上述模板, 再现浇混凝土, 待混凝土凝固结硬后把模板拆除。 这种施工方法工序较多, 现场工作量较 大且部分模板不能长期重复使用, 造成材料浪费。
另外, 还已有用塑料或石膏制成的免拆除模板。 浇注混凝土后模板把混凝土分隔成一 个个独立的方柱。 但是, 由于不是一个混凝土整体, 这种模板只能建造低层房屋, 不适合 建造高层房屋, 由此应用较少。
发明内容
本发明旨在至少解决上述技术问题之一。 为此, 本发明的一个目的在于提出一种免拆 除的预制钢筋混凝土模板, 该钢筋混凝土模板无需拆除, 并且可以在工厂内预先制造, 提 高了建筑的施工速度, 减低了成本, 并且适合于建造高层建筑。
本发明的另一个目的在于提出一种免拆除的预制钢筋混凝土模板的制造方法。
本发明的再一目的在于提出一种利用免拆除的预制钢筋混凝土模板建造的建筑。
本发明的又一目的在于提出一种利用免拆除的预制钢筋混凝土模板建造建筑的方法。 根据本发明实施例的免拆除的预制钢筋混凝土模板, 所述预制钢筋混凝土模板为钢筋 混凝土预制板, 所述钢筋混凝土预制板内设有彼此平行的纵向贯通孔, 和彼此平行的横向 贯通孔, 所述横向贯通孔分别与所述纵向贯通孔交叉以在所述钢筋混凝土预制板内形成交 叉通道。
在本发明的一些实施例中, 所述钢筋混凝土预制板的外周侧面上分别设有凹槽。
在本发明的一些实施例中, 所述钢筋混凝土预制板内的钢筋包括横向箍筋和多根纵向 钢筋, 所述横向箍筋将所述多个纵向钢筋连接成一个整体以形成钢筋笼。
在本发明的一些实施例中, 所述钢筋混凝土预制板的一端设有吊环。
在本发明的一些实施例中, 所述钢筋混凝土预制板为平板状墙体模板、 T形柱模板、 L 形柱模板、 十字形柱模板、 矩形柱模板、 连梁模板、 梁模板和楼盖模板中的至少一个。 根据本发明实施例的免拆除的预制钢筋混凝土模板的制造方法, 包括以下步骤:
1 )提供模具, 所述模具包括底模, 顶模、 帮模, 纵向钢管和横向钢管作为, 所述帮模 上设有沿其长度方向排列的帮模通孔, 所述顶模上设有沿其长度方向排列的顶模通孔, 所
2 )将所述帮模和顶模放在底模上, 其中所述帮模和所述顶膜相互垂直且端头对齐, 将 钢筋笼放在底模上, 将所述纵向钢管依次穿过一侧顶模的顶模通孔, 所述钢筋笼内的间隙, 另一侧顶模的顶模通孔, 然后将所述横向钢管依次穿过一侧帮模的帮模通孔, 所述钢筋笼 内的间隙、 所述纵向钢管上的纵向钢管贯通孔和另一侧帮模的帮模通孔;
3 ) 向所述模具内浇注混凝土, 在所述混凝土尚未全部硬化之前, 抽出所述横向钢管以 形成横向贯通孔, 并抽出所述纵向钢管以形成纵向贯通孔;
4 )在所述混凝土完全硬化之后, 拆掉所述底模, 帮模, 顶模以形成免拆除的预制钢筋 混凝土模板。
根据本发明另一实施例的免拆除的预制钢筋混凝土模板的制造方法, 包括以下步骤:
1 )釆用传统生产预制混凝土板的方法制造出仅具有纵向贯通孔的预制混凝土板;
2 )在所述仅具有纵向贯通孔的预制混凝土板上使用开孔钻钻出与所述纵向贯通孔交叉 的横向贯通孔, 以形成具有由所述纵向贯通孔和所述横向贯通孔交叉形成的交叉通道的预 制钢筋混凝土模板。
根据本发明实施例的免拆除的预制钢筋混凝土模板及其制造方法, 钢筋混凝土模板无 需拆除, 并且可以在工厂内预先制造, 提高了建筑的施工速度, 减低了成本, 并且适合于 建造高层建筑。
才艮据本发明实施例的剪力墙结构建筑, 所述建筑剪力墙结构建筑为由一层建筑单元构 成的单层建筑或由多层建筑单元构成的多层建筑, 所述建筑单元包括由模板相互连接构成 的多面体空间模板体系, 所述模板包括平板状墙体模板、 T形柱模板、 L形柱模板、 十字形 柱模板、 矩形柱模板、 连梁模板、 梁模板和楼盖模板, 所述模板为根据权利要求 1 中所述 的免拆除的预制钢筋混凝土模板, 所述模板内的纵向贯通孔和横向贯通孔构成了所述多面 体空间模板体系内的空心孔道, 所述空心孔道中穿插有附加钢筋且填充混凝土以形成现浇 混凝土剪力墙结构建筑单元。
根据本发明实施例的剪力墙结构建筑的建造方法包括以下步骤:
1 )将预制好的模板运送到现场, 所述模板包括平板状墙体模板、 T形柱模板、 L形柱 模板、 十字形柱模板、 矩形柱模板、 连梁模板、 梁模板和楼盖模板, 且所述模板为根据权 利要求 1所述的免拆除的预制钢筋混凝土模板;
2 )在现场将所述墙体模板和 T形柱模板、 L形柱模板、 十字形柱模板、 矩形柱模板垂 直竖直放置且将它们的下端固定在基础上;
3 )将所述连梁模板放在建筑的门和窗口处的墙体模板上;
4 )将楼盖模板水平放置在平板状墙体模板、 T形柱模板、 L形柱模板、 十字形柱模板、 矩形柱模板和连梁模板上面, 并将所述模板相连以构成多面体空间模板体系, 所述多面体 空间模板体系内部具有由所述模板内的纵向贯通孔和横向贯通孔构成的空心孔道;
5 )在所述空心通道内穿插附加钢筋;
6 ) 向所述空心孔道内浇注混凝土, 待混凝土填充完成且硬化后形成现浇混凝土剪力墙 结构的一层建筑单元或单层建筑。
在本发明的一些实施例中, 所述建造方法还包括:
7 )重复步骤 1 )至 6 ), 其中将当前层的平板状墙体模板、 T形柱模板、 L形柱模板、 十字形柱模板、 矩形柱模板固定在下层建筑单元上以形成多层现浇钢筋混凝土剪力墙结构 建筑。
本发明的附加方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变得明 显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明显 和容易理解, 其中:
图 1是根据本发明实施例的剪力墙结构建筑的示意图;
图 2是沿图 1的 A-A剖视图;
图 3是根据本发明实施例的预制钢筋混凝土模板组成的多面体空间模板体系示意图; 图 4是根据本发明实施例的墙体模板的示意图;
图 5 是图 4所示墙体模板内的钢筋笼的示意图;
图 6是根据本发明实施例的楼盖模板的示意图。
图 7 是用于制造根据本发明实施例的墙体模板和楼盖模板用的模具的示意图; 图 8 是用于制造根据本发明实施例的墙体模板和楼盖模板用的模具的示意图; 图 9 是根据本发明实施例的 T形柱模板的示意图;
图 10 是图 9所示 T形柱模板内的钢筋笼的示意图;
图 11是用于制造根据本发明实施例的 T形柱模板用的模具的示意图;
图 12是用于制造根据本发明实施例的 T形柱模板用的模具的示意图;
图 13 是根据本发明实施例的 L形柱模板的示意图;
图 14 是根据本发明实施例的 L形柱模板内的钢筋笼的示意图; 图 15 是根据本发明实施例的十字形柱模板的示意图;
图 16 是根据本发明实施例的十字形柱模板内的钢筋笼的示意图;
图 17是根据本发明实施例的连梁模板的示意图;
图 18 是根据本发明实施例的连梁模板内的钢筋笼的示意图;
图 19是图 18所示连梁模板的剖视示意图;
图 20 是用于制造连梁模板用的模具的示意图;
图 21是用于制造连梁模板用的模具的示意图;
图 11 是根据本发明实施例的梁模板的示意图;
图 23 是根据本发明实施例的梁模板内的钢筋笼的示意图;
图 24 是根据本发明实施例的矩形柱模板的示意图;
图 25 是根据本发明实施例的矩形柱模板内的钢筋笼的示意图;
图 26是平板状墙体模板与 L形柱模板的连接示意图;
图 27是平板状墙体模板与 T形柱模板的连接示意图; 和
图 28是平板状墙体模板与楼盖模板 G的连接示意图。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参考附图描 述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、 "横向"、 "上"、 "下"、 "前"、 "后"、 "左"、 "右"、 "竖直"、 "水平"、 "顶"、 "底" "内"、 "外"等指示的方位或位置关系 为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简化描述, 而不是指示或 暗示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因此不能理解为 对本发明的限制。 此外, 术语 "第一"、 "第二" 仅用于描述目的, 而不能理解为指示或暗 示相对重要性。
在本发明的描述中, 需要说明的是, 除非另有明确的规定和限定, 术语 "安装"、 "相 连"、 "连接" 应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或一体地连 接; 可以是机械连接, 可以是直接相连, 也可以通过中间媒介间接相连, 可以是两个元件 内部的连通。 对于本领域的普通技术人员而言, 可以具体情况理解上述术语在本发明中的 具体含义。
首先参考图 1-3描述才艮据本发明实施例的剪力墙结构建筑。 图 1示出了一栋 8层建筑, 需要理解的是, 根据本发明实施例的剪力墙结构建筑可以一层或更多层的建筑。 为了描述方便, 根据本发明的实施例的建筑可以划分为平板状墙体模板 1、 T形柱模板 3、 L形柱模板 5、 十字形柱模板 6、 矩形柱模板 10 (参见图 24 ), 连梁模板 7、 梁模板 91、 楼盖模板 G和将上述模板相互结合成一个整体的混凝土(未示出)。 需要理解的是, 建筑的 模板的上述划分仅仅是示例性的, 不能理解为对本发明的限制。
下面描述才艮据本发明实施例的免拆除的预制钢筋混凝土模板。 才艮据本发明实施例的免 拆除的预制钢筋混凝土模板可以用作建筑的上述模板。
根据本发明实施例的预制钢筋混凝土模板为钢筋混凝土预制板, 所述预制钢筋混凝土 模板为钢筋混凝土预制板, 所述钢筋混凝土预制板内设有彼此平行的纵向贯通孔, 和彼此 平行的横向贯通孔, 所述横向贯通孔分别与所述纵向贯通孔交叉以在所述钢筋混凝土预制 板内形成交叉通道。 这里, 需要理解的是, 横向贯通孔并非指正交于纵向贯通孔的一个方 向上的贯通孔, 而是包括正交于纵向贯通孔的多个方向上的贯通孔。
根据本发明实施例的免拆除的预制钢筋混凝土模板,可以在工厂预先加工制造,约 70% 至 80%的受力钢筋已经放置在预制模板内, 由于模板在工厂内生产, 施工质量和板面平整 度易保证, 可大批量生产, 形成产业化。 根据本发明实施例的免拆除的预制钢筋混凝土模 板为小的单元板块, 便于长途运输, 装时不需大型起重机。 可实现每层房屋墙体模板和 楼面模板一次支撑完毕, 然后现浇混凝土, 施工速度加快。 大大减少了在施工现场绑扎钢 筋的工作量。 可减少施工现场模板支撑的工作量和施工难度。 降低工人的劳动强度。 根据 本发明实施例的免拆除的预制钢筋混凝土模板是建筑的受力构件, 无需拆除, 可节省模板 拆除工序。 由于模板本身具有一定的强度, 一层建筑浇注完毕后, 可以快速进行下一层建 筑施工, 可缩短建造周期。
根据本发明的免拆除的预制钢筋混凝土模板的制造方法, 包括以下步骤:
1 )提供模具, 所述模具包括底模, 顶模、 帮模, 纵向钢管和横向钢管作为, 所述帮模 上设有沿其长度方向排列的帮模通孔, 所述顶模上设有沿其长度方向排列的顶模通孔, 所
2 )将所述帮模和顶模放在底模上, 其中所述帮模和所述顶膜相互垂直且端头对齐, 将 钢筋笼放在底模上, 将所述纵向钢管依次穿过一侧顶模的顶模通孔, 所述钢筋笼内的间隙, 另一侧顶模的顶模通孔, 然后将所述横向钢管依次穿过一侧帮模的帮模通孔, 所述钢筋笼 内的间隙、 所述纵向钢管上的纵向钢管贯通孔和另一侧帮模的帮模通孔;
3 ) 向所述模具内浇注混凝土, 在所述混凝土尚未全部硬化之前, 抽出所述横向钢管以 形成横向贯通孔, 并抽出所述纵向钢管以形成纵向贯通孔;
4 )在所述混凝土完全硬化之后, 拆掉所述底模, 帮模, 顶模以形成免拆除的预制钢筋 混凝土模板。 第一实施例
下面参考图 4-8 描述根据本发明第一实施例的免拆除的预制钢筋混凝土模板及其制造 方法。 根据本发明第一实施例的预制钢筋混凝土模板为平板状墙体模板 1或楼盖模板 G。 如图 4所示, 平板状墙体模板 1为钢筋混凝土预制平板 11 , 钢筋混凝土预制平板 11 内设 有一排纵向贯通孔 12和一排横向贯通孔 13。 纵向贯通孔 12沿钢筋混凝土预制平板 11的 纵向 Z延伸,横向贯通孔 13沿钢筋混凝土预制平板 11的横向 H延伸, 横向贯通孔 13分别 与纵向贯通孔 12相交, 从而在钢筋混凝土预制平板 11内形成交叉通道。
如图 5所示,钢筋混凝土预制平板 11内设有钢筋笼 16 ,钢筋笼 16由多根纵向钢筋 161 及将纵向钢筋 161连接成一个整体的多个横向箍筋 162。 优选地, 钢筋混凝土预制平板 11 的外周侧面上分别设有凹槽 14, 从而当钢筋混凝土预制平板 11彼此连接或与其他模板连 接时, 凹槽 14会在它们之间形成缝隙, 便于浇注混凝土, 提高连接强度。
如图 4所示, 优选地, 在钢筋混凝土预制平板 11的上端设有两个吊环 15 , 用于吊装钢 筋混凝土预制平板 11。
在本发明一些实施例中, 钢筋混凝土预制平板 11的纵向贯通孔 12的直径范围为 60隱 至 300隱之间 (通常情况下, 纵向贯通孔 12的直径为钢筋混凝土预制平板 11的厚尺寸减 60mm。 例如,钢筋混凝土预制平板 11的板厚为 200mm时, 纵向贯通孔 12的直径为 140隱)。 横向贯通孔 13的直径范围为 40隱至 280mm (通常情况下, 横向贯通孔 13的直径为纵向贯 通孔 12的直径减 20mm )。
图 6示出了楼盖模板 G , 楼盖模板 G与平板状墙体模板 1类似为钢筋混凝土预制平板 11。 与平板状墙体模板 1不同的是, 楼盖模板 G—个表面上设有与该表面垂直的多排板面 孔 17 (板面孔 17仅延伸预定深度而不贯钢筋混凝土预制平板 11 )。
下面参考图 7和图 8描述根据本发明第一实施例的平板状墙体模板 1的制造方法。 1 )在预制板生产厂的场地上, 按照建筑的尺寸要求, 提供平板状的底模 21 , 两个帮 模 22, 两个顶模 23 , 多根纵向钢管 24及多根横向钢管 25作为模具部件。 纵向钢管 24上 设有沿其径向贯通的纵向钢管贯通孔 241 , 横向钢管 25可穿过纵向钢管贯通孔 241。 如图 7所示; 帮模 22和顶模 23均为两边带有外缘的大体 U型钢条。 帮模 22在底壁上开有一排 与底面垂直的帮模通孔 221。 顶模 23在底壁上开有一排与底面垂直的顶模通孔 231。 帮模 通孔 221和顶模通孔 231的直径范围例如为 60隱至 300mm。 纵向钢管 24可穿过与顶模通 孔 231 , 纵向钢管贯通孔 241的直径可以与帮模通孔 221的直径相同, 以便横向钢管 25可 穿过纵向钢管贯通孔 241和帮模通孔 221。
对于墙体模板 1 , 帮模 22的长度是墙体模板 1的高度, 帮模 22的宽度(图 7中上下 方向的尺寸)是墙体模板 1的厚度。 如果作为楼盖模板 G, 则帮模 22的长度是楼盖模板 G 的跨度, 帮模 22的宽度是楼盖模板 G的厚度。 顶模 23的宽度与帮模 22的宽度相等。
2 )将帮模 22和顶模 23相互垂直且端头对齐地放在底模 21上, 将钢筋笼 16 (图 5 ) 放在底模 21上,并安装 环 15。将多根纵向钢管 24依次穿过一端顶模 23的顶模通孔 231 , 钢筋笼 16内的间隙, 另一端顶模 23的顶模通孔 231 ; 再将多根横向钢管 25依次穿过一侧 帮模 22的帮模通孔 221 , 钢筋笼 16内的间隙、 纵向钢管 24上的纵向钢管贯通孔 241 , 另 一侧帮模 22的帮模通孔 221。
3 )从底模 21上方往模具内浇注混凝土, 混凝土的上表面与帮模 22和顶模 23平齐, 在所述混凝土尚未全部硬化之前, 抽出横向钢管 25 , 以形成横向贯通孔 13 , 且抽出纵向钢 管 24, 以形成纵向贯通孔 12。
4 )在所述混凝土完全硬化之后, 拆掉底模 21 , 帮模 22, 顶模 23 , 以形成钢筋混凝土 预制平板 11 , 即用作平板状墙体模板 1的免拆除预制钢筋混凝土模板。
可以理解的是, 上述方法还可包括: 5 )使用开孔钻在墙体模板 1的上表面上钻孔形成 板面孔 17 , 从而得到楼盖模板 G。
可选地, 根据本发明实施例的免拆除的墙体模板 1和楼盖模板 G还可以利用传统钢筋 混凝土预制板的生产工艺制造出仅具有纵向贯通孔 12的钢筋混凝土预制板,然后利用开孔 钻在钻出与纵向贯通孔 12相交的横向贯通孔 13 , 从而得到根据本发明实施例的钢筋混凝 土预制平板 11。 然后, 再利用开孔钻在钢筋混凝土预制平板 11 的一个表面上钻出板面孔 17 , 得到楼盖模板 G。 传统钢筋混凝土预制板的生产工艺对与本领域的普通技术人员都是 已知的, 这里不再详细描述。 第二实施例
下面参考图 9-12描述根据本发明第二实施例的免拆除的预制钢筋混凝土模板及其制造 方法。 根据本发明第二实施例的预制钢筋混凝土模板为 T形柱模板 3。
T形柱模板 3为横截面为 T形的钢筋混凝土预制板 31,如图 9所示, 钢筋混凝土预制 板 31内设有纵向贯通孔 32, 和分别与纵向贯通孔 32相交的横向贯通孔 33 , 其中横向贯通 孔 33为两组, 两组横向贯通孔 33在同一平面内且彼此正交。 钢筋混凝土预制板 31的左侧 面、 右侧面、 前面、 上表面、 下表面均设有凹槽 34, 上端设有用于吊装的吊环 35。 钢筋混 凝土预制板 31 内具有钢筋笼 36 , 如图 10所示, 钢筋笼 36由多根纵向钢筋 361和多个横 向箍筋 362 ( T形箍筋)组成, 如图 9所示。 钢筋混凝土预制板 31的纵向尺寸 (图 9中的 上下方向的尺寸)约为 2400mm至 5000mm (一般为一层建筑的层高), 钢筋混凝土预制板 31 的厚度约为 140mm至 360mm (一般与平板状墙模板 1的厚度相同)。 下面参考图 11和图 12描述根据本发明第二实施例的 T形柱模板 3的制造方法。
1 )在预制板生产厂的场地上, 按照建筑的尺寸要求, 提供平板状底模 41 , 两个互相 对称的直角底模 42, 三个帮模 43 , 两个(上下) T形顶模 44, 多根纵向钢管 45 , 多根第 一横向钢管 46 , 多根第二横向钢管 47 , 作为模具部件, 如图 11和图 12所示。 帮模 43为 两边带有外缘的 U型钢条, T形顶模 44为两边带有外缘的 U型钢条相连而成, 帮模 43上 设有帮模通孔 431 ,顶模 44上设有顶模通孔 441 ,帮模通孔 431的直径范围为 40 至 280 顶面通孔 441的直径范围为 60 至 300mm之间, 在上顶模 44还设有多个方孔 442, 方孔 442用于浇注混凝土。 纵向钢管 45设有纵向钢管贯通孔 451 , 纵向钢管 45可穿过顶模通孔 441 , 第一横向钢管 46和第二横向钢管 47可穿过纵向钢管贯通孔 451以及帮模通孔 431。 平板状底模 41、 对称直角底模 42及帮模 43的长度 (图 9中的高度)是钢筋混凝土预制板 31的高度, 43帮模的宽度是钢筋混凝土预制板 31厚度。
2 )将下顶模 44与帮模 43相互垂直且端头对齐, 再与底模 41、 42相互垂直且端头对 齐地放置, 将钢筋笼 36 (图 10 )放在模具内, 并安装 环 15 , 再扣上上顶模 44。 将多根 纵向钢管 45依次穿过上顶模 44的顶模通孔 441 , 钢筋笼 36内的间隙, 下顶模 44的顶模 通孔 441中; 将多根第一横向钢管 46依次穿过一侧帮模 43的帮模通孔 431 , 钢筋笼 36的 间隙, 另一侧帮模 43的帮模通孔 431 ; 再将多根第二横向钢管 47与第一横向钢管 46和纵 向钢管 45垂直地穿过另一个帮模 43的帮模通孔 431 , 钢筋笼 36内的间隙, 再顶到纵向钢 管 45上。
3 )从上顶模 44的方孔 442往模具内浇注混凝土, 待混凝土尚未完全硬化之前, 抽出 第二横向钢管 47与第一横向钢管 46 , 以形成钢筋混凝土预制板 31的横向贯通孔 33 , 且抽 出纵向钢管 45 , 形成钢筋混凝土预制板 31的纵向贯通孔 32。
4 ) 拆掉平板状底模 41 , 两块互相对称的直角底模 42, 三个帮模 43 , 两个 T形顶模 44, 形成了在外周侧面上具有凹槽 34的免拆除的 T形柱模板 3。
按照上述相类似的制造方法, 通过选择合适的模具, 还可制造出横截面为 L形的 L形 柱模板 5 (如图 13和图 14所示)、 横截面为十字形的十字形柱模板 6 (如图 15和图 16所 示)。
如图 13和图 14所示, L形柱模板 5为横截面为 L形的钢筋混凝土预制板 51 , 具有 纵向贯通孔 52, 和两组横向贯通孔 53 , 钢筋混凝土预制板 51的左侧面、 前面、 上表面、 下表面分别具有凹槽 54, 钢筋混凝土预制板 51的上端具有 环 55 , 钢筋混凝土预制板 51 内的钢筋笼 56由纵向钢筋 561和横向配箍筋 562组成。
如图 15和图 16所示, 十字形柱模板 6为钢筋混凝土预制板 61 , 钢筋混凝土预制板 61 具有纵向贯通孔 62, 四组横向贯通孔 63 , 钢筋混凝土预制板 61的左侧面、 右侧面、 前面、 后面、 上表面、 下表面均具有凹槽 64, 钢筋混凝土预制板 61的上端设有吊环 65 , 钢筋混 凝土预制板 61内的钢筋笼 66由纵向钢筋 661和十字形横向配箍筋 662组成。
此外, 通过选择不同的模具, 还可以制造横截面为圆形、 多边形、 折角形、 不规则十 字形的免拆除预制钢筋混凝土模板。 第三实施例
下面参考图 17-21描述根据本发明第三实施例的免拆除的预制钢筋混凝土模板及其制 造方法。 根据本发明第三实施例的预制钢筋混凝土模板可以为连梁模板 7。 连梁模板 7通 常是指设在门和窗户上方的梁。
连梁模板 7为钢筋混凝土预制板 71 , 钢筋混凝土预制板 71内设有纵向贯通孔 72和横 向贯通孔 73 , 钢筋混凝土预制板 71的三个侧面上分别设有凹槽 74, 如图 17所示, 其中连 梁模板 7与门和窗口相邻的侧面上可以不设置凹槽 74。 钢筋混凝土预制板 71 内的钢筋笼 76由多根纵向钢筋 761和将纵向钢筋 761固连成一整体的多个横向箍筋 762组成,如图 18 所示。横向箍筋 762—端可以露出以用作吊环。 钢筋混凝土预制板 71的长度一般约为门窗 洞口尺寸加 600mm, 钢筋混凝土预制板 71 的高度为门窗洞口上皮至楼板下皮尺寸, 钢筋 混凝土预制板 71的厚度与墙厚相同。
下面参考图 20和 21描述根据本发明第三实施例的连梁模板 7制造方法。
1 )在预制板生产厂的场地上, 按照建筑的尺寸要求, 提供平板底模 81 , 两块长帮模 82, 两块短帮模 83 , —块顶模 84, 多根纵向钢管 85 , 多根横向钢管 86, 作为模具, 如图 20和 21所示。 其中短帮模 83和顶模 84均为两边带有外缘的 U型钢条。 短帮模 83上设有 一排短帮模通孔 831 (短帮模通孔 831的直径范围为 60 至 300 底模 81上设有一排 底模通孔 811 (底模通孔 811的直径范围为 40 至 280mm之间), 顶模 84上间隔地设有圆 形的顶模通孔 841 (圆形的顶模通孔 841的直径范围为 40 至 280mm之间)和方孔 842, 方孔用于浇注混凝土用。 纵向钢管 85 的管壁上设有一排纵向钢管通孔 851 , 横向钢管 86 可穿过纵向钢管通孔 851 , 纵向钢管 85可穿过短帮模通孔 831 ;
2 )将长帮模 82和短帮模 83与顶模 84相互垂直且端头对齐地放在底模 81上。 将钢筋 笼 76 (图 18 )放在模具中的底模 81上; 将多根纵向钢管 85依次穿过一侧短帮模 83的短 帮模通孔 831 , 钢筋笼 76内的间隙, 另一侧短帮模 83的短帮模通孔 831中; 再将多根横 向钢管 86依次穿过顶模 84的顶模通孔 841 ,钢筋笼 76内的间隙,底模 81的底模通孔 811。
3 )从上顶模 84的方孔 842往模具内浇注混凝土, 混凝土的上表面与长帮模 82和短帮 模 83的上表面平齐, 待混凝土尚未全部结硬之前, 抽出横向钢管 86, 形成钢筋混凝土预 制板 71的横向贯通孔 72, 抽出纵向钢管 85 , 形成纵向贯通孔 73 , 钢筋笼 76的横向钢筋 箍 762可以从混凝土内露出, 以用作吊环。
4 )拆掉短帮模 83和顶模 84之后, 形成三个侧面开有的凹槽 74的免拆除的预制钢筋 混凝土连梁模板 7。
按照上述类似的制造方法可以制造梁模板 9 , 如图 22-23所示, 梁模板 9为钢筋混凝土 预制板 91 , 钢筋混凝土预制板 91可以设有沿竖向不贯通的横向贯通孔 92 (横向贯通孔 92 的底距梁模板 9的外底面 30mm至 50mm ), 钢筋混凝土预制板 91设有纵向贯通孔 93。 此 外, 钢筋混凝土预制板 91内的钢筋笼 96的纵向钢筋 961的一端伸出混凝土之外, 以便与 其它构件连接, 伸出长度按设计要求确定, 其他与连梁模板 7类似, 这里不再详细描述。
图 24和 25示出了矩形柱模板 10 , 矩形柱模板 10为钢筋混凝土预制板 101 , 按照上述 相类似的制造方法可制造出钢筋混凝土预制板 101 , 钢筋混凝土预制板 101 内具有纵向贯 通孔 102和横向贯通孔 103 , 吊环 104, 和钢筋笼 106。 钢筋笼 106由多根排列的纵向钢筋 1061及将所有纵向钢筋 1061连成一整体的多个横向箍筋 1062 (九宫格形)组成。
下面描述根据本发明实施例的剪力结构建筑及其建造方法。 图 1是根据本发明实施例 的剪力墙结构建筑的示意图, 图 2是沿图 1的 A-A剖视图。 根据本发明实施例的建筑剪力 墙结构建筑为由一层建筑单元构成的单层建筑或由多层建筑单元构成的多层建筑, 所述建 筑单元包括由模板相互连接构成的多面体空间模板体系, 所述模板包括平板状墙体模板、 T 形柱模板、 L 形柱模板、 十字形柱模板、 矩形柱模板、 连梁模板、 梁模板和楼盖模板, 所 述模板可以为参考上述实施例描述的的免拆除的预制钢筋混凝土模板, 所述模板内的纵向 贯通孔和横向贯通孔构成了所述多面体空间模板体系内的空心孔道, 所述空心孔道中穿插 有附加钢筋且填充混凝土以形成现浇混凝土剪力墙结构建筑单元。
图 1所示实施例由 10个建筑单元水平组合构成一层整体建筑单元(图 2) , 各层整体建 筑单元依次向上叠合构成 8层釆用上述预制钢筋混凝土模板形成的现浇混凝土剪力墙结构 建筑, 上层整体建筑单元的墙体固定在下层建筑单元的墙体上; 底层建筑单元墙体下端固 定在基础 B上。 顶层建筑单元的墙体与屋顶的屋面板(与楼盖模板 G相同)相连。
更具体而言, 根据本发明实施例的剪力墙结构建筑的模板可以釆用上述平板状墙体模 板 1、 T形柱模板 3、 L形柱模板 5、 十字形柱模板 6、 矩形柱模板 10、 连梁模板 7、 梁模板 9和楼盖模板(屋面板) G。
才艮据本发明实施例的剪力墙结构建筑, 由于釆用免拆除且具有内部交叉孔的预制钢筋 混凝土模板现场浇注建造, 免拆除的预制钢筋混凝土模板可以在预制厂预先制好, 提高了 建筑的建造速度, 并且无需拆除, 省时省力。
下面参考图 1-3描述根据本发明实施例的剪力墙结构建筑的建造方法。
1 )将预制好的钢筋混凝土平板状墙体模板 1、 T形柱模板 3、 L形柱模板 5、 十字形柱 模板 6、 矩形柱模板 10、 连梁模板 7、 梁模板 9和楼盖模板(屋面板) G运送到现场; 各模板的预制方法上面已经描述, 这里不再详细描述。
2 )在现场将平板状墙体模板 1和柱模板 ( T形柱模板 3、 L形柱模板 5、 十字形柱模板 6、 矩形柱模板 10 )垂直竖直放置, 下端固定在基础 B上, 基础上有伸出的附加钢筋 F6、 F5 , 正好插入柱模板和墙模板 1的纵向贯通孔内, 如图 3所示;
3 )将连梁模板 7安放在有门、 窗洞口处的墙模板 1上;
4 )将楼(屋)盖模板 G安放在墙体模板 1、 柱模板和连梁模板 7上方, 形成由模板组 成的内部形成空心孔道的多面体空间模板体系;
5 )在相互连通的多面体空间模板体系的空心孔道内穿插附加钢筋 Fl、 F2、 F3、 F4, 用 于加强上下、 左右模板的连接, 在楼(屋)盖模板 G上放置附加钢筋网 D1 (用于制造叠合 层 D2 ), 如图 3所示;
6 )向所述多面体空间模板体系中的空心孔道内浇注混凝土, 楼(屋)盖模板 G上方还 可制造 40mm至 80mm厚度的现浇混凝土叠合层 D2; 待混凝土填充完成, 形成由一层整体 建筑单元构成的现浇混凝土剪力墙结构体系, 如图 3所示。
7 )多次重复 1 )至 6 ), 将当前层的墙体模板和柱模板固定在下层整体建筑单元上形成 多层现浇钢筋混凝土剪力墙结构。
下面参考图 26-28描述各模板之间的连接关系。
L形柱模板 5与墙体模板 1连接的实施例如图 26所示, 先将各个 L形柱模板 5和门、 窗洞口边的墙体模板 1 (图中未示出) 的纵向贯通孔中插入的附加钢筋 F5 , 釆用传统的机 械连接接头接长一层高(用于插入到上层模板的纵向贯通孔中), 在 L形柱模板 5与墙体模 板 1相通的横向贯通孔中插入附加钢筋 F1和 U形附加钢筋 F4, 用于连接 L形柱模板 5与 墙体模板 1。 最后向 L形柱模板 5与墙体模板 1之间由它们侧面上的凹槽形成的空隙内及 各模板中的贯通孔内浇注混凝土。
T形柱模板 3与墙体模板 1连接的实施例如图 27所示, 先将各个 T形柱模板 3和门、 窗洞口边的墙体模板 1 (图中未示出) 的纵向贯通孔中插入的附加钢筋 F5 , 同样釆用传统 机械连接接头接长一层高, 用于插入到上层模板中, 在 T形柱模板 3与墙体模板 1相通的 横向贯通孔中插入附加钢筋 F1和 U形附加钢筋 F4, 用于连接 T形柱模板 3与墙体模板 1。 最后向 T形柱模板 3与墙体模板 1之间由它们侧面上的凹槽形成的空隙内及各模板中的贯 通孔内浇注混凝土。
安装 L形柱模板 5或 T形柱模板 3 , 使附加钢筋 F5穿过柱模板的纵向贯通孔; 再安装 墙模板 1和连梁模板 7; 然后在柱模板、 墙模板的横向贯通孔内穿插附加钢筋 Fl、 F4, 如 图 26、 图 27所示。 墙体模板 1与楼盖模板 G连接的实施例如图 28所示。在墙模板 1的横向贯通孔中插入 附加钢筋 F1 , 在楼(屋)盖模板 6的横向贯通孔内穿插附加钢筋 F2, 在楼(屋)盖模板的 上表面放置附加钢筋网 D1 , 在两个楼(屋)盖模板之间上方的墙模板的纵向贯通孔中插入 附加钢筋 F6, 最后向楼(屋)盖模板与墙体模板之间由它们侧面上的凹槽形成的空隙内及 各模板中的贯通孔内浇注混凝土, 再在楼(屋)盖模板上面浇注混凝土形成叠合层 D2。
根据本发明实施例的建筑及其建筑方法, 可以大大提高施工速度, 并且模板无需拆除, 省时省力。
尽管已经示出和描述了本发明的实施例, 本领域的普通技术人员可以理解: 在不脱离 本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发 明的范围由权利要求及其等同物限定。

Claims

权利要求书
1、 一种免拆除的预制钢筋混凝土模板, 其特征在于, 所述预制钢筋混凝土模板为钢 筋混凝土预制板, 所述钢筋混凝土预制板内设有彼此平行的纵向贯通孔, 和彼此平行的横 向贯通孔, 所述横向贯通孔分别与所述纵向贯通孔交叉以在所述钢筋混凝土预制板内形成 交叉通道。
2、 根据权利要求 1 所述的免拆除的预制钢筋混凝土模板, 其特征在于, 所述钢筋混 凝土预制板的外周侧面上分别设有凹槽。
3、 根据权利要求 1 所述的免拆除的预制钢筋混凝土模板, 其特征在于, 所述钢筋混 凝土预制板内的钢筋包括横向箍筋和多根纵向钢筋, 所述横向箍筋将所述多个纵向钢筋连 接成一个整体以形成钢筋笼。
4、 根据权利要求 1 所述的免拆除的预制钢筋混凝土模板, 其特征在于, 所述钢筋混 凝土预制板的一端设有吊环。
5、 根据权利要求 1 所述的免拆除的预制钢筋混凝土模板, 其特征在于, 所述钢筋混 凝土预制板为平板状墙体模板、 T形柱模板、 L形柱模板、 十字形柱模板、 矩形柱模板、 连 梁模板、 梁模板和楼盖模板中的至少一个。
6、 一种免拆除的预制钢筋混凝土模板的制造方法, 其特征在于, 包括以下步骤:
1 )提供模具, 所述模具包括底模, 顶模、 帮模, 纵向钢管和横向钢管作为, 所述帮模 上设有沿其长度方向排列的帮模通孔, 所述顶模上设有沿其长度方向排列的顶模通孔, 所
2 )将所述帮模和顶模放在底模上, 其中所述帮模和所述顶膜相互垂直且端头对齐, 将 钢筋笼放在底模上, 将所述纵向钢管依次穿过一侧顶模的顶模通孔, 所述钢筋笼内的间隙, 另一侧顶模的顶模通孔, 然后将所述横向钢管依次穿过一侧帮模的帮模通孔, 所述钢筋笼 内的间隙、 所述纵向钢管上的纵向钢管贯通孔和另一侧帮模的帮模通孔;
3 ) 向所述模具内浇注混凝土, 在所述混凝土尚未全部硬化之前, 抽出所述横向钢管以 形成横向贯通孔, 并抽出所述纵向钢管以形成纵向贯通孔;
4 )在所述混凝土完全硬化之后, 拆掉所述底模, 帮模, 顶模以形成免拆除的预制钢筋 混凝土模板。
7、 根据权利要求 6所述的免拆除的预制钢筋混凝土模板的制造方法, 其特征在于, 还 包括 5 )使用开孔钻在所述预制钢筋混凝土模板的上表面上钻孔形成板面孔。
8、 一种免拆除的预制钢筋混凝土模板的制造方法, 其特征在于, 包括以下步骤: 1 )釆用传统生产预制混凝土板的方法制造出仅具有纵向贯通孔的预制混凝土板;
2 )在所述仅具有纵向贯通孔的预制混凝土板上使用开孔钻钻出与所述纵向贯通孔交叉 的横向贯通孔, 以形成具有由所述纵向贯通孔和所述横向贯通孔交叉形成的交叉通道的预 制钢筋混凝土模板。
9、一种剪力墙结构建筑, 其特征在于, 所述建筑剪力墙结构建筑为由一层建筑单元构 成的单层建筑或由多层建筑单元构成的多层建筑, 所述建筑单元包括由模板相互连接构成 的多面体空间模板体系, 所述模板包括平板状墙体模板、 T形柱模板、 L形柱模板、 十字形 柱模板、 矩形柱模板、 连梁模板、 梁模板和楼盖模板, 所述模板为根据权利要求 1 中所述 的免拆除的预制钢筋混凝土模板, 所述模板内的纵向贯通孔和横向贯通孔构成了所述多面 体空间模板体系内的空心孔道, 所述空心孔道中穿插有附加钢筋且填充混凝土以形成现浇 混凝土剪力墙结构建筑单元。
10、 一种剪力墙结构建筑的建造方法, 其特征在于, 包括以下步骤:
1 )将预制好的模板运送到现场, 所述模板包括平板状墙体模板、 T形柱模板、 L形柱 模板、 十字形柱模板、 矩形柱模板、 连梁模板、 梁模板和楼盖模板, 且所述模板为根据权 利要求 1所述的免拆除的预制钢筋混凝土模板;
2 )在现场将所述墙体模板和 T形柱模板、 L形柱模板、 十字形柱模板、 矩形柱模板垂 直竖直放置且将它们的下端固定在基础上;
3 )将所述连梁模板放在建筑的门和窗口处的墙体模板上;
4 )将楼盖模板水平放置在平板状墙体模板、 T形柱模板、 L形柱模板、 十字形柱模板、 矩形柱模板和连梁模板上面, 并将所述模板相连以构成多面体空间模板体系, 所述多面体 空间模板体系内部具有由所述模板内的纵向贯通孔和横向贯通孔构成的空心孔道;
5 )在所述空心通道内穿插附加钢筋;
6 ) 向所述空心孔道内浇注混凝土, 待混凝土填充完成且硬化后形成现浇混凝土剪力墙 结构的一层建筑单元或单层建筑。
11、 如权利要求 10所述的建造方法, 其特征在于, 还包括:
7 )重复步骤 1 )至 6 ), 其中将当前层的平板状墙体模板、 T形柱模板、 L形柱模板、 十字形柱模板、 矩形柱模板固定在下层建筑单元上以形成多层现浇钢筋混凝土剪力墙结构 建筑。
PCT/CN2011/082172 2010-11-19 2011-11-14 预制钢筋混凝土模板及其制造方法、以及用模板建造的剪力墙结构建筑及其建造方法 WO2012065534A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010554530.2A CN101985856B (zh) 2010-11-19 2010-11-19 一种免拆除的内有交叉孔的预制钢筋砼模板及制作方法
CN201010554530.2 2010-11-19
CN2010105701851A CN102061803B (zh) 2010-11-26 2010-11-26 基于交叉孔预制钢筋砼模板的剪力墙结构建筑及建造方法
CN201010570185.1 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012065534A1 true WO2012065534A1 (zh) 2012-05-24

Family

ID=46083502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082172 WO2012065534A1 (zh) 2010-11-19 2011-11-14 预制钢筋混凝土模板及其制造方法、以及用模板建造的剪力墙结构建筑及其建造方法

Country Status (1)

Country Link
WO (1) WO2012065534A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT13302U1 (de) * 2012-05-31 2013-10-15 Kappema Fertigteilindustrie Gmbh Halbfertig-Bauteil zum Erstellen von Bauwerken
AT513020A1 (de) * 2012-05-31 2013-12-15 Kappema Fertigteilindustrie Gmbh Halbfertig-Bauteil zum Erstellen von Bauwerken
CN103806531A (zh) * 2014-03-02 2014-05-21 洪嘉荣 模块化建筑
CN104088378A (zh) * 2014-01-18 2014-10-08 广东省建筑设计研究院 一种外包钢板与钢管混凝土的空实组合剪力墙
US20170022699A1 (en) * 2014-04-07 2017-01-26 Nxt Enterprise Pty Ltd Building system
CN106677527A (zh) * 2016-12-28 2017-05-17 中国建筑第八工程局有限公司 电梯井内隔梁一次浇筑成型施工方法
CN115045390A (zh) * 2022-05-11 2022-09-13 中国建筑技术集团有限公司 一种全装配式轻钢轻混凝土结构体系建造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1122316A (zh) * 1995-09-12 1996-05-15 辽宁华信新型建材有限公司 快硬高强水泥微孔空心轻质墙板及其制备方法
JPH11107440A (ja) * 1997-10-02 1999-04-20 Kodensha:Kk 建築構造物の壁面パネル
CN101016754A (zh) * 2007-02-13 2007-08-15 冯葆纯 一种预制空芯承重墙板建筑结构体系及施工方法
CN101684677A (zh) * 2008-09-23 2010-03-31 上海四维科技研究所 一种加气混凝土外墙条板制造方法
CN101985856A (zh) * 2010-11-19 2011-03-16 清华大学建筑设计研究院 一种免拆除的内有交叉孔的预制钢筋砼模板及制作方法
CN102061803A (zh) * 2010-11-26 2011-05-18 清华大学建筑设计研究院 基于交叉孔预制钢筋砼模板的剪力墙结构建筑及建造方法
CN102061743A (zh) * 2010-11-26 2011-05-18 清华大学建筑设计研究院 免拆除预制钢筋砼模板的框架-剪力墙结构建筑及建造方法
CN201883677U (zh) * 2010-11-26 2011-06-29 清华大学建筑设计研究院 免拆除预制钢筋砼模板的框架-剪力墙结构建筑
CN201883529U (zh) * 2010-11-26 2011-06-29 清华大学建筑设计研究院 基于交叉孔预制钢筋砼模板的剪力墙结构建筑
CN201972393U (zh) * 2010-11-19 2011-09-14 清华大学建筑设计研究院 一种免拆除的内有交叉孔的预制钢筋砼模板

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1122316A (zh) * 1995-09-12 1996-05-15 辽宁华信新型建材有限公司 快硬高强水泥微孔空心轻质墙板及其制备方法
JPH11107440A (ja) * 1997-10-02 1999-04-20 Kodensha:Kk 建築構造物の壁面パネル
CN101016754A (zh) * 2007-02-13 2007-08-15 冯葆纯 一种预制空芯承重墙板建筑结构体系及施工方法
CN101684677A (zh) * 2008-09-23 2010-03-31 上海四维科技研究所 一种加气混凝土外墙条板制造方法
CN101985856A (zh) * 2010-11-19 2011-03-16 清华大学建筑设计研究院 一种免拆除的内有交叉孔的预制钢筋砼模板及制作方法
CN201972393U (zh) * 2010-11-19 2011-09-14 清华大学建筑设计研究院 一种免拆除的内有交叉孔的预制钢筋砼模板
CN102061803A (zh) * 2010-11-26 2011-05-18 清华大学建筑设计研究院 基于交叉孔预制钢筋砼模板的剪力墙结构建筑及建造方法
CN102061743A (zh) * 2010-11-26 2011-05-18 清华大学建筑设计研究院 免拆除预制钢筋砼模板的框架-剪力墙结构建筑及建造方法
CN201883677U (zh) * 2010-11-26 2011-06-29 清华大学建筑设计研究院 免拆除预制钢筋砼模板的框架-剪力墙结构建筑
CN201883529U (zh) * 2010-11-26 2011-06-29 清华大学建筑设计研究院 基于交叉孔预制钢筋砼模板的剪力墙结构建筑

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT13302U1 (de) * 2012-05-31 2013-10-15 Kappema Fertigteilindustrie Gmbh Halbfertig-Bauteil zum Erstellen von Bauwerken
AT513020A1 (de) * 2012-05-31 2013-12-15 Kappema Fertigteilindustrie Gmbh Halbfertig-Bauteil zum Erstellen von Bauwerken
AT513020B1 (de) * 2012-05-31 2015-08-15 Kappema Fertigteilindustrie Gmbh Halbfertig-Bauteil zum Erstellen von Bauwerken
CN104088378A (zh) * 2014-01-18 2014-10-08 广东省建筑设计研究院 一种外包钢板与钢管混凝土的空实组合剪力墙
CN104088378B (zh) * 2014-01-18 2015-02-18 广东省建筑设计研究院 一种外包钢板与钢管混凝土的空实组合剪力墙
CN103806531A (zh) * 2014-03-02 2014-05-21 洪嘉荣 模块化建筑
US20170022699A1 (en) * 2014-04-07 2017-01-26 Nxt Enterprise Pty Ltd Building system
US11739521B2 (en) * 2014-04-07 2023-08-29 Nxt Building System Pty Ltd Building system
CN106677527A (zh) * 2016-12-28 2017-05-17 中国建筑第八工程局有限公司 电梯井内隔梁一次浇筑成型施工方法
CN115045390A (zh) * 2022-05-11 2022-09-13 中国建筑技术集团有限公司 一种全装配式轻钢轻混凝土结构体系建造方法

Similar Documents

Publication Publication Date Title
WO2012065534A1 (zh) 预制钢筋混凝土模板及其制造方法、以及用模板建造的剪力墙结构建筑及其建造方法
CN107780576A (zh) 一种装配式建筑底层组合楼板及其连接方式
CN105317137A (zh) 预制墙体、墙板及其施工方法以及预制墙板生产方法
JP6277532B2 (ja) 柱及び梁のつなぎ合わせのための独立基本構造物
CN102061803A (zh) 基于交叉孔预制钢筋砼模板的剪力墙结构建筑及建造方法
WO2020096526A1 (en) Prefabricated volumetric module design, fabrication, assembly and installation method
TWI698567B (zh) 梁柱接合結構、梁柱接合方法及使用該梁柱接合結構之建築物結構
US20080216445A1 (en) Monolithic Buildings and Construction Technology
CN107859206A (zh) 预制钢构叠合剪力墙及其施工方法
CN111364681B (zh) 一种端部柱梁节点预应力筋交错张拉锚固构造及施工方法
CN211473051U (zh) 一种预应力桁架墙板及使用该墙板制作的墙体
WO2011091767A1 (zh) 空间轻钢构架混凝土建筑及其建造方法
CN103628616A (zh) 一种预制混凝土空心构件及制作方法
CN210194867U (zh) 一种装配式建筑结构
CN211143393U (zh) 一种用于制备装配式混凝土灌芯墙体的框架及装配式混凝土灌芯墙体
CN111456227A (zh) 一种装配板构式建筑及其施工方法
KR102197994B1 (ko) 빔 보강 데크플레이트를 이용한 시공방법
CN111411693A (zh) 装配浇注一体化剪力墙结构建筑体系
KR101357280B1 (ko) 여러 층의 동시 시공이 가능한 다층1절 피씨 기둥과 이를 이용한 피씨 복합화 공법
CN111335485B (zh) 一种装配建筑预制型钢混凝土中间柱梁节点预应力筋交错张拉锚固构造及施工方法
CN210067441U (zh) 一种电梯砖墙门垛用一体式现浇砼
CN212772979U (zh) 一种预应力装配式剪力墙系统
CN210529928U (zh) 一种框架结构用预制钢筋砼凸形支座体
CN108301509B (zh) 一种钢筋砼框架结构的装配方法
AU2021107156A4 (en) Construction of a lift shaft or stair core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840757

Country of ref document: EP

Kind code of ref document: A1